WO2019010900A1 - Amoled 像素驱动电路及 amoled 像素驱动方法 - Google Patents

Amoled 像素驱动电路及 amoled 像素驱动方法 Download PDF

Info

Publication number
WO2019010900A1
WO2019010900A1 PCT/CN2017/113621 CN2017113621W WO2019010900A1 WO 2019010900 A1 WO2019010900 A1 WO 2019010900A1 CN 2017113621 W CN2017113621 W CN 2017113621W WO 2019010900 A1 WO2019010900 A1 WO 2019010900A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
scan signal
node
electrically connected
Prior art date
Application number
PCT/CN2017/113621
Other languages
English (en)
French (fr)
Inventor
陈小龙
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/578,260 priority Critical patent/US10304387B2/en
Publication of WO2019010900A1 publication Critical patent/WO2019010900A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an AMOLED pixel driving circuit and an AMOLED pixel driving method.
  • the AMOLED driver circuit is often a 2T1C driver circuit.
  • the 2T1C circuit includes two TFTs and a capacitor (Capacitor), wherein, T1 For the drive circuit of the pixel circuit, T2 is the switch tube, the scan line Gate turns on the switch tube T2, the data voltage Date charges and discharges the storage capacitor Cst, and the switch tube T2 during illumination Off, the voltage stored on the capacitor keeps the drive tube T1 on, and the on current causes the OLED to illuminate.
  • the current is stable; however, due to the limitations of the manufacturing process, the TFT is driven.
  • the threshold voltage uniformity is very poor and drifts, resulting in different driving currents when inputting the same gray scale voltage.
  • the driving current inconsistency makes the operating state of the light emitting device unstable, and the aging of the light emitting device increases the turn-on voltage. Eventually, the panel brightness uniformity is poor and the luminous efficiency is not high.
  • the prior art has been further improved by adding a new TFT. Or the way the new signal is weakened can even eliminate the effects of threshold voltage drift.
  • the improved circuit usually requires a lot of TFTs.
  • the voltage control line and the extra power supply, the control timing is also relatively complicated, which greatly increases the cost.
  • An object of the present invention is to provide an AMOLED pixel driving circuit and an AMOLED
  • the pixel driving method solves the complicated problem of the existing driving circuit architecture and eliminates the influence of the driving tube threshold voltage on the driving current.
  • the AMOLED pixel driving circuit provided by the present invention adopts the following technical solutions:
  • An AMOLED a pixel driving circuit comprising: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, a capacitor, and an organic light emitting diode;
  • the gate of the first thin film transistor is electrically connected to the first node, the source is electrically connected to the second node, and the drain is electrically connected to the third node;
  • the gate of the second thin film transistor is connected to the second scan signal, the source is electrically connected to the third node, and the drain is electrically connected to the first node;
  • the gate of the third thin film transistor is connected to the third scan signal, the source is electrically connected to the cathode of the organic light emitting diode, and the drain is electrically connected to the third node;
  • the gate of the fourth thin film transistor is connected to the second scan signal, the source is connected to the positive voltage of the power source, and the drain is electrically connected to the cathode of the organic light emitting diode;
  • the gate of the fifth thin film transistor is connected to the first scan signal, the source is connected to the data signal, and the drain is electrically connected to the second node;
  • the gate of the sixth thin film transistor is connected to the fourth scan signal, the source is connected to the negative voltage of the power supply, and the drain is electrically connected to the second node;
  • One end of the capacitor is connected to the first node, and the other end is grounded;
  • the anode of the organic light emitting diode is connected to a positive voltage of the power source, and the cathode is electrically connected to the drain of the fourth thin film transistor and the source of the third thin film transistor;
  • the first scan signal, the second scan signal, the third scan signal, and the fourth scan signal are all provided by an external timing controller;
  • the combination of the first scan signal, the second scan signal, the third scan signal, and the fourth scan signal sequentially corresponds to a potential initialization phase, a potential storage phase, and an illumination display phase.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, Or an amorphous silicon thin film transistor.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are all N-type thin film transistors;
  • the first scan signal provides a low potential
  • the second scan signal provides a high potential
  • the third scan signal provides a high potential
  • the fourth scan signal provides a low potential
  • the first scan signal provides a high potential
  • the second scan signal provides a high potential
  • the third scan signal provides a low potential
  • the fourth scan signal provides a low potential
  • the data The signal provides a display data potential
  • the first scan signal provides a low potential
  • the second scan signal provides a low potential
  • the third scan signal provides a high potential
  • the fourth scan signal provides a high potential
  • the AMOLED pixel driving circuit provided by the present invention also adopts the following technical solutions:
  • An AMOLED a pixel driving circuit comprising: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, a capacitor, and an organic light emitting diode;
  • the gate of the first thin film transistor is electrically connected to the first node, the source is electrically connected to the second node, and the drain is electrically connected to the third node;
  • the gate of the second thin film transistor is connected to the second scan signal, the source is electrically connected to the third node, and the drain is electrically connected to the first node;
  • the gate of the third thin film transistor is connected to the third scan signal, the source is electrically connected to the cathode of the organic light emitting diode, and the drain is electrically connected to the third node;
  • the gate of the fourth thin film transistor is connected to the second scan signal, the source is connected to the positive voltage of the power source, and the drain is electrically connected to the cathode of the organic light emitting diode;
  • the gate of the fifth thin film transistor is connected to the first scan signal, the source is connected to the data signal, and the drain is electrically connected to the second node;
  • the gate of the sixth thin film transistor is connected to the fourth scan signal, the source is connected to the negative voltage of the power supply, and the drain is electrically connected to the second node;
  • One end of the capacitor is connected to the first node, and the other end is grounded;
  • the anode of the organic light emitting diode is connected to a positive voltage of the power source, and the cathode is electrically connected to the drain of the fourth thin film transistor and the source of the third thin film transistor.
  • the first scan signal, the second scan signal, the third scan signal, and the fourth scan signal are all provided by an external timing controller.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, Or an amorphous silicon thin film transistor.
  • the combination of the first scan signal, the second scan signal, the third scan signal, and the fourth scan signal sequentially corresponds to a potential initialization phase, a potential storage phase, and an illumination display phase.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are all N-type thin film transistors;
  • the first scan signal provides a low potential
  • the second scan signal provides a high potential
  • the third scan signal provides a high potential
  • the fourth scan signal provides a low potential
  • the first scan signal provides a high potential
  • the second scan signal provides a high potential
  • the third scan signal provides a low potential
  • the fourth scan signal provides a low potential
  • the data The signal provides a display data potential
  • the first scan signal provides a low potential
  • the second scan signal provides a low potential
  • the third scan signal provides a high potential
  • the fourth scan signal provides a high potential
  • the invention also provides an AMOLED pixel driving method, the technical scheme is as follows:
  • Step 1 providing an AMOLED pixel driving circuit
  • the pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, a capacitor, and an organic light emitting diode;
  • the gate of the first thin film transistor is electrically connected to the first node, the source is electrically connected to the second node, and the drain is electrically connected to the third node;
  • the gate of the second thin film transistor is connected to the second scan signal, the source is electrically connected to the third node, and the drain is electrically connected to the first node;
  • the gate of the third thin film transistor is connected to the third scan signal, the source is electrically connected to the cathode of the organic light emitting diode, and the drain is electrically connected to the third node;
  • the gate of the fourth thin film transistor is connected to the second scan signal, the source is connected to the positive voltage of the power source, and the drain is electrically connected to the cathode of the organic light emitting diode;
  • the gate of the fifth thin film transistor is connected to the first scan signal, the source is connected to the data signal, and the drain is electrically connected to the second node;
  • the gate of the sixth thin film transistor is connected to the fourth scan signal, the source is connected to the negative voltage of the power supply, and the drain is electrically connected to the second node;
