WO2012134162A2 - 유기전계발광 표시패널의 구동 장치 및 구동 방법 - Google Patents

유기전계발광 표시패널의 구동 장치 및 구동 방법 Download PDF

Info

Publication number
WO2012134162A2
WO2012134162A2 PCT/KR2012/002270 KR2012002270W WO2012134162A2 WO 2012134162 A2 WO2012134162 A2 WO 2012134162A2 KR 2012002270 W KR2012002270 W KR 2012002270W WO 2012134162 A2 WO2012134162 A2 WO 2012134162A2
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic light
current
control method
input code
Prior art date
Application number
PCT/KR2012/002270
Other languages
English (en)
French (fr)
Other versions
WO2012134162A3 (ko
Inventor
김본기
Original Assignee
주식회사 하이딥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이딥 filed Critical 주식회사 하이딥
Publication of WO2012134162A2 publication Critical patent/WO2012134162A2/ko
Publication of WO2012134162A3 publication Critical patent/WO2012134162A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2077Display of intermediate tones by a combination of two or more gradation control methods

Definitions

  • the present invention relates to a driving apparatus and a driving method of an organic light emitting display panel, and more particularly, to a driving apparatus and a driving method of an organic light emitting display panel using different control schemes according to input codes.
  • OLED organic light emitting diode
  • the voltage control method is the same as the conventional liquid crystal display driving method.
  • This control scheme drives the diode with voltage. Therefore, there is a problem that current flows separately due to mismatch between the devices.
  • As a method for solving such a problem there is a method of compensating a change in a threshold voltage by using a plurality of transistors.
  • this method requires the addition of a large amount of transistors, so that the opening ratio of the cell is reduced.
  • the current control method is a method of performing the control by adjusting the amount of current flowing through the organic light emitting device.
  • the brightness of the organic light emitting display device is the most ideal control method because it depends on the amount of current.
  • parasitic capacitance exists in the display panel.
  • the current In order to drive the organic light emitting display device through the current, the current must charge all the parasitic capacitances.
  • dark brightness the value of the flowing current becomes small, and it takes too much time to charge all the parasitic capacitances with this current, which increases the gate scan time required for the display indefinitely. There is.
  • the digital control method is a method of flowing a maximum current by applying a saturation voltage to the diode.
  • the emission intensity of the organic light emitting diode is controlled by adjusting the flow time of the maximum current per frame according to the brightness to be implemented. That is, the maximum current flows, but the pulse width modulation (PWM) or pulse density modulation (PDM) method is used to control the time to turn off the flow of current.
  • PWM pulse width modulation
  • PDM pulse density modulation
  • the light emission intensity of the electroluminescent device is controlled. Since the current-voltage correlation of the organic light emitting diodes is different for each device, this method using the maximum current has an advantage of expressing a desired gray level insensitive to device characteristics. However, according to this control method, since the organic light emitting diode is always driven at the maximum current, it causes a problem in reliability and shortens the life of the organic light emitting diode.
  • the object of the present invention is to solve all the problems of the prior art described above.
  • Another object of the present invention is to provide a control method that can solve all the problems of the conventional control method and control the organic light emitting display panel.
  • the first control method when the organic light emitting diode and the input code is less than or equal to the threshold value, the first control method is used, and when the input code is greater than or equal to the threshold value, the organic light emitting diode is driven using the second control method.
  • a driving device for an organic light emitting display panel including a controller for controlling is provided.
  • the first control method may be a digital control method
  • the second control method may be an analog current control method
  • the digital control method may be a method of controlling a current having a constant magnitude flowing to the organic light emitting diode, such that the conduction time of the current is proportional to the input code.
  • a constant magnitude of current flowing through the organic light emitting diode may have a value corresponding to a product of the threshold value and the current resolution.
  • the conduction time of the current can be controlled by a digital modulation method.
  • the digital modulation scheme may be a pulse width modulation (PWM) scheme or a pulse density modulation (PDM) scheme.
  • PWM pulse width modulation
  • PDM pulse density modulation
  • the analog current control method may be a method of controlling a current proportional to the input code to flow through the organic light emitting diode.
  • the current proportional to the input code may have a value corresponding to the product of the input code and the current resolution.
  • determining whether the input code is greater than or equal to the threshold value if the input code is less than the threshold value as a result of the determination using a first control method, the input code is a threshold value
  • a method of driving an organic light emitting display panel including controlling driving of the organic light emitting display device using a second control method.
  • the first control method may be a digital control method
  • the second control method may be an analog current control method
  • the digital control method may be a method of controlling a current having a constant magnitude flowing to the organic light emitting diode, such that the conduction time of the current is proportional to the input code.
  • the organic light emitting diode may be controlled to flow a current having a value corresponding to the product of the threshold value and the current resolution.
  • the conduction time of the current can be controlled by a digital modulation method.
  • the digital modulation scheme may be a pulse width modulation (PWM) scheme or a pulse density modulation (PDM) scheme.
  • PWM pulse width modulation
  • PDM pulse density modulation
  • the analog current control method may be a method of controlling a current proportional to the input code to flow through the organic light emitting diode.
  • the current proportional to the input code may have a value corresponding to the product of the input code and the current resolution.
  • a digital control method when the input code is below a threshold, a digital control method is used, and when the input code is above a threshold, an analog current control method is used, thereby charging parasitic capacitance even when a low input code is input. It is not necessary to take a long time for fast realization of the desired brightness, and even when using a digital control method using a lower current than the conventional digital control method, it does not burden the organic light emitting device.
  • FIG. 1 is a diagram illustrating a configuration of a driving device of an organic light emitting display panel according to an exemplary embodiment of the present invention.
  • 2A is a graph illustrating a correlation between current density and illuminance flowing in an organic light emitting display device.
  • 2B is a graph showing the correlation between the voltage applied to the organic light emitting diode and the current density.
  • 3A is a graph showing the illuminance of an organic light emitting display device over time.
  • 3B is a graph showing a change in threshold voltage of the organic light emitting display device over time.
  • FIG. 3C is a graph showing the change in illuminance with time when the organic light emitting diode is driven with a direct current DC and a pulse current PC having a predetermined density.
  • FIG. 4 is a circuit diagram illustrating a voltage control method, which is one of driving methods of a conventional organic light emitting display panel.
  • 5A is a circuit diagram illustrating an analog current control method among driving methods of an organic light emitting display panel.
  • 5B is a graph showing the value of the current flowing through the organic light emitting display device according to the input code in the analog current control method.
  • 6A is a circuit diagram illustrating a digital control method among driving methods of a conventional organic light emitting display panel.
  • 6B is a graph illustrating values of output codes according to input codes in the digital control method.
  • 6C is a timing diagram illustrating a value of a current applied to the organic light emitting display device when a predetermined input code is input as an example of a digital control method.
  • FIG. 7 is a view for explaining a driving example of an organic light emitting display panel according to an embodiment of the present invention.
  • FIG. 8 is a diagram for describing a hardware implementation of a driving apparatus of an organic light emitting display panel according to an exemplary embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration of a driving device of an organic light emitting display panel according to an exemplary embodiment of the present invention.
  • a driving device of an organic light emitting display panel includes an organic light emitting display panel 100 including pixels PE arranged at respective intersections of a gate line GL and a data line DL;
  • the scan driver 110 driving the gate line GL of the organic light emitting display panel 100, the data driver 120 driving the data line DL of the organic light emitting display panel 100, and the scan driver 110.
  • a controller 130 for controlling the data driver 120.
  • Each of the pixels PE is driven when the gate signals of the gate line GL are enabled to generate light corresponding to the magnitude of the pixel signal on the data line DL.
  • the light is generated by the organic light emitting diodes included in the pixels PE.
  • the controller 130 supplies a gate control signal GCS to the scan driver 110 and supplies data control signals together with the data to the data driver 120.
  • the scan driver 110 supplies a scan pulse that sequentially enables the gate line GL in response to the gate control signal GCS from the controller 130.
  • the data driver 120 supplies the data signal from the controller 130 to the pixels PE through the data line DL in response to the control signals supplied from the controller 130.
  • the data driver 120 supplies one horizontal line of data to the data line DL for each scan period in which the scan driver 110 drives each of the gate lines GL. That is, the controller 130 controls the value of the data voltage supplied to the data line DL, which will be described later, and thereby controls the value of the current flowing through the organic light emitting diodes included in the pixels PE. .
  • the controller 130 drives the organic light emitting display device by the first control method when the input code is less than or equal to the threshold value, and when the input code is equal to or greater than the threshold value, the organic light emitting device according to the second control method. This is described in detail below.
  • FIG. 2A is a graph showing a correlation between current density and illuminance flowing in an organic light emitting display device
  • FIG. 2B is a graph showing a correlation between a voltage applied to an organic light emitting device and a current density.
  • the illuminance of light emitted from the organic light emitting diode is proportional to the current density flowing through the organic light emitting diode.
  • the slope of the graph may vary depending on the composition of the organic light emitting device. For example, the illuminance of the organic light emitting device emitting red light when the same current density is applied may be higher than that of the organic light emitting device emitting blue light.
  • a voltage of a predetermined magnitude or more that is, a voltage of more than a threshold voltage must be applied.
  • the organic light emitting diode emits light only when a voltage of 3 to 4 V or more is applied.
  • the organic light emitting display device having such characteristics may be degraded with time.
  • FIG. 3A is a graph showing illuminance of an organic light emitting diode over time
  • FIG. 3B is a graph showing a change in threshold voltage of the organic light emitting diode over time
  • FIG. 3C is a direct current (DC) having a predetermined density.
  • DC direct current
  • PC pulse current
  • the organic light emitting diode has a decrease in illuminance with time, and a decrease in illuminance rapidly occurs after a certain time.
  • the organic light emitting diode is driven only by applying a voltage higher than the threshold voltage.
  • the threshold voltage of the organic light emitting diode increases with time. That is, the organic light emitting diode can be driven only by applying a large voltage to the organic light emitting diode before deterioration.
  • the method of driving the organic light emitting display device of the present invention can also be used to control the organic light emitting display device included in other devices, but for convenience of description, the driving of the organic light emitting display panel will be described as an example.
  • FIG. 4 is a circuit diagram illustrating a voltage control method, which is one of driving methods of a conventional organic light emitting display panel.
  • parasitic capacitance exists in various elements or wires. For this reason, parasitic capacitance C OLED may exist in the organic light emitting diode OLED.
  • the pixels PE of the organic light emitting display panel illustrated in FIG. 1 are parasitic capacitances C OLED connected in parallel with the organic light emitting diode OLED and the organic light emitting diode OLED, as shown in FIG. 4. ) Can be simplified.
  • the voltage control method is a method of controlling the brightness of the organic light emitting diode OLED by adjusting the value of the voltage Va applied to the organic light emitting diode OLED.
  • the brightness of the organic light emitting diode OLED is proportional to the value of a flowing current, and the relationship between the voltage Va and the current applied to the organic light emitting diode OLED is illustrated in FIG. 2B. Since the characteristics of the organic light emitting diode OLED may be adjusted, the brightness of the organic light emitting diode OLED may be adjusted by adjusting the value of the voltage Va applied to the organic light emitting diode OLED.
  • the voltage control method indirectly adjusts the value of the current flowing in the organic light emitting diode OLED, it is difficult to accurately implement the desired brightness.
  • a means for compensating for a mismatch between elements existing in a circuit is required, which increases the number of components to be included. This results in an increase in the components that must be included in one pixel, leading to a problem of reducing the aperture ratio.
  • FIG. 5A is a circuit diagram illustrating an analog current control method among driving methods of a conventional organic light emitting display panel
  • FIG. 5B illustrates a value of a current flowing through the organic light emitting device according to an input code in the analog current control method. It is a graph.
  • the input code is input to the controller 130 of the organic light emitting display panel illustrated in FIG. 1, and the value of the current flowing through the organic light emitting diode OLED of the pixels PE is determined according to the input code.
  • the illuminance of the organic light emitting diode OLED is proportional to the input current value, it is the most ideal control method. That is, as shown in FIG. 5B, the value of the current I OLED applied to the organic light emitting diode OLED increases in proportion to the input code.
  • the parasitic capacitance C OLED exists in the organic light emitting diode OLED.
  • the organic light emitting diode OLED is driven according to an analog current control method, the organic electroluminescent element OLED is driven by the current I OLED . After the parasitic capacitance C OLED of the light emitting device OLED is all charged, the desired brightness is realized in the organic light emitting device OLED.
  • the amount of charge Q charged in the parasitic capacitance C OLED may be expressed by the following equation.
  • VOLED is a turn-on voltage of the organic light emitting diode OLED
  • t is a time at which charging of the parasitic capacitance COLED is completed. Therefore, in order to complete the charging in the parasitic capacitance C OLED , the charging time t expressed by the following equation is required.
  • the driving device of the present invention may emit organic light.
  • the turn-on time T of the organic light emitting diode OLED is ON ) is as follows.
  • the turn-on time T ON of the organic light emitting diode OLED is as follows.
  • the OLED In the case of the brightest brightness, the OLED emits light at about 3 ⁇ s after the current I OLED flows in the OLED, but the darkest brightness is achieved. In this case, since the parasitic capacitance (C OLED ) of 10 pF needs to be charged with a current of 10 nA, the organic light emitting diode (OLED) needs 3 ms to emit light at the corresponding brightness.
  • C OLED parasitic capacitance
  • OLED organic light emitting diode
  • the digital control method applies the maximum current to the organic light emitting diode (OLED), but adjusts the time to adjust the time of the organic light emitting diode (OLED). Control brightness.
  • FIG. 6A is a circuit diagram illustrating a digital control method among driving methods of a conventional organic light emitting display panel.
  • FIG. 6B is a graph showing an output code value according to an input code in the digital control method.
  • 6C is a timing diagram illustrating a value of a current applied to the organic light emitting display device when a predetermined input code is input as an example of a digital control method.
  • the conduction time of the current IOLED flowing through the organic light emitting diode OLED is controlled to cause the organic light emitting diode OLED to emit light at a desired brightness.
  • a current corresponding to 10.23 mA the maximum value of the current I OLED
  • a desired brightness can be realized by controlling a current corresponding to 10.23 ⁇ to flow for a time corresponding to 1/1024 of one frame (t).
  • a current I OLED having a size of 10.23 ⁇ s flows for a time corresponding to 127/1024 of one frame t. Is controlled.
  • the maximum current should always be applied to the organic light emitting diode (OLED) regardless of what brightness is desired.
  • OLED organic light emitting diode
  • the larger the value of the driving current the greater the decrease in illuminance of the organic light emitting diode OLED.
  • the digital control method the maximum current is continuously applied to the organic light emitting diode OLED. As a result, the life is drastically reduced.
  • the present invention intends to use different control schemes according to input codes. That is, the first control method is used when the input code is less than or equal to the predetermined threshold value, and the second control method is used when it is greater than or equal to the threshold value.
  • the control when the input code is less than or equal to a predetermined threshold value, the control is performed by a digital control method, and when the input code is greater than or equal to the threshold value, it is controlled by an analog current control method.
  • FIG. 7 is a view for explaining a driving example of an organic light emitting display panel according to an embodiment of the present invention.
  • a first control scheme for example, a digital control scheme
  • an input code above the threshold may be used.
  • a second control scheme eg, analog current control scheme
  • the threshold value is 127 and the first control method is a digital control method
  • the OLED is driven at a current of 1270nA (IOLED) at all times, but the digital control method can be performed by adjusting the conduction time.
  • a conventional modulation method can be used.
  • PWM pulse width modulation
  • PDM pulse density modulation
  • an output code identical to an input code can be used as it is, and a digital control scheme can be implemented using the conventional modulation scheme operating according to the output code. That is, the conduction time of the current I OLED flowing in the organic light emitting diode OLED can be controlled through the above-described modulation method. For example, when the input code is 64, the organic light emitting diode OLED is controlled. A current with a value of 1270 nA flows for 64/127 hours of one frame.
  • the current (I OLED ) value flowing through the organic light emitting diode (OLED) was always 10.23 mA regardless of the value of the input code, but only by using the digital control method when a low input code is input.
  • the current value is lowered to 1270 nA, thereby reducing the stress of the OLED to about 1/8 ( ⁇ 10.23 ⁇ / 1270 nA).
  • the input code when the input code is 127 ⁇ 1023 can use the analog current control method.
  • the input code when the input code is 127, according to the digital control method, the current of 1270nA must be continuously flowing. In addition, the current of 1270nA must be continuously flowed even by the analog current control method. Therefore, when the input code is a threshold value, it may be controlled by any of the digital control method and the analog current control method. That is, when the input code is a threshold value, it may be controlled by a digital control method or an analog current control method. Therefore, in the present specification, it will be exemplified as being controlled by a digital control method when the input code is less than or equal to the threshold, and by an analog current control method when it is greater than or equal to the threshold.
  • the current is driven by applying a current proportional to the input code to the organic light emitting diode OLED.
  • the output code in the section using the analog current control method can be made constant regardless of the input code.
  • the most time required for charging the parasitic capacitance (C OLED ) to drive the organic light emitting diode (OLED) is when the input code is 127.
  • the time T ON until the parasitic capacitance C OLED is fully charged and the organic light emitting diode OLED is turned on at a desired brightness is obtained as follows.
  • the maximum time required to drive an organic light emitting diode is about 24 ms, which is about 3 ms, which is the maximum time required in the conventional method using the analog current control method regardless of the input code value. You can see that it is 127 times faster.
  • the threshold value is 127 has been described as an example, but a different value may be set as the threshold value.
  • the threshold is increased, the current stress applied to the organic light emitting diode (OLED) increases when the digital control method is used, but the speed is increased when the analog current control method is used.
  • the threshold is lowered, the current stress applied to the organic light emitting diode (OLED) when using the digital control method is reduced, but the speed when using the analog current control method is slowed. Therefore, by appropriately referring to such a compensation relationship, the threshold value can be appropriately selected in consideration of the property of the device and the duration of the gate scan signal.
  • FIG. 8 is a diagram for describing a method of hardware-implementing a driving device of an organic light emitting display panel according to an exemplary embodiment of the present invention.
  • Table 1 shows a method of dividing a program current and an output code according to an input code in a driving method of an organic light emitting display panel according to an embodiment of the present invention.
  • the input code may be input in a digital form, and the range may be 0 to 1023 (0x3FF). If the input code is less than or equal to the threshold value 127, the corresponding input code may be input to the decoder for the digital control scheme.
  • the decoder converts the input code into an appropriate code for organic light emitting device (OLED) control.
  • a conventional modulation method for example, a pulse width modulation (PWM) method or a pulse density modulation (PDM) method
  • PWM pulse width modulation
  • PDM pulse density modulation
  • the input code is larger than the threshold value 127
  • the input code is input to a digital-to-analog converter (DAC) for the analog current control method.
  • DAC digital-to-analog converter
  • the program current is implemented in the range of 1.28 mA to 10.23 mA.
  • the output code in this section can use the output code corresponding to the threshold of the input code constantly. However, as described above, even if the input code is a threshold value, it may be regarded as being driven by the analog current control method.
  • the driving device can be completed by dividing the program current and the output code according to the input code as described above, and controlling the modulation used in the digital control method according to the output code.

Abstract

본 발명은 유기전계발광소자, 입력코드가 임계값 이하인 경우에는 제1 제어 방식을 이용하고, 상기 임계값 이상인 경우에는 제2 제어 방식을 이용하여 상기 유기전계발광소자의 구동을 제어하는 제어부를 포함하는 유기전계발광 표시패널의 구동 장치를 제공한다.

Description

유기전계발광 표시패널의 구동 장치 및 구동 방법
본 발명은 유기전계발광 표시패널의 구동 장치 및 구동 방법에 관한 것으로, 보다 상세하게는, 입력코드에 따라 서로 다른 제어 방식을 이용하는 유기전계발광 표시패널의 구동 장치 및 구동 방법에 관한 것이다.
최근 액정표시장치(LCD; Liquid Crystal Display)에 비해 넓은 시야각 및 빠른 응답속도를 갖는 유기전계발광소자(OLED; Organic Light Emitting Diode)를 포함하는 표시패널 등이 널리 이용되고 있다.
이러한 유기전계발광 표시패널 등에 이용되는 유기전계발광소자의 구동 방법으로서는 전압 제어 방식, 전류 제어 방식, 디지털 제어 방식이 소개되어 있다.
먼저, 전압 제어 방식은 기존 액정표시장치 구동 방식과 동일하다. 이 제어 방식은 다이오드를 전압으로 구동한다. 따라서, 소자 간의 미스매치로 인해 전류가 제각각 흐르는 문제점을 갖고 있다. 이러한 문제점을 해결하기 위한 방법으로서 여러개의 트랜지스터를 사용하여 문턱 전압의 변화 등을 보상해 주는 방법이 있다. 그러나, 이러한 방법은 다량의 트랜지스터 추가를 요구하기 때문에 셀의 개구율이 줄어드는 단점이 있다.
한편, 전류 제어 방식은 유기전계발광소자에 흐르는 전류의 양을 조절함으로써 제어를 수행하는 방식이다. 유기전계발광소자의 밝기는 전류의 양에 따라 달라지기 때문에 가장 이상적인 제어 방식이라고 할 수 있다. 그러나, 어두운 밝기를 구현하고자 하는 경우에는 패널에 존재하는 기생 커패시턴스를 충전하는 데에 많은 시간이 걸리는 문제점이 있다. 구체적으로 설명하면, 표시 패널에는 기생 커패시턴스가 존재하는데, 전류를 통해 유기전계발광소자를 구동하기 위해서는 해당 전류가 기생 커패시턴스를 모두 충전하여야 한다. 어두운 밝기를 구현하는 경우에는 흐르는 전류의 값이 작아지게 되는데, 이 때 이 전류로 기생 커패시턴스를 모두 충전하기 위해서는 너무 많은 시간이 소요되고, 이에 따라 디스플레이에서 필요로 하는 게이트 스캔 시간이 무한정 늘어나게 되는 문제가 있다.
또한, 디지털 제어 방식은 다이오드에 포화 전압을 걸어서 최대 전류를 흐르게 하는 방식이다. 구현하고자 하는 밝기에 따라 한 프레임 당 최대 전류의 흐름 시간을 조절함으로써 유기전계발광소자의 발광 세기를 제어한다. 즉, 최대값의 전류가 흐르도록 하되 펄스 폭 변조(PWM; Pulse Width Modulation) 방식 또는 펄스 밀도 변조(PDM; Pulse Density Modulation) 방식 등을 이용하여 전류의 흐름을 오프 상태로 해주는 시간을 조절함으로써 유기전계발광소자의 발광 세기를 제어한다. 유기전계발광소자의 전류-전압 상관관계가 소자별로 모두 다르기 때문에 최대 전류를 이용하는 이 방법은 소자의 특성에 둔감하여 원하는 그레이(gray) 레벨을 표현할 수 있다는 장점이 있다. 그러나, 이 제어 방법에 따르면 유기전계발광소자를 항상 최대 전류로 구동하기 때문에 신뢰성에 문제를 야기시키고, 유기전계발광소자의 수명을 단축시키는 문제가 있다.
따라서, 원하는 밝기를 빠른 시간에 구현할 수 있음과 동시에 소자에 무리를 주지 않도록 하는 유기전계발광소자의 구동 제어 방법에 대한 개발이 시급하다.
본 발명은 상술한 종래 기술의 문제점을 모두 해결하는 것을 그 목적으로 한다.
본 발명의 다른 목적은 유기전계발광 표시패널의 제어에 있어서, 기존 제어 방식의 문제점을 모두 해결함과 동시에 장점만을 살릴 수 있는 제어 방법을 제공하는 것이다.
한편, 본 발명의 또 다른 목적은 유기전계발광 표시패널의 구동 제어에 있어서, 원하는 밝기를 언제나 빠른 시간에 구현함과 동시에 구동 시 유기전계발광소자에 무리를 주지 않을 수 있도록 하는 것이다.
본 발명의 실시예에 따르면, 유기전계발광소자, 입력코드가 임계값 이하인 경우에는 제1 제어 방식을 이용하고, 상기 임계값 이상인 경우에는 제2 제어 방식을 이용하여 상기 유기전계발광소자의 구동을 제어하는 제어부를 포함하는 유기전계발광 표시패널의 구동 장치가 제공된다.
상기 제1 제어 방식은 디지털 제어 방식이고, 상기 제2 제어 방식은 아날로그 전류 제어 방식일 수 있다.
상기 디지털 제어 방식은, 상기 유기전계발광소자에 일정한 크기의 전류를 흘러주되, 상기 전류의 도통 시간이 상기 입력코드에 비례하도록 제어하는 방식일 수 있다.
상기 유기전계발광소자에 흐르는 일정한 크기의 전류는, 상기 임계값과 전류 해상도의 곱에 해당하는 값을 가질 수 있다.
상기 전류의 도통 시간은,
Figure PCTKR2012002270-appb-I000001
일 수 있다.
상기 전류의 도통 시간은 디지털 변조 방식에 의해 제어될 수 있다.
상기 디지털 변조 방식은 펄스 폭 변조(PWM; Pulse Width Modulation) 방식 또는 펄스 밀도 변조(PDM; Pulse Density Modulation) 방식일 수 있다.
상기 아날로그 전류 제어 방식은, 상기 입력코드에 비례하는 전류가 상기 유기전계발광소자에 흐르도록 제어하는 방식일 수 있다.
상기 입력코드에 비례하는 전류는 상기 입력코드와 전류 해상도의 곱에 해당하는 값을 가질 수 있다.
한편, 본 발명의 다른 실시예에 따르면, 입력코드가 임계값 이상인지 여부를 판단하는 단계, 상기 판단 결과 상기 입력코드가 임계값 이하인 경우에는 제1 제어 방식을 이용하고, 상기 입력코드가 임계값 이상인 경우에는 제2 제어 방식을 이용하여 상기 유기전계발광소자의 구동을 제어하는 단계를 포함하는 유기전계발광 표시패널의 구동 방법이 제공된다.
상기 제1 제어 방식은 디지털 제어 방식이고, 상기 제2 제어 방식은 아날로그 전류 제어 방식일 수 있다.
상기 디지털 제어 방식은, 상기 유기전계발광소자에 일정한 크기의 전류를 흘러주되, 상기 전류의 도통 시간이 상기 입력코드에 비례하도록 제어하는 방식일 수 있다.
상기 디지털 제어 방식에서, 유기전계발광소자에는 상기 임계값과 전류 해상도의 곱에 해당하는 값을 갖는 전류가 흐로도록 제어될 수 있다.
상기 전류의 도통 시간은,
Figure PCTKR2012002270-appb-I000002
에 해당하는 시간으로 제어될 수 있다.
상기 전류의 도통 시간은 디지털 변조 방식에 의해 제어될 수 있다.
상기 디지털 변조 방식은 펄스 폭 변조(PWM; Pulse Width Modulation) 방식 또는 펄스 밀도 변조(PDM; Pulse Density Modulation) 방식일 수 있다.
상기 아날로그 전류 제어 방식은, 상기 입력코드에 비례하는 전류가 상기 유기전계발광소자에 흐르도록 제어하는 방식일 수 있다.
상기 입력코드에 비례하는 전류는 상기 입력코드와 전류 해상도의 곱에 해당하는 값을 가질 수 있다.
본 발명의 실시예에 따르면, 유기전계발광 표시패널의 제어에 있어서 기존 아날로그 전류 제어 방식과 디지털 제어 방식의 문제점을 모두 해결할 수 있다.
본 발명의 실시예에 따르면, 입력코드가 임계값 이하일 경우에는 디지털 제어 방식을 사용하고, 입력코드가 임계값 이상일 경우에는 아날로그 전류 제어 방식을 사용함으로써, 낮은 입력코드가 입력되는 경우일지라도 기생 커패시턴스 충전을 위한 시간이 길게 필요하지 않게 되어 원하는 밝기의 빠른 구현이 가능하고, 디지털 제어 방식을 이용하는 경우에도 기존의 디지털 제어 방식보다 낮은 전류를 사용하기 때문에, 유기전계발광소자에 무리를 주지 않게 된다.
도 1은 본 발명의 일 실시예에 따른 유기전계발광 표시패널의 구동 장치의 구성을 나타내는 도면이다.
도 2a는 유기전계발광소자에 흐르는 전류 밀도와 조도 간의 상관관계를 나타내는 그래프이다.
도 2b는 유기전계발광소자에 걸리는 전압과 전류 밀도 간의 상관관계를 나타내는 그래프이다.
도 3a는 시간의 경과에 따른 유기전계발광소자의 조도를 나타내는 그래프이다.
도 3b는 시간의 경과에 따른 유기전계발광소자의 문턱 전압 변화를 나타내는 그래프이다.
도 3c는 소정 밀도의 직류 전류(DC) 및 펄스 전류(PC)로 유기전계발광소자를 구동할 때 시간의 경과에 따른 조도 변화를 나타내는 그래프이다.
도 4는 종래 유기전계발광 표시패널의 구동 방식 중 하나인 전압 제어 방식을 설명하기 위한 회로도이다.
도 5a는 유기전계발광 표시패널의 구동 방식 중 아날로그 전류 제어 방식을 설명하기 위한 회로도이다.
도 5b는 아날로그 전류 제어 방식에 있어서 입력코드에 따라 유기전계발광소자에 흐르는 전류의 값을 나타내는 그래프이다.
도 6a는 종래 유기전계발광 표시패널의 구동 방식 중 디지털 제어 방식을 설명하기 위한 회로도이다.
도 6b는 디지털 제어 방식에 있어서 입력코드에 따른 출력코드의 값을 나타내는 그래프이다.
도 6c는 디지털 제어 방식의 일례로서 소정 입력코드가 입력될 때 유기전계발광소자에 가해지는 전류의 값을 나타내는 타이밍도이다.
도 7은 본 발명의 일 실시예에 따른 유기전계발광 표시패널의 구동예를 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 유기전계발광 표시패널의 구동 장치를 하드웨어적으로 구현하는 방법을 설명하기 위한 도면이다.
이하, 첨부되는 도면을 참조하여 본 발명의 실시예에 따른 유기전계발광 표시패널의 구동 장치를 설명한다.
유기전계발광소자의 구동 장치
도 1은 본 발명의 실시예에 따른 유기전계발광 표시패널의 구동 장치의 구성을 나타내는 도면이다.
도 1을 참조하면, 유기전계발광 표시패널의 구동 장치는 게이트 라인(GL)과 데이터 라인(DL)의 교차부들 각각에 배열되는 화소들(PE)로 구성되는 유기전계발광 표시패널(100), 유기전계발광 표시패널(100)의 게이트 라인(GL)을 구동하는 스캔 드라이버(110), 유기전계발광 표시패널(100)의 데이터 라인(DL)을 구동하는 데이터 드라이버(120), 스캔 드라이버(110) 및 데이터 드라이버(120)를 제어하기 위한 제어부(130)를 포함한다.
각각의 화소들(PE)은 게이트 라인(GL)의 게이트 신호들이 인에이블될 때 구동되어 데이터 라인(DL) 상의 화소 신호의 크기에 상응하는 빛을 발생하게 된다. 빛의 발생은 화소들(PE)에 포함되는 유기전계발광소자에 의해 이루어진다. 제어부(130)는 스캔 드라이버(110)에 게이트 제어 신호(GCS)를 공급하고 데이터 드라이버(120)에 데이터들과 함께 데이터 제어 신호들을 공급한다.
스캔 드라이버(110)는 제어부(130)로부터의 게이트 제어 신호(GCS)에 응답하여 게이트 라인(GL)을 순차적으로 인에이블시키는 스캔펄스를 공급한다.
데이터 드라이버(120)는 제어부(130)에서 공급되는 제어신호들에 응답하여 제어부(130)로부터의 데이터 신호를 데이터 라인(DL)을 통해 화소들(PE)에 공급한다. 이 경우, 데이터 드라이버(120)는 스캔 드라이버(110)에서 게이트 라인(GL) 각각을 구동하는 스캔기간마다 1 수평라인분씩의 데이터를 데이터 라인(DL)에 공급한다. 즉, 제어부(130)는 후술하는 데이터 라인(DL)에 공급되는 데이터 전압의 값을 제어하며 이에 따라 화소들(PE)에 포함되는 유기전계발광소자에 흐르는 전류의 값을 제어하는 기능을 수행한다. 본 발명의 일 실시예에 따른 제어부(130)는 입력코드가 임계값 이하인 경우에는 제1 제어 방식에 의해 유기전계발광소자를 구동하고, 임계값 이상인 경우에는 제2 제어 방식에 따라 유기전계발광소자를 구동하는데, 이에 대해서는 이하에서 상세히 설명한다.
지금부터 스캔 드라이버(110) 및 데이터 드라이버(120)에 의해 구동되는 화소들(PE)에 포함되는 유기전계발광소자를 제어하는 방법에 대해 설명하기로 한다. 본 명세서에서는 설명의 편의를 위해 유기전계발광 표시패널에 포함되는 유기전계발광소자를 제어하는 것으로 예를 들어 설명하지만, 표시패널에 포함되지 않거나, 이와는 다른 장치에 포함되는 유기전계발광소자 또한 동일한 방식으로 제어될 수 있다.
먼저, 도 2a 및 도 2b를 참조하여 유기전계발광소자의 일반적인 구동원리를 설명한다.
도 2a는 유기전계발광소자에 흐르는 전류 밀도와 조도 간의 상관관계를 나타내는 그래프이며, 도 2b는 유기전계발광소자에 걸리는 전압과 전류 밀도 간의 상관관계를 나타내는 그래프이다.
도 2a를 참조하면, 유기전계발광소자가 방출하는 광의 조도는 유기전계발광소자를 흐르는 전류 밀도에 비례한다. 그래프의 기울기는 유기전계발광소자의 조성물질에 따라 달라질 수 있다. 예를 들어, 동일한 전류 밀도가 가해질 때 적색광을 방출하는 유기전계발광소자의 조도가 청색광을 방출하는 유기전계발광소자의 조도보다 높을 수 있다.
한편, 도 2b를 참조하면, 유기전계발광소자의 구동을 위해서는 일정 크기 이상의 전압, 즉, 문턱 전압 이상의 전압을 가해주어야 한다. 도 2b에 도시되는 예에서는 3~4V이상의 전압을 가해주어야만 유기전계발광소자가 빛을 발하게 된다.
이러한 특성을 가지며 구동되는 유기전계발광소자는 시간이 지남에 따라 그 성능이 저하될 수 있다.
도 3a는 시간이 지남에 따른 유기전계발광소자의 조도를 나타내는 그래프이고, 도 3b는 시간이 지남에 따른 유기전계발광소자의 문턱 전압 변화를 나타내는 그래프이며, 도 3c는 소정 밀도의 직류 전류(DC) 및 펄스 전류(PC)로 유기전계발광소자를 구동할 때 시간이 지남에 따른 조도 변화를 나타내는 그래프이다.
도 3a를 참조하면, 일반적으로 유기전계발광소자는 시간이 지남에 따라 그 조도가 감소되고, 일정시간이 지난 후에는 조도의 감소가 급격하게 진행된다는 것을 알 수 있다.
또한, 전술한 바와 같이 유기전계발광소자는 문턱 전압 이상의 전압을 가해줘야 구동이 되는데, 도 3b를 참조하면, 시간이 지남에 따라 유기전계발광소자의 문턱 전압은 증가한다는 것을 알 수 있다. 즉, 성능 저하가 되기 전의 유기전계발광소자에 비해 큰 전압을 가해줘야 해당 유기전계발광소자가 구동될 수 있다는 의미이다.
한편, 도 3c를 참조하면, 시간이 지남에 따라 유기전계발광소자의 조도는 감소하되, 큰 전류 밀도로 구동되는 유기전계발광소자일수록 그 조도 감소폭이 크다는 것을 알 수 있다. 예를 들면, 도 3c의 그래프에서 27mA/cm2 의 전류 밀도로 구동되는 유기전계발광소자의 조도 감소폭이 3.5mA/cm2의 전류 밀도로 구동되는 유기전계발광소자의 조도 감소폭보다 훨씬 크다.
이하에서는 본 발명의 일 실시예에 따른 유기전계발광소자를 포함하는 유기전계발광 표시패널의 구동 방법에 대해 설명하기로 한다.
유기전계발광 표시패널의 구동 방식
전술한 바와 같이, 본 발명의 유기전계발광소자의 구동 방법은 다른 장치에 포함되는 유기전계발광소자의 제어에도 사용될 수 있으나, 설명의 편의를 위해 유기전계발광 표시패널의 구동을 예로 들어 설명한다.
기존 유기전계발광 표시패널의 구동 방식과의 차이점을 설명하기 위해 먼저 기존 유기전계발광 표시패널의 구동 방식을 설명하기로 한다.
먼저, 도 4는 종래 유기전계발광 표시패널의 구동 방식 중 하나인 전압 제어 방식을 설명하기 위한 회로도이다.
일반적인 회로 구성에 있어서는 각종 소자 또는 전선에 기생 커패시턴스가 존재한다. 이러한 이유로 유기전계발광소자(OLED)에도 기생 커패시턴스(COLED)가 존재할 수 있다.
따라서, 도 1에 도시되는 유기전계발광 표시패널의 화소들(PE)은 도 4에 도시되는 바와 같이 유기전계발광소자(OLED), 유기전계발광소자(OLED)와 병렬 연결되는 기생 커패시턴스(COLED)를 포함하는 것으로 간략화할 수 있다.
전압 제어 방식은 유기전계발광소자(OLED)에 걸리는 전압(Va)의 값을 조절함으로써 유기전계발광소자(OLED)의 밝기를 조절하는 방식이다.
앞서 참조한 도 2a에 도시되는 바와 같이, 유기전계발광소자(OLED)의 밝기는 흐르는 전류의 값에 비례하며, 유기전계발광소자(OLED)에 걸리는 전압(Va)과 전류 간의 관계는 도 2b에 도시되는 바와 같기 때문에, 이러한 특성을 이용하여, 유기전계발광소자(OLED)에 걸리는 전압(Va)의 값을 조절함으로써 유기전계발광소자(OLED)의 밝기를 조절할 수 있다.
그러나, 이러한 전압 제어 방식은 유기전계발광소자(OLED)에 흐르는 전류의 값을 간접적으로 조절하는 방식이므로, 원하는 밝기를 정확히 구현하기가 어려운 문제가 있다. 또한, 전압 제어 방식에 있어서는 회로에 존재하는 소자 간의 미스 매치를 보상하기 위한 수단이 필요한데, 이에 따라 포함되어야 하는 구성요소가 증가하게 된다. 이는 하나의 픽셀에 포함되어야 하는 구성요소를 증가시키는 결과를 가져오며, 개구율을 감소시키는 문제로 이어지게 된다.
한편, 도 5a는 종래 유기전계발광 표시패널의 구동 방식 중 아날로그 전류 제어 방식을 설명하기 위한 회로도이며, 도 5b는 아날로그 전류 제어 방식에 있어서 입력코드에 따라 유기전계발광소자에 흐르는 전류의 값을 나타내는 그래프이다.
입력코드는 도 1에 도시되는 유기전계발광 표시패널의 제어부(130)에 입력되며, 이러한 입력코드에 따라 화소들(PE)의 유기전계발광소자(OLED)에 흐르는 전류의 값이 결정된다.
유기전계발광소자(OLED)의 조도는 입력되는 전류값에 비례하므로, 가장 이상적인 제어 방법이라 할 수 있다. 즉, 도 5b에 도시되는 바와 같이, 입력코드에 비례하여 유기전계발광소자(OLED)에 가해주는 전류(IOLED)의 값이 증가하게 된다.
그러나, 아날로그 전류 제어 방식에 있어서는 다음과 같은 문제가 존재한다.
전술한 바와 같이, 유기전계발광소자(OLED)에는 기생 커패시턴스(COLED)가 존재하는데, 아날로그 전류 제어 방식에 따라 유기전계발광소자(OLED)가 구동될 시에는 전류(IOLED)에 의해 유기전계발광소자(OLED)의 기생 커패시턴스(COLED)가 모두 충전이 된 이후에 유기전계발광소자(OLED)에 원하는 밝기가 구현된다.
기생 커패시턴스(COLED)에 충전되는 전하량(Q)은 다음과 같은 수학식에 의해 표현될 수 있다.
수학식 1
Figure PCTKR2012002270-appb-M000001
여기서, VOLED 는 유기전계발광소자(OLED)의 턴온 전압이고, t는 기생 커패시턴스(COLED)에 충전이 완료되는 시간이다. 따라서, 기생 커패시턴스(COLED)에 충전이 완료되기 위해서는 다음과 같은 수학식으로 표현되는 충전시간(t)이 필요하다.
수학식 2
Figure PCTKR2012002270-appb-M000002
예를 들어, 제어부(130)에 입력되는 입력 신호가 10비트의 해상도를 갖고, 유기전계발광소자(OLED)에 흐르는 전류는 10nA의 해상도를 갖는다고 가정하면, 본 발명의 구동 장치는 유기전계발광소자(OLED)에 흐르는 전류(IOLED)를 0nA 부터 (210-1)nA=10.23㎂ 까지 10nA 단위로 가해주어야 한다. 즉, 이 경우, 제어부(130)에 입력되는 디지털 입력코드는 0에서부터 1023까지의 값을 갖고, 그에 따라 유기전계발광소자(OLED)에 흐르는 전류(IOLED)는 입력코드×10nA 의 값을 가지게 된다.
기생 커패시턴스(COLED)가 10pF, 유기전계발광소자(OLED)의 턴온 전압(VOLED)이 3V인 것으로 가정하면, 가장 밝은 밝기를 구현하는 경우, 유기전계발광소자(OLED)의 턴온시간(TON)은 다음과 같다.
수학식 3
Figure PCTKR2012002270-appb-M000003
한편, 가장 어두운 밝기를 구현하는 경우, 유기전계발광소자(OLED)의 턴온시간(TON)은 다음과 같다.
수학식 4
Figure PCTKR2012002270-appb-M000004
가장 밝은 밝기를 구현하는 경우에는 유기전계발광소자(OLED)에 전류(IOLED)가 흐르기 시작하는 순간부터 약 3㎲ 후에 유기전계발광소자(OLED)가 해당 밝기로 발광하게 되지만, 가장 어두운 밝기를 구현하는 경우에는 10nA의 전류로 10pF의 기생 커패시턴스(COLED)를 충전해야하기 때문에 유기전계발광소자(OLED)가 해당 밝기로 발광하는 데에 3ms의 시간이 필요하게 된다.
이는 일반적인 표시패널에서 필요로 하는 게이트 스캔 신호의 인가 지속 시간을 매우 크게 증가시켜 놓기 때문에 반응시간 측면에서 불리하거나 구현하기가 불가능하다.
한편, 유기전계발광소자(OLED)를 포함하는 표시패널의 제어 방식 중 디지털 제어 방식은 유기전계발광소자(OLED)에 최대의 전류를 가해주되, 그 시간을 조절함으로써 유기전계발광소자(OLED)의 밝기를 제어한다.
도 6a는 종래 유기전계발광 표시패널의 구동 방식 중 디지털 제어 방식을 설명하기 위한 회로도이며, 도 6b는 디지털 제어 방식에 있어서 입력코드에 따른 출력코드의 값을 나타내는 그래프이다. 또한, 도 6c는 디지털 제어 방식의 일례로서 소정 입력코드가 입력될 때 유기전계발광소자에 가해지는 전류의 값을 나타내는 타이밍도이다.
도 6b를 참조하면, 디지털 제어 방식에 따르면 디지털로 입력되는 입력코드와 동일한 출력코드가 이용된다는 것을 알 수 있다.
디지털 제어 방식에 있어서는 유기전계발광소자(OLED)에 흐르는 전류(IOLED)의 도통 시간을 제어함으로써 유기전계발광소자(OLED)가 원하는 밝기로 발광시킨다.
위에서 예로 든 경우를 가정하면, 가장 밝은 밝기를 구현하고자 하는 경우에는 전류(IOLED)의 최대값인 10.23㎂에 해당하는 전류가 한 프레임(t)동안 계속해서 유기전계발광소자(OLED)에 흐르도록 제어하고, 가장 어두운 밝기를 구현하고자 하는 경우에는 10.23㎂에 해당하는 전류가 한 프레임(t)의 1/1024 에 해당하는 시간 동안 흐르도록 제어함으로써 원하는 밝기를 구현할 수 있다.
예를 들어, 도 6c를 참조하면, 제어부(130)에 127의 입력코드가 입력되면, 10.23㎂의 크기를 갖는 전류(IOLED)가 한 프레임(t)의 127/1024 에 해당하는 시간 동안 흐르도록 제어된다.
그러나, 이러한 디지털 제어 방식에 있어서는 어떠한 밝기를 구현하고자 하는지 여부에 상관없이 항상 최대 전류를 유기전계발광소자(OLED)에 가해주어야 한다. 도 3c를 참조하여 전술한 바와 같이 구동 전류의 값이 클수록 유기전계발광소자(OLED)의 조도 감소폭은 커지는데, 디지털 제어 방식에 따르면 최대의 전류가 지속적으로 유기전계발광소자(OLED)에 가해짐에 따라 그 수명이 급격히 감소하게 된다.
따라서, 본 발명에서는 입력되는 입력코드에 따라 서로 다른 제어 방식을 이용하고자 한다. 즉, 입력코드가 소정의 임계값 이하인 경우에는 제1 제어 방식을 이용하고, 임계값 이상인 경우에는 제2 제어 방식을 이용한다. 예를 들면, 본 발명의 일 실시예에서는 입력코드가 소정의 임계값 이하일 경우에는 디지털 제어 방식으로 제어하고, 입력코드가 해당 임계값 이상일 경우에는 아날로그 전류 제어 방식으로 제어한다.
도 7은 본 발명의 일 실시예에 따른 유기전계발광 표시패널의 구동예를 설명하기 위한 도면이다.
도 7을 참조하면, 소정 임계값(예를 들면, 127) 이하의 입력코드가 입력되는 경우에는 제1 제어 방식(예를 들면, 디지털 제어 방식)이 이용될 수 있고, 임계값 이상의 입력코드가 입력되는 경우에는 제2 제어 방식(예를 들면, 아날로그 전류 제어 방식)이 이용될 수 있다.
임계값이 127이고, 제1 제어 방식이 디지털 제어 방식인 경우를 예로 들면, 디지털 제어 방식으로 구동되는 구간에 유기전계발광소자(OLED)에 가해지는 전류의 값은 "임계값×전류의 해상도", 즉, 1270nA(=127×10nA)가 된다.
항상 1270nA의 전류(IOLED)로 유기전계발광소자(OLED)의 구동을 행하되, 그 도통 시간을 조절함으로써 디지털 제어 방식을 수행할 수 있다. 도통 시간 조절 방식으로서는 통상의 변조 방식을 이용할 수 있다. 예를 들면, 펄스 폭 변조(PWM; Pulse Width Modulation) 방식 또는 펄스 밀도 변조(PDM; Pulse Density Modulation) 방식 등이 이용될 수 있다. 이 구간에서는 입력코드와 동일한 출력코드를 그대로 이용할 수 있는데, 이러한 출력코드에 따라 동작하는 상기의 통상적인 변조 방식을 이용하여 디지털 제어 방식을 구현할 수 있다. 즉, 상기의 변조 방식을 통해 유기전계발광소자(OLED)에 흐르는 전류(IOLED)의 도통 시간을 제어할 수 있는데, 예를 들어, 입력코드가 64인 경우, 유기전계발광소자(OLED)에는 한 프레임의 64/127 시간 동안 1270nA의 값을 갖는 전류가 흐른다.
종래의 디지털 제어 방식에 의하면 입력코드의 값과 상관없이 유기전계발광소자(OLED)에 흐르는 전류(IOLED) 값은 항상 10.23㎂이었는데, 낮은 입력코드가 입력될 때에만 디지털 제어 방식을 이용함으로써 사용하는 전류 값은 1270nA으로 낮아졌고, 이에 따라 유기전계발광소자(OLED)가 받는 스트레스가 약 1/8 (≒ 10.23㎂/1270nA) 으로 감소하게 된다.
한편, 입력코드가 127~1023 인 경우에는 아날로그 전류 제어 방식을 이용할 수 있다. 입력코드가 127일 때, 디지털 제어 방식에 의하면, 지속적으로 1270nA의 전류가 흐르도록 해주어야 한다. 또한, 아날로그 전류 제어 방식에 의할 시에도 지속적으로 1270nA의 전류가 흐르도록 해주어야 한다. 따라서, 입력코드가 임계값일 때에는 디지털 제어 방식과 아날로그 전류 제어 방식 중 어떠한 방식에 의해 제어되어도 족하다. 즉, 입력코드가 임계값일 때에는 디지털 제어 방식 또는 아날로그 전류 제어 방식에 의해 제어될 수 있다. 따라서, 본 명세서에서는 입력코드가 임계값 이하일 때에는 디지털 제어 방식, 임계값 이상일 때에는 아날로그 전류 제어 방식에 의해 제어되는 것으로 예시하기로 한다.
입력코드가 임계값 이상인 구간에서는 입력코드에 비례하는 전류를 유기전계발광소자(OLED)에 가해줌으로써 구동한다. 아날로그 전류 제어 방식을 이용하는 구간에서의 출력코드는 입력코드와 관계없이 항상 일정하게 할 수 있다. 이 때 유기전계발광소자(OLED) 구동을 위해 기생 커패시턴스(COLED)를 충전하는 데에 가장 많은 시간이 필요한 경우는 입력코드가 127일 때이다. 입력코드가 127일 때, 기생 커패시턴스(COLED)가 완전히 충전되어 유기전계발광소자(OLED)가 원하는 밝기로 턴온될 때까지의 시간(TON)은 다음과 같이 구해진다.
수학식 5
Figure PCTKR2012002270-appb-M000005
즉, 유기전계발광소자(OLED) 구동을 위해 최대한으로 필요한 시간은 약 24㎲이며, 이는 입력코드의 값과 상관없이 아날로그 전류 제어 방식을 이용하는 종래의 방식에서 최대한으로 필요했던 시간인 3ms에 비해 약 127배 빨라졌음을 알 수 있다.
이상에서는 임계값이 127인 경우를 예로 들어 설명하였으나, 이와는 다른 값이 임계값으로 설정될 수 있음은 물론이다. 임계값이 높아지면, 디지털 제어 방식 이용 시 유기전계발광소자(OLED)에 가해지는 전류 스트레스가 증가하게 되나, 아날로그 전류 제어 방식 이용 시의 속도는 빨라지게 된다. 반면, 임계값이 낮아지면, 디지털 제어 방식 이용 시 유기전계발광소자(OLED)에 가해지는 전류 스트레스는 감소하나, 아날로그 전류 제어 방식 이용 시의 속도는 느려지게 된다. 따라서, 이러한 보상 관계를 적절히 참조하여, 소자의 성질 및 게이트 스캔 신호의 지속 시간 등을 고려하여 임계값을 적절히 선택할 수 있다.
한편, 도 8은 본 발명의 일 실시예에 따른 유기전계발광 표시패널의 구동 장치를 하드웨어적으로 구현하는 방법을 설명하기 위한 도면이다.
또한, 아래의 표 1은 본 발명의 일 실시예에 따른 유기전계발광 표시패널의 구동 방식에 있어서, 입력 코드에 따라 프로그램 전류 및 출력 코드를 나누는 방식을 나타낸다.
표 1
입력코드 프로그램 전류 출력코드
0~127 1270 nA 입력코드
128~1023 입력코드×전류 해상도(10nA) 127 (3FF)
지금까지 설시한 예를 기초로 하여 도 8을 참조하면, 입력코드는 디지털 형태로 입력될 수 있고, 그 범위는 0~1023(0x3FF)일 수 있다. 입력코드가 임계값인 127이하인 경우에는 디지털 제어 방식을 위해 해당 입력코드가 디코더로 입력될 수 있다. 디코더는 입력코드를 유기전계발광소자(OLED) 제어를 위한 적절한 코드로 변환한다.
디지털 제어 방식을 이용하는 구간에서는 임계값×전류 해상도=1270nA의 프로그램 전류를 이용할 수 있고, 출력코드는 입력코드를 그대로 사용할 수 있다. 한편, 전술한 바와 같이, 디지털 제어 방식을 이용하는 구간에서는 통상적인 변조 방식(예를 들면, 펄스 폭 변조(PWM; Pulse Width Modulation) 방식 또는 펄스 밀도 변조(PDM; Pulse Density Modulation) 방식 등)을 이용하여 프로그램 전류의 도통 시간을 조절할 수 있다. 이러한 변조 방식은 입력코드와 동일한 출력코드를 이용함으로써 제어될 수 있다.
한편, 입력코드가 임계값인 127 보다 큰 경우에는 아날로그 전류 제어 방식을 위해 입력코드가 디지털-아날로그 변환기(DAC; Digital Analog Converter)에 입력된다. 이에 의해 입력코드는 프로그램 전류(=입력코드×전류 해상도(10nA))로 변환된다. 상기 설시한 예에 따르면 프로그램 전류가 1.28 ㎂~10.23㎂의 범위로 구현된다. 이 구간에서의 출력코드는 입력코드의 임계값에 해당하는 출력코드를 일정하게 사용할 수 있다. 그러나 전술한 바와 같이, 입력코드가 임계값인 경우에도 아날로그 전류 제어 방식에 의해 구동되는 것으로 보아도 무방하다.
이렇게 함으로써 이종의 제어 방식이 결합된 유기전계발광 표시패널의 구동 장치를 손쉽게 구현할 수 있다. 즉, 상기와 같이 입력코드에 따라 프로그램 전류 및 출력코드를 나누고, 출력코드에 따라 디지털 제어 방식에 이용되는 변조가 제어되도록 함으로써 구동 장치를 완성할 수 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (18)

  1. 유기전계발광소자; 및
    입력코드가 임계값 이하인 경우에는 제1 제어 방식을 이용하고, 상기 임계값 이상인 경우에는 제2 제어 방식을 이용하여 상기 유기전계발광소자의 구동을 제어하는 제어부를 포함하는 유기전계발광 표시패널의 구동 장치.
  2. 제1항에 있어서,
    상기 제1 제어 방식은 디지털 제어 방식이고, 상기 제2 제어 방식은 아날로그 전류 제어 방식인 유기전계발광 표시패널의 구동 장치.
  3. 제2항에 있어서,
    상기 디지털 제어 방식은,
    상기 유기전계발광소자에 일정한 크기의 전류를 흘러주되, 상기 전류의 도통 시간이 상기 입력코드에 비례하도록 제어하는 방식인 유기전계발광 표시패널의 구동 장치.
  4. 제3항에 있어서,
    상기 유기전계발광소자에 흐르는 일정한 크기의 전류는, 상기 임계값과 전류 해상도의 곱에 해당하는 값을 갖는 유기전계발광 표시패널의 구동 장치.
  5. 제3항에 있어서,
    상기 전류의 도통 시간은,
    Figure PCTKR2012002270-appb-I000003
    인 유기전계발광 표시패널의 구동 장치.
  6. 제5항에 있어서,
    상기 전류의 도통 시간은 디지털 변조 방식에 의해 제어되는 유기전계발광 표시패널의 구동 장치.
  7. 제6항에 있어서,
    상기 디지털 변조 방식은 펄스 폭 변조(PWM; Pulse Width Modulation) 방식 또는 펄스 밀도 변조(PDM; Pulse Density Modulation) 방식인 유기전계발광 표시패널의 구동 장치.
  8. 제2항에 있어서,
    상기 아날로그 전류 제어 방식은,
    상기 입력코드에 비례하는 전류가 상기 유기전계발광소자에 흐르도록 제어하는 방식인 유기전계발광 표시패널의 구동 장치.
  9. 제8항에 있어서,
    상기 입력코드에 비례하는 전류는 상기 입력코드와 전류 해상도의 곱에 해당하는 값을 갖는 유기전계발광 표시패널의 구동 장치.
  10. 입력코드가 임계값 이상인지 여부를 판단하는 단계; 및
    상기 판단 결과 상기 입력코드가 임계값 이하인 경우에는 제1 제어 방식을 이용하고, 상기 입력코드가 임계값 이상인 경우에는 제2 제어 방식을 이용하여 상기 유기전계발광소자의 구동을 제어하는 단계를 포함하는 유기전계발광 표시패널의 구동 방법.
  11. 제10항에 있어서,
    상기 제1 제어 방식은 디지털 제어 방식이고, 상기 제2 제어 방식은 아날로그 전류 제어 방식인 유기전계발광 표시패널의 구동 방법.
  12. 제11항에 있어서,
    상기 디지털 제어 방식은,
    상기 유기전계발광소자에 일정한 크기의 전류를 흘러주되, 상기 전류의 도통 시간이 상기 입력코드에 비례하도록 제어하는 방식인 유기전계발광 표시패널의 구동 방법.
  13. 제12항에 있어서,
    상기 디지털 제어 방식에서, 유기전계발광소자에는 상기 임계값과 전류 해상도의 곱에 해당하는 값을 갖는 전류가 흐로도록 제어되는 유기전계발광 표시패널의 구동 방법.
  14. 제12항에 있어서,
    상기 전류의 도통 시간은,
    Figure PCTKR2012002270-appb-I000004
    에 해당하는 시간으로 제어되는 유기전계발광 표시패널의 구동 방법.
  15. 제14항에 있어서,
    상기 전류의 도통 시간은 디지털 변조 방식에 의해 제어되는 유기전계발광 표시패널의 구동 방법.
  16. 제15항에 있어서,
    상기 디지털 변조 방식은 펄스 폭 변조(PWM; Pulse Width Modulation) 방식 또는 펄스 밀도 변조(PDM; Pulse Density Modulation) 방식인 유기전계발광 표시패널의 구동 방법.
  17. 제11항에 있어서,
    상기 아날로그 전류 제어 방식은,
    상기 입력코드에 비례하는 전류가 상기 유기전계발광소자에 흐르도록 제어하는 방식인 유기전계발광 표시패널의 구동 방법.
  18. 제17항에 있어서,
    상기 입력코드에 비례하는 전류는 상기 입력코드와 전류 해상도의 곱에 해당하는 값을 갖는 유기전계발광 표시패널의 구동 방법.
PCT/KR2012/002270 2011-03-29 2012-03-28 유기전계발광 표시패널의 구동 장치 및 구동 방법 WO2012134162A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0028002 2011-03-29
KR1020110028002A KR20120110257A (ko) 2011-03-29 2011-03-29 유기전계발광 표시패널의 구동 장치 및 구동 방법

Publications (2)

Publication Number Publication Date
WO2012134162A2 true WO2012134162A2 (ko) 2012-10-04
WO2012134162A3 WO2012134162A3 (ko) 2012-12-27

Family

ID=46932114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002270 WO2012134162A2 (ko) 2011-03-29 2012-03-28 유기전계발광 표시패널의 구동 장치 및 구동 방법

Country Status (2)

Country Link
KR (1) KR20120110257A (ko)
WO (1) WO2012134162A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142238A1 (ja) * 2017-01-31 2018-08-09 株式会社半導体エネルギー研究所 画像処理回路、表示システム及び電子機器
EP3920170A1 (en) * 2020-06-02 2021-12-08 Samsung Display Co., Ltd. Driving controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102648416B1 (ko) * 2016-12-26 2024-03-19 엘지디스플레이 주식회사 유기전계발광표시장치 및 이의 구동방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329721A (ja) * 1998-05-12 1999-11-30 Tdk Corp 発光素子の多階調駆動装置および駆動方法
US20050116912A1 (en) * 2003-11-29 2005-06-02 Samsung Sdi Co., Ltd. Driving method of FS-LCD

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329721A (ja) * 1998-05-12 1999-11-30 Tdk Corp 発光素子の多階調駆動装置および駆動方法
US20050116912A1 (en) * 2003-11-29 2005-06-02 Samsung Sdi Co., Ltd. Driving method of FS-LCD

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142238A1 (ja) * 2017-01-31 2018-08-09 株式会社半導体エネルギー研究所 画像処理回路、表示システム及び電子機器
EP3920170A1 (en) * 2020-06-02 2021-12-08 Samsung Display Co., Ltd. Driving controller
US11455932B2 (en) 2020-06-02 2022-09-27 Samsung Display Co., Ltd. Driving controller, display apparatus including the same and method of driving display panel using the same
US11756472B2 (en) 2020-06-02 2023-09-12 Samsung Display Co., Ltd. Driving controller, display apparatus including the same and method of driving display panel using the same

Also Published As

Publication number Publication date
WO2012134162A3 (ko) 2012-12-27
KR20120110257A (ko) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2018131759A1 (en) Display apparatus, control method and compensation coefficient calculation method thereof
US7123220B2 (en) Self-luminous display device
WO2020027445A1 (ko) 화소 회로 및 이를 포함하는 표시 장치
WO2016003243A1 (ko) Oled 표시 장치
WO2018097501A1 (en) Display apparatus and driving method of display panel
WO2015088152A1 (ko) 유기발광 표시장치의 휘도 편차 보상장치 및 보상방법
WO2021158004A1 (en) Led based display panel including common led driving circuit and display apparatus including the same
EP1939848A2 (en) Organic light emitting diode display device and method of driving the same
US10891895B2 (en) Light emitting device, display device, and LED display device
WO2017164458A1 (en) Organic light emitting diode display device and method of operating the same
KR20070005733A (ko) 안정성이 향상된 액티브 매트릭스 방출형 디스플레이
WO2019024256A1 (zh) 具有温度补偿功能的amoled显示面板及显示装置
WO2020027403A1 (ko) 클럭 및 전압 발생 회로 및 그것을 포함하는 표시 장치
WO2019132216A1 (en) Electroluminescent display device and method for driving the same
KR20060134405A (ko) 유기전계발광소자 및 유기전계발광 표시장치
WO2019010900A1 (zh) Amoled 像素驱动电路及 amoled 像素驱动方法
WO2012134162A2 (ko) 유기전계발광 표시패널의 구동 장치 및 구동 방법
KR20120076966A (ko) 발광다이오드 백라이트 유닛 및 그 구동방법
WO2011138978A1 (ko) 디스플레이 장치의 데이터 드라이버 및 그 동작 방법
CN115206251A (zh) 发光装置、显示装置以及led显示装置
KR20200060903A (ko) 픽셀 보상 장치와 그를 포함한 유기발광 표시장치
WO2019033612A1 (zh) 一种有机发光二极管显示器的驱动方法及装置
KR20040062065A (ko) 능동행렬 유기전기발광소자
KR20130016897A (ko) 백라이트 드라이버용 구동집적회로 및 그를 포함하는 액정표시장치
WO2022045676A1 (ko) 표시장치와 그 구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763723

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/12/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 12763723

Country of ref document: EP

Kind code of ref document: A2