WO2023103166A1 - 显示器的驱动方法及显示器 - Google Patents
显示器的驱动方法及显示器 Download PDFInfo
- Publication number
- WO2023103166A1 WO2023103166A1 PCT/CN2022/073599 CN2022073599W WO2023103166A1 WO 2023103166 A1 WO2023103166 A1 WO 2023103166A1 CN 2022073599 W CN2022073599 W CN 2022073599W WO 2023103166 A1 WO2023103166 A1 WO 2023103166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- power supply
- frame image
- target frame
- supply voltage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000005540 biological transmission Effects 0.000 claims abstract description 48
- 241001270131 Agaricus moelleri Species 0.000 claims description 52
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 230000009466 transformation Effects 0.000 claims description 11
- 230000001131 transforming effect Effects 0.000 claims description 8
- 230000003139 buffering effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 12
- 238000005265 energy consumption Methods 0.000 description 7
- 230000016776 visual perception Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 238000010191 image analysis Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3607—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3614—Control of polarity reversal in general
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3696—Generation of voltages supplied to electrode drivers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0247—Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0271—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
- G09G2320/0276—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0673—Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
- G09G2330/023—Power management, e.g. power saving using energy recovery or conservation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/028—Generation of voltages supplied to electrode drivers in a matrix display other than LCD
Definitions
- the present application relates to the field of display technology, in particular to a display driving method and the display.
- Display panels with large size, high refresh rate and high resolution usually consume too much power.
- In the current environment of controlling ecological environmental pollution and improving the environmental performance of energy-consuming products for large-size, high-refresh-rate, and high-resolution display panels, how to reduce the power consumption of the display panel is more urgent.
- the related technical solution not only consumes too much power in practical application, but also has the problem of slow data transmission, which is not conducive to ensuring the quality of the displayed image. Therefore, how to ensure the quality of the displayed image while reducing the power consumption of the display panel is an urgent problem to be solved.
- This application mainly aims at how to reduce the power consumption of the display panel while ensuring the quality of the display image is an urgent problem to be solved.
- the present application proposes a display driving method and a display, which can dynamically and adaptively adjust the voltage value of the second power supply voltage, while reducing the energy consumption of the display panel, while improving the transmission efficiency of power supply voltage data, ensuring Displays the quality of the picture.
- a display driving method comprising: obtaining the grayscale data of the target frame image according to the display data of the target frame image; Configure the voltage value of the first power supply voltage to obtain the voltage value of the second power supply voltage; transmit the second power supply voltage in parallel transmission mode, and cache the voltage value of the second power supply voltage; according to the The buffered voltage value of the second power supply voltage is updated in real time according to the current update time of the target frame image.
- a display which includes: a grayscale acquisition module electrically connected to a power supply configuration module for obtaining grayscale data of the target frame image according to the display data of the target frame image;
- the configuration module is electrically connected to the gray scale acquisition module and the power buffer module, and is used to configure the voltage value of the first power supply voltage of the display based on the gray scale data to obtain the voltage value of the second power supply voltage;
- the power transmission module electrically connected with the power configuration module and the power update module, used to transmit the second power supply voltage in parallel transmission mode, and cache the voltage value of the second power supply voltage; the power update module, and the power cache module
- the electrical connection is used to update the buffered voltage value of the second power supply voltage in real time according to the current update time of the target frame image.
- the transmission method transmits the voltage value of the second power supply voltage, caches the voltage value of the second power supply voltage, and finally updates the cached second power supply voltage according to the current update time of the target frame image
- the voltage value of the second power supply voltage can be updated in real time, according to various aspects of the application, the voltage value of the second power supply voltage can be dynamically and adaptively adjusted, while reducing the energy consumption of the display panel, the transmission efficiency of the power supply voltage data can be improved, and the quality of the display screen can be guaranteed.
- FIG. 1 shows a flow chart of a display driving method according to an embodiment of the present application.
- FIG. 2 shows a schematic diagram before gray scale transformation of the embodiment of the present application.
- FIG. 3 shows a schematic diagram of the grayscale conversion of the embodiment of the present application.
- FIG. 4 shows a schematic diagram of power voltage data transmission in the related art.
- FIG. 5 shows a schematic diagram of power voltage data transmission according to an embodiment of the present application.
- FIG. 6 shows a schematic diagram of a method for driving a display according to an embodiment of the present application.
- FIG. 7 shows a schematic structural diagram of a display according to an embodiment of the present application.
- first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
- a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
- “plurality” means two or more, unless otherwise specifically defined.
- connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; may be mechanically connected, may also be electrically connected or may communicate with each other; may be directly connected, or indirectly connected through an intermediary, may be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
- the present application mainly provides a display driving method.
- the display driving method includes: obtaining the grayscale data of the target frame image according to the display data of the target frame image;
- the voltage value of the voltage is configured to obtain the voltage value of the second power supply voltage;
- the second power supply voltage is transmitted in parallel transmission mode, and the voltage value of the second power supply voltage is cached; according to the target frame image
- the current update time updates the cached voltage value of the second power supply voltage in real time.
- the transmission method transmits the second power supply voltage, and caches the voltage value of the second power supply voltage, and finally performs the buffered voltage value of the second power supply voltage according to the current update time of the target frame image
- the present application can dynamically and adaptively adjust the voltage value of the second power supply voltage, while reducing the energy consumption of the display panel, while improving the transmission efficiency of power supply voltage data, and ensuring the quality of the display screen.
- FIG. 1 shows a flow chart of a display driving method according to an embodiment of the present application.
- the display according to the embodiment of the present application may include a driving module and a display panel, the driving module is electrically connected to the display panel, and the driving module may be used to drive the display panel.
- the display data of the target frame image may be pre-stored in the drive module.
- the driving method of the display includes:
- Step S10 Obtain the gray scale data of the target frame image according to the display data of the target frame image
- the display data of the target frame image is pre-stored in the driving module.
- a memory may be set in the driving module for pre-storing the display data of the target frame image.
- the display picture of the display panel may include multiple frames, and the display data of all the frames of the display panel may also be pre-stored in the driving module.
- the target frame image of the display panel includes a plurality of pixels, wherein at least one pixel is preset with a gray scale corresponding to the pixel.
- the display data of the target frame image can be represented by a one-dimensional array or a multi-dimensional array, and each element in the array can correspond to each pixel of the display screen, and is used to drive each pixel in the display panel according to the preset displayed in grayscale. It can be understood that the present application does not limit how to display the data.
- the grayscale data of the target frame image may include a first grayscale extreme value and a second grayscale extreme value.
- the first grayscale extreme value of the target frame image may be the maximum value of multiple first grayscales of the target frame image
- the second grayscale extreme value of the target frame image may be The maximum value of the multiple second gray scales of the target frame image.
- the grayscale data of the target frame image is obtained according to the display data of the target frame image, including:
- Step S101 Obtain the first gray scale extremum of the target frame image according to the display data of the target frame image;
- the first gray scale may be a preset gray scale
- the display data of the target frame image may include a plurality of the first gray scales, and each first gray scale corresponds to a pixel point of the target frame image.
- the gray scales of the display data of all frames of the display panel can be represented by 8-bit binary numbers, and the range of gray scales ranges from 0 to 255.
- the frame of display picture may include 1024*768 pixels, and the first grayscale range of each pixel of the frame of display picture may be 16 to 128, that is, for the frame of display picture, the frame The first grayscale extreme value of the display picture may be 128, that is, the maximum grayscale of the frame display picture.
- the target frame image may be divided into multiple display areas, the first grayscale extremum value is the maximum value of multiple first grayscales of at least one display area in the multiple display areas, and the The second grayscale extremum value is a maximum value of multiple second grayscales of at least one display area among the multiple display areas.
- the maximum value of the gray scale of each display area may be different. Therefore, the first grayscale extremum of the target frame image may also be the maximum value of multiple first grayscales in a display area of the frame image.
- the target frame image may be divided into two display areas.
- the first grayscale range of the first display area is from 16 to 108
- the first grayscale range of the second display area is from 32 to 116.
- the first grayscale extreme value of the target frame image may be the first
- the maximum value 108 of the gray scale of one display area may also be the maximum value 116 of the gray scale of the second display area.
- the first grayscale extreme value of the target frame image is a preferred solution, and how to select the first grayscale extreme value of the target frame image is not limited in this application.
- the first grayscale extremum of the target frame image is obtained according to the display data of the target frame image, including:
- Step S1011 Obtain the first grayscale range of the target frame image according to the display data of the target frame image;
- Step S1012 Obtain the first grayscale extremum of the target frame image according to the first grayscale range.
- each pixel in the target frame image may correspond to a first gray scale, therefore, each of the first gray scales may be Transformation is performed to obtain a plurality of transformed second gray scales.
- the multiple first gray scales of the target frame image may also be divided into multiple sub-intervals, and the conversion is performed segmentally according to the multiple sub-intervals.
- the present application does not limit how to transform the multiple first gray scales of the target frame image.
- the driving module may transform multiple first gray scales of the target frame image based on nonlinear characteristics between visual perception and brightness to obtain multiple second gray scales after conversion.
- the visual perception can be represented by the brightness value that can be observed by the human eye
- the brightness can be represented by the brightness factor. Therefore, based on the nonlinear relationship between the visual perception of the image and the brightness, statistics can be made on each pixel of the target frame image Analyze to obtain the brightness value range of the target frame image.
- the gray scale of the target frame image can also be statistically analyzed to obtain the range of the gray scale.
