WO2020052030A1 - 柔性电子装置 - Google Patents

柔性电子装置 Download PDF

Info

Publication number
WO2020052030A1
WO2020052030A1 PCT/CN2018/114071 CN2018114071W WO2020052030A1 WO 2020052030 A1 WO2020052030 A1 WO 2020052030A1 CN 2018114071 W CN2018114071 W CN 2018114071W WO 2020052030 A1 WO2020052030 A1 WO 2020052030A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
conductive layer
thermally conductive
electronic device
heat
Prior art date
Application number
PCT/CN2018/114071
Other languages
English (en)
French (fr)
Inventor
刘景�
陈松亚
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201880094171.1A priority Critical patent/CN112640597A/zh
Publication of WO2020052030A1 publication Critical patent/WO2020052030A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the field of consumer electronics technology, and more particularly, to a flexible electronic device.
  • a flexible electronic device in the related art such as a flexible mobile phone, includes a first part and a second part.
  • the first part is provided with a motherboard
  • the second part is provided with a battery. Since the heat generated by the motherboard heat is relatively large, the flexible electronic device in the related art is provided with a flexible heat-conducting layer connecting the first part and the second part, so that the first part transmits heat to the second part to form uniform temperature heat dissipation.
  • the flexible thermally conductive layer is susceptible to force and generates blistering and wrinkling, which may cause the flexible thermally conductive layer to break, and affect the heat dissipation capacity of the flexible thermally conductive layer, and then affect the user experience.
  • the invention provides a flexible electronic device.
  • the flexible electronic device can be bent, and includes a first portion, a second portion, a flexible thermally conductive layer, and a connection portion.
  • the first portion includes a first heat sink
  • the second portion includes a second heat sink.
  • connection portion connects the first portion and the second portion, and the first portion and the second portion are rotatable around the connection portion to switch the flexible electronic device between a flat state and a folded state
  • the flexible thermally conductive layer includes A first flexible thermally conductive layer and a second flexible thermally conductive layer, the first flexible thermally conductive layer thermally connects to the first heat sink, the second flexible thermally conductive layer thermally connects to the second heat sink, and the first flexible thermally conductive layer
  • the layer is thermally connected to the second flexible thermally conductive layer and is relatively slidable.
  • the first flexible thermally conductive layer and the second flexible thermally conductive layer can slide relative to each other, the first flexible thermally conductive layer and the second flexible thermally conductive layer are not easily caused by multiple bendings of the flexible electronic device during bending. A blistering or wrinkling phenomenon is generated, and the first and second flexible thermally conductive layers that slide relatively do not easily generate faults, which can ensure the ability of the entire flexible thermally conductive layer to conduct heat and improve the user experience.
  • FIG. 1 is a schematic perspective view of a flexible electronic device according to an embodiment of the present invention when it is flattened;
  • FIG. 2 is a schematic perspective view of a flexible electronic device according to an embodiment of the present invention when folded;
  • FIG. 3 is a schematic exploded perspective view of a part of a structure of a flexible electronic device according to an embodiment of the present invention at the time of flattening;
  • FIG. 4 is an exploded perspective view of another aspect of the flexible electronic device during flattening according to an embodiment of the present invention.
  • FIG. 5 is a schematic perspective exploded view of another aspect of the flexible electronic device during flattening according to an embodiment of the present invention.
  • FIG. 6 is a schematic exploded perspective view of a flexible electronic device according to an embodiment of the present invention when it is flattened;
  • FIG. 7 is a schematic cross-sectional view of a flexible electronic device according to an embodiment of the present invention when flattened;
  • FIG. 8 is a schematic cross-sectional view of a flexible electronic device according to an embodiment of the present invention when folded.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense unless otherwise specified and limited. For example, they may be fixed connections or removable. Connected, or integrated. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium. It can be the internal connection of two elements or the interaction between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the flexible electronic device 100 can be bent.
  • the flexible electronic device 100 may be, for example, a flexible folding mobile phone or a flexible folding tablet computer.
  • the flexible electronic device 100 includes a first portion 10, a second portion 20, a flexible thermally conductive layer 30, and a connection portion 40.
  • the first portion 10 includes a first heat sink 11.
  • the second portion 20 includes a second heat sink 21.
  • the connecting portion 40 connects the first portion 10 and the second portion 20.
  • the first part 10 and the second part 20 can be rotated around the connecting portion 40 to switch the flexible electronic device 100 between a flat state and a folded state.
  • the flexible thermally conductive layer 30 includes a first flexible thermally conductive layer 31 and a second flexible thermally conductive layer 32.
  • the first flexible thermally conductive layer 31 is thermally connected to the second flexible thermally conductive layer 32.
  • the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 are thermally connected and relatively slidable.
  • first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 can slide relative to each other, the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 cannot be easily bent due to multiple bendings of the flexible electronic device 100 during bending.
  • the first flexible heat conductive layer 31 and the second flexible heat conductive layer 32 that are relatively sliding do not easily generate faults due to blistering or wrinkling, which can ensure the ability of the entire flexible heat conductive layer 32 to conduct heat and improve the user experience.
  • the first flexible thermally conductive layer 31 overlaps with the second flexible thermally conductive layer 32 to partially overlap. This increases the contact area between the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 and facilitates the transfer of heat between the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32.
  • the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 are in direct contact with each other at an overlapping position. In this way, this further facilitates the transfer of heat between the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32.
  • the first portion 10 includes a motherboard component 12.
  • the motherboard component 12 is thermally connected to one side of the first heat sink 11.
  • the second portion 20 includes a battery component 22.
  • the battery component 22 is thermally connected to one side of the second heat sink 21.
  • the first flexible thermally conductive layer 31 is located on the opposite side of the first heat sink 11 from the main board component 12.
  • the second flexible thermally conductive layer 32 is located on the opposite side of the second heat sink 21 from the battery component 22.
  • the first flexible heat-conducting layer 31 and the first heat-dissipating body 11 are fully in contact with each other, so that the heat generated by the motherboard component 12 and the battery component 22 can be fully dissipated to the entire flexible heat-conducting layer 30, and the purpose of equalizing heat dissipation is achieved.
  • first flexible heat-conducting layer 31 is thermally connected to the first heat-dissipating body 11 and the second heat-dissipating body 21, so that the heat of the motherboard component 12 can be transferred to the first heat-dissipating body 11
  • the two heat sinks 21 dissipate heat.
  • the heat of the battery component 22 can also be transferred to the first heat sink 11 via the second heat sink 21 and the second flexible heat-conducting layer 32 for heat dissipation.
  • the first flexible heat-conducting layer 31 can transfer heat from the area of the motherboard component 12 to the area of the battery component 22 to achieve a better temperature uniformity effect.
  • the performance of the main board component 12 can be guaranteed, the operating speed of the flexible electronic device 100 can be improved, the service life can be extended, and the safety can be improved.
  • the second flexible thermally conductive layer 32 is thermally connected to the second heat sink 21.
  • the heat of the first heat radiating body 11 can be transferred to the second flexible heat conductive layer 32 through the first flexible heat conductive layer 31, and can be transferred to the second heat radiating body 21 to be dissipated by the second flexible heat conductive layer 32.
  • the bending of the flexible electronic device 100 does not affect the uniform temperature and heat dissipation capability of the flexible thermally conductive layer 30.
  • the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 may be connected in an overlapping manner, and then contact heat conduction is achieved.
  • the term "thermally conductively connected" in the present invention means that two heat-conductively connected components can exchange heat.
  • the shape of the flexible electronic device 100 can be set according to specific conditions, for example, it can be rectangular parallelepiped.
  • the flexible electronic device 100 is capable of switching between an unfolded state and a folded state. (As shown in Figure 2 and Figure 8).
  • the first heat radiating body 11 and the second heat radiating body 21 have a large heat radiation area
  • the first heat radiating body 11 can be made into a plate shape
  • the second heat radiating body 21 can be made into a plate shape.
  • the first heat dissipating body 11 and the second heat dissipating body 21 are generally close to each other when the flexible electronic device 100 is bent, and are generally far from each other when the flexible electronic device 100 is unfolded. In this way, even when the main board part 12 and the battery part 22 are close to each other when the flexible electronic device 100 is bent, the first heat radiating body 11 and the second heat radiating body 21 combined with the flexible heat-conducting layer 30 can even heat the main board part 12 and the battery part 22 The generated heat is dissipated, and when the flexible electronic device 100 is deployed, the first heat dissipating body 11 and the second heat dissipating body 21 are far away as a whole, which is beneficial to heat dissipation.
  • the first flexible heat-conducting layer 31 is used to transfer heat of the first heat-dissipating body 11 to the second flexible heat-conducting layer 32 and the second heat-dissipating body 21 for dissipation. In this way, the heat generated by the motherboard component 12 can be dissipated in time, and then the heat can be evenly distributed.
  • the flexible electronic device 100 when the flexible electronic device 100 is folded, the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 are relatively moved, and the overlapping portion of the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 increases. In this way, the area of the overlapping portion of the first flexible heat-conducting layer 31 and the second flexible heat-conducting layer 32 is increased, which facilitates the dissipation of heat when the flexible electronic device 100 is folded.
  • the flexible electronic device 100 includes a slider 50.
  • the connecting portion 40 includes a hinge assembly 41. The slider 50 and the hinge assembly 41 are disposed on the same side of the flexible heat-conducting layer 30.
  • the first flexible heat-conducting layer 31 conducts heat and is fixedly connected to the sliding member 50. In this way, the heat of the first heat sink 11 can be transferred to the slider 50 through the first flexible heat conductive layer 31 and can be transferred to the hinge assembly 41 by the slider 50.
  • the arrangement of the slider 50 can increase the heat dissipation area and make the first heat sink The heat of 11 can be better dissipated for uniform temperature cooling.
  • the hinge assembly 41 connects the first portion 10 and the second portion 20.
  • the hinge assembly 41, the first heat sink 11, and the second heat sink 21 are disposed on the same side of the flexible heat conductive layer 30. As such, the hinge assembly 41 can achieve relative rotation of the first portion 10 and the second portion 20.
  • the entire hinge assembly 41 is bendable.
  • the first part 10 and the second part 20 are symmetrically disposed on both sides of the hinge assembly 41.
  • the first part 10 and the second part 20 can be switched between the unfolded state and the folded state around the hinge assembly 41.
  • the hinge assembly 41 is disposed in a bending area of the flexible electronic device 100.
  • the first part 10 and the second part 20 are respectively located on two sides of the bending area of the flexible electronic device 100.
  • the heat of the first heat sink 11 can be transferred to the second flexible thermally conductive layer 32 through the first flexible thermally conductive layer 31.
  • the second flexible thermally conductive layer 32 is fixedly connected to the second heat sink 21.
  • the heat of the second flexible thermally conductive layer 32 can be transferred to the second heat sink 21 for dissipation.
  • the heat of the first heat sink 11 can also be transferred to the slider 50 and the hinge assembly 41 through the first flexible heat-conducting layer 31 to be dissipated through the slider 50 and the hinge assembly 41.
  • a second gap 51 exists between the slider 50 and the second heat sink 21; in the folded state of the flexible electronic device 100, the slider 50 and the second The heat sink 21 abuts.
  • the slider 50 is located between the hinge assembly 41 and the second heat sink 21.
  • the sliding member 50 may be connected to the hinge assembly 41 through an elastic member (not shown).
  • the sliding member 50 can slide in the direction of the second heat sink 21 relative to the hinge assembly 41 and can stop sliding when it is in contact with the second heat sink 21.
  • the slide member 50 can effectively transfer heat To the second heat sink 21 to facilitate the heat dissipation of the first heat sink 11.
  • the elastic member can be stretched to buffer the sliding of the slider 50.
  • the overlapping portion of the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 increases, so that the overlapping portion of the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32
  • the heat dissipation area is increased, and the heat dissipation efficiency of the flexible electronic device 100 in the folded state is improved.
  • the slider 50 may be a block-shaped slider.
  • the flexible electronic device 100 includes a support plate 33 attached to the first flexible thermally conductive layer 31.
  • the support plate 33 is located between the hinge assembly 41 and the first flexible thermally conductive layer 31.
  • the support plate 33 is fixedly connected to the slider 50. In this way, the first flexible heat-conducting layer 31 and the support plate 33 can move as the slider 50 slides.
  • the flexible electronic device 100 is bent, the first flexible thermally conductive layer 31 and the support plate 33 can move toward the second heat sink 21 with the slider 50, and the overlapping portion of the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 increasing.
  • the first heat sink 11 and the first flexible heat-conducting layer 31 are respectively located on two sides of the support plate 33.
  • the support plate 33 is located between the slider 50, the hinge assembly 41 and the first flexible heat-conducting layer 31. That is, the support plate 33 separates the first flexible heat conductive layer 31 and the slider 50 and the hinge assembly 41. In this way, the heat of the first heat sink 11 can be transferred to the first flexible heat-conducting layer 31 via the support plate 33 to be dissipated.
  • the orthographic projection area of the support plate 33 on the first flexible thermally conductive layer 31 substantially covers the first flexible thermally conductive layer 31 (the size of the support plate 33 may be consistent with the size of the first flexible thermally conductive layer 31, or the support plate 33 (The size is slightly larger than the size of the first flexible thermally conductive layer 31), so that the support plate 33 can completely separate the first flexible thermally conductive layer 31 and the hinge assembly 41.
  • the slider 50 corresponds to an overlapping portion of the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32. In this way, the path for transferring heat from the overlapping portion of the first flexible thermally conductive layer 31 and the second flexible thermally conductive layer 32 to the slider 50 is relatively short, which is conducive to the heat dissipation.
  • the first flexible thermally conductive layer 31 covers the hinge assembly 41 and the slider 50 and is thermally connected to the hinge assembly 41 and the slider 50. In this way, the first flexible heat-conducting layer 31 has a large heat-conducting area, and can further transfer heat to the hinge assembly 41 and the sliding member 50 to be dissipated.
  • the first flexible thermally conductive layer 31 is a graphene material or a graphite material.
  • the second flexible thermally conductive layer 32 is made of a graphene material or a graphite material.
  • the support plate 33 is made of metal. In this way, the heat conductive effect of the entire flexible heat conductive layer 30 and the support plate 33 is better.
  • the support plate 33 may be made of a metal steel sheet.
  • the flexible electronic device 100 includes a flexible screen assembly 60.
  • the flexible screen assembly 60 is mounted on the second flexible thermally conductive layer 32. In this way, this is beneficial to the heat dissipation of the flexible screen assembly 60.
  • the flexible screen assembly 60 is installed on a side of the second flexible heat-conducting layer 32 facing away from the second portion 20.
  • the second flexible thermally conductive layer 32 is located between the flexible screen assembly 60 and the first flexible thermally conductive layer 31. This is good for heat dissipation.
  • the flexible screen assembly 60 includes a support frame 61 and a flexible display screen 62.
  • the supporting frame 61 is disposed on a side of the second flexible heat conductive layer 32 facing away from the second portion 20.
  • the flexible display screen 62 is disposed on a side of the support frame 61 facing away from the second flexible thermally conductive layer 32.
  • the support frame 61 can improve the overall stability of the flexible screen assembly 60.
  • the support frame 61 is a liquid metal support frame.
  • the heat transferred from the first flexible heat-conducting layer 31 to the second flexible heat-conducting layer 32 can also be dissipated by the flexible display screen 62 after being conducted through the supporting frame 61.
  • the second flexible thermally conductive layer 32 is adhered to the support frame 61. In this way, the contact area between the second flexible thermally conductive layer 32 and the support frame 61 is large, which is beneficial to the heat dissipation of the second flexible thermally conductive layer 32.
  • the first heat sink 11 is formed with a first groove 111.
  • the second heat sink 21 is formed with a second groove 211.
  • the first groove 111 and the second groove 211 together form a receiving groove 110.
  • the flexible heat-conducting layer 30 is partially or completely contained in the receiving groove 110. In this way, the arrangement of the receiving groove 110 improves the installation stability of the flexible thermally conductive layer 30 and increases the contact area between the first and second heat sinks 11 and 21 and the flexible thermally conductive layer 30.
  • the first flexible thermally conductive layer 31 is mounted on the first groove 111.
  • the second flexible thermally conductive layer 32 is mounted on the second groove 211.
  • the second flexible thermally conductive layer 32 is thermally connected to the second heat sink 21.
  • the second flexible thermally conductive layer 32, the first flexible thermally conductive layer 31, and the support plate 33 are sequentially stacked and attached to the receiving groove 110.
  • the shape of the support plate 33 matches the shape of the first flexible thermally conductive layer 31.
  • the support plate 33 is located between the first flexible heat-conducting layer 31 and the bottom wall of the receiving groove 110.
  • the flexible thermally conductive layer 30 is completely contained in the receiving groove 110, and the entire thickness of the flexible thermally conductive layer 30 is smaller than the depth of the receiving groove 110. In this way, the receiving groove 110 can also accommodate other components (such as the flexible display 62 and the support frame 61).
  • the hinge assembly 41 includes a bendable hinge body 42 and two bendable connecting pieces 43 provided on the hinge body 42.
  • the two connecting members 43 connect the first portion 10 and the second portion 20.
  • a first notch 44 is opened on one side of the first groove 111
  • a second notch 45 is opened on one side of the second groove 211.
  • the top surface of the hinge body 42 is substantially coplanar with the bottom surface of the first groove 111 and the bottom surface of the second groove 211.
  • Two connecting members 43 are oppositely disposed on both sides of the top surface of the hinge body 42 near the edge.
  • the two connecting members 43 connect the edge of the first notch 44 and the edge of the second notch 45 respectively, that is, the connecting member 43 can connect the first heat sink. ⁇ 11 and second heat sink 21.
  • the motherboard component 12 includes a motherboard 121 and a first chip portion 122.
  • the first chip portion 122 includes a first shield cover 1221 and a first chip 1222.
  • the first chip 121 and the first shield cover 1221 are disposed on the main board 121.
  • the first shielding cover 1221 covers the first chip 121 and is thermally connected to the first chip 121.
  • the first shield cover 1221 is thermally connected to the first heat sink 11. In this way, the heat generated by the first chip 1222 can be conducted to the first heat sink 11 and dissipated by the first shield 1221.
  • the first shielding cover 1221 may be used to protect the first chip 1222.
  • the first chip portion 122 includes a first thermally conductive layer 1223.
  • the first thermally conductive layer 1223 thermally connects the first shielding cover 1221 and the first chip 1222 in a thermally conductive manner.
  • the first thermally conductive layer 1223 improves the efficiency of thermal conduction between the first chip 1222 and the first shield 1221.
  • the first thermally conductive layer 1223 may be, for example, a thermally conductive silicon gel or a thermally conductive silicone grease.
  • the motherboard component 12 includes a second chip portion 123.
  • the second chip portion 123 includes a second shield cover 1231 and a second chip 1232.
  • the second chip 1232 and the second shield cover 1231 are disposed on a side of the main board 121 facing away from the first chip portion 122.
  • the second shielding cover 1231 covers the second chip 1232 and is thermally connected to the second chip 1232. In this way, the second shielding cover 1231 increases the heat dissipation area of the motherboard component 12 and protects the second chip 1232.
  • the heat dissipation between the first chip portion 122 and the second chip portion 123 does not affect each other, and the heat dissipation efficiency is improved.
  • the second chip portion 123 includes a second thermally conductive layer 1233.
  • the second thermally conductive layer 1233 is thermally connected to the second shielding cover 1231 and the second chip 1232.
  • the second heat-conducting layer 1233 improves the efficiency of heat conduction between the second chip 1232 and the second shield cover 1231.
  • the second thermally conductive layer 1233 may be, for example, a thermally conductive silicon gel or a thermally conductive silicone grease.
  • the first portion 10 includes a thermally conductive first cover 13.
  • the first cover 13 and the first heat sink 11 are connected and together form a first mounting cavity 130.
  • the motherboard component 12 is housed in the first mounting cavity 130.
  • the second shield cover 1231 is thermally connected to the first cover 13. In this way, the first cover 13 not only increases the heat dissipation area of the motherboard component 12, but also protects the motherboard component 12.
  • the first portion 10 includes a third thermally conductive layer 14.
  • the third thermally conductive layer 14 thermally connects the second shielding cover 1231 and the first cover 13. As such, the third thermally conductive layer 14 improves the efficiency of thermal conduction between the second shield cover 1231 and the first cover 13.
  • the third thermally conductive layer 14 may be made of a graphite material.
  • the third thermally conductive layer 14 may be a graphite sheet.
  • the second portion 20 includes a thermally conductive second cover 23.
  • the second cover 23 and the second heat sink 21 are connected and together form a second mounting cavity 230.
  • the battery component 22 is located in the second mounting cavity 230.
  • the battery component 22 is thermally connected to the second cover 23. In this way, the second cover 23 is provided to increase the heat radiation area of the battery component 22 and protect the battery component 22.
  • the end of the first cover 13 and the end of the second cover 23 are generally close to each other, and the end of the first cover 13 and the second cover 23 The distance between the ends is smaller than the distance between the first heat sink 11 and the second heat sink 21. In this way, when the flexible electronic device 100 is bent, this is more conducive to the dissipation of heat.
  • the second portion 20 includes a fourth thermally conductive layer 24.
  • the fourth thermally conductive layer 24 thermally connects the battery component 22 and the second cover 23.
  • the fourth thermally conductive layer 24 improves the efficiency of heat conduction between the battery component 22 and the second cover 23.
  • the fourth thermally conductive layer 24 may be made of a graphite material.
  • the fourth thermally conductive layer 24 may be a graphite sheet.
  • first cover 13 and the second cover 23 respectively form two heat dissipation paths, that is, the first cover 13 can dissipate the heat of the motherboard component 12, and the second cover 23 can dissipate the heat of the battery component 22. .
  • the first cover 13 and the second cover 23 do not affect each other, and each emits heat.
  • the first cover 13 and the second cover 23 are close to each other or even come into contact with each other, and there is less space for emitting heat to the outside, and the heat dissipation efficiency is lower.
  • the first cover 13 and the second cover 23 are made of a non-thermally conductive material such as plastic, the heat emission is further affected. Therefore, in the folded state, heat is mainly dissipated through another heat dissipation path, that is, through a heat sink that is still located outside.
  • the heat of the motherboard component 12 is homogenized to the second heat sink 21 of the battery component 22 through the heat conducting component.
  • the heat of the battery component 22 and the transferred heat of the motherboard component 12 is dissipated through the second heat radiator 21, and the heat of the 12 motherboard components is simultaneously Dissipation is performed by the first heat sink 11 and the flexible heat-conducting layer 30, thereby ensuring overall heat dissipation efficiency.
  • the first cover 13, the second cover 23, the first heat sink 11, and the second heat sink 21 all serve as main heat dissipation paths for heat dissipation.
  • the thermally conductive component may also include only the flexible thermally conductive layer 30, that is, the flexible thermally conductive layer 30 simultaneously performs the thermally conductive function and the supporting function, and the support plate 33 may be omitted at this time.
  • the hinge assembly 41 when the hinge assembly 41 is made of a metal material, it can also be used as a heat dissipation path to dissipate the heat of the battery component 22 and the motherboard component 12. That is, the first cover 13, the second cover 23, the heat-conducting component, the first heat sink 11, and the second heat sink 21 can further transfer heat to the hinge assembly 41, and then dissipate the heat through the hinge assembly 41 to further improve the heat dissipation effect.
  • the "first" or “down” of the second feature may include the first and second features in direct contact, and may also include the first and second features. Not directly, but through another characteristic contact between them.
  • the first feature is “above”, “above”, and “above” the second feature, including that the first feature is directly above and obliquely above the second feature, or merely indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature, including the fact that the first feature is directly below and obliquely below the second feature, or merely indicates that the first feature is less horizontal than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种柔性电子装置(100),第一部分(10)包括第一散热体(11)。第二部分(20)包括第二散热体(21)。连接部40连接第一部分10和第二部分20。第一部分10和第二部分20可绕连接部40转动以使柔性电子装置100在展平状态和折叠状态切换。柔性导热层(30)包括第一柔性导热层(31)和第二柔性导热层(32)。第一柔性导热层(31)导热地连接第二柔性导热层(32)。第一柔性导热层(31)与第二柔性导热层(32)导热连接且可相对滑动。

Description

柔性电子装置 技术领域
本发明涉及消费性电子技术领域,更具体而言,涉及一种柔性电子装置。
背景技术
相关技术中的柔性电子装置,如柔性手机,包括第一部分和第二部分。通常地,第一部分设置有主板,第二部分设置有电池。由于主板发热产生的热量较大,相关技术中的柔性电子装置通过设置连接第一部分和第二部分的柔性导热层,以使第一部分传递热量至第二部分以形成均温散热。然而,柔性电子装置在进行多次折叠弯折后,柔性导热层容易受力而产生起泡褶皱现象,可能导致柔性导热层产生断层,并会影响柔性导热层的散热能力,继而影响用户体验。
发明内容
本发明提供一种柔性电子装置。
本发明实施方式的柔性电子装置能够弯折,其包括第一部分、第二部分、柔性导热层和连接部,所述第一部分包括第一散热体,所述第二部分包括第二散热体,所述连接部连接所述第一部分和第二部分,所述第一部分和第二部分可绕所述连接部转动以使所述柔性电子装置在展平状态和折叠状态切换,所述柔性导热层包括第一柔性导热层和第二柔性导热层,所述第一柔性导热层导热连接所述第一散热体,所述第二柔性导热层导热连接所述第二散热体,所述第一柔性导热层与所述第二柔性导热层导热连接且可相对滑动。
上述柔性电子装置中,由于第一柔性导热层与第二柔性导热层可相对滑动,这样第一柔性导热层与第二柔性导热层在弯折时不容易由于柔性电子装置的多次弯折而产生起泡或褶皱现象,且相对滑动的第一柔性导热层与第二柔性导热层不容易产生断层,继而可保证柔性导热层整体的传导热量的能力,提高用户体验。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施方式的柔性电子装置展平时的立体示意图;
图2是本发明实施方式的柔性电子装置折叠时的立体示意图;
图3是本发明实施方式的柔性电子装置展平时部分结构的立体分解示意图;
图4是本发明实施方式的柔性电子装置展平时部分结构的另一视角的立体分解示意图;
图5是本发明实施方式的柔性电子装置展平时部分结构的又一视角的立体分解示意图;
图6是本发明实施方式的柔性电子装置展平时的立体分解示意图;
图7是本发明实施方式的柔性电子装置展平时的剖面示意图;
图8是本发明实施方式的柔性电子装置折叠时的剖面示意图。
主要元件符号说明:
柔性电子装置100;
第一部分10、第一散热体11、收容槽110、第一凹槽111、主板部件12、主板121、第一芯片部122、第一屏蔽罩1221、第一芯片1222、第一导热层1223、第二芯片部123、第二屏蔽罩1231、第二芯片1232、第二导热层1233、第一盖体13、第一安装腔130、第三导热层14、第二部分20、第二散热体21、第二凹槽211、电池部件22、第二盖体23、第二安装腔230、第四导热层24、柔性导热层30、第一柔性导热层31、第二柔性导热层32、第一间隙321、支撑板33、连接部40、铰链组件41、铰链本体42、连接件43、第一缺口44、第二缺口45、滑动件50、第二间隙51、第三间隙511、柔性屏组件60、支撑架61、柔性显示屏62。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的 方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
请一并参阅图1-8,本发明实施方式的柔性电子装置100能够弯折。柔性电子装置100例如可为柔性折叠手机或者柔性折叠平板电脑等。柔性电子装置100包括第一部分10、第二部分20、柔性导热层30和连接部40。
第一部分10包括第一散热体11。第二部分20包括第二散热体21。连接部40连接第一部分10和第二部分20。第一部分10和第二部分20可绕连接部40转动以使柔性电子装置100在展平状态和折叠状态切换。柔性导热层30包括第一柔性导热层31和第二柔性导热层32。第一柔性导热层31导热地连接第二柔性导热层32。第一柔性导热层31与第二柔性导热层32导热连接且可相对滑动。
如此,由于第一柔性导热层31与第二柔性导热层32可相对滑动,这样第一柔性导热层31与第二柔性导热层32在弯折时不容易由于柔性电子装置100的多次弯折而产生起泡或褶皱现象,且相对滑动的第一柔性导热层31与第二柔性导热层32不容易产生断层,继而可保证柔性导热层32整体的传导热量的能力,提高用户体验。
在某些实施方式中,第一柔性导热层31与第二柔性导热层32搭接而部分重叠。这样增加了第一柔性导热层31与第二柔性导热层32的接触面积,利于热量在第一柔性导热层31与第二柔性导热层32之间的传递。
在某些实施方式中,第一柔性导热层31与第二柔性导热层32在重叠位置直接接触。如此,这样进一步利于热量在第一柔性导热层31与第二柔性导热层32之间的传递。
在某些实施方式中,第一部分10包括主板部件12。主板部件12导热地连接在第一散热体11的一侧。第二部分20包括电池部件22。电池部件22导热地连接在第二散热体21的一侧。第一柔性导热层31位于第一散热体11的与主板部件12相反的一侧。第二柔性导热层32位于第二散热体21的与电池部件22相反的一侧。如此,第一柔性导热层31和第一散热体11充分接触,使主板部件12及电池部件22产生的热量能够充分 地散发至整个柔性导热层30,继而达到均衡散热的目的。
需要说明的是,第一柔性导热层31导热地连接第一散热体11和第二散热体21,这样使得主板部件12的热量可经第一散热体11和第一柔性导热层31传递至第二散热体21进行散热,同样的,电池部件22的热量也可经第二散热体21和第二柔性导热层32传递至第一散热体11进行散热。在主板部件12或电池部件22的发热量较大时,由于散热面积较大,可更好地散热,进而可防止柔性电子装置100的局部过热,从而提高用户体验。特别地,由于主板部件12的发热量大于电池部件22的发热量,因此第一柔性导热层31可将热量从主板部件12的区域传递给电池部件22的区域,达到较好的均温效果,并且可保证主板部件12运行的性能,提高柔性电子装置100的运行速度,延长使用寿命,提高安全性。
在本实施方式中,第二柔性导热层32导热地连接第二散热体21。第一散热体11的热量可经由第一柔性导热层31传递至第二柔性导热层32,并由第二柔性导热层32传递至第二散热体21以散发。并且,柔性电子装置100的弯折不影响柔性导热层30的均温散热能力。其中,第一柔性导热层31和第二柔性导热层32可采用搭接的方式连接,继而实现接触式导热。另外,本发明中的“导热地连接”指的是两个导热连接的部件之间能够进行热交换。另外,柔性电子装置100的形状可根据具体情况进行设置,例如可呈长方体状等。柔性电子装置100能够在展开状态和折叠状态之间进行切换。(如图2及图8所示)。
可以理解,为了使第一散热体11和第二散热体21具有较大的散热面积,可使第一散热体11呈板状,并使第二散热体21呈板状。
在某些实施方式中,第一散热体11与第二散热体21在柔性电子装置100弯折时整体相互靠近,在柔性电子装置100展开时整体相互远离。这样即使在柔性电子装置100弯折时主板部件12和电池部件22相互靠近,第一散热体11与第二散热体21结合柔性导热层30也能够即使将主板部件12产生的热量和电池部件22产生的热量散出,而在柔性电子装置100展开时,第一散热体11与第二散热体21整体远离,这样利于散热。
在某些实施方式中,第一柔性导热层31用于将第一散热体11的热量传递给第二柔性导热层32和第二散热体21进行散发。如此,主板部件12产生的热量能够得到及时的散发,继而达到均衡散热。
在某些实施方式中,柔性电子装置100折叠时,第一柔性导热层31与第二柔性导热层32相对移动,第一柔性导热层31与第二柔性导热层32的重叠部分变多。如此,第一柔性导热层31与第二柔性导热层32的重叠部分的面积增大,这样利于柔性电子装置100折叠时热量的散发。在某些实施方式中,柔性电子装置100包括滑动件50。连接 部40包括铰链组件41。滑动件50与铰链组件41设置在柔性导热层30的同侧。第一柔性导热层31与滑动件50导热并固定连接。如此,第一散热体11的热量能够经由第一柔性导热层31传递至滑动件50,并能够由滑动件50传递至铰链组件41,滑动件50的设置能够增加散热面积,使第一散热体11的热量能够更好散发,以进行均温散热。
在本实施方式中,铰链组件41连接第一部分10和第二部分20。铰链组件41、第一散热体11和第二散热体21设置在柔性导热层30的同侧。如此,铰链组件41可实现第一部分10和第二部分20的相对转动。
在本实施方式中,铰链组件41整体为可弯曲。第一部分10和第二部分20对称设置于铰链组件41的两侧。第一部分10和第二部分20能够绕铰链组件41在展开状态和折叠状态之间进行切换。进一步,铰链组件41设置于柔性电子装置100的弯折区域。第一部分10和第二部分20分别位于柔性电子装置100的弯折区域的两侧。
在本实施方式中,第一散热体11的热量可通过第一柔性导热层31传递至第二柔性导热层32。第二柔性导热层32与第二散热体21固定连接。第二柔性导热层32与第二散热体21存在第一间隙321。第二柔性导热层32的热量能够传递至第二散热体21以进行散发。第一散热体11的热量还能够经由第一柔性导热层31传递至滑动件50及铰链组件41,以通过滑动件50及铰链组件41进行散发。
在某些实施方式中,在柔性电子装置100的展开状态下,滑动件50与第二散热体21之间存在第二间隙51;在柔性电子装置100的折叠状态下,滑动件50与第二散热体21抵接。
具体地,滑动件50位于铰链组件41和第二散热体21之间。滑动件50可通过弹性件(图未示出)连接铰链组件41。滑动件50与第二散热体21之间存在第二间隙51。在柔性电子装置100弯折时,滑动件50能够相对铰链组件41向第二散热体21方向滑动并能够抵持接触第二散热体21而停止滑动,这时滑动件50能够有效地将热量传递至第二散热体21,以利于第一散热体11的热量的散发。在滑动件50向第二散热体21方向滑动时,弹性件因受拉伸而能够缓冲滑动件50的滑动。在滑动件50向第二散热体21方向滑动时,第一柔性导热层31与第二柔性导热层32的重叠部分变多,这样第一柔性导热层31与第二柔性导热层32的重叠部分的散热面积增大,继而提高了柔性电子装置100在折叠状态下的散热效率。在柔性电子装置100的折叠状态下,滑动件50与铰链组件41之间存在第三间隙511。在柔性电子装置100向展平状态切换时,弹性件收缩以使得滑动件50收缩并向铰链组件41滑动,滑动件50与第二散热体21之间重新出现第二间隙51,这时滑动件50能够将第一柔性导热层31的热量传递至铰链组件41以进行散发。滑动件50可为块状的滑块。
在某些实施方式中,柔性电子装置100包括贴设在第一柔性导热层31上的支撑板33。支撑板33位于铰链组件41与第一柔性导热层31之间。支撑板33与滑动件50固定连接。如此,第一柔性导热层31及支撑板33能够随着滑动件50的滑动以移动。在柔性电子装置100弯折时,第一柔性导热层31及支撑板33能够随着滑动件50向第二散热体21方向移动,第一柔性导热层31与第二柔性导热层32的重叠部分变多。
在本实施方式中,第一散热体11和第一柔性导热层31分别位于支撑板33的两侧。支撑板33位于滑动件50、铰链组件41与第一柔性导热层31之间。即,支撑板33隔开第一柔性导热层31和滑动件50以及铰链组件41。如此,第一散热体11的热量能够经由支撑板33传递至第一柔性导热层31以进行散发。
较佳地,支撑板33在第一柔性导热层31上的正投影面积基本覆盖第一柔性导热层31(支撑板33的尺寸可与第一柔性导热层31的尺寸保持一致,或支撑板33的尺寸稍大于第一柔性导热层31的尺寸),这样支撑板33能够完全隔开第一柔性导热层31和铰链组件41。
在某些实施方式中,滑动件50对应于第一柔性导热层31与第二柔性导热层32的重叠部分。这样热量由第一柔性导热层31与第二柔性导热层32的重叠部分传递至滑动件50的路径较短,继而利于热量的散发。
在某些实施方式中,第一柔性导热层31覆盖铰链组件41及滑动件50并与铰链组件41及滑动件50导热连接。如此,第一柔性导热层31具有较大的导热面积,并能够进一步将热量传递至铰链组件41及滑动件50而散出。
在某些实施方式中,第一柔性导热层31采用石墨烯材料或者石墨材料。第二柔性导热层32采用石墨烯材料或者石墨材料制成。支撑板33采用金属制成。如此,柔性导热层30整体和支撑板33的导热效果较佳。在一个例子中,支撑板33可采用金属钢片制成。
在某些实施方式中,柔性电子装置100包括柔性屏组件60。柔性屏组件60安装于第二柔性导热层32上。如此,这样有利于柔性屏组件60的散热。
在本实施方式中,柔性屏组件60安装于第二柔性导热层32背离第二部分20的一侧。第二柔性导热层32位于柔性屏组件60和第一柔性导热层31之间。这样利于热量的散发。
在某些实施方式中,柔性屏组件60包括支撑架61和柔性显示屏62。支撑架61设置在第二柔性导热层32的背离第二部分20的一侧。柔性显示屏62设置在支撑架61的背离第二柔性导热层32的一侧。如此,支撑架61的设置能够提高柔性屏组件60整体的稳定性。在一个例子中,支撑架61是液态金属支撑架。另外,由第一柔性导热层31 传递至第二柔性导热层32的热量也可经由支撑架61传导后由柔性显示屏62散发。
在本实施方式中,第二柔性导热层32粘接于支撑架61。这样第二柔性导热层32与支撑架61的接触面积较大,利于第二柔性导热层32的热量散发。
在某些实施方式中,第一散热体11形成有第一凹槽111。第二散热体21形成有第二凹槽211。第一凹槽111和第二凹槽211共同形成收容槽110。柔性导热层30部分或完全收容于收容槽110中。如此,收容槽110的设置提高柔性导热层30安装的稳定性,并且增大第一散热体11和第二散热体21与柔性导热层30的接触面积。
在本实施方式中,第一柔性导热层31安装于第一凹槽111。第二柔性导热层32安装于第二凹槽211。第二柔性导热层32导热地连接第二散热体21。第二柔性导热层32、第一柔性导热层31和支撑板33依次堆叠贴合在收容槽110中。支撑板33的形状与第一柔性导热层31的形状相匹配。支撑板33位于第一柔性导热层31和收容槽110的底壁之间。柔性导热层30完全收容于收容槽110,且柔性导热层30整体的厚度小于收容槽110的深度,这样收容槽110内还可收容其它部件(例如柔性显示屏62和支撑架61)。
进一步,铰链组件41包括可弯曲的铰链本体42和设置在铰链本体42上的可弯曲的两个连接件43。两个连接件43连接第一部分10和第二部分20。第一凹槽111的一侧开设有第一缺口44,第二凹槽211的一侧开设有第二缺口45。铰链本体42的顶面与第一凹槽111的底面和第二凹槽211的底面基本共面。两个连接件43相对设置于铰链本体42的顶面靠近边缘的两侧,两个连接件43分别连接第一缺口44的边缘和第二缺口45的边缘,即连接件43可连接第一散热体11和第二散热体21。
在某些实施方式中,请结合图5-图7,主板部件12包括主板121和第一芯片部122。第一芯片部122包括第一屏蔽罩1221和第一芯片1222。第一芯片121和第一屏蔽罩1221设置在主板121上。第一屏蔽罩1221罩设第一芯片121并与第一芯片121导热地连接。第一屏蔽罩1221导热地连接第一散热体11。如此,第一芯片1222产生的热量可由第一屏蔽罩1221传导至第一散热体11而散出。第一屏蔽罩1221可以用于对第一芯片1222起保护作用。在某些实施方式中,第一芯片部122包括第一导热层1223。第一导热层1223导热地连接第一屏蔽罩1221和第一芯片1222。如此,第一导热层1223提高第一芯片1222和第一屏蔽罩1221之间热传导的效率。第一导热层1223例如可为导热硅胶或者导热硅脂。
在某些实施方式中,主板部件12包括第二芯片部123。第二芯片部123包括第二屏蔽罩1231和第二芯片1232。第二芯片1232和第二屏蔽罩1231设置在主板121背离第一芯片部122的一侧。第二屏蔽罩1231罩设第二芯片1232并与第二芯片1232导热地连接。如此,第二屏蔽罩1231增大主板部件12的散热面积,以及用于保护第二芯片1232。 并且,第一芯片部122和第二芯片部123之间的散热相互不会影响,提高了散热效率。
在某些实施方式中,第二芯片部123包括第二导热层1233。第二导热层1233导热地连接第二屏蔽罩1231和第二芯片1232。如此,第二导热层1233提高第二芯片1232和第二屏蔽罩1231之间热传导的效率。第二导热层1233例如可为导热硅胶或者导热硅脂。
在某些实施方式中,第一部分10包括导热的第一盖13。第一盖13和第一散热体11连接并共同形成有第一安装腔130。主板部件12收容于第一安装腔130内。第二屏蔽罩1231导热地连接第一盖13。如此,第一盖13既提高了主板部件12的散热面积,也可保护主板部件12。
在某些实施方式中,第一部分10包括第三导热层14。第三导热层14导热地连接第二屏蔽罩1231和第一盖13。如此,第三导热层14提高了第二屏蔽罩1231和第一盖13之间热传导的效率。第三导热层14可采用石墨材料制成,例如第三导热层14可为石墨片。
在某些实施方式中,第二部分20包括导热的第二盖23。第二盖23和第二散热体21连接并共同形成有第二安装腔230。电池部件22位于第二安装腔230内。电池部件22导热地连接第二盖23。如此,第二盖23的设置既能够提高电池部件22的散热面积,也可保护电池部件22。
在某些实施方式中,在柔性电子装置100弯折过程中,第一盖13的端部与第二盖23的端部整体相互靠近,且第一盖13的端部与第二盖23的端部之间的距离小于第一散热体11与第二散热体21之间的距离。如此,在柔性电子装置100弯折时,这样更利于热量的散发。
在某些实施方式中,第二部分20包括第四导热层24。第四导热层24导热地连接电池部件22和第二盖23。如此,第四导热层24提高了电池部件22和第二盖23之间热传导的效率。第四导热层24可采用石墨材料制成,例如第四导热层24可为石墨片。
需要说明的是,第一盖13及第二盖23分别形成了两条散热路径,即第一盖13可对主板部件12的热量进行散发,第二盖23可对电池部件22的热量进行散发。当柔性电子装置100处于展开状态时,第一盖13与第二盖23互不影响,各自散发热量。然而,当柔性电子装置100处于折叠状态时,第一盖13与第二盖23相互靠近甚至接触,向外散发热量的空间较小,散热效率较低。并且,当第一盖13及第二盖23采用塑胶等非导热性材料制造时,更影响热量的散发。因此,在折叠状态时,主要是通过另外的散热路径,即通过仍旧位于外侧的散热体进行散热。主板部件12的热量通过导热组件均化至电池部件22的第二散热体21,电池部件22的热量及传递过来的主板部件12的热量通 过第二散热体21散发,主板部12件的热量同时通过第一散热体11及柔性导热层30进行散发,从而确保整体的散热效率。当柔性电子装置100处于展开状态时,第一盖13、第二盖23、第一散热体11及第二散热体21均作为主要的散热路径散热。
可以理解地,导热组件也可以仅包括柔性导热层30,即通过柔性导热层30同时起到导热作用和支撑作用,此时支撑板33可以省略。
进一步地,当铰链组件41采用金属材料制造时,其也可以作为散热路径对电池部件22及主板部件12的热量进行散发。即第一盖13、第二盖23、导热组件、第一散热体11及第二散热体21可将热量进一步传递给铰链组件41,然后通过铰链组件41对外散发,以进一步提升散热效果。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (22)

  1. 一种可弯折的柔性电子装置,其特征在于,包括:
    第一部分,所述第一部分包括第一散热体;
    第二部分,所述第二部分包括第二散热体;
    连接部,所述连接部连接所述第一部分和第二部分,所述第一部分和第二部分可绕所述连接部转动以使所述柔性电子装置在展平状态和折叠状态切换;
    柔性导热层,所述柔性导热层包括第一柔性导热层和第二柔性导热层,所述第一柔性导热层导热连接所述第一散热体,所述第二柔性导热层导热连接所述第二散热体,所述第一柔性导热层与所述第二柔性导热层导热连接且可相对滑动。
  2. 如权利要求1所述的柔性电子装置,其特征在于,所述第一柔性导热层与所述第二柔性导热层搭接而部分重叠。
  3. 如权利要求2所述的柔性电子装置,其特征在于,所述第一柔性导热层与所述第二柔性导热层在重叠位置直接接触。
  4. 如权利要求1所述的柔性电子装置,其特征在于,所述第一部分包括主板部件,所述主板部件导热地连接在所述第一散热体的一侧,所述第二部分包括电池部件,所述电池部件导热地连接在所述第二散热体的一侧,所述第一柔性导热层位于所述第一散热体的与所述主板部件相反的一侧,所述第二柔性导热层位于所述第二散热体的与所述电池部件相反的一侧。
  5. 如权利要求2所述的柔性电子装置,其特征在于,所述柔性电子装置折叠时,所述第一柔性导热层与所述第二柔性导热层相对移动,所述第一柔性导热层与所述第二柔性导热层的重叠部分变多。
  6. 如权利要求5所述的柔性电子装置,其特征在于,所述柔性电子装置包括滑动件,所述连接部包括铰链组件,所述滑动件与所述铰链组件设置在所述柔性导热层的同侧;所述第一柔性导热层与所述滑动件导热并固定连接。
  7. 如权利要求6所述的柔性电子装置,其特征在于,在所述柔性电子装置的展开状 态下,所述滑动件与所述第二散热体之间存在间隙;在所述柔性电子装置的折叠状态下,所述滑动件与所述第二散热体抵接。
  8. 如权利要求7所述的柔性电子装置,其特征在于,所述柔性电子装置包括贴设在所述第一柔性导热层上的支撑板,所述支撑板位于所述铰链组件与所述第一柔性导热层之间,所述支撑板与所述滑动件固定连接。
  9. 如权利要求8所述的柔性电子装置,其特征在于,所述滑动件对应于所述第一柔性导热层与所述第二柔性导热层的重叠部分。
  10. 如权利要求6所述的柔性电子装置,其特征在于,所述第一柔性导热层覆盖所述铰链组件及所述滑动件并与所述铰链组件及所述滑动件导热连接。
  11. 如权利要求8所述的柔性电子装置,其特征在于,所述第一柔性导热层采用石墨烯材料或者石墨材料制成,所述第二柔性导热层采用石墨烯材料或者石墨材料制成,所述支撑板采用金属制成。
  12. 如权利要求1所述的柔性电子装置,其特征在于,所述柔性电子装置包括柔性屏组件,所述柔性屏组件安装于所述第二柔性导热层上。
  13. 如权利要求12所述的柔性电子装置,其特征在于,所述柔性屏组件包括支撑架和柔性显示屏,所述支撑架设置在所述第二柔性导热层的背离所述第二部分的一侧,所述柔性显示屏设置在所述支撑架的背离所述第二柔性导热层的一侧。
  14. 如权利要求1所述的柔性电子装置,其特征在于,所述第一散热体形成有第一凹槽,所述第二散热体形成有第二凹槽,所述第一凹槽和所述第二凹槽共同形成收容槽,所述柔性导热层部分或完全收容于所述收容槽中。
  15. 如权利要求4所述的柔性电子装置,其特征在于,所述主板部件包括主板和第一芯片部,所述第一芯片部包括第一屏蔽罩和第一芯片,所述第一芯片和所述第一屏蔽罩设置在所述主板上,所述第一屏蔽罩罩设所述第一芯片并与所述第一芯片导热地连接,所述第一屏蔽罩导热地连接所述第一散热体。
  16. 如权利要求15所述的柔性电子装置,其特征在于,所述主板部件包括第二芯片部,所述第二芯片部包括第二屏蔽罩和第二芯片,所述第二芯片和所述第二屏蔽罩设置在所述主板背离所述第一芯片部的一侧,所述第二屏蔽罩罩设所述第二芯片并与所述第二芯片导热地连接。
  17. 如权利要求15所述的柔性电子装置,其特征在于,所述第一芯片部包括第一导热层,所述第一导热层导热地连接所述第一屏蔽罩和所述第一芯片。
  18. 如权利要求17所述的柔性电子装置,其特征在于,所述第二芯片部包括第二导热层,所述第二导热层导热地连接所述第二屏蔽罩和所述第二芯片。
  19. 如权利要求17所述的柔性电子装置,其特征在于,所述第一部分包括导热的第一盖,所述第一盖和所述第一散热体连接并共同形成有第一安装腔,所述主板部件位于所述第一安装腔内,所述第二屏蔽罩导热地连接所述第一盖。
  20. 如权利要求19所述的柔性电子装置,其特征在于,所述第一部分包括第三导热层,所述第三导热层导热地连接所述第二屏蔽罩和所述第一盖。
  21. 如权利要求1所述的柔性电子装置,其特征在于,所述柔性电子装置包括电池部件;所述第二部分包括导热的第二盖,所述第二盖和所述第二散热体连接并共同形成有第二安装腔,所述电池部件位于所述第二安装腔内,所述电池部件导热地连接所述第二盖。
  22. 如权利要求21所述的柔性电子装置,其特征在于,所述第二部分包括第四导热层,所述第四导热层导热地连接所述电池部件和所述第二盖。
PCT/CN2018/114071 2018-09-14 2018-11-06 柔性电子装置 WO2020052030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880094171.1A CN112640597A (zh) 2018-09-14 2018-11-06 柔性电子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/105815 WO2020051904A1 (zh) 2018-09-14 2018-09-14 电子装置
CNPCT/CN2018/105815 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020052030A1 true WO2020052030A1 (zh) 2020-03-19

Family

ID=69778128

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2018/105815 WO2020051904A1 (zh) 2018-09-14 2018-09-14 电子装置
PCT/CN2018/113954 WO2020052028A1 (zh) 2018-09-14 2018-11-05 柔性电子装置
PCT/CN2018/114071 WO2020052030A1 (zh) 2018-09-14 2018-11-06 柔性电子装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/105815 WO2020051904A1 (zh) 2018-09-14 2018-09-14 电子装置
PCT/CN2018/113954 WO2020052028A1 (zh) 2018-09-14 2018-11-05 柔性电子装置

Country Status (2)

Country Link
CN (3) CN112639671A (zh)
WO (3) WO2020051904A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111506172B (zh) * 2020-06-30 2020-09-29 北京中航科电测控技术股份有限公司 一种带有调节温度组件的散热计算机主板
CN113539096A (zh) * 2021-07-15 2021-10-22 武汉华星光电半导体显示技术有限公司 一种显示模组和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150359135A1 (en) * 2014-06-06 2015-12-10 Google Technology Holdings LLC Heat management structure for a wearable electronic device and method for manufacturing same
CN106973549A (zh) * 2017-04-10 2017-07-21 上海天马微电子有限公司 一种柔性显示装置
CN107195795A (zh) * 2017-06-07 2017-09-22 武汉天马微电子有限公司 可折叠显示面板和可折叠显示装置
CN107507518A (zh) * 2017-09-05 2017-12-22 武汉华星光电半导体显示技术有限公司 柔性显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852589B1 (ko) * 2006-07-21 2008-08-14 (주)케이티에프테크놀로지스 열 배출 구조를 가지는 휴대용 단말기
US8998454B2 (en) * 2013-03-15 2015-04-07 Sumitomo Electric Printed Circuits, Inc. Flexible electronic assembly and method of manufacturing the same
WO2016077993A1 (zh) * 2014-11-18 2016-05-26 何素华 Led灯条及led电视
KR102413323B1 (ko) * 2015-02-06 2022-06-27 엘지전자 주식회사 이동 단말기
CN104994712A (zh) * 2015-07-14 2015-10-21 广东欧珀移动通信有限公司 移动终端以及对该移动终端散热的方法
CN105050361A (zh) * 2015-07-14 2015-11-11 广东欧珀移动通信有限公司 一种电子装置的散热结构组件及电子装置
CN105430124B (zh) * 2015-10-28 2019-03-05 努比亚技术有限公司 一种终端及散热方法
CN105700649A (zh) * 2015-12-29 2016-06-22 联想(北京)有限公司 散热系统及电子设备
US10778289B2 (en) * 2016-01-19 2020-09-15 Microsoft Technology Licensing, Llc Wireless communications device
CN106879226A (zh) * 2017-01-20 2017-06-20 努比亚技术有限公司 一种控制壳体温度的装置和电子设备
CN106603773B (zh) * 2017-01-26 2023-04-11 Oppo广东移动通信有限公司 显示装置及移动终端
CN206594964U (zh) * 2017-03-31 2017-10-27 广东欧珀移动通信有限公司 发光装置及移动终端
CN107241538B (zh) * 2017-06-28 2020-05-12 Oppo广东移动通信有限公司 成像装置、成像装置组件及电子装置
CN107580088A (zh) * 2017-09-18 2018-01-12 苏州欧菲光科技有限公司 触摸面板、触控屏及电子装置
CN207835904U (zh) * 2018-01-04 2018-09-07 深圳市世博通科技有限公司 长寿命柔性电路板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150359135A1 (en) * 2014-06-06 2015-12-10 Google Technology Holdings LLC Heat management structure for a wearable electronic device and method for manufacturing same
CN106973549A (zh) * 2017-04-10 2017-07-21 上海天马微电子有限公司 一种柔性显示装置
CN107195795A (zh) * 2017-06-07 2017-09-22 武汉天马微电子有限公司 可折叠显示面板和可折叠显示装置
CN107507518A (zh) * 2017-09-05 2017-12-22 武汉华星光电半导体显示技术有限公司 柔性显示装置

Also Published As

Publication number Publication date
CN112639671A (zh) 2021-04-09
CN112640395A (zh) 2021-04-09
WO2020051904A1 (zh) 2020-03-19
WO2020052028A1 (zh) 2020-03-19
CN112640597A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2017177848A1 (zh) 显示模组及显示设备
TWI539892B (zh) 電子裝置
JP2012141082A (ja) 冷却装置及び電子機器
US7764501B2 (en) Electronic device
CN209861402U (zh) 柔性电子装置
US20240147679A1 (en) Vapor chamber and electronic device
WO2020052030A1 (zh) 柔性电子装置
CN114764269B (zh) 计算系统以及计算装置
JP6578616B1 (ja) 電子機器
CN212413648U (zh) 一种显示装置
WO2018119736A1 (zh) 电子调速器、以及可移动平台
CN109152273A (zh) 电子装置
TW201204227A (en) Heat dissipation apparatus
US11968806B2 (en) Electronic apparatus and cooling module
KR20080034639A (ko) 휴대용단말기의 방열구조
TWI675287B (zh) 加熱散熱模組
JP2012129379A (ja) 放熱フィン
CN215895209U (zh) 后盖凸出散热的工业相机
TWM531125U (zh) 散熱板組合及電子裝置
TW201411319A (zh) 散熱結構
TWI528614B (zh) 電池模組
WO2020051902A1 (zh) 柔性显示装置
CN213638713U (zh) 散热结构及电子设备
WO2020051905A1 (zh) 可弯折电子设备
JP2014109387A (ja) 冷却装置、およびこの冷却装置を備えた電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932986

Country of ref document: EP

Kind code of ref document: A1