WO2020050070A1 - 光ファイバ特性測定装置及び光ファイバ特性測定方法 - Google Patents
光ファイバ特性測定装置及び光ファイバ特性測定方法 Download PDFInfo
- Publication number
- WO2020050070A1 WO2020050070A1 PCT/JP2019/033132 JP2019033132W WO2020050070A1 WO 2020050070 A1 WO2020050070 A1 WO 2020050070A1 JP 2019033132 W JP2019033132 W JP 2019033132W WO 2020050070 A1 WO2020050070 A1 WO 2020050070A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- optical fiber
- light
- frequency
- detection
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 253
- 238000000034 method Methods 0.000 title claims description 48
- 238000001514 detection method Methods 0.000 claims abstract description 222
- 238000005259 measurement Methods 0.000 claims abstract description 63
- 230000003287 optical effect Effects 0.000 claims abstract description 60
- 238000005520 cutting process Methods 0.000 claims abstract description 7
- 230000015654 memory Effects 0.000 claims description 77
- 238000001228 spectrum Methods 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 238000004458 analytical method Methods 0.000 claims description 26
- 238000003860 storage Methods 0.000 claims description 16
- 238000000691 measurement method Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 9
- 239000000835 fiber Substances 0.000 abstract description 4
- 238000012545 processing Methods 0.000 description 36
- 239000004065 semiconductor Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35338—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
- G01D5/35354—Sensor working in reflection
- G01D5/35358—Sensor working in reflection using backscattering to detect the measured quantity
- G01D5/35364—Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
Definitions
- the present invention relates to an optical fiber characteristic measuring device and an optical fiber characteristic measuring method.
- the optical fiber characteristic measuring device makes continuous light or pulsed light incident on the measured optical fiber, receives scattered light or reflected light generated in the measured optical fiber, and performs temperature distribution and distortion in the length direction of the measured optical fiber. It is a device that measures distribution and other characteristics.
- the scattered light or the reflected light that is received changes according to a physical quantity (for example, temperature or strain) that affects the measured optical fiber. Therefore, the measured optical fiber itself is used as a sensor. .
- This BOCDR type optical fiber characteristic measuring apparatus inputs pump light, which is continuous light frequency-modulated from one end of an optical fiber to be measured, and transmits Brillouin scattered light and reference light (pump light) emitted from one end of the optical fiber to be measured.
- the characteristic of the optical fiber to be measured is measured by receiving the light that interferes with the light having the same frequency modulation as the light and obtaining the Brillouin frequency shift amount.
- Brillouin scattered light at a specific position where a “correlation peak” appears in the measured optical fiber is selectively extracted by causing Brillouin scattered light to interfere with reference light.
- the interval between the correlation peaks in the measured optical fiber is inversely proportional to the modulation frequencies of the pump light and the reference light.
- the correlation peak can be moved along the length direction of the measured optical fiber. Therefore, the temperature distribution and strain distribution in the length direction of the measured optical fiber can be measured by calculating the Brillouin frequency shift amount at the position where each correlation peak appears while moving the correlation peak.
- the optical fiber characteristic measuring device of the BOCDR method when the length of the measured optical fiber is longer than the above-mentioned interval between the correlation peaks, a plurality of correlation peaks appear in the measured optical fiber. In such a case, one of the plurality of correlation peaks is selected, only the Brillouin scattered light at the position where the selected correlation peak appears, and the Brillouin scattered light at the position where the other correlation peaks appear is not extracted. Thus, it is necessary to avoid crosstalk.
- One of the methods for selecting such a correlation peak is a method called a time gate method.
- the time gate method is a method of selecting an arbitrary correlation peak of the measured optical fiber by adjusting the timing of receiving Brillouin scattered light by adjusting the timing of receiving the Brillouin scattered light by shaping the pump light into a pulse shape.
- the pump light is shaped so that the pulse width is shorter than the interval between the correlation peaks so that only one of the plurality of correlation peaks is selected.
- the pump light thus shaped is referred to as “pump pulse light”.
- the conventional time gate method is a method of selecting an arbitrary correlation peak of the optical fiber to be measured by making the pump pulse light incident on the optical fiber to be measured and adjusting the reception timing of the Brillouin scattered light. It is. For this reason, in the conventional time gate method, the Brillouin scattered light (received light) obtained by the pump pulse light being incident from one end of the optical fiber to be measured and then reaching the other end of the optical fiber to be measured. Until the Brillouin scattered light at the other end of the measurement optical fiber returns to one end of the optical fiber to be measured, the next pump pulse light cannot be incident on the optical fiber to be measured.
- the width (time width) of the pump pulse light is set to the time required for the pump pulse light to reciprocate through the measured optical fiber after one pump pulse light is incident on the measured optical fiber. ) (Hereinafter referred to as “measurement waiting time”), the next pump pulse light must be incident on the optical fiber to be measured. If the next pump pulse light is incident on the optical fiber to be measured before the measurement waiting time elapses, Brillouin scattered light at different positions where different correlation peaks appear is simultaneously received, and crosstalk occurs. A measurement error will result.
- the conventional time gate method is a method of selecting one of a plurality of correlation peaks by one pump pulse light and extracting only Brillouin scattered light at a position where the selected correlation peak appears.
- the time interval (period) in which the pump pulse light is incident on the optical fiber to be measured cannot be shorter than the above-described measurement waiting time. For this reason, in the optical fiber characteristic measuring apparatus using the conventional time gate method, there is a problem in that when the characteristic in the longitudinal direction of the optical fiber to be measured is measured over a wide range, the time required for the measurement is significantly increased. there were.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical fiber characteristic measuring device and an optical fiber characteristic measuring method capable of shortening the time required for measuring the characteristics of an optical fiber to be measured. Aim.
- an optical fiber characteristic measuring device includes a light source unit (11) that outputs a frequency-modulated continuous light (L1), and a pump light (LP) that outputs the continuous light.
- a first optical branching unit (12) for branching into a reference light (LR), a pulsing unit (13) for pulsing the pump light, and a pulsed pump light from one end of an optical fiber (FUT).
- a second light branching section (14) for making incident and outputting backscattered light (LS) generated by Brillouin scattering in the optical fiber; and a detecting section (for detecting interference light between the backscattered light and the reference light).
- the measuring unit includes a frequency analyzer (19a to 19d) for obtaining a Brillouin frequency shift amount from the detection signal.
- a plurality of the frequency analyzers are provided, and the cutout unit determines to which of the plurality of the frequency analyzers the detection unit is connected.
- the optical fiber characteristic measuring device is provided between a frequency shifter (32) for shifting a frequency of the pump light or the reference light and the detection unit and the cutout unit, A conversion unit (33) for converting the detection signal output from the detection unit into detection data of a digital signal.
- the frequency shifter shifts the frequency of the pump light by a frequency close to the Brillouin frequency shift amount.
- the cutout unit may include any one of a storage unit (34) having a plurality of memories (34a to 34d) for storing the detection data; And a control unit (20a) for switching the switching unit in consideration of the time required for the backscattered light to reach the detection unit. Also, in the optical fiber characteristic measuring device according to one aspect of the present invention, the measuring unit performs a fast Fourier transform on the detection data individually read from the plurality of memories to obtain spectrum data. 35a) and a frequency analysis unit (35b) for obtaining a Brillouin frequency shift amount from the spectrum data obtained by the calculation unit.
- the frequency shifter sweeps a frequency shift amount of the pump light at a predetermined cycle, and the measuring unit individually separates from the plurality of memories.
- a frequency analysis unit (35b) for calculating a Brillouin frequency shift amount from the detection data read out.
- the cutout unit individually reads out the detection data at the predetermined time intervals in consideration of a time when the backscattered light reaches the detection unit.
- a reading unit (42a) wherein the measuring unit measures a characteristic of the optical fiber from the detection data individually read by the reading unit.
- the measuring unit may perform a fast Fourier transform on the detection data individually read by the reading unit to obtain spectrum data.
- a frequency analysis unit 35b for obtaining a Brillouin frequency shift amount from the spectrum data obtained by the calculation unit.
- the frequency shifter sweeps a frequency shift amount of the pump light at a predetermined cycle, and the measuring unit individually reads out the readout unit. A Brillouin frequency shift amount is obtained from the read detection data.
- the cutout unit includes a memory (41) for storing the detection data, and the reading unit causes the backscattered light to reach the detection unit.
- the detection data stored in the memory is individually read out at every predetermined time.
- the continuous light (L1) whose frequency is modulated is output by the light source unit (11), and the continuous light is pumped by the first optical branching unit (12).
- LP and a reference light (LR)
- the pump light is pulsed by a pulser (13)
- the pump light pulsed by a second light brancher (14) is converted into an optical fiber (FUT).
- the second light branching unit outputs backscattered light (LS) generated by Brillouin scattering in the optical fiber
- the detection unit (17) outputs the backscattered light and the reference light.
- the detection signal output from the detection unit is cut out by the cutout unit (18, 20a, 34, 41, 42a) at predetermined time intervals, and is sent to the measurement unit (19, 35a, 35b).
- Yo To measure the characteristics of the optical fiber by using a detection signal of each of the predetermined time cut out by the cutting unit individually.
- the measuring unit includes a frequency analyzer (19a to 19d), and the frequency analyzer obtains a Brillouin frequency shift amount from the detection signal.
- the cutout unit includes a switching unit (18) and a control unit (20a);
- the switching unit switches to which of the plurality of frequency analyzers the detection unit is connected, and the control unit switches the switching unit in consideration of the time when the backscattered light reaches the detection unit.
- the frequency of the pump light or the reference light is shifted by a frequency shifter (32), and the frequency is provided between the detection unit and the cutout unit.
- a conversion unit (33) converts the detection signal output from the detection unit into digital signal detection data.
- the frequency of the pump light is shifted by the frequency shifter by a frequency close to the Brillouin frequency shift amount.
- the cutout unit includes a storage unit (34) having a plurality of memories (34a to 34d), a switching unit (18), and a control unit (20a).
- the storage unit stores the detection data, the switching unit switches to which of the plurality of memories the conversion unit is connected, and the control unit detects the backscattered light. The switching unit is switched in consideration of the time to reach the unit.
- the measuring unit includes an arithmetic unit (35a) and a frequency analyzing unit (35b), and the arithmetic unit individually reads from the plurality of memories.
- the detected detection data is subjected to fast Fourier transform to obtain spectrum data, and the frequency analysis unit obtains a Brillouin frequency shift amount from the spectrum data obtained by the calculation unit.
- the frequency shifter sweeps a frequency shift amount of the pump light at a predetermined cycle
- the measuring unit includes a frequency analyzing unit (35b). And calculating a Brillouin frequency shift amount from the detection data individually read from the plurality of memories by the frequency analysis unit.
- FIG. 1 is a block diagram illustrating a main configuration of an optical fiber characteristic measuring device according to a first embodiment of the present invention.
- 5 is a flowchart illustrating an operation example of the optical fiber characteristic measuring device according to the first embodiment of the present invention.
- FIG. 4 is a diagram for explaining measurement conditions set in the first embodiment of the present invention.
- FIG. 6 is a block diagram illustrating a main configuration of an optical fiber characteristic measuring device according to a second embodiment of the present invention.
- FIG. 11 is a block diagram illustrating a main configuration of an optical fiber characteristic measuring device according to a third embodiment of the present invention.
- FIG. 1 is a block diagram showing a main configuration of the optical fiber characteristic measuring device according to the first embodiment of the present invention.
- the optical fiber characteristic measuring device 1 of the present embodiment includes a light source unit 11, a first optical branching unit 12, a pulse unit 13, a second optical branching unit 14, an optical delay unit 15, a multiplexing unit 16. , A detecting unit 17, a switching unit 18 (cutout unit), a measuring unit 19, and a control device 20.
- the optical fiber characteristic measuring apparatus 1 measures the characteristics of the measured optical fiber FUT based on the backscattered light LS obtained by causing the pump pulse light P to enter the measured optical fiber FUT.
- This is an optical fiber characteristic measuring device.
- the pump pulse light P is light obtained by pulsing the pump light LP as continuous light to which frequency modulation has been applied.
- the backscattered light LS is backscattered light generated by Brillouin scattering in the measured optical fiber FUT.
- An arbitrary optical fiber FUT to be measured may be used according to the wavelength of the pump pulse light P or the like. In the present embodiment, it is assumed that the length of the measured optical fiber FUT is longer than the interval dm between the correlation peaks, and that the measured optical fiber FUT has a plurality of correlation peaks. Note that FIG. 1 shows four correlation peaks CP1 to CP4 present in the optical fiber under test FUT for easy understanding.
- the light source unit 11 includes the light source 11a and the modulation unit 11b, and outputs the frequency-modulated continuous light L1 under the control of the control device 20.
- the light source 11a includes, for example, a semiconductor laser element such as a distributed feedback laser diode (DFB-LD: Distributed Feed-Back Laser Diode), and has a continuous frequency modulated in accordance with the modulation signal m1 output from the modulator 11b.
- the light L1 is output.
- the modulator 11b outputs a modulation signal m1 for frequency-modulating the continuous light L1 output from the light source 11a under the control of the control device 20.
- the modulation signal m1 is, for example, a sinusoidal signal, and its frequency (modulation frequency fm) and amplitude are controlled by the control device 20.
- the first light branching unit 12 branches the continuous light L1 output from the light source unit 11 into a pump light LP and a reference light LR having a predetermined intensity ratio (for example, 1 to 1).
- the pulsing unit 13 pulsates the pump light LP split by the first optical splitting unit 12 under the control of the control device 20.
- the pulsing unit 13 shapes the pump light LP into a pulse by performing intensity modulation on the pump light LP.
- the pulsing section 13 is provided to obtain the pump pulse light P used in the time gate method.
- the pulse width tpw of the pump pulse light P is set so that the pump pulse light P includes only one correlation peak when propagating in the optical fiber under test FUT.
- the pulse width tpw of the pump pulse light P is set so that the following expression (1) is satisfied. tpw ⁇ 1 / fm (1)
- the second optical branching unit 14 has a first port, a second port, and a third port.
- the first port is connected to the pulsing unit 13.
- the second port is connected to the optical fiber under test FUT.
- the third port is connected to the multiplexing unit 16.
- the second optical branching unit 14 outputs the pump pulse light P input from the first port to the second port. Further, the backscattered light LS from the optical fiber under test FUT input from the second port is output to the third port.
- Such a second optical branching unit 14 may be, for example, an optical circulator.
- the optical delay unit 15 delays the reference light LR branched by the first optical branching unit 12 by a predetermined time.
- the optical delay unit 15 includes, for example, an optical fiber having a predetermined length. By changing the length of the optical fiber, the delay time can be adjusted.
- the optical delay unit 15 is provided in order to dispose a zero-order correlation peak whose position does not move even when the modulation frequency fm is swept, outside the optical fiber under test FUT.
- the multiplexing unit 16 outputs the backscattered light LS from the measured optical fiber FUT output from the third port of the second optical branching unit 14 and the scattered light LS output from the first optical branching unit 12 via the optical delay unit 15.
- the reference light LR and the reference light LR are multiplexed.
- the multiplexing unit 16 splits the multiplexed light into two lights having a predetermined intensity ratio (for example, 1 to 1) and outputs the two lights to the detection unit 17.
- Each of the two lights split by the multiplexing unit 16 includes, for example, 50% of the backscattered light from the measured optical fiber FUT and 50% of the reference light.
- Such a multiplexing unit 16 may be, for example, an optical coupler.
- the detection unit 17 performs optical heterodyne detection by causing the backscattered light LS and the reference light LR included in the two lights output from the multiplexing unit 16 to interfere with each other.
- the detection unit 17 includes, for example, a balanced photodiode including two photodiodes (PD: ⁇ Photo ⁇ Diode) 17a and 17b, and a multiplexer 17c.
- the photodiodes 17a and 17b receive the two lights output from the multiplexing unit 16, respectively.
- the light receiving signal of the photodiode 17a and the light receiving signal of the photodiode 17b are input to the multiplexer 17c. From the multiplexer 17c, an interference signal (beat signal: detection signal) indicating a frequency difference between the backscattered light LS and the reference light LR is output.
- a balanced photodiode including two photodiodes (PD: ⁇ Photo ⁇ Diode) 17a and 17b
- the switching unit 18 has one input terminal and a plurality of (five in the example shown in FIG. 1) output terminals.
- the switching unit 18 switches the output terminal connected to the input terminal under the control of the control unit 20a provided in the control device 20.
- the multiplexer 17c of the detection unit 17 is connected to the input terminal of the switching unit 18.
- Four of the five output terminals provided in the switching unit 18 are connected to frequency analyzers 19a to 19d provided in the measuring unit 19, respectively.
- the remaining one of the five output terminals provided in the switching unit 18 is an open terminal to which no device such as a frequency analyzer is connected.
- Such a switching unit 18 may be, for example, a mechanical switch or an electronic switch.
- the switching unit 18 is provided to cut out the detection signal output from the multiplexer 17c of the detection unit 17 at predetermined time intervals.
- clipping means extracting a necessary part from a temporally continuous signal.
- the detection signal output from the multiplexer 17c of the detection unit 17 is cut out at predetermined time intervals, in accordance with the progress of the pump pulse light P incident on the measured optical fiber FUT. This is for sequentially changing the correlation peak selected from among a plurality of correlation peaks appearing in (1).
- the time gate method of the present embodiment when one pump pulse light P is incident on the optical fiber FUT to be measured, different correlation peaks are sequentially selected according to the progress of the pump pulse light P. I have. By doing so, the time required for measuring the characteristics of the measured optical fiber FUT is reduced. Note that the details of the time (the above-described predetermined time) at which the switching unit 18 cuts out the detection signal output from the multiplexer 17c of the detection unit 17 will be described later.
- the measuring unit 19 includes a plurality of frequency analyzers.
- the measurement unit 19 individually inputs the detection signals (detection signals cut out at predetermined time intervals) output from the switching unit 18 to a plurality of frequency analyzers and measures the characteristics of the optical fiber FUT to be measured.
- the number of frequency analyzers in the measuring unit 19 is set in consideration of the number of correlation peaks appearing on the measured optical fiber FUT. For example, as shown in FIG. 1, when four correlation peaks CP1 to CP4 appear in the measured optical fiber FUT, four frequency analyzers 19a to 19d correspond to the four correlation peaks CP1 to CP4, and the measuring unit 19.
- the frequency analyzers 19a to 19d include, for example, a spectrum analyzer (ESA: Electrical Spectrum Analyzer).
- ESA Electrical Spectrum Analyzer
- the frequency analyzers 19a to 19d individually obtain spectrum data indicating the frequency characteristics of the detection signals (detection signals cut out at predetermined time intervals) output from the switching unit 18. Further, the frequency analyzers 19a to 19d individually obtain the Brillouin frequency shift amounts from the individually obtained spectral data.
- the frequency analyzers 19a to 19d may have a function of converting the individually obtained Brillouin frequency shift amounts into physical information such as distortion and temperature.
- the control device 20 controls the operation of the optical fiber characteristic measuring device 1 by referring to the measurement result of the measuring unit 19. For example, the control device 20 controls the light source unit 11 to change the modulation frequency fm of the continuous light L1 output from the light source unit 11. Further, the control device 20 controls the pulsing unit 13 to generate the pump pulse light P. Further, the control device 20 includes a control unit 20a (cutout unit). The control unit 20a controls the switching of the switching unit 18 in consideration of the time required for the backscattered light LS from the measured optical fiber FUT to reach the detection unit 17.
- FIG. 2 is a flowchart showing an operation example of the optical fiber characteristic measuring device according to the first embodiment of the present invention. Note that the flowchart shown in FIG. 2 is started, for example, when an instruction to start measurement is given to the optical fiber characteristic measuring apparatus 1. When the characteristic of the optical fiber FUT to be measured is measured in the length direction, It is repeated at regular intervals.
- a measurement waiting time (a time obtained by adding the pulse width tpw of the pump pulse light P to the time required for the pump pulse light P to reciprocate through the optical fiber FUT to be measured). Is repeated each time.
- the k-th (k is an integer of 1 or more) processing of the repeated processing of the flowchart illustrated in FIG. 2 is referred to as “k-th processing”.
- the measurement conditions of the measured optical fiber FUT are set.
- the setting of the measurement conditions is performed, for example, by a user operating an operation unit (not shown) provided in the control device 20.
- the setting of the measurement conditions for the optical fiber characteristic measuring apparatus 1 may be performed by a user by operating an operation unit (not shown) one by one before starting the measurement, and is stored in the control device 20 in advance.
- the setting may be made by selecting a plurality of setting conditions.
- FIG. 3 is a diagram for explaining measurement conditions set in the first embodiment of the present invention.
- the position of one end of the measured optical fiber FUT (the end where the pump pulse light P is incident and the backscattered light LS is emitted) is defined as the origin.
- the measurement conditions for example, a measurement range RM, which is a range for measuring the characteristics of the measured optical fiber FUT, an initial value fm0 of the modulation frequency, a pulse width tpw of the pump pulse light P, a measurement interval ⁇ D, and the like are set.
- the measurement range RM is set so that the distance from one end (origin) of the measured optical fiber FUT is from D1 to D2.
- the initial value fm0 of the modulation frequency is set such that the correlation peak CP1 appears at a position where the distance from the origin is D1.
- the pulse width tpw of the pump pulse light P is set to a width that satisfies the expression (1).
- the measurement interval ⁇ D is set in consideration of the resolution and the like.
- Correlation peak CP1 Position where distance from origin is D1
- Correlation peak CP2 Position where distance from origin is D1 + dm
- Correlation peak CP3 Position where distance from origin is D1 + 2 ⁇ dm
- step S11 the control device 20 of the optical fiber characteristic measuring device 1 sets the modulation frequency (step S11).
- the above-mentioned initial value fm0 of the modulation frequency is set as the modulation frequency fm.
- the modulation unit 11b provided in the light source unit 11 is controlled by the control device 20, and sets the frequency of the modulation signal m1 output from the modulation unit 11b to the modulation frequency fm.
- the light source 11a emits continuous light L1 frequency-modulated at the modulation frequency fm.
- the continuous light L1 emitted from the light source 11a enters the first light branching unit 12, and is branched into the pump light LP and the reference light LR.
- the branched pump light LP enters the pulsing unit 13.
- the pulsing unit 13 is controlled by the control device 20, and the pump light LP is shaped into a pulse to generate the pump pulse light P (step S12).
- the pump pulse light P generated by the pulsing unit 13 is incident on the measured optical fiber FUT via the second optical branching unit 14.
- the time when the leading edge of the pump pulse light P enters one end (origin) of the measured optical fiber FUT is set to 0.
- the pump pulse light P incident on the measured optical fiber FUT propagates in the measured optical fiber FUT. Then, the position where the correlation peak CP1 appears (the position where the distance from the origin is D1), the position where the correlation peak CP2 appears (the position where the distance from the origin is D1 + dm), and the position where the correlation peak CP3 appears (the distance from the origin is D1 + 2 ⁇ dm).
- the pump pulse light P sequentially passes through positions where the correlation peaks CP1 to CP3 appear, backscattered light LS due to Brillouin scattering is sequentially generated at each position.
- the backscattered light LS generated at each position propagates in the direction opposite to the direction in which the pump pulse light P propagates, and is sequentially emitted from one end of the measured optical fiber FUT.
- the control device 20 calculates the return time of the backscattered light LS generated at each of the positions where the correlation peaks CP1 to CP3 appear (step S13).
- the times t1 to t3 when the leading edge of the pump pulse light P reaches the position where the correlation peaks CP1 to CP3 appear after the pump pulse light P is incident on the optical fiber FUT to be measured are as follows.
- Time t1 D1 / vg
- Time t2 (D1 + dm) / vg
- Time t3 (D1 + 2 ⁇ dm) / vg
- the backscattered light LS generated at the position where the correlation peak CP1 appears is referred to as the backscattered light LS1
- the backscattered light LS generated at the position where the correlation peak CP2 appears is referred to as the backscattered light LS2
- the position where the correlation peak CP3 appears is referred to as backscattered light LS3.
- the times at which these backscattered lights LS1 to LS3 reach one end (origin) of the measured optical fiber FUT are as follows.
- Backscattered light LS1 (2 ⁇ t1) to (2 ⁇ t1 + tpw)
- Backscattered light LS2 (2 ⁇ t2) to (2 ⁇ t2 + tpw)
- Backscattered light LS3 (2 ⁇ t3) to (2 ⁇ t3 + tpw)
- the backscattered light LS emitted from one end of the optical fiber FUT to be measured reaches the detection unit 17 via the second optical branching unit 14 and the multiplexing unit 16 sequentially.
- the required time is set to 0.
- the times when the backscattered lights LS1 to LS3 reach the detection unit 17 can be regarded as the times when the backscattered lights LS1 to LS3 reach one end (origin) of the measured optical fiber FUT.
- the backscattered light LS (backscattered light LS1 to LS3) emitted from one end of the measured optical fiber FUT enters the multiplexing unit 16 via the second light branching unit 14.
- the backscattered light LS incident on the multiplexing unit 16 is split by the first optical splitting unit 12 and multiplexed with the reference light LR via the optical delay unit 15.
- the detection unit 17 detects the interference light generated by the multiplexing (Step S14). When the interference light is detected, the detection unit 17 outputs a detection signal to the switching unit 18.
- the control unit 20a of the control device 20 controls the switching unit 18 in consideration of the return time calculated in step S13, and cuts out a detection signal every predetermined time (step S15).
- the frequency analyzer 19a is connected to the detection unit 17 from time (2 ⁇ t1) to time (2 ⁇ t1 + tpw), and from time (2 ⁇ t2) to time (2 ⁇ t2 + tpw).
- the frequency analyzer 19b is connected to the detection unit 17, and the control unit of the control device 20 controls the frequency analyzer 19c to be connected to the detection unit 17 from time (2 ⁇ t3) to time (2 ⁇ t3 + tpw).
- 20a controls the switching unit 18.
- the control unit 20a of the control device 20 controls the switching unit 18 so that the output terminal, which is the open end of the switching unit 18, is connected to the detection unit 17 at times other than the above times.
- a detection signal between time (2 ⁇ t1) and time (2 ⁇ t1 + tpw) is cut out and input to the frequency analyzer 19a. Further, among the detection signals output from the detection unit 17, a detection signal between time (2 ⁇ t2) and time (2 ⁇ t2 + tpw) is cut out and input to the frequency analyzer 19b. Further, among the detection signals output from the detection unit 17, a detection signal between time (2 ⁇ t3) and time (2 ⁇ t3 + tpw) is cut out and input to the frequency analyzer 19c.
- the frequency analyzers 19a to 19c use the cut out detection signals to measure the characteristics of the optical fiber FUT to be measured. Are performed individually (step S16). Specifically, the frequency analyzers 19a to 19c individually perform processing of obtaining the spectrum data of the detection signal cut out by the switching unit 18 and obtaining the Brillouin frequency shift amount from the obtained spectrum data. The obtained Brillouin frequency shift amount is output to the control device 20.
- the control device 20 sets a modulation frequency (step S11).
- the modulation frequency is set to (fm + ⁇ fm) to change the position of the correlation peak CP1 by the measurement interval ⁇ D. It is assumed that the interval between correlation peaks has changed to (dm + ⁇ dm) because the modulation frequency is set to (fm + ⁇ fm).
- the continuous light L1 frequency-modulated at the modulation frequency (fm + ⁇ fm) is emitted from the light source 11a.
- the continuous light L1 emitted from the light source 11a is split into the pump light LP and the reference light LR by the first light splitter 12 as in the first processing.
- the pulsing unit 13 When the branched pump light LP enters the pulsing unit 13, the pulsing unit 13 generates the pump pulse light P (Step S12).
- the generated pump pulse light P enters the measured optical fiber FUT via the second optical branching unit 14.
- the time when the leading edge of the pump pulse light P enters one end (origin) of the measured optical fiber FUT is set to 0.
- the pump pulse light P incident on the measured optical fiber FUT propagates in the measured optical fiber FUT. Then, it sequentially passes through the position where the correlation peak CP1 appears, the position where the correlation peak CP2 appears, and the position where the correlation peak CP3 appears.
- the positions where the correlation peaks CP1 to CP3 appear are as follows.
- Correlation peak CP2 Position where distance from origin is D1 + ⁇ D + dm + ⁇ dm
- Correlation peak CP3 Position where distance from origin is D1 + ⁇ D + 2 ⁇ (dm + ⁇ dm)
- the positions where the correlation peaks CP1 to CP3 appear are as follows: Can be represented as follows: Correlation peak CP1: Position where distance from origin is D1 + ⁇ D Correlation peak CP2: Position where distance from origin is D1 + dm + ⁇ D Correlation peak CP3: Position where distance from origin is D1 + 2 ⁇ dm + ⁇ D That is, correlation peaks CP1 to CP3 appear. Each position can be expressed as a position shifted by the measurement interval ⁇ D from the position where the correlation peaks CP1 to CP3 appear in the first processing.
- backscattered light LS due to Brillouin scattering is sequentially generated at each position.
- the backscattered light LS (backscattered light LS1 to LS3) generated at each position propagates in the direction opposite to the direction in which the pump pulse light P propagates, and is sequentially emitted from one end of the measured optical fiber FUT.
- the control device 20 calculates the return time of the backscattered light LS generated at each of the positions where the correlation peaks CP1 to CP3 appear (step S13).
- the times t1 to t3 at which the leading edge of the pump pulse light P reaches the positions where the correlation peaks CP1 to CP3 appear are the first processing. Is later than the times t1 to t3 by the measurement interval ⁇ D.
- Time t1 (D1 + ⁇ D) / vg
- Time t2 (D1 + dm + ⁇ D) / vg
- Time t3 (D1 + 2 ⁇ dm + ⁇ D) / vg Therefore, the time at which the backscattered light LS1 to LS3 generated at the position where the correlation peaks CP1 to CP3 appear reaches one end (origin) of the measured optical fiber FUT is the time for the light to reciprocate to the correlation peak. It changes by an amount corresponding to twice the measurement interval ⁇ D.
- the backscattered light LS (backscattered light LS1 to LS3) emitted from one end of the measured optical fiber FUT enters the multiplexing unit 16 via the second light branching unit 14.
- the backscattered light LS incident on the multiplexing unit 16 is split by the first optical splitting unit 12 and multiplexed with the reference light LR via the optical delay unit 15.
- the detection unit 17 detects the interference light generated by the multiplexing (Step S14). When the interference light is detected, a detection signal is output from the detection unit 17 to the switching unit 18.
- the control unit 20a of the control device 20 controls the switching unit 18 in consideration of the return time calculated in step S13, and cuts out a detection signal every predetermined time (step S15).
- the processing to be performed is basically the same as the processing performed in the first processing, but the timing at which the frequency analyzers 19a to 19c are connected to the detection unit 17 (the timing at which the detection signal is cut out) ) Changes by an amount corresponding to twice the measurement interval ⁇ D.
- the frequency analyzers 19a to 19c use the cut-out detection signals to generate the light to be measured in the same manner as in the first processing.
- the process of measuring the characteristics of the fiber FUT is individually performed (step S16).
- the obtained Brillouin frequency shift amount is output to the control device 20.
- the optical fiber characteristic measuring apparatus 1 measures the characteristic of the optical fiber FUT under measurement while changing the modulation frequency by ⁇ fm and moving the positions of the correlation peaks CP1 to CP3 by the measurement interval ⁇ D. Therefore, the description of the processing after the third processing will be omitted. Note that the processing of the flowchart shown in FIG. 2 is performed until the M-th processing.
- M [dm / ⁇ D].
- the symbol "[]" in the left equation is a Gaussian symbol (giving the largest integer not exceeding the quotient).
- the optical fiber characteristic measuring device 1 of the present embodiment generates the pump pulse light P by pulsing the frequency-modulated pump light LP, and outputs the generated pump pulse light P from one end of the optical fiber FUT to be measured. It is incident.
- the optical fiber characteristic measuring apparatus 1 detects interference light between the backscattered light LS generated by Brillouin scattering in the measured optical fiber FUT due to the incidence of the pump pulse light P and the frequency-modulated reference light LR. ing.
- the optical fiber characteristic measuring device 1 cuts out a detection signal obtained by detecting the interference light at predetermined time intervals, and individually uses the cut out detection signals at predetermined time intervals to determine the characteristics of the measured optical fiber FUT. Measuring.
- the position where the correlation peak CP3 appears may exceed the measurement range RM.
- the time required for the measurement of the characteristics is ⁇ ⁇ of the conventional one.
- the measurement unit 19 is provided with the four frequency analyzers 19a to 19d in consideration of the number of correlation peaks appearing in the measured optical fiber FUT.
- the number of frequency analyzers provided in the measuring unit 19 does not necessarily need to be the same as the number of correlation peaks appearing in the measured optical fiber FUT, and may be different (more than the number of correlation peaks). Good or less).
- the frequency analyzer is capable of processing in a time sufficiently shorter than the pulse width tpw of the pump pulse light P, or a frequency analyzer capable of performing pipeline processing
- the number of frequency analyzers provided in the measuring unit 19 is There may be only one.
- the detection signals sequentially cut out by the switching unit 18 are sequentially processed by one frequency analyzer.
- the frequency analyzers 19a to 19d provided in the measuring unit 19 include the spectrum analyzers.
- the frequency analyzer provided in the measuring unit 19 may be configured as long as spectrum data can be obtained. It is not always necessary to provide a spectrum analyzer.
- the frequency analyzer provided in the measurement unit 19 may include an A / D converter and a fast Fourier transformer.
- the variation amount N ⁇ ⁇ dm (N is the number of correlation peaks existing within the measurement range) of the interval dm of the correlation peaks generated when the correlation peaks CP1 to CP3 are moved is sufficiently small.
- N is the number of correlation peaks existing within the measurement range
- the modulation frequency fm such that the interval dm between the correlation peaks becomes the measurement interval ⁇ D, it is possible to prevent the above error from occurring.
- Step S13 in FIG. 2 After the process of generating the pump pulse light P (Step S12 in FIG. 2) is performed, the process of calculating the return time of the backscattered light (Step S13 in FIG. 2) is performed. Examples have been described. However, step S13 in FIG. 2 may be performed between step S11 and step S12, or may be performed in parallel with step S12.
- FIG. 4 is a block diagram showing a main configuration of an optical fiber characteristic measuring device according to a second embodiment of the present invention.
- the same components as those shown in FIG. 1 are denoted by the same reference numerals.
- the optical fiber characteristic measuring device 2 of the present embodiment is obtained by adding an oscillator 31, a frequency shifter 32, and an A / D converter 33 (converter) to the optical fiber characteristic measuring device 1 shown in FIG.
- the measuring unit 19 and the control device 20 of the optical fiber characteristic measuring device 1 are replaced with a storage unit 34 (cutout unit) and a control device 35, respectively.
- the optical fiber characteristic measuring device 2 of the present embodiment changes the frequency region of the detection signal (interference signal indicating the frequency difference between the backscattered light LS and the reference light LR) output from the detection unit 17 to a frequency region near DC. Convert. By performing such a conversion, the optical fiber characteristic measuring device 2 of the present embodiment can easily perform processing on the detection signal (processing for obtaining the characteristics of the measured optical fiber FUT).
- the oscillator 31 outputs, for example, a sinusoidal signal S1 under the control of the control device 35.
- the frequency of the signal S1 output from the oscillator 31 is controlled by the control device 35.
- the control is performed so that the frequency of the signal S1 becomes a constant frequency.
- the operation mode of the control device 35 is the second mode (the operation mode in which the fast Fourier transform is not performed)
- the control is performed so that the frequency of the signal S1 changes at a predetermined cycle.
- the cycle in which the frequency of the signal S1 changes is, for example, the time required for the pump pulse light P to reciprocate in the measured optical fiber FUT.
- the frequency shifter 32 includes, for example, an SSB (Single Side Band) modulation element.
- the frequency shifter 32 uses the signal S1 output from the oscillator 31 to shift the frequency of the pump light LP split by the first optical splitter 12 by the frequency of the signal S1.
- the frequency shifter 32 shifts the frequency of the pump light LP by a frequency close to the Brillouin frequency shift generated in the measured optical fiber FUT. That is, the frequency shifter 32 shifts the frequency of the pump light LP such that the frequency difference between the Brillouin frequency shift amount and the pump light LP is in a frequency region near DC.
- the frequency shifter 32 shifts the frequency of the pump light LP by the frequency of the signal S1.
- the operation mode of the control device 35 is the second mode
- the frequency of the signal S1 output from the oscillator 31 changes within the range of about 9.5 GHz to about 10.5 GHz at the above-described cycle
- the shifter 32 shifts the frequency of the pump light LP by the frequency of the signal S1. That is, in the second mode, the frequency shifter 32 sweeps the frequency shift amount of the pump light LP at the above-described cycle.
- the A / D conversion unit 33 is provided between the detection unit 17 and the switching unit 18.
- the A / D conversion section 33 converts the detection signal output from the detection section 17 into digital signal detection data and outputs the digital signal detection data to the switching section 18.
- the frequency range of the detection signal output from the detection unit 17 is a high frequency of about 10 GHz. For this reason, it is difficult to directly input this to the A / D converter 33 in terms of price, power consumption, and data amount.
- the frequency shifter 32 is provided, and the frequency region of the detection signal output from the detection unit 17 is set to a frequency region near DC (for example, a frequency region of about 1 GHz), so that the A / D The use of the conversion unit 33 is facilitated.
- the storage unit 34 has a plurality of memories.
- the storage unit 34 individually stores the detection data (detection data cut out at predetermined time intervals) output from the switching unit 18 in a plurality of memories.
- the number of memories in the storage unit 34 is set in consideration of the number of correlation peaks appearing in the measured optical fiber FUT, similarly to the number of frequency analyzers in the measurement unit 19 shown in FIG. For example, as shown in FIG. 4, when four correlation peaks CP1 to CP4 appear in the measured optical fiber FUT, four memories 34a to 34d are stored in the storage unit 34 corresponding to the four correlation peaks CP1 to CP4. Provided.
- the memories 34a to 34d may be, for example, volatile semiconductor memories such as RAM (Random Access Memory) or nonvolatile semiconductor memories such as flash memory.
- RAM Random Access Memory
- nonvolatile semiconductor memories such as flash memory.
- the memories 34a to 34d are not limited to semiconductor memories, but may be HDDs (hard disk drives), SSDs (solid state drives), or the like, other than semiconductor memories.
- the control device 35 controls the operation of the optical fiber characteristic measuring device 2 overall.
- the control device 35 controls the light source unit 11 to change the modulation frequency fm of the continuous light L1 output from the light source unit 11 and controls the pulsating unit 13 similarly to the control device 20 illustrated in FIG. Then, the pump pulse light P is generated, and the switching control of the switching unit 18 is performed in consideration of the time required for the backscattered light LS from the measured optical fiber FUT to reach the detection unit 17. Further, the control device 35 controls the oscillator 31 to output a signal S1 having a constant frequency or a signal S1 whose frequency changes in a predetermined cycle.
- the control device 35 includes an FFT operation unit 35a (operation unit and measurement unit), a frequency analysis unit 35b (measurement unit), and a control unit 20a (cutout unit).
- the FFT operation unit 35a performs a fast Fourier transform on the detection data individually read out from the memories 34a to 34d, and converts the spectrum data indicating the frequency characteristics of the detection data (detection data cut out at predetermined time intervals). Ask.
- the frequency analysis unit 35b calculates the Brillouin frequency shift amount from the spectrum data obtained by the FFT calculation unit 35a or the detection data individually read from the memories 34a to 34d.
- control device 35 is provided with the following two operation modes.
- an operation mode of the control device 35 is selected by a user operating an operation unit (not shown) provided in the control device 35.
- First mode Operation mode in which fast Fourier transform is performed
- Second mode Operation mode in which fast Fourier transform is not performed
- the oscillator 31 is controlled so that the frequency of the signal S1 becomes a constant frequency. Further, the FFT operation unit 35a of the control device 35 is set to the operating state, and the frequency analysis unit 35b is set to obtain the Brillouin frequency shift amount from the spectrum data obtained by the FFT operation unit 35a. On the other hand, when the operation mode of the control device 35 is the second mode, the oscillator 31 is controlled so that the frequency of the signal S1 changes. Further, the FFT operation unit 35a of the control device 35 is stopped, and the frequency analysis unit 35b is set to obtain the Brillouin frequency shift amount from the detection data individually read out from the memories 34a to 34d.
- the basic operation of the optical fiber characteristic measuring device 2 is the same as that of the optical fiber characteristic measuring device 1 shown in FIG. Therefore, in the optical fiber characteristic measuring device 2, basically, the same processing as the processing in the flowchart shown in FIG. 2 is performed.
- the operations of the optical fiber characteristic measuring device 2 those different from those of the optical fiber characteristic measuring device 1 will be mainly described. Further, the operation is slightly different between the case where the operation mode of the control device 35 is the first mode and the case where the operation mode of the control device 35 is the second mode. And the operation in the second mode will be described separately.
- the oscillator 31 is controlled such that the frequency of the signal S1 input to the frequency shifter 32 becomes a constant frequency.
- the frequency of the pump light LP is close to the Brillouin frequency shift amount (for example, about 10 GHz) generated in the measured optical fiber FUT (for example, about 10 GHz). , About 11 GHz).
- the pump light LP having the shifted frequency is shaped into a pulse by the pulsing unit 13.
- the pump pulse light P generated by the pulsing unit 13 enters the measured optical fiber FUT via the second optical branch unit 14.
- backscattered light LS backscattered light LS1 to LS3
- backscattered light LS backscattered light LS1 to LS3
- the backscattered light LS incident on the multiplexing unit 16 is split by the first optical splitting unit 12 and multiplexed with the reference light LR via the optical delay unit 15.
- the detector 17 detects the interference light generated by the multiplexing.
- a detection signal is output from the detection unit 17 to the A / D conversion unit 33.
- the frequency of the pump light LP is shifted by about 11 GHz, assuming that the Brillouin frequency shift amount of the measured optical fiber FUT is about 10 GHz, the frequency of the detection signal output from the detection unit 17 becomes about 1 GHz.
- the detection signal output from the detection unit 17 to the A / D conversion unit 33 is converted into digital signal detection data by the A / D conversion unit 33 and output to the switching unit 18.
- the control unit 20a of the control device 35 controls the switching unit 18 in consideration of the return time of the backscattered light LS, and cuts out the detection data every predetermined time.
- the detection data cut out every predetermined time is sequentially stored in the memories 34a to 34c.
- the detection data stored in the memories 34a to 34c is sequentially read out individually.
- the FFT operation unit 35a performs a fast Fourier transform on the detection data read from the memories 34a to 34c to obtain spectrum data indicating the frequency characteristics of the detection data.
- the spectrum data obtained by the FFT operation unit 35a is sequentially output to the frequency analysis unit 35b.
- the frequency analysis unit 35b obtains a Brillouin frequency shift amount from the spectrum data obtained by the FFT operation unit 35a.
- the above processing is repeated while changing the modulation frequency by ⁇ fm and moving the positions of the correlation peaks CP1 to CP3 by the measurement interval ⁇ D.
- the oscillator 31 is controlled so that the frequency of the signal S1 input to the frequency shifter 32 changes.
- the frequency of the pump light LP is changed to the measured optical fiber FUT similarly to the case where the operation mode of the control device 35 is the first mode. Is shifted by a frequency (for example, in the range of about 9.5 GHz to about 10.5 GHz) close to the Brillouin frequency shift amount caused by the above.
- the shift amount of the frequency of the pump light LP is swept at a predetermined cycle (for example, the time required for the pump pulse light P to reciprocate in the measured optical fiber FUT).
- the pump light LP having the shifted frequency is shaped into a pulse by the pulsing unit 13.
- the pump pulse light P generated by the pulsing unit 13 enters the measured optical fiber FUT via the second optical branch unit 14.
- the back scattered light LS back scattered light LS (backward scattered light)) similarly to the case where the operation mode of the control device 35 is the first mode.
- Scattered light LS1 to LS3) are sequentially generated and sequentially emitted from one end of the measured optical fiber FUT.
- Backscattered light LS backscattered light LS1 to LS3 emitted from one end of the measured optical fiber FUT enters the multiplexing unit 16 via the second optical branching unit 14.
- the backscattered light LS incident on the multiplexing unit 16 is split by the first optical splitting unit 12 and multiplexed with the reference light LR via the optical delay unit 15.
- the detector 17 detects the interference light generated by the multiplexing.
- the detection signal output from the detection unit 17 to the A / D conversion unit 33 is converted into digital signal detection data by the A / D conversion unit 33 and output to the switching unit 18. Then, similarly to the case where the operation mode of the control device 35 is the first mode, the control unit 20a of the control device 35 controls the switching unit 18 in consideration of the return time of the backscattered light LS, and every predetermined time. Cut out detection data.
- the detection data cut out every predetermined time is sequentially stored in the memories 34a to 34c.
- the detection data stored in the memories 34a to 34c is spectrum data.
- the detection data stored in the memories 34a to 34c is sequentially read out individually under the control of the control device 35. Then, the frequency analysis unit 35b obtains the Brillouin frequency shift amount from the detection data individually and sequentially read from the memories 34a to 34c. The above processing is repeated while changing the modulation frequency by ⁇ fm and moving the positions of the correlation peaks CP1 to CP3 by the measurement interval ⁇ D.
- the optical fiber characteristic measuring device 2 of the present embodiment shifts the frequency of the pump light LP by the frequency shifter 32 by a frequency close to the Brillouin frequency shift generated in the optical fiber FUT to be measured. Is converted into a frequency region near DC. For this reason, it is possible to easily perform a process of converting the detection signal into detection data that is a digital signal and obtaining the characteristics of the measured optical fiber FUT.
- the optical fiber characteristic measuring device 2 cuts out the detection data every predetermined time, and individually uses the cut out detection data every predetermined time to measure the optical fiber to be measured.
- the characteristics of the FUT are measured.
- the storage unit 34 is provided with the four memories 34a to 34d in consideration of the number of correlation peaks appearing in the measured optical fiber FUT.
- the number of memories provided in the storage unit 34 does not necessarily need to be the same as the number of correlation peaks appearing in the measured optical fiber FUT, and may be different (the number may be larger than the number of correlation peaks, May be less).
- the frequency of the pump light LP split by the first optical splitter 12 is shifted has been described.
- the frequency of the reference light LR branched by the first light branching unit 12 may be shifted without shifting the frequency of the pump light LP. That is, the frequency of any one of the pump light LP and the reference light LR branched by the first light branching unit 12 may be shifted.
- FIG. 5 is a block diagram showing a main configuration of an optical fiber characteristic measuring device according to a third embodiment of the present invention.
- the same components as those shown in FIG. 4 are denoted by the same reference numerals.
- the optical fiber characteristic measuring device 3 of the present embodiment omits the switching unit 18 of the optical fiber characteristic measuring device 2 shown in FIG. 4, and stores the storage unit 34 and the control device 35 of the optical fiber characteristic measuring device 2.
- a memory 41 cutout unit
- a control device 42 are replaced by a control device 42, respectively.
- the optical fiber characteristic measuring device 2 shown in FIG. 4 individually stores, in a plurality of memories, the detection data extracted by the switching unit 18 at predetermined time intervals.
- the optical fiber characteristic measuring apparatus 3 of the present embodiment stores all the detection data in the memory 41 and takes into consideration the time when the backscattered light LS arrives at the detection unit 17 to detect the detection data stored in the memory 41. Data is individually read at predetermined time intervals. That is, the optical fiber characteristic measuring device 2 shown in FIG. 4 cuts out detection data before storing it in the memory, whereas the optical fiber characteristic measuring device 3 of the present embodiment stores the detection data after storing it in the memory. Cut out the detection data.
- the memory 41 may be, for example, a volatile semiconductor memory such as a RAM or a nonvolatile semiconductor memory such as a flash memory, similarly to the memories 34a to 34d shown in FIG.
- the memory 41 is not limited to a semiconductor memory, but may be an HDD (hard disk drive), an SSD (solid state drive), or the like, other than the semiconductor memory.
- the control device 42 controls the operation of the optical fiber characteristic measuring device 3 in an integrated manner.
- the control device 42 controls the light source unit 11 to change the modulation frequency fm of the continuous light L1 output from the light source unit 11 and controls the pulsating unit 13 similarly to the control device 35 illustrated in FIG. Then, the pump pulse light P is generated, and the oscillator 31 is controlled to output a signal S1 having a constant frequency or a signal S1 whose frequency changes in a predetermined cycle.
- the control device 42 includes a reading unit 42a (cutout unit) in addition to the FFT operation unit 35a and the frequency analysis unit 35b illustrated in FIG.
- the reading unit 42a individually reads out the detection data stored in the memory 41 at predetermined time intervals in consideration of the time when the backscattered light LS reaches the detection unit 17.
- the time when the backscattered light LS arrives at the detection unit 17 (return time of the backscattered light LS) is obtained by the controller 42 performing the same processing as in step S13 shown in FIG.
- the time at which the detection data is written to the memory 41 and the address of the memory 41 correspond one-to-one. It will be.
- the reading unit 42a uses the time when the writing of the detection data to the memory 41 is started, the write start address of the detection data to the memory 41, and the sampling frequency of the A / D conversion unit 33, and the backscattered light LS reaches the detection unit 17. The converted time is converted into an address, and necessary detection data is read.
- the additional data indicating the data order of the detection data may be added together with the detection data output from the A / D conversion unit 33. May be written to the memory 41.
- Such additional information may be, for example, time information or a data number (serial number).
- time information is used as the additional information
- the reading unit 42a reads necessary detection data with reference to the time information as the additional information.
- the reading unit 42a uses the time at which the writing of the detection data to the memory 41 is started and the sampling frequency of the A / D conversion unit 33 to generate the backscattered light LS. Is converted into a data number and necessary detection data is read.
- the control device 42 also has two operation modes (first mode and second mode), like the control device 35 shown in FIG.
- the operation mode of the control device 42 is the first mode
- the oscillator 31 is controlled such that the frequency of the signal S1 becomes a constant frequency.
- the FFT operation unit 35a of the control device 42 is set to an operating state to process the detection data read by the reading unit 42a
- the frequency analysis unit 35b stores the spectrum data obtained by the FFT operation unit 35a. Is set so as to obtain the Brillouin frequency shift amount.
- the operation mode of the control device 42 is the second mode
- the oscillator 31 is controlled so that the frequency of the signal S1 changes.
- the FFT operation unit 35a of the control device 42 is stopped, and the frequency analysis unit 35b is set to obtain the Brillouin frequency shift amount from the detection data read by the reading unit 42a.
- the operation of the optical fiber characteristic measuring device 3 is the same as that of the optical fiber characteristic measuring device 2 shown in FIG. 4 except for the timing of cutting out the detection data output from the A / D converter 33. For this reason, in the optical fiber characteristic measuring device 3, basically, the same processing as the processing in the flowchart shown in FIG. 2 is performed. In the following, among the operations of the optical fiber characteristic measuring device 3, those different from those of the optical fiber characteristic measuring device 2 will be mainly described. In the following, for the sake of simplicity, the case where the operation mode of the control device 42 is the first mode will be described as an example.
- the operation from the emission of the continuous light L1 from the light source 11a to the detection of the interference light between the backscattered light LS and the reference light LR by the detection unit 17 is performed by the optical fiber characteristic measuring device 2 shown in FIG. The operation is the same.
- the detection signal output from the detection unit 17 to the A / D conversion unit 33 is converted into digital signal detection data by the A / D conversion unit 33, output to the memory 41, and sequentially stored in the memory 41.
- the reading unit 42a individually reads the detection data stored in the memory 41 at predetermined time intervals in consideration of the time when the backscattered light LS reaches the detection unit 17.
- the data individually read by the reading unit 42a is sequentially output to the FFT operation unit 35a.
- the FFT operation unit 35a obtains spectrum data indicating the frequency characteristics of the detected data.
- the spectrum data obtained by the FFT operation unit 35a is sequentially output to the frequency analysis unit 35b. Then, the frequency analysis unit 35b obtains a Brillouin frequency shift amount from the spectrum data obtained by the FFT operation unit 35a. The above processing is repeated while changing the modulation frequency by ⁇ fm and moving the positions of the correlation peaks CP1 to CP3 by the measurement interval ⁇ D.
- the reading of the detection data by the reading unit 42a may be performed each time the detection data is written to the memory 41, as in the second embodiment, or may be performed at a different timing from the second embodiment. .
- the memory 41 has a sufficient capacity, all the detection data obtained during the measurement may be stored in the memory 41, and the reading unit 42a may collectively read out the detection data after the measurement is completed. . If the processing of the control device 42 is sufficiently fast, the memory 41 can be omitted. In such a case, the readout unit 42a provided in the control device 42 directly cuts out the detection data output from the A / D conversion unit 33.
- the reading unit 42a transmits the backscattered light LS to the detection unit 17
- the detection data stored in the memory 41 is individually read out at predetermined time intervals in consideration of the time when the data has arrived.
- the switching unit 18 and the plurality of memories 34a to 34d shown in FIG. 4 can be omitted, the configuration of the device can be simplified. Further, for example, it is possible to flexibly use, for example, reading out the detection data stored in the memory 41 collectively after the measurement is completed, and collectively obtaining the characteristics of the measured optical fiber FUT.
- the present embodiment is different from the second embodiment only in that the detection data is cut out after the detection data is stored in the memory or the detection data is cut out before the detection data is stored in the memory. Therefore, also in the present embodiment, the same operation and effect as those obtained in the second embodiment can be obtained. Specifically, the operation and effect of converting the detection signal output from the detection unit 17 into detection data which is a digital signal to easily obtain the characteristics of the measured optical fiber FUT, and The effect that the time required for measuring the characteristics of the measured optical fiber can be shortened is obtained.
- the optical fiber characteristic measuring device and the optical fiber characteristic measuring method according to the embodiment of the present invention have been described.
- the present invention is not limited to the above embodiment, and can be freely changed within the scope of the present invention. is there.
- the pulsing unit 13 shapes the pump light LP into a pulse by performing intensity modulation on the pump light LP.
- the method of pulsing the pump light LP is not limited to the method of intensity-modulating the pump light LP.
- frequency modulation may be performed on the pump light LP, and the optical frequency of the pump light LP may be changed in a pulse shape (the optical frequency is largely shaken).
- the optical delay unit 15 is provided between the first optical branching unit 12 and the second optical branching unit 14 or between the first optical branching unit 12 and the second optical branching unit 14 in addition to between the first optical branching unit 12 and the multiplexing unit 16. It may be provided between the multiplexing unit 16. Further, a first optical amplification unit that amplifies the pump light LP may be provided between the first optical branching unit 12 and the second optical branching unit 14. Further, a second optical amplifier for amplifying the backscattered light LS may be provided between the second optical branching unit 14 and the multiplexing unit 16. Further, a third optical amplifying unit that amplifies the reference light LR may be provided between the first optical branching unit 12 and the multiplexing unit 16.
- an intensity modulator may be used as the frequency shifter 32 instead of the SSB modulator.
- the frequency shifter 32 may be provided between the detection unit 17 and the A / D conversion unit 33.
- the modulator 11b may modulate the light by a modulator connected to the output of the light source 11a instead of directly modulating the light source 11a.
- unit is used to indicate a component, unit, piece of hardware or piece of software that is programmed to perform a desired function.
- Typical examples of hardware are devices and circuits, but are not limited thereto.
- optical fiber characteristics measuring device 11 light source unit 12 first optical branching unit 13 pulse generating unit 14 second optical branching unit 17 detecting unit 18 switching unit 19 measuring unit 19a to 19d frequency analyzer 20 control unit 20a control unit 32 frequency Shifter 33 A / D conversion unit 34 Storage unit 34a to 34d Memory 35 Control unit 35a FFT operation unit 35b Frequency analysis unit 40 Storage unit 41 Memory 42a Reading unit FUT Optical fiber to be measured L1 Continuous light LP Pump light LR Reference light LS Back scattering light
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
光ファイバ特性測定装置(1)は、周波数変調された連続光(L1)を出力する光源部(11)と、連続光をポンプ光(LP)と参照光(LR)とに分岐する第1光分岐部(12)と、ポンプ光をパルス化するパルス化部(13)と、パルス化されたポンプ光を被測定光ファイバ(FUT)の一端から入射させ、被測定光ファイバ内におけるブリルアン散乱により生じた後方散乱光(LS)を出力する第2光分岐部(14)と、後方散乱光と参照光との干渉光を検出する検出部(17)と、検出部から出力される検出信号を所定時間毎に切り出す切出部(18、20a、34、41、42a)と、切出部で切り出された所定時間毎の検出信号を個別に用いて被測定光ファイバの特性を測定する測定部(19、35a、35b)と、を備える。
Description
本発明は、光ファイバ特性測定装置及び光ファイバ特性測定方法に関する。
光ファイバ特性測定装置は、連続光又はパルス光を被測定光ファイバに入射させ、被測定光ファイバ内において生ずる散乱光又は反射光を受光して被測定光ファイバの長さ方向における温度分布、歪み分布、その他の特性を測定する装置である。この光ファイバ特性測定装置では、受光される散乱光又は反射光が被測定光ファイバに影響を及ぼす物理量(例えば、温度や歪み)に応じて変化するため、被測定光ファイバそのものがセンサとして用いられる。
このような光ファイバ特性測定装置の1つに、BOCDR(Brillouin Optical Correlation Domain Reflectometry)方式のものがある。このBOCDR方式の光ファイバ特性測定装置は、被測定光ファイバの一端から周波数変調された連続光であるポンプ光を入射させ、被測定光ファイバの一端から射出されるブリルアン散乱光と参照光(ポンプ光と同様の周波数変調がされた光)とを干渉させたものを受光してブリルアン周波数シフト量を求めることにより被測定光ファイバの特性を測定する。
BOCDR方式の光ファイバ特性測定装置では、ブリルアン散乱光と参照光とを干渉させることにより、被測定光ファイバ中において「相関ピーク」が現れる特定の位置におけるブリルアン散乱光を選択的に抽出している。ここで、被測定光ファイバ内における相関ピークの間隔は、ポンプ光及び参照光の変調周波数に反比例する。また、ポンプ光及び参照光の変調周波数を掃引することで、被測定光ファイバの長さ方向に沿って相関ピークを移動させることができる。このため、相関ピークを移動させつつ各相関ピークが現れる位置におけるブリルアン周波数シフト量を求めることにより、被測定光ファイバの長さ方向における温度分布や歪み分布を測定することができる。
BOCDR方式の光ファイバ特性測定装置において、被測定光ファイバの長さが上述の相関ピークの間隔よりも長くなる場合には、被測定光ファイバ中に複数の相関ピークが現れることになる。このような場合には、複数の相関ピークのうちの1つを選択し、選択した相関ピークが現れる位置におけるブリルアン散乱光のみが抽出され、他の相関ピークが現れる位置におけるブリルアン散乱光が抽出されないようにして、クロストークを避ける必要がある。このような相関ピークを選択する手法のひとつとして、時間ゲート法と呼ばれる手法がある。
時間ゲート法は、ポンプ光をパルス状に整形して被測定光ファイバに入射させ、ブリルアン散乱光の受光タイミングを調整することで、被測定光ファイバの任意の相関ピークを選択する手法である。ここで、複数の相関ピークのうちの1つのみが選択されるように、ポンプ光は、パルス幅が相関ピークの間隔よりも短くなるように整形される。以下、このように整形されたポンプ光を、「ポンプパルス光」という。尚、時間ゲート法の詳細については、例えば以下の特許文献1を参照されたい。
ところで、従来の時間ゲート法は、上述の通り、ポンプパルス光を被測定光ファイバに入射させ、ブリルアン散乱光の受光タイミングを調整することで、被測定光ファイバの任意の相関ピークを選択する手法である。このため、従来の時間ゲート法では、被測定光ファイバの一端からポンプパルス光が入射されてから、そのポンプパルス光が被測定光ファイバの他端に到達することによって得られるブリルアン散乱光(被測定光ファイバの他端におけるブリルアン散乱光)が被測定光ファイバの一端に戻ってくるまでは、次のポンプパルス光を被測定光ファイバに入射させることができない。
つまり、従来の時間ゲート法では、1つのポンプパルス光を被測定光ファイバに入射させてから、そのポンプパルス光が被測定光ファイバを往復するのに要する時間にポンプパルス光の幅(時間幅)を加えた時間(以下、「測定待ち時間」という)が経過してから、次のポンプパルス光を被測定光ファイバに入射させる必要があった。仮に、この測定待ち時間が経過する前に、次のポンプパルス光を被測定光ファイバに入射させてしまうと、異なる相関ピークが現れる異なる位置におけるブリルアン散乱光が同時に受光されてクロストークが生じ、測定誤差となってしまう。
従来の時間ゲート法は、1つのポンプパルス光によって複数の相関ピークのうちの1つを選択し、選択した相関ピークが現れる位置におけるブリルアン散乱光のみを抽出する手法である。ここで、従来の時間ゲート法では、ポンプパルス光を被測定光ファイバに入射させる時間間隔(周期)は、上述した測定待ち時間よりも短くすることができない。このため、従来の時間ゲート法が用いられる光ファイバ特性測定装置では、被測定光ファイバの長さ方向の特性を広範囲に亘って測定しようとすると、測定に要する時間が大幅に長くなるという問題があった。
本発明は上記事情に鑑みてなされたものであり、従来よりも被測定光ファイバの特性の測定に要する時間を短縮することができる光ファイバ特性測定装置及び光ファイバ特性測定方法を提供することを目的とする。
上記課題を解決するために、本発明の一態様による光ファイバ特性測定装置は、周波数変調された連続光(L1)を出力する光源部(11)と、前記連続光をポンプ光(LP)と参照光(LR)とに分岐する第1光分岐部(12)と、前記ポンプ光をパルス化するパルス化部(13)と、パルス化された前記ポンプ光を光ファイバ(FUT)の一端から入射させ、前記光ファイバ内におけるブリルアン散乱により生じた後方散乱光(LS)を出力する第2光分岐部(14)と、前記後方散乱光と前記参照光との干渉光を検出する検出部(17)と、前記検出部から出力される検出信号を所定時間毎に切り出す切出部(18、20a、34、41、42a)と、前記切出部で切り出された前記所定時間毎の検出信号を個別に用いて前記光ファイバの特性を測定する測定部(19、35a、35b)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記測定部が、前記検出信号からブリルアン周波数シフト量を求める周波数分析器(19a~19d)を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記周波数分析器が、複数設けられており、前記切出部が、複数の前記周波数分析器の何れに前記検出部を接続するかを切り換える切替部(18)と、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う制御部(20a)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記ポンプ光又は前記参照光の周波数をシフトさせる周波数シフタ(32)と、前記検出部と前記切出部との間に設けられ、前記検出部から出力される前記検出信号をディジタル信号の検出データに変換する変換部(33)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記周波数シフタが、前記ポンプ光の周波数を、ブリルアン周波数シフト量に近い周波数だけシフトさせる。
また、本発明の一態様による光ファイバ特性測定装置は、前記切出部が、前記検出データを記憶する複数のメモリ(34a~34d)を有する記憶部(34)と、前記複数のメモリの何れに前記変換部を接続するかを切り換える切替部(18)と、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う制御部(20a)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記測定部が、前記複数のメモリから個別に読み出された前記検出データに対して高速フーリエ変換を行ってスペクトルデータを求める演算部(35a)と、前記演算部で求められた前記スペクトルデータからブリルアン周波数シフト量を求める周波数分析部(35b)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記周波数シフタが、前記ポンプ光の周波数のシフト量を、予め規定された周期で掃引し、前記測定部が、前記複数のメモリから個別に読み出された前記検出データからブリルアン周波数シフト量を求める周波数分析部(35b)を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記切出部が、前記後方散乱光が前記検出部に到達した時間を考慮して、前記検出データを前記所定時間毎に個別に読み出す読出部(42a)を備え、前記測定部が、前記読出部によって個別に読み出された前記検出データから前記光ファイバの特性を測定する。
また、本発明の一態様による光ファイバ特性測定装置は、前記測定部が、前記読出部によって個別に読み出された前記検出データに対して高速フーリエ変換を行ってスペクトルデータを求める演算部(35a)と、前記演算部で求められた前記スペクトルデータからブリルアン周波数シフト量を求める周波数分析部(35b)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記周波数シフタが、前記ポンプ光の周波数のシフト量を、予め規定された周期で掃引し、前記測定部が、前記読出部によって個別に読み出された前記検出データからブリルアン周波数シフト量を求める。
また、本発明の一態様による光ファイバ特性測定装置は、前記切出部が、前記検出データを記憶するメモリ(41)を備え、前記読出部が、前記後方散乱光が前記検出部に到達した時間を考慮して、前記メモリに記憶された前記検出データを前記所定時間毎に個別に読み出す。
本発明の一態様による光ファイバ特性測定方法は、光源部(11)によって、周波数変調された連続光(L1)を出力し、第1光分岐部(12)によって、前記連続光をポンプ光(LP)と参照光(LR)とに分岐し、パルス化部(13)によって、前記ポンプ光をパルス化し、第2光分岐部(14)によって、パルス化された前記ポンプ光を光ファイバ(FUT)の一端から入射させ、前記第2光分岐部によって、前記光ファイバ内におけるブリルアン散乱により生じた後方散乱光(LS)を出力し、検出部(17)によって、前記後方散乱光と前記参照光との干渉光を検出し、切出部(18、20a、34、41、42a)によって、前記検出部から出力される検出信号を所定時間毎に切り出し、測定部(19、35a、35b)によって、前記切出部で切り出された前記所定時間毎の検出信号を個別に用いて前記光ファイバの特性を測定する。
また、本発明の一態様による光ファイバ特性測定方法において、前記測定部は、周波数分析器(19a~19d)を備え、前記周波数分析器によって、前記検出信号からブリルアン周波数シフト量を求める。
また、本発明の一態様による光ファイバ特性測定方法において、前記周波数分析器は、複数設けられており、前記切出部は、切替部(18)と、制御部(20a)とを備え、前記切替部によって、複数の前記周波数分析器の何れに前記検出部を接続するかを切り換え、前記制御部によって、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う。
また、本発明の一態様による光ファイバ特性測定方法において、周波数シフタ(32)によって、前記ポンプ光又は前記参照光の周波数をシフトさせ、前記検出部と前記切出部との間に設けられた変換部(33)によって、前記検出部から出力される前記検出信号をディジタル信号の検出データに変換する。
また、本発明の一態様による光ファイバ特性測定方法において、前記周波数シフタによって、前記ポンプ光の周波数を、ブリルアン周波数シフト量に近い周波数だけシフトさせる。
また、本発明の一態様による光ファイバ特性測定方法において、前記切出部は、複数のメモリ(34a~34d)を有する記憶部(34)と、切替部(18)と、制御部(20a)とを備え、前記記憶部によって、前記検出データを記憶し、前記切替部によって、前記複数のメモリの何れに前記変換部を接続するかを切り換え、前記制御部によって、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う。
また、本発明の一態様による光ファイバ特性測定方法において、前記測定部は、演算部(35a)と、周波数分析部(35b)とを備え、前記演算部によって、前記複数のメモリから個別に読み出された前記検出データに対して高速フーリエ変換を行ってスペクトルデータを求め、前記周波数分析部によって、前記演算部で求められた前記スペクトルデータからブリルアン周波数シフト量を求める。
また、本発明の一態様による光ファイバ特性測定方法において、前記周波数シフタによって、前記ポンプ光の周波数のシフト量を、予め規定された周期で掃引し、前記測定部は、周波数分析部(35b)を備え、前記周波数分析部によって、前記複数のメモリから個別に読み出された前記検出データからブリルアン周波数シフト量を求める。
本発明の更なる特徴及び態様は、添付図面を参照し、以下に述べる実施形態の詳細な説明から明らかとなるであろう。
また、本発明の一態様による光ファイバ特性測定装置は、前記測定部が、前記検出信号からブリルアン周波数シフト量を求める周波数分析器(19a~19d)を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記周波数分析器が、複数設けられており、前記切出部が、複数の前記周波数分析器の何れに前記検出部を接続するかを切り換える切替部(18)と、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う制御部(20a)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記ポンプ光又は前記参照光の周波数をシフトさせる周波数シフタ(32)と、前記検出部と前記切出部との間に設けられ、前記検出部から出力される前記検出信号をディジタル信号の検出データに変換する変換部(33)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記周波数シフタが、前記ポンプ光の周波数を、ブリルアン周波数シフト量に近い周波数だけシフトさせる。
また、本発明の一態様による光ファイバ特性測定装置は、前記切出部が、前記検出データを記憶する複数のメモリ(34a~34d)を有する記憶部(34)と、前記複数のメモリの何れに前記変換部を接続するかを切り換える切替部(18)と、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う制御部(20a)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記測定部が、前記複数のメモリから個別に読み出された前記検出データに対して高速フーリエ変換を行ってスペクトルデータを求める演算部(35a)と、前記演算部で求められた前記スペクトルデータからブリルアン周波数シフト量を求める周波数分析部(35b)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記周波数シフタが、前記ポンプ光の周波数のシフト量を、予め規定された周期で掃引し、前記測定部が、前記複数のメモリから個別に読み出された前記検出データからブリルアン周波数シフト量を求める周波数分析部(35b)を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記切出部が、前記後方散乱光が前記検出部に到達した時間を考慮して、前記検出データを前記所定時間毎に個別に読み出す読出部(42a)を備え、前記測定部が、前記読出部によって個別に読み出された前記検出データから前記光ファイバの特性を測定する。
また、本発明の一態様による光ファイバ特性測定装置は、前記測定部が、前記読出部によって個別に読み出された前記検出データに対して高速フーリエ変換を行ってスペクトルデータを求める演算部(35a)と、前記演算部で求められた前記スペクトルデータからブリルアン周波数シフト量を求める周波数分析部(35b)と、を備える。
また、本発明の一態様による光ファイバ特性測定装置は、前記周波数シフタが、前記ポンプ光の周波数のシフト量を、予め規定された周期で掃引し、前記測定部が、前記読出部によって個別に読み出された前記検出データからブリルアン周波数シフト量を求める。
また、本発明の一態様による光ファイバ特性測定装置は、前記切出部が、前記検出データを記憶するメモリ(41)を備え、前記読出部が、前記後方散乱光が前記検出部に到達した時間を考慮して、前記メモリに記憶された前記検出データを前記所定時間毎に個別に読み出す。
本発明の一態様による光ファイバ特性測定方法は、光源部(11)によって、周波数変調された連続光(L1)を出力し、第1光分岐部(12)によって、前記連続光をポンプ光(LP)と参照光(LR)とに分岐し、パルス化部(13)によって、前記ポンプ光をパルス化し、第2光分岐部(14)によって、パルス化された前記ポンプ光を光ファイバ(FUT)の一端から入射させ、前記第2光分岐部によって、前記光ファイバ内におけるブリルアン散乱により生じた後方散乱光(LS)を出力し、検出部(17)によって、前記後方散乱光と前記参照光との干渉光を検出し、切出部(18、20a、34、41、42a)によって、前記検出部から出力される検出信号を所定時間毎に切り出し、測定部(19、35a、35b)によって、前記切出部で切り出された前記所定時間毎の検出信号を個別に用いて前記光ファイバの特性を測定する。
また、本発明の一態様による光ファイバ特性測定方法において、前記測定部は、周波数分析器(19a~19d)を備え、前記周波数分析器によって、前記検出信号からブリルアン周波数シフト量を求める。
また、本発明の一態様による光ファイバ特性測定方法において、前記周波数分析器は、複数設けられており、前記切出部は、切替部(18)と、制御部(20a)とを備え、前記切替部によって、複数の前記周波数分析器の何れに前記検出部を接続するかを切り換え、前記制御部によって、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う。
また、本発明の一態様による光ファイバ特性測定方法において、周波数シフタ(32)によって、前記ポンプ光又は前記参照光の周波数をシフトさせ、前記検出部と前記切出部との間に設けられた変換部(33)によって、前記検出部から出力される前記検出信号をディジタル信号の検出データに変換する。
また、本発明の一態様による光ファイバ特性測定方法において、前記周波数シフタによって、前記ポンプ光の周波数を、ブリルアン周波数シフト量に近い周波数だけシフトさせる。
また、本発明の一態様による光ファイバ特性測定方法において、前記切出部は、複数のメモリ(34a~34d)を有する記憶部(34)と、切替部(18)と、制御部(20a)とを備え、前記記憶部によって、前記検出データを記憶し、前記切替部によって、前記複数のメモリの何れに前記変換部を接続するかを切り換え、前記制御部によって、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う。
また、本発明の一態様による光ファイバ特性測定方法において、前記測定部は、演算部(35a)と、周波数分析部(35b)とを備え、前記演算部によって、前記複数のメモリから個別に読み出された前記検出データに対して高速フーリエ変換を行ってスペクトルデータを求め、前記周波数分析部によって、前記演算部で求められた前記スペクトルデータからブリルアン周波数シフト量を求める。
また、本発明の一態様による光ファイバ特性測定方法において、前記周波数シフタによって、前記ポンプ光の周波数のシフト量を、予め規定された周期で掃引し、前記測定部は、周波数分析部(35b)を備え、前記周波数分析部によって、前記複数のメモリから個別に読み出された前記検出データからブリルアン周波数シフト量を求める。
本発明の更なる特徴及び態様は、添付図面を参照し、以下に述べる実施形態の詳細な説明から明らかとなるであろう。
本発明によれば、従来よりも被測定光ファイバの特性の測定に要する時間を短縮することができるという効果がある。
以下、図面を参照して本発明の実施形態による光ファイバ特性測定装置及び光ファイバ特性測定方法について詳細に説明する。
〔第1実施形態〕
〈光ファイバ特性測定装置の構成〉
図1は、本発明の第1実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。図1に示す通り、本実施形態の光ファイバ特性測定装置1は、光源部11、第1光分岐部12、パルス化部13、第2光分岐部14、光遅延部15、合波部16、検出部17、切替部18(切出部)、測定部19、及び制御装置20を備える。
〈光ファイバ特性測定装置の構成〉
図1は、本発明の第1実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。図1に示す通り、本実施形態の光ファイバ特性測定装置1は、光源部11、第1光分岐部12、パルス化部13、第2光分岐部14、光遅延部15、合波部16、検出部17、切替部18(切出部)、測定部19、及び制御装置20を備える。
本実施形態の光ファイバ特性測定装置1は、被測定光ファイバFUTにポンプパルス光Pを入射させて得られる後方散乱光LSに基づいて被測定光ファイバFUTの特性を測定する、所謂BOCDR方式の光ファイバ特性測定装置である。尚、上記のポンプパルス光Pは、周波数変調が与えられた連続光としてのポンプ光LPをパルス化した光である。また、上記の後方散乱光LSは、被測定光ファイバFUT内におけるブリルアン散乱により生じた後方散乱光である。
被測定光ファイバFUTは、ポンプパルス光Pの波長等に応じて任意のものを用いてよい。また、本実施形態では、被測定光ファイバFUTの長さは、相関ピークの間隔dmよりも長いものとし、被測定光ファイバFUTには複数の相関ピークが存在するものとする。尚、図1では、理解を容易にするために、被測定光ファイバFUTに存在する4つの相関ピークCP1~CP4を図示している。
光源部11は、光源11aと変調部11bとを備えており、制御装置20の制御の下で周波数変調された連続光L1を出力する。光源11aは、例えば分布帰還型レーザダイオード(DFB-LD:Distributed Feed-Back Laser Diode)等の半導体レーザ素子を備えており、変調部11bから出力される変調信号m1に応じて周波数変調された連続光L1を出力する。変調部11bは、制御装置20の制御の下で、光源11aから出力される連続光L1を周波数変調するための変調信号m1を出力する。この変調信号m1は、例えば正弦波状の信号であり、その周波数(変調周波数fm)及び振幅が制御装置20によって制御される。
第1光分岐部12は、光源部11から出力された連続光L1を、予め規定された強度比(例えば、1対1)のポンプ光LPと参照光LRとに分岐する。パルス化部13は、制御装置20の制御の下で、第1光分岐部12で分岐されたポンプ光LPをパルス化する。例えば、パルス化部13は、ポンプ光LPに対して強度変調を行うことによって、ポンプ光LPをパルス状に整形する。このようなパルス化部13を設けるのは、時間ゲート法で用いるポンプパルス光Pを得るためである。ここで、ポンプパルス光Pのパルス幅tpwは、ポンプパルス光Pが被測定光ファイバFUT内を伝播する際に、ポンプパルス光P内に相関ピークが1つのみ含まれるように設定される。具体的には、以下の(1)式が満たされるように、ポンプパルス光Pのパルス幅tpwが設定される。
tpw≦1/fm …(1)
tpw≦1/fm …(1)
第2光分岐部14は、第1ポート、第2ポート、及び第3ポートを備える。第1ポートは、パルス化部13と接続される。第2ポートは、被測定光ファイバFUTと接続される。第3ポートは、合波部16と接続される。第2光分岐部14は、第1ポートから入力されるポンプパルス光Pを第2ポートに出力する。また、第2ポートから入力される被測定光ファイバFUTからの後方散乱光LSを第3ポートに出力する。このような第2光分岐部14は、例えば光サーキュレータであってよい。
光遅延部15は、第1光分岐部12で分岐された参照光LRを所定の時間だけ遅延させる。光遅延部15は、例えば、所定の長さの光ファイバを含む。光ファイバの長さを変更することで、遅延時間を調節することができる。このような光遅延部15を設けるのは、変調周波数fmの掃引を行っても現れる位置が移動しない0次相関ピークを被測定光ファイバFUTの外部に配置するためである。
合波部16は、第2光分岐部14の第3ポートから出力される被測定光ファイバFUTからの後方散乱光LSと、第1光分岐部12から出力されて光遅延部15を介した参照光LRとを合波する。また、合波部16は、合波した光を予め規定された強度比(例えば、1対1)の2つの光に分岐して検出部17に出力する。合波部16によって分岐された2つの光の各々は、例えば被測定光ファイバFUTからの後方散乱光の50%と参照光の50%とを含む。このような合波部16は、例えば光カプラであってよい。
検出部17は、合波部16から出力される2つの光に含まれる後方散乱光LSと参照光LRとを干渉させることによって光ヘテロダイン検波を行う。検出部17は、例えば、2つのフォトダイオード(PD: Photo Diode)17a,17bからなるバランスド・フォトダイオードと、合波器17cとを備える。フォトダイオード17a,17bは、合波部16から出力される2つの光をそれぞれ受光する。フォトダイオード17aの受光信号及びフォトダイオード17bの受光信号は、合波器17cに入力される。合波器17cからは、後方散乱光LSと参照光LRとの周波数差分を示す干渉信号(ビート信号:検出信号)が出力される。
切替部18は、1つの入力端と複数(図1に示す例では5つ)の出力端とを有する。切替部18は、制御装置20に設けられた制御部20aの制御の下で、入力端に接続される出力端の切り替えを行う。切替部18の入力端には検出部17の合波器17cが接続される。切替部18に設けられた5つの出力端のうちの4つの出力端には、測定部19に設けられた周波数分析器19a~19dがそれぞれ接続される。切替部18に設けられた5つの出力端のうちの残りの1つの出力端は、周波数分析器等の機器が接続されていない開放端とされる。このような切替部18は、例えば機械的スイッチ又は電子式スイッチ等であってよい。
切替部18は、検出部17の合波器17cから出力される検出信号を、所定時間毎に切り出すために設けられる。ここで、切り出しとは、時間的に連続する信号から必要な部分を抽出することを意味する。このように、検出部17の合波器17cから出力される検出信号を所定時間毎に切り出すのは、被測定光ファイバFUTに入射したポンプパルス光Pの進行に合わせて、被測定光ファイバFUTに現れる複数の相関ピークのうちの選択する相関ピークを順次変えるためである。
つまり、従来の時間ゲート法では、1つのポンプパルス光Pを被測定光ファイバFUTに入射させた場合に、1つの相関ピークのみを選択していた。これに対し、本実施形態の時間ゲート法では、1つのポンプパルス光Pを被測定光ファイバFUTに入射させた場合に、ポンプパルス光Pの進行に合わせて、異なる相関ピークを順次選択している。このようにすることで、被測定光ファイバFUTの特性の測定に要する時間を短縮している。尚、切替部18が検出部17の合波器17cから出力される検出信号を切り出す時間(上記の所定時間)の詳細については後述する。
測定部19は、複数の周波数分析器を備えている。測定部19は、切替部18から出力される検出信号(所定時間毎に切り出された検出信号)を複数の周波数分析器に個別に入力させて被測定光ファイバFUTの特性を測定する。測定部19における周波数分析器の数は、被測定光ファイバFUTに現れる相関ピークの数を考慮して設定される。例えば、図1に示す通り、被測定光ファイバFUTに4つの相関ピークCP1~CP4が現れる場合には、これら4つの相関ピークCP1~CP4に対応して4つの周波数分析器19a~19dが測定部19に設けられる。
周波数分析器19a~19dは、例えばスペクトラムアナライザ(ESA:Electrical Spectrum Analyzer)を備えている。周波数分析器19a~19dは、切替部18から出力される検出信号(所定時間毎に切り出された検出信号)の周波数特性を示すスペクトルデータを個別に求める。また、周波数分析器19a~19dは、個別に求めたスペクトルデータからブリルアン周波数シフト量を個別に求める。周波数分析器19a~19dは、個別に得られたブリルアン周波数シフト量を、歪みや温度等の物理情報に変換する機能を有していても良い。
制御装置20は、測定部19の測定結果を参照しつつ、光ファイバ特性測定装置1の動作を統括して制御する。例えば、制御装置20は、光源部11を制御して光源部11から出力される連続光L1の変調周波数fmを変更させる。また、制御装置20は、パルス化部13を制御してポンプパルス光Pを生成させる。また、制御装置20は、制御部20a(切出部)を備える。制御部20aは、被測定光ファイバFUTからの後方散乱光LSが検出部17に到達する時間を考慮して切替部18の切り替え制御を行う。
〈光ファイバ特性測定装置の動作〉
図2は、本発明の第1実施形態による光ファイバ特性測定装置の動作例を示すフローチャートである。尚、図2に示すフローチャートは、例えば光ファイバ特性測定装置1に対して測定開始の指示がなされることによって開始され、被測定光ファイバFUTの特性を長さ方向に亘って測定する場合には一定の周期で繰り返される。
図2は、本発明の第1実施形態による光ファイバ特性測定装置の動作例を示すフローチャートである。尚、図2に示すフローチャートは、例えば光ファイバ特性測定装置1に対して測定開始の指示がなされることによって開始され、被測定光ファイバFUTの特性を長さ方向に亘って測定する場合には一定の周期で繰り返される。
図2に示すフローチャートの処理が繰り返される場合には、例えば測定待ち時間(ポンプパルス光Pが被測定光ファイバFUTを往復するのに要する時間にポンプパルス光Pのパルス幅tpwを加えた時間)が経過する度に繰り返される。以下では、繰り返される図2に示すフローチャートの処理のうちの第k回目(kは1以上の整数)の処理を「第k回目処理」という。
被測定光ファイバFUTの特性の測定に先立って、被測定光ファイバFUTの測定条件の設定が行われる。この測定条件の設定は、例えばユーザが制御装置20に設けられている不図示の操作部を操作することによって行われる。尚、光ファイバ特性測定装置1に対する測定条件の設定は、測定開始前に、ユーザが不図示の操作部を操作して1つ1つ設定しても良く、予め制御装置20に記憶されている複数の設定条件を選択することによって設定しても良い。
図3は、本発明の第1実施形態において設定される測定条件を説明するための図である。図3に示す通り、被測定光ファイバFUTの一端(ポンプパルス光Pが入射され、後方散乱光LSが射出される端部)の位置を原点とする。測定条件としては、例えば、被測定光ファイバFUTの特性を測定する範囲である測定範囲RM、変調周波数の初期値fm0、ポンプパルス光Pのパルス幅tpw、測定間隔ΔD等が設定される。
図3に示す例では、測定範囲RMは、被測定光ファイバFUTの一端(原点)からの距離がD1からD2までの範囲に設定されている。また、変調周波数の初期値fm0は、原点からの距離がD1である位置に相関ピークCP1が現れるように設定されている。ポンプパルス光Pのパルス幅tpwは、前述した(1)式が満たされる幅に設定される。測定間隔ΔDは、分解能等を考慮して設定される。
尚、相関ピークの間隔dmは、被測定光ファイバFUT中の光の群速度をvgとすると、以下の(2)式で表される。従って、変調周波数fmが設定されると、相関ピークの間隔dmも設定されることになる。
dm=vg/(2×fm) …(2)
また、相関ピークCP1の位置は、変調周波数fmが変化すると変わる。このため、測定間隔ΔDが設定されると、相関ピークCP1の位置を測定間隔ΔDだけ移動させるために必要な変調周波数fmの変化量Δfmも設定されることになる。
dm=vg/(2×fm) …(2)
また、相関ピークCP1の位置は、変調周波数fmが変化すると変わる。このため、測定間隔ΔDが設定されると、相関ピークCP1の位置を測定間隔ΔDだけ移動させるために必要な変調周波数fmの変化量Δfmも設定されることになる。
以下では、図3に示す通り、測定開始時点において、測定範囲RM内に3つの相関ピークCP1~CP3が間隔dmをもって現れるとする。尚、測定開始時点において、相関ピークCP1~CP3が現れる位置は、以下の通りである。
相関ピークCP1:原点からの距離がD1である位置
相関ピークCP2:原点からの距離がD1+dmである位置
相関ピークCP3:原点からの距離がD1+2×dmである位置
相関ピークCP1:原点からの距離がD1である位置
相関ピークCP2:原点からの距離がD1+dmである位置
相関ピークCP3:原点からの距離がD1+2×dmである位置
《第1回目処理》
光ファイバ特性測定装置1に対して測定開始の指示がなされて、図2に示すフローチャートの処理が開始されると、まず光ファイバ特性測定装置1の制御装置20は、変調周波数を設定する(ステップS11)。ここでは、上述した変調周波数の初期値fm0が変調周波数fmとして設定される。変調周波数fmの設定が行われると、光源部11に設けられた変調部11bが制御装置20によって制御され、変調部11bから出力される変調信号m1の周波数を変調周波数fmに設定する。このような変調信号m1が光源11aに入力されると、光源11aからは変調周波数fmで周波数変調された連続光L1が射出される。
光ファイバ特性測定装置1に対して測定開始の指示がなされて、図2に示すフローチャートの処理が開始されると、まず光ファイバ特性測定装置1の制御装置20は、変調周波数を設定する(ステップS11)。ここでは、上述した変調周波数の初期値fm0が変調周波数fmとして設定される。変調周波数fmの設定が行われると、光源部11に設けられた変調部11bが制御装置20によって制御され、変調部11bから出力される変調信号m1の周波数を変調周波数fmに設定する。このような変調信号m1が光源11aに入力されると、光源11aからは変調周波数fmで周波数変調された連続光L1が射出される。
光源11aから射出された連続光L1は、第1光分岐部12に入射してポンプ光LPと参照光LRとに分岐される。分岐されたポンプ光LPは、パルス化部13に入射する。すると、制御装置20によってパルス化部13が制御され、ポンプ光LPをパルス状に整形してポンプパルス光Pを生成する(ステップS12)。パルス化部13によって生成されたポンプパルス光Pは、第2光分岐部14を介して被測定光ファイバFUTに入射する。尚、ポンプパルス光Pの前縁が被測定光ファイバFUTの一端(原点)に入射した時刻を0とする。
被測定光ファイバFUTに入射したポンプパルス光Pは、被測定光ファイバFUT内を伝播していく。そして、相関ピークCP1が現れる位置(原点からの距離がD1である位置)、相関ピークCP2が現れる位置(原点からの距離がD1+dmである位置)、相関ピークCP3が現れる位置(原点からの距離がD1+2×dmである位置)を順次通過する。ポンプパルス光Pが、相関ピークCP1~CP3が現れる位置を順次通過すると、各々の位置においてブリルアン散乱による後方散乱光LSが順次生ずる。各々の位置で生じた後方散乱光LSは、ポンプパルス光Pが伝播する方向とは反対方向に伝播し、被測定光ファイバFUTの一端から順次射出される。
前述したポンプパルス光Pを生成する処理が行われた後に、制御装置20は、相関ピークCP1~CP3が現れる位置の各々で生じた後方散乱光LSの戻り時間を算出する(ステップS13)。ここで、ポンプパルス光Pが被測定光ファイバFUTに入射されてから、ポンプパルス光Pの前縁が、相関ピークCP1~CP3が現れる位置に到達する時刻t1~t3は以下の通りである。
時刻t1=D1/vg
時刻t2=(D1+dm)/vg
時刻t3=(D1+2×dm)/vg
時刻t1=D1/vg
時刻t2=(D1+dm)/vg
時刻t3=(D1+2×dm)/vg
ここで、相関ピークCP1が現れる位置で生じた後方散乱光LSを後方散乱光LS1とし、相関ピークCP2が現れる位置で生じた後方散乱光LSを後方散乱光LS2とし、相関ピークCP3が現れる位置で生じた後方散乱光LSを後方散乱光LS3とする。これら後方散乱光LS1~LS3が被測定光ファイバFUTの一端(原点)に到達する時刻は以下の通りである。
後方散乱光LS1:(2×t1)~(2×t1+tpw)
後方散乱光LS2:(2×t2)~(2×t2+tpw)
後方散乱光LS3:(2×t3)~(2×t3+tpw)
後方散乱光LS1:(2×t1)~(2×t1+tpw)
後方散乱光LS2:(2×t2)~(2×t2+tpw)
後方散乱光LS3:(2×t3)~(2×t3+tpw)
ここで、説明を簡単にするために、被測定光ファイバFUTの一端から射出された後方散乱光LSが、第2光分岐部14及び合波部16を順次介して検出部17に至るまでに要する時間を0とする。すると、後方散乱光LS1~LS3が検出部17に到達する時刻はそれぞれ、上記の後方散乱光LS1~LS3が被測定光ファイバFUTの一端(原点)に到達する時刻とみなすことができる。
被測定光ファイバFUTの一端から射出された後方散乱光LS(後方散乱光LS1~LS3)は、第2光分岐部14を介して合波部16に入射する。合波部16に入射した後方散乱光LSは、第1光分岐部12で分岐されて光遅延部15を介した参照光LRと合波される。検出部17は、合波によって生成された干渉光を検出する(ステップS14)。上記の干渉光が検出されると、検出部17は切替部18に検出信号を出力する。
すると、制御装置20の制御部20aは、ステップS13で算出した戻り時間を考慮して切替部18を制御し、所定時間毎に検出信号を切り出す(ステップS15)。具体的には、時刻(2×t1)~時刻(2×t1+tpw)の間は、周波数分析器19aが検出部17に接続され、時刻(2×t2)~時刻(2×t2+tpw)の間は、周波数分析器19bが検出部17に接続され、時刻(2×t3)~時刻(2×t3+tpw)の間は、周波数分析器19cが検出部17に接続されるよう、制御装置20の制御部20aは切替部18を制御する。尚、制御装置20の制御部20aは、以上の時刻以外の時刻は、切替部18の開放端とされた出力端が検出部17に接続されるよう切替部18を制御する。
つまり、検出部17から出力される検出信号のうち、時刻(2×t1)~時刻(2×t1+tpw)の間の検出信号が切り出されて周波数分析器19aに入力される。また、検出部17から出力される検出信号のうち、時刻(2×t2)~時刻(2×t2+tpw)の間の検出信号が切り出されて周波数分析器19bに入力される。また、検出部17から出力される検出信号のうち、時刻(2×t3)~時刻(2×t3+tpw)の間の検出信号が切り出されて周波数分析器19cに入力される。
切替部18によって切り出された検出信号が、周波数分析器19a~19cに入力されると、周波数分析器19a~19cは、切り出された検出信号を用いて被測定光ファイバFUTの特性を測定する処理を個別に行う(ステップS16)。具体的には、周波数分析器19a~19cは、切替部18によって切り出された検出信号のスペクトルデータを求め、求めたスペクトルデータからブリルアン周波数シフト量を求める処理を個別に行う。尚、求められたブリルアン周波数シフト量は制御装置20に出力される。
《第2回目処理》
処理が開始されると、まず制御装置20は、変調周波数を設定する(ステップS11)。ここでは、相関ピークCP1の位置を測定間隔ΔDだけ変えるため、変調周波数が(fm+Δfm)に設定される。尚、変調周波数が(fm+Δfm)に設定されたことで、相関ピークの間隔は(dm+Δdm)に変化したとする。
処理が開始されると、まず制御装置20は、変調周波数を設定する(ステップS11)。ここでは、相関ピークCP1の位置を測定間隔ΔDだけ変えるため、変調周波数が(fm+Δfm)に設定される。尚、変調周波数が(fm+Δfm)に設定されたことで、相関ピークの間隔は(dm+Δdm)に変化したとする。
以上の設定が行われると、光源11aからは変調周波数(fm+Δfm)で周波数変調された連続光L1が射出される。光源11aから射出された連続光L1は、第1回目処理と同様に、第1光分岐部12でポンプ光LPと参照光LRとに分岐される。分岐されたポンプ光LPがパルス化部13に入射すると、パルス化部13はポンプパルス光Pを生成する(ステップS12)。生成されたポンプパルス光Pは、第2光分岐部14を介して被測定光ファイバFUTに入射する。尚、第2回目処理においても、ポンプパルス光Pの前縁が被測定光ファイバFUTの一端(原点)に入射した時刻を0とする。
被測定光ファイバFUTに入射したポンプパルス光Pは、被測定光ファイバFUT内を伝播していく。そして、相関ピークCP1が現れる位置、相関ピークCP2が現れる位置、相関ピークCP3が現れる位置を順次通過する。相関ピークCP1~CP3が現れる位置は以下の通りである。
相関ピークCP1:原点からの距離がD1+ΔDである位置
相関ピークCP2:原点からの距離がD1+ΔD+dm+Δdmである位置
相関ピークCP3:原点からの距離がD1+ΔD+2×(dm+Δdm)である位置
相関ピークCP1:原点からの距離がD1+ΔDである位置
相関ピークCP2:原点からの距離がD1+ΔD+dm+Δdmである位置
相関ピークCP3:原点からの距離がD1+ΔD+2×(dm+Δdm)である位置
ここで、測定間隔ΔDが十分な精度で維持されるように、ΔD≫Δdmなる関係、及びΔD≫2×Δdm)なる関係が成り立つ場合には、相関ピークCP1~CP3が現れる位置は、以下の通り表すことができる。
相関ピークCP1:原点からの距離がD1+ΔDである位置
相関ピークCP2:原点からの距離がD1+dm+ΔDである位置
相関ピークCP3:原点からの距離がD1+2×dm+ΔDである位置
つまり、相関ピークCP1~CP3が現れる位置はそれぞれ、第1回目処理において相関ピークCP1~CP3が現れた位置から測定間隔ΔDだけずれた位置と表すことができる。
相関ピークCP1:原点からの距離がD1+ΔDである位置
相関ピークCP2:原点からの距離がD1+dm+ΔDである位置
相関ピークCP3:原点からの距離がD1+2×dm+ΔDである位置
つまり、相関ピークCP1~CP3が現れる位置はそれぞれ、第1回目処理において相関ピークCP1~CP3が現れた位置から測定間隔ΔDだけずれた位置と表すことができる。
ポンプパルス光Pが、相関ピークCP1~CP3が現れる位置を順次通過すると、各々の位置においてブリルアン散乱による後方散乱光LSが順次生ずる。各々の位置で生じた後方散乱光LS(後方散乱光LS1~LS3)は、ポンプパルス光Pが伝播する方向とは反対方向に伝播し、被測定光ファイバFUTの一端から順次射出される。
前述したポンプパルス光Pを生成する処理が行われた後に、制御装置20は、相関ピークCP1~CP3が現れる位置の各々で生じた後方散乱光LSの戻り時間を算出する(ステップS13)。ここで、ポンプパルス光Pが被測定光ファイバFUTに入射されてから、ポンプパルス光Pの前縁が、相関ピークCP1~CP3が現れる位置に到達する時刻t1~t3はそれぞれ、第1回目処理における時刻t1~t3よりも測定間隔ΔDの分だけ遅くなる。
具体的には、以下の通りである。
時刻t1=(D1+ΔD)/vg
時刻t2=(D1+dm+ΔD)/vg
時刻t3=(D1+2×dm+ΔD)/vg
このため、相関ピークCP1~CP3が現れる位置で生じた後方散乱光LS1~LS3が被測定光ファイバFUTの一端(原点)に到達する時刻は、光が相関ピークまでを往復する時間となるため、測定間隔ΔDの2倍に相当する分だけ変化する。
時刻t1=(D1+ΔD)/vg
時刻t2=(D1+dm+ΔD)/vg
時刻t3=(D1+2×dm+ΔD)/vg
このため、相関ピークCP1~CP3が現れる位置で生じた後方散乱光LS1~LS3が被測定光ファイバFUTの一端(原点)に到達する時刻は、光が相関ピークまでを往復する時間となるため、測定間隔ΔDの2倍に相当する分だけ変化する。
被測定光ファイバFUTの一端から射出された後方散乱光LS(後方散乱光LS1~LS3)は、第2光分岐部14を介して合波部16に入射する。合波部16に入射した後方散乱光LSは、第1光分岐部12で分岐されて光遅延部15を介した参照光LRと合波される。検出部17は、合波によって生成された干渉光を検出する(ステップS14)。上記の干渉光が検出されると、検出部17から切替部18に検出信号が出力される。
すると、制御装置20の制御部20aは、ステップS13で算出した戻り時間を考慮して切替部18を制御し、所定時間毎に検出信号を切り出す(ステップS15)。ここで、行われる処理は、基本的には第1回目処理にて行われた処理と同様の処理であるが、周波数分析器19a~19cを検出部17に接続させるタイミング(検出信号を切り出すタイミング)が測定間隔ΔDの2倍に相当する分だけ変化する。
切替部18によって切り出された検出信号が、周波数分析器19a~19cに入力されると、周波数分析器19a~19cは、第1回目処理と同様に、切り出された検出信号を用いて被測定光ファイバFUTの特性を測定する処理を個別に行う(ステップS16)。尚、求められたブリルアン周波数シフト量は制御装置20に出力される。
第3回目処理以降は、第2回目処理と同様の処理が行われる。つまり、光ファイバ特性測定装置1は、変調周波数をΔfmずつ変化させ、相関ピークCP1~CP3の位置を測定間隔ΔDずつ移動させながら被測定光ファイバFUTの特性を測定する。このため、第3回目処理以降の処理の説明については省略する。尚、図2に示すフローチャートの処理は、第M回目処理まで行われる。ここで、M=[dm/ΔD]である。尚、左式中の記号“[]”はガウス記号(商を超えない最大の整数を与えるもの)である。
以上の通り、本実施形態の光ファイバ特性測定装置1は、周波数変調されたポンプ光LPをパルス化してポンプパルス光Pを生成し、生成したポンプパルス光Pを被測定光ファイバFUTの一端から入射させている。光ファイバ特性測定装置1は、ポンプパルス光Pが入射されることで被測定光ファイバFUT内におけるブリルアン散乱により生じた後方散乱光LSと、周波数変調された参照光LRとの干渉光を検出している。そして、光ファイバ特性測定装置1は、干渉光を検出して得られた検出信号を所定時間毎に切り出し、切り出された所定時間毎の検出信号を個別に用いて被測定光ファイバFUTの特性を測定している。これにより、1つのポンプパルス光Pを被測定光ファイバFUTに入射させることで、相関ピークが現れる複数箇所の特性を測定することができるため、従来よりも被測定光ファイバの特性の測定に要する時間を短縮することができる。
具体的に、図3に示す通り、被測定光ファイバFUTの測定範囲RM内において3つの相関ピークCP1~CP3が現れる場合には、1つのポンプパルス光Pを被測定光ファイバFUTに入射させることで、相関ピークCP1~CP3が現れる3箇所の特性を測定することができる。このため、被測定光ファイバFUTの特性の測定に要する時間を従来の1/3に短縮することができる。
図3に示す例において、相関ピークCP1~CP3を被測定光ファイバFUTの長さ方向に移動させた場合に、相関ピークCP3が現れる位置が、測定範囲RMを超えてしまう場合がある。このような場合には、1つのポンプパルス光Pを被測定光ファイバFUTに入射させることで、相関ピークCP1,CP2が現れる2箇所の特性を測定することができるため、被測定光ファイバFUTの特性の測定に要する時間は、従来の1/2となる。
尚、上記実施形態では、被測定光ファイバFUTに現れる相関ピークの数を考慮して、測定部19に4つの周波数分析器19a~19dが設けられる例について説明した。しかしながら、測定部19に設けられる周波数分析器の数は、被測定光ファイバFUTに現れる相関ピークの数と同数である必要は必ずしも無く、異なっていても良い(相関ピークの数よりも多くても良く、少なくても良い)。
また、ポンプパルス光Pのパルス幅tpwよりも十分短い時間で処理が可能な周波数分析器、或いはパイプライン処理が可能な周波数分析器であれば、測定部19に設けられる周波数分析器の数は1つのみであっても良い。測定部19に設けられる周波数分析器が1つの場合には、切替部18によって順次切り出される検出信号を順次1つの周波数分析器で処理することとなる。
また、上記実施形態では、測定部19に設けられる周波数分析器19a~19dがスペクトラムアナライザを備える例について説明したが、測定部19に設けられる周波数分析器は、スペクトルデータが得られるのであれば、必ずしもスペクトラムアナライザを備える必要はない。測定部19に設けられる周波数分析器は、A/D変換器及び高速フーリエ変換器を備えても良い。
また、上記実施形態において、相関ピークCP1~CP3を移動させた場合に生ずる相関ピークの間隔dmの変化量N×Δdm(Nは測定範囲内に存在する相関ピークの数)が十分小さいとみなしていた。つまり、ΔD≫N×Δdmなる関係が成り立つ場合を考えていた。この関係が成り立たない場合には、観測したい場所と相関ピークが現れる位置との間に誤差が生じる可能性が考えられる。相関ピークの間隔dmが測定間隔ΔDとなるよう変調周波数fmを設定することで、上記の誤差が生ずるのを防止することができる。
尚、上記実施形態では、ポンプパルス光Pを生成する処理(図2中のステップS12)が行われた後で、後方散乱光の戻り時間を算出する処理(図2中のステップS13)が行われる例について説明した。しかしながら、図2中のステップS13は、ステップS11とステップS12との間で行われても良く、或いはステップS12と並列して行われても良い。
〔第2実施形態〕
〈光ファイバ特性測定装置の構成〉
図4は、本発明の第2実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。尚、図4において、図1に示した構成と同様の構成には同一の符号を付してある。図4に示す通り、本実施形態の光ファイバ特性測定装置2は、図1に示す光ファイバ特性測定装置1に発振器31、周波数シフタ32、及びA/D変換部33(変換部)を追加し、光ファイバ特性測定装置1の測定部19及び制御装置20をそれぞれ記憶部34(切出部)及び制御装置35に代えた構成である。
〈光ファイバ特性測定装置の構成〉
図4は、本発明の第2実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。尚、図4において、図1に示した構成と同様の構成には同一の符号を付してある。図4に示す通り、本実施形態の光ファイバ特性測定装置2は、図1に示す光ファイバ特性測定装置1に発振器31、周波数シフタ32、及びA/D変換部33(変換部)を追加し、光ファイバ特性測定装置1の測定部19及び制御装置20をそれぞれ記憶部34(切出部)及び制御装置35に代えた構成である。
本実施形態の光ファイバ特性測定装置2は、検出部17から出力される検出信号(後方散乱光LSと参照光LRとの周波数差分を示す干渉信号)の周波数領域を、直流近傍の周波数領域に変換する。このような変換を行うことで、本実施形態の光ファイバ特性測定装置2は、検出信号に対する処理(被測定光ファイバFUTの特性を求める処理)を容易に行うことができる。
発振器31は、制御装置35の制御の下で、例えば正弦波状の信号S1を出力する。発振器31から出力される信号S1の周波数は、制御装置35によって制御される。具体的に、制御装置35の動作モードが第1モード(高速フーリエ変換を行う動作モード)である場合には、信号S1の周波数が一定の周波数になるように制御される。これに対し、制御装置35の動作モードが第2モード(高速フーリエ変換を行わない動作モード)である場合には、信号S1の周波数が予め規定された周期で変化するように制御される。ここで、信号S1の周波数が変化する周期は、例えばポンプパルス光Pが被測定光ファイバFUTを往復するのに要する時間である。
周波数シフタ32は、例えばSSB(Single Side Band)変調素子を備えている。周波数シフタ32は、発振器31から出力される信号S1を用いて、第1光分岐部12で分岐されたポンプ光LPの周波数を信号S1の周波数分シフトさせる。具体的に、周波数シフタ32は、ポンプ光LPの周波数を、被測定光ファイバFUTで生ずるブリルアン周波数シフト量に近い周波数だけシフトさせる。つまり、周波数シフタ32は、ブリルアン周波数シフト量とポンプ光LPとの周波数差が、直流近傍の周波数領域となるようにポンプ光LPの周波数をシフトさせる。
例えば、被測定光ファイバFUTのブリルアン周波数シフト量が10GHz程度である場合において、制御装置35の動作モードが第1モードであるときには、発振器31から出力される信号S1の周波数は11GHz程度であり、周波数シフタ32は、ポンプ光LPの周波数を信号S1の周波数分シフトさせる。これに対し、制御装置35の動作モードが第2モードであるときには、発振器31から出力される信号S1の周波数は9.5GHz程度から10.5GHz程度の範囲内を上記の周期で変化し、周波数シフタ32は、ポンプ光LPの周波数を信号S1の周波数分シフトさせる。つまり、第2モードにおいて、周波数シフタ32は、ポンプ光LPの周波数のシフト量を、上記の周期で掃引する。
A/D変換部33は、検出部17と切替部18との間に設けられている。A/D変換部33は、検出部17から出力される検出信号をディジタル信号の検出データに変換して切替部18に出力する。ここで、第1実施形態のように周波数シフタ32を持たない構成では、検出部17から出力される検出信号の周波数領域が10GHz程度の高い周波数である。このため、これを直接A/D変換部33に入力することは価格や消費電力、データ量の点から困難である。本実施形態では、上記の周波数シフタ32を設けて、検出部17から出力される検出信号の周波数領域を、直流近傍の周波数領域(例えば、1GHz程度の周波数領域)にすることで、A/D変換部33の使用を容易にしている。
記憶部34は、複数のメモリを備えている。記憶部34は、切替部18から出力される検出データ(所定時間毎に切り出された検出データ)を複数のメモリに個別に記憶する。記憶部34におけるメモリの数は、図1に示す測定部19における周波数分析器の数と同様に、被測定光ファイバFUTに現れる相関ピークの数を考慮して設定される。例えば、図4に示す通り、被測定光ファイバFUTに4つの相関ピークCP1~CP4が現れる場合には、これら4つの相関ピークCP1~CP4に対応して4つのメモリ34a~34dが記憶部34に設けられる。
メモリ34a~34dは、例えばRAM(Random Access Memory)等の揮発性の半導体メモリ、フラッシュメモリ等の不揮発性の半導体メモリ等であってよい。また、メモリ34a~34dは、半導体メモリに制限される訳ではなく、半導体メモリ以外に、HDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)等であってもよい。
制御装置35は、光ファイバ特性測定装置2の動作を統括して制御する。例えば、制御装置35は、図1に示す制御装置20と同様に、光源部11を制御して光源部11から出力される連続光L1の変調周波数fmを変更させ、パルス化部13を制御してポンプパルス光Pを生成させ、被測定光ファイバFUTからの後方散乱光LSが検出部17に到達する時間を考慮して切替部18の切り替え制御を行う。また、制御装置35は、発振器31を制御して、周波数が一定の信号S1又は周波数が予め規定された周期で変化する信号S1を出力させる。
制御装置35は、FFT演算部35a(演算部、測定部)、周波数分析部35b(測定部)、及び制御部20a(切出部)を備える。FFT演算部35aは、メモリ34a~34dから個別に読み出された検出データに対して高速フーリエ変換を行って、検出データ(所定時間毎に切り出された検出データ)の周波数特性を示すスペクトルデータを求める。周波数分析部35bは、FFT演算部35aによって求められたスペクトルデータ、或いはメモリ34a~34dから個別に読み出された検出データからブリルアン周波数シフト量を求める。
ここで、制御装置35には、以下に示す2つの動作モードが用意されている。例えば、ユーザが制御装置35に設けられている不図示の操作部を操作することによって、制御装置35の動作モードが選択される。
第1モード:高速フーリエ変換を行う動作モード
第2モード:高速フーリエ変換を行わない動作モード
第1モード:高速フーリエ変換を行う動作モード
第2モード:高速フーリエ変換を行わない動作モード
制御装置35の動作モードが第1モードである場合には、信号S1の周波数が一定の周波数になるように発振器31が制御される。また、制御装置35のFFT演算部35aは動作状態にされ、周波数分析部35bは、FFT演算部35aによって求められたスペクトルデータからブリルアン周波数シフト量を求めるように設定される。これに対し、制御装置35の動作モードが第2モードである場合には、信号S1の周波数が変化するように発振器31が制御される。また、制御装置35のFFT演算部35aは停止状態にされ、周波数分析部35bは、メモリ34a~34dから個別に読み出された検出データからブリルアン周波数シフト量を求めるように設定される。
〈光ファイバ特性測定装置の動作〉
光ファイバ特性測定装置2の基本的な動作は、図1に示す光ファイバ特性測定装置1と同様である。このため、光ファイバ特性測定装置2においても、基本的には、図2に示すフローチャートの処理と同様の処理が行われる。以下では、光ファイバ特性測定装置2の動作のうち、光ファイバ特性測定装置1と異なるものを主に説明する。また、制御装置35の動作モードが第1モードである場合と、第2モードである場合とで、若干動作が異なるため、以下では、制御装置35の動作モードが第1モードである場合の動作と、第2モードである場合の動作とを分けて説明する。
光ファイバ特性測定装置2の基本的な動作は、図1に示す光ファイバ特性測定装置1と同様である。このため、光ファイバ特性測定装置2においても、基本的には、図2に示すフローチャートの処理と同様の処理が行われる。以下では、光ファイバ特性測定装置2の動作のうち、光ファイバ特性測定装置1と異なるものを主に説明する。また、制御装置35の動作モードが第1モードである場合と、第2モードである場合とで、若干動作が異なるため、以下では、制御装置35の動作モードが第1モードである場合の動作と、第2モードである場合の動作とを分けて説明する。
(1)第1モード
制御装置35の動作モードが第1モードである場合には、周波数シフタ32に入力される信号S1の周波数が一定の周波数になるように発振器31が制御される。第1光分岐部12で分岐されたポンプ光LPが周波数シフタ32に入射すると、ポンプ光LPの周波数は、被測定光ファイバFUTで生ずるブリルアン周波数シフト量(例えば、10GHz程度)に近い周波数(例えば、11GHz程度)だけシフトする。周波数がシフトしたポンプ光LPは、パルス化部13でパルス状に整形される。パルス化部13で生成されたポンプパルス光Pは、第2光分岐部14を介して被測定光ファイバFUTに入射する。
制御装置35の動作モードが第1モードである場合には、周波数シフタ32に入力される信号S1の周波数が一定の周波数になるように発振器31が制御される。第1光分岐部12で分岐されたポンプ光LPが周波数シフタ32に入射すると、ポンプ光LPの周波数は、被測定光ファイバFUTで生ずるブリルアン周波数シフト量(例えば、10GHz程度)に近い周波数(例えば、11GHz程度)だけシフトする。周波数がシフトしたポンプ光LPは、パルス化部13でパルス状に整形される。パルス化部13で生成されたポンプパルス光Pは、第2光分岐部14を介して被測定光ファイバFUTに入射する。
被測定光ファイバFUTに入射したポンプパルス光Pが、被測定光ファイバFUT内を伝播していくと、第1実施形態と同様に、後方散乱光LS(後方散乱光LS1~LS3)が順次生じて、被測定光ファイバFUTの一端から順次射出される。被測定光ファイバFUTの一端から射出された後方散乱光LS(後方散乱光LS1~LS3)は、第2光分岐部14を介して合波部16に入射する。合波部16に入射した後方散乱光LSは、第1光分岐部12で分岐されて光遅延部15を介した参照光LRと合波される。検出部17は、合波によって生成された干渉光を検出する。
上記の干渉光が検出されると、検出部17からA/D変換部33に検出信号が出力される。ここで、ポンプ光LPの周波数を11GHz程度シフトさせているため、被測定光ファイバFUTのブリルアン周波数シフト量が10GHz程度であるとすると、検出部17から出力される検出信号の周波数は1GHz程度になる。検出部17からA/D変換部33に出力された検出信号は、A/D変換部33でディジタル信号の検出データに変換されて切替部18に出力される。
すると、第1実施形態と同様に、制御装置35の制御部20aは、後方散乱光LSの戻り時間を考慮して切替部18を制御し、所定時間毎に検出データを切り出す。所定時間毎に切り出された検出データは、メモリ34a~34cに順次記憶される。そして、制御装置35の制御によってメモリ34a~34cに記憶された検出データが個別に順次読み出される。
続いて、FFT演算部35aは、メモリ34a~34cから読み出された検出データに対して高速フーリエ変換を行って、検出データの周波数特性を示すスペクトルデータを求める。FFT演算部35aで求められたスペクトルデータは、周波数分析部35bに順次出力される。そして、周波数分析部35bは、FFT演算部35aによって求められたスペクトルデータからブリルアン周波数シフト量を求める。変調周波数をΔfmずつ変化させ、相関ピークCP1~CP3の位置を測定間隔ΔDずつ移動させながら、以上の処理が繰り返し行われる。
(2)第2モード
制御装置35の動作モードが第2モードである場合には、周波数シフタ32に入力される信号S1の周波数が変化するように発振器31が制御される。第1光分岐部12で分岐されたポンプ光LPが周波数シフタ32に入射すると、制御装置35の動作モードが第1モードである場合と同様に、ポンプ光LPの周波数は、被測定光ファイバFUTで生ずるブリルアン周波数シフト量に近い周波数(例えば、9.5GHzから10.5GHz程度の範囲内)だけシフトする。但し、ポンプ光LPの周波数のシフト量は、予め規定された周期(例えば、ポンプパルス光Pが被測定光ファイバFUTを往復するのに要する時間)で掃引される。周波数がシフトしたポンプ光LPは、パルス化部13でパルス状に整形される。パルス化部13で生成されたポンプパルス光Pは、第2光分岐部14を介して被測定光ファイバFUTに入射する。
制御装置35の動作モードが第2モードである場合には、周波数シフタ32に入力される信号S1の周波数が変化するように発振器31が制御される。第1光分岐部12で分岐されたポンプ光LPが周波数シフタ32に入射すると、制御装置35の動作モードが第1モードである場合と同様に、ポンプ光LPの周波数は、被測定光ファイバFUTで生ずるブリルアン周波数シフト量に近い周波数(例えば、9.5GHzから10.5GHz程度の範囲内)だけシフトする。但し、ポンプ光LPの周波数のシフト量は、予め規定された周期(例えば、ポンプパルス光Pが被測定光ファイバFUTを往復するのに要する時間)で掃引される。周波数がシフトしたポンプ光LPは、パルス化部13でパルス状に整形される。パルス化部13で生成されたポンプパルス光Pは、第2光分岐部14を介して被測定光ファイバFUTに入射する。
被測定光ファイバFUTに入射したポンプパルス光Pが、被測定光ファイバFUT内を伝播していくと、制御装置35の動作モードが第1モードである場合と同様に、後方散乱光LS(後方散乱光LS1~LS3)が順次生じて、被測定光ファイバFUTの一端から順次射出される。被測定光ファイバFUTの一端から射出された後方散乱光LS(後方散乱光LS1~LS3)は、第2光分岐部14を介して合波部16に入射する。合波部16に入射した後方散乱光LSは、第1光分岐部12で分岐されて光遅延部15を介した参照光LRと合波される。検出部17は、合波によって生成された干渉光を検出する。
検出部17からA/D変換部33に出力された検出信号は、A/D変換部33でディジタル信号の検出データに変換されて切替部18に出力される。すると、制御装置35の動作モードが第1モードである場合と同様に、制御装置35の制御部20aは、後方散乱光LSの戻り時間を考慮して切替部18を制御し、所定時間毎に検出データを切り出す。所定時間毎に切り出された検出データは、メモリ34a~34cに順次記憶される。ここで、ポンプ光LPの周波数のシフト量は予め規定された周期で掃引されるため、メモリ34a~34cに記憶された検出データは、スペクトルデータとなっている。
メモリ34a~34cに記憶された検出データは、制御装置35の制御によって個別に順次読み出される。すると、周波数分析部35bは、メモリ34a~34cから個別に順次読み出された検出データからブリルアン周波数シフト量を求める。変調周波数をΔfmずつ変化させ、相関ピークCP1~CP3の位置を測定間隔ΔDずつ移動させながら、以上の処理が繰り返し行われる。
以上の通り、本実施形態の光ファイバ特性測定装置2は、周波数シフタ32によってポンプ光LPの周波数を、被測定光ファイバFUTで生ずるブリルアン周波数シフト量に近い周波数だけシフトさせることで、検出部17から出力される検出信号の周波数領域を、直流近傍の周波数領域に変換している。このため、検出信号をディジタル信号である検出データに変換して、被測定光ファイバFUTの特性を求める処理を容易に行うことができる。
また、本実施形態でも、第1実施形態と同様に、光ファイバ特性測定装置2は、検出データを所定時間毎に切り出し、切り出された所定時間毎の検出データを個別に用いて被測定光ファイバFUTの特性を測定している。これにより、1つのポンプパルス光Pを被測定光ファイバFUTに入射させることで、相関ピークが現れる複数箇所の特性を測定することができるため、従来よりも被測定光ファイバの特性の測定に要する時間を短縮することができる。
尚、上記実施形態では、被測定光ファイバFUTに現れる相関ピークの数を考慮して、記憶部34に4つのメモリ34a~34dが設けられる例について説明した。しかしながら、記憶部34に設けられるメモリの数は、被測定光ファイバFUTに現れる相関ピークの数と同数である必要は必ずしも無く、異なっていても良い(相関ピークの数よりも多くても良く、少なくても良い)。
また、上記実施形態では、第1光分岐部12で分岐されたポンプ光LPの周波数をシフトさせる例について説明した。しかしながら、ポンプ光LPの周波数をシフトさせることなく、第1光分岐部12で分岐された参照光LRの周波数をシフトさせるようにしても良い。つまり、第1光分岐部12で分岐されたポンプ光LP及び参照光LRの何れか一方の周波数をシフトさせればよい。
〔第3実施形態〕
〈光ファイバ特性測定装置の構成〉
図5は、本発明の第3実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。尚、図5において、図4に示した構成と同様の構成には同一の符号を付してある。図5に示す通り、本実施形態の光ファイバ特性測定装置3は、図4に示す光ファイバ特性測定装置2の切替部18を省略し、光ファイバ特性測定装置2の記憶部34及び制御装置35をそれぞれメモリ41(切出部)及び制御装置42に代えた構成である。
〈光ファイバ特性測定装置の構成〉
図5は、本発明の第3実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。尚、図5において、図4に示した構成と同様の構成には同一の符号を付してある。図5に示す通り、本実施形態の光ファイバ特性測定装置3は、図4に示す光ファイバ特性測定装置2の切替部18を省略し、光ファイバ特性測定装置2の記憶部34及び制御装置35をそれぞれメモリ41(切出部)及び制御装置42に代えた構成である。
図4に示す光ファイバ特性測定装置2は、切替部18によって所定時間毎に切り出された検出データを複数のメモリに個別に記憶する。これに対し、本実施形態の光ファイバ特性測定装置3は、検出データを全てメモリ41に記憶し、後方散乱光LSが検出部17に到達した時間を考慮して、メモリ41に記憶された検出データを所定時間毎に個別に読み出す。つまり、図4に示す光ファイバ特性測定装置2は、メモリに記憶させる前に検出データの切り出しを行うのに対し、本実施形態の光ファイバ特性測定装置3は、検出データをメモリに記憶した後に検出データの切り出しを行う。
メモリ41は、図4に示すメモリ34a~34dと同様に、例えばRAM等の揮発性の半導体メモリ、フラッシュメモリ等の不揮発性の半導体メモリ等であってよい。また、メモリ41は、半導体メモリに制限される訳ではなく、半導体メモリ以外に、HDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)等であってもよい。
制御装置42は、光ファイバ特性測定装置3の動作を統括して制御する。例えば、制御装置42は、図4に示す制御装置35と同様に、光源部11を制御して光源部11から出力される連続光L1の変調周波数fmを変更させ、パルス化部13を制御してポンプパルス光Pを生成させ、発振器31を制御して周波数が一定の信号S1又は周波数が予め規定された周期で変化する信号S1を出力させる。
制御装置42は、図4に示すFFT演算部35a及び周波数分析部35bに加えて、読出部42a(切出部)を備える。読出部42aは、後方散乱光LSが検出部17に到達した時間を考慮して、メモリ41に記憶された検出データを所定時間毎に個別に読み出す。尚、後方散乱光LSが検出部17に到達した時間(後方散乱光LSの戻り時間)は、制御装置42で図2に示すステップS13と同様の処理が行われることによって求められる。
ここで、A/D変換部33から出力される検出データがメモリ41にアドレス順に書き込まれる場合には、検出データがメモリ41に書き込まれた時刻とメモリ41のアドレスとが1対1で対応することとなる。読出部42aは、メモリ41に対する検出データの書き込みが開始された時刻、メモリ41に対する検出データの書き込み開始アドレス、A/D変換部33のサンプリング周波数を用い、後方散乱光LSが検出部17に到達した時間をアドレスに変換して、必要な検出データの読み出しを行う。
尚、A/D変換部33から出力される検出データのみをメモリ41に書き込むようにしても良いし、A/D変換部33から出力される検出データとともに、検出データのデータ順を示す付加情報をメモリ41に書き込むようにしても良い。このような付加情報は、例えば時刻情報やデータ番号(シリアル番号)であってよい。付加情報として時刻情報が用いられる場合には、読出部42aは付加情報としての時刻情報を参照して必要な検出データの読み出しを行う。付加情報としてデータ番号が用いられる場合には、読出部42aは、メモリ41に対する検出データの書き込みが開始された時刻、A/D変換部33のサンプリング周波数を用い、後方散乱光LSが検出部17に到達した時間をデータ番号に変換して必要な検出データの読み出しを行う。
ここで、制御装置42にも、図4に示す制御装置35と同様に、2つの動作モード(第1モード及び第2モード)が用意されている。制御装置42の動作モードが第1モードである場合には、信号S1の周波数が一定の周波数になるように発振器31が制御される。また、制御装置42のFFT演算部35aは動作状態にされて、読出部42aで読み出された検出データを処理するようにされ、周波数分析部35bは、FFT演算部35aによって求められたスペクトルデータからブリルアン周波数シフト量を求めるように設定される。これに対し、制御装置42の動作モードが第2モードである場合には、信号S1の周波数が変化するように発振器31が制御される。また、制御装置42のFFT演算部35aは停止状態にされ、周波数分析部35bは、読出部42aによって読み出された検出データからブリルアン周波数シフト量を求めるように設定される。
〈光ファイバ特性測定装置の動作〉
光ファイバ特性測定装置3の動作は、A/D変換部33から出力される検出データを切り出すタイミングを除き、図4に示す光ファイバ特性測定装置2と同様である。このため、光ファイバ特性測定装置3においても、基本的には、図2に示すフローチャートの処理と同様の処理が行われる。以下では、光ファイバ特性測定装置3の動作のうち、光ファイバ特性測定装置2と異なるものを主に説明する。尚、以下では、説明を簡略化するため、制御装置42の動作モードが第1モードである場合を例に挙げて説明する。
光ファイバ特性測定装置3の動作は、A/D変換部33から出力される検出データを切り出すタイミングを除き、図4に示す光ファイバ特性測定装置2と同様である。このため、光ファイバ特性測定装置3においても、基本的には、図2に示すフローチャートの処理と同様の処理が行われる。以下では、光ファイバ特性測定装置3の動作のうち、光ファイバ特性測定装置2と異なるものを主に説明する。尚、以下では、説明を簡略化するため、制御装置42の動作モードが第1モードである場合を例に挙げて説明する。
光源11aから連続光L1が射出されてから、後方散乱光LSと参照光LRとの干渉光が検出部17で検出されるまでの動作は、図4に示す光ファイバ特性測定装置2で行われる動作と同様である。検出部17からA/D変換部33に出力された検出信号は、A/D変換部33でディジタル信号の検出データに変換されてメモリ41に出力され、メモリ41に順次記憶される。
メモリ41に検出データが記憶されると、読出部42aは、後方散乱光LSが検出部17に到達した時間を考慮して、メモリ41に記憶された検出データを所定時間毎に個別に読み出す。読出部42aによって個別に読み出されたデータは、FFT演算部35aに順次出力される。FFT演算部35aは、検出データの周波数特性を示すスペクトルデータを求める。
FFT演算部35aで求められたスペクトルデータは、周波数分析部35bに順次出力される。そして、周波数分析部35bは、FFT演算部35aによって求められたスペクトルデータからブリルアン周波数シフト量を求める。変調周波数をΔfmずつ変化させ、相関ピークCP1~CP3の位置を測定間隔ΔDずつ移動させながら、以上の処理が繰り返し行われる。
尚、読出部42aによる検出データの読み出しは、第2実施形態と同様に、メモリ41に検出データが書き込まれる度に行われても良く、第2実施形態とは異なるタイミングで行われても良い。例えば、メモリ41の容量に余裕がある場合には、測定中に得られる検出データを全てメモリ41に記憶し、測定終了後に一括して読出部42aが検出データの読み出しを行うようにしても良い。また、制御装置42の処理が十分に速い場合には、メモリ41を省略することも可能である。かかる場合には、制御装置42に設けられた読出部42aによって、A/D変換部33から出力される検出データの切り出しが直接行われることになる。
以上の通り、本実施形態の光ファイバ特性測定装置3では、A/D変換部33から出力される検出データをメモリ41に記憶させた後に、読出部42aが、後方散乱光LSが検出部17に到達した時間を考慮して、メモリ41に記憶された検出データを所定時間毎に個別に読み出すようにしている。これにより、図4に示す切替部18や複数のメモリ34a~34dを省略することができるため、装置構成の簡略化することができる。また、例えば、測定終了後に一括してメモリ41に記憶された検出データの読み出しを行って、被測定光ファイバFUTの特性を一括して求める、といった柔軟な使い方も可能である。
また、本実施形態と第2実施形態とは、検出データをメモリに記憶した後に検出データの切り出しを行うのか、メモリに記憶させる前に検出データの切り出しを行うのかが異なるだけである。このため、本実施形態においても、第2実施形態で得られる作用効果と同様の作用効果が得られる。具体的には、検出部17から出力される検出信号をディジタル信号である検出データに変換して、被測定光ファイバFUTの特性を求める処理を容易に行うことができるという作用効果、及び、従来よりも被測定光ファイバの特性の測定に要する時間を短縮することができるという作用効果が得られる。
以上、本発明の実施形態による光ファイバ特性測定装置及び光ファイバ特性測定方法について説明したが、本発明は上記実施形態に制限される訳ではなく、本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態において、パルス化部13は、ポンプ光LPに対して強度変調を行うことによって、ポンプ光LPをパルス状に整形するものであった。しかしながら、ポンプ光LPをパルス化する方法は、ポンプ光LPに対して強度変調する方法に制限される訳ではない。例えば、ポンプ光LPに対して周波数変調を行い、ポンプ光LPの光周波数をパルス状に変化させる(光周波数を大きく振る)ものであっても良い。
また、光遅延部15は、第1光分岐部12と合波部16との間以外に、第1光分岐部12と第2光分岐部14との間、又は第2光分岐部14と合波部16との間に設けられていても良い。また、ポンプ光LPを増幅する第1光増幅部を、第1光分岐部12と第2光分岐部14との間に備えてもよい。また、後方散乱光LSを増幅する第2光増幅部を、第2光分岐部14と合波部16の間に備えてもよい。また、参照光LRを増幅する第3光増幅部を、第1光分岐部12と合波部16の間に備えてもよい。さらに、周波数シフタ32として、SSB変調器ではなく、強度変調器を用いるようにしてもよい。また、周波数シフタ32を、検出部17とA/D変換部33との間に設けてもよい。さらに、変調部11bは、光源11aを直接変調するのではなく、光源11aの出力に接続する変調部により光を変調してもよい。
本明細書において「前、後ろ、上、下、右、左、垂直、水平、縦、横、行および列」などの方向を示す言葉は、本発明の装置におけるこれらの方向について言及する。従って、本発明の明細書におけるこれらの言葉は、本発明の装置において相対的に解釈されるべきである。
「構成される」という言葉は、本発明の機能を実行するために構成され、または装置の構成、要素、部分を示すために使われる。
さらに、クレームにおいて「ミーンズ・プラス・ファンクション」として表現されている言葉は、本発明に含まれる機能を実行するために利用することができるあらゆる構造を含むべきものである。
「ユニット」という言葉は、構成要素、ユニット、ハードウェアや所望の機能を実行するためにプログラミングされたソフトウェアの一部分を示すために用いられる。ハードウェアの典型例はデバイスや回路であるが、これらに限られない。
以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
1~3 光ファイバ特性測定装置
11 光源部
12 第1光分岐部
13 パルス化部
14 第2光分岐部
17 検出部
18 切替部
19 測定部
19a~19d 周波数分析器
20 制御装置
20a 制御部
32 周波数シフタ
33 A/D変換部
34 記憶部
34a~34d メモリ
35 制御装置
35a FFT演算部
35b 周波数分析部
40 記憶部
41 メモリ
42a 読出部
FUT 被測定光ファイバ
L1 連続光
LP ポンプ光
LR 参照光
LS 後方散乱光
11 光源部
12 第1光分岐部
13 パルス化部
14 第2光分岐部
17 検出部
18 切替部
19 測定部
19a~19d 周波数分析器
20 制御装置
20a 制御部
32 周波数シフタ
33 A/D変換部
34 記憶部
34a~34d メモリ
35 制御装置
35a FFT演算部
35b 周波数分析部
40 記憶部
41 メモリ
42a 読出部
FUT 被測定光ファイバ
L1 連続光
LP ポンプ光
LR 参照光
LS 後方散乱光
Claims (20)
- 周波数変調された連続光を出力する光源部と、
前記連続光をポンプ光と参照光とに分岐する第1光分岐部と、
前記ポンプ光をパルス化するパルス化部と、
パルス化された前記ポンプ光を光ファイバの一端から入射させ、前記光ファイバ内におけるブリルアン散乱により生じた後方散乱光を出力する第2光分岐部と、
前記後方散乱光と前記参照光との干渉光を検出する検出部と、
前記検出部から出力される検出信号を所定時間毎に切り出す切出部と、
前記切出部で切り出された前記所定時間毎の検出信号を個別に用いて前記光ファイバの特性を測定する測定部と、
を備える光ファイバ特性測定装置。 - 前記測定部は、前記検出信号からブリルアン周波数シフト量を求める周波数分析器を備える請求項1記載の光ファイバ特性測定装置。
- 前記周波数分析器は、複数設けられており、
前記切出部は、複数の前記周波数分析器の何れに前記検出部を接続するかを切り換える切替部と、
前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う制御部と、
を備える請求項2記載の光ファイバ特性測定装置。 - 前記ポンプ光又は前記参照光の周波数をシフトさせる周波数シフタと、
前記検出部と前記切出部との間に設けられ、前記検出部から出力される前記検出信号をディジタル信号の検出データに変換する変換部と、
を備える請求項1記載の光ファイバ特性測定装置。 - 前記周波数シフタは、前記ポンプ光の周波数を、ブリルアン周波数シフト量に近い周波数だけシフトさせる請求項4記載の光ファイバ特性測定装置。
- 前記切出部は、前記検出データを記憶する複数のメモリを有する記憶部と、
前記複数のメモリの何れに前記変換部を接続するかを切り換える切替部と、
前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う制御部と、
を備える請求項4又は請求項5記載の光ファイバ特性測定装置。 - 前記測定部は、前記複数のメモリから個別に読み出された前記検出データに対して高速フーリエ変換を行ってスペクトルデータを求める演算部と、
前記演算部で求められた前記スペクトルデータからブリルアン周波数シフト量を求める周波数分析部と、
を備える請求項6記載の光ファイバ特性測定装置。 - 前記周波数シフタは、前記ポンプ光の周波数のシフト量を、予め規定された周期で掃引し、
前記測定部は、前記複数のメモリから個別に読み出された前記検出データからブリルアン周波数シフト量を求める周波数分析部を備える、
請求項6記載の光ファイバ特性測定装置。 - 前記切出部は、前記後方散乱光が前記検出部に到達した時間を考慮して、前記検出データを前記所定時間毎に個別に読み出す読出部を備え、
前記測定部は、前記読出部によって個別に読み出された前記検出データから前記光ファイバの特性を測定する、請求項4又は請求項5記載の光ファイバ特性測定装置。 - 前記測定部は、前記読出部によって個別に読み出された前記検出データに対して高速フーリエ変換を行ってスペクトルデータを求める演算部と、
前記演算部で求められた前記スペクトルデータからブリルアン周波数シフト量を求める周波数分析部と、
を備える請求項9記載の光ファイバ特性測定装置。 - 前記周波数シフタは、前記ポンプ光の周波数のシフト量を、予め規定された周期で掃引し、
前記測定部は、前記読出部によって個別に読み出された前記検出データからブリルアン周波数シフト量を求める周波数分析部を備える、
請求項9記載の光ファイバ特性測定装置。 - 前記切出部は、前記検出データを記憶するメモリを備え、
前記読出部は、前記後方散乱光が前記検出部に到達した時間を考慮して、前記メモリに記憶された前記検出データを前記所定時間毎に個別に読み出す、
請求項9から請求項11の何れか一項に記載の光ファイバ特性測定装置。 - 光源部によって、周波数変調された連続光を出力し、
第1光分岐部によって、前記連続光をポンプ光と参照光とに分岐し、
パルス化部によって、前記ポンプ光をパルス化し、
第2光分岐部によって、パルス化された前記ポンプ光を光ファイバの一端から入射させ、
前記第2光分岐部によって、前記光ファイバ内におけるブリルアン散乱により生じた後方散乱光を出力し、
検出部によって、前記後方散乱光と前記参照光との干渉光を検出し、
切出部によって、前記検出部から出力される検出信号を所定時間毎に切り出し、
測定部によって、前記切出部で切り出された前記所定時間毎の検出信号を個別に用いて前記光ファイバの特性を測定する、
光ファイバ特性測定方法。 - 前記測定部は、周波数分析器を備え、
前記周波数分析器によって、前記検出信号からブリルアン周波数シフト量を求める、
請求項1記載の光ファイバ特性測定方法。 - 前記周波数分析器は、複数設けられており、
前記切出部は、切替部と、制御部とを備え、
前記切替部によって、複数の前記周波数分析器の何れに前記検出部を接続するかを切り換え、
前記制御部によって、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う、
請求項14記載の光ファイバ特性測定方法。 - 周波数シフタによって、前記ポンプ光又は前記参照光の周波数をシフトさせ、
前記検出部と前記切出部との間に設けられた変換部によって、前記検出部から出力される前記検出信号をディジタル信号の検出データに変換する、
請求項13記載の光ファイバ特性測定方法。 - 前記周波数シフタによって、前記ポンプ光の周波数を、ブリルアン周波数シフト量に近い周波数だけシフトさせる、
請求項16記載の光ファイバ特性測定方法。 - 前記切出部は、複数のメモリを有する記憶部と、切替部と、制御部とを備え、
前記記憶部によって、前記検出データを記憶し、
前記切替部によって、前記複数のメモリの何れに前記変換部を接続するかを切り換え、
前記制御部によって、前記後方散乱光が前記検出部に到達する時間を考慮して前記切替部の切り替えを行う、
請求項16又は請求項17記載の光ファイバ特性測定方法。 - 前記測定部は、演算部と、周波数分析部とを備え、
前記演算部によって、前記複数のメモリから個別に読み出された前記検出データに対して高速フーリエ変換を行ってスペクトルデータを求め、
前記周波数分析部によって、前記演算部で求められた前記スペクトルデータからブリルアン周波数シフト量を求める、
請求項18記載の光ファイバ特性測定方法。 - 前記周波数シフタによって、前記ポンプ光の周波数のシフト量を、予め規定された周期で掃引し、
前記測定部は、周波数分析部を備え、
前記周波数分析部によって、前記複数のメモリから個別に読み出された前記検出データからブリルアン周波数シフト量を求める、
請求項18記載の光ファイバ特性測定方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19857289.3A EP3848677B1 (en) | 2018-09-07 | 2019-08-23 | Optical fiber characteristic measuring device and optical fiber characteristic measuring method |
CN201980057597.4A CN112654839B (zh) | 2018-09-07 | 2019-08-23 | 光纤特性测定装置以及光纤特性测定方法 |
US17/273,411 US11506521B2 (en) | 2018-09-07 | 2019-08-23 | Optical fiber characteristics measurement apparatus and optical fiber characteristics measurement method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018167896A JP6773091B2 (ja) | 2018-09-07 | 2018-09-07 | 光ファイバ特性測定装置及び光ファイバ特性測定方法 |
JP2018-167896 | 2018-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020050070A1 true WO2020050070A1 (ja) | 2020-03-12 |
Family
ID=69722554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/033132 WO2020050070A1 (ja) | 2018-09-07 | 2019-08-23 | 光ファイバ特性測定装置及び光ファイバ特性測定方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11506521B2 (ja) |
EP (1) | EP3848677B1 (ja) |
JP (1) | JP6773091B2 (ja) |
CN (1) | CN112654839B (ja) |
WO (1) | WO2020050070A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7331373B2 (ja) * | 2019-02-12 | 2023-08-23 | 日本電信電話株式会社 | 光周波数反射計測装置およびその計測方法 |
JP7272327B2 (ja) * | 2020-07-06 | 2023-05-12 | 横河電機株式会社 | 光ファイバ特性測定装置、光ファイバ特性測定プログラム、及び光ファイバ特性測定方法 |
CN116194740A (zh) * | 2020-08-26 | 2023-05-30 | 日本电信电话株式会社 | 振动分布测量装置及其方法 |
WO2023167745A2 (en) * | 2021-07-20 | 2023-09-07 | Sequent Logic, Llc | Apparatuses and methods for optical code-delay reflectometry (ocodr) |
US11946365B2 (en) * | 2021-08-13 | 2024-04-02 | Halliburton Energy Services, Inc. | Multi-fiber sensing topology for subsea wells |
JP2024004749A (ja) * | 2022-06-29 | 2024-01-17 | 横河電機株式会社 | 信号検出装置及び光ファイバ特性測定装置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6246497B1 (en) * | 1998-03-12 | 2001-06-12 | Net-Hopper Systems, Inc. | Active optical loop-back system |
JP2007225488A (ja) * | 2006-02-24 | 2007-09-06 | Yokogawa Electric Corp | ブリルアン散乱光の周波数シフトの測定方法及びこれを用いた装置 |
JP2009139241A (ja) | 2007-12-06 | 2009-06-25 | Univ Of Tokyo | 光ファイバ特性測定装置及び光ファイバ特性測定方法 |
US20100165327A1 (en) * | 2006-08-24 | 2010-07-01 | Schlumberger Technology Corporation | Measuring brillouin backscatter from an optical fibre using channelisation |
JP2010271137A (ja) * | 2009-05-20 | 2010-12-02 | Nippon Telegr & Teleph Corp <Ntt> | 光周波数領域反射測定方法及び光周波数領域反射測定装置 |
JP2015021748A (ja) * | 2013-07-16 | 2015-02-02 | 日本電信電話株式会社 | 光線路の特性解析装置及びその特性解析方法 |
JP2015132562A (ja) * | 2014-01-14 | 2015-07-23 | 日本電信電話株式会社 | 分岐光線路の特性解析装置および分岐光線路の特性解析方法 |
JP2015197384A (ja) * | 2014-04-02 | 2015-11-09 | 日本電信電話株式会社 | 分岐光線路特性解析システム、分岐光線路とその製造方法 |
JP2017053645A (ja) * | 2015-09-07 | 2017-03-16 | 横河電機株式会社 | 光ファイバ特性測定装置 |
JP2017156094A (ja) * | 2016-02-29 | 2017-09-07 | ニューブレクス株式会社 | ブリルアン散乱測定方法およびブリルアン散乱測定装置 |
JP2019117167A (ja) * | 2017-12-27 | 2019-07-18 | 横河電機株式会社 | 光ファイバ特性測定装置及び光ファイバ特性測定方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7170590B2 (en) * | 2002-11-01 | 2007-01-30 | Kinzo Kishida | Distributed optical fiber sensor system |
JP5654891B2 (ja) * | 2011-01-31 | 2015-01-14 | 国立大学法人 東京大学 | 光ファイバ特性測定装置及び方法 |
JP6338154B2 (ja) * | 2015-06-08 | 2018-06-06 | 日本電信電話株式会社 | ブリルアン散乱測定装置及びブリルアン散乱測定方法 |
JP6686423B2 (ja) * | 2015-12-24 | 2020-04-22 | 横河電機株式会社 | 光ファイバ特性測定装置および光ファイバ特性測定方法 |
JP2020063971A (ja) * | 2018-10-17 | 2020-04-23 | 横河電機株式会社 | 光ファイバ特性測定装置及び光ファイバ特性測定方法 |
-
2018
- 2018-09-07 JP JP2018167896A patent/JP6773091B2/ja active Active
-
2019
- 2019-08-23 EP EP19857289.3A patent/EP3848677B1/en active Active
- 2019-08-23 US US17/273,411 patent/US11506521B2/en active Active
- 2019-08-23 WO PCT/JP2019/033132 patent/WO2020050070A1/ja unknown
- 2019-08-23 CN CN201980057597.4A patent/CN112654839B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6246497B1 (en) * | 1998-03-12 | 2001-06-12 | Net-Hopper Systems, Inc. | Active optical loop-back system |
JP2007225488A (ja) * | 2006-02-24 | 2007-09-06 | Yokogawa Electric Corp | ブリルアン散乱光の周波数シフトの測定方法及びこれを用いた装置 |
US20100165327A1 (en) * | 2006-08-24 | 2010-07-01 | Schlumberger Technology Corporation | Measuring brillouin backscatter from an optical fibre using channelisation |
JP2009139241A (ja) | 2007-12-06 | 2009-06-25 | Univ Of Tokyo | 光ファイバ特性測定装置及び光ファイバ特性測定方法 |
JP2010271137A (ja) * | 2009-05-20 | 2010-12-02 | Nippon Telegr & Teleph Corp <Ntt> | 光周波数領域反射測定方法及び光周波数領域反射測定装置 |
JP2015021748A (ja) * | 2013-07-16 | 2015-02-02 | 日本電信電話株式会社 | 光線路の特性解析装置及びその特性解析方法 |
JP2015132562A (ja) * | 2014-01-14 | 2015-07-23 | 日本電信電話株式会社 | 分岐光線路の特性解析装置および分岐光線路の特性解析方法 |
JP2015197384A (ja) * | 2014-04-02 | 2015-11-09 | 日本電信電話株式会社 | 分岐光線路特性解析システム、分岐光線路とその製造方法 |
JP2017053645A (ja) * | 2015-09-07 | 2017-03-16 | 横河電機株式会社 | 光ファイバ特性測定装置 |
JP2017156094A (ja) * | 2016-02-29 | 2017-09-07 | ニューブレクス株式会社 | ブリルアン散乱測定方法およびブリルアン散乱測定装置 |
JP2019117167A (ja) * | 2017-12-27 | 2019-07-18 | 横河電機株式会社 | 光ファイバ特性測定装置及び光ファイバ特性測定方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3848677A1 (en) | 2021-07-14 |
US11506521B2 (en) | 2022-11-22 |
EP3848677A4 (en) | 2022-06-01 |
CN112654839A (zh) | 2021-04-13 |
JP6773091B2 (ja) | 2020-10-21 |
EP3848677B1 (en) | 2024-04-10 |
JP2020041843A (ja) | 2020-03-19 |
US20210325210A1 (en) | 2021-10-21 |
CN112654839B (zh) | 2023-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020050070A1 (ja) | 光ファイバ特性測定装置及び光ファイバ特性測定方法 | |
US10539476B2 (en) | Temperature or strain distribution sensor comprising a coherent receiver to determine a temperature or a strain associated with a device under test | |
JP6552983B2 (ja) | ブリルアン散乱測定方法およびブリルアン散乱測定装置 | |
JP5322184B2 (ja) | 分布型光ファイバセンサ | |
JP5654891B2 (ja) | 光ファイバ特性測定装置及び方法 | |
JP5043714B2 (ja) | 光ファイバ特性測定装置及び方法 | |
JP6686423B2 (ja) | 光ファイバ特性測定装置および光ファイバ特性測定方法 | |
JPWO2017090516A1 (ja) | ガス検知システム | |
US20220381589A1 (en) | Optical fiber characteristic measurement device and optical fiber characteristic measurement method | |
JP4826747B2 (ja) | ブリルアン散乱光の周波数シフトの測定方法及びこれを用いた装置 | |
JP2019211309A (ja) | 振動分布測定システム、振動波形解析方法、振動波形解析装置、および解析プログラム | |
JP3883458B2 (ja) | 反射式ブリルアンスペクトル分布測定方法および装置 | |
JP2020041842A (ja) | 光ファイバ特性測定装置及び光ファイバ特性測定方法 | |
JP2018059789A (ja) | 距離測定装置及び距離測定方法 | |
JP2017072389A (ja) | 光線路特性解析装置及び光線路特性解析方法 | |
JP6658256B2 (ja) | ガス検知システム | |
Daykin et al. | Multiplexed photonic Doppler velocimetry for large channel count experiments | |
CN115900787A (zh) | 光谱域反射仪的实现方法及系统 | |
EP4386371A2 (en) | Optical fiber distribution measurement system and signal processing method for optical fiber distribution measurement | |
US7016023B2 (en) | Chromatic dispersion measurement | |
JP6602689B2 (ja) | 光線路特性解析装置及び信号処理方法 | |
JP5207252B2 (ja) | 光周波数領域反射測定方法及び光周波数領域反射測定装置 | |
JP7192959B2 (ja) | 測距装置及び測距方法 | |
WO2016208048A1 (ja) | 気体分析装置 | |
WO2021033214A1 (ja) | 振動分布測定装置および方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19857289 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019857289 Country of ref document: EP Effective date: 20210407 |