  • One end of the capacitor is connected to the first node, and the other end is grounded;
  • the anode of the organic light emitting diode is connected to a positive voltage of the power source, and the cathode is electrically connected to the drain of the fourth thin film transistor and the source of the third thin film transistor;
  • Step 2 enter the potential initialization phase
  • the first scan signal controls the fifth thin film transistor to be turned off
  • the second scan signal controls the second and fourth thin film transistors to be turned on
  • the third scan signal controls the third thin film transistor to be turned on
  • the fourth scan signal is controlled
  • the sixth thin film transistor is turned off, the first node writes a positive voltage of the power source and is stored in the capacitor, and the organic light emitting diode does not emit light;
  • Step 3 enter the potential storage phase
  • the first scan signal controls the fifth thin film transistor to be turned on
  • the second scan signal controls the second and fourth thin film transistors to be turned on
  • the third scan signal controls the third thin film transistor to be turned off
  • the fourth scan signal is controlled
  • the sixth thin film transistor is turned off, the data signal provides a display data potential, the second node writes the display data potential, and the capacitor discharges the voltage of the first node to be the sum of the voltage of the second node and the threshold voltage of the first thin film transistor. And storing the voltage of the first node in the capacitor, and the organic light emitting diode does not emit light;
  • Step 4 enter the lighting display stage
  • the first scan signal controls the fifth thin film transistor to be turned off
  • the second scan signal controls the second and fourth thin film transistors to be turned off
  • the third scan signal controls the third thin film transistor to be turned on
  • the fourth scan signal is controlled
  • the sixth thin film transistor is turned on, and the storage function of the capacitor is used to keep the voltage of the first node at the sum of the display data potential and the threshold voltage of the first thin film transistor
  • the second node writes the negative voltage of the power supply
  • the first thin film transistor is turned on
  • organic The light emitting diode emits light, and the current flowing through the organic light emitting diode is independent of the threshold voltage of the first thin film transistor.
  • the first scan signal, the second scan signal, the third scan signal, and the fourth scan signal are all provided by an external timing controller.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, Or an amorphous silicon thin film transistor.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are all N-type thin film transistors;
  • the first scan signal provides a low potential
  • the second scan signal provides a high potential
  • the third scan signal provides a high potential
  • the fourth scan signal provides a low potential
  • the first scan signal provides a high potential
  • the second scan signal provides a high potential
  • the third scan signal provides a low potential
  • the fourth scan signal provides a low potential
  • the data The signal provides a display data potential
  • the first scan signal provides a low potential
  • the second scan signal provides a low potential
  • the third scan signal provides a high potential
  • the fourth scan signal provides a high potential
  • the AMOLED pixel driving circuit and the AMOLED pixel driving method of the present invention adopt the 6T1C
  • the circuit is matched with a simple driving timing, which can effectively compensate the threshold voltage of the driving tube, so that the current flowing through the light emitting device is not affected by the threshold voltage of the driving tube, thereby eliminating the influence of the aging of the light emitting device on the display brightness and improving the uniformity of the display of the panel.
  • Improve the display of the picture at the same time simplify the structure and greatly save costs.
  • FIG. 1 is a circuit diagram of an existing 2T1C structure AMOLED pixel driving circuit
  • FIG. 2 is a circuit diagram of an AMOLED pixel driving circuit of the present invention.
  • FIG. 3 is a timing diagram of an AMOLED pixel driving circuit of the present invention.
  • step 2 of the AMOLED pixel driving method of the present invention is a schematic diagram of step 2 of the AMOLED pixel driving method of the present invention.
  • FIG. 5 is a schematic diagram of step 3 of the AMOLED pixel driving method of the present invention.
  • FIG. 6 is a schematic diagram of step 4 of the AMOLED pixel driving method of the present invention.
  • the present invention provides an AMOLED pixel driving circuit, and the AMOLED pixel driving circuit adopts
  • the 6T1C structure includes: a first thin film transistor T1, a second thin film transistor T2, a third thin film transistor T3, a fourth thin film transistor T4, a fifth thin film transistor T5, and a sixth thin film transistor T6, capacitor C and organic light emitting diode D1;
  • the gate of the first thin film transistor T1 is electrically connected to the first node G, and the source is electrically connected to the second node S.
  • the drain is electrically connected to the third node D; the gate of the second thin film transistor T2 is connected to the second scan signal Scan2, the source is electrically connected to the third node D, and the drain is electrically connected to the first node G.
  • the gate of the third thin film transistor T3 is connected to the third scan signal Scan3, the source is electrically connected to the cathode of the organic light emitting diode D1, the drain is electrically connected to the third node D; the fourth thin film transistor T4 The gate is connected to the second scan signal Scan2, the source is connected to the positive voltage of the power supply OVDD, the drain is electrically connected to the cathode of the organic light emitting diode D1, and the gate of the fifth thin film transistor T5 is connected to the first scan signal.
  • the source is connected to the data signal Data
  • the drain is electrically connected to the second node S
  • the gate of the sixth thin film transistor T6 is connected to the fourth scan signal Scan4, and the source is connected to the negative voltage of the power supply.
  • OVSS the drain is electrically connected to the second node S; one end of the capacitor C is connected to the first node G, and the other end is grounded to GND; the anode of the organic light emitting diode D1 is connected to the positive voltage of the power supply OVDD
  • the cathode is electrically connected to the drain of the fourth thin film transistor T4 and the source of the third thin film transistor T3.
  • the first scan signal Scan1 controls the opening and closing of the fifth thin film transistor T5, and the second scan signal Scan2 Controlling the opening and closing of the second and fourth thin film transistors T2, T4, the third scanning signal Scan3 controls the opening and closing of the third thin film transistor T3, and the fourth scanning signal Scan4
  • the sixth thin film transistor T6 is controlled to be turned on and off, and the data signal Data is used to control the luminance of the organic light emitting diode D1, and the capacitance C is a storage capacitor.
  • the organic light emitting diode D1 is used, that is, the organic light emitting diode D1
  • the anode end is directly connected to the positive power supply voltage OVDD.
  • the corresponding light-emitting device can also select the lower light-emitting mode, that is, the cathode end of the organic light-emitting diode D1 and the negative voltage of the power supply OVSS. Directly connected, but the upper illumination mode has a higher aperture ratio than the lower light mode, and the overall performance is better.
  • the first thin film transistor T1, the second thin film transistor T2, and the third thin film transistor T3 in FIG. Fourth thin film transistor T4, fifth thin film transistor T5, and sixth thin film transistor T6 A low temperature polysilicon thin film transistor, an oxide semiconductor thin film transistor, or an amorphous silicon thin film transistor.
  • the above six thin film transistors are all N. Thin film transistor for easy circuit architecture.
  • the fourth scan signal Scan4 is provided by an external timing controller.
  • FIG. 3 is a timing diagram of respective control signals in a pixel driving circuit according to an embodiment of the present invention. Please refer to Figure 2 and Figure 3 together.
  • the combination of the first scan signal Scan1, the second scan signal Scan2, the third scan signal Scan3, and the fourth scan signal Scan4 in this embodiment corresponds to a potential initialization phase 1 , a potential storage phase 2, and an illumination display phase 3 .
  • FIG. 4 Please refer to FIG. 4 to FIG. 6 , and in conjunction with FIG. 2 and FIG. 3 , the AMOLED of the present invention.
  • the working process of the pixel driving circuit is as follows:
  • the third scan signal Scan3 provides high potential to control the second, third, and fourth thin film transistors T2, T3, and T4 to turn on; the first scan signal Scan1, the fourth scan signal Scan4 Providing a low potential, the fifth and sixth thin film transistors T5 and T6 are turned off; the first node G is the gate of the first thin film transistor T1 via the opened fourth, third, and second thin film transistors T4, T3, T2 writes the positive voltage of the power supply OVDD and stores it in the capacitor C.
  • the organic light emitting diode D1 does not emit light, and the initialization of the gate potential of the first node G, that is, the first thin film transistor T1, is completed.
  • the second scan signal Scan2 provides high potential to control the second, fourth, and fifth thin film transistors T2, T4, and T5 to turn on; the third scan signal Scan3, the fourth scan signal Scan4 For the low potential, the third and sixth thin film transistors T3 and T6 are turned off; the data signal is supplied with the display data potential Vdata; and the second thin film transistor T5 is turned on to make the second node S That is, the source of the first thin film transistor T1 is written to the display data potential Vdata, and the opened second thin film transistor T2 is shorted to the gate and the drain of the first thin film transistor T1, the first node G That is, the voltage of the gate of the first thin film transistor T1 is continuously discharged through the source of the first thin film transistor T1 until the potential reaches the display data potential Vdata and the threshold voltage Vth of the first thin film transistor T1.
  • Vs is the source voltage of the first thin film transistor T1
  • Vth It is the threshold voltage of the first thin film transistor T1.
  • the gate voltage of the first thin film transistor T1 is stored in the capacitor C, and the organic light emitting diode D1 does not emit light.
  • Scan2 provides low potential, fifth, fourth, and second thin film transistors T5, T4, and T2 are turned off; third scan signal Scan3, fourth scan signal Scan4 Providing a high potential, controlling the third and sixth thin film transistors T3 and T6 to be turned on, and using the storage function of the capacitor C, the voltage of the gate of the first node G, that is, the first thin film transistor T1, is maintained as the display data potential.
  • ID1 K ( Vgs-Vth ) 2 ( 1 )
  • ID1 is the current flowing through the organic light emitting diode D1
  • K is the intrinsic conductive factor
  • Vgs It is the voltage difference between the gate and the source of the first thin film transistor T1.
  • the current ID1 flowing through the organic light emitting diode D1 and the threshold voltage Vth of the first thin film transistor T1 can be seen.
  • the threshold voltage of the OLED is independent, only with the data signal voltage Vdata and the power supply negative voltage OVSS
  • the threshold drift of the driving thin film transistor is compensated, the problem that the current flowing through the light emitting diode is unstable due to the threshold voltage drift is solved, the influence of the aging of the light emitting device on the display brightness is eliminated, and the display uniformity of the panel is improved.
  • the present invention also provides an AMOLED pixel driving method, comprising the following steps:
  • Step 1 providing an AMOLED pixel driving circuit
  • the AMOLED pixel driving circuit includes: a first thin film transistor T1, a second thin film transistor T2, and a third thin film transistor T3, fourth thin film transistor T4, fifth thin film transistor T5, sixth thin film transistor T6, capacitor C and organic light emitting diode D1;
  • the gate of the first thin film transistor T1 is electrically connected to the first node G, and the source is electrically connected to the second node S.
  • the drain is electrically connected to the third node D; the gate of the second thin film transistor T2 is connected to the second scan signal Scan2, the source is electrically connected to the third node D, and the drain is electrically connected to the first node G.
  • the gate of the third thin film transistor T3 is connected to the third scan signal Scan3, the source is electrically connected to the cathode of the organic light emitting diode D1, the drain is electrically connected to the third node D; the fourth thin film transistor T4 The gate is connected to the second scan signal Scan2, the source is connected to the positive voltage of the power source, the drain is electrically connected to the cathode of the organic light emitting diode D1, and the gate of the fifth thin film transistor T5 is connected to the first scan signal Scan1
  • the source is connected to the data signal Data, the drain is electrically connected to the second node S; the gate of the sixth thin film transistor T6 is connected to the fourth scan signal Scan4, and the source is connected to the power supply negative voltage OVSS
  • the drain is electrically connected to the second node S; one end of the capacitor C is connected to the first node G, and the other end is grounded to GND; the anode of the organic light emitting diode D1 is connected to the positive voltage of the
  • the first scan signal Scan1 controls the opening and closing of the fifth thin film transistor T5, and the second scan signal Scan2 Controlling the opening and closing of the second and fourth thin film transistors T2, T4, the third scanning signal Scan3 controls the opening and closing of the third thin film transistor T3, and the fourth scanning signal Scan4
  • the sixth thin film transistor T6 is controlled to be turned on and off, and the data signal Data is used to control the luminance of the organic light emitting diode D1, and the capacitance C is a storage capacitor.
  • the organic light emitting diode D1 is used, that is, the organic light emitting diode D1
  • the anode end is directly connected to the positive power supply voltage OVDD.
  • the corresponding light-emitting device can also select the lower light-emitting mode, that is, the cathode end of the organic light-emitting diode D1 and the negative voltage of the power supply OVSS. Directly connected, but the upper illumination mode has a higher aperture ratio than the lower light mode, and the overall performance is better.
  • the first thin film transistor T1, the second thin film transistor T2, and the third thin film transistor T3 in FIG. Fourth thin film transistor T4, fifth thin film transistor T5, and sixth thin film transistor T6 A low temperature polysilicon thin film transistor, an oxide semiconductor thin film transistor, or an amorphous silicon thin film transistor.
  • the above six thin film transistors are all N. Thin film transistor for easy circuit architecture.
  • the fourth scan signal Scan4 is provided by an external timing controller.
  • FIG. 3 is a timing diagram of respective control signals in a pixel driving circuit according to an embodiment of the present invention. Please refer to Figure 2 and Figure 3 together.
  • the combination of the first scan signal Scan1, the second scan signal Scan2, the third scan signal Scan3, and the fourth scan signal Scan4 in this embodiment corresponds to a potential initialization phase 1 , a potential storage phase 2, and an illumination display phase 3 .
  • Step 2 enter the potential initialization stage 1;
  • the second scan signal Scan2 the third scan signal Scan3 Providing a high potential to control the second, third, and fourth thin film transistors T2, T3, and T4 to be turned on;
  • the first scan signal Scan1, the fourth scan signal Scan4 Providing a low potential, the fifth and sixth thin film transistors T5 and T6 are turned off;
  • the first node G is the gate of the first thin film transistor T1 via the opened fourth, third, and second thin film transistors T4, T3, T2 writes the positive voltage of the power supply OVDD and stores it in the capacitor C.
  • the organic light emitting diode D1 does not emit light, and the initialization of the gate potential of the first thin film transistor T1 is completed.
  • Step 3 enter the potential storage stage 2;
  • the first scan signal Scan1 and the second scan signal Scan2 Providing a high potential to control the second, fourth, and fifth thin film transistors T2, T4, and T5 to be turned on; the third scan signal Scan3, the fourth scan signal Scan4 For the low potential, the third and sixth thin film transistors T3 and T6 are turned off; the data signal provides the display data potential; and the second node S is the first thin film transistor T1 due to the opening of the T5 transistor.
  • the source is written to display data potential Vdata, and the opened second thin film transistor T2 is shorted to the gate and drain of the first thin film transistor T1, and the first node G is the first thin film transistor T1.
  • the gate voltage of the first thin film transistor T1 is stored in the capacitor C, and the organic light emitting diode D1 does not emit light.
  • Step 4 enter the lighting display stage 3;
  • the first scan signal Scan1 and the second scan signal Scan2 Providing a low potential, the fifth, fourth, and second thin film transistors T5, T4, and T2 are turned off; the third scan signal Scan3, the fourth scan signal Scan4 Providing a high potential, controlling the third and sixth thin film transistors T3 and T6 to be turned on, and utilizing the storage function of the capacitor C, the first node G is the first thin film transistor T1
  • the voltage of the gate is maintained at the sum of the display data potential and the threshold voltage of the first thin film transistor T1, and the second node S, that is, the source of the first thin film transistor T1, passes through the opened sixth thin film transistor T6.
  • ID1 K ( Vgs-Vth ) 2 ( 1 )
  • ID1 is the current flowing through the organic light emitting diode D1
  • K is the intrinsic conductive factor
  • Vgs It is the voltage difference between the gate and the source of the first thin film transistor T1.
  • the current ID1 flowing through the organic light emitting diode D1 and the threshold voltage Vth of the first thin film transistor T1 can be seen.
  • the threshold voltage of the OLED is independent, only with the data signal voltage Vdata and the power supply negative voltage OVSS
  • the threshold drift of the driving thin film transistor is compensated, the problem that the current flowing through the light emitting diode is unstable due to the threshold voltage drift is solved, the influence of the aging of the light emitting device on the display brightness is eliminated, the display uniformity of the panel is improved, and the screen is improved.
  • the AMOLED pixel driving circuit and the AMOLED pixel driving method provided by the present invention adopt 6T1C
  • the circuit is matched with simple driving timing, no additional power supply is needed, and the control signal is relatively small, which can not only effectively compensate the threshold voltage of the driving tube, so that the current flowing through the light emitting device is not affected by the threshold voltage of the driving tube, thereby eliminating the light emitting device itself.

Abstract

一种AMOLED像素驱动电路及像素驱动方法。AMOLED像素驱动电路采用6T1C结构并搭配有特定的驱动时序,能够有效补偿第一薄膜晶体管(T1)的阈值电压(Vth),使流过有机发光二极管(D1)的电流不受第一薄膜晶体管(T1)阈值电压(Vth)的影响,提高面板显示均匀性,改善画面的显示效果,同时电路结构简单,提高了效益。

Description

AMOLED 像素驱动电路及 AMOLED 像素驱动方法 技术领域
本发明涉及显示技术领域,尤其涉及一种 AMOLED 像素驱动电路及 AMOLED 像素驱动方法 。
背景技术
有源矩阵有机发光二极管( Active Matrix Organic Light Emitting Diode , AMOLED )能够发光是由驱动薄膜晶体管 (Thin Film Transistor , TFT ) 在饱和状态时产生的电流所驱动,传统的 AMOLED 驱动电路常为 2T1C 驱动电路。请参阅图 1 ,该 2T1C 电路包括两个 TFT 与一个电容( Capacitor ),其中, T1 为像素电路的驱动管, T2 为开关管,扫描线 Gate 开启开关管 T2 ,数据电压 Date 对存储电容 Cst 充放电,发光期间开关管 T2 关闭,电容上存储的电压使驱动管 T1 保持导通,导通电流使 OLED 发光。若要实现稳定显示,就要保持通过 OLED 的电流稳定;但由于制作工艺的限制,使得驱动 TFT 的阈值电压均匀性非常差且有漂移,导致输入相同的灰阶电压时产生不同的驱动电流,驱动电流不一致性使得发光器件的工作状态不稳定,加之发光器件的老化使其开启电压增大,最终导致面板亮度均匀性很差,发光效率不高。
对于 2T1C 驱动电路存在的上述问题,现有技术有进一步的改进,通过添加新的 TFT 或新的信号的方式来减弱甚至可以消除阈值电压漂移带来的影响。但,改进之后的电路通常需要很多的 TFT 、电压控制线以及额外的电源,控制时序也相对比较复杂,大大增加了成本。
故,有必要提供一种 AMOLED 像素驱动电路及 AMOLED 像素驱动方法,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种 AMOLED 像素驱动电路及 AMOLED 像素驱动方法,解决现有的驱动电路架构复杂的问题,同时消除驱动管阈值电压对驱动电流的影响。
技术解决方案
为达到上述目的,本发明提供的 AMOLED 像素驱动电路采用如下技术方案:
一种 AMOLED 像素驱动电路,其包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容及有机发光二极管;
所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于第三节点;
所述第二薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第一节点;
所述第三薄膜晶体管的栅极接入第三扫描信号,源极电性连接于有机发光二极管的阴极,漏极电性连接于第三节点;
所述第四薄膜晶体管的栅极接入第二扫描信号,源极接入电源正电压,漏极电性连接于有机发光二极管的阴极;
所述第五薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第二节点;
所述第六薄膜晶体管的栅极接入第四扫描信号,源极接入电源负电压,漏极电性连接于第二节点;
所述电容的一端连接于第一节点,另一端接地;
所述有机发光二极管的阳极接入电源正电压,阴极电性连接于第四薄膜晶体管的漏极及第三薄膜晶体管的源极;
所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号均通过外部时序控制器提供;
所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号相组合先后对应于一电位初始化阶段,一电位存储阶段、及一发光显示阶段。
在本发明的 AMOLED 像素驱动电路中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
在本发明的 AMOLED 像素驱动电路中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为 N 型薄膜晶体管;
在所述电位初始化阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供高电位,所述第三扫描信号提供高电位,所述第四扫描信号提供低电位;
在所述电位存储阶段,所述第一扫描信号提供高电位,所述第二扫描信号提供高电位,所述第三扫描信号提供低电位,所述第四扫描信号提供低电位,所述数据信号提供显示数据电位;
在所述发光显示阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供低电位,所述第三扫描信号提供高电位,所述第四扫描信号提供高电位。
为达到上述目的,本发明提供的 AMOLED 像素驱动电路还采用如下技术方案:
一种 AMOLED 像素驱动电路,其包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容及有机发光二极管;
所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于第三节点;
所述第二薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第一节点;
所述第三薄膜晶体管的栅极接入第三扫描信号,源极电性连接于有机发光二极管的阴极,漏极电性连接于第三节点;
所述第四薄膜晶体管的栅极接入第二扫描信号,源极接入电源正电压,漏极电性连接于有机发光二极管的阴极;
所述第五薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第二节点;
所述第六薄膜晶体管的栅极接入第四扫描信号,源极接入电源负电压,漏极电性连接于第二节点;
所述电容的一端连接于第一节点,另一端接地;
所述有机发光二极管的阳极接入电源正电压,阴极电性连接于第四薄膜晶体管的漏极及第三薄膜晶体管的源极。
在本发明的 AMOLED 像素驱动电路中,所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号均通过外部时序控制器提供。
在本发明的 AMOLED 像素驱动电路中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
在本发明的 AMOLED 像素驱动电路中,所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号相组合先后对应于一电位初始化阶段,一电位存储阶段、及一发光显示阶段。
在本发明的 AMOLED 像素驱动电路中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为 N 型薄膜晶体管;
在所述电位初始化阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供高电位,所述第三扫描信号提供高电位,所述第四扫描信号提供低电位;
在所述电位存储阶段,所述第一扫描信号提供高电位,所述第二扫描信号提供高电位,所述第三扫描信号提供低电位,所述第四扫描信号提供低电位,所述数据信号提供显示数据电位;
在所述发光显示阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供低电位,所述第三扫描信号提供高电位,所述第四扫描信号提供高电位。
在本发明还提供了一种 AMOLED 像素驱动方法,技术方案如下:
步骤 1 、提供一 AMOLED 像素驱动电路;
所述 AMOLED 像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容及有机发光二极管;
所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于第三节点;
所述第二薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第一节点;
所述第三薄膜晶体管的栅极接入第三扫描信号,源极电性连接于有机发光二极管的阴极,漏极电性连接于第三节点;
所述第四薄膜晶体管的栅极接入第二扫描信号,源极接入电源正电压,漏极电性连接于有机发光二极管的阴极;
所述第五薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第二节点;
所述第六薄膜晶体管的栅极接入第四扫描信号,源极接入电源负电压,漏极电性连接于第二节点;
所述电容的一端连接于第一节点,另一端接地;
所述有机发光二极管的阳极接入电源正电压,阴极电性连接于第四薄膜晶体管的漏极及第三薄膜晶体管的源极;
步骤 2 、进入电位初始化阶段;
所述第一扫描信号控制第五薄膜晶体管关闭,所述第二扫描信号控制第二、及第四薄膜晶体管打开,所述第三扫描信号控制第三薄膜晶体管打开,所述第四扫描信号控制第六薄膜晶体管关闭,第一节点写入电源正电压并存储在电容中,有机发光二极管不发光;
步骤 3 、进入电位存储阶段;
所述第一扫描信号控制第五薄膜晶体管打开,所述第二扫描信号控制第二、及第四薄膜晶体管打开,所述第三扫描信号控制第三薄膜晶体管关闭,所述第四扫描信号控制第六薄膜晶体管关闭,所述数据信号提供显示数据电位,第二节点写入显示数据电位,利用电容放电使得第一节点的电压为第二节点的电压与第一薄膜晶体管的阈值电压之和,并将第一节点的电压存储在电容中,有机发光二极管不发光;
步骤 4 、进入发光显示阶段;
所述第一扫描信号控制第五薄膜晶体管关闭,所述第二扫描信号控制第二、及第四薄膜晶体管关闭,所述第三扫描信号控制第三薄膜晶体管打开,所述第四扫描信号控制第六薄膜晶体管打开,利用电容的存储作用,使得第一节点的电压保持在显示数据电位与第一薄膜晶体管的阈值电压之和,第二节点写入电源负电压,第一薄膜晶体管打开,有机发光二极管发光,且流经所述有机发光二极管的电流与第一薄膜晶体管的阈值电压无关。
在本发明的 AMOLED 像素驱动方法中,所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号均通过外部时序控制器提供。
在本发明的 AMOLED 像素驱动方法中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
在本发明的 AMOLED 像素驱动方法中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为 N 型薄膜晶体管;
在所述电位初始化阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供高电位,所述第三扫描信号提供高电位,所述第四扫描信号提供低电位;
在所述电位存储阶段,所述第一扫描信号提供高电位,所述第二扫描信号提供高电位,所述第三扫描信号提供低电位,所述第四扫描信号提供低电位,所述数据信号提供显示数据电位;
在所述发光显示阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供低电位,所述第三扫描信号提供高电位,所述第四扫描信号提供高电位。
有益效果
本发明的 AMOLED 像素驱动电路及 AMOLED 像素驱动方法,通过采用 6T1C 电路搭配简单的驱动时序,能够有效补偿驱动管的阈值电压,使流过发光器件的电流不受驱动管阈值电压的影响,消除了发光器件自身老化对显示亮度的影响,提高面板显示均匀性,改善画面的显示效果;同时简化构架,大大节约了成本。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
图 1 为现有的 2T1C 结构的 AMOLED 像素驱动电路的电路图;
图 2 为本发明的 AMOLED 像素驱动电路的电路图;
图 3 为本发明 AMOLED 像素驱动电路的时序图;
图 4 为本发明 AMOLED 像素驱动方法的步骤 2 的示意图;
图 5 为本发明 AMOLED 像素驱动方法的步骤 3 的示意图;
图 6 为本发明 AMOLED 像素驱动方法的步骤 4 的示意图。
本发明的最佳实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图 2 ,本发明提供一种 AMOLED 像素驱动电路,该 AMOLED 像素驱动电路采用 6T1C 结构,包括:第一薄膜晶体管 T1 、第二薄膜晶体管 T2 、第三薄膜晶体管 T3 、第四薄膜晶体管 T4 、第五薄膜晶体管 T5 、第六薄膜晶体管 T6 、电容 C 及有机发光二极管 D1 ;
第一薄膜晶体管 T1 的栅极电性连接于第一节点 G ,源极电性连接于第二节点 S ,漏极电性连接于第三节点 D ;第二薄膜晶体管 T2 的栅极接入第二扫描信号 Scan2 ,源极电性连接于第三节点 D ,漏极电性连接于第一节点 G ;第三薄膜晶体管 T3 的栅极接入第三扫描信号 Scan3 ,源极电性连接于有机发光二极管 D1 的阴极,漏极电性连接于第三节点 D ;第四薄膜晶体管 T4 的栅极接入第二扫描信号 Scan2 ,源极接入电源正电压 OVDD ,漏极电性连接于有机发光二极管 D1 的阴极;第五薄膜晶体管 T5 的栅极接入第一扫描信号 Scan1 ,源极接入数据信号 Data ,漏极电性连接于第二节点 S ;第六薄膜晶体管 T6 的栅极接入第四扫描信号 Scan4 ,源极接入电源负电压 OVSS ,漏极电性连接于第二节点 S ;电容 C 的一端连接于第一节点 G ,另一端接地 GND ;有机发光二极管 D1 的阳极接入电源正电压 OVDD ,阴极电性连接于第四薄膜晶体管 T4 的漏极及第三薄膜晶体管 T3 的源极。
第一扫描信号 Scan1 控制第五薄膜晶体管 T5 的打开与关闭,第二扫描信号 Scan2 控制第二、及第四薄膜晶体管 T2 、 T4 的打开与关闭,第三扫描信号 Scan3 控制第三薄膜晶体管 T3 的打开与关闭,第四扫描信号 Scan4 控制第六薄膜晶体管 T6 打开与关闭,数据信号 Data 用于控制有机发光二极管 D1 的发光亮度,电容 C 为存储电容。进一步地,通过第二薄膜晶体管 T2 的打开将第一薄膜晶体管 T1 短路为二极管进行阈值电压的补偿;同时,本实施例中采用有机发光二极管 D1 上发光方式,即有机发光二极管 D1 的阳极端与电源正电压 OVDD 直接相连,当然相应的发光器件也可选择下发光方式,即有机发光二极管 D1 的阴极端与电源负电压 OVSS 直接相连,但是上发光方式与下方光方式相比有着更高的开口率,整体性能更好。
具体地,图 2 中的第一薄膜晶体管 T1 、第二薄膜晶体管 T2 、第三薄膜晶体管 T3 、第四薄膜晶体管 T4 、第五薄膜晶体管 T5 、及第六薄膜晶体管 T6 均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管,在本优选实施例中,上述 6 个薄膜晶体管均采用 N 型薄膜晶体管,方便电路的架构。
具体地,图 2 中的第一扫描信号 Scan1 、第二扫描信号 Scan2 、第三扫描信号 Scan3 以及第四扫描信号 Scan4 均通过外部时序控制器提供。
图 3 为本发明一实施例的像素驱动电路中各个控制信号的时序图。请共同参照图 2 与图 3 ,本实施例的第一扫描信号 Scan1 、第二扫描信号 Scan2 、第三扫描信号 Scan3 以及第四扫描信号 Scan4 相组合先后对应一电位初始化阶段 1 、一电位存储阶段 2 、及一发光显示阶段 3 。
请参阅图 4 至图 6 ,并结合图 2 与图 3 ,本发明的 AMOLED 像素驱动电路的工作过程如下:
请参阅图 3 与图 4 ,在电位初始化阶段 1 ,由于第二扫描信号 Scan2 、第三扫描信号 Scan3 提供高电位,控制第二、第三、及第四薄膜晶体管 T2 、 T3 、 T4 打开;第一扫描信号 Scan1 、第四扫描信号 Scan4 提供低电位,第五、第六薄膜晶体管 T5 、 T6 关闭;第一节点 G 即第一薄膜晶体管 T1 的栅极经由打开的第四、第三、第二薄膜晶体管 T4 、 T3 、 T2 写入电源正电压 OVDD 并存储在电容 C 中,有机发光二极管 D1 不发光,完成对第一节点 G 即第一薄膜晶体管 T1 的栅极电位的初始化。
请参阅图 3 与图 5 ,在电位存储阶段 2 ,由于第一扫描信号 Scan1 、第二扫描信号 Scan2 提供高电位,控制第二、第四、第五薄膜晶体管 T2 、 T4 、 T5 打开;第三扫描信号 Scan3 、第四扫描信号 Scan4 为低电位,第三、第六薄膜晶体管 T3 、 T6 关闭;数据信号提供显示数据电位 Vdata ;由于第五薄膜晶体管 T5 的打开,使第二节点 S 即第一薄膜晶体管 T1 的源极写入显示数据电位 Vdata ,打开的第二薄膜晶体管 T2 短接第一薄膜晶体管 T1 的栅极和漏极,第一节点 G 即第一薄膜晶体管 T1 的栅极的电压经第一薄膜晶体管 T1 的源极不断放电,直到电位达到显示数据电位 Vdata 与第一薄膜晶体管 T1 的阈值电压 Vth 之和,即 Vg=Vs+Vth=Vdata+Vth ,其中, Vg 是第一薄膜晶体管 T1 的栅极电压, Vs 是第一薄膜晶体管 T1 的源极电压, Vth 是第一薄膜晶体管 T1 的阈值电压,此时第一薄膜晶体管 T1 的栅极电压存储在电容 C 中,有机发光二极管 D1 不发光。
请参阅图 3 和图 6 ,在发光显示阶段 3 ,由于第一扫描信号 Scan1 、第二扫描信号 Scan2 提供低电位,第五、第四、第二薄膜晶体管 T5 、 T4 、 T2 关闭;第三扫描信号 Scan3 、第四扫描信号 Scan4 提供高电位,控制第三、第六薄膜晶体管 T3 、 T6 打开,利用电容 C 的存储作用,使得第一节点 G 即第一薄膜晶体管 T1 的栅极的电压保持为显示数据电位 Vdata 与第一薄膜晶体管 T1 的阈值电压 Vth 之和,第二节点 S 即第一薄膜晶体管 T1 的源极经由打开的第六薄膜晶体管 T6 写入电源负电压 OVSS ,此时 Vs=OVSS ,即 Vgs = Vg - Vs = Vdata+Vth - OVSS ( 2 ),第一薄膜晶体管 T1 打开,有机发光二极管 D1 发光;
进一步地,已知流经有机发光二极管 D1 的电流满足:
ID1=K ( Vgs-Vth ) 2 ( 1 )
其中, ID1 为流过有机发光二极管 D1 的电流,常数 K 为本征导电因子, Vgs 为第一薄膜晶体管 T1 的栅极与源极的电压差。
将式( 2 )代入式( 1 ), ID1=K ( Vgs-Vth ) 2 =K ( Vdata+Vth - OVSS-Vth ) 2= K ( Vgs-OVSS ) 2
由此可见,流经有机发光二极管 D1 的电流 ID1 与第一薄膜晶体管 T1 的阈值电压 Vth 、及有机发光二极管的阈值电压无关,仅与数据信号电压 Vdata 以及电源负压 OVSS 有关,补偿了驱动薄膜晶体管的阈值漂移,解决了由阈值电压漂移导致的流过发光二极管的电流不稳定的问题,消除了发光器件自身老化对显示亮度的影响,提高面板显示均匀性。
请参阅图 4 至图 6 ,并结合图 2 与图 3 ,基于上述 AMOLED 像素驱动电路,本发明还提供了一种 AMOLED 像素驱动方法,包括如下步骤:
步骤 1 、提供一 AMOLED 像素驱动电路;
该 AMOLED 像素驱动电路包括:第一薄膜晶体管 T1 、第二薄膜晶体管 T2 、第三薄膜晶体管 T3 、第四薄膜晶体管 T4 、第五薄膜晶体管 T5 、第六薄膜晶体管 T6 、电容 C 及有机发光二极管 D1 ;
第一薄膜晶体管 T1 的栅极电性连接于第一节点 G ,源极电性连接于第二节点 S ,漏极电性连接于第三节点 D ;第二薄膜晶体管 T2 的栅极接入第二扫描信号 Scan2 ,源极电性连接于第三节点 D ,漏极电性连接于第一节点 G ;第三薄膜晶体管 T3 的栅极接入第三扫描信号 Scan3 ,源极电性连接于有机发光二极管 D1 的阴极,漏极电性连接于第三节点 D ;第四薄膜晶体管 T4 的栅极接入第二扫描信号 Scan2 ,源极接入电源正电压,漏极电性连接于有机发光二极管 D1 的阴极;第五薄膜晶体管 T5 的栅极接入第一扫描信号 Scan1 ,源极接入数据信号 Data ,漏极电性连接于第二节点 S ;第六薄膜晶体管 T6 的栅极接入第四扫描信号 Scan4 ,源极接入电源负电压 OVSS ,漏极电性连接于第二节点 S ;电容 C 的一端连接于第一节点 G ,另一端接地 GND ;有机发光二极管 D1 的阳极接入电源正电压 OVDD ,阴极电性连接于第四薄膜晶体管 T4 的漏极及第三薄膜晶体管 T3 的源极。
第一扫描信号 Scan1 控制第五薄膜晶体管 T5 的打开与关闭,第二扫描信号 Scan2 控制第二、及第四薄膜晶体管 T2 、 T4 的打开与关闭,第三扫描信号 Scan3 控制第三薄膜晶体管 T3 的打开与关闭,第四扫描信号 Scan4 控制第六薄膜晶体管 T6 打开与关闭,数据信号 Data 用于控制有机发光二极管 D1 的发光亮度,电容 C 为存储电容。进一步地,通过第二薄膜晶体管 T2 的打开将第一薄膜晶体管 T1 短路为二极管进行阈值电压的补偿;同时,本实施例中采用有机发光二极管 D1 上发光方式,即有机发光二极管 D1 的阳极端与电源正电压 OVDD 直接相连,当然相应的发光器件也可选择下发光方式,即有机发光二极管 D1 的阴极端与电源负电压 OVSS 直接相连,但是上发光方式与下方光方式相比有着更高的开口率,整体性能更好。
具体地,图 2 中的第一薄膜晶体管 T1 、第二薄膜晶体管 T2 、第三薄膜晶体管 T3 、第四薄膜晶体管 T4 、第五薄膜晶体管 T5 、及第六薄膜晶体管 T6 均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管,在本优选实施例中,上述 6 个薄膜晶体管均采用 N 型薄膜晶体管,方便电路的架构。
具体地,图 2 中的第一扫描信号 Scan1 、第二扫描信号 Scan2 、第三扫描信号 Scan3 以及第四扫描信号 Scan4 均通过外部时序控制器提供。
图 3 为本发明一实施例的像素驱动电路中各个控制信号的时序图。请共同参照图 2 与图 3 ,本实施例的第一扫描信号 Scan1 、第二扫描信号 Scan2 、第三扫描信号 Scan3 以及第四扫描信号 Scan4 相组合先后对应一电位初始化阶段 1 、一电位存储阶段 2 、及一发光显示阶段 3 。
步骤 2 、进入电位初始化阶段 1 ;
请参阅图 3 与图 4 ,由于第二扫描信号 Scan2 、第三扫描信号 Scan3 提供高电位,控制第二、第三、及第四薄膜晶体管 T2 、 T3 、 T4 打开;第一扫描信号 Scan1 、第四扫描信号 Scan4 提供低电位,第五、第六薄膜晶体管 T5 、 T6 关闭;第一节点 G 即第一薄膜晶体管 T1 的栅极经由打开的第四、第三、第二薄膜晶体管 T4 、 T3 、 T2 写入电源正电压 OVDD 并存储在电容 C 中,有机发光二极管 D1 不发光,完成对第一节点 G 点即第一薄膜晶体管 T1 的栅极电位的初始化。
步骤 3 、进入电位存储阶段 2 ;
请参阅图 3 与图 5 ,由于第一扫描信号 Scan1 、第二扫描信号 Scan2 提供高电位,控制第二、第四、第五薄膜晶体管 T2 、 T4 、 T5 打开;第三扫描信号 Scan3 、第四扫描信号 Scan4 为低电位,第三、第六薄膜晶体管 T3 、 T6 关闭;数据信号提供显示数据电位;由于 T5 晶体管的打开,使第二节点 S 即第一薄膜晶体管 T1 的源极写入显示数据电位 Vdata ,打开的第二薄膜晶体管 T2 短接第一薄膜晶体管 T1 的栅极和漏极,第一节点 G 即第一薄膜晶体管 T1 的栅极的电压经第一薄膜晶体管 T1 的源极不断放电,直到电位达到显示数据电位 Vdata 与第一薄膜晶体管 T1 的阈值电压 Vth 之和,即 Vg=Vs+Vth=Vdata+Vth ,其中, Vg 是第一薄膜晶体管 T1 的栅极电压, Vs 是第一薄膜晶体管 T1 的源极电压, Vth 是第一薄膜晶体管 T1 的阈值电压,此时第一薄膜晶体管 T1 的栅极电压存储在电容 C 中,有机发光二极管 D1 不发光。
步骤 4 、进入发光显示阶段 3 ;
请参阅图 3 和图 6 ,第一扫描信号 Scan1 、第二扫描信号 Scan2 提供低电位,第五、第四、第二薄膜晶体管 T5 、 T4 、 T2 关闭;第三扫描信号 Scan3 、第四扫描信号 Scan4 提供高电位,控制第三、第六薄膜晶体管 T3 、 T6 打开,利用电容 C 的存储作用,使得第一节点 G 即第一薄膜晶体管 T1 的栅极的电压保持在显示数据电位与第一薄膜晶体管 T1 的阈值电压之和,第二节点 S 即第一薄膜晶体管 T1 的源极经由打开的第六薄膜晶体管 T6 写入电源负电压 OVSS ,此时 Vs=OVSS ,即 Vgs = Vg - Vs = Vdata+Vth - OVSS ( 2 ),第一薄膜晶体管 T1 打开,有机发光二极管 D1 发光;
进一步地,已知流经有机发光二极管 D1 的电流满足:
ID1=K ( Vgs-Vth ) 2 ( 1 )
其中, ID1 为流过有机发光二极管 D1 的电流,常数 K 为本征导电因子, Vgs 为第一薄膜晶体管 T1 的栅极与源极的电压差。
将式( 2 )代入式( 1 ), ID1=K ( Vgs-Vth ) 2 =K ( Vdata+Vth - OVSS-Vth ) 2= K ( Vgs-OVSS ) 2
由此可见,流经有机发光二极管 D1 的电流 ID1 与第一薄膜晶体管 T1 的阈值电压 Vth 、及有机发光二极管的阈值电压无关,仅与数据信号电压 Vdata 以及电源负压 OVSS 有关,补偿了驱动薄膜晶体管的阈值漂移,解决了由阈值电压漂移导致的流过发光二极管的电流不稳定的问题,消除了发光器件自身老化对显示亮度的影响,提高面板显示均匀性,改善画面的显示效果。
综上所述,本发明提供的 AMOLED 像素驱动电路及 AMOLED 像素驱动方法,通过采用 6T1C 电路搭配简单的驱动时序,不需要额外的电源,控制信号也比较少,不仅能够有效补偿驱动管的阈值电压,使流过发光器件的电流不受驱动管阈值电压的影响,消除了发光器件自身老化对显示亮度的影响,提高面板显示均匀性,改善画面的显示效果;同时简化构架,大大节约了成本。
综上,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (12)

  1. 一种 AMOLED 像素驱动电路,其包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容及有机发光二极管;
    所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于第三节点;
    所述第二薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第一节点;
    所述第三薄膜晶体管的栅极接入第三扫描信号,源极电性连接于有机发光二极管的阴极,漏极电性连接于第三节点;
    所述第四薄膜晶体管的栅极接入第二扫描信号,源极接入电源正电压,漏极电性连接于有机发光二极管的阴极;
    所述第五薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第二节点;
    所述第六薄膜晶体管的栅极接入第四扫描信号,源极接入电源负电压,漏极电性连接于第二节点;
    所述电容的一端连接于第一节点,另一端接地;
    所述有机发光二极管的阳极接入电源正电压,阴极电性连接于第四薄膜晶体管的漏极及第三薄膜晶体管的源极;
    所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号均通过外部时序控制器提供;
    所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号相组合先后对应于一电位初始化阶段,一电位存储阶段、及一发光显示阶段。
  2. 根据权利要求 1 所述的 AMOLED 像素驱动电路,其中所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  3. 根据权利要求 1 所述的 AMOLED 像素驱动电路,其中所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为 N 型薄膜晶体管;
    在所述电位初始化阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供高电位,所述第三扫描信号提供高电位,所述第四扫描信号提供低电位;
    在所述电位存储阶段,所述第一扫描信号提供高电位,所述第二扫描信号提供高电位,所述第三扫描信号提供低电位,所述第四扫描信号提供低电位,所述数据信号提供显示数据电位;
    在所述发光显示阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供低电位,所述第三扫描信号提供高电位,所述第四扫描信号提供高电位。
  4. 一种 AMOLED 像素驱动电路,其包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容及有机发光二极管;
    所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于第三节点;
    所述第二薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第一节点;
    所述第三薄膜晶体管的栅极接入第三扫描信号,源极电性连接于有机发光二极管的阴极,漏极电性连接于第三节点;
    所述第四薄膜晶体管的栅极接入第二扫描信号,源极接入电源正电压,漏极电性连接于有机发光二极管的阴极;
    所述第五薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第二节点;
    所述第六薄膜晶体管的栅极接入第四扫描信号,源极接入电源负电压,漏极电性连接于第二节点;
    所述电容的一端连接于第一节点,另一端接地;
    所述有机发光二极管的阳极接入电源正电压,阴极电性连接于第四薄膜晶体管的漏极及第三薄膜晶体管的源极。
  5. 根据权利要求 4 所述的 AMOLED 像素驱动电路,其中所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号均通过外部时序控制器提供。
  6. 根据权利要求 4 所述的 AMOLED 像素驱动电路,其中所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  7. 根据权利要求 4 所述的 AMOLED 像素驱动电路,其中所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号相组合先后对应于一电位初始化阶段,一电位存储阶段、及一发光显示阶段。
  8. 根据权利要求 7 所述 AMOLED 像素驱动电路,其中所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为 N 型薄膜晶体管;
    在所述电位初始化阶段, 所述第一扫描信号提供低电位,所述第二扫描信号提供高电位,所述第三扫描信号提供高电位,所述第四扫描信号提供低电位;
    在所述电位存储阶段,所述第一扫描信号提供高电位,所述第二扫描信号提供高电位,所述第三扫描信号提供低电位,所述第四扫描信号提供低电位,所述数据信号提供显示数据电位;
    在所述发光显示阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供低电位,所述第三扫描信号提供高电位,所述第四扫描信号提供高电位。
  9. 一种 AMOLED 像素驱动方法,其包括如下步骤:
    步骤 1 、提供一 AMOLED 像素驱动电路;
    所述 AMOLED 像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容及有机发光二极管;
    所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于第三节点;
    所述第二薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第一节点;
    所述第三薄膜晶体管的栅极接入第三扫描信号,源极电性连接于有机发光二极管的阴极,漏极电性连接于第三节点;
    所述第四薄膜晶体管的栅极接入第二扫描信号,源极接入电源正电压,漏极电性连接于有机发光二极管的阴极;
    所述第五薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第二节点;
    所述第六薄膜晶体管的栅极接入第四扫描信号,源极接入电源负电压,漏极电性连接于第二节点;
    所述电容的一端连接于第一节点,另一端接地;
    所述有机发光二极管的阳极接入电源正电压,阴极电性连接于第四薄膜晶体管的漏极及第三薄膜晶体管的源极;
    步骤 2 、进入电位初始化阶段;
    所述第一扫描信号控制第五薄膜晶体管关闭,所述第二扫描信号控制第二、及第四薄膜晶体管打开,所述第三扫描信号控制第三薄膜晶体管打开,所述第四扫描信号控制第六薄膜晶体管关闭,第一节点写入电源正电压并存储在电容中,有机发光二极管不发光;
    步骤 3 、进入电位存储阶段;
    所述第一扫描信号控制第五薄膜晶体管打开,所述第二扫描信号控制第二、及第四薄膜晶体管打开,所述第三扫描信号控制第三薄膜晶体管关闭,所述第四扫描信号控制第六薄膜晶体管关闭, 所述数据信号提供显示数据电位,第二节点写入显示数据电位,利用电容放电使得第一节点的电压为第二节点的电压与第一薄膜晶体管的阈值电压之和,并将第一节点的电压存储在电容中,有机发光二极管不发光;
    步骤 4 、进入发光显示阶段;
    所述第一扫描信号控制第五薄膜晶体管关闭,所述第二扫描信号控制第二、及第四薄膜晶体管关闭,所述第三扫描信号控制第三薄膜晶体管打开,所述第四扫描信号控制第六薄膜晶体管打开,利用电容的存储作用,使得第一节点的电压保持在显示数据电位与第一薄膜晶体管的阈值电压之和,第二节点写入电源负电压,第一薄膜晶体管打开,有机发光二极管发光,且流经所述有机发光二极管的电流与第一薄膜晶体管的阈值电压无关。
  10. 根据权利要求 9 所述的 AMOLED 像素驱动方法,其中所述第一扫描信号、第二扫描信号、第三扫描信号以及第四扫描信号均通过外部时序控制器提供。
  11. 根据权利要求 9 所述的 AMOLED 像素驱动方法,其中所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  12. 根据权利要求 9 所述 AMOLED 像素驱动方法,其中所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、及第六薄膜晶体管均为 N 型薄膜晶体管;
    在所述电位初始化阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供高电位,所述第三扫描信号提供高电位,所述第四扫描信号提供低电位;
    在所述电位存储阶段,所述第一扫描信号提供高电位,所述第二扫描信号提供高电位,所述第三扫描信号提供低电位,所述第四扫描信号提供低电位,所述数据信号提供显示数据电位;
    在所述发光显示阶段,所述第一扫描信号提供低电位,所述第二扫描信号提供低电位,所述第三扫描信号提供高电位,所述第四扫描信号提供高电位。
PCT/CN2017/113621 2017-07-11 2017-11-29 Amoled 像素驱动电路及 amoled 像素驱动方法 WO2019010900A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/578,260 US10304387B2 (en) 2017-07-11 2017-11-29 AMOLED pixel driving circuit and AMOLED pixel driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710561240.2A CN107230453A (zh) 2017-07-11 2017-07-11 Amoled像素驱动电路及amoled像素驱动方法
CN201710561240.2 2017-07-11

Publications (1)

Publication Number Publication Date
WO2019010900A1 true WO2019010900A1 (zh) 2019-01-17

Family

ID=59956399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113621 WO2019010900A1 (zh) 2017-07-11 2017-11-29 Amoled 像素驱动电路及 amoled 像素驱动方法

Country Status (2)

Country Link
CN (1) CN107230453A (zh)
WO (1) WO2019010900A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230453A (zh) * 2017-07-11 2017-10-03 深圳市华星光电半导体显示技术有限公司 Amoled像素驱动电路及amoled像素驱动方法
CN108320709A (zh) * 2018-01-19 2018-07-24 昆山国显光电有限公司 像素电路及其驱动方法、显示装置
CN111369947A (zh) * 2020-04-09 2020-07-03 深圳市华星光电半导体显示技术有限公司 像素补偿驱动电路及其驱动方法、显示装置
CN111402829B (zh) 2020-04-10 2021-07-27 苏州华星光电技术有限公司 Goa电路、显示面板
CN113539171A (zh) * 2021-07-27 2021-10-22 深圳市华星光电半导体显示技术有限公司 显示像素电路、显示像素电路驱动方法及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004394A (ko) * 2005-07-04 2007-01-09 엘지전자 주식회사 유기전계발광소자 및 그 표시장치, 그 구동방법
CN104700778A (zh) * 2015-03-27 2015-06-10 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN104867442A (zh) * 2014-02-20 2015-08-26 北京大学深圳研究生院 一种像素电路及显示装置
CN106409233A (zh) * 2016-11-28 2017-02-15 上海天马有机发光显示技术有限公司 一种像素电路、其驱动方法及有机发光显示面板
CN107230453A (zh) * 2017-07-11 2017-10-03 深圳市华星光电半导体显示技术有限公司 Amoled像素驱动电路及amoled像素驱动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222541B1 (ko) * 2005-06-30 2013-01-16 엘지디스플레이 주식회사 전계발광소자
CN102682705B (zh) * 2012-06-06 2014-05-28 四川虹视显示技术有限公司 Amoled像素驱动电路
CN104658483B (zh) * 2015-03-16 2017-02-01 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN106504703B (zh) * 2016-10-18 2019-05-31 深圳市华星光电技术有限公司 Amoled像素驱动电路及驱动方法
CN106504702A (zh) * 2016-10-18 2017-03-15 深圳市华星光电技术有限公司 Amoled像素驱动电路及驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004394A (ko) * 2005-07-04 2007-01-09 엘지전자 주식회사 유기전계발광소자 및 그 표시장치, 그 구동방법
CN104867442A (zh) * 2014-02-20 2015-08-26 北京大学深圳研究生院 一种像素电路及显示装置
CN104700778A (zh) * 2015-03-27 2015-06-10 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN106409233A (zh) * 2016-11-28 2017-02-15 上海天马有机发光显示技术有限公司 一种像素电路、其驱动方法及有机发光显示面板
CN107230453A (zh) * 2017-07-11 2017-10-03 深圳市华星光电半导体显示技术有限公司 Amoled像素驱动电路及amoled像素驱动方法

Also Published As

Publication number Publication date
CN107230453A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2019010900A1 (zh) Amoled 像素驱动电路及 amoled 像素驱动方法
WO2019037232A1 (zh) 一种 oled 像素电路及减缓 oled 器件老化的方法
WO2018045659A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2019010873A1 (zh) 一种像素驱动电路及驱动方法
WO2018045660A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2020027445A1 (ko) 화소 회로 및 이를 포함하는 표시 장치
WO2016155053A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016003243A1 (ko) Oled 표시 장치
WO2018045667A1 (zh) Amoled像素驱动电路及驱动方法
WO2016145693A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017118055A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2019010765A1 (zh) 一种 amoled 像素驱动电路及像素驱动方法
WO2016119304A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017156826A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016155087A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017117940A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2019019276A1 (zh) 一种像素补偿电路及显示装置
CN105225636B (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2019024256A1 (zh) 具有温度补偿功能的amoled显示面板及显示装置
WO2017020360A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016119305A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2015192399A1 (zh) 有机发光二极管的像素驱动电路及像素驱动方法
WO2019095494A1 (zh) 一种像素驱动电路及液晶显示装置
WO2013037295A1 (zh) Oled像素结构及驱动方法
WO2019010766A1 (zh) 一种 amoled 像素驱动电路及像素驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917561

Country of ref document: EP

Kind code of ref document: A1