WO2020045182A1 - 半導体素子接合構造、半導体素子接合構造の生成方法及び導電性接合剤 - Google Patents

半導体素子接合構造、半導体素子接合構造の生成方法及び導電性接合剤 Download PDF

Info

Publication number
WO2020045182A1
WO2020045182A1 PCT/JP2019/032599 JP2019032599W WO2020045182A1 WO 2020045182 A1 WO2020045182 A1 WO 2020045182A1 JP 2019032599 W JP2019032599 W JP 2019032599W WO 2020045182 A1 WO2020045182 A1 WO 2020045182A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
particles
semiconductor element
bonding
metal particles
Prior art date
Application number
PCT/JP2019/032599
Other languages
English (en)
French (fr)
Inventor
巽 宏平
田中 康紀
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Publication of WO2020045182A1 publication Critical patent/WO2020045182A1/ja
Priority to US17/187,452 priority Critical patent/US11810885B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27464Electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29238Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29247Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29238Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29255Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29318Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83055Composition of the atmosphere being oxidating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83091Under pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83095Temperature settings
    • H01L2224/83099Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83395Bonding interfaces outside the semiconductor or solid-state body having an external coating, e.g. protective bond-through coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83417Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/83424Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the present invention relates to a bonding structure of a semiconductor element formed by bonding and bonding one metal particle having a relatively low hardness and a micro-size particle size to another metal particle having a face-centered cubic crystal structure.
  • semiconductors using Si have an operating temperature of about 150 ° C. or lower, but compound semiconductors such as SiC and GaN can operate at higher temperatures. If high-temperature operation becomes possible, operation at a high current density becomes possible, and the advantages particularly in power devices are great. It is expected that cooling devices for inverters of electric vehicles and hybrid vehicles will be simplified.
  • the joining using solder widely used in the current semiconductor mounting technology has a melting point of 200 to several tens of degrees Celsius, and it is difficult to use at a temperature higher than the melting point. Further, even when the temperature is 200 ° C. or lower, it is known that a connection failure occurs due to thermal stress or the like in long-term use. Therefore, a new high heat-resistant mounting technology is required.
  • metal nanoparticle materials such as silver and copper have been promoted.
  • silver is expensive, and there is a concern that oxidation and migration may occur.
  • Copper itself is subject to oxidation.
  • the sintered body of metal nanoparticles has a large specific surface area, it forms or adsorbs on the surface. Oxygen and carbon atoms are taken into the interior during sintering, so the yield stress increases compared to pure metal. At the same time, they tend to become brittle, and a sufficient stress relaxation effect on thermal stress was not observed.
  • Patent Documents 1 and 2 the inventors focused on Ni particles having a melting point of 1453 ° C., higher than silver and copper, and an electric resistance of 6.99 ⁇ 10 ⁇ 8 ⁇ cm, which is relatively low.
  • the electric resistances of the Sn—Pb eutectic solder and the lead-free solder (Sn—Ag—Cu), which have been widely used in the past, are 15 ⁇ 10 ⁇ 8 ⁇ cm and 11 ⁇ 10 ⁇ 8 ⁇ cm, respectively.
  • the coefficient of thermal expansion of Ni is 13.3 ⁇ 10 ⁇ 6 , lower than 17 ⁇ 10 ⁇ 6 of copper and 19 ⁇ 10 ⁇ 6 of silver, and is closer to the coefficients of thermal expansion of Si and SiC.
  • Patent Document 1 includes metal nanoparticles between a surface to be bonded of a first body to be bonded (first surface to be bonded) and a surface to be bonded to a second body to be bonded (second surface to be bonded).
  • a bonding structure in which a bonding layer is formed and the first bonding surface and the second bonding surface are bonded by metal nanoparticles in the bonding layer, and one or both of the first bonded surface and the second bonded surface Is Al or an Al alloy, and the metal nanoparticles are Ni nanoparticles.
  • Ni nanoparticles as the metal nanoparticles, one or both of the first bonded surface and the second bonded surface can be used. Even if it is Al or an Al alloy, it is possible to join them.
  • metal nanoparticles are placed between a surface to be bonded of a first body to be bonded (first surface to be bonded) and a surface to be bonded to a second body to be bonded (second surface to be bonded).
  • the first bonding layer including the first bonding layer, the metal foil layer, and the second bonding layer including the metal nanoparticles are formed in this order, and even if there is a difference in the amount of thermal expansion between the first bonded body and the second bonded body, the bonding is performed.
  • the difference in the amount of thermal expansion can be absorbed by the deformation of the metal foil layer in the structure, the amount of shear deformation between the first bonding layer and the second bonding layer can be reduced, and a decrease in bonding strength can be prevented. Things.
  • Patent Literature 1 enables bonding with Al or an Al alloy by including Ni nanoparticles in a bonding layer.
  • Ni is hard, thermal stress due to a difference in thermal expansion as described above is reduced. It cannot be alleviated, and cracks and the like may occur.
  • one metal particle having a relatively small hardness and a micro particle size is interposed between a semiconductor element and a member to be joined, and is fixed to another nano-sized metal particle having a face-centered cubic crystal structure.
  • a semiconductor element bonding structure is a semiconductor element bonding structure in which metal particles of a first metal are fixedly bonded to a second metal, wherein the first metal has a hardness higher than that of the second metal. Low, the melting point is equal to or less than that of the second metal, and the particle size is micro-sized, and the metal particles of the first metal are bonded between a semiconductor element and a member to be bonded to the semiconductor element. A plurality of the metal particles of the first metal are fixedly joined to each other with the second metal.
  • the semiconductor element bonding structure in which the metal particles of the first metal are fixedly bonded to each other with the second metal, wherein the first metal is the second metal A metal element having a hardness lower than that of the metal, a melting point equal to or less than that of the second metal, and a micro-particle size, and joining the metal particles of the first metal to the semiconductor element and the semiconductor element;
  • the semiconductor element and the object are firmly joined to each other by the second metal because the metal particles of the first metal are fixedly joined to the second metal by the second metal.
  • the deformation of the metal particles of the first metal having a micro size absorbs a thermal stress caused by a difference in thermal expansion between the semiconductor element and the object to be bonded, thereby preventing cracks and the like from occurring. .
  • the presence of the micro-sized metal particles of the first metal in the joint structure can generate a discharge path for gas generated during sintering between the metal particles of the first metal, and gas voids are formed. This has the effect that inclusion can be prevented.
  • FIG. 2 is a diagram illustrating a semiconductor element junction structure according to the first embodiment.
  • FIG. 2 is an image diagram illustrating a configuration of a bonding layer in the bonding structure in FIG. 1.
  • FIG. 4 is a schematic view illustrating a formation method when the semiconductor element bonding structure according to the first embodiment is formed by sintering.
  • FIG. 4 is a diagram showing a sample structure created for an experiment in an example.
  • FIG. 3 is an overall cross-sectional view of a joint structure observed with an optical microscope in Examples. It is a SEM image of the junction cross section at the time of using the bonding material paste in the case where nano-sized Ni particles and micro-sized Al particles are mixed in an example. It is a figure showing the result of having observed the surface of the joined portion in an example.
  • FIG. 1 is a diagram illustrating a semiconductor element junction structure according to the first embodiment.
  • FIG. 2 is an image diagram illustrating a configuration of a bonding layer in the bonding structure in FIG. 1.
  • the semiconductor element bonding structure according to the present embodiment is obtained by bonding and fixing first metal particles having relatively low hardness and melting point and having a microscopic particle size with a second metal having a face-centered cubic crystal structure.
  • first metal having relatively low hardness and melting point include aluminum (Al), silver (Ag), zinc (Zn), and copper (Cu).
  • a plurality of metal particles are interposed between a semiconductor element and a member to be joined to the semiconductor element, and the first metal particles have a face-centered cubic crystal structure, and have a relatively high hardness and a high melting point. It is a structure that is fixedly bonded with the metal.
  • Al has a low hardness and a high stress relaxation effect. In addition, it is excellent in high-temperature stability even in an environment where oxygen exists, such as the atmosphere, such as a bonding interface between other metals. Therefore, in the present embodiment, a case will be described in which Al is mainly used as the first metal. Further, for example, since Ni has a relatively high hardness and melting point, a case where Ni is mainly used as the second metal will be described in the present embodiment.
  • FIG. 1 is a diagram showing a semiconductor element bonding structure according to the present embodiment
  • FIG. 2 is an image diagram showing a configuration of a bonding layer in the bonding structure of FIG.
  • the semiconductor element bonding structure 1 according to the present embodiment includes, for example, a substrate 2 such as a Cu lead frame whose surface is coated with Ni, and a semiconductor chip 3 of, for example, SiC having a bonding surface facing the substrate 2 as an Al electrode 3a. This is a structure in which the substrate 2 and the semiconductor chip 3 are joined with the joining layer 4 interposed therebetween.
  • the bonding layer 4 is made of a metal particle 5 of Al, which is a first metal having a micro-size (hereinafter, the micro-size range is larger than 0.5 ⁇ m and smaller than 1 mm, and preferably 500 ⁇ m or smaller). Is formed by firmly bonding with Ni, which is the metal. As shown in Patent Literature 1, Ni enables bonding with Al or an Al alloy, but because of its high hardness, thermal stress due to a difference in thermal expansion cannot be relaxed, and as described above, cracks may occur. Cause it. Therefore, as shown in FIG. 2, by mixing and interposing metal particles 5 having a hardness lower than that of Ni and a micro-sized particle, the metal particles 5 absorb thermal stress while being in contact with the Al electrode 3a.
  • Bonding can be performed firmly.
  • the bonding surface on the substrate 2 side is bonded to Ni, so that Ni can be firmly bonded to each other.
  • the outermost surface of the substrate 2 may be gold (Au), Ag, Al, or the like in addition to Ni.
  • the presence of the micro-sized metal particles 5 in the bonding layer 4 provides a discharge path for gas generated during sintering between the metal particles 5, thereby preventing gas voids from being included in the bonding layer 4.
  • the volume ratio is about 74% even when the metal particles 5 are densely packed. Therefore, an outflow path for Ni particles and gas is formed in a region between the metal particles 5 other than the volume occupied by the metal particles 5 (the remaining 26% region of 74%), and the outflow path is dispersed and voids are formed. Aggregation at one location and coarsening can be prevented.
  • the micro-sized metal particles 5 interposed in the bonding layer 3 only need to have a hardness lower than that of Ni.
  • Ni for example, as described above, Al, Ag, Zn, Cu, or the like can be used.
  • Al when Al is used, an excellent effect of stress relaxation can be obtained.
  • the melting point is at least 300 ° C., preferably at least 300 ° C. It is desirable to use metal particles 5 having a temperature of 350 ° C. or higher.
  • the powdery micro-sized metal particles 5 of the first metal and the nano-sized metal particles (hereinafter, the range of nano-sized is 5 nm or more and 500 nm or less) are used. Then, a mixture obtained by mixing powdery Ni particles containing Ni having a particle diameter of 1/10 or less of the particle diameter of the metal particles 5 is formed into a paste, and the paste bonding agent is applied to the substrate 2.
  • the semiconductor chip 3 may be placed thereon and sintered and bonded.
  • a plating solution is circulated in a state where the metal particles 5 are interposed between the substrate 2 and the semiconductor chip 3, Ni is deposited by plating, and the substrate 2 and the semiconductor chip 3 are fixedly bonded with the metal particles 5.
  • Ni is deposited by plating
  • the substrate 2 and the semiconductor chip 3 are fixedly bonded with the metal particles 5.
  • good bonding with Al particles can be ensured by deposition of electroless Ni.
  • a surface layer of Ni or the like can be formed in advance on the surface of the Al particles.
  • FIG. 3 is a schematic view showing a forming method when the semiconductor element bonding structure according to the present embodiment is formed by sintering.
  • Ni particles having a nano-sized particle and metal particles 5 having a micro-sized particle are used, and the metal particles 5 are hereinafter referred to as Al particles
  • Al particles are prepared by a liquid phase reduction method.
  • This is mixed with a solvent and a binder to form a paste-like joining material (see FIG. 3C).
  • a paste-like bonding material is applied onto the substrate 2, and a semiconductor chip 3 (here, a power semiconductor of SiC is used, hereinafter referred to as a SiC chip) is mounted thereon (see FIG. 3D).
  • the bonding conditions include, for example, a heating rate of 5 (3 to 50) ° C./min, a holding temperature of 350 (300 to 400) ° C., a holding time of 60 (10 to 120) minutes, and a pressure of 1 (0.5 to 5) MPa.
  • sintering That is, by heating at the above-mentioned temperature, the solvent evaporates (see FIG. 3 (E)), and the nano-sized Ni particles are sintered and bonded (see FIG. 3 (F)).
  • the semiconductor element junction structure 1 including the layer 4 is formed.
  • NiNi particles having a nano-size particle can bond particles at a temperature (for example, about 300 ° C.) extremely lower than the melting point (1455 ° C.) of Ni as a metal. Further, the metal as the sintered body after the bonding can maintain the original melting point of Ni, and thus can have sufficient heat resistance against heat generation of the SiC chip.
  • the particle size of the Ni particles may be nano-sized, but is preferably 500 nm or less, and more preferably 100 nm or less, because the sinterability at a low temperature is increased, which is more preferable.
  • the thickness is preferably 5 nm or more. It is to be noted that the Ni particles having these particle sizes do not need to satisfy all the sizes described above, and may be in a state including at least the Ni particles having the above size. Just fine.
  • the mixing ratio of the Al particles and the Ni particles excluding the solvent and the binder is such that the volume ratio of the Al particles is 20% or more and 90% or less, and preferably 50% or more.
  • the volume ratio of the Al particles is 20% or more and 90% or less, and preferably 50% or more.
  • the thickness of the bonding layer 4 is desirably about 3 to 800 ⁇ m. If the thickness is 3 ⁇ m or less, the effect of relaxing the stress cannot be sufficiently obtained, and if the thickness is 800 ⁇ m or more, the thermal conductivity greatly decreases, which is not preferable as the heat radiation characteristic. More preferably, it is about 10 ⁇ m to 150 ⁇ m.
  • nano-size Cu can also be used using the same principle.
  • Al, Ag, and Zn particles can be used as the metal particles 5 of the first metal having a lower hardness than the nano-sized Cu particle sintered body.
  • Nano-sized particles other than Ni and Cu preferably have a face-centered cubic crystal structure, such as Au or Ag. Since the degree of decrease in deformability of the sintered metal, especially at low temperature, is small, It is suitable for suppressing the generation and progress of cracks. The degree of oxidation of the micro-sized first metal particles 5 of Al or Ag is suppressed as compared with the case of nano-sized, and the concern of migration is reduced when Ag is of micro-sized.
  • FIG. 4 is a diagram showing a sample structure created for an experiment.
  • the bonding layer 4 in FIG. 1 was formed by sintering a bonding agent obtained by mixing micro-sized Al particles and nano-sized Ni particles in the semiconductor element bonding structure.
  • a paste composed of nano-sized Ni particles having a particle size of 100 nm or less, micro-sized Al particles having an average particle size of 10 ⁇ m, a solvent, and a binder prepared by a liquid phase reduction method was used.
  • the ratio between the Ni particles and the Al particles in the paste was 1: 1 by weight (0.24: 0.76 by volume).
  • a paste containing only nano-sized Ni particles was also used as a bonding material.
  • a TO-247 lead frame with Ni plating on the surface and a Si chip with a size of 2.7 mm x 2.7 mm, 5.0 mm x 5.0 mm, and 7.0 mm x 7.0 mm were used.
  • An Al electrode having a thickness of 1 ⁇ m is formed on the bonding surface of the chip by a vapor deposition method.
  • a paste is applied to the TO-247 lead frame side using a metal mask made of a stainless steel plate having a thickness of 0.1 mm, the chip is placed on the application portion, and the temperature is increased in the air at a rate of 5 ° C./min and a holding temperature.
  • FIG. 5 shows an overall cross-sectional view of the bonding structure observed with an optical microscope.
  • FIG. 5A shows a bonding material paste obtained by mixing nano-sized Ni particles with micro-sized Al particles.
  • 5B is a cross-sectional image near the center in FIG. 5A
  • FIG. 5C is a cross-sectional image near the right end in FIG. 5A.
  • FIG. 6 is an SEM image of a bonding cross section when a bonding material paste in the case of mixing micro-size Al particles with nano-size Ni particles is used.
  • the Al particles form a system of a body-centered cubic lattice or a hexagonal close-packed structure, thereby securing a passage when the solvent is vaporized in the joining process and suppressing the occurrence of large cracks and gas voids. It is considered that
  • FIG. 7 is a diagram showing the result of observing the surface of the joint.
  • FIG. 7A is a diagram showing the surface of a bonded portion after heating when micro-sized Al particles are not included
  • FIG. 7B is a diagram showing heating when micro-sized Al particles are mixed with nano-sized Ni particles. It is a figure which shows the surface of the junction part after.
  • FIG. 7A it was confirmed that large cracks and gas voids were entirely present in the bonding layer where no Al particles were included.
  • FIG. 7B it was confirmed that the bonding layer containing Al particles had a clean layer shape without large cracks and gas voids. That is, as described above, it was confirmed that the generation of large cracks and gas voids could be suppressed by securing the passage when the solvent was vaporized in the bonding process.
  • FIG. 8 is a comparison graph of the shear strength for each chip size.
  • the bonding strength of a 2.7 mm square chip was set to 1, and the shear stress was compared between a case where nano-sized Ni particles and a micro-sized Al particle were mixed for each chip size and a case where only nano-sized Ni particles were used.
  • a small size of 2.7 mm square deterioration due to thermal stress is not remarkable, so there is almost no difference in the presence or absence of micro-sized Al particles, but in the case of a mixed paste of a bonding material containing no micro-sized Al particles.
  • the larger the chip size the lower the bonding strength.
  • the bonding strength increases as the chip size increases.
  • the thermal expansion coefficient of the chip increases as the chip size increases. That is, when microparticles of Al particles are not included, the thermal stress cannot be released, and thus it is considered that the bonding strength decreases as the chip size increases. On the other hand, in the case of the mixed paste of Ni particles / Al particles, it is considered that high bonding strength was observed because the Al particles in the bonding layer acted as a thermal stress release portion.
  • FIG. 9 is a graph of a stress-strain curve in which the vertical axis represents the bonding strength and the horizontal axis represents the amount of tool displacement in the shear stress direction.
  • FIG. 9A shows a result obtained by using a bonding material containing micro-sized Al particles
  • FIG. 9B shows a result obtained by using a bonding material not containing micro-sized Al particles. Is shown. Note that FIG. 9 is based on the bonding strength result of a 5.0 mm ⁇ 5.0 mm chip.
  • the displacement of the joint where Al particles are mixed is larger and gentler than that of the joint where Al particles are not mixed. This is considered to be because the Al particles are elongated and plastically deformed when a shear stress is applied to the Al particles.
  • thermal stress analysis by the finite element method was performed for the effect of mixing micro-sized Al particles.
  • the SiC chip and the Cu substrate were bonded, the chip size was 7.0 mm ⁇ 7.0 mm, and the bonding surface was Ag.
  • the substrate size was 10.0 mx 10.0 mm.
  • the analysis was performed on the assumption that the volume ratio of Al particles in the bonding layer due to the mixture of nano-sized Ni particles and micro-sized Al particles was 74%.
  • the upper limit of the temperature cycle was 250 ° C., the lower limit was ⁇ 45 ° C., and the number of cycles was analyzed up to six times.
  • the temperature was changed in the order of the low temperature side and the high temperature side from the state where the thermal stress was released at 200 ° C.
  • the maximum generated stress is the chip end face of the bonding portion, but the stress in the bonding when micro-size Al particles are not included is larger than that when Ni particles / Al particles are included at any cycle number. Is falling.
  • the stress value of the joint when Ni particles / Al particles are mixed is reduced by about 1 / as compared to the stress value of the joint when micro-sized Al particles are not included. I understand.
  • the present invention can be applied to a combination of metal particles of Ni / Ag, Cu / Ag, and Cu / Al (nano-sized metal / micro-sized metal) other than the mixture of nano-sized Ni / micro-sized Al. It has become clear that the effect of can be obtained.
  • micro-sized Al was fixedly bonded to Ni by plating.
  • the Al particles were fixed so as to have a thickness of 500 ⁇ m.
  • permanent magnets were arranged on both sides of the SiC chip and the Cu substrate, and fixed using the magnetism of Ni.
  • a Ni plating solution was passed through the voids of the Al particles, and the particles were fixedly joined by electroplating. Observed from the cross section, the occupation ratio of Al in the cross section was about 70%, and the fixed portion by plating was 12%.
  • the semiconductor element bonding structure according to the present invention can bond the semiconductor element and the object to be bonded firmly and with high quality by using Ni, and at the same time, allows the semiconductor element and the object to be bonded by yield (plastic deformation) of the metal particles. It has been clarified that it is possible to absorb the thermal stress due to the difference in thermal expansion between them and prevent the occurrence of cracks and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Die Bonding (AREA)

Abstract

【課題】Niよりも硬度が低く、粒径がマイクロサイズの金属粒子とNiとを半導体素子と被接合体との間に介在させることで、半導体素子と被接合体とを強固に接合すると共に、熱膨張差による熱応力を緩和することができる半導体素子接合構造を提供する。 【解決手段】ニッケル(Ni)よりも硬度が低く、粒径がマイクロサイズの金属粒子5(例えば、アルミニウム(Al))を半導体チップ3と当該半導体チップ3に接合する基板2との間に複数介在させ、金属粒子5をニッケル(Ni)で固着接合するものである。また、必要に応じて、前記金属粒子5をアルミニウム(Al)又はアルミニウム合金(Al合金)とし、前記半導体チップ3の表面、及び/又は基板2の表面がアルミニウム(Al)又はアルミニウム合金(Al合金)とするものである。

Description

半導体素子接合構造、半導体素子接合構造の生成方法及び導電性接合剤
 本発明は、比較的硬度が低く、粒径がマイクロサイズの一の金属粒子を面心立方の結晶構造を持つ他の金属粒子で固着接着して形成される半導体素子の接合構造に関する。
 現在、Siを用いた半導体は、動作温度が150℃程度以下とされているが、化合物半導体であるSiCやGaNなどは、さらなる高温動作が可能とされている。高温動作が可能となれば、高電流密度での動作が可能となるなど、特にパワーデバイスでの利点が大きい。電気自動車やハイブリッド自動車のインバータの冷却装置が簡素化されるなどが期待される。しかし、現行の半導体実装技術で広く使用されているはんだを用いた接合は、融点が200数十℃であり、融点以上での使用は困難である。また、200℃以下であっても、長期の使用では、熱応力等により接続不良を生じることが知られている。そこで新たな高耐熱実装技術が必要とされている。
 その実装技術としてAu-Ge、Zn-Al合金などの比較的高融点の溶融接合材料、高融点と低融点金属の拡散による液相拡散接合、金属ナノ粒子の焼結接合などの接合技術の検討が進められており、その中の金属ナノ粒子による焼結接合は種々検討されてきた。この金属ナノ粒子による焼結接合は、金属をナノ粒子化することで比表面積を大きくし、表面が活性になることで比較的低温の温度で接合が可能である。また、接合後は金属本来の融点になるため、接合材料として高い耐熱性が期待できる。
 近年、金属ナノ粒子の低温焼結接合では、銀や銅等の金属ナノ粒子材料での研究開発が進められている。しかし、銀は高コストであり、酸化、マイグレーションの問題を生じる懸念があり、銅は自身の酸化が課題となっている。また、金属ナノ粒子の焼結体は、比表面積が大きいために表面に形成あるいは吸着している、酸素、炭素原子の焼結時の内部への取り込みのため、純金属よりも降伏応力の上昇と同時に脆化する傾向があり、熱応力に対して十分な応力緩和効果が見られなかった。
 そこで、発明者らは、特許文献1、2に示すように、融点が1453℃と銀や銅よりも高く、電気抵抗は6.99×10-8Ωcmと比較的低いNi粒子に着目して検討をおこなってきた。なお、従来広く使用されてきたSn-Pb共晶はんだ及び鉛フリーはんだ(Sn-Ag-Cu)の電気抵抗はそれぞれ15×10-8Ωcm、11×10-8Ωcmである。また、Niの熱膨張率は13.3×10-6であり、銅の17×10-6、銀の19×10-6よりも低く、SiやSiCの熱膨張率により近い。
 これまでにNiナノ粒子を用いた場合、400℃以下での接合が可能であり、250℃以上における耐熱性を有する接合材料であることが分かっている。また、特許文献1に開示されているように、アルミニウム(以下、Alという)との直接接合が可能であることも明らかとなっている。しかしながら、焼結後の接合層において大きなガスボイドやクラックが発生していることが分かった。これらのボイドは、ナノ粒子表面の有機物などの蒸発に起因するものであるが、金属ナノ粒子の焼結体のいずれにおいても問題となっていた。また、金属ナノ粒子による接合にはSiやSiCなどの半導体素子と銅基板等との熱膨張係数(CTE)の差により生じる応力を緩和することができず、接合強度を著しく低下させてしまう問題がある。これらの問題に関して、例えば、特許文献1、2に示す技術が開示されている。
 特許文献1に示す技術は、第1被接合体の被接合面(第1被接合面)と第2被接合体の被接合面(第2被接合面)との間に金属ナノ粒子を含む接合層が形成され、接合層中の金属ナノ粒子によって第1接合面と第2接合面とが接合されてなる接合構造であって、第1被接合面と第2被接合面の一方又は両方はAl又はAl合金であり、金属ナノ粒子はNiナノ粒子とするものであり、金属ナノ粒子としてNiナノ粒子を用いることにより、たとえ第1被接合面と第2被接合面の一方又は両方がAl又はAl合金であっても、両者の接合を可能とするものである。
 特許文献2に示す技術は、第1被接合体の被接合面(第1被接合面)と第2被接合体の被接合面(第2被接合面)との間に、金属ナノ粒子を含む第1接合層、金属箔層、金属ナノ粒子を含む第2接合層がこの順に形成されており、第1被接合体と第2被接合体の熱膨張量に差があっても、接合構造中の金属箔層が変形することによって熱膨張量の差を吸収することができ、第1接合層と第2接合層のせん断変形量を低減し、接合強度の低下を防止することができるものである。
特開2015-93296号公報 特開2015-93295号公報
 しかしながら、特許文献1に示す技術は、接合層中にNiナノ粒子を含むことで、AlやAl合金との接合を可能とするが、Niは硬いため上述したような熱膨張差による熱応力を緩和することができず、クラックなどが生じてしまう可能性がある。
 また、特許文献2に示す技術は、接合構造に金属箔層を設けることで、この金属箔層が変形し、チップと基板との熱膨張差による熱応力を緩和することが可能であるが、焼結接合されたナノNiとチップと間の熱膨張差を緩和することができず、十分な熱応力の緩和をおこなうことができない。また、金属箔層を設けることで多層構造を形成するための形成工程が増え、製造効率が悪くなってしまう。
 本発明は、比較的硬度が低く粒径がマイクロサイズの一の金属粒子を半導体素子と被接合体との間に介在させ、面心立方の結晶構造を持つナノサイズの他の金属粒子で固着接合することで、半導体素子と被接合体とを強固に接合すると共に、熱膨張差による熱応力を緩和することができる半導体素子接合構造を提供する。
 本発明に係る半導体素子接合構造は、第1の金属の金属粒子を第2の金属で固着接合した半導体素子接合構造であって、前記第1の金属は、前記第2の金属よりも硬度が低く、融点が当該第2の金属と同等以下であり、且つ、粒径がマイクロサイズであり、前記第1の金属の金属粒子を半導体素子と当該半導体素子に接合する被接合体との間に複数介在させ、前記第1の金属の金属粒子を前記第2の金属で固着接合するものである。
 このように、本発明に係る半導体素子接合構造においては、第1の金属の金属粒子を第2の金属で固着接合した半導体素子接合構造であって、前記第1の金属は、前記第2の金属よりも硬度が低く、融点が当該第2の金属と同等以下であり、且つ、粒径がマイクロサイズであり、前記第1の金属の金属粒子を半導体素子と当該半導体素子に接合する被接合体との間に複数介在させ、前記第1の金属の金属粒子を前記第2の金属で固着接合するため、第2の金属により半導体素子と被接合体とを強固に且つ高品質に接合することができると共に、マイクロサイズの第1の金属の金属粒子の変形により半導体素子と被接合体との熱膨張差による熱応力を吸収し、クラックなどの発生を防止することができるという効果を奏する。
 また、接合構造中にマイクロサイズの第1の金属の金属粒子が存在することで、第1の金属の金属粒子間に焼結中に発生するガスの排出パスを生じさせることができ、ガスボイドが内包されることを防止することができるという効果を奏する。
第1の実施形態に係る半導体素子接合構造を示す図である。 図1の接合構造における接合層の構成を示すイメージ図である。 第1の実施形態に係る半導体素子接合構造を焼結結合で形成する場合の形成方法を示す模式図である。 実施例において実験用に作成したサンプル構造を示す図である。 実施例において光学顕微鏡で観察した接合構造の全体断面図である。 実施例においてナノサイズのNi粒子にマイクロサイズのAl粒子を混合した場合の接合材料ペーストを利用したときの接合断面のSEM像である。 実施例において接合部分の表面を観察した結果を示す図である。 実施例においてチップサイズ別のシェア強度の絶対値の比較結果を示す図である。 実施例において縦軸を接合強度、横軸をせん断応力方向におけるツールの変位量とした応力-ひずみ曲線のグラフを示す図である。 実施例において有限要素法による熱応力解析をおこなった結果を示す図である。 従来においてナノサイズのNi粒子による低温焼結接合した場合の接合構造の全体断面図である。
 以下、本発明の実施の形態を説明する。また、本実施形態の全体を通して同じ要素には同じ符号を付けている。
  (本発明の第1の実施形態)
 本実施形態に係る半導体素子接合構造について、図1ないし図3を用いて説明する。本実施形態に係る半導体素子接合構造は、硬度、融点が比較的低く、粒径がマイクロサイズの第1の金属粒子を面心立方の結晶構造を持つ第2の金属で接着固着したものである。比較的硬度、融点が低い第1の金属として、例えば、アルミニウム(Al)、銀(Ag)、亜鉛(Zn)、銅(Cu)があり、粒径をマイクロサイズとするこれらの第1の金属の金属粒子を半導体素子と当該半導体素子に接合する被接合体との間に複数介在させ、第1の金属の金属粒子を面心立方の結晶構造を持つ、比較的硬度、融点が高い第2の金属で固着接合した構造である。
 上記金属の内、例えばAlは硬度が低く応力緩和の効果が高い。また、他の金属との間の接合界面のような大気等の酸素が存在する環境下でも、高温安定性にすぐれている。そのため、本実施形態において、第1の金属として主にAlを用いた場合について説明する。さらに、例えばNiは硬度及び融点が比較的高いことから、本実施形態においては、第2の金属として主にNiを用いた場合について説明する。
 図1は、本実施形態に係る半導体素子接合構造を示す図、図2は、図1の接合構造における接合層の構成を示すイメージ図である。本実施形態に係る半導体素子接合構造1は、例えば表面をNiでコーティングしたCuリードフレームなどの基板2と、当該基板2と対向する接合面をAl電極3aとする例えばSiCの半導体チップ3との間に接合層4を介することで、基板2と半導体チップ3とを接合する構造である。
 接合層4は、粒径がマイクロサイズ(以下、マイクロサイズの範囲を0.5μmより大きく、1mm未満とし、好ましくは500μm以下とする)の第1の金属であるAlの金属粒子5を第2の金属であるNiで固着接合して形成されている。特許文献1において示されるように、NiはAlやAl合金との接合を可能とするが、硬度が高いため、熱膨張差による熱応力を緩和することができず、上述したようにクラック発生の原因となってしまう。そのため、図2に示すように、Niよりも硬度が低く、粒径がマイクロサイズの金属粒子5を混合して介在させることで、金属粒子5が熱応力を吸収しつつ、Al電極3aとの接合を強固に行うことが可能となる。また、基板2側の接合面は、NiでコーティングしたCuリードフレームの場合、Niとの接合になるため、Ni同士で強固に接合することが可能となる。なお、基板2の最表面はNi以外に、金(Au)、Ag、Al等でもよい。
 また、接合層4中にマイクロサイズの金属粒子5が存在することで、金属粒子5間に焼結中に発生するガスの排出パスができ、ガスボイドが接合層4に内包されることを防ぐことができる。ここで、マイクロサイズの金属粒子5が全て同一径である場合には、最密に充填された場合でも容積率は74%程度となる。したがって、金属粒子5が占める容積以外の金属粒子5間の領域(74%の残りの26%領域)でNi粒子とガスの流出パスが形成されることになり、流出パスが分散されてボイドを一か所に凝集して粗大化することを防止することができる。金属粒子5にサイズ分布がある場合には、最大の容積率は74%以上になるが、それでも十分に一定のガス流出パスを確保することができる。すなわち、金属粒子5が最密に充填されていない場合であっても、応力緩和効果を得られると共に、ガス流出パスを確保し、ボイド成長抑制効果にも寄与することが可能となる。
 なお、接合層3に介在させるマイクロサイズの金属粒子5は、Niよりも硬度が低いものであればよく、例えば、上述したように、Al、Ag、Zn、Cu等を用いることができるが、特にAlを用いた場合は、優れた応力緩和の効果を得ることができる。また、Ni粒子(後述するように、ここではナノサイズのNi粒子を用いる)の焼結温度、及び半導体チップ3の発熱による耐熱性を考慮した場合には、融点が少なくとも300℃以上、好ましくは350℃以上の金属粒子5を用いることが望ましい。
 接合層4の形成方法については、例えば、粉末状のマイクロサイズの第1の金属の金属粒子5と、粒径がナノサイズ(以下、ナノサイズの範囲を5nm以上、500nm以下とする)であって、金属粒子5の粒径の1/10以下の粒径のNiを含む粉末状のNi粒子とを混合した混合体をペースト状にし、当該ペースト状の接合剤を基板2に塗布し、その上に半導体チップ3を載せて焼結接合するようにしてもよい。または、基板2と半導体チップ3との間に金属粒子5を介在させた状態でめっき液を流通し、めっきによりNiを析出させて基板2と半導体チップ3との間を金属粒子5で固着接合するようにしてもよい。例えば、無電解Niの析出により、Al粒子との良好な接合性が確保できる。いずれの場合にも、例えばAl粒子の表面にNiなどの表層を事前に形成しておくことができる。
 以下、焼結接合による接合層4の形成方法について説明する。図3は、本実施形態に係る半導体素子接合構造を焼結結合で形成する場合の形成方法を示す模式図である。まず、液相還元法により粒径がナノサイズのNi粒子と粒径がマイクロサイズの金属粒子5(ここでは、Al粒子を用いるものとし、以下金属粒子5をAl粒子とする)とを用意する(図3(A)及び(B)を参照)。これを溶媒及びバインダーと混合してペースト状の接合材料を作成する(図3(C)を参照)。
 基板2上にペースト状の接合材料を塗布し、その上に半導体チップ3(ここでは、SiCのパワー半導体を用いるものとし、以下SiCチップとする)を載せる(図3(D)を参照(図3(D)において基板2及びSiCチップは図示しない))。接合条件として、例えば、昇温速度5(3~50)℃/min、保持温度350(300~400)℃、保持時間60(10~120)分、加圧1(0.5~5)MPaで焼結接合する。すなわち、上記のような温度で加熱することで、溶媒が蒸発し(図3(E)を参照)、ナノサイズのNi粒子が焼結結合することで(図3(F)を参照)、接合層4を含む半導体素子接合構造1が形成される。
 粒径がナノサイズのNi粒子は、金属としてのNiの融点(1455℃)よりも極めて低い温度(例えば、300℃程度)で粒子間を結合させることが可能である。また、結合した後の焼結体としての金属は、本来のNiの融点を維持することができるため、SiCチップの発熱に対して、十分な耐熱性を有することが可能となる。
 このとき、Ni粒子の粒径はナノサイズであればよいが、500nm以下であることが好ましく、100nm以下とすることで、低温での焼結性が増すためさらに好ましい。一方、粒径が小さすぎると表面の酸化物、有機成分の割合が大きくなり、接合性が低下する。したがって、5nm以上であることが好ましい。なお、これらの粒径のNi粒子は、全
ての粒子が上記サイズを満たす必要はなく、少なくとも上記サイズのNi粒子を含む状態であればよく、好ましくは平均粒径が上記サイズを満たすようにすればよい。
 また、上記接合材料において、溶媒及びバインダーを除いたAl粒子とNi粒子との混合比率は、Al粒子の容積率が20%以上、90%以下とし、好ましくは50%以上とする。そうすることで、Al粒子で格子形成がなされ、Ni粒子の焼結時に生じるボイドの粗大化を抑制することが可能となる。20%以下では、応力緩和の効果が十分ではなく、90%以上では、固着接合する金属部分が少なく、接合力が低下する。
 なお、図1の半導体素子接合構造1において、接合層4の厚みは3~800μm程度とすることが望ましい。3μm以下では、応力緩和の効果が十分に得られず、また800μm以上では、熱伝導率の低下が大きくなるため、放熱特性として好ましくない。より好ましくは、10μm~150μm程度である。
 また、本実施形態においては、第2の金属としてNiを使用して説明したが、同様の原理を用いてナノサイズのCuを用いることもできる。この場合、ナノサイズのCu粒子焼結体よりも硬度の低い第1の金属の金属粒子5として、例えばAl、Ag、Zn粒子を用いることができる。これらの第1の金属の金属粒子5とナノサイズの第2の金属としてのCu粒子とを混合することによって、応力緩和、及びガス流出パスの確保を行うことができる。Ni,Cu以外のナノサイズの粒子は、Au、Agなど面心立方の結晶構造をもつものが好ましく、焼結後の金属の特に低温での変形能の低下の程度が少ないので、低温側でのクラックの発生、進展を抑制するために適している。
AlやAgのマイクロサイズの第1の金属の金属粒子5は、ナノサイズの場合と比較して酸化の程度が抑制され、またAgはマイクロサイズの場合に、マイグレーションの懸念も軽減される。
 本発明に係る半導体素子接合構造について、以下の実験を行った。図4は、実験用に作成したサンプル構造を示す図である。なお、本実施例においては、半導体素子接合構造をマイクロサイズのAl粒子とナノサイズのNi粒子とを混合した接合剤を焼結することで図1における接合層4を形成した。
 接合には液相還元法により作製した粒径サイズ100nm以下のナノサイズのNi粒子と平均粒径10μmのマイクロサイズのAl粒子、溶媒及びバインダーから成るペーストを接合材料として用いた。ペースト中のNi粒子とAl粒子との割合は重量割合で1:1(体積割合で0.24:0.76)とした。なお、比較材料としてナノサイズのNi粒子のみのペーストも接合材料として用いた。
 接合評価には表面にNiめっきが施されたTO-247リードフレームと、サイズがそれぞれ2.7mm×2.7mm,5.0mm×5.0mm,7.0mm×7.0mmのSiチップとを用いた。チップの接合表面には厚み1μmのAl電極が蒸着法により形成されている。厚み0.1mmのステンレス板で作製したメタルマスクを用いてTO-247リードフレーム側にペーストを塗布し、チップを塗布部上にのせて、大気中にて昇温速度5℃/min、保持温度350℃、保持時間60分、加圧3MPaの接合条件で接合を行った。Al粒子の体積率は約76Vol%であることから、接合層中で充填率が74%の最密構造に近い構造を形成していると考えられる。
 接合強度の測定については、せん断強度による評価を行った。測定にはボンドテスター(ノードソン・アドバンテージ・テクノロジー製 万能型ボンドテスター4000Plus)を用い、常温で測定を行った。ツールの試験サンプルからの高さは100μm、ツールの移動速度は100μm/secに設定した。接合強度試験後のサンプルは、走査型電子顕微鏡(SEM, Hitachi High-Technologies:SU3500)を用いて破断面の観察を行った。
 以下、実験結果を説明する。接合後の断面及び表面を観察した。図5は、光学顕微鏡で観察した接合構造の全体断面図を示しており、図5(A)はナノサイズのNi粒子にマイクロサイズのAl粒子を混合した場合の接合材料ペーストを利用したときの断面図、図5(B)は図5(A)における中心付近の断面画像、図5(C)は図5(A)における右端付近の断面画像である。また、図6は、ナノサイズのNi粒子にマイクロサイズのAl粒子を混合した場合の接合材料ペーストを利用したときの接合断面のSEM像である。
 図11に示したマイクロサイズのAl粒子を含まない場合の接合構造と比較した場合に、図11の断面画においては大きなクラックやガスボイドがみられていたが、図5のナノサイズのNi粒子とマイクロサイズのAl粒子とを混合したペーストを用いた接合の断面像からは大きなクラックやガスボイドはみられなかった。また、図6のSEM断面像から焼結したNi粒子層中にAl粒子がおおよそ均一に分散して存在している様子が確認できた。これは、上述したように、Al粒子が体心立方格子か六方最密構造の体系を形成することで接合過程における溶剤が気化した際の通り道を確保し、大きなクラックやガスボイドの発生を抑制できたと考えられる。
 また、図7は、接合部分の表面を観察した結果を示す図である。図7(A)はマイクロサイズのAl粒子を含まない場合の加熱後における接合部分の表面を示す図、図7(B)はナノサイズのNi粒子にマイクロサイズのAl粒子を混合した場合の加熱後における接合部分の表面を示す図である。図7(A)において、Al粒子を含まない場合の接合層では大きなクラックやガスボイドが全体的に存在していることが確認できた。図7(B)においては、Al粒子を含む場合の接合層では大きなクラックやガスボイドがないきれいな層状であることが確認できた。すなわち、上述したように、接合過程における溶剤が気化した際の通り道が確保されることで、大きなクラックやガスボイドの発生を抑制できたことが確認された。
 次に、接合強度の測定結果について説明する。図8は、チップサイズ別のシェア強度の比較グラフである。2.7mm角のチップの接合強度を1とし、チップサイズ別にナノサイズのNi粒子とマイクロサイズのAl粒子とを混合した場合と、ナノサイズのNi粒子のみの場合とでせん断応力を比較した。2.7mm角の小さいサイズのものでは、熱応力による劣化が顕著でないため、マイクロサイズのAl粒子の有無の差がほとんどないが、マイクロサイズのAl粒子を含まない場合の接合材料の混合ペーストでは、チップサイズが大きくなるほど接合強度が低下している。一方、ナノサイズのNi粒子/マイクロサイズのAl粒子の接合材料の混合ペーストでは、チップサイズが大きくなると共に接合強度も増加している。
 チップサイズが増大するに連れてチップの熱膨張率は増加する。すなわち、マイクロサイズのAl粒子を含んでいない場合は、熱応力を解放することができないため、チップのサイズが大きくなるに連れて接合強度が低下したと考えられる。一方、Ni粒子/Al粒子の混合ペーストの場合は、接合層の中のAl粒子が熱応力の解放部として作用することで高い接合強度が観察されたと考えられる。
 図9は、縦軸を接合強度、横軸をせん断応力方向におけるツールの変位量とした応力-ひずみ曲線のグラフである。図9(A)は、マイクロサイズのAl粒子を含んでいる場合の接合材料を用いた結果、図9(B)は、マイクロサイズのAl粒子を含んでいない場合の接合材料を用いた結果を示している。なお、図9では、5.0mm×5.0mmのチップの接合強度結果を元にした。
 図9に示されるように、Al粒子が混合されている接合の変位量が、Al粒子が混合されていない場合の接合に比べて大きく且つ緩やかな曲線を描いている。これは、Al粒子にせん断応力が加わった際にAl粒子が延びて塑性変形しているとためと考えられる。
 次に、マイクロサイズのAl粒子を混合した場合の効果について、有限要素法による熱応力解析をおこなった。検討したモデルは、SiCチップとCu基板とが接合されており、チップサイズは7.0mm×7.0mm、接合表面はAgとした。基板サイズは10.0m×10.0mmとした。また、ナノサイズのNi粒子とマイクロサイズのAl粒子との混合による接合層中のAl粒子の体積率は74%として解析を行った。
 温度サイクルの上限は250℃、下限は-45℃とし、サイクル数は6回までの解析を行った。熱サイクル開始は200℃で熱応力が解放された状態から、低温側、高温側の順に温度を変化させた。最大発生応力は、接合部のチップ端面となるが、マイクロサイズのAl粒子を含まない場合の接合における応力は、いずれのサイクル数でもNi粒子/Al粒子を含む場合に比較して、最大応力は下がっている。図10に示すように、マイクロサイズのAl粒子を含まない場合の接合の応力値と比べて、Ni粒子/Al粒子を混合した場合の接合の応力値が約1/2程低下していることがわかる。
 さらに、上記と同様の条件の下、複数の金属混合の組み合わせで以下の表1に示す評価を行った。ナノサイズの金属粒子の焼結(結合体)は、粒子が結合してバルク金属と同等の硬度となることで結合体と考える。ただし、実際のナノサイズの金属粒子の焼結では、酸素、炭素などが混入する場合が多く、硬度はより高くなる場合があるが、その場合は本発明の効果がより顕著となる。なお熱サイクルの最高温度は200℃とした。表1において、接合用のナノサイズの金属粒子100%に対して、マイクロサイズの金属粒子を混合した場合に20%以上最大応力が低減されたものを丸で示した。
Figure JPOXMLDOC01-appb-T000001
 表1より、ナノサイズのNi/マイクロサイズのAlの混合以外にも、Ni/Ag、Cu/Ag、Cu/Al(ナノサイズの金属/マイクロサイズの金属)の金属粒子の組み合わせでも、本発明の効果を得ることができることが明らかとなった。
 次に、めっきによりマイクロサイズのAlをNiで固着接合する実験を行った。平均粒径が150μmのAl粒子の表面に0.3μmのNiを無電解Niめっきにより被覆した粒子を準備し、電極表面がNiである5mm角SiCチップとNiメッキされたCu基板との間に、500μmの厚みになるように前記Al粒子を挟持して固定した。このとき、SiCチップとCu基板との両側に永久磁石を配置し、Niの磁性を利用して固定した。Al粒子の空隙にNiめっき液を流通させ、粒子間を電気めっきにより固着接合した。断面から観察し、Alの断面占有率は約70%、めっきによる固着部分は12%であった。
 すなわち、めっき金属によりマイクロサイズの金属粒子を強固に固着接合することが可能となり、また、マイクロサイズの金属粒子の降伏(塑性変形)により熱応力を吸収することが可能となる。
 以上の実験結果から、ナノサイズのNi粒子にマイクロサイズのAl粒子を混合することで、マイクロサイズのAl粒子を含まない接合構造において発生していた大きなクラックやガスボイドの発生を抑制できることが明確となった。また、Ni/Al粒子の混合ペーストを用いた接合は、Al粒子を含まない場合の接合に比べて接合強度の低下がみられなかったことから、Ni粒子の焼結後においてAl粒子と良好な接合ができていることが明確となった。さらに、上記実験結果からNi粒子層に分散して存在するAl粒子の塑性変形の傾向がみられ、シェアテスト後の破断面観察からもAl粒子が延びて塑性変形している様子が確認できた。したがって、本発明に係る半導体素子接合構造は、Niにより半導体素子と被接合体とを強固に且つ高品質に接合することができると共に、金属粒子の降伏(塑性変形)により半導体素子と被接合体との熱膨張差による熱応力を吸収し、クラックなどの発生を防止することが可能であることが明確となった。
 また、ナノサイズのNi/マイクロサイズのAlの混合以外にも、面心立方の結晶構造を持つナノサイズの金属粒子に、当該金属粒子よりも硬度が低く、融点が同等以下のマイクロサイズの金属粒子を混合して接合構造を形成することで、本発明の効果を有する半導体素子接合構造を実現することが可能であることが明確となった。
  1 半導体素子接合構造
  2 基板
  3 半導体チップ
  3a Al電極
  4 接合層
  5 金属粒子

Claims (8)

  1.  第1の金属の金属粒子を第2の金属で固着接合した半導体素子接合層を有する半導体素子接合構造であって、
     前記第1の金属は、前記第2の金属よりも硬度が低く、融点が当該第2の金属と同等以下であり、且つ、粒径がマイクロサイズであり、前記第1の金属の金属粒子は半導体素子と当該半導体素子に接合する被接合体との間に複数介在しており、前記第1の金属の金属粒子は前記第2の金属で固着接合されていることを特徴とする半導体素子接合構造。
  2.  請求項1に記載の半導体素子接合構造において、
     前記第1の金属の金属粒子の粒径が0.5μmより大きく、500μm以下である半導体素子接合構造。
  3.  請求項1又は2に記載の半導体素子接合構造において、
     前記第2の金属がニッケル(Ni)又は銅(Cu)である半導体素子接合構造。
  4.  請求項1ないし3のいずれかに記載の半導体素子接合構造において、
     当該半導体素子接合層の厚みが3μm以上、800μm以下の範囲である半導体素子接合構造。
  5.  請求項1ないし4のいずれかに記載の半導体素子接合構造において、
     前記第1の金属がアルミニウム(Al)又はアルミニウム合金(Al合金)である半導体素子接合構造。
  6.  請求項1ないし5のいずれかに記載の半導体素子接合構造の生成方法であって、
     前記第1の金属の金属粒子を前記半導体素子と前記被接合体との間に複数介在させ、前記第1の金属の金属粒子間に生じる隙間にめっき液を流通し、めっき処理により前記第2の金属を析出させて前記第1の金属の金属粒子を固着接合する半導体素子接合構造の生成方法。
  7.  請求項1ないし5のいずれかに記載の半導体素子接合構造の生成方法であって、
     粒径が5nm以上、500nm以下で、且つ、前記第1の金属の金属粒子の粒径の1/10以下である前記第2の金属を含む前記第2の金属の金属粒子と前記第1の金属の金属粒子との混合体を200℃以上で加熱し、前記第2の金属の金属粒子の焼結体で前記第1の金属の金属粒子を固着接合する半導体素子接合構造の生成方法。
  8.  ナノサイズのニッケル(Ni)を含むニッケル(Ni)粒子と、前記ニッケル(Ni)よりも硬度が低く、粒径がマイクロサイズの金属粒子との混合体からなり、前記金属粒子の容積率が20%以上、90%以下であることを特徴とする導電性接合剤。
     
     
PCT/JP2019/032599 2018-08-31 2019-08-21 半導体素子接合構造、半導体素子接合構造の生成方法及び導電性接合剤 WO2020045182A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/187,452 US11810885B2 (en) 2018-08-31 2021-02-26 Semiconductor element bonding structure, method for producing semiconductor element bonding structure, and electrically conductive bonding agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163838A JP7198479B2 (ja) 2018-08-31 2018-08-31 半導体素子接合構造、半導体素子接合構造の生成方法及び導電性接合剤
JP2018-163838 2018-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/187,452 Continuation US11810885B2 (en) 2018-08-31 2021-02-26 Semiconductor element bonding structure, method for producing semiconductor element bonding structure, and electrically conductive bonding agent

Publications (1)

Publication Number Publication Date
WO2020045182A1 true WO2020045182A1 (ja) 2020-03-05

Family

ID=69644305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032599 WO2020045182A1 (ja) 2018-08-31 2019-08-21 半導体素子接合構造、半導体素子接合構造の生成方法及び導電性接合剤

Country Status (3)

Country Link
US (1) US11810885B2 (ja)
JP (1) JP7198479B2 (ja)
WO (1) WO2020045182A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053356A1 (ja) * 2013-10-09 2015-04-16 学校法人早稲田大学 電極接続方法及び電極接続構造
JP2017147151A (ja) * 2016-02-18 2017-08-24 株式会社豊田中央研究所 導電性ペースト及び半導体装置
JP2017172029A (ja) * 2016-03-25 2017-09-28 新日鐵住金株式会社 Niナノ粒子を用いた接合材料及び接合構造体
JP2018029143A (ja) * 2016-08-18 2018-02-22 古河電気工業株式会社 半導体デバイス及びその製造方法
JP2018111856A (ja) * 2017-01-11 2018-07-19 日立化成株式会社 接合用銅ペースト、焼結体、接合体、半導体装置及びそれらの製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069369A (en) * 1970-12-15 1978-01-17 Gould Inc. Fine dispersion aluminum base bearing
US4734967A (en) * 1986-06-02 1988-04-05 Imperial Clevite Inc. Method of heat treating bearing materials
JP4717334B2 (ja) * 1997-03-31 2011-07-06 日立化成工業株式会社 回路接続材料並びに回路端子の接続構造及び接続方法
JP5123633B2 (ja) * 2007-10-10 2013-01-23 ルネサスエレクトロニクス株式会社 半導体装置および接続材料
JP2013040254A (ja) * 2011-08-12 2013-02-28 Nitto Denko Corp 導電性粘着テープ
JP6053386B2 (ja) * 2012-08-09 2016-12-27 古河電気工業株式会社 電子部品の接合方法
JP6153077B2 (ja) * 2013-02-28 2017-06-28 株式会社豊田中央研究所 金属ナノ粒子ペースト、それを含有する接合材料、およびそれを用いた半導体装置
JP6199048B2 (ja) * 2013-02-28 2017-09-20 国立大学法人大阪大学 接合材
JP5733638B2 (ja) * 2013-03-06 2015-06-10 株式会社豊田中央研究所 接合材料およびそれを用いた半導体装置、ならびに配線材料およびそれを用いた電子素子用配線
JP6032110B2 (ja) * 2013-04-17 2016-11-24 株式会社豊田中央研究所 金属ナノ粒子材料、それを含有する接合材料、およびそれを用いた半導体装置
JP6153076B2 (ja) * 2013-05-22 2017-06-28 株式会社豊田中央研究所 金属ナノ粒子ペースト、それを含有する接合材料、及びそれを用いた半導体装置
KR102208961B1 (ko) * 2013-10-29 2021-01-28 삼성전자주식회사 반도체소자 패키지 및 그 제조방법
JP6270241B2 (ja) * 2014-01-30 2018-01-31 株式会社豊田中央研究所 接合材料及びそれを用いた半導体装置
JP6323128B2 (ja) * 2014-04-03 2018-05-16 新日鐵住金株式会社 回路基板の製造方法
EP3162467B1 (en) * 2014-06-30 2019-03-27 NIPPON STEEL Chemical & Material Co., Ltd. Nickel particle composition, bonding material, and bonding method in which said material is used
JP6380539B2 (ja) * 2014-08-22 2018-08-29 株式会社豊田自動織機 接合構造、接合材、及び接合方法
SG11201700740QA (en) * 2014-08-29 2017-02-27 Furukawa Electric Co Ltd Adhesive film
JP6382228B2 (ja) * 2014-08-29 2018-08-29 古河電気工業株式会社 導電性接着フィルム
JP6398499B2 (ja) * 2014-09-09 2018-10-03 富士通株式会社 電子装置及び電子装置の製造方法
US9984951B2 (en) * 2016-07-29 2018-05-29 Nxp Usa, Inc. Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof
US9922894B1 (en) * 2016-09-19 2018-03-20 Nxp Usa, Inc. Air cavity packages and methods for the production thereof
US10104759B2 (en) * 2016-11-29 2018-10-16 Nxp Usa, Inc. Microelectronic modules with sinter-bonded heat dissipation structures and methods for the fabrication thereof
US10199302B1 (en) * 2017-08-07 2019-02-05 Nxp Usa, Inc. Molded air cavity packages and methods for the production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053356A1 (ja) * 2013-10-09 2015-04-16 学校法人早稲田大学 電極接続方法及び電極接続構造
JP2017147151A (ja) * 2016-02-18 2017-08-24 株式会社豊田中央研究所 導電性ペースト及び半導体装置
JP2017172029A (ja) * 2016-03-25 2017-09-28 新日鐵住金株式会社 Niナノ粒子を用いた接合材料及び接合構造体
JP2018029143A (ja) * 2016-08-18 2018-02-22 古河電気工業株式会社 半導体デバイス及びその製造方法
JP2018111856A (ja) * 2017-01-11 2018-07-19 日立化成株式会社 接合用銅ペースト、焼結体、接合体、半導体装置及びそれらの製造方法

Also Published As

Publication number Publication date
US20210225794A1 (en) 2021-07-22
JP2020035983A (ja) 2020-03-05
JP7198479B2 (ja) 2023-01-04
US11810885B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
EP3590909B1 (en) Copper/ceramic joined body insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
TWI624356B (zh) Metal joint structure using metal nanoparticle, metal joint method, and metal joint material
JP6642865B2 (ja) はんだ接合部
JP6384894B2 (ja) 金属ナノ粒子を用いた金属接合構造及び金属接合方法並びに金属接合材料
JPWO2018131095A1 (ja) 無加圧接合用銅ペースト、接合体、及び半導体装置
JP2017103180A (ja) 無加圧接合用銅ペースト、接合体、及び半導体装置
JP6460578B2 (ja) 接合材料、それを用いた接合方法、接合材料ペースト及び半導体装置
US9343425B1 (en) Methods for bonding substrates with transient liquid phase bonds by spark plasma sintering
Sun et al. Solderless bonding with nanoporous copper as interlayer for high-temperature applications
JP4624222B2 (ja) 導電部形成用粒子
Liu et al. Ultrasonic-assisted nano Ag-Al alloy sintering to enable high-temperature electronic interconnections
Usui et al. Effects of thermal aging on Cu nanoparticle/Bi-Sn solder hybrid bonding
JP2012124497A (ja) 半導体装置
JP2019070174A (ja) 接合用ペースト及びそれを用いた半導体装置
WO2020045182A1 (ja) 半導体素子接合構造、半導体素子接合構造の生成方法及び導電性接合剤
JP2010283105A (ja) 配線基板冷却機構、その製造方法、接合構造体、およびその製造方法
Deng et al. Bonding below 150 C using nano-ag film for power electronics packaging
JP7107355B2 (ja) 無加圧接合用銅ペースト、接合体、及び半導体装置
Rajendran et al. Effect of 0D and 1D ZnO nano additive reinforced Sn-3.0 Ag-0.5 Cu solder paste on InGaN LED chip/ENIG joints
JP6516277B1 (ja) 半導体素子接合部材
US20170080493A1 (en) Methods For Evaluating The Properties Of Transient Liquid Phase Bonds
JP6770277B2 (ja) 熱電変換モジュールおよびその製造方法
Cui et al. Review on Shear Strength and Reliability of Nanoparticle Sintered Joints for Power Electronics Packaging
CN111033703A (zh) 安装结构体以及纳米粒子安装材料
Zhang et al. Thermostable electroless plating optimized for Ag sinter die-attach realizing high T J device packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855105

Country of ref document: EP

Kind code of ref document: A1