WO2020045404A1 - 組成物、スプレー、ワイパー、膜、膜付き基材、樹脂成形体 - Google Patents

組成物、スプレー、ワイパー、膜、膜付き基材、樹脂成形体 Download PDF

Info

Publication number
WO2020045404A1
WO2020045404A1 PCT/JP2019/033463 JP2019033463W WO2020045404A1 WO 2020045404 A1 WO2020045404 A1 WO 2020045404A1 JP 2019033463 W JP2019033463 W JP 2019033463W WO 2020045404 A1 WO2020045404 A1 WO 2020045404A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
particles
coating composition
composition
particle size
Prior art date
Application number
PCT/JP2019/033463
Other languages
English (en)
French (fr)
Inventor
長谷川 和弘
三ツ井 哲朗
冨澤 秀樹
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020045404A1 publication Critical patent/WO2020045404A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc

Definitions

  • the present invention relates to a composition, a spray, a wiper, a film, a substrate with a film, and a resin molded product.
  • Patent Document 1 discloses a deodorizing glass agent comprising CuO-containing alkali-alkaline earth-borosilicate glass or CuO-containing alkali-alkaline earth-silicate glass.
  • the present inventor prepared a deodorant glass agent with reference to Patent Document 1, prepared a composition containing the obtained deodorant glass agent, and examined the properties thereof. It is clear that there is room for further improvement.
  • an object of the present invention is to provide a composition having excellent deodorizing properties. Another object of the present invention is to provide a spray, a wiper, a film, a substrate with a film, and a resin molded product.
  • the present inventor has found that the object can be achieved by the following configuration.
  • [1] including first inorganic particles containing at least one metal selected from the group consisting of copper, zinc, iron, magnesium, calcium, aluminum, manganese, cobalt, and nickel, The average particle diameter of the first inorganic particles is 5.0 ⁇ m or less, A composition wherein the coefficient of variation of the particle size of the first inorganic particles is 20% or more.
  • [3] The composition according to [1] or [2], wherein the coefficient of variation of the particle size of the first inorganic particles is 30% or more.
  • composition according to any one of [1] to [8], which is a deodorant composition [10] a spray container, A spray comprising the composition according to any one of [1] to [9] stored in a spray container. [11] Base cloth, A wiper having the composition according to any one of [1] to [9] impregnated in a base fabric. [12] A film formed using the composition according to any one of [1] to [9]. [13] a base material; A substrate with a film, comprising the film according to [12]. [14] a resin; A resin molded article having the composition according to any one of [1] to [9].
  • a composition having excellent deodorizing properties can be provided. Further, according to the present invention, a spray, a wiper, a film, a substrate with a film, and a resin molded body can be provided.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • (meth) acryl represents both or one of acryl and methacryl.
  • (Meth) acryloyl represents acryloyl and / or methacryloyl.
  • (Meth) acrylate” represents both or either acrylate and methacrylate.
  • composition of the present invention comprises: Copper, zinc, iron, magnesium, calcium, aluminum, manganese, cobalt, and first inorganic particles containing at least one metal selected from the group consisting of nickel,
  • the average particle diameter of the first inorganic particles is 5.0 ⁇ m or less,
  • the coefficient of variation of the particle size of the first inorganic particles is 20% or more.
  • the above composition is excellent in deodorizing property by having the above configuration.
  • One of the characteristic points of the first inorganic particles is a point containing at least one metal selected from the group consisting of copper, zinc, iron, magnesium, calcium, aluminum, manganese, cobalt, and nickel. . These metals or metal ions exhibit excellent deodorant properties by reacting directly with odor components or via moisture in the air.
  • Other characteristics of the first inorganic particles are that the particle size distribution is relatively broad because the coefficient of variation of the particle size is 20% or more, and the average particle size is 5.0 ⁇ m or less. Points.
  • the first inorganic particles contain a large number of particles having a relatively small particle size (hereinafter, also referred to as “small particles”) due to the above characteristic points, and the specific surface area is increased, so that the deodorizing property is improved. I do. Further, particles having a relatively large particle size (hereinafter, also referred to as “large particles”) serve as a dispersant in the composition, thereby improving the dispersibility of the composition, weak aggregates of small particles, Form weak aggregates of small and large particles. It is presumed that the minute space between the particles formed by the weak aggregates supplements the odorous component, thereby further improving the deodorizing property.
  • the first inorganic particles can maintain good dispersibility in various media without excessively adding a dispersant such as a surfactant.
  • a dispersant such as a surfactant.
  • the present inventors have found that, in the particle size distribution of the first inorganic particles, when the content of particles having a particle size of 4 times or more the average particle size is 10.0% by volume or less, the above composition It has been found that drying unevenness when an object is applied to an object (for example, a substrate) is significantly suppressed. Although this is not clear in detail, the present inventors speculate as follows. For example, when the composition containing a solvent is applied to an object by a method such as spraying and a wiper, as the composition dries, a phenomenon occurs in which the solvent is attracted to large particles in the composition, Thereby, a meniscus of the solvent is formed between the large particles and the object.
  • the above composition is preferably used as a deodorant composition.
  • the deodorant is not particularly limited, but the composition exhibits a high deodorizing effect on the deodorant containing bacteria. It is presumed that malodorous substances (odors) are produced from bacteria in the deodorized substances. For example, in a deodorant substance containing urine, urea (substrate) in urine is decomposed by urease, which is typically expressed by bacteria, to produce ammonia. As described above, it is presumed that malodorous substances (odors) are generated from the deodorized substances due to bacteria.
  • the composition is, for example, a genus Klebsiella, a genus Citrobacter, a genus Enterobacter, a genus Proteus, a genus Pseudomonas, a genus Serratia, and a morganella (Morganella) It exhibits a high deodorizing effect on deodorized substances containing at least one kind of bacteria selected from the group consisting of genera.
  • the composition includes first inorganic particles.
  • the first inorganic particles have an average particle size of 5.0 ⁇ m or less and a variation coefficient of the particle size of 20% or more.
  • the average particle diameter and the coefficient of variation of the first inorganic particles are values determined by a volume-based particle size distribution, and the average particle diameter is a maximum value of frequency in the volume-based particle size distribution, and a coefficient of variation. Is a value obtained by dividing the standard deviation by the average particle size and expressed as a percentage.
  • the volume-based particle size distribution means a volume-based particle size distribution measured by a laser diffraction method.
  • the volume-based particle size distribution measured by the laser diffraction method refers to a volume-based particle size distribution measured by a test in accordance with JIS (Japanese Industrial Standards) K 8825: 2013 “Particle Size Analysis—Laser Diffraction / Scattering Method”. Intended. Specifically, it can be measured using a laser diffraction scattering type particle size distribution analyzer (LA-350) manufactured by Horiba, Ltd.
  • LA-350 laser diffraction scattering type particle size distribution analyzer
  • the average particle diameter of the first inorganic particles As the average particle diameter of the first inorganic particles, the point at which the composition is more excellent in deodorization, and / or drying unevenness when the composition is applied to an object is further suppressed (hereinafter, referred to as “ 2.0 ⁇ m or less is preferable, 1.0 ⁇ m or less is more preferable, and 0.50 ⁇ m or less is more preferable.
  • the lower limit of the average particle size of the first inorganic particles is not particularly limited, but is, for example, 0.01 ⁇ m or more, and is preferably 0.05 ⁇ m or more, and more preferably 0.10 ⁇ m in that the effect of the present invention is more excellent. The above is more preferable.
  • the variation coefficient of the particle diameter of the first inorganic particles is preferably 30% or more from the viewpoint that the effects of the present invention are more excellent.
  • the upper limit of the variation coefficient of the particle diameter of the first inorganic particles is not particularly limited, but is, for example, 50% or less.
  • the content of particles having a particle diameter of 4 times or more the average particle diameter in the particle diameter distribution of the first inorganic particles is 10%. It is preferably at most 0.0% by volume. The lower limit is, for example, 0% by volume or more.
  • the particle size distribution of the first inorganic particles intends the above-described volume-based particle size distribution.
  • the method of forming the first inorganic particles may be any of a breakdown method (for example, a pulverization method) and a build-up method.
  • a breakdown method for example, a pulverization method
  • a build-up method examples of the above-mentioned pulverization method include dry pulverization and wet pulverization.
  • dry pulverization for example, a mortar, a jet mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, a bead mill, and the like are appropriately used.
  • wet pulverization various ball mills, high-speed rotary pulverizers, jet mills, bead mills, ultrasonic homogenizers, high-pressure homogenizers, and the like are appropriately used.
  • the average particle diameter can be controlled by adjusting the diameter, type, mixing amount, and the like of beads serving as media.
  • the build-up method is a method of directly forming first inorganic particles by, for example, mixing a raw material component such as a hydroxide and an organic metal material with an optional component and performing a reaction.
  • the build-up method may be a batch method in which raw materials are added to a pod and stirred and mixed, or a system in which raw materials are continuously mixed and reacted in a flow path (for example, a microreactor or a double tube). Mixing method), but the latter is preferred.
  • a known method can be used to adjust the particle size distribution of the first inorganic particles. For example, there are a method of controlling the pulverization conditions of coarse particles so as to obtain a desired particle size distribution, a method of adjusting the particle size distribution by sieving, and a method of blending particles having different particle size distributions.
  • the first inorganic particles include at least one metal selected from the group consisting of copper, zinc, iron, magnesium, calcium, aluminum, manganese, cobalt, and nickel (hereinafter, also referred to as “first metal”).
  • first metal copper, zinc, or iron is preferable, and copper is more preferable, in that the effect of the present invention is more excellent.
  • the first inorganic particles are not particularly limited as long as they contain the first metal and are present as particles in the composition.
  • the term “metal” simply includes a simple metal (single metal particle), a metal ion, and a metal atom contained in a compound.
  • the form of the first inorganic particles is not particularly limited, and a simple substance of the first metal (simple metal particle), an inorganic compound containing the first metal (definition of compound: two or more elements by chemical change) And a composite of a first metal and an inorganic compound (hereinafter, also referred to as “first metal-containing composite particles”).
  • Examples of the inorganic compound containing the first metal include, for example, oxides, nitrides, halides, cyanides, selenides, sulfides, tellurides, and salts of the first metal.
  • Can be As the salt of the first metal for example, arsenate, hydrogen fluoride, bromate, chlorate, chromate, cyanate, hexafluoroantimonate, hexafluoroarsenate, hexafluoroarsenate Phosphate, iodate, isothiocyanate, molybdate, nitrate, nitrite, perchlorate, permanganate, perrhenate, phosphate, selenate, selenite, sulfuric acid Salts, sulfites, tetrafluoroborates, tetratungstates, thiocyanates, vanadates and the like.
  • the first metal-containing composite particles may be any of a first metal (a simple substance of the first metal (simple metal particle), an ion of the first metal, and a compound containing the first metal).
  • the compound containing the first metal includes an inorganic compound containing the first metal.
  • a compound of the inorganic compound in other words, the particles include the first metal and the inorganic compound.
  • the inorganic compound contained in the first metal-containing composite particles is not particularly limited, but zinc calcium phosphate, calcium phosphate, zirconium phosphate, aluminum phosphate, calcium silicate, activated alumina, silicon oxide, silicate, borosilicate Acid salts, phosphates, zeolites (crystalline aluminosilicate salts), apatite, hydroxyapatite, titanium phosphate, potassium titanate, hydrated bismuth, hydrated zirconium, hydrotalcite, activated carbon, metals and the like.
  • the inorganic compound may be crystalline or non-crystalline (amorphous), but is preferably non-crystalline. In other words, glass is preferable as the inorganic compound. Examples of a material that can constitute glass include silicate, borosilicate, and phosphate (in other words, silicate glass, borosilicate glass, and phosphate glass). Of these, silicates are preferred, and aluminum silicate is more preferred.
  • the silicate preferably contains one or more atoms selected from the group consisting of alkali metals and alkaline earth metals, and more preferably aluminum silicate.
  • the aluminum silicate may be a natural product or a synthetic product.
  • a compound represented by the following formula (A) is preferable.
  • n is a positive number of 6 or more (preferably 6 to 50)
  • m is a positive number of 1 to 20.
  • n is 8 to 15 and m is 3 to 15.
  • the first metal-containing composite particles include an inorganic carrier, a first metal supported on the inorganic carrier (for example, a simple substance of the first metal (metal simple particle), an ion of the first metal, And the compound containing the first metal.
  • a first metal supported on the inorganic carrier for example, a simple substance of the first metal (metal simple particle), an ion of the first metal, And the compound containing the first metal.
  • the compound containing the first metal include an inorganic compound containing the first metal.
  • Support carriers are mentioned.
  • the type of the inorganic carrier is not particularly limited, but zinc calcium phosphate, calcium phosphate, zirconium phosphate, aluminum phosphate, calcium silicate, activated alumina, silicon oxide , Silicate, borosilicate, phosphate, zeolite (crystalline aluminosilicate), apatite, hydroxyapatite, titanium phosphate, potassium titanate, hydrated bismuth, hydrated zirconium, hydrotalcite, activated carbon, and Metal and the like.
  • the inorganic carrier may be crystalline or amorphous (amorphous), but is preferably amorphous.
  • glass is preferred as the inorganic carrier.
  • a material that can constitute glass include silicate, borosilicate, and phosphate (in other words, silicate glass, borosilicate glass, and phosphate glass). Of these, silicates are preferred, and aluminum silicate is more preferred.
  • the silicate preferably contains one or more atoms selected from the group consisting of alkali metals and alkaline earth metals, and more preferably aluminum silicate.
  • the aluminum silicate may be a natural product or a synthetic product.
  • the compound represented by the above formula (A) is preferable.
  • the first metal-containing composite particles are more preferable in that the effects of the present invention are more excellent.
  • the main component of the first inorganic particles is preferably glass from the viewpoint that the effects of the present invention are more excellent.
  • the first inorganic particles preferably have a glass content of 50% by mass or more based on the total mass.
  • the first inorganic particles mainly composed of glass are not particularly limited, and examples thereof include first metal-containing composite particles mainly composed of glass.
  • the first metal-containing composite particles are as described above.
  • the content of the metal in the inorganic particles (1) is not particularly limited.
  • the content of the metal is based on the total mass of the first metal-containing composite particles.
  • the content is preferably from 0.1 to 50% by mass, more preferably from 0.3 to 30% by mass.
  • the first inorganic particles may be used alone or in combination of two or more.
  • the content of the first inorganic particles in the composition is not particularly limited, with respect to the total solid content of the composition, for example, 3% by mass or more, preferably 10% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more, particularly preferably 70% by mass or more.
  • the upper limit is not particularly limited, but is, for example, 99.9% by mass or less, preferably 99% by mass, and more preferably 95% by mass.
  • a solid content intends components other than a solvent. The monomer and the like are included in the solid content even if they are liquid.
  • the content of the first inorganic particles is such that drying unevenness when the composition is applied to an object is more suppressed.
  • the total content of the first inorganic particles and the second inorganic particles described below is preferably 60% by mass or more, and more preferably 70% by mass or more.
  • the upper limit is not particularly limited, but is often 95% by mass or less.
  • the composition preferably includes second inorganic particles different from the first inorganic particles.
  • “different from the first inorganic particles” means that the second inorganic particles do not satisfy at least one of the following (1) to (3).
  • (1) Contains at least one metal selected from the group consisting of copper, zinc, iron, magnesium, calcium, aluminum, manganese, cobalt, and nickel.
  • (2) The average particle size is 5.0 ⁇ m or less.
  • (3) The coefficient of variation of the particle size is 20% or more.
  • the second inorganic particles preferably do not satisfy (1) (in other words, do not contain the first metal), and preferably contain silver.
  • the average particle size of the second inorganic particles is not particularly limited, but is generally 0.01 ⁇ m or more, and preferably 0.20 ⁇ m or more.
  • the upper limit is not particularly limited, but is, for example, 5.0 ⁇ m or less, preferably 3.0 ⁇ m or less, more preferably 1.2 ⁇ m or less, and still more preferably 0.90 ⁇ m or less.
  • the average particle size of the second inorganic particles is intended to be the maximum value of the frequency in the volume-based particle size distribution.
  • the content of particles having a particle size of four times or more the average particle size is 10.0% by volume or less.
  • the lower limit is, for example, 0% by volume or more.
  • the method of forming the second inorganic particles is the same as the method of forming the first inorganic particles described above.
  • the second inorganic particles are not particularly limited as long as they are inorganic substances existing as particles in the composition.
  • inorganic particles containing a metal hereinafter, also referred to as “second metal” (hereinafter, referred to as “inorganic”) Particle (2) ").
  • the second metal is not particularly limited, but includes, for example, a metal different from the first metal, and silver is preferable.
  • the form of the inorganic particles (2) is not particularly limited, and may be a simple substance of a second metal (simple metal particles) or an inorganic compound containing the second metal (definition of a compound: two or more elements by chemical change). And a composite of a second metal and an inorganic compound (hereinafter, also referred to as “second metal-containing composite particles”).
  • Examples of the inorganic compound containing the second metal include oxides, nitrides, halides, cyanides, selenides, sulfides, tellurides of the second metal, and salts of the second metal.
  • Can be As the salt of the second metal for example, arsenate, hydrogen fluoride, bromate, chlorate, chromate, cyanate, hexafluoroantimonate, hexafluoroarsenate, hexafluoro Phosphate, iodate, isothiocyanate, molybdate, nitrate, nitrite, perchlorate, permanganate, perrhenate, phosphate, selenate, selenite, sulfuric acid Salts, sulfites, tetrafluoroborates, tetratungstates, thiocyanates, vanadates and the like.
  • the second metal-containing composite particles may be a second metal (any of a simple substance of the first metal (simple metal particle), an ion of the second metal, and a compound containing the second metal).
  • the compound containing the second metal includes an inorganic compound containing the second metal.
  • a composite of the inorganic compound In other words, the particles include the second metal and the inorganic compound.
  • the inorganic compound contained in the second metal-containing composite particles is not particularly limited, but zinc calcium phosphate, calcium phosphate, zirconium phosphate, aluminum phosphate, calcium silicate, activated alumina, silicon oxide, silicate, borosilicate Acid salts, phosphates, zeolites (crystalline aluminosilicate salts), apatite, hydroxyapatite, titanium phosphate, potassium titanate, hydrated bismuth, hydrated zirconium, hydrotalcite, activated carbon, metals and the like.
  • the inorganic compound may be crystalline or non-crystalline (amorphous), but is preferably non-crystalline. In other words, glass is preferable as the inorganic compound. Examples of a material that can constitute glass include silicate, borosilicate, and phosphate (in other words, silicate glass, borosilicate glass, and phosphate glass). Of these, silicates are preferred, and aluminum silicate is more preferred.
  • the silicate preferably contains one or more atoms selected from the group consisting of alkali metals and alkaline earth metals, and more preferably aluminum silicate.
  • the aluminum silicate may be a natural product or a synthetic product.
  • a compound represented by the following formula (A) is preferable.
  • n is a positive number of 6 or more (preferably 6 to 50)
  • m is a positive number of 1 to 20.
  • n is 8 to 15 and m is 3 to 15.
  • the second metal-containing composite particles include an inorganic carrier, a first metal (for example, a simple substance of a second metal (metal simple particle), an ion of a second metal, And a compound containing the second metal.
  • a first metal for example, a simple substance of a second metal (metal simple particle), an ion of a second metal, And a compound containing the second metal.
  • the compound containing the second metal include an inorganic compound containing the second metal.
  • the type of the inorganic carrier is not particularly limited, but zinc calcium phosphate, calcium phosphate, zirconium phosphate, aluminum phosphate, calcium silicate, activated alumina, silicon oxide , Silicate, borosilicate, phosphate, zeolite (crystalline aluminosilicate), apatite, hydroxyapatite, titanium phosphate, potassium titanate, hydrated bismuth, hydrated zirconium, and hydrotalcite; activated carbon; Metal; and the like.
  • the inorganic carrier may be crystalline or amorphous (amorphous), but is preferably amorphous.
  • glass is preferred as the inorganic carrier.
  • a material that can constitute glass include silicate, borosilicate, and phosphate (in other words, silicate glass, borosilicate glass, and phosphate glass). Of these, silicates are preferred, and aluminum silicate is more preferred.
  • the silicate preferably contains one or more atoms selected from the group consisting of alkali metals and alkaline earth metals, and more preferably aluminum silicate.
  • the aluminum silicate may be a natural product or a synthetic product.
  • the compound represented by the above formula (A) is preferable.
  • the second metal-containing composite particles are more preferable because the effects of the present invention are more excellent.
  • the main component of the second inorganic particles is preferably glass from the viewpoint that the effect of the present invention is more excellent.
  • the second inorganic particles preferably have a glass content of 50% by mass or more based on the total mass.
  • the second inorganic particles mainly composed of glass are not particularly limited, and examples thereof include second metal-containing composite particles mainly composed of glass.
  • the second metal-containing composite particles are as described above.
  • the content of the metal in the inorganic particles (2) is not particularly limited.
  • the content of the metal is 0.1 to 0.1% based on the total mass of the metal-supported carrier. It is preferably 30% by mass, more preferably 0.3 to 10% by mass.
  • the second inorganic particles may be used alone or in combination of two or more.
  • the content of the second inorganic particles in the composition is not particularly limited, and for the total solid content of the composition, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more.
  • the upper limit is not particularly limited and is, for example, 50% by mass or less, preferably 40% by mass or less, and more preferably 30% by mass or less.
  • the composition preferably contains a solvent when applied to sprays, wipers, and the like.
  • the above composition containing a solvent is referred to as a “coating composition”.
  • the content of the solvent in the coating composition is not particularly limited, but the solid content of the coating composition is adjusted to 0.001 to 80% by mass in that the coating composition has better coatability. Is preferably adjusted to 0.01 to 10% by mass, more preferably 0.1 to 5.0% by mass.
  • One type of solvent may be used alone, or two or more types may be used in combination. When two or more solvents are used in combination, the total content is preferably within the above range.
  • the solvent is not particularly limited, and includes water and / or an organic solvent.
  • the organic solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-pentanol, isopentanol, phenylethyl alcohol, caprylic alcohol, lauryl alcohol, and Alcoholic solvents such as myristyl alcohol; methyl cellosolve, ethyl cellosolve, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, ethylene Glycol monobutyl ether, diethylene glycol Glycol monobutyl ether solvents such as butyl ether
  • the content of the alcohol is preferably 5% by mass or more, and more preferably 10% by mass, with respect to the total mass of the coating composition, in that the sedimentation of the first inorganic particles and the second inorganic particles is suppressed.
  • the above is more preferable.
  • the upper limit is not particularly limited, but is, for example, preferably 99% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 45% by mass or less.
  • the content of the alcohol in the solvent is not particularly limited, but is preferably 0.001 to 100% by mass, more preferably 0.01 to 90% by mass based on the total mass of the solvent. It is preferably from 5 to 90% by mass, more preferably from 5 to 80% by mass.
  • the coating composition preferably contains a hydrophilic component selected from the group consisting of a hydrophilic binder precursor and a hydrophilic binder.
  • the hydrophilic binder precursor means a material capable of forming a hydrophilic binder by a curing reaction such as condensation and polymerization.
  • the hydrophilic binder means a material capable of forming a film capable of supporting the first inorganic particles and the second inorganic particles.
  • the content of the hydrophilic component in the coating composition is not particularly limited, but the lower limit is preferably 1.0% by mass or more, more preferably 20.0% by mass or more, based on the total solid content of the coating composition. It is more preferably at least 30.0% by mass.
  • the upper limit is preferably 99.8% by mass or less, more preferably 90.0% by mass or less, and still more preferably 80.0% by mass or less.
  • a hydrophilic component may be used individually by 1 type, and may use 2 or more types together. When two or more hydrophilic components are used in combination, the total content is preferably within the above range.
  • the hydrophilic binder preferably has a water contact angle of 60 ° or less, more preferably 50 ° or less.
  • the lower limit of the water contact angle is not particularly limited, but is preferably 5 ° or more.
  • the water contact angle is measured based on the static drop method according to JIS R # 3257: 1999. For the measurement, FAMMS @ DM-701 manufactured by Kyowa Interface Science Co., Ltd. is used.
  • the hydrophilic component is not particularly limited, but in terms of more excellent robustness, a silicate compound, a monomer having a hydrophilic group (hereinafter, also referred to as “hydrophilic monomer”), and a polymer having a hydrophilic group (hereinafter, referred to as “hydrophilic monomer”) , A "hydrophilic polymer”).
  • the monomer having a hydrophilic group means a compound having a hydrophilic group and a polymerizable group.
  • the hydrophilic monomer is polymerized to form a hydrophilic polymer.
  • each of the silicate-based compound, the hydrophilic monomer, and the hydrophilic polymer will be described.
  • the silicate compound is a compound selected from the group consisting of a compound in which a hydrolyzable group is bonded to a silicon atom, a hydrolyzate thereof, and a hydrolyzed condensate thereof. At least one selected from the group consisting of the compound represented by 1), its hydrolyzate, and its hydrolyzed condensate is exemplified.
  • Formula (1) Si— (OR) 4 In the above formula (1), R represents an alkyl group having 1 to 4 carbon atoms, which may be the same or different.
  • Examples of the compound represented by the above formula (1) include tetramethyl silicate, tetraethyl silicate, tetra-n-propyl silicate, tetra-i-propyl silicate, tetra-n-butyl silicate, tetra-i-butyl silicate, tetra-t -Butyl silicate, methyl ethyl silicate, methyl propyl silicate, methyl butyl silicate, ethyl propyl silicate, propyl butyl silicate and the like.
  • the hydrolyzate of the compound represented by the formula (1) means a compound obtained by hydrolyzing an OR group in the compound represented by the formula (1).
  • the hydrolyzate may be one in which all of the OR groups are hydrolyzed (complete hydrolyzate) or one in which some of the OR groups are hydrolyzed (partially hydrolysate). You may. That is, the hydrolyzate may be a complete hydrolyzate, a partial hydrolyzate, or a mixture thereof.
  • the hydrolyzed condensate of the compound represented by the formula (1) is a compound obtained by hydrolyzing an OR group in the compound represented by the formula (1) and condensing the obtained hydrolyzate. Intended.
  • the hydrolysis condensate may be a complete hydrolysis condensate, a partial hydrolysis condensate, or a mixture thereof.
  • the degree of condensation of the hydrolyzed condensate is preferably 1 to 100, more preferably 1 to 20, and still more preferably 3 to 15.
  • the compound represented by the formula (1) is at least partially hydrolyzed by being mixed with the water component.
  • the hydrolyzate of the compound represented by the formula (1) is obtained by reacting the compound represented by the formula (1) with a water component to change an OR group bonded to silicon into a hydroxy group. It is not necessary for all the OR groups to react at the time of hydrolysis, but it is preferable that as many OR groups as possible be hydrolyzed in order to exhibit hydrophilicity after coating.
  • the minimum amount of the water component required for the hydrolysis is a molar amount equal to the OR group of the compound represented by the formula (1), but a large excess amount of water is present in order to smoothly carry out the reaction. Is preferred.
  • the hydrolysis reaction of the silicate compound proceeds at room temperature, but may be heated to promote the reaction. A longer reaction time is preferable because the reaction proceeds more.
  • a hydrolyzate can be obtained in about half a day in the presence of a catalyst.
  • the hydrolysis reaction is a reversible reaction, and when water is removed from the system, the hydrolyzate of the silicate-based compound starts condensation between hydroxy groups. Therefore, when a large excess of water is reacted with the above silicate-based compound to obtain an aqueous solution of a hydrolyzate, it is preferable to use the aqueous solution as it is without forcibly isolating the hydrolyzate therefrom.
  • a preferred embodiment of the silicate compound includes a compound represented by the formula (X).
  • R 1 to R 4 each independently represent an alkyl group having 1 to 4 carbon atoms.
  • N represents an integer of 2 to 100.
  • n is preferably from 3 to 15, more preferably from 5 to 10.
  • silicate-based compounds examples include "Ethyl silicate 48" manufactured by Colcoat and "MKC silicate MS51” manufactured by Mitsubishi Chemical Corporation.
  • a silicate type compound may be used individually by 1 type, or may use 2 or more types together.
  • the hydrophilic group is not particularly limited, and includes, for example, a polyoxyalkylene group (for example, a polyoxyethylene group, a polyoxypropylene group, a polyoxyalkylene group in which an oxyethylene group and an oxypropylene group are blocked or randomly bonded), an amino group And carboxy groups, alkali metal salts of carboxy groups, hydroxy groups, alkoxy groups, amide groups, carbamoyl groups, sulfonamide groups, sulfamoyl groups, sulfonic acid groups, and alkali metal salts of sulfonic acid groups.
  • the number of hydrophilic groups in the hydrophilic monomer is not particularly limited, it is preferably 2 or more, more preferably 2 to 6, and still more preferably 2 to 3 from the viewpoint that the resulting film shows more hydrophilicity.
  • the polymerizable group is not particularly limited, and includes, for example, a radical polymerizable group, a cationic polymerizable group, and an anionic polymerizable group.
  • examples of the radical polymerizable group include a (meth) acryloyl group, an acrylamide group, a vinyl group, a styryl group, and an allyl group.
  • examples of the cationic polymerizable group include a vinyl ether group, an oxiranyl group, and an oxetanyl group. Among them, a (meth) acryloyl group is preferable as the polymerizable group.
  • the number of polymerizable groups in the hydrophilic monomer is not particularly limited, but is preferably 2 or more, more preferably 2 to 6, and still more preferably 2 to 3 in that the obtained film has better mechanical strength. .
  • the structure of the main chain of the hydrophilic polymer formed by polymerization of the hydrophilic monomer is not particularly limited, and examples thereof include polyurethane, poly (meth) acrylate, polystyrene, polyester, polyamide, polyimide, and polyurea.
  • One kind of the hydrophilic monomer may be used alone, or two or more kinds may be used in combination.
  • the hydrophilic polymer is not particularly limited, and a known polymer can be used.
  • the definition of the hydrophilic group is as described above.
  • Examples of the hydrophilic polymer include a polymer obtained by polymerizing the above hydrophilic monomer.
  • a cellulosic compound may be used.
  • the cellulosic compound is intended to mean a compound having cellulose as a mother nucleus, and examples thereof include carboxymethylcellulose and nanofibers using triacetylcellulose as a raw material.
  • the weight average molecular weight of the hydrophilic polymer is not particularly limited, but is preferably from 1,000 to 1,000,000, and more preferably from 10,000 to 500,000, in that handling properties such as solubility are more excellent.
  • the weight average molecular weight is defined as a value in terms of polystyrene measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the coating composition preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, and a known polymerization initiator can be used. Examples of the polymerization initiator include a thermal polymerization initiator and a photopolymerization initiator.
  • polymerization initiator examples include aromatic ketones such as benzophenone and phenylphosphine oxide; ⁇ -hydroxyalkylphenone-based compounds (eg, IRGACURE184, 127,2959, and DAROCUR1173 manufactured by BASF); phenylphosphine oxide-based compounds Compounds (monoacylphosphine oxide: IRGACURE TPO manufactured by BASF, bisacylphosphine oxide: IRGACURE 819 manufactured by BASF); and the like. Among them, a photopolymerization initiator is preferable from the viewpoint of reaction efficiency.
  • aromatic ketones such as benzophenone and phenylphosphine oxide
  • ⁇ -hydroxyalkylphenone-based compounds eg, IRGACURE184, 127,2959, and DAROCUR1173 manufactured by BASF
  • phenylphosphine oxide-based compounds Compounds (monoacylphosphine oxide: IRGACURE TPO manufactured by BASF, bisacy
  • the content of the polymerization initiator in the coating composition is not particularly limited, but is preferably 0.1 to 15 parts by mass, more preferably 1 to 6 parts by mass, per 100 parts by mass of the hydrophilic monomer.
  • a polymerization initiator may be used individually by 1 type, and may use 2 or more types together. When two or more polymerization initiators are used in combination, the total content is preferably within the above range.
  • the coating composition preferably contains a dispersant.
  • a dispersant When the coating composition contains a dispersant, the dispersion stability of the first inorganic particles and the second inorganic particles described above is more excellent.
  • the dispersant is not particularly limited, and includes known dispersants.
  • a nonionic or anionic dispersant is preferable.
  • a dispersant (anionic dispersant) having an anionic polar group such as a carboxy group, a phosphate group, and a hydroxyl group is more preferable.
  • Commercial products can be used as the anionic dispersant.
  • BYK's trade name DISPERBYK (registered trademark) -110, -111, -116, -140, -161, -162, -163, -164, -170, -171, -174,- 180 and -182 are preferred.
  • the coating composition may contain a catalyst that promotes the condensation of the silicate compound (hereinafter, also referred to as a “reaction catalyst”).
  • reaction catalyst a catalyst that promotes the condensation of the silicate compound
  • the catalyst is not particularly limited, and examples thereof include an alkali catalyst and an organometallic catalyst.
  • the alkali catalyst include sodium hydroxide, potassium hydroxide, and tetramethylammonium hydroxide.
  • the organic metal catalyst include aluminum chelate compounds such as aluminum bis (ethyl acetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), and aluminum ethyl acetoacetate diisopropylate, zirconium tetrakis (acetylacetonate), And zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate), titanium chelate compounds such as titanium tetrakis (acetylacetonate) and titanium bis (butoxy) bis (acetylacetonate), and dibutyltin diacetate; Organic tin compounds such as dibutyltin dilaurate and dibutyltin dioctiate
  • an organometallic catalyst is preferable as the catalyst, and an aluminum chelate compound or a zirconium chelate compound is more preferable, and an aluminum chelate compound is more preferable in that a coating composition having a better effect of the present invention can be obtained. More preferred.
  • the content of the catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 15 parts by mass, and further preferably 0.3 to 10 parts by mass, based on 100 parts by mass of the total solid content of the coating composition.
  • a catalyst may be used individually by 1 type, and may use 2 or more types together. When two or more catalysts are used in combination, the total content is preferably within the above range.
  • the coating composition may include a surfactant.
  • Surfactants have the effect of improving the coating properties of the coating composition.
  • the surfactant is not particularly limited, and examples thereof include a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • the content of the surfactant is not particularly limited, but is preferably 0.01 part by mass or more based on 100 parts by mass of the total solid content of the coating composition.
  • the upper limit of the surfactant content is not particularly limited, but is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and more preferably 4 parts by mass or less based on 100 parts by mass of the total solid content of the coating composition. Is more preferred.
  • a surfactant may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the total content thereof is preferably within the above range.
  • Nonionic surfactants include polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, and polyethylene glycol monostearyl ester.
  • ionic surfactant examples include anionic surfactants such as alkyl sulfates, alkylbenzene sulfonates, and alkyl phosphates; cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts; Examples include amphoteric surfactants such as betaine.
  • the coating composition may include a fragrance.
  • flavors flavors H-1, H-2, H-3, H-4, H-6, H-9, H-10, H-11, H-12, H-13, H-13 manufactured by Hasegawa Koshiro Co., Ltd. -14, flavor T-100, T-101, T-102, T-103, T-104, T-105, T-106, T-107, EDA-171 manufactured by Takasago International Corporation, manufactured by Soda International Corporation It may contain flavor S-201, flavor DA-40 manufactured by Riken Koryo Kogyo KK, and the like.
  • the content of the fragrance is preferably 0.01 to 5% by mass based on the total mass of the coating composition.
  • the coating composition may include a film forming agent.
  • the film forming agent include a thermoplastic resin.
  • the thermoplastic resin a resin having a minimum film forming temperature of 0 to 35 ° C. is preferable, and a known thermoplastic resin can be used.
  • polyurethane resin polyester resin
  • (meth) acrylic resin or urethane resin is preferable.
  • thermoplastic resin may be used individually by 1 type, or may use 2 or more types together.
  • the content of the thermoplastic resin may be appropriately adjusted depending on the type of the thermoplastic resin and the like, for example, the total solid content of the coating composition Is preferably 30% by mass or less, more preferably 20% by mass or less.
  • the pH of the coating composition is not particularly limited, it is preferable to adjust the pH to an appropriate range in consideration of roughening of a user in an actual use environment.
  • the pH of the coating composition is preferably from 2.0 to 12.0, and the metal which the first inorganic particles and the second inorganic particles may contain is hardly dissolved or deteriorated by an acid or alkali. 3.0 to 11.0 is more preferable, and 6.0 to 8.0 is more preferable.
  • a method of adjusting the pH of the coating composition a method of mixing an acid or an alkali with the above-mentioned coating composition may be mentioned.
  • the pH can be measured using a commercially available pH measurement meter (eg, HM-30R, a pH meter manufactured by Toa DKK Inc.).
  • the specific gravity of the coating composition is not particularly limited, but is preferably 0.5 to 1.2.
  • the viscosity of the coating composition is not particularly limited, and may be adjusted according to the use.
  • the viscosity of the coating composition at 25 ° C. is preferably 250 cP or more, more preferably 300 cP or more, and further preferably 400 cP or more.
  • the upper limit is, for example, 500 cP or less.
  • the viscosity can be measured using VISCOMTER TUB-10 manufactured by Toki Sangyo Co., Ltd. or SEKONIC VISCOMMETER manufactured by Sekonic.
  • the zeta potential of the coating composition is not particularly limited, but is preferably adjusted to an appropriate range in consideration of the fact that the particulate matter is appropriately dispersed in the coating composition and has better sedimentation resistance.
  • the zeta potential of the coating composition is preferably from 80 mV to -80 mV, more preferably from 70 mV to -70 mV, even more preferably from 60 mV to -60 mV.
  • the zeta potential can be measured by a known method, and the dispersion can be measured by introducing a predetermined amount of the dispersion into a dedicated glass measurement cell and using ELSZ1EAS manufactured by Otsuka Electronics Co., Ltd.
  • the said coating composition can further contain other additives as needed in the range which shows the effect of this invention.
  • the coating composition can be prepared by appropriately mixing the above-mentioned essential components and optional components. The order of mixing the above components is not particularly limited.
  • a film can be formed using the above coating composition.
  • the method for forming the film is not particularly limited, but a method (coating method) in which the coating composition is applied to a desired substrate or article to form a coating film, and the coating film is dried or cured to form a film is preferable.
  • the method for applying the coating composition to a desired substrate or article is not particularly limited. For example, a spray, a roll coater, a gravure coater, a screen, a spin coater, a flow coater, an ink jet, an electrostatic coating, and a wipe are exemplified.
  • spray or wipe is preferable, and wipe is more preferable, since a film can be formed on the surface of an existing article according to demand and processing (on-demand processing) can be performed.
  • the method for forming the film by wiping is not particularly limited, and a known method can be used. For example, the following method can be mentioned. First, the coating composition is impregnated into a base cloth such as a nonwoven fabric, and then the surface of the substrate or the article is wiped with the base cloth. Thereby, a coating film of the coating composition is formed on the surface of the substrate or the article. Thereafter, the formed coating film is dried or cured to obtain a film.
  • the film of the present invention is a film formed using the above-mentioned coating composition.
  • a method for producing a film will be described in detail.
  • the film of the present invention is obtained, for example, by drying or curing the above coating composition.
  • the coating composition is as described above.
  • the coating composition contains a binder precursor
  • the film is obtained by curing a coating film (composition layer) of the coating composition.
  • the film is obtained by curing the composition layer and using the binder precursor in the composition layer as a binder.
  • the coating composition contains only a binder as a hydrophilic component, it is not necessary to perform a curing treatment on the coating composition.
  • the thickness of the film is not particularly limited, but is preferably 0.001 to 50 ⁇ m, more preferably 0.01 to 10 ⁇ m.
  • the film thickness is measured by embedding a sample of the film in a resin, shaving a cross section with a microtome, and observing the cut cross section with a scanning electron microscope. The thickness at any 10 points of the film is measured, and the arithmetically averaged value is intended.
  • a substrate with a film according to an embodiment of the present invention has a substrate and a film formed using a coating composition.
  • the substrate with a film may be a laminate having a substrate and a film formed using a coating composition, and may have a film on one surface of the substrate or a substrate. May have a film on both surfaces.
  • the substrate plays a role of supporting the membrane, and its type is not particularly limited.
  • the shape of the substrate is not particularly limited, and examples thereof include a plate, a film, a sheet, a tube, a fiber, and a particle.
  • the material constituting the base material is not particularly limited, and examples thereof include metal, glass, ceramics, and plastic (resin). Among them, plastic is preferable from the viewpoint of handleability.
  • the substrate is preferably a resin substrate.
  • the method for producing a film of the present invention corresponds to a method for producing a film using the above-mentioned coating composition, and has the following steps.
  • the coating composition contains a hydrophilic binder precursor as a hydrophilic component
  • the coating composition preferably has the following step A and the following step B.
  • the coating composition has a hydrophilic binder as a hydrophilic component.
  • It is preferable to have the following step A. A step of applying a coating composition on the surface of a substrate to form a composition layer
  • Step B A step of curing the composition layer to obtain a film
  • the following steps A and B Will be described.
  • Step A is a step of applying a coating composition to the surface of a substrate to form a composition layer.
  • the coating composition contains a hydrophilic binder as a hydrophilic component, a predetermined film is formed on the surface of the substrate.
  • the method for applying the coating composition to the surface of the substrate is not particularly limited, and a known coating method can be used.
  • the thickness of the composition layer is not particularly limited, but is preferably 0.001 to 10 ⁇ m as a dry thickness.
  • a heat treatment may be performed to remove the solvent.
  • the conditions for the heat treatment in that case are not particularly limited.
  • the heating temperature is preferably 50 to 200 ° C.
  • the heating time is preferably 15 to 600 seconds.
  • the substrate that can be used in step A is the same as the substrate described above.
  • Step B is a step of curing the composition layer to obtain a film.
  • this is a step of converting the hydrophilic binder precursor contained in the composition layer into a hydrophilic binder by a curing reaction such as condensation or polymerization.
  • the method for curing the composition layer is not particularly limited, and examples thereof include a heat treatment and / or an exposure treatment.
  • the exposure treatment is not particularly limited, and examples include a mode in which the composition layer is cured by irradiating an ultraviolet ray with an irradiation amount of 100 to 600 mJ / cm 2 using an ultraviolet lamp.
  • ultraviolet rays emitted from light beams such as an ultrahigh-pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp can be used.
  • the temperature of the heat treatment is not particularly limited, but is preferably, for example, 50 to 150 ° C, more preferably 80 to 120 ° C.
  • a spray according to an embodiment of the present invention has a spray container and a coating composition stored in the spray container.
  • the coating composition is as described above.
  • Examples of the spray of the present invention include a form in which a coating composition and a propellant are filled in a predetermined container.
  • the propellant used is not particularly limited, and examples thereof include liquefied petroleum gas.
  • a wet wiper according to an embodiment of the present invention includes a base fabric and a coating composition impregnated in the base fabric.
  • the coating composition is as described above.
  • the base fabric is not particularly limited, and may be formed of natural fibers or chemical fibers. Natural fibers include, for example, pulp, cotton, hemp, flax, wool, cashmere, cashmere, mohair, and silk. Materials for chemical fibers include rayon, polynosic, acetate, triacetate, nylon, polyester, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polyurethane, polyalkylene paraoxybenzoate, and polyclar. Above all, among these base fabrics, a hydrophilic base fabric is preferable in that the coating composition is easily impregnated.
  • the hydrophilic base cloth is, for example, a base cloth including fibers having a hydrophilic group such as a hydroxyl group, an amino group, a carboxy group, an amide group, and a sulfonyl group.
  • a hydrophilic group such as a hydroxyl group, an amino group, a carboxy group, an amide group, and a sulfonyl group.
  • Specific examples of the hydrophilic base fabric include vegetable fibers, cotton, pulp, animal fibers, rayon, nylon, polyester, polyacrylonitrile, and polyvinyl alcohol.
  • Examples of the base fabric of the wet wiper include a nonwoven fabric, a cloth, a towel, gauze, and absorbent cotton, and a nonwoven fabric is preferable.
  • the basis weight (mass per unit area) of the base fabric is preferably 100 g / m 2 or less.
  • the amount of impregnation when the coating composition is impregnated into the base fabric is preferably at least one time
  • the resin molded body according to the embodiment of the present invention has a resin and the above composition.
  • the composition is as described above.
  • the resin is not particularly limited, and may be, for example, a cured product obtained by polymerizing a curable compound (monomer, oligomer, or polymer having a functional group) in addition to a natural resin and a synthetic resin (preferably a thermoplastic resin).
  • a synthetic resin preferably a thermoplastic resin
  • the synthetic resin include (meth) acrylic resin, polyurethane resin, polyolefin resin such as polyethylene resin and polypropylene resin, polyester resin, polycarbonate resin, polyvinyl chloride resin, polystyrene resin, polysulfone resin, polyethersulfone resin, and polyimide.
  • Resins polyamide resins, polyamide-imide resins, fluorine-containing resins, cellulose resins, polyacetal resins, polyphenylene ether resins, polyether ether ketone resins, polyphenylene ether resins, acrylonitrile styrene resins, and acrylonitrile butadiene styrene resins.
  • the shape of the resin molded body is not particularly limited, and examples thereof include a fiber shape, a film shape, a plate shape, a tube shape, and a granular shape.
  • the term “fibrous” as used herein means a fiber and a fibrous structure such as a two-dimensional structure and a three-dimensional structure (for example, a woven or knitted fabric or a nonwoven fabric) formed by the fiber.
  • the base material in addition to those described above, any shape that can be produced by insert molding, in-mold molding, injection molding, extrusion molding, and dip molding is used.
  • the content of the composition in the resin molded body is preferably 0.1 to 50% by mass, more preferably 1 to 20% by mass, based on the total mass of the resin molded body.
  • the resin molded body includes, for example, a molded body formed of resin (for example, a sheet-shaped molded body), the first inorganic particles disposed on the surface and / or inside of the molded body, and optionally the above-described resin.
  • a form having the second inorganic particles is exemplified.
  • the resin molded body according to the embodiment can be formed using the coating composition.
  • As a specific production method there is a method in which the coating composition containing a polymer, a curable compound, and the like is cast to form a cast film, and then dried, heated, and / or cured.
  • the resin molded body is fibrous
  • a fiber as the resin molded body, a fiber
  • the first inorganic particles attached to the surface of the fiber and optionally the second inorganic particles included May be used.
  • a form having a fibrous structure, the first inorganic particles disposed on the surface and / or inside of the fibrous structure, and the second inorganic particles optionally included may be employed.
  • the method for forming the resin molded body is not particularly limited. For example, after applying the above-described coating composition to a fiber or a fibrous structure by a method such as impregnation and spraying, the resultant is dried to form a resin molded body. Method.
  • the slurry was filtered under reduced pressure by a glass filter on which a micro filter having an aperture of 0.5 ⁇ m was placed, and subsequently, the precipitate was washed by flowing deionized water so as not to overflow from a suction filter, and finally, the precipitate was obtained by suction filtration. .
  • the electric conductivity of the filtrate flowing out was measured, and washing was performed until the electric conductivity became 50 ⁇ S / cm or less.
  • the precipitated product was dried at 150 ° C. for 24 hours to obtain composite particles of glass and copper (hereinafter abbreviated as “glass-copper composite particles”).
  • the obtained glass-copper composite particles were wet-pulverized using a bead mill.
  • zirconia beads having a diameter of 1 mm were used.
  • the wet-ground glass-copper composite particles were sieved to obtain the desired particle size distribution.
  • a sieving (water sieving) method utilizing a difference in sedimentation velocity of particles was used. After the wet-ground glass-copper composite particles were separated into particles having various particle size distributions, the separated particles were blended to adjust the particle size distribution of the glass-copper composite particles.
  • the obtained Na-type zirconium phosphate is added to a 1N nitric acid solution containing copper ions, stirred at 60 ° C. for 2 hours, filtered, washed with water and dried to obtain composite particles of copper and zirconium phosphate (hereinafter, referred to as “copper zirconium phosphate”). Abbreviated as “zirconium phosphate / copper composite particles”).
  • Inorganic particles having different particle size distributions obtained by the above procedure were used as first inorganic particles.
  • the volume-based particle size distribution of the first inorganic particles was measured using a laser diffraction scattering type particle size distribution analyzer (LA-350) manufactured by Horiba, Ltd.
  • glass-silver composite particles composite particles of glass and silver (hereinafter referred to as “glass-silver composite particles”) Abbreviated).
  • the obtained glass-silver composite particles were wet-pulverized using a bead mill.
  • zirconia beads having a diameter of 1 mm were used.
  • the wet-ground glass-silver composite particles were sieved to obtain the desired particle size distribution.
  • a sieving (water sieving) method utilizing a difference in sedimentation velocity of particles was used. After the wet-ground glass-silver composite particles were separated into particles having various particle size distributions, the separated particles were blended to adjust the particle size distribution of the glass-silver composite particles.
  • Inorganic particles having different particle size distributions obtained by the above procedure were used as second inorganic particles.
  • the volume-based particle size distribution of the second inorganic particles was measured using a laser diffraction scattering type particle size distribution analyzer (LA-350) manufactured by Horiba, Ltd.
  • Example 20 which will be described later, commercially available zirconium phosphate particles (Kesmon NS-10, manufactured by Toagosei Co., Ltd.) were used as the second inorganic particles.
  • Example 1 While stirring 367 g of ethanol in the vessel, 60 g of pure water, 14 g of a silicate compound (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), and aluminum chelate D (aluminum bis (ethylacetoacetate) mono (acetylacetate) Nitrate), ethanol dilution: 15 g of solid content concentration: 15 g, nonionic surfactant ("Emarex 715" manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration: 0.5 mass%) 60 g, and anionic interface After sequentially adding 10 g of an activator (sodium di (2-ethylhexyl) sulfosuccinate, diluted with pure water: solid content concentration: 0.2% by mass), 18 g of isopropanol and a dispersant (“DISPERBYK (registered trademark) -180” manufactured by BYK) are added.
  • Example 2 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %)
  • a coating composition 2 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 3 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 3 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 4 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) Coating composition 4 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 5 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 5 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 6 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 6 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 7 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 7 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 8 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 8 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 9 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 9 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 10 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %)
  • a coating composition 10 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 11 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 11 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 12 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 12 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 13 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 13 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 14 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 14 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 15 Glass-zinc composite particles prepared by adjusting the first inorganic particles to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 (ethanol dilution: solid content concentration of 60 mass) %) A coating composition 15 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 16 Glass iron composite particles (ethanol dilution: solids concentration 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a coefficient of variation, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A coating composition 16 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Example 17 Zirconium phosphate-copper composite particles (ethanol dilution: solids content) in which the first inorganic particles are adjusted to a mode diameter, a variation coefficient, and a content of particles having a particle diameter of four times or more of the average particle diameter shown in Table 1
  • a coating composition 17 was obtained in the same manner as in Example 1 except that the concentration was changed to 2.4 g.
  • Example 18 While stirring 367 g of ethanol in the vessel, 60 g of pure water, 14 g of a silicate compound (“MKC (registered trademark) silicate” MS51 ”manufactured by Mitsubishi Chemical Corporation), and aluminum chelate D (aluminum bis (ethylacetoacetate) mono (acetylacetate) Nitrate), ethanol dilution: 15 g of solid content concentration: 15 g, nonionic surfactant ("Emarex 715" manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration: 0.5 mass%) 60 g, and anionic interface After sequentially adding 10 g of an activator (sodium di (2-ethylhexyl) sulfosuccinate, diluted with pure water: solid content concentration: 0.2% by mass), 18 g of isopropanol and a dispersant (“DISPERBYK (registered trademark) -180” manufactured by BYK) are added.
  • the second inorganic particles contain particles having a particle diameter of four times or more the average particle diameter in a particle size distribution of a mixture (mixed state) of the first inorganic particles and the second inorganic particles.
  • the amount was adjusted to be 1.9% by volume.
  • Example 19 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) 2.16 g, and the second inorganic particles had the mode diameter shown in Table 1 and a particle size distribution of a mixture (mixed state) of the first inorganic particles and the second inorganic particles.
  • the content of particles having a particle diameter of 4 times or more of the average particle diameter was changed to 0.24 g of glass silver particles (ethanol dilution: solid content concentration: 60% by mass) adjusted to have the values shown in Table 1. Except for this, the coating composition 19 was obtained in the same manner as in Example 18.
  • Example 20 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) 2.16 g, and the second inorganic particles had the mode diameter shown in Table 1 and a particle size distribution of a mixture (mixed state) of the first inorganic particles and the second inorganic particles.
  • the content of particles having a particle diameter four times or more the average particle diameter was changed to 0.24 g of zirconium phosphate particles (ethanol dilution: solid content concentration: 60% by mass) adjusted to have the values shown in Table 1.
  • a coating composition 20 was obtained in the same manner as in Example 18 except that the coating composition was performed.
  • Comparative Example 1 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) Comparative coating composition 1 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Comparative Example 2 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) Comparative coating composition 2 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Comparative Example 3 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) Comparative coating composition 3 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Comparative Example 4 Glass-copper composite particles (ethanol dilution: solid content 60 mass) in which the first inorganic particles are adjusted to have a mode diameter, a variation coefficient, and a content of particles having a particle diameter of 4 times or more of the average particle diameter shown in Table 1 %) A comparative coating composition 4 was obtained in the same manner as in Example 1 except that the composition was changed to 2.4 g.
  • Zr phosphate / copper composite particles means zirconium phosphate / copper composite particles. Further, “zirconium phosphate particles” means zirconium phosphate particles.
  • particle content of d * 4 or more in the column of “first inorganic particles” refers to “particle size of at least four times the average particle size in the particle size distribution of the first inorganic particles”. The content of particles having Further, “mixture” in the table means a mixture (mixed state) of the first inorganic particles and the second inorganic particles.
  • Particle content of d * 4 or more in the column of “mixture” refers to “particles having a particle size distribution of at least four times the average particle size in a mixed particle size distribution of the first inorganic particles and the second inorganic particles". Content of particles having a diameter ". Further, the main components of “glass-copper composite particles”, “glass-zinc composite particles”, “glass-iron composite particles”, and “glass-silver composite particles” used in the Examples section (components occupying 50% by mass or more of the total mass of the particles) ) Is glass.
  • the film formed by the coating composition of the example has excellent deodorizing properties (initial deodorizing property and long-term deodorizing property), and the coating composition is applied to the object. It is clear that drying unevenness at the time of drying is further suppressed. Further, when Examples 3 to 5 (the initial deodorant evaluation, the long-term deodorant evaluation, and the drying unevenness evaluation correspond to AA, B, and AA, respectively) are compared with Examples 1 and 2.
  • the lower limit of the average particle size of the first inorganic particles in the coating composition is 0.05 ⁇ m or more, it is clear that the drying unevenness is further improved. In particular, when the lower limit of the average particle size of the first inorganic particles in the coating composition is 0.10 ⁇ m or more, it is clear that the initial deodorizing property is further improved.
  • Examples 3 to 5 the initial deodorant evaluation, the long-term deodorant evaluation, and the drying unevenness evaluation correspond to AA, B, and AA, respectively
  • Examples 7 and 8 are compared.
  • the upper limit of the average particle size of the first inorganic particles in the coating composition is 1.0 ⁇ m or less, it is clear that drying unevenness is further improved.
  • the upper limit of the average particle size of the first inorganic particles in the coating composition is 0.50 ⁇ m or less, it is clear that the initial deodorizing property is further improved.
  • Example 6 the first When the variation coefficient of the particle size of the inorganic particles was 30% or more, it was confirmed that the initial deodorizing property was excellent.
  • Example 11 to 14 the coating composition was determined.
  • the content of particles having a particle size of 4 times or more the average particle size in the particle size distribution of the first inorganic particles is 10.0% by volume or less, the initial deodorizing property is more excellent, and It was confirmed that drying unevenness was further improved.
  • Examples 3 to 5 the initial deodorant evaluation, the long-term deodorant evaluation, and the drying unevenness evaluation correspond to AA, B, and AA, respectively
  • Examples 15 and 16 it was confirmed that when the first inorganic particles contained copper, they were more excellent in the initial deodorizing property.
  • Example 17 the first When the inorganic particles contained glass as a main component, it was confirmed that the initial deodorizing properties were more excellent.
  • Example 5 when Example 5 was compared with Examples 18 and 19, it was confirmed that when the coating composition contained the glass-silver composite particles as the second inorganic particles, the long-term deodorizing property was further improved.
  • the particle diameter of the average particle diameter was 4 times or more. It was confirmed that when the content of the particles having the following is 10.0 vol% or less, the initial deodorizing property and the drying unevenness are further improved.
  • Example 7 and Example 20 were compared, it was confirmed that when the coating composition contained zirconium phosphate particles as the second inorganic particles, the initial deodorizing property was further improved.

Abstract

本発明の課題は、優れた消臭性を有する組成物を提供することである。また、本発明の他の課題は、スプレー、ワイパー、膜、膜付き基材、及び樹脂成型体を提供することである。 本発明の組成物は、銅、亜鉛、鉄、マグネシウム、カルシウム、アルミニウム、マンガン、コバルト、及びニッケルからなる群より選ばれる少なくとも1種の金属を含む第一の無機粒子と、を含み、上記第一の無機粒子の平均粒径が5.0μm以下であり、上記第一の無機粒子の粒径の変動係数が20%以上である。

Description

組成物、スプレー、ワイパー、膜、膜付き基材、樹脂成形体
 本発明は、組成物、スプレー、ワイパー、膜、膜付き基材、及び樹脂成形体に関する。
 近年、各種の消臭剤への需要が高まっている。
 例えば、特許文献1は、CuO含有アルカリ-アルカリ土類-ホウケイ酸ガラス又はCuO含有アルカリ-アルカリ土類-ケイ酸塩ガラスからなる消臭ガラス剤を開示している。
国際公開第2016/147850
 本発明者は、特許文献1を参照して消臭ガラス剤を作製し、得られた消臭ガラス剤を含む組成物を調製してその特性を検討したところ、上記組成物の消臭性を更に改善させる余地があることを明らかとした。
 そこで、本発明は、優れた消臭性を有する組成物を提供することを課題とする。また、本発明は、スプレー、ワイパー、膜、膜付き基材、及び樹脂成形体を提供することも課題とする。
 本発明者は、上記課題を達成すべく鋭意検討した結果、以下の構成により課題を達成できることを見出した。
 〔1〕 銅、亜鉛、鉄、マグネシウム、カルシウム、アルミニウム、マンガン、コバルト、及びニッケルからなる群より選ばれる少なくとも1種の金属を含む第一の無機粒子を含み、
 上記第一の無機粒子の平均粒径が5.0μm以下であり、
 上記第一の無機粒子の粒径の変動係数が20%以上である、組成物。
 〔2〕 上記第一の無機粒子の粒径分布において、平均粒径の4倍以上の粒径を有する粒子の含有量が10.0体積%以下である、〔1〕に記載の組成物。
 〔3〕 上記第一の無機粒子の粒径の変動係数が30%以上である、〔1〕又は〔2〕に記載の組成物。
 〔4〕 上記第一の無機粒子が、主成分としてガラスを含む、〔1〕~〔3〕のいずれかに記載の組成物。
 〔5〕 上記第一の無機粒子の平均粒径が0.05~2.0μmである、〔1〕~〔4〕のいずれかに記載の組成物。
 〔6〕 上記第一の無機粒子の平均粒径が0.10~1.0μmである、〔1〕~〔5〕のいずれかに記載の組成物。
 〔7〕 更に、親水性バインダー前駆体及び親水性バインダーからなる群から選択される親水性成分を含む、〔1〕~〔6〕のいずれかに記載の組成物。
 〔8〕 更に、溶媒を含む、〔1〕~〔7〕のいずれかに記載の組成物。
 〔9〕 消臭用組成物である、〔1〕~〔8〕のいずれかに記載の組成物。
 〔10〕 スプレー容器と、
 スプレー容器に収納された〔1〕~〔9〕のいずれかに記載の組成物とを有する、スプレー。
 〔11〕 基布と、
 基布に含浸された〔1〕~〔9〕のいずれかに記載の組成物とを有する、ワイパー。
 〔12〕 〔1〕~〔9〕のいずれかに記載の組成物を用いて形成される膜。
 〔13〕 基材と、
 〔12〕に記載の膜とを有する、膜付き基材。
 〔14〕 樹脂と、
 〔1〕~〔9〕のいずれかに記載の組成物と、を有する樹脂成型体。
 本発明によれば、優れた消臭性を有する組成物を提供できる。また、本発明によれば、スプレー、ワイパー、膜、膜付き基材、及び樹脂成形体を提供できる。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、「(メタ)アクリル」はアクリル、及びメタクリルの双方、又はいずれかを表す。「(メタ)アクリロイル」はアクリロイル、及びメタクリロイルの双方、又はいずれかを表す。「(メタ)アクリレート」はアクリレート、及びメタクリレートの双方、又はいずれかを表す。
[組成物]
 本発明の組成物は、
 銅、亜鉛、鉄、マグネシウム、カルシウム、アルミニウム、マンガン、コバルト、及びニッケルからなる群より選ばれる少なくとも1種の金属を含む第一の無機粒子と、を含み、
 上記第一の無機粒子の平均粒径が5.0μm以下であり、
 上記第一の無機粒子の粒径の変動係数が20%以上である。
 上記組成物は、上記構成とすることにより、消臭性に優れる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 上記第一の無機粒子の特徴点の一つとしては、銅、亜鉛、鉄、マグネシウム、カルシウム、アルミニウム、マンガン、コバルト、及びニッケルからなる群より選ばれる少なくとも1種の金属を含む点が挙げられる。これらの金属又は金属イオンは、臭い成分と直接又は空気中の水分等を介して反応することで優れた消臭性を示す。
 上記第一の無機粒子の他の特徴点としては、その粒径の変動係数が20%以上であることによって粒径分布が比較的ブロードである点、及び平均粒径が5.0μm以下である点が挙げられる。このため、第一の無機粒子は、上記特徴点に起因して比較的小粒径の粒子(以下「小粒子」ともいう。)を多く含み、比表面積が増加することで消臭性が向上する。更に、比較的大粒径の粒子(以下「大粒子」ともいう)が、組成物中において分散剤の役割を果たすことで、組成物の分散性を向上させ、小粒子同士の弱凝集体や小粒子と大粒子との弱凝集体を形成する。この弱凝集体が形成する粒子間の微小空間が臭い成分を補足することで消臭性が一段と向上していると推測される。
 また、上記のように小粒子と大粒子が共存することで、第一の無機粒子は、界面活性剤等の分散剤を過剰に加えることなく各種媒質中で良好な分散性を維持でき、上記組成物が被対象物(例えば基材)に付与された場合、第一の無機粒子は、被対象物に対して均一に付与され易くなり、これによっても高い消臭性が発現すると考えられる。
 また、今般、本発明者らは、第一の無機粒子の粒径分布において、平均粒径の4倍以上の粒径を有する粒子の含有量が10.0体積%以下である場合、上記組成物が被対象物(例えば基材)に付与された場合の乾燥ムラが顕著に抑制されることを見いだしている。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 例えば、スプレー及びワイパー等の手法によって、溶媒を含む上記組成物が被対象物に付与された場合、組成物が乾燥していくにつれて、組成物中において溶媒が大粒子に引き寄せられる現象が生じ、これにより、大粒子と被対象物との間に溶媒のメニスカスが形成される。このメニスカス形成の際、溶媒の移動に伴って、小粒子も大粒子と被対象物との間の溶媒のメニスカスに移動するため、結果として、被対象物上に大粒子と小粒子のコロニーが形成され、乾燥ムラとして視認され易くなる。
 これに対して、組成物中の第一の無機粒子の粒径分布を上述の如く調整することで、上記組成物が被対象物に付与された場合(例えば、基材の表面に付与された場合)の乾燥ムラを抑制できる。
 上記組成物は、消臭用組成物として用いられることが好ましい。
 被消臭物としては特に制限されないが、上記組成物は、細菌を含有する被消臭物に対して高い消臭効果を発現する。
 被消臭物中では、細菌に由来して悪臭物質(臭気)が産生されると推測される。例えば、尿を含有する被消臭物中では、典型的には細菌が発現するウレアーゼによって、尿中の尿素(基質)が分解され、アンモニアが生ずる。このように、上記被消臭物からは、細菌に由来して、悪臭物質(臭気)が発生すると推測される。
 上記組成物は、例えば、クレブシエラ(Klebsiella)属、シトロバクター(Citrobacter)属、エンテロバクター(Enterobacter)属、プロテウス(Proteus)属、シュードモナス属(Pseudomonas)、セラチア(Serratia)属及び、モルガネラ(Morganella)属からなる群から選択される少なくとも1種類の細菌を含有する被消臭物に対して高い消臭効果を発現する。
 以下、上記組成物に含まれる各成分について説明する。
〔第一の無機粒子〕
 上記組成物は、第一の無機粒子を含む。
 上記第一の無機粒子は、平均粒径が5.0μm以下であり、粒径の変動係数が20%以上である。
 上記第一の無機粒子の平均粒径及び変動係数は、体積基準の粒径分布により求められる値であり、平均粒径とは、体積基準の粒径分布において頻度の最大値であり、変動係数とは、標準偏差を平均粒径で除した値を百分率で表したものである。
 本明細書において体積基準の粒径分布とは、レーザ回折法により測定した体積基準の粒径分布を意図する。レーザ回折法により測定した体積基準の粒径分布とは、JIS(Japanese Industrial Standards)K 8825:2013「粒子径解析?レーザ回折・散乱法」に準拠した試験により測定される体積基準の粒径分布を意図する。具体的には、堀場製作所社製のレーザ回折散乱式粒度分布測定装置(LA-350)を用いて測定できる。
 上記第一の無機粒子の平均粒径としては、組成物の消臭性がより優れる点、及び/又は組成物が被対象物に付与された場合の乾燥ムラがより抑制される(以下、「本発明の効果がより優れる」ともいう。)点で、2.0μm以下が好ましく、1.0μm以下がより好ましく、0.50μm以下が更に好ましい。また、上記第一の無機粒子の平均粒径の下限値は特に制限されないが、例えば、0.01μm以上であり、本発明の効果がより優れる点で、0.05μm以上が好ましく、0.10μm以上がより好ましい。
 また、上記第一の無機粒子の粒径の変動係数としては、本発明の効果がより優れる点で、30%以上が好ましい。なお、上記第一の無機粒子の粒径の変動係数の上限値は特に制限されないが、例えば、50%以下である。
 また、上記第一の無機粒子は、本発明の効果がより優れる点で、上記第一の無機粒子の粒径分布において、平均粒径の4倍以上の粒径を有する粒子の含有量が10.0体積%以下であることが好ましい。下限は、例えば、0体積%以上である。
 なお、上記第一の無機粒子の粒径分布とは、上述した体積基準の粒径分布を意図する。
 上記第一の無機粒子の形成方法としては、ブレークダウン法(例えば、粉砕法)及びビルドアップ法のいずれでもよい。上記粉砕法としては、例えば、乾式粉砕及び湿式粉砕等が挙げられる。乾式粉砕においては、例えば、乳鉢、ジェットミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、及びビーズミル等が適宜用いられる。また、湿式粉砕においては、各種ボールミル、高速回転粉砕機、ジェットミル、ビーズミル、超音波ホモジナイザー、及び高圧ホモジナイザー等が適宜用いられる。例えば、ビーズミルにおいては、メディアとなるビーズの径、種類、及び混合量等を調節することで平均粒径を制御できる。また、ビルドアップ法とは、例えば、水酸化物及び有機金属物等の原料成分と任意成分とを混合して反応を実施することにより、第一の無機粒子を直接形成する方法である。ビルドアップ法としては、ポッド内に原料成分を添加して撹拌混合するバッチ式でもよいし、原料成分を流路中で連続的に混合して反応させる方式(例えば、マイクロリアクター、又は2重管混合方式)でもよいが、後者が好ましい。
 また、第一の無機粒子の粒径分布を調整する方法としては公知の方法が使用できる。例えば、所望の粒径分布となるよう、粗大粒子の粉砕条件を制御する方法、篩い分けにより粒径分布を調整する方法、及び異なる粒径分布を有する粒子をブレンドする方法が挙げられる。
 以下において、上記第一の無機粒子の材料について説明する。
 第一の無機粒子は、銅、亜鉛、鉄、マグネシウム、カルシウム、アルミニウム、マンガン、コバルト、及びニッケルからなる群より選ばれる少なくとも1種の金属(以下「第一の金属」ともいう。)を含む。
 上記第一の金属としては、本発明の効果がより優れる点で、なかでも、銅、亜鉛、又は鉄が好ましく、銅がより好ましい。
 第一の無機粒子としては、上記第一の金属を含み、且つ、組成物中で粒子として存在する無機物であれば特に制限されない。なお、本明細書において、単に「金属」という時は、金属単体(金属単体粒子)、金属イオン、及び化合物中に含有される金属原子を含むものとする。
 第一の無機粒子の形態としては特に制限されず、第一の金属の単体(金属単体粒子)、第一の金属を含む無機化合物(化合物の定義:化学変化によって2種又はそれ以上の元素の単体に分けることができる純粋物質をいう)、及び、第一の金属と無機化合物との複合体(以下、「第一金属含有複合粒子」ともいう。)が挙げられる。
 上記第一の金属を含む無機化合物としては、例えば、第一の金属の酸化物、窒化物、ハロゲン化物、シアン化物、セレン化物、硫化物、テルル化物、及び第一の金属の塩等が挙げられる。
 第一の金属の塩としては、例えば、ヒ酸塩、フッ化水素塩、臭素酸塩、塩素酸塩、クロム酸塩、シアン酸塩、ヘキサフルオロアンチモン酸塩、ヘキサフルオロヒ酸塩、ヘキサフルオロリン酸塩、ヨウ素酸塩、イソチオシアン酸塩、モリブデン酸塩、硝酸塩、亜硝酸塩、過塩素酸塩、過マンガン酸塩、過レニウム酸塩、リン酸塩、セレン酸塩、亜セレン酸塩、硫酸塩、亜硫酸塩、テトラフルオロほう酸塩、テトラタングステン酸塩、チオシアン酸塩、及びバナジン酸塩等が挙げられる。
 上記第一金属含有複合体粒子は、第一金属(第一の金属の単体(金属単体粒子)、第一の金属のイオン、及び第一の金属を含む化合物のいずれであってもよい。なお、第一の金属を含む化合物としては、具体的には、第一の金属を含む無機化合物が挙げられる。)と無機化合物との複合体である。言い換えると、第一金属と無機化合物とを含む粒子である。
 上記第一金属含有複合粒子中に含まれる無機化合物としては特に制限されないが、リン酸亜鉛カルシウム、リン酸カルシウム、リン酸ジルコニウム、リン酸アルミニウム、ケイ酸カルシウム、活性アルミナ、酸化ケイ素、ケイ酸塩、ホウケイ酸塩、リン酸塩、ゼオライト(結晶性アルミノケイサン塩)、アパタイト、ヒドロキシアパタイト、リン酸チタン、チタン酸カリウム、含水酸化ビスマス、含水酸化ジルコニウム、ハイドロタルサイト、活性炭、及び金属等が挙げられる。
 上記無機化合物としては、結晶性であっても、非晶性(アモルファス)であってもよいが、非晶性であることが好ましい。言い換えると、上記無機化合物としてはガラスが好ましい。ガラスを構成し得る材料としては、例えば、ケイ酸塩、ホウケイ酸塩、及びリン酸塩等(言い換えると、ケイ酸塩ガラス、ホウケイ酸塩ガラス、及びリン酸塩ガラス等)が挙げられる。なかでも、ケイ酸塩が好ましく、ケイ酸アルミニウムがより好ましい。
 上記ケイ酸塩は、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1種以上の原子を含んでいることが好ましく、ケイ酸アルミニウムがより好ましい。
 上記ケイ酸アルミニウムは、天然物又は合成物であってもよい。ケイ酸アルミニウムとしては、下記式(A)で表される化合物が好ましい。
 Al・nSiO・mHO    (A)
 式(A)におけるnは6以上の正数(好ましくは、6~50)であり、mは1~20の正数である。なかでも、nが8~15で、mが3~15であることが好ましい。
 上記第一金属含有複合粒子の具体例としては、無機担体と、上記無機担体に担持された第一の金属(例えば、第一の金属の単体(金属単体粒子)、第一の金属のイオン、及び第一の金属を含む化合物のいずれであってもよい。なお、第一の金属を含む化合物としては、具体的には、第一の金属を含む無機化合物が挙げられる。)とを有する金属担持担体が挙げられる。
 第一金属含有複合粒子が上記金属担持担体である場合、無機担体の種類としては特に制限されないが、リン酸亜鉛カルシウム、リン酸カルシウム、リン酸ジルコニウム、リン酸アルミニウム、ケイ酸カルシウム、活性アルミナ、酸化ケイ素、ケイ酸塩、ホウケイ酸塩、リン酸塩、ゼオライト(結晶性アルミノケイサン塩)、アパタイト、ヒドロキシアパタイト、リン酸チタン、チタン酸カリウム、含水酸化ビスマス、含水酸化ジルコニウム、ハイドロタルサイト、活性炭、及び金属等が挙げられる。
 無機担体としては、結晶性であっても、非晶性(アモルファス)であってもよいが、非晶性であることが好ましい。言い換えると、無機担体としてはガラスが好ましい。
 ガラスを構成し得る材料としては、例えば、ケイ酸塩、ホウケイ酸塩、及びリン酸塩等(言い換えると、ケイ酸塩ガラス、ホウケイ酸塩ガラス、及びリン酸塩ガラス等)が挙げられる。なかでも、ケイ酸塩が好ましく、ケイ酸アルミニウムがより好ましい。
 上記ケイ酸塩は、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1種以上の原子を含んでいることが好ましく、ケイ酸アルミニウムがより好ましい。
 上記ケイ酸アルミニウムは、天然物又は合成物であってもよい。ケイ酸アルミニウムとしては、上述した式(A)で表される化合物が好ましい。
 第一の無機粒子としては、なかでも、本発明の効果がより優れる点で、第一金属含有複合粒子がより好ましい。
 本発明の効果がより優れる点で、第一の無機粒子の主成分は、ガラスであることが好ましい。言い換え得ると、第一の無機粒子は、その全質量に占めるガラスの含有量が50質量%以上であることが好ましい。
 ガラスを主成分とする第一の無機粒子としては特に制限されないが、例えば、ガラスを主成分とする第一金属含有複合粒子が挙げられる。なお、第一金属含有複合粒子については上述したとおりである。
 無機粒子(1)中における金属の含有量は特に制限されないが、例えば、無機粒子(1)が第一金属含有複合粒子の場合、金属の含有量は、第一金属含有複合粒子全質量に対して、0.1~50質量%が好ましく、0.3~30質量%がより好ましい。
 上記第一の無機粒子は1種を単独で用いても、2種以上を併用してもよい。
 上記組成物中における上記第一の無機粒子の含有量(上記第一の無機粒子が複数含まれる場合はその合計含有量)は特に制限されないが、組成物の全固形分に対して、例えば、3質量%以上であり、10質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましい。またその上限値は特に制限されないが、例えば、99.9質量%以下であり、99質量%が好ましく、95質量%が更に好ましい。なお、本明細書において、固形分とは、溶媒以外の成分を意図する。モノマー等は、液体であっても固形分に含まれる。
 なお、上記組成物が、更に後述する第二の無機粒子を含む場合、上記第一の無機粒子の含有量は、組成物が被対象物に付与された際の乾燥ムラがより抑制される点で、上記第一の無機粒子及び後述する第二の無機粒子の合計含有量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましい。上限は特に制限されないが、95質量%以下の場合が多い。
〔第二の無機粒子〕
 上記組成物は、第一の無機粒子とは異なる第二の無機粒子を含むことが好ましい。
 ここで「第一の無機粒子とは異なる」とは、第二の無機粒子が、下記(1)~(3)のいずれか少なくとも1つを満たしていないことを意図する。
(1)銅、亜鉛、鉄、マグネシウム、カルシウム、アルミニウム、マンガン、コバルト、及びニッケルからなる群より選ばれる少なくとも1種の金属を含む。
(2)平均粒径が5.0μm以下である。
(3)粒径の変動係数が20%以上である。
 第二の無機粒子は、なかでも、(1)を満たさないこと(言い換えると、第一の金属を含まないこと)が好ましく、銀を含むことが好ましい。
 上記第二の無機粒子の平均粒径としては、特に制限されないが、一般に、0.01μm以上であり、0.20μm以上が好ましい。また、その上限は特に制限されないが、例えば5.0μm以下が挙げられ、3.0μm以下が好ましく、1.2μm以下がより好ましく、0.90μm以下が更に好ましい。なお、上記第二の無機粒子の平均粒径は、体積基準の粒径分布において頻度の最大値を意図する。
 上記組成物中、組成物が被対象物に付与された際の乾燥ムラがより抑制される点で、上記第一の無機粒子及び上記第二の無機粒子の混合状態での粒径分布において、平均粒径の4倍以上の粒径を有する粒子の含有量が10.0体積%以下であることが好ましい。下限は、例えば、0体積%以上である。
 なお、上記第二の無機粒子の形成方法としては、上述した第一の無機粒子の形成方法と同じである。
 以下において、上記第二の無機粒子の材料について説明する。
 第二の無機粒子としては、組成物中で粒子として存在する無機物であれば特に制限されず、例えば、金属(以下、「第二の金属」ともいう。)を含む無機粒子(以下、「無機粒子(2)」ともいう。)が挙げられる。
 第二の金属としては特に制限されないが、例えば、第一の金属とは異なる金属が挙げられ、銀が好ましい。
 無機粒子(2)の形態としては特に制限されず、第二の金属の単体(金属単体粒子)、第二の金属を含む無機化合物(化合物の定義:化学変化によって2種又はそれ以上の元素の単体に分けることができる純粋物質をいう)、及び、第二の金属と無機化合物との複合体(以下、「第二金属含有複合粒子」ともいう。)が挙げられる。
 上記第二の金属を含む無機化合物としては、例えば、第二の金属の酸化物、窒化物、ハロゲン化物、シアン化物、セレン化物、硫化物、テルル化物、及び第二の金属の塩等が挙げられる。
 第二の金属の塩としては、例えば、ヒ酸塩、フッ化水素塩、臭素酸塩、塩素酸塩、クロム酸塩、シアン酸塩、ヘキサフルオロアンチモン酸塩、ヘキサフルオロヒ酸塩、ヘキサフルオロリン酸塩、ヨウ素酸塩、イソチオシアン酸塩、モリブデン酸塩、硝酸塩、亜硝酸塩、過塩素酸塩、過マンガン酸塩、過レニウム酸塩、リン酸塩、セレン酸塩、亜セレン酸塩、硫酸塩、亜硫酸塩、テトラフルオロほう酸塩、テトラタングステン酸塩、チオシアン酸塩、及びバナジン酸塩等が挙げられる。
 上記第二金属含有複合体粒子は、第二金属(第一の金属の単体(金属単体粒子)、第二の金属のイオン、及び第二の金属を含む化合物のいずれであってもよい。なお、第二の金属を含む化合物としては、具体的には、第二の金属を含む無機化合物が挙げられる。)と無機化合物との複合体である。言い換えると、第二金属と無機化合物とを含む粒子である。
 上記第二金属含有複合粒子中に含まれる無機化合物としては特に制限されないが、リン酸亜鉛カルシウム、リン酸カルシウム、リン酸ジルコニウム、リン酸アルミニウム、ケイ酸カルシウム、活性アルミナ、酸化ケイ素、ケイ酸塩、ホウケイ酸塩、リン酸塩、ゼオライト(結晶性アルミノケイサン塩)、アパタイト、ヒドロキシアパタイト、リン酸チタン、チタン酸カリウム、含水酸化ビスマス、含水酸化ジルコニウム、ハイドロタルサイト、活性炭、及び金属等が挙げられる。
 上記無機化合物としては、結晶性であっても、非晶性(アモルファス)であってもよいが、非晶性であることが好ましい。言い換えると、上記無機化合物としてはガラスが好ましい。ガラスを構成し得る材料としては、例えば、ケイ酸塩、ホウケイ酸塩、及びリン酸塩等(言い換えると、ケイ酸塩ガラス、ホウケイ酸塩ガラス、及びリン酸塩ガラス等)が挙げられる。なかでも、ケイ酸塩が好ましく、ケイ酸アルミニウムがより好ましい。
 上記ケイ酸塩は、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1種以上の原子を含んでいることが好ましく、ケイ酸アルミニウムがより好ましい。
 上記ケイ酸アルミニウムは、天然物又は合成物であってもよい。ケイ酸アルミニウムとしては、下記式(A)で表される化合物が好ましい。
 Al・nSiO・mHO    (A)
 式(A)におけるnは6以上の正数(好ましくは、6~50)であり、mは1~20の正数である。なかでも、nが8~15で、mが3~15であることが好ましい。
 上記第二金属含有複合粒子の具体例としては、無機担体と、上記無機担体に担持された第一の金属(例えば、第二の金属の単体(金属単体粒子)、第二の金属のイオン、及び第二の金属を含む化合物のいずれであってもよい。なお、第二の金属を含む化合物としては、具体的には、第二の金属を含む無機化合物が挙げられる。)とを有する金属担持担体が挙げられる。
 第二金属含有複合粒子が上記金属担持担体である場合、無機担体の種類としては特に制限されないが、リン酸亜鉛カルシウム、リン酸カルシウム、リン酸ジルコニウム、リン酸アルミニウム、ケイ酸カルシウム、活性アルミナ、酸化ケイ素、ケイ酸塩、ホウケイ酸塩、リン酸塩、ゼオライト(結晶性アルミノケイサン塩)、アパタイト、ヒドロキシアパタイト、リン酸チタン、チタン酸カリウム、含水酸化ビスマス、含水酸化ジルコニウム、及びハイドロタルサイト;活性炭;金属;等が挙げられる。
 無機担体としては、結晶性であっても、非晶性(アモルファス)であってもよいが、非晶性であることが好ましい。言い換えると、無機担体としてはガラスが好ましい。
 ガラスを構成し得る材料としては、例えば、ケイ酸塩、ホウケイ酸塩、及びリン酸塩等(言い換えると、ケイ酸塩ガラス、ホウケイ酸塩ガラス、及びリン酸塩ガラス等)が挙げられる。なかでも、ケイ酸塩が好ましく、ケイ酸アルミニウムがより好ましい。
 上記ケイ酸塩は、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1種以上の原子を含んでいることが好ましく、ケイ酸アルミニウムがより好ましい。
 上記ケイ酸アルミニウムは、天然物又は合成物であってもよい。ケイ酸アルミニウムとしては、上述した式(A)で表される化合物が好ましい。
 無機粒子(2)としては、なかでも、本発明の効果がより優れる点で、第二金属含有複合粒子がより好ましい。
 本発明の効果がより優れる点で、第二の無機粒子の主成分は、ガラスであることが好ましい。言い換え得ると、第二の無機粒子は、その全質量に占めるガラスの含有量が50質量%以上であることが好ましい。
 ガラスを主成分とする第二の無機粒子としては特に制限されないが、例えば、ガラスを主成分とする第二金属含有複合粒子が挙げられる。なお、第二金属含有複合粒子については上述したとおりである。
 無機粒子(2)中における金属の含有量は特に制限されないが、例えば、無機粒子(2)が金属担持担体の場合、金属の含有量は、金属担持担体全質量に対して、0.1~30質量%が好ましく、0.3~10質量%がより好ましい。
 上記第二の無機粒子は1種を単独で用いても、2種以上を併用してもよい。
 上記組成物中における上記第二の無機粒子の含有量(上記第二の無機粒子が複数含まれる場合はその合計含有量)は特に制限されず、組成物の全固形分に対して、例えば、0.1質量%以上であり、1質量%以上が好ましく、5質量%以上がより好ましい。またその上限値は特に制限されず、例えば、50質量%以下であり、40質量%以下が好ましく、30質量%以下がより好ましい。
〔溶媒〕
 上記組成物は、スプレー及びワイパー等に適用される場合、溶媒を含むことが好ましい。以下において、溶媒を含む上記組成物を「塗布組成物」という。
 塗布組成物中における溶媒の含有量としては特に制限されないが、塗布組成物がより優れた塗布性を有する点で、塗布組成物の固形分が、0.001~80質量%に調整されるのが好ましく、0.01~10質量%に調整されるのがより好ましく、0.1~5.0質量%に調整されるのが更に好ましい。
 溶媒は1種を単独で用いても、2種以上を併用してもよい。2種以上の溶媒を併用する場合、合計含有量が上記範囲内であることが好ましい。
 溶媒としては特に制限されず、水及び/又は有機溶媒が挙げられる。有機溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、イソペンタノール、フェニルエチルアルコール、カプリルアルコール、ラウリルアルコール、及びミリスチルアルコール等のアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、及びジプロピレングリコールモノブチルエーテル等のグリコールエーテル系溶媒;ベンゼン、トルエン、キシレン、及びエチルベンゼン等の芳香族炭化水素系溶媒;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、及びエチルシクロヘキサン等の脂環族炭化水素系溶媒;テトラヒドロフラン、ジオキサン、ジイソプロピルエーテル、及びジ-n-ブチルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、及びメチルイソブチルケトン等のケトン系溶媒;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸エチル、及びプロピオン酸ブチル等のエステル系溶媒;10%安息香酸デナトニウムアルコール溶液、ゲラニオール、八アセチル化ショ糖、ブルシン、リナロール、リナリールアセテート、及び酢酸等の親水性溶媒;が挙げられる。第一の無機粒子及び第二の無機粒子に含まれ得る金属の溶媒への溶出を抑制しやすい点で、溶媒としては、アルコールが好ましく、エタノール又はイソプロピルアルコールがより好ましい。
 上記塗布組成物中、第一の無機粒子及び第二の無機粒子の沈降を抑制する点で、アルコールの含有量は、塗布組成物全質量に対して、5質量%以上が好ましく、10質量%以上がより好ましい。上限値は特に制限されないが、例えば、99質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が更に好ましく、45質量%以下が特に好ましい。
 また、溶媒がアルコールを含む場合、溶媒中におけるアルコールの含有量としては特に制限されないが、溶媒の全質量に対して、0.001~100質量%が好ましく、0.01~90質量%がより好ましく、5~90質量%が更に好ましく、5~80質量%が特に好ましい。
〔親水性成分〕
 上記塗布組成物は、親水性バインダー前駆体及び親水性バインダーからなる群から選択される親水性成分を含むことが好ましい。なお、親水性バインダー前駆体とは、縮合及び重合等の硬化反応により親水性バインダーを形成可能な材料を意味する。また、親水性バインダーは、第一の無機粒子及び第二の無機粒子を支持可能な膜を形成できる材料を意味する。
 上記塗布組成物が親水性成分を含む場合、上記塗布組成物により形成される膜において、第一の無機粒子及び第二の無機粒子は、親水性バインダーに固定化されて優れた消臭性を示す。
 上記塗布組成物中における親水性成分の含有量としては特に制限されないが、塗布組成物の全固形分に対して、その下限値は1.0質量%以上が好ましく、20.0質量%以上がより好ましく、30.0質量%以上が更に好ましい。また、その上限値は、99.8質量%以下が好ましく、90.0質量%以下がより好ましく、80.0質量%以下が更に好ましい。
 なお、親水性成分は1種を単独で用いても、2種以上を併用してもよい。2種以上の親水性成分を併用する場合、合計含有量が上記範囲内であることが好ましい。
 親水性バインダーとしては、ガラス基板上に上記親水性バインダーからなる膜を形成した場合、例えば、水接触角が60°以下となるもの好ましく、50°以下となるものがより好ましい。水接触角の下限については特に制限されないが、一般に5°以上が好ましい。なお、水接触角は、JIS R 3257:1999の静滴法に基づいて測定を行う。測定には、協和界面科学株式会社製FAMMS DM-701を用いる。
 親水性成分としては特に制限されないが、堅牢性がより優れる点で、シリケート系化合物、親水性基を有するモノマー(以下、「親水性モノマー」ともいう。)、及び親水性基を有するポリマー(以下、「親水性ポリマー」ともいう。)からなる群から選択される少なくとも1種が好ましい。
 なお、親水性基を有するモノマーとは、親水性基と重合性基とを有する化合物を意味する。親水性モノマーは、上記塗布組成物が後述する重合開始剤を含有する場合、重合して親水性ポリマーを形成する。
 以下に、シリケート系化合物、親水性モノマー、及び親水性ポリマーについて、それぞれ説明する。
<シリケート系化合物>
 本明細書において、シリケート系化合物とは、ケイ素原子に加水分解性基が結合した化合物、その加水分解物、及びその加水分解縮合物からなる群から選択される化合物であり、例えば、下記式(1)で表される化合物、その加水分解物、及びその加水分解縮合物からなる群から選択される少なくとも1種が挙げられる。
式(1) Si-(OR)
 上記式(1)中、Rは、炭素数1~4のアルキル基を表し、同一でも異なってもよい。
 上記式(1)で表わされる化合物としては、テトラメチルシリケート、テトラエチルシリケート、テトラ-n-プロピルシリケート、テトラ-i-プロピルシリケート、テトラ-n-ブチルシリケート、テトラ-i-ブチルシリケート、テトラ-t-ブチルシリケート、メチルエチルシリケート、メチルプロピルシリケート、メチルブチルシリケート、エチルプロピルシリケート、及びプロピルブチルシリケート等が挙げられる。
 式(1)で表される化合物の加水分解物とは、式(1)で表される化合物中のOR基が加水分解して得られる化合物を意図する。なお、上記加水分解物は、OR基のすべてが加水分解されているもの(完全加水分解物)であっても、OR基の一部が加水分解されているもの(部分加水分解物)であってもよい。つまり、上記加水分解物は、完全加水分解物、若しくは、部分加水分解物、又は、これらの混合物であってもよい。
 また、式(1)で表される化合物の加水分解縮合物とは、式(1)で表される化合物中のOR基が加水分解し、得られた加水分解物を縮合して得られる化合物を意図する。なお、上記加水分解縮合物としては、すべてのOR基が加水分解され、かつ、加水分解物がすべて縮合されているもの(完全加水分解縮合物)であっても、一部のOR基が加水分解され、一部の加水分解物が縮合しているもの(部分加水分解縮合物)であってもよい。つまり、上記加水分解縮合物は、完全加水分解縮合物、若しくは、部分加水分解縮合物、又は、これらの混合物であってもよい。
 なお、加水分解縮合物の縮合度としては、1~100が好ましく、1~20がより好ましく、3~15が更に好ましい。
 式(1)で表される化合物は、水成分とともに混合されることにより、少なくとも一部が加水分解された状態となる。式(1)で表される化合物の加水分解物は、式(1)で表される化合物を水成分と反応させ、ケイ素に結合したOR基をヒドロキシ基に変化させることにより得られる。加水分解に際しては必ずしも全てのOR基が反応する必要はないが、塗布後に親水性を発揮するためにはなるべく多くのOR基が加水分解されることが好ましい。また、加水分解に際して最低限必要な水成分の量は式(1)で表される化合物のOR基と等しいモル量となるが、反応を円滑に進めるには大過剰の量の水が存在することが好ましい。
 なお、上記シリケート系化合物の加水分解反応は室温でも進行するが、反応促進のために加温してもよい。また反応時間は長い方がより反応が進むため好ましい。また、触媒の存在下であれば半日程度でも加水分解物を得ることが可能である。
 なお、一般に加水分解反応は可逆反応であり、系から水が除かれると上記シリケート系化合物の加水分解物はヒドロキシ基間で縮合を開始してしまう。従って、上記シリケート系化合物に大過剰の水を反応させて加水分解物の水溶液を得た場合、そこから加水分解物を無理に単離せずに水溶液のまま用いることが好ましい。
 上記シリケート系化合物の好適態様としては、式(X)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 ここで、式(X)中、R~Rはそれぞれ独立に炭素数1~4のアルキル基を表す。また、nは2~100の整数を表す。
 nは、3~15が好ましく、5~10がより好ましい。
 上記シリケート系化合物の市販品としては、例えば、コルコート社製「エチルシリケート48」、及び三菱化学社製「MKCシリケート MS51」等が挙げられる。
 なお、シリケート系化合物は1種を単独で用いても、2種以上を併用してもよい。
<親水性を有するモノマー(親水性モノマー)>
 親水性基としては特に制限されず、例えば、ポリオキシアルキレン基(例えば、ポリオキシエチレン基、ポリオキシプロピレン基、オキシエチレン基とオキシプロピレン基がブロック又はランダム結合したポリオキシアルキレン基)、アミノ基、カルボキシ基、カルボキシ基のアルカリ金属塩、ヒドロキシ基、アルコキシ基、アミド基、カルバモイル基、スルホンアミド基、スルファモイル基、スルホン酸基、及びスルホン酸基のアルカリ金属塩等が挙げられる。親水性モノマー中における親水性基の数は特に制限されないが、得られる膜がより親水性を示す点より、2個以上が好ましく、2~6個がより好ましく、2~3個が更に好ましい。
 重合性基としては特に制限されず、例えば、ラジカル重合性基、カチオン重合性基、及びアニオン重合性基等が挙げられる。ラジカル重合性基としては、(メタ)アクリロイル基、アクリルアミド基、ビニル基、スチリル基、及びアリル基等が挙げられる。カチオン重合性基としては、ビニルエーテル基、オキシラニル基、及びオキセタニル基等が挙げられる。なかでも、重合性基としては、(メタ)アクリロイル基が好ましい。
 親水性モノマー中における重合性基の数は特に制限されないが、得られる膜の機械的強度がより優れる点で、2個以上が好ましく、2~6個がより好ましく、2~3個が更に好ましい。
 親水性モノマーの重合により形成される親水性ポリマーの主鎖の構造は特に制限されず、例えば、ポリウレタン、ポリ(メタ)アクリレート、ポリスチレン、ポリエステル、ポリアミド、ポリイミド、及びポリウレア等が挙げられる。
 親水性モノマーは1種を単独で用いても、2種以上を併用してもよい。
<親水性を有するポリマー(親水性ポリマー)>
 親水性ポリマーとしては特に制限されず、公知のものを使用できる。なお、親水性基の定義は、上述したとおりである。
 親水性ポリマーとしては、上記親水性モノマーを重合して得られるポリマーが挙げられる。それ以外にも、例えば、セルロース系化合物が挙げられる。セルロース系化合物とは、セルロースを母核とする化合物を意図し、例えば、カルボキシメチルセルロースのほか、トリアセチルセルロースを原料とするナノファイバー等が挙げられる。
 親水性ポリマーの重量平均分子量は特に制限されないが、溶解性等取扱い性がより優れる点で、1,000~1,000,000が好ましく、10,000~500,000がより好ましい。なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定でのポリスチレン換算値として定義される。
 親水性ポリマーは1種を単独で用いても、2種以上を併用してもよい。
〔重合開始剤〕
 上記塗布組成物が親水性モノマーを含む場合、上記塗布組成物は、重合開始剤を含むことが好ましい。
 重合開始剤としては特に制限されず、公知の重合開始剤が使用できる。
 重合開始剤としては、例えば、熱重合開始剤、及び光重合開始剤等が挙げられる。
 重合開始剤としては、例えば、ベンゾフェノン、及びフェニルフォスフィンオキシド等の芳香族ケトン類;α-ヒドロキシアルキルフェノン系化合物(BASF社製、IRGACURE184、127、2959、及びDAROCUR1173等);フェニルフォスフィンオキシド系化合物(モノアシルフォスフィンオキサイド:BASF社製 IRGACURE TPO、ビスアシルフォスフィンオキサイド:BASF社製 IRGACURE 819);等が挙げられる。
 なかでも、反応効率の観点で、光重合開始剤が好ましい。
 上記塗布組成物中における重合開始剤の含有量としては特に制限されないが、親水性モノマー100質量部に対して、0.1~15質量部が好ましく、1~6質量部がより好ましい。
 なお、重合開始剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合開始剤を併用する場合、合計含有量が上記範囲内であることが好ましい。
〔分散剤〕
 上記塗布組成物は、分散剤を含むことが好ましい。塗布組成物が分散剤を含むことにより、上述した第一の無機粒子及び第二の無機粒子の分散安定性がより優れる。
 分散剤は特に制限されず、公知の分散剤が挙げられる。
 分散剤としては、ノニオン系又はアニオン系の分散剤が好ましい。第一の無機粒子及び第二の無機粒子に対する親和性の観点から、カルボキシ基、リン酸基、及び水酸基等のアニオン性の極性基を有する分散剤(アニオン系分散剤)がより好ましい。
 アニオン系分散剤としては、市販品を使用できる。その具体例としては、BYK社の商品名DISPERBYK(登録商標)-110、-111、-116、-140、-161、-162、-163、-164、-170、-171、-174、-180及び-182が好適に挙げられる。
 塗布組成物中における分散剤の含有量は特に制限されないが、塗布組成物の全固形分に対して、20質量%以下が好ましい。下限は特に制限されないが、1質量%以上の場合が多い。
 分散剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の分散剤を併用する場合、合計含有量が上記範囲内であることが好ましい。
〔触媒〕
 上記塗布組成物がシリケート系化合物を含有する場合、塗布組成物は、シリケート系化合物の縮合を促進する触媒(以下「反応触媒」ともいう。)を含んでいてもよい。
 触媒としては特に制限されないが、アルカリ触媒及び有機金属触媒等が挙げられる。
 アルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、及び水酸化テトラメチルアンモニウム等が挙げられる。
 有機金属触媒としては、アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)、及びアルミニウムエチルアセトアセテートジイソプロピレート等のアルミキレート化合物、ジルコニウムテトラキス(アセチルアセトネート)、及びジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)等のジルコニウムキレート化合物、チタニウムテトラキス(アセチルアセトネート)、及びチタニウムビス(ブトキシ)ビス(アセチルアセトネート)等のチタンキレート化合物、並びに、ジブチルスズジアセテート、ジブチルスズジラウレート、及びジブチルスズジオクチエート等の有機スズ化合物等が挙げられる。
 なかでも、より優れた本発明の効果を有する塗布組成物が得られる点で、触媒としては、有機金属触媒が好ましく、なかでも、アルミキレート化合物、又はジルコニウムキレート化合物がより好ましく、アルミキレート化合物が更に好ましい。
 触媒の含有量は、塗布組成物の全固形分100質量部に対して、0.1~20質量部が好ましく、0.2~15質量部がより好ましく、0.3~10質量部が更に好ましい。
 なお、触媒は1種を単独で用いても、2種以上を併用してもよい。2種以上の触媒を併用する場合、合計含有量が上記範囲内であることが好ましい。
〔界面活性剤〕
 上記塗布組成物は、界面活性剤を含んでいてもよい。界面活性剤は塗布組成物の塗布性を向上する作用を有する。
 界面活性剤は特に制限されず、例えば、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、及び両性型界面活性剤が挙げられる。
 界面活性剤の含有量は特に制限されないが、塗布組成物の全固形分100質量部に対して、0.01質量部以上が好ましい。なお、界面活性剤の含有量の上限値は特に制限されないが、塗布組成物の全固形分100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましく、4質量部以下が更に好ましい。
 なお、界面活性剤は1種を単独で用いても、2種以上を併用してもよい。2種以上を併用する場合は、それらの合計含有量が上記範囲内であることが好ましい。
 ノニオン性界面活性剤としては、ポリエチレングリコールモノラウリルエーテル、ポリエチレングリコールモノステアリルエーテル、ポリエチレングリコールモノセチルエーテル、ポリエチレングリコールモノラウリルエステル、及びポリエチレングリコールモノステアリルエステルが挙げられる。
 イオン性界面活性剤としては、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、及びアルキルリン酸塩等のアニオン性界面活性剤;アルキルトリメチルアンモニウム塩、及びジアルキルジメチルアンモニウム塩等のカチオン性界面活性剤;アルキルカルボキシベタイン等の両性型界面活性剤が挙げられる。
〔香料〕
 上記塗布組成物は、香料を含んでいてもよい。
 香料として、長谷川香料社製のフレーバーH-1、H-2、H-3、H-4、H-6、H-9、H-10、H-11、H-12、H-13、H-14、高砂香料工業社製のフレーバーT-100、T-101、T-102、T-103、T-104、T-105、T-106、T-107、EDA-171、曽田香料社製フレーバーS-201、理研香料工業社製フレーバーDA-40等を含んでもよい。
 香料の含有量は、塗布組成物の全質量に対して、0.01~5質量%が好ましい。
〔造膜剤〕
 上記塗布組成物は、造膜剤を含んでいてもよい。造膜剤としては、例えば、熱可塑性樹脂が挙げられる。
 熱可塑性樹脂としては、最低造膜温度が0~35℃の樹脂が好ましく、公知の熱可塑性樹脂が使用できる。例えば、ポリウレタン樹脂、ポリエステル樹脂、(メタ)アクリル樹脂、ポリスチレン樹脂、フッ素樹脂、ポリイミド樹脂、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマーからなる樹脂、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、及びフルオレン環変性ポリエステル樹脂等が挙げられる。なかでも、(メタ)アクリル樹脂、又はウレタン樹脂が好ましい。
 なお、熱可塑性樹脂は、1種を単独で用いても、2種以上を併用してもよい。上記塗布組成物が、造膜剤として熱可塑性樹脂を含む場合、熱可塑性樹脂の含有量は、熱可塑性樹脂の種類等に応じて適宜調節すればよいが、例えば、塗布組成物の全固形分に対して、30質量%以下が好ましく、20質量%以下がより好ましい。
〔塗布組成物のpH〕
 上記塗布組成物のpHは特に制限されないが、実使用環境で使用者の手荒れ等を考慮した場合、pHを適切な範囲に調整することが好ましい。
 上記塗布組成物のpHは、一般的に、2.0~12.0が好ましく、第一の無機粒子及び第二の無機粒子が含み得る金属が酸又はアルカリにより溶解しにくい又は変質しにくい点で、3.0~11.0がより好ましく、6.0~8.0が更に好ましい。なお、塗布組成物のpHの調整方法としては、上記塗布組成物に、酸又はアルカリを配合する方法が挙げられる。
 なお、pHは、市販のpH測定メータ(例えば、東亜ディーケーケー社製のpHメータ HM-30R等)を用いて測定できる。
〔塗布組成物の比重〕
 上記塗布組成物の比重は特に制限されないが、0.5~1.2が好ましい。
〔塗布組成物の粘度〕
 上記塗布組成物の粘度は特に制限されず、用途に応じて調整すればよい。
 例えば、塗布性又はスプレー等に適用する場合、塗布組成物の25℃における粘度は、300cP(センチポアズ:1cp=1mPa・s)以下が好ましく、200cP以下がより好ましく、0.1~150cPが更に好ましい。
 また、消臭性を長時間持続させる場合は、塗布組成物の25℃における粘度は、250cP以上が好ましく、300cP以上がより好ましく、400cP以上が更に好ましい。なお、その上限は、例えば、500cP以下である。
 なお、粘度は、東機産業社製VISCOMETER TUB-10、又は、セコニック社製SEKONIC VISCOMETERを用いて測定できる。
〔ゼータ電位〕
 上記塗布組成物のゼータ電位は特に制限されないが、塗布組成物中において、粒状物が適度に分散して耐沈降性により優れることを考慮すると、適切な範囲に調整することが好ましい。上記塗布組成物のゼータ電位は、80mV~-80mVが好ましく、70mV~-70mVがより好ましく、60mV~-60mVが更に好ましい。
 なお、ゼータ電位は、公知の方法を用いて測定することができ、分散液をガラス製の専用測定セルに所定量導入し、大塚電子社製 ELSZ1EASを用いて測定することができる。
〔塗布組成物の製造方法〕
 なお、上記塗布組成物は、更に、本発明の効果を奏する範囲において、必要に応じてその他の添加剤を含有することができる。
 上記塗布組成物は、上述した必須成分及び任意成分を、適宜混合することによって調製できる。なお、上記成分の混合の順番は特に制限されない。
〔塗布組成物の用途〕
 上記塗布組成物を用いて膜を形成できる。
 上記膜の形成方法は特に制限されないが、上記塗布組成物を所望の基材又は物品に塗布して塗膜を形成し、これを乾燥又は硬化して膜とする方法(塗布法)が好ましい。
 上記塗布組成物を所望の基材又は物品に塗布する方法は特に制限されない。例えば、スプレー、ロールコータ、グラビアコータ、スクリーン、スピンコータ、フローコータ、インクジェット、静電塗装、及びワイプが挙げられる。なかでも、既存の物品の表面に、需要に応じて膜を形成して処理(オンデマンド処理)ができる点で、スプレー又はワイプが好ましく、ワイプがより好ましい。
 ワイプによる膜の形成方法としては特に制限されず、公知の方法を用いることができる。例えば、以下の方法が挙げられる。まず、上記塗布組成物を不織布等の基布に含浸させ、その後、上記基布で基材又は物品の表面を拭く。これにより、基材又は物品表面に上記塗布組成物による塗膜が形成される。その後、形成された塗膜を乾燥又は硬化して膜を得る。
[膜]
 本発明の膜は、上述した塗布組成物を用いて形成される膜である。
 以下において、膜の製造方法について詳述する。
〔膜の製造方法〕
 本発明の膜は、例えば、上記塗布組成物を乾燥又は硬化して得られる。上記塗布組成物としては、既に説明したとおりである。
 なお、上記塗布組成物がバインダー前駆体を含む場合、上記膜は、塗布組成物の塗膜(組成物層)を硬化して得られる。言い換えると、上記膜は、上記組成物層の硬化処理によって、組成物層中のバインダー前駆体をバインダーとすることにより得られる。
 これに対して、上記塗布組成物が親水性成分としてバインダーのみを含む場合、塗布組成物に対して硬化処理を実施する必要はない。
〔膜の膜厚〕
 膜の膜厚としては特に制限されないが、0.001~50μmが好ましく、0.01~10μmがより好ましい。
 なお、上記膜厚とは、膜のサンプル片を樹脂に包埋して、ミクロトームで断面を削り出し、削り出した断面を走査電子顕微鏡で観察し測定する。膜の任意の10点の位置における厚みを測定し、それらを算術平均した値を意図する。
[膜付き基材]
 本発明の実施形態に係る膜付き基材は、基材と、塗布組成物を用いて形成される膜と、を有する。膜付き基材としては、基材と、塗布組成物を用いて形成される膜とを有する積層体であればよく、基材の片側の表面上に膜を有してもよいし、基材の両側の表面上に膜を有してもよい。
 基材は、膜を支持する役割を果たし、その種類は特に制限されない。
 基材の形状は特に制限されないが、板状、フィルム状、シート状、チューブ状、繊維状、及び粒子状が挙げられる。
 基材を構成する材料は特に制限されず、例えば、金属、ガラス、セラミックス、及びプラスチック(樹脂)が挙げられる。なかでも、取り扱い性の点から、プラスチックが好ましい。言い換えれば、基材としては、樹脂基材が好ましい。
 本発明の膜の製造方法は、上述の塗布組成物を用いて膜を製造する方法に該当し、以下の工程を有する。
(1)塗布組成物が、親水性成分として親水性バインダー前駆体を含む場合、下記工程Aと、下記工程Bとを有することが好ましい
(2) 塗布組成物が、親水性成分として親水性バインダーを含む場合、下記工程Aを有することが好ましい。
(工程A)基材の表面に、塗布組成物を塗布して、組成物層を形成する工程
(工程B)組成物層を硬化処理させて、膜を得る工程
 以下に、工程A及び工程Bについて説明する。
(工程A)
 工程Aは、基材の表面に、塗布組成物を塗布して、組成物層を形成する工程である。なお、塗布組成物が親水性成分として親水性バインダーを含む場合、基材の表面上に所定の膜が形成される。
 基材の表面に塗布組成物を塗布する方法は特に制限されず、公知の塗布法を用いることができる。
 組成物層の膜厚は特に制限されないが、乾燥膜厚として、0.001~10μmが好ましい。
 また、塗布組成物を塗布した後、溶媒を除去するために加熱処理を行ってもよい。その場合の加熱処理の条件は特に制限されず、例えば、加熱温度としては、50~200℃が好ましく、加熱時間としては、15~600秒が好ましい。
 なお、工程Aにおいて用いることができる基材としては、既に説明した基材の形態と同様である。
(工程B)
 工程Bは、組成物層を硬化させて、膜を得る工程である。つまり、組成物層中に含まれる親水性バインダー前駆体を縮合又は重合等の硬化反応により親水性バインダーとする工程である。
 組成物層を硬化させる方法は特に制限されないが、例えば、加熱処理及び/又は露光処理が挙げられる。
 露光処理は特に制限されないが、例えば、紫外線ランプにより100~600mJ/cmの照射量の紫外線を照射して組成物層を硬化する形態が挙げられる。
 紫外線照射の場合、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、及びメタルハライドランプ等の光線から発する紫外線等が利用できる。
 加熱処理の温度は特に制限されないが、例えば、50~150℃が好ましく、80~120℃がより好ましい。
[スプレー]
 本発明の実施形態に係るスプレーは、スプレー容器と、スプレー容器に収納された塗布組成物と、を有する。塗布組成物としては、既に説明したとおりである。
 本発明のスプレーとしては、塗布組成物と噴射剤とを所定の容器に充填した形態が一例として挙げられる。用いられる噴射剤は特に制限されないが、例えば、液化石油ガスが挙げられる。
[ウェットワイパー]
 本発明実施形態に係るウェットワイパーは、基布と、基布に含浸させた塗布組成物と、を有する。上記塗布組成物としては、既に説明したとおりである。
 基布は特に制限されず、天然繊維で形成されたものであっても、化学繊維で形成されたものであってもよい。
 天然繊維としては、例えば、パルプ、綿、麻、亜麻、羊毛、キヤメル、カシミヤ、モヘヤ、及び絹が挙げられる。
 化学繊維の材料としては、レーヨン、ポリノジック、アセテート、トリアセテート、ナイロン、ポリエステル、ポリアクリロニトリル、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリウレタン、ポリアルキレンパラオキシベンゾエート、及びポリクラールが挙げられる。
 なかでも、これらの基布のうち、塗布組成物が含浸しやすい点で、親水性の基布が好ましい。親水性の基布とは、例えば、水酸基、アミノ基、カルボキシ基、アミド基、及びスルホニル基等の親水性基を有する繊維を含む基布である。親水性の基布としては、具体的には、植物性繊維、綿、パルプ、動物性繊維、レーヨン、ナイロン、ポリエステル、ポリアクリロニトリル、及びポリビニルアルコールが挙げられる。
 上記ウェットワイパーの基布としては、不織布、布、タオル、ガーゼ、及び脱脂綿が挙げられ、不織布が好ましい。
 また、基布の目付(単位面積当たりの質量)は、100g/m以下が好ましい。上記塗布組成物を基布に含浸させる際の含浸量は、基布の質量に対して1倍以上の量が好ましい。
[樹脂成型体]
 本発明実施形態に係る樹脂成型体は、樹脂と、上記組成物とを有する。上記組成物としては、既に説明したとおりである。
 上記樹脂としては特に制限されず、例えば、天然樹脂及び合成樹脂(熱可塑性樹脂が好ましい。)のほか、硬化性化合物(官能基を有するモノマー、オリゴマー、又はポリマー)を重合させて得られる硬化物等が挙げられる。
 上記合成樹脂としては、例えば、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリエチレン樹脂及びポリプロピレン樹脂等のポリオレフィン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、フッ素含有樹脂、セルロース樹脂、ポリアセタール樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、アクリロニトリルスチレン樹脂、及びアクリロニトリルブタジエンスチレン樹脂が挙げられる。 
 上記樹脂成型体の形状は特に制限されないが、繊維状、フィルム状、板状、チューブ状、及び粒状が挙げられる。なお、ここでいう繊維状とは、繊維、及び、繊維により形成された2次元構造及び3次元構造等の繊維構造体(例えば、織編物及び不織布等)を意図する。
 また、上記基材としては、上述したもののほか、インサート成型、インモールド成形、射出成形、押出成形、及びディップ成形で作製可能な任意の形状が挙げられる。
 樹脂成型体中、上記組成物の含有量は、樹脂成型体の全質量に対して、0.1~50質量%が好ましく、1~20質量%がより好ましい。
 以下、樹脂成型体の具体的な形態について説明する。
 上記樹脂成型体は、例えば、樹脂から形成された成型体(例えばシート状の成型体)と、上記成型体の表面及び/又は内部に配置された上記第一の無機粒子及び任意で含まれる上記第二の無機粒子を有する形態が挙げられる。
 上記実施形態に係る樹脂成型体としては、上記塗布組成物を用いて形成できる。具体的な製造方法としては、ポリマー及び硬化性化合物等を含む上記塗布組成物を流延して流延フィルムを形成した後、乾燥、加熱、及び/又は硬化を実施する方法が挙げられる。
 また、例えば、上記樹脂成型体が繊維状である場合、上記樹脂成型体としては、繊維と、上記繊維の表面に付着した上記第一の無機粒子及び任意で含まれる上記第二の無機粒子とを有する形態であってもよい。或いは、繊維構造体と、上記繊維構造体の表面及び/又は内部に配置された上記第一の無機粒子及び任意で含まれる上記第二の無機粒子とを有する形態であってもよい。上記樹脂成型体の形成方法としては特に制限されず、例えば、含浸及び吹付等の方法により繊維又は繊維構造体に上述した塗布組成物を付与した後、これを乾燥して樹脂成型体を形成する方法が挙げられる。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。なお、特に断らない限り、粒径分布は体積基準である。
[第一の無機粒子の調製]
〔ガラス銅複合粒子の調製〕
 300mlビーカーに入れた脱イオン水75mlを攪拌しながら、2号ケイ酸ソーダ(NaO・2.5SiO・xHO、SiO濃度35質量%)37.5gを脱イオン水100mlに溶解した溶液と、硫酸銅5水和物17.75gを脱イオン水100mlに溶解した溶液とを、液温が23~27℃の範囲でpHが6~7の範囲を保つように速度を調整しながら1時間かけて同時に添加した。
 添加終了後、更に1時間攪拌を続けることで、青色の沈殿生成物を含むスラリーを得た。目開き0.5μmのマイクロフィルターを載せたグラスフィルターでスラリーを減圧ろ過し、引き続き吸引ろ過器からオーバーフローしない程度の脱イオン水を流して沈殿を洗浄し、最後に吸引ろ過して沈殿を得た。このとき、流出するろ液の電気伝導度を測定して、電気伝導度が50μS/cm以下となるまで洗浄を行った。
 洗浄終了後、沈殿生成物を150℃で24時間乾燥し、ガラス及び銅の複合粒子(以下、「ガラス銅複合粒子」と略記する。)を得た。
 次いで、得られたガラス銅複合粒子を、ビーズミルを使用して湿式粉砕した。ビーズミルには、直径1mmのジルコニアビーズを用いた。
 所望の粒径分布を得るために、湿式粉砕したガラス銅複合粒子を篩い分けした。篩い分けには、粒子の沈降速度差を利用した篩い分け(水篩)法を用いた。湿式粉砕したガラス銅複合粒子を各種粒径分布を有する粒子群に分離した後、分離した粒子をブレンドすることでガラス銅複合粒子の粒径分布を調整した。
〔ガラス亜鉛複合粒子の調製〕
 硫酸銅5水和物に換えて、硫酸亜鉛7水和物20.44gを使用して上記〔ガラス銅複合粒子の調製〕と同様の操作を行ない、ガラス及び亜鉛の複合粒子(以下、「ガラス亜鉛複合粒子」と略記する。)を得た。得られた粒子を、上記同様にそれぞれ篩い分けを行ない、所望の粒径分布を得た。
〔ガラス鉄複合粒子の調製〕
 硫酸銅5水和物に換えて、硫酸鉄7水和物19.7gを使用して上記〔ガラス銅複合粒子の調製〕と同様の操作を行ない、ガラス及び鉄の複合粒子(以下、「ガラス鉄複合粒子」と略記する。)を得た。得られた粒子を、上記同様にそれぞれ篩い分けを行ない、所望の粒径分布を得た。
〔リン酸ジルコニウム・銅複合粒子の調製〕
 300mlの三口フラスコに入れた200mlの脱イオン水を攪拌しながら、オキシ塩化ジルコニウム8水和物64.45gを溶解した。この中に、シュウ酸2水和物12.6gとリン酸29.4gを順次添加した後、水酸化ナトリウム水溶液を用いてpHを3.5に調整し、95℃で20時間加熱還流した。生成した沈殿物を水洗、乾燥、粉砕し、平均粒径0.51μmのNa型リン酸ジルコニウム塩を調整した。
 得られたNa型リン酸ジルコニウム塩を、銅イオンを含有する1N硝酸溶液に添加し、60℃で2時間攪拌した後、濾過、水洗、乾燥して銅及びリン酸ジルコニウムの複合粒子(以下、「リン酸ジルコニウム・銅複合粒子」と略記する。)を得た。
 上記手順により得られた粒径分布の異なる無機粒子を第一の無機粒子として使用した。
 なお、第一の無機粒子の体積基準の粒径分布は堀場製作所社製のレーザ回折散乱式粒度分布測定装置(LA-350)を用いて測定した。
[第二の無機粒子の調製]
 硫酸銅5水和物に換えて、硝酸銀0.43gを使用して上記〔ガラス銅複合粒子の調製〕と同様の操作を行ない、ガラス及び銀の複合粒子(以下、「ガラス銀複合粒子」と略記する。)を得た。得られたガラス銀複合粒子を、ビーズミルを使用して湿式粉砕した。ビーズミルには、直径1mmのジルコニアビーズを用いた。
 所望の粒径分布を得るために、湿式粉砕したガラス銀複合粒子を篩い分けした。篩い分けには、粒子の沈降速度差を利用した篩い分け(水篩)法を用いた。湿式粉砕したガラス銀複合粒子を各種粒径分布を有する粒子群に分離した後、分離した粒子をブレンドすることでガラス銀複合粒子の粒径分布を調整した。
 上記手順により得られた粒径分布の異なる無機粒子を第二の無機粒子として使用した。
 なお、第二の無機粒子の体積基準の粒径分布は堀場製作所社製のレーザ回折散乱式粒度分布測定装置(LA-350)を用いて測定した。
 また、後述する実施例20では、第二の無機粒子として、市販のリン酸ジルコニウム粒子(東亞合成社製、ケスモンNS-10)を使用した。
[実施例1]
 容器中でエタノール367gを攪拌しながら、純水60g、シリケート系化合物(三菱化学社製「MKC(登録商標)シリケート」MS51」)14g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、及びアニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、イソプロパノール18g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)3.6g、平均粒径(モード径)を0.04μm、変動係数を34%、平均粒径の4倍以上の粒径の粒子の含有量を6.4体積%に調整したガラス銅複合粒子(第一の無機粒子に該当。エタノール希釈:固形分濃度60質量%)2.4gを加えて、20分間攪拌し、塗布組成物1を得た。
[実施例2]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物2を得た。
[実施例3]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物3を得た。
[実施例4]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物4を得た。
[実施例5]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物5を得た。
[実施例6]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物6を得た。
[実施例7]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物7を得た。
[実施例8]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物8を得た。
[実施例9]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物9を得た。
[実施例10]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物10を得た。
[実施例11]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物11を得た。
[実施例12]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物12を得た。
[実施例13]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物13を得た。
[実施例14]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物14を得た。
[実施例15]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス亜鉛複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物15を得た。
[実施例16]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス鉄複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物16を得た。
[実施例17]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたリン酸ジルコニウム・銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、塗布組成物17を得た。
[実施例18]
 容器中でエタノール367gを攪拌しながら、純水60g、シリケート系化合物(三菱化学社製「MKC(登録商標)シリケート」MS51」)14g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、及びアニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、イソプロパノール18g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)3.6g、平均粒径(モード径)を0.45μm、変動係数を38%、平均粒径の4倍以上の粒径の粒子の含有量を1.1体積%に調整したガラス銅複合粒子(第一の無機粒子に該当。エタノール希釈:固形分濃度60質量%)2.16g、平均粒径(モード径)を0.75μmに調整したガラス銀複合粒子(第二の無機粒子に該当。エタノール希釈:固形分濃度60質量%)0.24gを加えて、20分間攪拌し、塗布組成物18を得た。
 なお、上記第二の無機粒子は、上記第一の無機粒子と上記第二の無機粒子の混合物(混合状態)での粒径分布において、平均粒径の4倍以上の粒径の粒子の含有量が1.9体積%となるように調整した。
[実施例19]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.16gに変更し、第二の無機粒子を、表1に示すモード径であり、且つ上記第一の無機粒子と上記第二の無機粒子の混合物(混合状態)での粒径分布において、平均粒径の4倍以上の粒径の粒子の含有量を表1に示す値となるように調整されたガラス銀粒子(エタノール希釈:固形分濃度60質量%)0.24gに変更したこと以外は、実施例18と同様にして、塗布組成物19を得た。
[実施例20]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.16gに変更し、第二の無機粒子を、表1に示すモード径であり、且つ上記第一の無機粒子と上記第二の無機粒子の混合物(混合状態)での粒径分布において、平均粒径の4倍以上の粒径の粒子の含有量を表1に示す値となるように調整されたリン酸ジルコニウム粒子(エタノール希釈:固形分濃度60質量%)0.24gに変更したこと以外は、実施例18と同様にして、塗布組成物20を得た。
[比較例1]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、比較塗布組成物1を得た。
[比較例2]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、比較塗布組成物2を得た。
[比較例3]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、比較塗布組成物3を得た。
[比較例4]
 第一の無機粒子を、表1に示すモード径、変動係数、及び平均粒径の4倍以上の粒径の粒子の含有量に調整されたガラス銅複合粒子(エタノール希釈:固形分濃度60質量%)2.4gに変更したこと以外は、実施例1と同様にして、比較塗布組成物4を得た。
[各種評価]
〔消臭性評価〕
<塗布組成物1の消臭性評価>
(試験サンプルの作製)
 上記で得られた塗布組成物1について、以下に示す試験に基づいて、その消臭性についての評価を実施した。
 まず、不織布を準備し、不織布100cm当たり、塗布組成物1が1g付着するように、不織布に対して塗布組成物1を噴射した。次に、得られた塗布組成物1付き不織布を25℃にて2日間乾燥し、膜付き基材1を作製した。
(消臭性の評価)
 アンモニア臭がする尿を上記膜付き基材1に10g噴霧し、室温放置した。放置後、1h後及び8h後の臭いを官能評価した。
≪評価基準≫
 「AA」:ほぼ臭気を感じない。
 「A」:わずかに臭気を感じる。
 「B」:やや臭気を感じる。
 「C」:臭気を感じる。
<その他の実施例及び比較例の塗布組成物の評価>
 上述した<塗布組成物1の消臭性評価>と同様の方法により、塗布組成物2~20、比較塗布組成物1~4の消臭性を評価した。
〔乾燥ムラ評価(拭き跡評価)〕
<塗布組成物1の乾燥ムラ評価>
(試験サンプルの作製と評価)
 SUS(Steel Use Stainless)板に上記で得られた塗布組成物1を1.5mL滴下した後、基布(日本製紙クレシア製「ワイプオールX70、4つ織り」)を使用して上記塗布組成物1を塗り広げた。次いで、SUS板上に塗り広げた上記塗布組成物1を10分間乾燥させた後、目視により、下記評価基準にて乾燥ムラの評価を実施した。
≪評価基準≫
 「AA」:ほぼ目視できない。
 「A」:わずかに目視できる。
 「B」:やや目視できる。
 「C」:目視できる。
<その他の実施例及び比較例の塗布組成物の評価>
 上述した<塗布組成物1の乾燥ムラ評価>と同様の方法により、塗布組成物2~20、比較塗布組成物1~4の乾燥ムラを評価した。
 以下に表1を示す。
 表中、「リン酸Zr・銅複合粒子」とは、リン酸ジルコニウム・銅複合粒子を意図する。また、「リン酸Zr粒子」とは、リン酸ジルコニウム粒子を意図する。
 なお、表中の「第一の無機粒子」欄中の「d*4以上の粒子含有量」とは、「第一の無機粒子の粒径分布において、平均粒径の4倍以上の粒径を有する粒子の含有量」を意味する。
 また、表中の「混合物」とは、第一の無機粒子と第二の無機粒子の混合物(混合状態)を意図する。「混合物」欄中の「d*4以上の粒子含有量」とは、「第一の無機粒子及び第二の無機粒子の混合状態での粒径分布において、平均粒径の4倍以上の粒径を有する粒子の含有量」を意味する。
 また、実施例欄にて使用される「ガラス銅複合粒子」「ガラス亜鉛複合粒子」「ガラス鉄複合粒子」及び「ガラス銀複合粒子」の主成分(粒子全質量の50質量%以上を占める成分)は、ガラスである。
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、実施例の塗布組成物により形成された膜は、消臭性(初期消臭性及び長期消臭性)が優れており、且つ、塗布組成物が被対象物に付与された際の乾燥ムラがより抑制されていることが明らかである。
 また、実施例3~5(初期消臭性評価、長期消臭性評価、及び乾燥ムラ評価が各々AA、B、AAであったものが該当)と実施例1及び実施例2とを比較すると、塗布組成物中、第一の無機粒子の平均粒径の下限値が0.05μm以上である場合、乾燥ムラがより改善することが明らかである。なかでも、塗布組成物中、第一の無機粒子の平均粒径の下限値が0.10μm以上である場合、更に初期消臭性がより改善することが明らかである。
 また、実施例3~5(初期消臭性評価、長期消臭性評価、及び乾燥ムラ評価が各々AA、B、AAであったものが該当)と実施例7及び実施例8とを比較すると、塗布組成物中、第一の無機粒子の平均粒径の上限値が1.0μm以下である場合、乾燥ムラがより改善することが明らかである。なかでも、塗布組成物中、第一の無機粒子の平均粒径の上限値が0.50μm以下である場合、更に初期消臭性がより改善することが明らかである。
 また、実施例3~5(初期消臭性評価、長期消臭性評価、及び乾燥ムラ評価が各々AA、B、AAであったものが該当)と実施例6とを比較すると、第一の無機粒子の粒径の変動係数が30%以上である場合、初期消臭性により優れることが確認された。
 また、実施例3~5(初期消臭性評価、長期消臭性評価、及び乾燥ムラ評価が各々AA、B、AAであったものが該当)と実施例11~14の比較から、塗布組成物中、第一の無機粒子の粒径分布において、平均粒径の4倍以上の粒径を有する粒子の含有量が10.0体積%以下である場合、初期消臭性がより優れ、且つ乾燥ムラがより改善されることが確認された。
 また、実施例3~5(初期消臭性評価、長期消臭性評価、及び乾燥ムラ評価が各々AA、B、AAであったものが該当)と実施例15及び実施例16とを比較すると、第一の無機粒子が銅を含む場合、初期消臭性により優れることが確認された。
 また、実施例3~5(初期消臭性評価、長期消臭性評価、及び乾燥ムラ評価が各々AA、B、AAであったものが該当)と実施例17とを比較すると、第一の無機粒子が主成分としてガラスを含む場合、初期消臭性により優れることが確認された。
 また、実施例5と実施例18及び実施例19を比較すると、塗布組成物が第二の無機粒子としてガラス銀複合粒子を含む場合、長期消臭性がより向上することが確認された。なお、実施例18と実施例19との対比から、塗布組成物中、第一の無機粒子及び第二の無機粒子の混合状態での粒径分布において、平均粒径の4倍以上の粒径を有する粒子の含有量が10.0体積%以下である場合、初期消臭性、及び乾燥ムラがより改善されることが確認された。
 更に、実施例7と実施例20を比較すると、塗布組成物が第二の無機粒子としてリン酸ジルコニウム粒子を含む場合、初期消臭性がより向上することが確認された。
 表1の結果から、比較例の塗布組成物では、消臭性(初期消臭性及び長期消臭性)が所望の要求を満たさないことが明らかである。

Claims (14)

  1.  銅、亜鉛、鉄、マグネシウム、カルシウム、アルミニウム、マンガン、コバルト、及びニッケルからなる群より選ばれる少なくとも1種の金属を含む第一の無機粒子を含み、
     前記第一の無機粒子の平均粒径が5.0μm以下であり、
     前記第一の無機粒子の粒径の変動係数が20%以上である、組成物。
  2.  前記第一の無機粒子の粒径分布において、平均粒径の4倍以上の粒径を有する粒子の含有量が10.0体積%以下である、請求項1に記載の組成物。
  3.  前記第一の無機粒子の粒径の変動係数が30%以上である、請求項1又は2に記載の組成物。
  4.  前記第一の無機粒子が、主成分としてガラスを含む、請求項1~3のいずれか1項に記載の組成物。
  5.  前記第一の無機粒子の平均粒径が0.05~2.0μmである、請求項1~4のいずれか1項に記載の組成物。
  6.  前記第一の無機粒子の平均粒径が0.10~1.0μmである、請求項1~5のいずれか1項に記載の組成物。
  7.  更に、親水性バインダー前駆体及び親水性バインダーからなる群から選択される親水性成分を含む、請求項1~6のいずれか1項に記載の組成物。
  8.  更に、溶媒を含む、請求項1~7のいずれか1項に記載の組成物。
  9.  消臭用組成物である、請求項1~8のいずれか1項に記載の組成物。
  10.  スプレー容器と、
     スプレー容器に収納された請求項1~9のいずれか1項に記載の組成物とを有する、スプレー。
  11.  基布と、
     基布に含浸された請求項1~9のいずれか1項に記載の組成物とを有する、ワイパー。
  12.  請求項1~9のいずれか1項に記載の組成物を用いて形成される膜。
  13.  基材と、
     請求項12に記載の膜とを有する、膜付き基材。
  14.  樹脂と、
     請求項1~9のいずれか1項に記載の組成物と、を有する樹脂成型体。
PCT/JP2019/033463 2018-08-29 2019-08-27 組成物、スプレー、ワイパー、膜、膜付き基材、樹脂成形体 WO2020045404A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-160307 2018-08-29
JP2018160307 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045404A1 true WO2020045404A1 (ja) 2020-03-05

Family

ID=69643291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033463 WO2020045404A1 (ja) 2018-08-29 2019-08-27 組成物、スプレー、ワイパー、膜、膜付き基材、樹脂成形体

Country Status (1)

Country Link
WO (1) WO2020045404A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206139A (ja) * 2002-01-15 2003-07-22 Nippon Electric Glass Co Ltd 抗菌性ガラス微小球及びその製造方法
WO2006109847A1 (ja) * 2005-04-08 2006-10-19 Kyowa Chemical Industry Co., Ltd. アルナイト型化合物粒子、その製造方法およびその利用
JP2010063963A (ja) * 2008-09-09 2010-03-25 Panasonic Corp 除湿素子およびそれを用いた除湿装置
JP2010251694A (ja) * 2009-03-26 2010-11-04 Fujifilm Corp 光電変換半導体層とその製造方法、光電変換素子、及び太陽電池
JP2017040007A (ja) * 2015-08-17 2017-02-23 石塚硝子株式会社 消臭性繊維及び消臭布
JP2017046746A (ja) * 2015-08-31 2017-03-09 石塚硝子株式会社 消臭スプレー
JP2017046747A (ja) * 2015-08-31 2017-03-09 石塚硝子株式会社 消臭機能を備えたフィルタ
JP2017046744A (ja) * 2015-08-31 2017-03-09 石塚硝子株式会社 消臭性板状体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206139A (ja) * 2002-01-15 2003-07-22 Nippon Electric Glass Co Ltd 抗菌性ガラス微小球及びその製造方法
WO2006109847A1 (ja) * 2005-04-08 2006-10-19 Kyowa Chemical Industry Co., Ltd. アルナイト型化合物粒子、その製造方法およびその利用
JP2010063963A (ja) * 2008-09-09 2010-03-25 Panasonic Corp 除湿素子およびそれを用いた除湿装置
JP2010251694A (ja) * 2009-03-26 2010-11-04 Fujifilm Corp 光電変換半導体層とその製造方法、光電変換素子、及び太陽電池
JP2017040007A (ja) * 2015-08-17 2017-02-23 石塚硝子株式会社 消臭性繊維及び消臭布
JP2017046746A (ja) * 2015-08-31 2017-03-09 石塚硝子株式会社 消臭スプレー
JP2017046747A (ja) * 2015-08-31 2017-03-09 石塚硝子株式会社 消臭機能を備えたフィルタ
JP2017046744A (ja) * 2015-08-31 2017-03-09 石塚硝子株式会社 消臭性板状体

Similar Documents

Publication Publication Date Title
EP0866101B1 (en) Photocatalytic coating composition and photocatalyst-bearing structure
DE69930399T2 (de) Photokatalysatorartikel mit verhinderung von verstopfungen und ablagerungen, verfahren zur herstellung des artikels
WO2019013227A1 (ja) 組成物、膜、膜付き基材、膜付き基材の製造方法、及び、修飾基材
CN103635543B (zh) 无机亲水性涂布液和,由此所得到的亲水性涂膜以及使用其的部件
US6783845B2 (en) Anti-fogging coating material, anti-fogging coating, and anti-fogging optical member
CA2312788C (en) Photocatalytic oxide composition, thin film, and composite
JP4823045B2 (ja) 水系光触媒組成物
CN109593390A (zh) 一种具有高透光率持久超亲水性的二氧化钛-有机复合自清洁涂层及其温和制备方法
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
WO2017086098A1 (ja) 抗ウイルス膜
WO2020045404A1 (ja) 組成物、スプレー、ワイパー、膜、膜付き基材、樹脂成形体
WO2020045416A1 (ja) 消臭用組成物、スプレー、ワイパー、膜、膜付き基材、樹脂成型体
JP6967086B2 (ja) 組成物、ウェットワイパー、スプレー、表面処理基材の製造方法
JPH1192689A (ja) 無機コーティング剤
WO2020137612A1 (ja) 組成物、膜、膜付き基材、膜付き基材の製造方法、スプレー、ウェットワイパー、及び抗菌剤粒子
JP6617699B2 (ja) ガラス物品
JP2019182811A (ja) 組成物、膜、膜付き基材、膜付き基材の製造方法、スプレー、及びウェットワイパー
JP5252876B2 (ja) 光触媒ヒドロゾル及び水系光触媒コーティング剤
WO2020022448A1 (ja) 組成物、膜、膜付き基材、膜付き基材の製造方法、スプレー、及びウェットワイパー
JP2005194309A (ja) 接着層形成用組成物および光触媒担持構造体
WO2020090351A1 (ja) 組成物、修飾基材、ウェットワイパー、スプレー
WO2019087856A1 (ja) 臭気抑制方法、組成物、ワイパー、及び、スプレー
JP2004155608A (ja) 酸化チタン膜形成用液体、酸化チタン膜の形成法、酸化チタン膜及び光触媒性部材
JP2019182722A (ja) 組成物、膜付き基材、ウェットワイパー、スプレー
JP2002212505A (ja) 光半導体金属−有機物質混合体、光半導体金属含有組成物、光触媒性被膜の製造法及び光触媒性部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP