WO2020119557A1 - 显示驱动方法和显示装置 - Google Patents

显示驱动方法和显示装置 Download PDF

Info

Publication number
WO2020119557A1
WO2020119557A1 PCT/CN2019/123079 CN2019123079W WO2020119557A1 WO 2020119557 A1 WO2020119557 A1 WO 2020119557A1 CN 2019123079 W CN2019123079 W CN 2019123079W WO 2020119557 A1 WO2020119557 A1 WO 2020119557A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarity
level
pixel
data signal
data
Prior art date
Application number
PCT/CN2019/123079
Other languages
English (en)
French (fr)
Inventor
杨艳娜
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US17/059,262 priority Critical patent/US11250801B2/en
Publication of WO2020119557A1 publication Critical patent/WO2020119557A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/067Special waveforms for scanning, where no circuit details of the gate driver are given
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only

Definitions

  • the present application relates to the field of display technology, in particular to a display driving method and a display device.
  • the display panel is an important part of the display device, which includes a plurality of pixels, and each pixel displays a certain gray-scale brightness under the driving action of the switching device or the like to form a display image.
  • the display is driven in a progressive scan mode. Under the control of the scan signal on the scan line, the pixels in the corresponding scan line are charged by the data signal on the data line to display a certain gray-scale brightness.
  • the polarity of the data signal is usually reversed in a certain way.
  • the data signal will be inverted every certain number of scan lines, because at least part of the scan lines are turned on, the polarity of the data signal is switched from negative to positive, or from positive to negative , Resulting in a longer conversion delay when the pixels in these scan lines are charged.
  • the actual charging time of pixels in different scan lines is different, making the charging effect of the entire display panel uneven.
  • the display screen is When the brightness of the gray scale is uniform, the actual display effect is not uniform, usually manifested as the presence of weak bright and dark lines on the display screen that are consistent with the extension direction of the scan line.
  • the main purpose of this application is to propose a display driving method, which realizes the optimization of display uniformity and improves the display effect.
  • the display driving method proposed in this application includes the following steps:
  • the scan signal connected to the scanning line of the pixel is switched from the off level to the first on level, if the data signal connected to the data line of the pixel is switched from the first polarity to the second polarity, Before the data signal is converted from the first polarity to the second polarity, when the data signal is in the second polarity, the scan signal is controlled to be in the second conduction level, In order to precharge the pixel with the data signal.
  • the present application also proposes a display driving method, which includes the following steps:
  • the scan signal connected to the scanning line of the pixel is switched from the off level to the first on level, if the data signal connected to the data line of the pixel is switched from the first polarity to the second polarity, Before the data signal is converted from the first polarity to the second polarity, when the data signal is in the second polarity, the scan signal is controlled to be in the second conduction level, In order to precharge the pixel with the data signal, the absolute value of the first conduction level is greater than or equal to the absolute value of the second conduction level.
  • the present application also proposes a display device including a display panel and a display driving assembly, the display panel including a plurality of pixels, a plurality of scanning lines and a plurality of data lines arranged in an array;
  • the display driving component is connected to the scan line and the data line.
  • the display driving component controls the scan signal to be at the second conduction level, so that the data signal precharges the pixel.
  • the display driving method includes the following steps: when the scan signal connected to the scan line of the pixel is converted from the off level to the first on level, if the data signal connected to the data line of the pixel is When the first polarity is converted to the second polarity, before the data signal is converted from the first polarity to the second polarity, when the data signal is at the second polarity, the scan signal is controlled to be at the second conduction level to The data signal is used to precharge the pixels. According to the polarity conversion of the data signal on the data line when the pixel is turned on for charging, the pixel is precharged to avoid the pixel being insufficiently charged due to the conversion delay, which in turn causes a deviation in the display gray scale.
  • the data signal will be converted from the first polarity to the second polarity.
  • the data signal is selected to be at the second polarity During a period of time, the scan signal is controlled to be at the second on-level to achieve pre-charging of the pixel, avoid the generation of bright and dark lines in the extending direction of the scan line, improve the uniformity of the display, and thereby improve the display effect.
  • FIG. 1 is a schematic structural diagram of a display panel of a display device in an example
  • FIG. 2 is a timing diagram of partial scanning signals and data signals of a display device in an example
  • FIG. 3 is a timing diagram of partial scan signals and data signals in a specific example of a display driving method of the present application
  • FIG. 4 is a timing diagram of partial scanning signals and data signals in another specific example of the display driving method of the present application.
  • FIG. 5 is a schematic structural diagram of an embodiment of a display device according to this application.
  • FIG. 6 is a schematic structural diagram of the display panel in FIG. 5.
  • first”, “second”, etc. are for descriptive purposes only, and cannot be understood as instructions or hints Its relative importance or implicitly indicates the number of technical features indicated.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the meaning of “and/or” appearing throughout the text includes three parallel plans. Taking “A and/or B” as an example, it includes plan A, or plan B, or plans that both A and B satisfy.
  • the display panel of the display device includes a plurality of pixels, a plurality of scan lines 120' and a plurality of data lines 130', wherein the plurality of pixels are generally arranged in a rectangular array
  • the scan line 120' extends in the lateral direction of the display panel
  • the data line 130' extends in the longitudinal direction of the display panel.
  • the thin film transistors Thin Film Transistor (TFT) is connected to the same scanning line, the TFTs of the pixels in the same column are connected to the same data line, and the pixel electrodes of each pixel are connected in one-to-one correspondence with the TFTs of the pixel.
  • the TFT controls the data line 130' to charge the corresponding pixel electrode, thereby forming a voltage between the pixel electrode and the common electrode of the pixel capacitance in the pixel, and controlling the deflection angle of the liquid crystal in the pixel.
  • the display panel includes three pixels of red pixel 111 ′, green pixel 112 ′ and blue pixel 113 ′, at least one red pixel 111 ′, one green pixel 112 ′ and one blue pixel 113 ′ form a pixel group 110 ′,
  • a color picture is displayed according to the principle of spatial color mixing.
  • a storage capacitor and the like can also be provided in the pixel.
  • the display panel is driven in a progressive scan manner. It is assumed that the TFTs shown in FIG.
  • the scanning signals on the scanning lines 120' of each row are sequentially converted to a high state one by one, and then return to a low state after a certain charging time to realize the progressive scanning drive, and the data line 130'
  • the polarity of the data signal is reversed every certain period of time. Here, after every two scanning lines are charged, the polarity of the data signal is reversed once.
  • the present application proposes a display driving method by pre-charging pixels with a long conversion delay during charging to improve the uniformity of the display and improve the display effect.
  • the display driving method includes the following steps:
  • Step S100 When the scan signal connected to the scanning line of the pixel is switched from the off level to the first on level, if the data signal connected to the data line of the pixel is switched from the first polarity to the second polarity Then, before the data signal is converted from the first polarity to the second polarity, when the data signal is in the second polarity, the scan signal is controlled to be at the second conduction level, so that the data signal precharges the pixel.
  • the TFT in the pixel connected to the scan line When the scan signal is at the off level, the TFT in the pixel connected to the scan line is in the off state, that is, the source electrode and the drain electrode are disconnected, to avoid the data signal on the data line from charging the pixel and causing interference; when When the scan signal is at the first conduction level, the TFT in the pixel connected to the scan line is in a conductive state, that is, the source electrode and the drain electrode are conductive, and the data signal on the data line charges the pixel electrode of the pixel through the TFT To control its grayscale brightness; when the scan signal is at the second conduction level, the TFT in the pixel connected to the scan line is in the on state, that is, the conduction between the source electrode and the drain electrode, the data signal on the data line passes The TFT precharges the pixel electrode of the pixel.
  • the TFT in the display panel is NMOS TFT, accordingly, the first on level and the second on level are high level, and the off level is low level.
  • the scan signal connected to the scanning line of the pixel changes from the off level to the first on level, that is, when the TFT in the pixel changes from the off state to the on state
  • the data signal on the data line will The pixel will be charged, if the data signal connected to the data line of the pixel is converted from the first polarity to the second polarity, that is, the data signal is converted from positive polarity to negative polarity, or from negative polarity to Positive polarity, due to the influence of the driving capability of the display device, there will be a large conversion delay.
  • the scan signal is controlled to be at the second conduction level to The pre-charging of the pixel is realized to ensure the charging effect of the pixel.
  • the polarity conversion of the data signal is performed every certain period of time, and the period of the polarity conversion may be equal to the turn-on time of the scan signal at the first conduction level each time, or greater than the turn-on time of the scan signal.
  • the initial polarities of the data signals on each data line can be set according to requirements, so as to realize driving in different ways such as dot inversion and row inversion in the display panel.
  • the display driving method includes the following steps: when the scan signal connected to the scan line of the pixel is switched from the off level to the first on level, if the data signal connected to the data line of the pixel is When the first polarity is converted to the second polarity, before the data signal is converted from the first polarity to the second polarity, when the data signal is at the second polarity, the scan signal is controlled to be at the second conduction level to The data signal is used to precharge the pixels. According to the polarity conversion of the data signal on the data line when the pixel is turned on for charging, the pixel is precharged to avoid the pixel being insufficiently charged due to the conversion delay, which in turn causes a deviation in the display gray scale.
  • the data signal will be converted from the first polarity to the second polarity.
  • the data signal is selected to be at the second polarity During a period of time, the scan signal is controlled to be at the second on-level to achieve pre-charging of the pixel, avoid the generation of bright and dark lines in the extending direction of the scan line, improve the uniformity of the display, and thereby improve the display effect.
  • the display driving method includes the following steps:
  • Step S200 In a frame, when the scan signal connected to the scan line of the pixel is switched from the off level to the first on level, if the polarity of the data signal connected to the data line of the pixel does not change, Then, before the scan signal is converted to the first on-level, the scan signal is controlled to be in the off-level.
  • the driving of the display panel is carried out frame by frame. In each frame, the driving is carried out line by line. In a frame, after the driving of all the pixels is completed, it returns to the initial state and starts the next frame Drive.
  • the scan signal connected to the scanning line of the pixel changes from the off level to the first on level, that is, when the pixel changes from the off state to the on state, if the data on the data line of the pixel is connected If the polarity of the signal is unchanged, it means that there is no longer conversion delay when the pixel is being charged, that is, its charging effect can be well guaranteed.
  • the clock keeps the scan signal at the off level in one frame before the scan signal is converted to the first on level, To optimize the display effect.
  • the display driving method includes the following steps:
  • Step S300 When the scan signal is at the first conduction level, the data signal charges the pixel;
  • the absolute value of the first conduction level is greater than or equal to the absolute value of the second conduction level.
  • the data signal connected to the data line of the pixel will charge the pixel, so that the pixel displays a certain gray-scale brightness.
  • the first conduction level corresponds to the level on the gate electrode of the TFT when the pixel is charged
  • the second conduction level corresponds to the level on the gate electrode of the TFT when the pixel is precharged
  • the gate electrode of the TFT The magnitude of the applied level will affect the turn-on degree of the TFT. Therefore, the state of the pixel being charged or precharged is controlled by adjusting the magnitude of the first conduction level and the second conduction level.
  • the absolute value can be selected to be smaller than the absolute value of the first conduction level
  • the TFT is partially turned on to pre-charge the pixel.
  • a second conduction level whose absolute value is equal to the absolute value of the first conduction level may be selected.
  • the first conduction level and the second conduction level are both positive values, that is, the first conduction level is greater than or equal to the second conduction level.
  • the time for which the pixel is precharged is equivalent to the time for the pixel to be charged.
  • the number of times the data signal is converted from the second polarity to the first polarity is at most once.
  • the data signal has the second polarity
  • the number of conversions to the first polarity is at most once. That is to say, before charging the pixel this time, the nearest neighbor period in which the polarity of the data signal and the data signal at the time of the charging are the same is selected to precharge the pixel, thereby improving the precharge effect.
  • the polarity conversion period of the data signal is an integer multiple of the length of time the scan signal is at the first conduction level.
  • the polarity conversion period of the data signal By setting the polarity conversion period of the data signal to an integer multiple of the length of the scan signal at the first conduction level, that is, the polarity conversion period of the data signal is an integer multiple of the open duration of the scan signal, in order to control the scan signal at an appropriate level
  • the pre-charge period reaches the second turn-on level, avoiding the timing mismatch between the data signal and the scan signal and causing the pre-charge period to be reselected every time, thereby reducing driving costs.
  • the polarity conversion period of the data signal is twice the length of the scan signal at the first conduction level; the scan signal on every other scan line has the second conduction level.
  • the polarity conversion period of the data signal When the polarity conversion period of the data signal is set to be twice the length of the scan signal at the first conduction level, the polarity of the data signal will be inverted once every two scan lines to avoid the generation of polarities in the display panel sexual offset phenomenon to improve the display effect.
  • the scan signal on every other scan line will change, that is, the scan signal on every other scan line has a second conduction level to compensate for the insufficient charge in some pixels due to the conversion delay.
  • the pixels on the same row of the display panel are connected to the same scan line, and the pixels on the same column are connected to the same data line.
  • the turn-on duration of the scan signal is T
  • the polarity of the data signal The sex conversion period is 2T.
  • the waveforms of the scanning signals of adjacent rows are different.
  • odd-level scanning signals G(1), G(3), G(5), (7)
  • the polarity of the data signal DATA Inversion will occur, resulting in a longer conversion delay, and the corresponding pixel row is often insufficiently charged. Therefore, the scan signal is turned off by 3T before the scan signal is switched from the off level to the first on level.
  • the off-level is converted to the second on-level, the duration of the second on-level is T, the pixels are precharged; for even-level scan signals (G(2), G(4), G(6) , ...), when it controls the even-line pixels to be turned on, the polarity of the data signal DATA is not reversed, and the corresponding pixel row is sufficiently charged, so the waveforms of the even-level scan signal and the even-level scan signal in the example are basically the same, and may not be among them Set the second conduction level.
  • pixels on the same row of the display panel are connected to the same scan line
  • pixels on the same column are connected to the same data line
  • the scan signal's on-time is T
  • the data signal's The polarity switching period is 2T.
  • the waveforms of the scan signals of adjacent rows are different.
  • the display device includes a display panel 100 and a display driving assembly 200.
  • the display panel 100 includes a plurality of pixels arranged in an array, a plurality of scan lines 120, and a plurality of A data line 130; the display driving component 200 is connected to the scan line 120 and the data line 130, when the scan signal connected to the scan line 120 of the pixel is converted from the off level to the first on level, if connected to the pixel
  • the data signal on the data line 130 is converted from the first polarity to the second polarity.
  • the display driving component controls The scan signal is at the second conduction level, so that the data signal precharges the pixel.
  • the TFT in the pixel connected to the scan line 120 is in the off state, that is, the source electrode and the drain electrode are disconnected, so as to prevent the data signal on the data line 130 from charging the pixel and causing interference ;
  • the scan signal is at the first conduction level, the TFT in the pixel connected to the scan line 120 is in a conductive state, that is, the source electrode and the drain electrode are connected, the data signal on the data line 130 passes the TFT to the pixel
  • the pixel electrode of the LED is charged to control its gray-scale brightness;
  • the scan signal is at the second on level
  • the TFT in the pixel connected to the scan line 120 is in the on state, that is, the source electrode and the drain electrode are connected, and the data line
  • the data signal on 130 precharges the pixel electrode of the pixel through the TFT.
  • the TFT in the display panel is NMOS TFT, accordingly, the first on level and the second on level are high level, and the off level is low level.
  • the scan signal connected to the scan line 120 of the pixel is switched from the off level to the first on level, that is, when the TFT in the pixel is switched from the off state to the on state, the data on the data line 130 The signal will charge the pixel. If the data signal connected to the data line 130 of the pixel is switched from the first polarity to the second polarity, that is, the data signal is converted from the positive polarity to the negative polarity, or from the negative polarity If the performance is converted to positive polarity, there will be a large conversion delay due to the influence of the driving capability of the display device.
  • the scan signal is controlled to be at the second conduction level to The pre-charging of the pixel is realized to ensure the charging effect of the pixel.
  • the polarity conversion of the data signal is performed every certain period of time, and the period of the polarity conversion may be equal to the turn-on time of the scan signal at the first conduction level each time, or greater than the turn-on time of the scan signal.
  • the initial polarities of the data signals on each data line 130 can be set according to requirements, so as to realize driving in different ways such as dot inversion and row inversion in the display panel.
  • the display driving component controls the scan signal to be at the off-level.
  • the driving of the display panel is carried out frame by frame. In each frame, the driving is carried out line by line. In a frame, after the driving of all the pixels is completed, it returns to the initial state and starts the next frame Drive.
  • the scan signal connected to the scanning line 120 of the pixel changes from the off level to the first on level, that is, when the pixel changes from the off state to the on state, if the pixel is connected to the data line 130 of the pixel
  • the polarity of the data signal remains unchanged, indicating that there is no longer conversion delay during the charging of the pixel, that is, its charging effect can be well guaranteed.
  • the clock keeps the scan signal at the off level in one frame before the scan signal is converted to the first on level, To optimize the display effect.
  • pixels in the same row are connected to the same scanning line 120, pixels in different rows are connected to different scanning lines 120; pixels in the same column are connected to the same data line 130, and are located at The pixels of different columns are connected to different data lines 130; in one frame, the polarity switching period of the data signal is twice the length of the scan signal at the first conduction level; the scan signals on every other scan line have The second conduction level.
  • the TFT controls the data line 130 to charge the pixel electrodes of the corresponding row, thereby forming a voltage between the pixel electrode and the common electrode of the pixel capacitance in the pixel, and controlling the deflection angle of the liquid crystal in the pixel.
  • the display panel shown in FIG. 6 includes three types of pixels: red pixel 111, green pixel 112, and blue pixel 113.
  • a red pixel 111, a green pixel 112, and a blue pixel 113 form a pixel group 110 to display according to the principle of spatial color mixing A colorful picture.
  • the polarity conversion period of the data signal By setting the polarity conversion period of the data signal to an integer multiple of the length of the scan signal at the first conduction level, that is, the polarity conversion period of the data signal is an integer multiple of the open duration of the scan signal, in order to control the scan signal at an appropriate level
  • the pre-charge period reaches the second turn-on level, avoiding the timing mismatch between the data signal and the scan signal and causing the pre-charge period to be reselected every time, thereby reducing driving costs.
  • the polarity conversion period of the data signal when the polarity conversion period of the data signal is set to be twice as long as the scan signal is at the first conduction level, the polarity of the data signal will be inverted once every two scan lines to avoid the display panel Polarity bias phenomenon occurs in the display to improve the display effect.
  • the scanning signal on every other scanning line 120 will change, that is, the scanning signal on every other scanning line 120 has a second on-level to compensate for the charging caused by the conversion delay in some
  • the turn-on duration of the scan signal is T
  • the polarity conversion period of the data signal is 2T.
  • the waveforms of the scanning signals of adjacent rows are different.
  • odd-level scanning signals G(1), G(3), G(5), (7)
  • the polarity of the data signal DATA Inversion will occur, resulting in a longer conversion delay, and the corresponding pixel row is often insufficiently charged. Therefore, the scan signal is turned off by 3T before the scan signal is switched from the off level to the first on level.
  • the off-level is converted to the second on-level, the duration of the second on-level is T, the pixels are precharged; for even-level scan signals (G(2), G(4), G(6) , ...), when it controls the even-line pixels to be turned on, the polarity of the data signal DATA is not reversed, and the corresponding pixel row is sufficiently charged, so the waveforms of the even-level scan signal and the even-level scan signal in the example are basically the same, and may not be among them Set the second conduction level.
  • the turn-on duration of the scan signal is T and the polarity conversion period of the data signal is 2T.
  • the waveforms of the scan signals of adjacent rows are different.
  • odd-level scan signals G(1), G(3), G(5), (7)
  • the polarity of the data signal DATA will be Inversion occurs, with a long conversion delay, and the corresponding pixel row is often insufficiently charged, so the scan signal is turned off by 4T before the scan signal is switched from the off level to the first on level Flat conversion to the second conduction level, the duration of the second conduction level is T, pre-charging the pixels; for even-level scanning signals (G(2), G(4), G(6),...
  • the waveforms of the even-numbered scanning signal and the even-numbered scanning signal in the example are basically the same and can not be set in it The second conduction level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示驱动方法和显示装置,其中,显示驱动方法包括以下步骤:当连接于像素的扫描线(120)上的扫描信号由关断电平转换为第一导通电平时,若连接于像素的数据线(130)上的数据信号由第一极性转换为第二极性,则在数据信号由第一极性转换为第二极性之前,当数据信号处于第二极性时,控制扫描信号处于第二导通电平,以使数据信号对像素预充电。

Description

显示驱动方法和显示装置
相关申请
本申请要求2018年12月12日申请的,申请号201811522482.1,名称为“显示驱动方法和显示装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及显示技术领域,特别涉及一种显示驱动方法和显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。显示面板是显示装置的重要组成部分,其中包括多个像素,各像素在开关器件等的驱动作用下显示出一定的灰阶亮度而形成显示图像。通常,显示是按照逐行扫描的方式被驱动的,在扫描线上扫描信号的控制下,相应扫描行中的像素被数据线上的数据信号充电而显示出一定的灰阶亮度。为了改善显示装置的显示效果,在驱动显示的过程中,数据信号极性通常会按照一定的方式反转。
在一种显示装置中,每隔一定数目的扫描行,数据信号将发生反转,由于至少在部分扫描行开启的过程中,数据信号的极性由负极转换为正极、或由正极转换为负极,导致这些扫描行中的像素被充电时具有较长的转换延时,不同扫描行中的像素的实际充电时间存在差异,使得整个显示面板中的充电效果不均匀,相应的,当显示画面为均一灰阶亮度时,实际的显示效果也就不均匀,通常表现为显示画面上存在与扫描行的延伸方向一致的微弱亮暗线。
发明内容
本申请的主要目的是提出一种显示驱动方法,实现了显示均匀性的优化,改善了显示效果。
为实现上述目的,本申请提出的显示驱动方法,包括以下步骤:
当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于所述像素的数据线上的数据信号由第一极性转换为第二极性,则在所述数据信号由所述第一极性转换为所述第二极性之前,当所述数据信号处于所述第二极性时,控制所述扫描信号处于第二导通电平,以使所述数据信号对所述像素预充电。
为实现上述目的,本申请还提出一种显示驱动方法,所述显示驱动方法包括以下步骤:
当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于所述像素的数据线上的数据信号由第一极性转换为第二极性,则在所述数据信号由所述第一极性转换为所述第二极性之前,当所述数据信号处于所述第二极性时,控制所述扫描信号处于第二导通电平,以使所述数据信号对所述像素预充电,其中,所述第一导通电平的绝对值大于或等于所述第二导通电平的绝对值。
为实现上述目的,本申请还提出一种显示装置,所述显示装置包括显示面板以及显示驱动组件,所述显示面板包括呈阵列排布的多个像素、多条扫描线和多条数据线;所述显示驱动组件连接于所述扫描线和所述数据线,当连接于所述像素的所述扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于所述像素的所述数据线上的数据信号由第一极性转换为第二极性,则在所述数据信号由所述第一极性转换为所述第二极性之前,当所述数据信号处于所述第二极性时,所述显示驱动组件控制所述扫描信号处于第二导通电平,以使所述数据信号对所述像素预充电。
本申请技术方案中,显示驱动方法包括以下步骤:当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于像素的数据线上的数据信号由第一极性转换为第二极性,则在数据信号由第一极性转换为第二极性之前,当数据信号处于第二极性时,控制扫描信号处于第二导通电平,以使数据信号对像素预充电。根据像素被打开充电时数据线上数据信号的极性转换情况,实现对像素的预充电,以避免像素由于转换延时而充电不足,进而导致的显示灰阶发生偏差的情形。若像素在扫描信号控制下被打开充电时,数据信号将由第一极性转换为第二极性,则在数据信号由第一极性转换为第二极性之前,选取数据信号处于第二极性的时段,控制扫描信号处于第二导通电平,以实现对该像素的预充电,避免扫描行延伸方向上亮暗线的产生,改善显示的均匀性,从而改善显示效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为一范例中显示装置的显示面板结构示意图;
图2为一范例中显示装置的部分扫描信号和数据信号的时序示意图;
图3为本申请显示驱动方法一具体示例中部分扫描信号和数据信号的时序示意图;
图4为本申请显示驱动方法另一具体示例中部分扫描信号和数据信号的时序示意图;
图5为本申请显示装置一实施例的结构示意图;
图6为图5中显示面板的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
后文中将以液晶显示面板为例,详细阐述本申请的技术方案。在一范例中,如图1和图2所示,显示装置的显示面板包括多个像素,多条扫描线120’和多条数据线130’,其中,多个像素通常呈矩形阵列状排布,扫描线120’沿显示面板的横向延伸,数据线130’沿显示面板的纵向延伸。在本范例中,同一行的像素中的薄膜晶体管(Thin Film Transistor,TFT)连接于同一条扫描线,同一列的像素中的TFT连接于同一条数据线,各像素的像素电极与该像素的TFT一一对应相连。在扫描线120’上的扫描信号作用下,TFT控制数据线130’向对应的像素电极充电,从而在像素中像素电容的像素电极和公共电极之间形成电压,控制像素中液晶的偏转角度。通常,在显示面板中包括红像素111’、绿像素112’和蓝像素113’三种像素,至少一红像素111’、一绿像素112’和一蓝像素113’形成一像素组110’,从而根据空间混色原理显示出彩色的画面。为了保持像素电极上的像素电平以保障显示效果,在像素中还可以设置存储电容等。通常,对显示面板的驱动是按照逐行扫描的方式进行的。假设图1中所示的TFT均为负型金属氧化物半导体薄膜晶体管(N Metal Oxide Semiconductor TFT, NMOS TFT),那么,当扫描线120’上的扫描信号处于高电平时,对应的NMOS TFT打开,其源电极和漏电极之间导通,从而使数据线130’上的数据信号对像素电极充电。如图2所示,各行扫描线120’上的扫描信号依次逐一转换为高电平状态,并在一定的充电时长后恢复为低电平状态,实现逐行扫描驱动,而数据线130’上的数据信号每隔一定时长发生极性反转,在这里,每两行扫描行被充电后,数据信号的极性反转一次。那么,当奇数级扫描信号(G(1)’、G(3)’、G(5)’、…)控制奇数行像素打开时,数据信号DATA’的极性将会发生反转而具有较长的转换延时,对奇数行像素的充电可能不足;当偶数级扫描信号(G(2)’、G(4)’、G(6)’、…)控制偶数行像素打开时,数据信号DATA’的极性不反转,可以实现对偶数行像素的充足充电,上述不同行的像素之间充电状况的不同,将会导致显示画面的不均匀。
本申请提出一种显示驱动方法,通过对充电时转换延时较长的像素进行预充电,提高显示的均匀性,改善显示效果。
在本申请的一实施例中,显示驱动方法包括以下步骤:
步骤S100、当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于像素的数据线上的数据信号由第一极性转换为第二极性,则在数据信号由第一极性转换为第二极性之前,当数据信号处于第二极性时,控制扫描信号处于第二导通电平,以使数据信号对像素预充电。
当扫描信号处于关断电平时,连接于该扫描线的像素中TFT处于关断状态,即源电极和漏电极之间断开,以避免数据线上的数据信号对该像素充电而造成干扰;当扫描信号处于第一导通电平时,连接于该扫描线的像素中TFT处于导通状态,即源电极和漏电极之间导通,数据线上的数据信号通过TFT对该像素的像素电极充电以控制其灰阶亮度;当扫描信号处于第二导通电平时,连接于该扫描线的像素中TFT处于导通状态,即源电极和漏电极之间导通,数据线上的数据信号通过TFT对该像素的像素电极预充电。通常,显示面板中的TFT为NMOS TFT,相应的,第一导通电平和第二导通电平为高电平,关断电平为低电平。当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,也就是该像素中的TFT由关断状态转换为导通状态时,数据线上的数据信号将会对该像素充电,若此时连接于该像素的数据线上的数据信号由第一极性转换为第二极性,也就是数据信号由正极性转换为负极性、或由负极性转换为正极性,则由于显示装置的驱动能力的影响,将存在较大的转换延时。在这种情况下,为了补偿充电的不足,在数据信号由第一极性转换为第二极性之前,当数据信号处于第二极性时,控制扫描信号处于第二导通电平,以实现对该像素的预充电,保障该像素的充电效果。其中,数据信号的极性转换每隔一定时长进行,其极性转换时长可以与扫描信号每次处于第一导通电平的开启时长相当,或者大于扫描信号的开启时长。对于显示面板中不同的数据线而言,各数据线上的数据信号的初始极性可以按照需求进行设置,以实现显示面板中的点反转、行反转等不同方式的驱动。
在本实施例中,显示驱动方法包括以下步骤:当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于像素的数据线上的数据信号由第一极性转换为第二极性,则在数据信号由第一极性转换为第二极性之前,当数据信号处于第二极性时,控制扫描信号处于第二导通电平,以使数据信号对像素预充电。根据像素被打开充电时数据线上数据信号的极性转换情况,实现对像素的预充电,以避免像素由于转换延时而充电不足,进而导致的显示灰阶发生偏差的情形。若像素在扫描信号控制下被打开充电时,数据信号将由第一极性转换为第二极性,则在数据信号由第一极性转换为第二极性之前,选取数据信号处于第二极性的时段,控制扫描信号处于第二导通电平,以实现对该像素的预充电,避免扫描行延伸方向上亮暗线的产生,改善显示的均匀性,从而改善显示效果。
可选地,显示驱动方法包括以下步骤:
步骤S200、在一帧中,当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于像素的数据线上的数据信号的极性不变,则在扫描信号转换为第一导通电平之前,控制扫描信号处于关断电平。
通常,显示面板的驱动是一帧帧进行的,在每一帧中,驱动又是逐行进行的,在一帧中,当完成了所有像素的驱动后,再返回至初始状态开始下一帧的驱动。当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,也就是该像素由关断状态转换为导通状态时,若连接于像素的数据线上的数据信号的极性不变,则表明该像素被充电过程中不存在较长的转换延时,也就是其充电效果可以得到很好的保障。为了避免提前开启TFT时,对应于其它像素的数据信号干扰到该像素的灰阶亮度,在一帧中,扫描信号转换为第一导通电平之前,时钟保持扫描信号处于关断电平,以优化显示效果。
可选地,显示驱动方法包括以下步骤:
步骤S300、当扫描信号处于第一导通电平时,数据信号对像素充电;
其中,第一导通电平的绝对值大于或等于第二导通电平的绝对值。
在扫描信号转换为第一导通电平之后,连接于该像素的数据线上的数据信号将会对该像素充电,以使该像素显示一定的灰阶亮度。考虑到第一导通电平对应于像素被充电时TFT的栅电极上的电平,第二导通电平对应于像素被预充电时TFT的栅电极上的电平,且TFT的栅电极上所施加的电平的大小将会影响到TFT的开启程度,因此,通过调节第一导通电平和第二导通电平的大小控制像素被充电或预充电的状态。在像素被预充电时,为了避免TFT完全打开导致充电效果过强,对应于其它像素的数据电平干扰到本像素的灰阶亮度,可以选择绝对值较第一导通电平的绝对值小的第二导通电平,使TFT部分打开对像素预充电。或者,当像素被充电过程中的转换延时很大时,为了保障该像素的充电效果,可以选择绝对值等于第一导通电平的绝对值的第二导通电平。特别的,当TFT为NMOS TFT时,第一导通电平和第二导通电平均为正值,即第一导通电平大于或等于第二导通电平。
可选地,在一帧中,像素被预充电的时长和像素被充电的时长相当。
为了便于产生能够对像素进行预充电的扫描信号,同时避免像素在预充电过程中,数据线上的数据信号发生变化而产生不必要的波动或干扰,可以设置像素每次被预充电的时长与像素每次被充电的时长相当,即第一导通电平和第二导通电平的单次持续时长相当,以改善驱动效果,降低驱动成本。
可选地,在一帧中,在像素被预充电之后,数据信号由第二极性转换为第一极性的次数至多为一次。
为了避免像素被过早预充电而干扰显示画面,或者像素被过早预充电的效果随时间衰减而导致的充电不足,在一帧中,在像素被预充电之后,数据信号由第二极性转换为第一极性的次数至多为一次。也就是说,在本次对像素充电之前,选择数据信号与本次充电时数据信号的极性一致的最近邻时段,对像素预充电,从而改善预充电效果。
可选地,在一帧中,数据信号的极性转换周期为扫描信号处于第一导通电平的时长的整数倍。
通过将数据信号的极性转换周期设置为扫描信号处于第一导通电平的时长的整数倍,即数据信号的极性转换周期为扫描信号的开启时长的整数倍,以便控制扫描信号在合适的预充电时段达到第二导通电平,避免数据信号和扫描信号之间的时序失配而导致每次都要重新选择预充电时段,从而降低了驱动成本。
可选地,在一帧中,数据信号的极性转换周期为扫描信号处于第一导通电平的时长的两倍;每隔一扫描线上的扫描信号具有第二导通电平。
当设置数据信号的极性转换周期为扫描信号处于第一导通电平的时长的两倍时,每隔两扫描行,数据信号的极性将会反转一次,以避免显示面板中产生极性偏置现象,改善显示效果。相应的,每隔一扫描线上的扫描信号将会发生变化,即每隔一扫描线上的扫描信号具有第二导通电平,以补偿部分像素中因转换延时而产生的充电不足。
在一具体示例中,如图3所示,假设显示面板中同一行上的像素连接于同一扫描线,同一列上的像素连接于同一数据线,扫描信号的开启时长为T,数据信号的极性转换周期为2T。那么,相邻行的扫描信号的波形不同,对于奇数级扫描信号(G(1)、G(3)、G(5)、…),当其控制奇数行像素打开时,数据信号DATA的极性将会发生反转而导致较长的转换延时,对相应像素行的充电往往不足,因此在扫描信号由关断电平转换为第一导通电平之前的3T时刻,扫描信号由关断电平转换为第二导通电平,第二导通电平持续的时长为T,对像素进行预充电;对于偶数级扫描信号(G(2)、G(4)、G(6)、…),当其控制偶数行像素打开时,数据信号DATA的极性不反转,相应像素行的充电充足,因此偶数级扫描信号与范例中偶数级扫描信号的波形基本一致,可以不在其中设置第二导通电平。
在另一具体示例中,如图4所示,假设显示面板中同一行上的像素连接于同一扫描线,同一列上的像素连接于同一数据线,扫描信号的开启时长为T,数据信号的极性转换周期为2T。相邻行的扫描信号的波形不同,对于奇数级扫描信号(G(1)、G(3)、G(5)、…),当其控制奇数行像素打开时,数据信号DATA的极性将会发生反转,具有较长的转换延时,对相应像素行的充电往往不足,因此在扫描信号由关断电平转换为第一导通电平之前的4T时刻,扫描信号由关断电平转换为第二导通电平,第二导通电平持续的时长为T,对像素进行预充电;对于偶数级扫描信号(G(2)、G(4)、G(6)、…),当其控制偶数行像素打开时,数据信号DATA的极性不反转,对相应像素行的充电充足,因此偶数级扫描信号与范例中偶数级扫描信号的波形基本一致,可以不在其中设置第二导通电平。
本申请还提出一种显示装置,如图5和图6所示,显示装置包括显示面板100以及显示驱动组件200,显示面板100包括呈阵列排布的多个像素、多条扫描线120和多条数据线130;显示驱动组件200连接于扫描线120和数据线130,当连接于像素的扫描线120上的扫描信号由关断电平转换为第一导通电平时,若连接于像素的数据线130上的数据信号由第一极性转换为第二极性,则在数据信号由第一极性转换为第二极性之前,当数据信号处于第二极性时,显示驱动组件控制扫描信号处于第二导通电平,以使数据信号对像素预充电。
当扫描信号处于关断电平时,连接于该扫描线120的像素中TFT处于关断状态,即源电极和漏电极之间断开,以避免数据线130上的数据信号对该像素充电而造成干扰;当扫描信号处于第一导通电平时,连接于该扫描线120的像素中TFT处于导通状态,即源电极和漏电极之间导通,数据线130上的数据信号通过TFT对该像素的像素电极充电以控制其灰阶亮度;当扫描信号处于第二导通电平时,连接于该扫描线120的像素中TFT处于导通状态,即源电极和漏电极之间导通,数据线130上的数据信号通过TFT对该像素的像素电极预充电。通常,显示面板中的TFT为NMOS TFT,相应的,第一导通电平和第二导通电平为高电平,关断电平为低电平。当连接于像素的扫描线120上的扫描信号由关断电平转换为第一导通电平时,也就是该像素中的TFT由关断状态转换为导通状态时,数据线130上的数据信号将会对该像素充电,若此时连接于该像素的数据线130上的数据信号由第一极性转换为第二极性,也就是数据信号由正极性转换为负极性、或由负极性转换为正极性,则由于显示装置的驱动能力的影响,将存在较大的转换延时。在这种情况下,为了补偿充电的不足,在数据信号由第一极性转换为第二极性之前,当数据信号处于第二极性时,控制扫描信号处于第二导通电平,以实现对该像素的预充电,保障该像素的充电效果。其中,数据信号的极性转换每隔一定时长进行,其极性转换时长可以与扫描信号每次处于第一导通电平的开启时长相当,或者大于扫描信号的开启时长。对于显示面板中不同的数据线130而言,各数据线130上的数据信号的初始极性可以按照需求进行设置,以实现显示面板中的点反转、行反转等不同方式的驱动。
可选地,在一帧中,当连接于像素的扫描线120上的扫描信号由关断电平转换为第一导通电平时,若连接于像素的数据线130上的数据信号的极性不变,则在扫描信号转换为第一导通电平之前,显示驱动组件控制扫描信号处于关断电平。
通常,显示面板的驱动是一帧帧进行的,在每一帧中,驱动又是逐行进行的,在一帧中,当完成了所有像素的驱动后,再返回至初始状态开始下一帧的驱动。当连接于像素的扫描线120上的扫描信号由关断电平转换为第一导通电平时,也就是该像素由关断状态转换为导通状态时,若连接于像素的数据线130上的数据信号的极性不变,则表明该像素被充电过程中不存在较长的转换延时,也就是其充电效果可以得到很好的保障。为了避免提前开启TFT时,对应于其它像素的数据信号干扰到该像素的灰阶亮度,在一帧中,扫描信号转换为第一导通电平之前,时钟保持扫描信号处于关断电平,以优化显示效果。
可选地,如图6所示,位于同一行的像素连接于同一条扫描线120,位于不同行的像素连接于不同的扫描线120;位于同一列的像素连接于同一条数据线130,位于不同列的像素连接于不同的数据线130;在一帧中,数据信号的极性转换周期为扫描信号处于第一导通电平的时长的两倍;每隔一行扫描线上的扫描信号具有第二导通电平。
在扫描线120上的扫描信号作用下,TFT控制数据线130向对应行的像素电极充电,从而在像素中像素电容的像素电极和公共电极之间形成电压,控制像素中液晶的偏转角度。图6中所示的显示面板包括红像素111、绿像素112和蓝像素113三种像素,一红像素111、一绿像素112和一蓝像素113形成一像素组110,从而根据空间混色原理显示出彩色的画面。通过将数据信号的极性转换周期设置为扫描信号处于第一导通电平的时长的整数倍,即数据信号的极性转换周期为扫描信号的开启时长的整数倍,以便控制扫描信号在合适的预充电时段达到第二导通电平,避免数据信号和扫描信号之间的时序失配而导致每次都要重新选择预充电时段,从而降低了驱动成本。具体的,当设置数据信号的极性转换周期为扫描信号处于第一导通电平的时长的两倍时,每隔两扫描行,数据信号的极性将会反转一次,以避免显示面板中产生极性偏置现象,改善显示效果。相应的,每隔一扫描线120上的扫描信号将会发生变化,即每隔一扫描线120上的扫描信号具有第二导通电平,以补偿部分像素中因转换延时而产生的充电不足。
在一具体示例中,如图3所示,假设扫描信号的开启时长为T,数据信号的极性转换周期为2T。那么,相邻行的扫描信号的波形不同,对于奇数级扫描信号(G(1)、G(3)、G(5)、…),当其控制奇数行像素打开时,数据信号DATA的极性将会发生反转而导致较长的转换延时,对相应像素行的充电往往不足,因此在扫描信号由关断电平转换为第一导通电平之前的3T时刻,扫描信号由关断电平转换为第二导通电平,第二导通电平持续的时长为T,对像素进行预充电;对于偶数级扫描信号(G(2)、G(4)、G(6)、…),当其控制偶数行像素打开时,数据信号DATA的极性不反转,相应像素行的充电充足,因此偶数级扫描信号与范例中偶数级扫描信号的波形基本一致,可以不在其中设置第二导通电平。
在另一具体示例中,如图4所示,假设扫描信号的开启时长为T,数据信号的极性转换周期为2T。相邻行的扫描信号的波形不同,对于奇数级扫描信号(G(1)、G(3)、G(5)、…),当其控制奇数行像素打开时,数据信号DATA的极性将会发生反转,具有较长的转换延时,对相应像素行的充电往往不足,因此在扫描信号由关断电平转换为第一导通电平之前的4T时刻,扫描信号由关断电平转换为第二导通电平,第二导通电平持续的时长为T,对像素进行预充电;对于偶数级扫描信号(G(2)、G(4)、G(6)、…),当其控制偶数行像素打开时,数据信号DATA的极性不反转,对相应像素行的充电充足,因此偶数级扫描信号与范例中偶数级扫描信号的波形基本一致,可以不在其中设置第二导通电平。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (17)

  1. 一种显示驱动方法,其中,所述显示驱动方法包括以下步骤:
    当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于所述像素的数据线上的数据信号由第一极性转换为第二极性,则在所述数据信号由所述第一极性转换为所述第二极性之前,当所述数据信号处于所述第二极性时,控制所述扫描信号处于第二导通电平,以使所述数据信号对所述像素预充电。
  2. 如权利要求1所述的显示驱动方法,其中,所述显示驱动方法包括以下步骤:
    在一帧中,当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于所述像素的数据线上的数据信号的极性不变,则在所述扫描信号转换为第一导通电平之前,控制所述扫描信号处于关断电平。
  3. 如权利要求1所述的显示驱动方法,其中,所述显示驱动方法包括以下步骤:
    当所述扫描信号处于第一导通电平时,所述数据信号对所述像素充电;
    其中,所述第一导通电平的绝对值大于或等于所述第二导通电平的绝对值。
  4. 如权利要求3所述的显示驱动方法,其中,在一帧中,所述像素被预充电的时长和所述像素被充电的时长相当。
  5. 如权利要求1所述的显示驱动方法,其中,在一帧中,在所述像素被预充电之后,所述数据信号由所述第二极性转换为所述第一极性的次数至多为一次。
  6. 如权利要求1所述的显示驱动方法,其中,在一帧中,所述数据信号的极性转换周期为所述扫描信号处于第一导通电平的时长的整数倍。
  7. 如权利要求6所述的显示驱动方法,其中,在一帧中,所述数据信号的极性转换周期为所述扫描信号处于第一导通电平的时长的两倍;
    每隔一扫描线上的扫描信号具有第二导通电平。
  8. 如权利要求1所述的显示驱动方法,其中,所述第一电极与所述第二电极的极性相反。
  9. 如权利要求8所述的显示驱动方法,其中,所述第一极性为正极性,所述第二极性为负极性。
  10. 如权利要求8所述的显示驱动方法,其中,所述第一极性为负极性,所述第二极性为正极性。
  11. 如权利要求1所述的显示驱动方法,其中,所述第一导通电平与所述第二导通电平均为高电平,所述关断电平为低电平。
  12. 一种显示驱动方法,其中,所述显示驱动方法包括以下步骤:
    当连接于像素的扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于所述像素的数据线上的数据信号由第一极性转换为第二极性,则在所述数据信号由所述第一极性转换为所述第二极性之前,当所述数据信号处于所述第二极性时,控制所述扫描信号处于第二导通电平,以使所述数据信号对所述像素预充电,其中,所述第一导通电平的绝对值大于或等于所述第二导通电平的绝对值。
  13. 一种显示装置,其中,所述显示装置包括:
    显示面板,所述显示面板包括呈阵列排布的多个像素、多条扫描线和多条数据线;以及,
    显示驱动组件,所述显示驱动组件连接于所述扫描线和所述数据线,当连接于所述像素的所述扫描线上的扫描信号由关断电平转换为第一导通电平时,若连接于所述像素的所述数据线上的数据信号由第一极性转换为第二极性,则在所述数据信号由所述第一极性转换为所述第二极性之前,当所述数据信号处于所述第二极性时,所述显示驱动组件控制所述扫描信号处于第二导通电平,以使所述数据信号对所述像素预充电。
  14. 如权利要求13所述的显示装置,其中,在一帧中,当连接于所述像素的所述扫描线上的所述扫描信号由关断电平转换为第一导通电平时,若连接于所述像素的所述数据线上的所述数据信号的极性不变,则在所述扫描信号转换为第一导通电平之前,所述显示驱动组件控制所述扫描信号处于关断电平。
  15. 如权利要求13所述的显示装置,其中,位于同一行的所述像素连接于同一条扫描线,位于不同行的所述像素连接于不同的扫描线;
    位于同一列的所述像素连接于同一条数据线,位于不同列的所述像素连接于不同的数据线;
    在一帧中,所述数据信号的极性转换周期为所述扫描信号处于第一导通电平的时长的两倍。
  16. 如权利要求14所述的显示装置,其中,位于同一行的所述像素连接于同一条扫描线,位于不同行的所述像素连接于不同的扫描线;
    位于同一列的所述像素连接于同一条数据线,位于不同列的所述像素连接于不同的数据线;
    在一帧中,所述数据信号的极性转换周期为所述扫描信号处于第一导通电平的时长的两倍。
  17. 如权利要求13所述的显示装置,其中,在一帧中,在所述像素被预充电之后,所述数据信号由所述第二极性转换为所述第一极性的次数至多为一次。
PCT/CN2019/123079 2018-12-12 2019-12-04 显示驱动方法和显示装置 WO2020119557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/059,262 US11250801B2 (en) 2018-12-12 2019-12-04 Display drive method and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811522482.1A CN109360536B (zh) 2018-12-12 2018-12-12 显示驱动方法和显示装置
CN201811522482.1 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020119557A1 true WO2020119557A1 (zh) 2020-06-18

Family

ID=65328665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123079 WO2020119557A1 (zh) 2018-12-12 2019-12-04 显示驱动方法和显示装置

Country Status (3)

Country Link
US (1) US11250801B2 (zh)
CN (1) CN109360536B (zh)
WO (1) WO2020119557A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360536B (zh) * 2018-12-12 2021-06-01 惠科股份有限公司 显示驱动方法和显示装置
CN113971936B (zh) * 2020-07-23 2023-09-29 京东方科技集团股份有限公司 显示面板及其驱动方法
CN111883084B (zh) * 2020-07-30 2021-11-09 惠科股份有限公司 一种驱动方法、补偿时间表的构建方法和显示装置
CN113381898B (zh) * 2021-08-16 2021-11-09 深圳市聚视智能系统有限公司 显示模组去干扰方法、装置、计算机设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399020A (zh) * 2007-09-29 2009-04-01 北京京东方光电科技有限公司 液晶显示装置对像素进行预充电的驱动方法
KR101096692B1 (ko) * 2005-10-26 2011-12-22 엘지디스플레이 주식회사 표시장치
CN102347013A (zh) * 2011-10-12 2012-02-08 深圳市华星光电技术有限公司 液晶显示装置及其信号驱动方法
CN104916265A (zh) * 2015-07-03 2015-09-16 青岛海信电器股份有限公司 液晶显示处理方法、装置和设备
CN105976747A (zh) * 2016-04-05 2016-09-28 上海中航光电子有限公司 一种显示面板及其驱动方法
CN109360536A (zh) * 2018-12-12 2019-02-19 惠科股份有限公司 显示驱动方法和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102350B2 (en) * 2006-03-30 2012-01-24 Lg Display Co., Ltd. Display device and driving method thereof
TW201225038A (en) * 2010-12-08 2012-06-16 Au Optronics Corp Liquid crystal display and method for driving panel thereof
US9111503B2 (en) * 2011-02-14 2015-08-18 Sharp Kabushiki Kaisha Display device and method for driving same
CN103985365B (zh) * 2014-04-24 2016-08-24 京东方科技集团股份有限公司 液晶显示面板的极性反转驱动方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101096692B1 (ko) * 2005-10-26 2011-12-22 엘지디스플레이 주식회사 표시장치
CN101399020A (zh) * 2007-09-29 2009-04-01 北京京东方光电科技有限公司 液晶显示装置对像素进行预充电的驱动方法
CN102347013A (zh) * 2011-10-12 2012-02-08 深圳市华星光电技术有限公司 液晶显示装置及其信号驱动方法
CN104916265A (zh) * 2015-07-03 2015-09-16 青岛海信电器股份有限公司 液晶显示处理方法、装置和设备
CN105976747A (zh) * 2016-04-05 2016-09-28 上海中航光电子有限公司 一种显示面板及其驱动方法
CN109360536A (zh) * 2018-12-12 2019-02-19 惠科股份有限公司 显示驱动方法和显示装置

Also Published As

Publication number Publication date
US11250801B2 (en) 2022-02-15
CN109360536A (zh) 2019-02-19
US20210210034A1 (en) 2021-07-08
CN109360536B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020119557A1 (zh) 显示驱动方法和显示装置
US10242634B2 (en) Display device
WO2016108462A1 (en) Flexible display device with gate-in-panel circuit
WO2015165124A1 (zh) 用于窄边框液晶显示器的栅极驱动器
WO2020051994A1 (zh) 显示面板的驱动方法、装置以及显示设备
US7928947B2 (en) Liquid crystal display device and method of driving the same
WO2018072287A1 (zh) 一种像素结构及液晶显示面板
WO2018079980A1 (ko) 디스플레이 장치 및 방법
JP2739821B2 (ja) 液晶表示装置
WO2014153768A1 (zh) 一种液晶显示装置及其驱动方法
WO2020056839A1 (zh) 显示装置和液晶显示器
WO2020113692A1 (zh) 阵列基板行驱动电路及显示装置
WO2018120364A1 (zh) 一种显示面板的驱动装置及驱动方法
WO2020093419A1 (zh) 显示驱动方法、驱动装置以及显示装置
WO2020155257A1 (zh) 显示面板的驱动方法、装置及设备
WO2020024530A1 (zh) 驱动装置、显示装置及液晶显示器
KR20160081424A (ko) 표시 장치 및 이의 구동 방법
WO2018152936A1 (zh) 一种阵列基板及显示面板
WO2017020333A1 (zh) 一种液晶显示器及其控制方法
WO2020134997A1 (zh) 显示面板的驱动方法、显示装置及存储介质
WO2015058435A1 (zh) 阵列基板及3d显示设备
WO2020113729A1 (zh) 阵列基板行驱动电路及显示装置
WO2020155260A1 (zh) 显示面板的驱动方法及装置
WO2018170977A1 (zh) 一种液晶显示面板的驱动方法及液晶显示面板
WO2009151247A2 (ko) 액정 표시 장치 및 영상 표시 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19896538

Country of ref document: EP

Kind code of ref document: A1