- each of the multiple second gray scales after conversion may correspond to one first gray scale before conversion, or may correspond to multiple first gray scales before conversion. It can be understood that different conversion methods will produce different correspondences between the first grayscale and the second grayscale, and the application does not limit the correspondence between the first grayscale and the second grayscale.
- the second grayscale extremum value is a maximum value of multiple second grayscales of the target frame image. That is, the second extreme gray scale has similar meanings to the first extreme gray scale.
- the frame of display picture may include 1024*768 pixels, and the first grayscale range of each pixel of the frame of display picture may be 16 to 128, that is, for the frame of display picture, The first extreme value of the gray scale of the display frame may be 128.
- the second grayscale range of each pixel of the frame display image may be 32 to 216, and the first grayscale extreme value of the frame display image may be 216.
- Step S102 Transforming multiple first gray scales of the target frame image to obtain a second gray scale extremum of the target frame image.
- transforming the multiple first gray scales of the target frame image to obtain the second gray scale extremum of the target frame image includes: Step S1021: Transforming the multiple first gray scales of the target frame image to obtain the transformed Multiple second gray scales of ;
- Step S1022 Obtain the second grayscale extremum of the target frame image according to the transformed second grayscales.
- converting the plurality of first gray scales of the target frame image to obtain the converted plurality of second gray scales may include: dividing the first gray scale range of the target frame image into a plurality of sub-intervals; according to the The plurality of divided sub-intervals and the preset conversion coefficients are used to transform the plurality of first gray scales of the target frame image to obtain a plurality of transformed second gray scales.
- a preset conversion coefficient may be multiplied by multiple first gray scales of the target frame image, so as to obtain multiple second gray scales.
- FIG. 2 shows a schematic diagram of the embodiment of the present application before gray scale conversion
- FIG. 3 shows a schematic diagram of the embodiment of the present application after gray scale conversion.
- the horizontal axis may represent voltage
- the vertical axis may represent grayscale.
- the maximum value of the first gray scale of the target frame image may correspond to the voltage value of the 10th level gamma voltage
- the maximum value of the second gray scale of the target frame image may correspond to the voltage value of the first-level gamma voltage. That is, after the transformation, the maximum value of the grayscale of the target frame image may be greater than the maximum value of the grayscale before transformation.
- the embodiment of the present application can make the gray scale of the target frame picture adapt to the voltage value of the first power supply voltage, and ensure the brightness of the display screen after adjusting the voltage value of the first power supply voltage. quality.
- step S1021 can be expressed by formula (1) as follows:
- Dinn can represent the first grayscale of the nth pixel in the input target frame image before transformation; ⁇ 1 can indicate that the first grayscale of the nth pixel in the input target frame image is located in the range of C0 to C1 In this case, it corresponds to the coefficient of Dinn; ⁇ 2 may represent the coefficient corresponding to Dinn when the grayscale of the nth pixel in the target frame image is in the range from C1 to C2.
- ⁇ m can represent the coefficient corresponding to Dinn when the gray scale of the nth pixel in the target frame image is in the range from Cm-1 to Cm.
- Dout(n) may represent the transformed second grayscale of the nth pixel in the target frame image.
- m can be used to represent the number of subintervals. In one example, C0 can be 0 and Cm can be 255.
- the first gray scale range of the target frame image is divided into a plurality of sub-intervals.
- the frame of display picture may include 1024*768 pixels
- the first grayscale range of each pixel of the frame of display picture may be 16 to 128, at this time C0 may be 16, and C1 may be is 32, Cm can be 126. It can be understood that the present application does not limit how to divide multiple sub-intervals and the number of sub-intervals.
- the first gray scale may be transformed according to formula (1).
- a conversion coefficient may be assigned to the first gray scale, and the conversion coefficient may be multiplied by the first gray scale to obtain a second gray scale corresponding to the first gray scale.
- the transform coefficients may be stored in memory in advance. It can be understood that the present application does not limit how to determine the transformation coefficient.
- the embodiment of the present application can flexibly configure the gray scale conversion of the target frame image, and then dynamically and adaptively adjust the voltage value of the second power supply voltage in different application scenarios, further Save power consumption.
- Step S20 configuring the voltage value of the first power supply voltage of the display based on the gray scale data to obtain the voltage value of the second power supply voltage;
- configuring the voltage value of the first power supply voltage of the display based on the gray scale data to obtain the voltage value of the second power supply voltage includes:
- Step S201 Determine the voltage value of the first gamma voltage corresponding to the first gray-scale extreme value according to the first gray-scale extreme value;
- Step S202 Determine a gamma reference voltage according to the voltage value of the first gamma voltage
- Step S203 Adjust the voltage value of the first power supply voltage according to the gamma reference voltage to obtain the voltage value of the second power supply voltage.
- the gamma reference voltage is determined according to the voltage value of the first gamma voltage
- the gamma reference voltage corresponding to the voltage value of the first gamma voltage may be determined first, and then a new gamma reference voltage is determined again. Since the voltage values of the first gamma voltages of each level are associated with the gamma reference voltage, after the new gamma reference voltage is re-determined, the voltage values of the first gamma voltages of other levels will be used as Overall synchronization is adjusted.
- the first grayscale extreme value may be the first grayscale extreme value among multiple first grayscales of the target frame image before transformation
- the second grayscale extreme value may be the transformed The second grayscale extremum among the plurality of second grayscales of the previous target frame image.
- the first gray scale extreme value and the second gray scale extreme value may be different. Using the difference between the first extreme value of the gray scale before conversion and the second extreme value of gray scale after conversion to adjust the voltage value of the preset first power supply voltage, it is possible to find the minimum first power supply voltage required to ensure optimal display.
- the minimum voltage value of the first power supply voltage is used as the voltage value of the second power supply voltage, so as to further reduce the energy consumption of the display panel while ensuring the display effect of the display panel.
- 14 levels of gamma (ie, gamma) voltages are pre-stored in the driving module, and the voltage value of each level of gamma voltage may correspond to a gray scale (ie, gray).
- the voltage value of the gamma voltage corresponding to the gray scale of 0 can be the voltage value of the first-level gamma voltage, that is, gamma_1; the voltage value of the gamma voltage corresponding to the gray scale of 228 can be the 14th level of gamma The voltage value of the voltage, which is gamma_14.
- the voltage value of the 14-level gamma voltage may correspond to the voltage value of one first power supply voltage (ie, the AVDD voltage).
- each set of gamma voltage voltage values may include 14 levels of gamma voltage voltage values. It can be understood that the present application does not limit the corresponding relationship between the gray scale, the voltage value of the gamma voltage, and the voltage value of the first power supply voltage.
- the voltage value of the first gamma voltage corresponding to the first gray-scale extreme value is determined according to the first gray-scale extreme value, which can be expressed by formula (2) as follows:
- Dinmax may represent the first grayscale extreme value of the input target frame image
- gamma_num represents the voltage value of the gamma voltage corresponding to the first grayscale extreme value of the target frame image (that is, the voltage of the first gamma voltage value).
- num may represent the series of voltage values of the gamma voltage, for example, gamma_num may be gamma_1 or gamma_3.
- Doutmax may represent the second grayscale extremum of the transformed target frame image.
- the voltage value gamma_num' of the second gamma voltage corresponding to the second extreme value of the gray scale can be obtained.
- the preset voltage value of the first power supply voltage may be represented by a string of binary numbers, for example, 1010 may represent that the voltage value of the first power supply voltage is 10V.
- the preset voltage value of the first power supply voltage may be pre-stored in a memory. It can be understood that the present application does not limit how to express the voltage value of the power supply voltage.
- the gamma reference voltage may be used to determine the voltage value of the second power supply voltage.
- Determine the gamma reference voltage according to the voltage value of the first gamma voltage which can be expressed as follows by formula (3):
- gamma_ref represents the gamma reference voltage
- gamma_num represents the voltage value of the first gamma voltage corresponding to the first grayscale extreme value of the target frame image.
- the gamma reference voltage may also be determined according to the voltage value of the second gamma voltage.
- the voltage value of the first power supply voltage is adjusted according to the gamma reference voltage to obtain the voltage value of the second power supply voltage, including:
- Step S2031 Determine the voltage value of the second gamma voltage corresponding to the second gray scale extreme value according to the second gray scale extreme value;
- Step S2032 adjusting the voltage values of the gamma voltages of each step according to the voltage value of the second gamma voltage and the gamma reference voltage, to obtain adjusted voltage values of the gamma voltages of each step;
- Step S2033 Adjust the preset voltage value of the first power supply voltage according to the adjusted voltage values of the gamma voltages of each step and the gamma reference voltage to obtain the voltage value of the second power supply voltage.
- the voltage values of the gamma voltages of each step are adjusted to obtain the adjusted voltage values of the gamma voltages of each step, which can be expressed by formula (4) as follows :
- gamma(n) f3(gamma_num', gamma_ref)
- gamma_num' represents the voltage value of the second gamma voltage corresponding to the second grayscale extreme value of the target frame image
- gamma(n) may represent the adjusted voltage value of the n-th order gamma voltage.
- the preset voltage value of the first power supply voltage is adjusted according to the adjusted voltage values of the gamma voltages of each order and the gamma reference voltage to obtain the voltage value of the second power supply voltage, which can be obtained by formula (5 ) is expressed as follows:
- AVDD' represents the voltage value of the second power supply voltage obtained by adjusting the preset voltage value of the first power supply voltage.
- AVDD' can be greater than the maximum value gamma_max among the voltage values of the multiple second gamma voltages, which can be expressed by formula (6) as follows:
- ⁇ V can be greater than 0, indicating the difference between AVDD' and gamma_max.
- ⁇ V can be determined according to the situation, which is not limited in this application.
- the functions f1, f2, f3 and f4 may be the same or different. It can be understood that in practical applications, corresponding functions can be configured according to actual needs, and this application does not limit the functions f1, f2, f3, and f4.
- the voltage value of the voltage is the minimum voltage value required for optimal display.
- the embodiment of the present application can dynamically adjust the power configuration of the display system to achieve the goal of reducing the power consumption of the display, while ensuring the image quality and avoiding the flickering problem of the image.
- Step S30 Transmitting the second power supply voltage in a parallel transmission manner, and buffering the voltage value of the second power supply voltage;
- the display data and grayscale data of the display can also be buffered, and the display data and grayscale data of the display can be transmitted in a parallel transmission manner, so as to speed up the determination of the first
- the speed of the voltage value of the second power supply voltage improves the efficiency of updating the voltage value of the second power supply voltage in real time.
- the embodiment of the present application does not limit the objects or subjects that adopt the parallel transmission mode.
- transmitting the second power supply voltage in a parallel transmission manner, and buffering the voltage value of the second power supply voltage includes:
- Step S301 Obtain a clock signal corresponding to the voltage value of the second power supply voltage
- Step S302 performing parallel transmission of the second power supply voltage according to the clock signal
- Step S303 Buffering the voltage value of the second power supply voltage.
- FIG. 4 shows a schematic diagram of power voltage data transmission in the related art.
- power supply voltage data ie, Data
- clock clock signal
- FIG. 5 shows a schematic diagram of power voltage data transmission according to an embodiment of the present application.
- obtaining a clock signal corresponding to a voltage value of the second power supply voltage includes:
- Step S3011 Obtain power supply parameters corresponding to the voltage value of the second power supply voltage, wherein the power supply parameters include a clock signal, a power supply configuration signal, and an enable signal.
- De may represent a clock signal
- Parameter may represent a power supply voltage configuration signal for configuring parameters related to the voltage value of the second power supply voltage
- en may represent an enable signal
- voltage may represent a voltage of the second power supply voltage value.
- the parallel transmission of the voltage value of the second power supply voltage according to the clock signal includes:
- Step S3021 Determine the blank time of the clock signal according to the power configuration signal
- Step S3022 Start to transmit the second power supply voltage in parallel according to the clock signal during the blank time.
- the power supply voltage configuration signal may be transmitted in a parallel transmission manner.
- the clock signal corresponding to one frame of the power supply voltage configuration signal may include blank time and non-blank time.
- the enable signal may be at a low level, and the second power supply voltage data may not be transmitted; during the blank time, the enable signal starts to be pulled up from a low level to a high level, and thereafter the first The second power supply voltage starts to transmit until the enable signal is pulled down from high level to low level, and the current transmission ends.
- the duration of the blank time can be configured according to the power supply voltage configuration signal, which is not limited in this application.
- Step S40 Update the buffered voltage value of the second power supply voltage in real time according to the current update time of the target frame image.
- updating the voltage value of the second power supply voltage in real time according to the current update time of the target frame image includes:
- Step S401 Determine the current update time of the target frame image according to the display data of the target frame image
- Step S402 Update the voltage value of the second power supply voltage in real time according to the update time.
- the current update time of the target frame image may be associated with the display data of the target frame image.
- the time node for transmitting the display data of the target frame image may be determined in combination with image features of the target frame image.
- the display data of the target frame image may be sequentially and time-divisionally transmitted, or may be transmitted as a whole at one time. It can be understood that the embodiment of the present application does not limit how to determine the current update time of the target frame image according to the display data of the target frame image.
- the working time of the target frame image includes non-blank time and blank time
- the current update time of the target frame image is determined according to the display data of the target frame image, including:
- Step S4011 Determine the blank time of the target frame image according to the display data of the target frame image
- Step S4012 Determine the current update time of the target frame image within the blank time.
- the display data of the target frame image may be transmitted according to a preset transmission period.
- Each transmission period may include non-blank time as well as blank time.
- the display data of the target frame image can be transmitted; in the blank time of a transmission cycle, the transmission of the display data of the target frame image can be suspended, but all The voltage value of the second power supply voltage is updated in real time. It can be understood that the present application does not limit how to divide the non-blank time and blank time.
- the second power supply voltage is transmitted by adopting a parallel transmission method, and the voltage value information of the power supply voltage is received in real time, and the voltage value of the second power supply voltage is buffered, and according to the display data of the target frame image within the blank time
- the update time of the second power supply voltage is updated in real time.
- the driving method of the display further includes:
- Step S50 Adjust the driving power of the display panel according to the voltage value of the second power supply voltage.
- adjusting the driving power of the display panel according to the voltage value of the second power supply voltage can be expressed as follows by formula (7):
- Power may represent the power of the display panel in the embodiment of the present application
- I may represent the current corresponding to AVDD'. Since AVDD' in the driving method of the present application can be minimized while ensuring the display quality, the energy consumption of the display panel can be further reduced while ensuring the display effect of the display panel.
- FIG. 6 shows a schematic diagram of a method for driving a display according to an embodiment of the present application.
- the input image data can be cached first, and then through image analysis, the first gray scale range of the target frame image and the first gray scale of the target frame image can be found. and adjust the input display data according to the first gray scale range of the target frame image to obtain adjusted input image data and a plurality of second gray scales. Then, the second extreme value of the gray scale and the voltage value of the second gamma voltage corresponding to the second extreme value of the gray scale can be found in the plurality of second gray scales, and the gamma reference voltage can be calculated. At the same time, the first gray scale extreme value and the voltage value of the first gamma voltage corresponding to the first gray scale extreme value may also be calculated.
- the adjusted AVDD value (that is, the voltage value of the second power supply voltage) is calculated and buffered in the external power driver.
- the update time of the voltage can be adjusted, and the power driver is started to update the voltage at the update time, and finally, together with the adjusted input image data, the display panel is driven to display images. It can be understood that the sequence in FIG. 6 does not limit the implementation steps of the embodiment of the present application.
- the present application also provides a display, which includes: a grayscale acquisition module electrically connected to a power supply configuration module for obtaining grayscale data of the target frame image according to the display data of the target frame image; a power supply configuration module connected to the grayscale
- the scale acquisition module and the power buffer module are electrically connected, and are used to configure the voltage value of the first power supply voltage of the display based on the gray scale data to obtain the voltage value of the second power supply voltage;
- the power update module is electrically connected to transmit the second power supply voltage in parallel transmission mode, and cache the voltage value of the second power supply voltage;
- the power supply update module is electrically connected to the power cache module for The buffered voltage value of the second power supply voltage is updated in real time according to the current update time of the target frame image.
- FIG. 7 shows a schematic structural diagram of a display according to an embodiment of the present application.
- the input image can be image cached.
- the image cache can be realized by registers.
- the image cache can read and cache the pre-stored display data of the target frame.
- the image cache receives an instruction from the system to start image processing, the image cache can send the cached display data of the target frame to the image analysis for analysis.
- the image analysis may receive the display data of the target frame sent from the image cache, and analyze the display data of the target frame. Since there is a nonlinear relationship between the visual perception and brightness of an image, and visual perception can be characterized by the brightness value that can be observed by the human eye, and brightness can be represented by a brightness factor, the nonlinear relationship between image-based visual perception and brightness relationship, each pixel of the target frame image can be statistically analyzed to obtain the brightness value range of the target frame image. At the same time, it is also possible to analyze the distribution of brightness values of each frame of the target image, and determine the voltage value of the gamma voltage corresponding to the distribution of brightness values.
- the gray scale of the target frame image can also be statistically analyzed to obtain the range of the gray scale.
- the gray scale of the target frame image can be segmented, and the first gray scale can be transformed using the segmentation function to obtain the transformed second gray scale .
- the voltage value of the power supply voltage can be configured based on the image analysis results, and combined with power supply control, the voltage value of the power supply voltage can be buffered to the power driver, and finally together with the image-compensated data, the final image output can be controlled. It can be understood that the structure in FIG. 7 is exemplary, and the present application does not limit the specific structure of the display.
- the embodiment of the present application obtains the grayscale data of the target frame image according to the display data of the target frame image, and then configures the voltage value of the first power supply voltage of the display based on the grayscale data to obtain the second The voltage value of the power supply voltage, and then transmit the second power supply voltage in parallel transmission mode, and cache the voltage value of the second power supply voltage, and finally update the cached image according to the current update time of the target frame image
- the voltage value of the second power supply voltage is updated in real time, and the voltage value of the second power supply voltage can be dynamically and adaptively adjusted, while reducing the energy consumption of the display panel, improving the transmission efficiency of power supply voltage data, and ensuring the quality of the display screen .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
一种显示器的驱动方法及显示器,其中,驱动方法包括:根据目标帧图像的显示数据得到目标帧图像的灰阶数据(S10);基于灰阶数据对显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值(S20);采用并行传输方式对第二电源电压进行传输,并将第二电源电压的电压值进行缓存(S30);根据目标帧图像当前的更新时间对已缓存的第二电源电压的电压值进行实时更新(S40)。
Description
本申请涉及显示技术领域,尤其涉及一种显示器的驱动方法及显示器。
大尺寸、高刷新率以及高解析度的显示面板,普遍存在功耗过大的情况。在当前为控制生态环境污染,提升耗能产品的环境绩效的大环境下,对于大尺寸、高刷新率以及高解析度的显示面板而言,如何降低显示面板的功耗显得更为迫切。
然而,相关技术方案不仅在实际应用中功耗过大,而且存在数据传输较慢的问题,不利于保证显示画面的质量。因此,如何在降低显示面板的功耗的同时,保证显示画面的质量是一个亟待解决的问题。
本申请主要针对如何在降低显示面板的功耗的同时,保证显示画面的质量是一个亟待解决的问题。
有鉴于此,本申请提出了一种显示器的驱动方法及显示器,能够动态自适应地调整第二电源电压的电压值,在降低显示面板的能耗的同时,提高电源电压数据的传输效率,保证显示画面的质量。
根据本申请的一方面,提供了一种显示器的驱动方法,所述显示器的驱动方法包括:根据目标帧图像的显示数据得到目标帧图像的灰阶数据;基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值;采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存;根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新。
根据本申请的另一方面,提供了一种显示器,所述显示器包括:灰阶获取模块,与电源配置模块电连接,用于根据目标帧图像的显示数据得到目标帧图像的灰阶数据;电源配置模块,与灰阶获取模块以及电源缓存模块电连接,用于基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值;电源传输模块,与电源配置模块以及电源更新模块电连接,用于采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存;电源更新模块,与电源缓存模块电连接,用于根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新。
通过根据目标帧图像的显示数据得到目标帧图像的灰阶数据,接着基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置得到第二电源电压的电压值,然后采用并行传输方式对所述第二电源电压的电压值进行传输,并将所述第二电源电压的电压值进行缓存,最后根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新,根据本申请的各方面能够动态自适应地调整第二电源电压的电压值,在降低显示面板的能耗的同时,提高电源电压数据的传输效率,保证显示画面的质量。
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1示出本申请实施例的显示器的驱动方法的流程图。
图2示出本申请实施例的灰阶变换前的示意图。
图3示出本申请实施例的灰阶变换后的示意图。
图4示出相关技术中的电源电压数据传输的示意图。
图5示出本申请实施例的电源电压数据传输的示意图。
图6示出本申请实施例的显示器的驱动方法的示意图。
图7示出本申请实施例的显示器的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接连接,也可以通过中间媒介间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
本申请主要提供了一种显示器的驱动方法,所述显示器的驱动方法包括:根据目标帧图像的显示数据得到目标帧图像的灰阶数据;基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值;采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存;根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新。
通过根据目标帧图像的显示数据得到目标帧图像的灰阶数据,接着基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置得到第二电源电压的电压值,然后采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存,最后根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新,本申请能 够动态自适应地调整第二电源电压的电压值,在降低显示面板的能耗的同时,提高电源电压数据的传输效率,保证显示画面的质量。
图1示出本申请实施例的显示器的驱动方法的流程图。
如图1所示,本申请实施例的显示器可包括驱动模块以及显示面板,所述驱动模块与所述显示面板电连接,所述驱动模块可用于驱动所述显示面板。所述驱动模块中可预先存储有目标帧图像的显示数据。所述显示器的驱动方法包括:
步骤S10:根据目标帧图像的显示数据得到目标帧图像的灰阶数据;
其中,所述驱动模块中预先存储有目标帧图像的显示数据。例如,所述驱动模块中可以设置存储器,用于预先存储目标帧图像的显示数据。当然,所述显示面板的显示画面可以包括多个帧,所述驱动模块中也可以预先存储所述显示面板的全部帧的显示数据。
进一步地,所述显示面板的目标帧图像包括多个像素点,其中,至少一个像素点预设有与该像素点对应的灰阶。所述目标帧图像的显示数据可以用一维数组或多维数组表示,数组中的每个元素可以与显示画面的每个像素点相对应,用于驱动所述显示面板中每个像素按照预设的灰阶进行显示。可以理解,本申请对于显示数据如何表示并不限定。
进一步地,所述目标帧图像的灰阶数据可包括第一灰阶极值以及第二灰阶极值。在本申请实施例中,所述目标帧图像的第一灰阶极值可以是该目标帧图像的多个第一灰阶的最大值,所述目标帧图像的第二灰阶极值可以是该目标帧图像的多个第二灰阶的最大值。
进一步地,根据目标帧图像的显示数据得到目标帧图像的灰阶数据,包括:
步骤S101:根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;
进一步地,所述第一灰阶可以是预先设置的灰阶,所述目标帧图像的显示数据可以包括多个所述第一灰阶,每个第一灰阶与目标帧图像的一个像素点相对应。例如,所述显示面板的全部帧的显示数据的灰阶可以用8位二进制数字表示,灰阶的表示范围从0至255。对于一帧显示画面而言,该帧显示画面可以包括1024*768个像素,该帧显示画面的各个像素的第一灰阶范围可以是16至128,即对于该帧显示画面而言,该帧显示画面的第一灰阶极值可以是128,即该帧显示画面的最大灰阶。
进一步地,所述目标帧图像可以分为多个显示区域,所述第一灰阶极值为所述多个显示区域中的至少一个显示区域的多个第一灰阶的最大值,所述第二灰阶极值为所述多个显示区域中的至少一个显示区域的多个第二灰阶的最大值。每个显示区域的灰阶的最大值可以不同。因此,所述目标帧图像的第一灰阶极值也可以是该帧图像的一个显示区域中的多个第一灰阶的最大值。例如,所述目标帧图像可以分为两个显示区域。第一个显示区域的第一灰阶范围从16至108,第二个显示区域的第一灰阶范围从32至116,此时,所述目标帧图像的第一灰阶极值可以是第一个显示区域的灰阶的最大值108,也可以是第二个显示区域的灰阶的最大值116。
需要说明的是,也可以在目标帧图像的第一灰阶范围内任意选择一个第一灰阶进行处理,只要选择的第一灰阶有利于利用本申请的实施例降低显示面板的能耗。在本申请实施例中,目标帧图像的第一灰阶极值作为优选的方案,对于如何选择目标帧图像的第一灰阶极值,本申请并不限定。
进一步地,根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值,包括:
步骤S1011:根据目标帧图像的显示数据得到目标帧图像的第一灰阶范围;
步骤S1012:根据所述第一灰阶范围得到目标帧图像的第一灰阶极值。
进一步地,由于所述目标帧图像可包括多个第一灰阶,所述目标帧图像中的每个像素点可对应一个第一灰阶,因此,可对每个所述第一灰阶均进行变换,得到变换后的多个第二灰阶。当然,在对目标帧图像的多个第一灰阶进行变换的过程中,也可以对目标帧图像的多个第一灰阶划分为多个子区间,按照多个子区间分段进行变换。又例如,在对目标帧图像的多个第 一灰阶进行变换的过程中,也可以只对所述目标帧图像中的部分像素点所对应的第一灰阶进行变换,而所述目标帧图像中的其他像素点所对应的第一灰阶则不进行变换。可以理解,本申请对于如何对目标帧图像的多个第一灰阶进行变换并不限定。
需要说明的是,所述驱动模块可基于视觉感知与亮度之间的非线性特性对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶。其中,视觉感知可以用人眼能够观察到的明度值来表征,亮度可以用亮度因子来表征,因此基于图像的视觉感知与亮度之间的非线性关系,可以对目标帧图像的各个像素点进行统计分析,得到目标帧图像的明度值范围。当然,也可以对目标帧图像的灰阶进行统计分析,得到灰阶的范围。
具体的,所述变换后的多个第二灰阶中每个第二灰阶可以与变换前的一个第一灰阶相对应,也可以与变换前的多个第一灰阶相对应。可以理解,不同的变换方式会在第一灰阶与第二灰阶产生不同的对应关系,本申请对于第一灰阶与第二灰阶的对应关系并不限定。
进一步地,所述第二灰阶极值为目标帧图像的多个第二灰阶的最大值。即,所述第二灰阶极值与所述第一灰阶极值有类似的含义。例如,对于一帧显示画面而言,该帧显示画面可以包括1024*768个像素,该帧显示画面的各个像素的第一灰阶范围可以是16至128,即对于该帧显示画面而言,该帧显示画面的第一灰阶极值可以是128。在对目标帧图像的多个第一灰阶进行变换后,该帧显示画面的各个像素的第二灰阶范围可以是32至216,该帧显示画面的第一灰阶极值可以是216。
步骤S102:对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值。
其中,对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值,包括:步骤S1021:对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶;
步骤S1022:根据所述变换后的多个第二灰阶得到目标帧图像的第二灰阶极值。
其中,对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶,可包括:将所述目标帧图像的第一灰阶范围划分为多个子区间;根据所述划分的多个子区间以及预设的变换系数对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶。例如,可以将预设的变换系数与所述目标帧图像的多个第一灰阶进行相乘,从而得到多个第二灰阶。
图2示出本申请实施例的灰阶变换前的示意图,图3示出本申请实施例的灰阶变换后的示意图。
如图2和图3所示,横轴可以表示电压,纵轴可以表示灰阶。在图2中,对所述第一灰阶变换前,可以看出所述目标帧图像的第一灰阶的最大值可以对应于第10级伽马电压的电压值;在图3中,对所述第一灰阶变换后,可以看出所述目标帧图像的第二灰阶的最大值可以对应于第1级伽马电压的电压值。即,经过变换后,所述目标帧图像的灰阶的最大值相较于变换前的灰阶的最大值可以更大。
通过使用式(1)中的分段函数进行变换,本申请实施例能够使目标帧画面的灰阶与第一电源电压的电压值相适应,保证调整第一电源电压的电压值后显示画面的质量。
示例性地,步骤S1021可以用式(1)表示如下:
其中,Dinn可表示输入的目标帧图像中第n个像素点变换前的第一灰阶;λ1可表示在输入的目标帧图像中第n个像素点的第一灰阶位于C0至C1范围的情况下,对应于Dinn的系数;λ2可表示在目标帧图像中第n个像素点的灰阶位于C1至C2范围的情况下,对应于Dinn的系数。依次类推,λm可表示在目标帧图像中第n个像素点的灰阶位于Cm-1至Cm范围 的情况下,对应于Dinn的系数。Dout(n)可表示目标帧图像中第n个像素点变换后的第二灰阶。m可以用于表示所述子区间的数量。在一个示例中,C0可以是0,Cm可以是255。
进一步地,将所述目标帧图像的第一灰阶范围划分为多个子区间。例如,对于一帧显示画面而言,该帧显示画面可以包括1024*768个像素,该帧显示画面的各个像素的第一灰阶范围可以是16至128,此时C0可以是16,C1可以是32,Cm可以是126。可以理解,本申请对于如何划分多个子区间以及子区间的数量并不限定。
进一步地,对于所述目标帧图像的至少一个像素点所对应的第一灰阶,可以根据式(1)对该第一灰阶进行变换。例如,可以为该第一灰阶赋予一个变换系数,并将该变换系数与该第一灰阶相乘,从而得到对应于该第一灰阶的第二灰阶。所述变换系数可以预先存储在存储器中。可以理解,本申请对于所述变换系数如何确定并不限定。
通过对将所述目标帧图像的第一灰阶范围划分为多个子区间,并根据所述划分的多个子区间以及预设的变换系数对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶,本申请实施例能够灵活配置对目标帧图像的灰阶进行变换,进而能够在不同的应用场景下动态自适应地调整得到第二电源电压的电压值,进一步节省功耗。
步骤S20:基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值;
进一步地,基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值,包括:
步骤S201:根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压的电压值;
步骤S202:根据所述第一伽马电压的电压值确定伽马基准电压;
步骤S203:根据所述伽马基准电压对第一电源电压的电压值进行调整,得到第二电源电压的电压值。
例如,根据所述第一伽马电压的电压值确定伽马基准电压,可先确定所述第一伽马电压的电压值对应的伽马基准电压,再重新确定新的伽马基准电压。由于各级第一伽马电压的电压值均与所述伽马基准电压相关联,因此在新的伽马基准电压被重新确定后,其他级数的第一伽马电压的电压值则会作为整体同步被调整。
在本申请实施例中,所述第一灰阶极值可以是变换前的目标帧图像的多个第一灰阶中的第一灰阶极值,所述第二灰阶极值可以是变换前的目标帧图像的多个第二灰阶中的第二灰阶极值。第一灰阶极值与第二灰阶极值可以不同。利用变换前的第一灰阶极值与变换后的第二灰阶极值的差异对预先设置的第一电源电压的电压值进行调整,能够寻找到保证最优显示下所需要的最小的第一电源电压的电压值,并将该最小的第一电源电压的电压值作为第二电源电压的电压值,从而在保证显示面板的显示效果的同时,进一步降低显示面板的能耗。
在一示例中,所述驱动模块中预先存储有14级伽马(即,gamma)电压,每级伽马电压的电压值可与一个灰阶(即,gray)相对应。例如,灰阶为0所对应的伽马电压的电压值可以是第1级伽马电压的电压值,即gamma_1;灰阶为228所对应的伽马电压的电压值可以是第14级伽马电压的电压值,即gamma_14。此外,14级伽马电压的电压值可以与一个第一电源电压的电压值(即,AVDD电压)相对应。需要说明的是,所述驱动模块中可以设置多组伽马电压的电压值,每组伽马电压的电压值均可包括14级伽马电压的电压值。可以理解,本申请对于灰阶、伽马电压的电压值以及第一电源电压的电压值相互之间的对应关系并不限定。
进一步地,根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压的电压值,可以用式(2)表示如下:
gamma_num=f1(Din
max)
其中,Dinmax可以表示输入的目标帧图像的第一灰阶极值;gamma_num表示与目标帧图像的第一灰阶极值相对应的伽马电压的电压值(即,第一伽马电压的电压值)。num可以表示伽马电压的电压值的级数,例如gamma_num可以是gamma_1,也可以是gamma_3。
同理,Doutmax可以表示经过变换的目标帧图像的第二灰阶极值。利用公式(2),将Doutmax作为输入,可以得到与该第二灰阶极值对应的第二伽马电压的电压值gamma_num’。
进一步地,所述预先设置的第一电源电压的电压值可以用一串二进制数字表示,例如1010可以表示第一电源电压的电压值为10V。所述预先设置的第一电源电压的电压值可预先存储在存储器中。可以理解,本申请对于电源电压的电压值如何表示并不限定。
进一步地,所述伽马基准电压可以用于确定所述第二电源电压的电压值。根据所述第一伽马电压的电压值确定伽马基准电压,可以用式(3)表示如下:
gamma_ref=f2(gamma_num)
其中,gamma_ref表示伽马基准电压,gamma_num表示与目标帧图像的第一灰阶极值相对应的第一伽马电压的电压值。当然,也可以根据所述第二伽马电压的电压值确定伽马基准电压。
进一步地,根据所述伽马基准电压对第一电源电压的电压值进行调整,得到第二电源电压的电压值,包括:
步骤S2031:根据所述第二灰阶极值确定与该第二灰阶极值对应的第二伽马电压的电压值;
步骤S2032:根据所述第二伽马电压的电压值以及伽马基准电压调整各阶伽马电压的电压值,得到调整后的各阶伽马电压的电压值;
步骤S2033:根据所述调整后的各阶伽马电压的电压值以及伽马基准电压对预先设置的第一电源电压的电压值进行调整,得到第二电源电压的电压值。
进一步地,根据所述第二伽马电压的电压值以及伽马基准电压调整各阶伽马电压的电压值,得到调整后的各阶伽马电压的电压值,可以用式(4)表示如下:
gamma(n)=f3(gamma_num′,gamma_ref)
其中,gamma_num’表示与目标帧图像的第二灰阶极值相对应的第二伽马电压的电压值;gamma(n)可表示经过调整后的第n阶伽马电压的电压值。
进一步地,根据所述调整后的各阶伽马电压的电压值以及伽马基准电压对预先设置的第一电源电压的电压值进行调整,得到第二电源电压的电压值,可以用公式(5)表示如下:
AVDD′=f4(gamma(n),gamma_ref)
其中,AVDD’表示对预先设置的第一电源电压的电压值进行调整后得到的第二电源电压的电压值。AVDD’可以大于多个第二伽马电压的电压值中的最大值gamma_max,可以用公式(6)表示如下:
AVDD′=gamma_max+ΔV
其中,ΔV可以大于0,表示AVDD’与gamma_max之间的差值。ΔV可以根据情况进行确定,本申请并不限定。
需要说明的是,在本申请实施例中,函数f1、f2、f3及f4可以相同,也可以不同。可以理解,在实际应用中,可以根据实际需要配置相应的函数,本申请对于函数f1、f2、f3及f4并不限定。
通过侦测目标帧图像的显示数据,确定灰阶数据所对应的最大伽马电压的电压值,进而通过分析伽马确定新的伽马基准电压,并根据新的伽马基准电压确定第二电源电压的电压值为满 足最优显示下所需的最小电压值,本申请实施例能够动态调整显示系统电源配置,实现降低显示器功耗的目标,并同时保证画面质量,避免画面的闪烁问题。
步骤S30:采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存;
需要说明的是,本申请实施例还可以对所述显示器的显示数据以及灰阶数据进行缓存,并采用并行传输方式对所述显示器的显示数据以及灰阶数据进行传输,以加快确定所述第二电源电压的电压值的速度,提升实时更新所述第二电源电压的电压值的效率。可以理解,本申请实施例对于采用并行传输方式的对象或主体并不限定。
进一步地,采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存,包括:
步骤S301:获取对应于所述第二电源电压的电压值的时钟信号;
步骤S302:根据所述时钟信号对所述第二电源电压进行并行传输;
步骤S303:将所述第二电源电压的电压值进行缓存。
图4示出相关技术中的电源电压数据传输的示意图。
如图4所示,相关技术中,电源电压数据(即,Data)基于时钟信号(Clock)采用串行传输的方式来进行传输。具体的,相关技术在时钟信号的低电平期间进行数据的改变。
图5示出本申请实施例的电源电压数据传输的示意图。
如图5所示,获取对应于所述第二电源电压的电压值的时钟信号,包括:
步骤S3011:获取对应于所述第二电源电压的电压值的电源参数,其中,所述电源参数包括时钟信号、电源配置信号以及使能信号。
参见图5,本申请实施例采用并行传输方式进行电源电压数据的传输。其中,De可以表示时钟信号;Parameter可以表示电源电压配置信号,用于配置所述第二电源电压的电压值相关的参数;en可以表示使能信号;voltage可以表示所述第二电源电压的电压值。
进一步地,根据所述时钟信号对所述第二电源电压的电压值进行并行传输,包括:
步骤S3021:根据所述电源配置信号确定所述时钟信号的空白时间;
步骤S3022:在所述空白时间内开始根据所述时钟信号对所述第二电源电压进行并行传输。在图5中,示例性的,电源电压配置信号可以采取并行传输的方式进行传输。电源电压配置信号的一帧所对应的时钟信号可以包括空白时间以及非空白时间。在所述非空白时间内,使能信号可以为低电平,第二电源电压数据可以不进行传输;在所述空白时间内,使能信号开始从低电平拉升至高电平,此后第二电源电压开始进行传输,直到使能信号从高电平拉低至低电平,当前传输结束。当然,空白时间的时长可以根据电源电压配置信号进行配置,本申请并不限定。
步骤S40:根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新。
进一步地,根据所述目标帧图像当前的更新时间对所述第二电源电压的电压值进行实时更新,包括:
步骤S401:根据所述目标帧图像的显示数据确定所述目标帧图像当前的更新时间;
步骤S402:根据所述更新时间对所述第二电源电压的电压值进行实时更新。
其中,所述目标帧图像当前的更新时间可以与所述目标帧图像的显示数据相关联。在一个示例中,本申请实施例可以结合目标帧图像的图像特征,判断所述目标帧图像的显示数据进行传输的时间节点。例如,所述目标帧图像的显示数据可以依次分时传输,也可以整体一次性传输完毕。可以理解,本申请实施例对于如何根据所述目标帧图像的显示数据确定所述目标帧图像当前的更新时间并不限定。
进一步地,所述目标帧图像的工作时间包括非空白时间和空白时间,根据所述目标帧图像的 显示数据确定所述目标帧图像当前的更新时间,包括:
步骤S4011:根据所述目标帧图像的显示数据确定该目标帧图像的空白时间;
步骤S4012:在所述空白时间内确定所述目标帧图像当前的更新时间。
其中,所述目标帧图像的显示数据可以按照预设的传输周期进行数据传输。每个传输周期可包括非空白时间以及空白时间。在一个传输周期的非空白时间内,可以对所述目标帧图像的显示数据进行传输;在一个传输周期的空白时间内,可以暂停对所述目标帧图像的显示数据进行传输,而是对所述第二电源电压的电压值进行实时更新。可以理解,本申请对于如何划分非空白时间以及空白时间并不限定。
通过采用并行传输方式对所述第二电源电压进行传输,并实时接收电源电压的电压值信息,将所述第二电源电压的电压值进行缓存,并根据目标帧图像的显示数据在空白时间内的更新时间对所述第二电源电压的电压值进行实时更新,本申请实施例能够实现快速响应系统更新需求,合理调节更新时间,提高电源电压数据的传输效率,保证降低显示器功耗的同时,有效避免屏幕闪烁问题,保证显示画面质量。
进一步地,所述显示器的驱动方法还包括:
步骤S50:根据所述第二电源电压的电压值来调整所述显示面板的驱动功率。
例如,根据所述第二电源电压的电压值来调整所述显示面板的驱动功率,可以用式(7)表示如下:
Power=AVDD′*I
其中,Power可表示本申请实施例的显示面板的功率,I可表示对应于AVDD’的电流。由于本申请的驱动方式中AVDD’可以在保证显示质量的情况下达到最小,因此能够在保证显示面板的显示效果的同时,进一步降低显示面板的能耗。
图6示出本申请实施例的显示器的驱动方法的示意图。
如图6所示,在本申请实施例中,示例性的,可以先对输入的图像数据进行缓存,然后经过图像分析,找到目标帧图像的第一灰阶范围以及目标帧图像的第一灰阶极值,并根据目标帧图像的第一灰阶范围对输入的显示数据进行调整,得到经过调整的输入图像数据以及多个第二灰阶。接着可以在多个第二灰阶中找到第二灰阶极值及该第二灰阶极值所对应的第二伽马电压的电压值,并计算伽马基准电压。同时,也可计算第一灰阶极值以及该第一灰阶极值所对应的第一伽马电压的电压值。最后计算经过调整的AVDD值(即,第二电源电压的电压值),并外部的电源驱动器的缓存。同时,在图像分析后,可以调整电压的更新时间,并在该更新时间启动电源驱动器更新电压,最终与经过调整的输入图像数据一起,驱动显示面板进行画面的显示。可以理解,图6中的顺序对于本申请实施例的实施步骤并不构成限定。
本申请还提供了一种显示器,所述显示器包括:灰阶获取模块,与电源配置模块电连接,用于根据目标帧图像的显示数据得到目标帧图像的灰阶数据;电源配置模块,与灰阶获取模块以及电源缓存模块电连接,用于基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值;电源传输模块,与电源配置模块以及电源更新模块电连接,用于采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存;电源更新模块,与电源缓存模块电连接,用于根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新。
图7示出本申请实施例的显示器的结构示意图。
如图7所示,输入的图像可以进行图像缓存。其中,所述图像缓存可以用寄存器实现。所述图像缓存可以读取预先存储的目标帧的显示数据,并进行缓存。当所述图像缓存接收到系统发出的开始进行图像处理的指令时,所述图像缓存可以将已缓存的目标帧的显示数据发送至图像分析中进行分析。
进一步地,所述图像分析可以接收所述图像缓存发来的目标帧的显示数据,并对所述目标帧的显示数据进行分析。由于图像的视觉感知与亮度之间具有非线性关系,而视觉感知可以用人眼能够观察到的明度值来表征,亮度可以用亮度因子来表征,因此基于图像的视觉感知与亮度之间的非线性关系,可以对目标帧图像的各个像素点进行统计分析,得到目标帧图像的明度值范围。同时,也可以分析每帧目标图像的明度值的分布,并确定与明度值的分布对应的伽马电压的电压值。当然,也可以对目标帧图像的灰阶进行统计分析,得到灰阶的范围。进一步地,基于图像的视觉感知与亮度之间具有非线性关系,可以对目标帧图像的灰度进行分段,并利用分段函数对第一灰阶进行变换,得到变换后的第二灰阶。
进一步地,可以基于图像分析的结果对电源电压的电压值进行配置,并结合电源控制将电源电压的电压值缓存到电源驱动器,最终与经过图像补偿后的数据一起,控制最终的图像输出。可以理解,图7中的结构是示例性的,本申请对于显示器的具体结构并不限定。
综上所述,本申请实施例通过根据目标帧图像的显示数据得到目标帧图像的灰阶数据,接着基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置得到第二电源电压的电压值,然后采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存,最后根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新,能够动态自适应地调整第二电源电压的电压值,在降低显示面板的能耗的同时,提高电源电压数据的传输效率,保证显示画面的质量。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的显示器的驱动方法及显示器进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。
Claims (20)
- 一种显示器的驱动方法,其中,所述显示器的驱动方法包括:根据目标帧图像的显示数据得到目标帧图像的灰阶数据;基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值;采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存;根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新。
- 根据权利要求1所述的显示器的驱动方法,其中,所述灰阶数据包括第一灰阶极值以及第二灰阶极值,根据目标帧图像的显示数据得到目标帧图像的灰阶数据,包括:根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值。
- 根据权利要求2所述的显示器的驱动方法,其中,根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值,包括:根据目标帧图像的显示数据得到目标帧图像的第一灰阶范围;根据所述第一灰阶范围得到目标帧图像的第一灰阶极值。
- 根据权利要求2所述的显示器的驱动方法,其中,对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值,包括:对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶;根据所述变换后的多个第二灰阶得到目标帧图像的第二灰阶极值。
- 根据权利要求2所述的显示器的驱动方法,其中,基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值,包括:根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压的电压值;根据所述第一伽马电压的电压值确定伽马基准电压;根据所述伽马基准电压对第一电源电压的电压值进行调整,得到第二电源电压的电压值。
- 根据权利要求5所述的显示器的驱动方法,其中,根据所述伽马基准电压对第一电源电压的电压值进行调整,得到第二电源电压的电压值,包括:根据所述第二灰阶极值确定与该第二灰阶极值对应的第二伽马电压的电压值;根据所述第二伽马电压的电压值以及伽马基准电压调整各阶伽马电压的电压值,得到调整后的各阶伽马电压的电压值;根据所述调整后的各阶伽马电压的电压值以及伽马基准电压对预先设置的第一电源电压的电压值进行调整,得到第二电源电压的电压值。
- 根据权利要求1所述的显示器的驱动方法,其中,采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存,包括:获取对应于所述第二电源电压的电压值的时钟信号;根据所述时钟信号对所述第二电源电压进行并行传输;将所述第二电源电压的电压值进行缓存。
- 根据权利要求7所述的显示器的驱动方法,其中,获取对应于所述第二电源电压的电压值的时钟信号,包括:获取对应于所述第二电源电压的电压值的电源参数,其中,所述电源参数包括时钟信号.电源配置信号以及使能信号。
- 根据权利要求8所述的显示器的驱动方法,其中,根据所述时钟信号对所述第二电源电压进行并行传输,包括:根据所述电源配置信号确定所述时钟信号的空白时间;在所述空白时间内开始根据所述时钟信号对所述第二电源电压进行并行传输。
- 根据权利要求2所述的显示器的驱动方法,其中,所述第一灰阶极值为目标帧图像的多个第一灰阶的最大值,所述第二灰阶极值为目标帧图像的多个第二灰阶的最大值。
- 一种显示器,其中,所述显示器包括:灰阶获取模块,与电源配置模块电连接,用于根据目标帧图像的显示数据得到目标帧图像的灰阶数据;电源配置模块,与灰阶获取模块以及电源缓存模块电连接,用于基于所述灰阶数据对所述显示器的第一电源电压的电压值进行配置,得到第二电源电压的电压值;电源传输模块,与电源配置模块以及电源更新模块电连接,用于采用并行传输方式对所述第二电源电压进行传输,并将所述第二电源电压的电压值进行缓存;电源更新模块,与电源缓存模块电连接,用于根据所述目标帧图像当前的更新时间对已缓存的所述第二电源电压的电压值进行实时更新。
- 根据权利要求11所述的显示器的驱动方法,其中,所述灰阶数据包括第一灰阶极值以及第二灰阶极值,所述灰阶获取模块包括:第一灰阶极值获取模块,用于根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;第二灰阶极值获取模块,用于对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值。
- 根据权利要求12所述的显示器的驱动方法,其中,第一灰阶极值获取模块包括:第一灰阶范围获取模块,用于根据目标帧图像的显示数据得到目标帧图像的第一灰阶范围;第一灰阶极值获取子模块,用于根据所述第一灰阶范围得到目标帧图像的第一灰阶极值。
- 根据权利要求12所述的显示器的驱动方法,其中,所述第二灰阶极值获取模块包括:变换模块,用于对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶;第二灰阶极值获取子模块,用于根据所述变换后的多个第二灰阶得到目标帧图像的第二灰阶极值。
- 根据权利要求12所述的显示器的驱动方法,其中,所述电源配置模块包括:第一伽马电压确定模块,用于根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压的电压值;伽马基准电压确定模块,用于根据所述第一伽马电压的电压值确定伽马基准电压;第一电源电压调整模块,用于根据所述伽马基准电压对第一电源电压的电压值进行调整,得到第二电源电压的电压值。
- 根据权利要求15所述的显示器的驱动方法,其中,所述第一电源电压调整模块包括:第二伽马电压确定模块,用于根据所述第二灰阶极值确定与该第二灰阶极值对应的第二伽马电压的电压值;伽马电压确定子模块,用于根据所述第二伽马电压的电压值以及伽马基准电压调整各阶伽马电压的电压值,得到调整后的各阶伽马电压的电压值;第二电源电压获取子模块,用于根据所述调整后的各阶伽马电压的电压值以及伽马基准电压对预先设置的第一电源电压的电压值进行调整,得到第二电源电压的电压值。
- 根据权利要求11所述的显示器的驱动方法,其中,所述电源传输模块包括:时钟获取模块,用于获取对应于所述第二电源电压的电压值的时钟信号;传输模块,用于根据所述时钟信号对所述第二电源电压进行并行传输;缓存模块,用于将所述第二电源电压的电压值进行缓存。
- 根据权利要求17所述的显示器的驱动方法,其中,所述时钟获取模块包括:电源参数获取模块,用于获取对应于所述第二电源电压的电压值的电源参数,其中,所述电源参数包括时钟信号.电源配置信号以及使能信号。
- 根据权利要求18所述的显示器的驱动方法,其中,所述传输模块包括:空白时间确定模块,用于根据所述电源配置信号确定所述时钟信号的空白时间;传输子模块,用于在所述空白时间内开始根据所述时钟信号对所述第二电源电压进行并行传输。
- 根据权利要求12所述的显示器的驱动方法,其中,所述第一灰阶极值为目标帧图像的多个第一灰阶的最大值,所述第二灰阶极值为目标帧图像的多个第二灰阶的最大值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/769,751 US20240161675A1 (en) | 2021-12-07 | 2022-01-24 | Driving method of display and display |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111485219 | 2021-12-07 | ||
CN202111485219.1 | 2021-12-07 | ||
CN202210027929.8A CN114360427B (zh) | 2021-12-07 | 2022-01-11 | 显示器的驱动方法及显示器 |
CN202210027929.8 | 2022-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023103166A1 true WO2023103166A1 (zh) | 2023-06-15 |
Family
ID=81108638
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/138669 WO2023102996A1 (zh) | 2021-12-07 | 2021-12-16 | 显示器的驱动方法及显示器 |
PCT/CN2022/073006 WO2023103154A1 (zh) | 2021-12-07 | 2022-01-20 | 显示器的驱动方法及显示器 |
PCT/CN2022/072941 WO2023103152A1 (zh) | 2021-12-07 | 2022-01-20 | 显示器的驱动方法及显示器 |
PCT/CN2022/073599 WO2023103166A1 (zh) | 2021-12-07 | 2022-01-24 | 显示器的驱动方法及显示器 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/138669 WO2023102996A1 (zh) | 2021-12-07 | 2021-12-16 | 显示器的驱动方法及显示器 |
PCT/CN2022/073006 WO2023103154A1 (zh) | 2021-12-07 | 2022-01-20 | 显示器的驱动方法及显示器 |
PCT/CN2022/072941 WO2023103152A1 (zh) | 2021-12-07 | 2022-01-20 | 显示器的驱动方法及显示器 |
Country Status (3)
Country | Link |
---|---|
US (3) | US20240194109A1 (zh) |
CN (3) | CN114360467B (zh) |
WO (4) | WO2023102996A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023102996A1 (zh) * | 2021-12-07 | 2023-06-15 | 惠州华星光电显示有限公司 | 显示器的驱动方法及显示器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06332409A (ja) * | 1993-03-24 | 1994-12-02 | Asahi Glass Co Ltd | 液晶表示装置 |
JPH0981081A (ja) * | 1995-09-11 | 1997-03-28 | Sharp Corp | 液晶ディスプレイシステム |
CN101873064A (zh) * | 2009-04-24 | 2010-10-27 | 瑞萨电子株式会社 | 升压电路和使用升压电路的液晶显示装置 |
KR20120074915A (ko) * | 2010-12-28 | 2012-07-06 | 엘지디스플레이 주식회사 | 액정표시장치 및 그 구동방법 |
CN103165066A (zh) * | 2011-12-13 | 2013-06-19 | 乐金显示有限公司 | 显示装置及其驱动方法 |
CN106847198A (zh) * | 2015-10-29 | 2017-06-13 | 三星显示有限公司 | 显示设备 |
CN109859670A (zh) * | 2019-03-28 | 2019-06-07 | 京东方科技集团股份有限公司 | 一种移位寄存器单元及其驱动方法、栅极驱动电路 |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070010675A (ko) * | 2005-07-19 | 2007-01-24 | 삼성전자주식회사 | 액정표시장치와 액정표시장치의 제조방법 |
JP4198720B2 (ja) * | 2006-05-17 | 2008-12-17 | Necエレクトロニクス株式会社 | 表示装置、表示パネルドライバ、及び表示パネルの駆動方法 |
CN101615382B (zh) * | 2008-06-27 | 2012-07-04 | 群康科技(深圳)有限公司 | 液晶显示装置 |
JP5340104B2 (ja) * | 2009-09-30 | 2013-11-13 | キヤノン株式会社 | 画像処理装置、画像処理方法 |
CN102024440B (zh) * | 2011-01-13 | 2012-11-21 | 华映光电股份有限公司 | 显示面板的画素电压补偿方法及其架构 |
KR101883925B1 (ko) * | 2011-04-08 | 2018-08-02 | 삼성디스플레이 주식회사 | 유기전계발광 표시장치 및 그의 구동방법 |
TWI423198B (zh) * | 2011-04-20 | 2014-01-11 | Wistron Corp | 依據環境光之亮度調整畫面灰階度的顯示裝置及方法 |
CN102956173A (zh) * | 2011-08-17 | 2013-03-06 | 联咏科技股份有限公司 | 显示器的驱动装置及其驱动方法 |
KR101966393B1 (ko) * | 2011-11-18 | 2019-04-08 | 삼성디스플레이 주식회사 | 표시 장치 및 그 구동 방법 |
KR101921990B1 (ko) * | 2012-03-23 | 2019-02-13 | 엘지디스플레이 주식회사 | 액정표시장치 |
KR101969830B1 (ko) * | 2012-08-31 | 2019-08-14 | 삼성디스플레이 주식회사 | 감마 보정 커브 생성 방법, 감마 보정 유닛 및 이를 구비하는 유기 발광 표시 장치 |
CN103680431B (zh) * | 2012-09-26 | 2016-12-21 | 联咏科技股份有限公司 | 源极驱动器及更新伽玛曲线的方法 |
KR102115530B1 (ko) * | 2012-12-12 | 2020-05-27 | 삼성디스플레이 주식회사 | 표시 장치 및 그 구동 방법 |
CN103390393B (zh) * | 2013-07-19 | 2015-11-25 | 深圳市华星光电技术有限公司 | 一种调灰电压产生方法及其装置、面板驱动电路和显示面板 |
CN103956143A (zh) * | 2014-05-21 | 2014-07-30 | 友达光电股份有限公司 | 一种用于主动矩阵有机发光二极管显示器的驱动装置 |
JP6480114B2 (ja) * | 2014-07-09 | 2019-03-06 | ルネサスエレクトロニクス株式会社 | 固体撮像装置、画像データ伝送方法、およびカメラシステム |
CN104200785B (zh) * | 2014-07-31 | 2016-08-17 | 京东方科技集团股份有限公司 | 一种显示面板源极驱动器的供电方法、装置及显示装置 |
KR102332592B1 (ko) * | 2014-08-11 | 2021-11-30 | 삼성디스플레이 주식회사 | 표시 장치 및 표시 방법 |
CN104240661B (zh) * | 2014-09-05 | 2017-02-08 | 京东方科技集团股份有限公司 | 极性反转驱动方法、极性反转驱动装置和显示设备 |
CN105118437B (zh) * | 2015-09-21 | 2018-04-10 | 京东方科技集团股份有限公司 | 一种显示驱动方法、装置及显示装置 |
CN105405424B (zh) * | 2015-12-16 | 2018-12-28 | 京东方科技集团股份有限公司 | 像素电路及其驱动方法、驱动电路、显示装置 |
CN105895044B (zh) * | 2016-06-07 | 2019-02-26 | 深圳市华星光电技术有限公司 | 液晶显示器及改善液晶显示器的大视角色偏的方法 |
CN106324875B (zh) * | 2016-10-24 | 2019-04-30 | 京东方科技集团股份有限公司 | 一种确定过驱动电压的方法、装置及显示设备 |
CN106847217B (zh) * | 2017-03-03 | 2019-11-19 | 昆山龙腾光电有限公司 | 伽马电压产生电路、液晶显示装置以及驱动方法 |
CN107065252B (zh) * | 2017-05-10 | 2019-09-20 | 京东方科技集团股份有限公司 | 一种液晶显示面板的闪烁调试方法及装置 |
CN107068098B (zh) * | 2017-05-16 | 2019-12-31 | 深圳市华星光电半导体显示技术有限公司 | 一种液晶显示面板的驱动方法及装置 |
CN107316608B (zh) * | 2017-08-17 | 2019-11-26 | 深圳市华星光电半导体显示技术有限公司 | 一种有机发光二极管显示器的驱动方法及装置 |
KR102473198B1 (ko) * | 2018-02-01 | 2022-12-05 | 삼성디스플레이 주식회사 | 표시 장치 및 그 구동 방법 |
CN108665844B (zh) * | 2018-05-21 | 2021-05-14 | 京东方科技集团股份有限公司 | 显示装置及其驱动方法、驱动装置 |
CN108932936B (zh) * | 2018-09-10 | 2020-12-04 | 深圳市华星光电技术有限公司 | 灰阶亮度的调节方法及显示装置 |
CN108986762B (zh) * | 2018-09-11 | 2021-09-14 | 惠科股份有限公司 | 显示装置及其电压调节方法 |
CN109308883B (zh) * | 2018-11-28 | 2020-10-27 | 惠科股份有限公司 | 显示面板的电压补偿方法 |
CN109830210B (zh) * | 2019-01-25 | 2021-03-12 | 合肥鑫晟光电科技有限公司 | 置位电压生成单元、置位电压生成方法和显示装置 |
CN109872701B (zh) * | 2019-04-22 | 2021-10-01 | 京东方科技集团股份有限公司 | 源电极电压调节方法、显示调节方法、显示模组和液晶屏 |
KR102665207B1 (ko) * | 2019-06-12 | 2024-05-13 | 매그나칩믹스드시그널 유한회사 | 감마 보정 회로, 감마 보정을 위한 방법 및 감마 보정 회로를 포함하는 디스플레이 장치 |
KR102659619B1 (ko) * | 2019-07-10 | 2024-04-23 | 삼성디스플레이 주식회사 | 표시 장치 및 이의 구동 방법 |
KR20210107226A (ko) * | 2020-02-21 | 2021-09-01 | 삼성디스플레이 주식회사 | 표시 장치 |
KR102677126B1 (ko) * | 2020-04-13 | 2024-06-21 | 삼성디스플레이 주식회사 | 구동 제어부, 이를 포함하는 표시 장치 및 이를 이용한 표시 패널의 구동 방법 |
CN111415616B (zh) * | 2020-04-27 | 2021-04-13 | 京东方科技集团股份有限公司 | 提高画面显示质量的方法、时序控制器及显示装置 |
US11151941B1 (en) * | 2020-06-05 | 2021-10-19 | Synaptics Incorporated | Device and method for controlling a display panel |
CN213025334U (zh) * | 2020-08-13 | 2021-04-20 | 昆山龙腾光电股份有限公司 | 驱动电压选择电路、驱动电压选择系统与显示装置 |
CN111968567B (zh) * | 2020-08-31 | 2022-02-25 | 上海天马微电子有限公司 | 一种显示面板及电子设备 |
WO2023102996A1 (zh) * | 2021-12-07 | 2023-06-15 | 惠州华星光电显示有限公司 | 显示器的驱动方法及显示器 |
US20240119882A1 (en) * | 2021-12-07 | 2024-04-11 | Huizhou China Star Optoelectronics Display Co., Ltd. | Driving method for display and display |
-
2021
- 2021-12-16 WO PCT/CN2021/138669 patent/WO2023102996A1/zh active Application Filing
-
2022
- 2022-01-11 CN CN202210027913.7A patent/CN114360467B/zh active Active
- 2022-01-11 CN CN202210027960.1A patent/CN114360428B/zh active Active
- 2022-01-11 CN CN202210027929.8A patent/CN114360427B/zh active Active
- 2022-01-20 WO PCT/CN2022/073006 patent/WO2023103154A1/zh active Application Filing
- 2022-01-20 US US17/769,771 patent/US20240194109A1/en active Pending
- 2022-01-20 US US17/769,816 patent/US20240233670A9/en active Pending
- 2022-01-20 WO PCT/CN2022/072941 patent/WO2023103152A1/zh active Application Filing
- 2022-01-24 US US17/769,751 patent/US20240161675A1/en active Pending
- 2022-01-24 WO PCT/CN2022/073599 patent/WO2023103166A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06332409A (ja) * | 1993-03-24 | 1994-12-02 | Asahi Glass Co Ltd | 液晶表示装置 |
JPH0981081A (ja) * | 1995-09-11 | 1997-03-28 | Sharp Corp | 液晶ディスプレイシステム |
CN101873064A (zh) * | 2009-04-24 | 2010-10-27 | 瑞萨电子株式会社 | 升压电路和使用升压电路的液晶显示装置 |
KR20120074915A (ko) * | 2010-12-28 | 2012-07-06 | 엘지디스플레이 주식회사 | 액정표시장치 및 그 구동방법 |
CN103165066A (zh) * | 2011-12-13 | 2013-06-19 | 乐金显示有限公司 | 显示装置及其驱动方法 |
CN106847198A (zh) * | 2015-10-29 | 2017-06-13 | 三星显示有限公司 | 显示设备 |
CN109859670A (zh) * | 2019-03-28 | 2019-06-07 | 京东方科技集团股份有限公司 | 一种移位寄存器单元及其驱动方法、栅极驱动电路 |
Also Published As
Publication number | Publication date |
---|---|
US20240194109A1 (en) | 2024-06-13 |
CN114360428A (zh) | 2022-04-15 |
CN114360467B (zh) | 2023-10-17 |
CN114360427B (zh) | 2023-10-31 |
CN114360467A (zh) | 2022-04-15 |
CN114360428B (zh) | 2023-11-28 |
WO2023103154A1 (zh) | 2023-06-15 |
WO2023102996A1 (zh) | 2023-06-15 |
US20240135895A1 (en) | 2024-04-25 |
US20240161675A1 (en) | 2024-05-16 |
WO2023103152A1 (zh) | 2023-06-15 |
US20240233670A9 (en) | 2024-07-11 |
CN114360427A (zh) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6665228B2 (ja) | 表示装置の駆動方法 | |
CN102148012B (zh) | 图像显示控制装置、图像显示装置及其控制方法 | |
JP5311220B2 (ja) | メモリ性を有する画像表示装置、該装置に用いられる駆動制御装置及び駆動方法 | |
JP4668342B2 (ja) | 液晶表示装置 | |
CN101399024B (zh) | 显示装置 | |
CN104123926A (zh) | 伽马补偿方法及使用该伽马补偿方法的显示装置 | |
JP2002091390A (ja) | 液晶表示装置及びその駆動用回路装置 | |
WO2023103166A1 (zh) | 显示器的驱动方法及显示器 | |
KR102041513B1 (ko) | 액정 표시 장치 및 그 영상 신호 처리 방법 | |
CN111009225B (zh) | 一种显示屏过驱动装置、过驱动方法及显示装置 | |
CN101667399A (zh) | 动态画面补偿的液晶显示器及其驱动方法 | |
KR20150139101A (ko) | 픽셀 데이터 모니터링 장치 및 방법과 이를 채용한 표시 시스템 | |
KR20090042024A (ko) | 액정표시장치의 구동방법 | |
US20240119882A1 (en) | Driving method for display and display | |
KR102102697B1 (ko) | 표시패널 구동방법 및 이를 수행하는 표시장치 | |
KR20200040325A (ko) | 표시 장치 및 이의 구동 방법 | |
CN109102770B (zh) | 一种面向高性能计算的低功耗低带宽显示面板驱动芯片 | |
CN110740229B (zh) | 一种液晶屏防残影以及显示深度减少的视频图像处理方法 | |
CN114242005A (zh) | 一种显示方法、电子设备及存储介质 | |
KR20160058361A (ko) | 표시 패널의 구동 방법 및 이를 수행하는 표시 장치 | |
KR101747717B1 (ko) | 영상 표시장치의 구동장치와 그 구동방법 | |
CN117133247A (zh) | 液晶显示装置及其显示方法和电子设备 | |
CN111557028B (zh) | 显示系统以及计算机可读记录介质 | |
CN117836841A (zh) | 显示面板驱动方法、装置、存储介质及显示设备 | |
KR20110095008A (ko) | 액정표시장치의 구동장치 및 구동방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 17769751 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22902611 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |