WO2020045030A1 - 複合弁及びそれを用いた車両用空気調和装置 - Google Patents

複合弁及びそれを用いた車両用空気調和装置 Download PDF

Info

Publication number
WO2020045030A1
WO2020045030A1 PCT/JP2019/031363 JP2019031363W WO2020045030A1 WO 2020045030 A1 WO2020045030 A1 WO 2020045030A1 JP 2019031363 W JP2019031363 W JP 2019031363W WO 2020045030 A1 WO2020045030 A1 WO 2020045030A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
passage
heat
composite
Prior art date
Application number
PCT/JP2019/031363
Other languages
English (en)
French (fr)
Inventor
徹也 石関
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201980053586.9A priority Critical patent/CN112543855B/zh
Publication of WO2020045030A1 publication Critical patent/WO2020045030A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the present invention relates to a composite valve applied to a refrigerant circuit and a heat pump type vehicle air conditioner using the same.
  • an air conditioner that can be applied to vehicles such as hybrid vehicles and electric vehicles, a compressor, a radiator, a heat absorber, and a refrigerant circuit to which an outdoor heat exchanger is connected are provided. Heating the refrigerant in the radiator, heating the vehicle interior by absorbing the refrigerant radiated in the radiator in the outdoor heat exchanger, and radiating the refrigerant discharged from the compressor in the outdoor heat exchanger, 2.
  • An air conditioner for a vehicle has been developed which switches and executes a cooling mode or the like in which a vehicle interior is cooled by absorbing heat in a heat absorber. In addition, such switching of the operation mode in the vehicle compartment has been performed using a large number of solenoid valves (for example, see Patent Document 1).
  • the conventional vehicle air conditioner uses a large number of solenoid valves to switch the operation mode, so that the number of parts is increased, the cost is increased, and a limited engine room (in the case of an electric vehicle, There is no engine, but it occupies a space outside the cabin where devices related to traveling and air conditioning are installed).
  • the present invention has been made to solve such a conventional technical problem, and aims to reduce the number of parts by combining a plurality of solenoid valves conventionally used in a vehicle air conditioner. It is an object of the present invention to provide a composite valve that can be used and an air conditioner for a vehicle using the same.
  • the composite valve of the present invention is applied to a refrigerant circuit, and has a housing having a first refrigerant inlet, a first refrigerant outlet, a second refrigerant inlet, and a second refrigerant outlet, and is formed in the housing.
  • a first refrigerant passage extending between the first refrigerant inlet and the first refrigerant outlet, a second refrigerant passage formed in the housing, extending between the second refrigerant inlet and the second refrigerant outlet, and provided in the first refrigerant passage.
  • the first refrigerant passage on the first refrigerant inlet side from the first on-off valve portion and the second refrigerant passage on the second refrigerant outlet side from the second on-off valve portion in the above invention are formed by a housing. Are formed adjacent to each other.
  • the housing includes a first housing member provided with a first refrigerant inlet, a first refrigerant outlet, a first refrigerant passage, and a first on-off valve portion; A second refrigerant inlet, a second refrigerant outlet, a second refrigerant passage, and a second housing member provided with a second on-off valve portion, wherein an actuator is provided over each housing member; Driving the unit.
  • the first refrigerant passage closer to the first refrigerant inlet than the first on-off valve portion is formed in the first housing member in proximity to one surface of the first housing member
  • a second refrigerant passage on the second refrigerant outlet side of the second on-off valve portion is formed in the second housing member close to one surface of the second housing member
  • the first housing member is provided with a first on-off valve.
  • a first communication passage extending from the first refrigerant passage on the first refrigerant inlet side to the one surface of the first housing member, and the second housing member includes a second refrigerant on the second refrigerant outlet side from the second on-off valve. It has a second communication portion extending from the passage to one surface of the second housing member, and the one surfaces of the housing members are connected to each other, and in this state, the communication portions match to form a communication passage.
  • an air conditioner for a vehicle wherein the composite valve of each of the above aspects, a compressor for compressing the refrigerant, and a refrigerant inlet connected to the refrigerant pipe on the discharge side of the compressor to release the refrigerant and release the refrigerant.
  • An indoor expansion valve for reducing the pressure for reducing the pressure, a bypass circuit branched from a refrigerant pipe on the refrigerant outlet side of the radiator, and a control device, wherein the refrigerant pipe on the refrigerant outlet side of the outdoor heat exchanger is provided at the first refrigerant inlet of the composite valve.
  • the bypass circuit is connected to the second refrigerant inlet of the composite valve, the refrigerant pipe on the refrigerant inlet side of the indoor expansion valve is connected to the second refrigerant outlet of the composite valve, and the control device drives the composite valve driving device. It is characterized by being controlled.
  • the control device controls the driving device of the composite valve, so that the first opening / closing valve portion and the second opening / closing valve portion of the composite valve make the first valve.
  • the refrigerant passage and the second refrigerant passage are opened, and the refrigerant discharged from the compressor is radiated by the radiator while the refrigerant is prevented from flowing into the heat absorber, and the radiated refrigerant is decompressed by the outdoor expansion valve.
  • the heating mode in which heat is absorbed by the outdoor heat exchanger, and the first refrigerant passage and the second refrigerant passage are opened by the first on-off valve portion and the second on-off valve portion of the composite valve, and discharged from the compressor.
  • the released refrigerant is radiated by the radiator, the radiated refrigerant is depressurized by the outdoor expansion valve, then absorbed by the outdoor heat exchanger, and the refrigerant from the bypass circuit is depressurized by the indoor expansion valve.
  • Dehumidifying and heating mode for absorbing heat, and a first on-off valve portion of the composite valve Further, the first refrigerant passage and the second refrigerant passage are closed by the second on-off valve portion, and the refrigerant discharged from the compressor is radiated by the radiator and the outdoor heat exchanger.
  • the refrigerant flows into the indoor expansion valve via a stop valve, is decompressed by the indoor expansion valve, and then dehumidified and cooled in which heat is absorbed by a heat absorber.
  • the passage, and the second refrigerant passage are closed, the refrigerant discharged from the compressor is radiated by the outdoor heat exchanger, and the radiated refrigerant flows through the check valve of the composite valve to the indoor expansion valve. After the pressure is reduced, a cooling mode in which heat is absorbed by a heat absorber is switched and executed.
  • an air conditioner for a vehicle comprising a cooling device for cooling a temperature-controlled object mounted on a vehicle using a refrigerant according to the invention of the fifth or sixth aspect.
  • the temperature control target cooling device is a temperature control target heat exchanger for absorbing the refrigerant to cool the temperature control target, and an auxiliary expansion valve for reducing the pressure of the refrigerant flowing into the temperature control target heat exchanger.
  • the refrigerant inlet of the heat exchanger for temperature control is connected to a branch pipe branched from the refrigerant pipe on the refrigerant inlet side of the indoor expansion valve, and the refrigerant outlet of the heat exchanger for temperature control is the compressor outlet.
  • the controller is connected to the suction-side refrigerant pipe, and the control device controls the driving device of the composite valve, so that the first on-off valve portion of the composite valve and the first refrigerant passage by the second on-off valve portion, and The second refrigerant passage is closed, and the refrigerant discharged from the compressor is radiated by the outdoor heat exchanger to be discharged.
  • the refrigerant flowed through the check valve of the composite valve to the indoor expansion valve and the auxiliary expansion valve, and after the pressure was reduced by the indoor expansion valve, the heat was absorbed by the heat absorber and the pressure was reduced by the auxiliary expansion valve.
  • the cooling / temperature controlled cooling mode in which heat is absorbed by the heat exchanger, and the first refrigerant passage and the second refrigerant passage are closed by the first opening / closing valve unit and the second opening / closing valve unit of the composite valve, and the heat is absorbed by the heat absorber.
  • the refrigerant discharged from the compressor is radiated by the outdoor heat exchanger, and the radiated refrigerant flows through the check valve of the composite valve to the auxiliary expansion valve.
  • a cooling mode to be cooled in which the heat is absorbed by the heat exchanger for temperature regulation, is switched and executed.
  • a housing having a first refrigerant inlet, a first refrigerant outlet, a second refrigerant inlet, and a second refrigerant outlet, and a housing formed in the housing, A first refrigerant passage extending between the first refrigerant inlet and the first refrigerant outlet, a second refrigerant passage formed in the housing, extending between the second refrigerant inlet and the second refrigerant outlet, and provided in the first refrigerant passage; A first on-off valve for opening and closing the first refrigerant passage, a second on-off valve provided in the second refrigerant passage for opening and closing the second refrigerant passage, a first on-off valve via an actuator, and A drive device for driving the second on-off valve portion, a first refrigerant passage formed in the housing and located on the first refrigerant inlet side from the first on-off valve portion, and a second refriger
  • a check valve having a forward direction for example, a compressor for compressing a refrigerant as in the invention of claim 5 and a refrigerant inlet is connected to a refrigerant pipe on a discharge side of the compressor, and A radiator for heating the air to be supplied to the passenger compartment by radiating heat, and a heat absorber for connecting the refrigerant outlet to the refrigerant pipe on the suction side of the compressor to absorb the refrigerant and cool the air supplied to the passenger compartment.
  • an outdoor heat exchanger connected to the refrigerant pipe on the refrigerant outlet side of the radiator and provided outside the vehicle compartment, an outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger, and a heat absorber.
  • An indoor expansion valve for reducing the inflowing refrigerant a bypass circuit branched from a refrigerant pipe on the refrigerant outlet side of the radiator, and a refrigerant outlet of an outdoor heat exchanger applied to a vehicle air conditioner equipped with a control device.
  • Side refrigerant pipe is connected to the first refrigerant inlet of the composite valve
  • the refrigerant pipe on the suction side of the machine is connected to the first refrigerant outlet of the composite valve
  • the bypass circuit is connected to the second refrigerant inlet of the composite valve
  • the refrigerant pipe on the refrigerant inlet side of the indoor expansion valve is connected to the second refrigerant of the composite valve.
  • the control device controls the driving device of the composite valve, so that the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode can be switched and executed.
  • a cooling target cooling device mounted on the vehicle using a refrigerant to cool the temperature control target is provided, and the cooling target target device cools the temperature by absorbing the refrigerant.
  • a heat exchanger for cooling the temperature control target, and a refrigerant inlet of the heat exchanger for temperature control by providing an auxiliary expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger for temperature control. Is connected to a branch pipe branched from the refrigerant pipe on the refrigerant inlet side of the indoor expansion valve, and the refrigerant outlet of the heat exchanger for temperature control is connected to the refrigerant pipe on the suction side of the compressor.
  • the function of switching the operation mode of the air conditioner for a vehicle which has conventionally been performed by a plurality of solenoid valves, can be integrated into the composite valve, and the cost of parts and production can be reduced by reducing the number of parts.
  • the installation space can be reduced.
  • the first refrigerant passage on the first refrigerant inlet side from the first on-off valve portion and the second refrigerant passage on the second refrigerant outlet side from the second on-off valve portion are adjacent to each other in the housing. If formed, the first refrigerant passage and the second refrigerant passage can be communicated with a communication passage having a short dimension, and loss such as pressure loss in the communication passage can be suppressed to a minimum. .
  • first housing member provided with the first refrigerant inlet, the first refrigerant outlet, the first refrigerant passage, and the first opening / closing valve portion, the second refrigerant inlet, The second refrigerant outlet, the second refrigerant passage, and the second housing member provided with the second opening / closing valve portion are combined and configured, and an actuator is provided over each housing member to drive each opening / closing valve portion.
  • the first refrigerant passage closer to one surface of the first housing member than the first opening / closing valve portion is formed in the first housing member, and the second opening / closing valve is provided.
  • a second refrigerant passage closer to one surface of the second housing member is formed in the second housing member near the one surface of the second housing member, and the first housing member is provided with a first refrigerant inlet from the first opening / closing valve portion.
  • the communication portions are formed to coincide with each other when one surface of each housing member is connected to each other, so that a communication passage having a short dimension can be easily formed. As well as the check valve Ri with it becomes easy.
  • FIG. 2 is a configuration diagram of an embodiment of a vehicle air conditioner to which the composite valve of FIG. 1 is applied.
  • FIG. 4 is a block diagram of an air conditioning controller as a control device of the vehicle air conditioner of FIG. 3. It is a figure explaining the heating mode by the air-conditioning controller of FIG. It is a figure explaining the dehumidification heating mode by the air-conditioning controller of FIG. FIG.
  • FIG. 5 is a diagram illustrating a dehumidifying cooling mode / cooling mode by the air conditioning controller of FIG. 4.
  • FIG. 5 is a diagram illustrating a cooling / cooling target cooling mode by the air conditioning controller of FIG. 4.
  • FIG. 5 is a diagram illustrating a cooling mode to be temperature-controlled by the air-conditioning controller of FIG. 4.
  • Composite valve 81 1 and 2 are cross-sectional views of a composite valve 81 according to one embodiment to which the present invention is applied.
  • the composite valve 81 of the present invention is applied to a refrigerant circuit R of the vehicle air conditioner 1 and the like, which will be described later, and includes a housing 82 made of metal such as aluminum and an inverted housing provided in the housing 82.
  • a stop valve 18, a first on-off valve section 21, a second on-off valve section 22, and a driving device 83 for driving the first and second on-off valve sections 21, 22 are provided.
  • the driving device 83 drives the first and second opening / closing valve portions 21 and 22 to open and close via an actuator 84.
  • the driving device 83 of this embodiment is constituted by a solenoid, it may be constituted by a stepping motor.
  • the housing 82 of the embodiment is configured by connecting two parts of a first housing member 86 and a second housing member 87, both of which are formed of a metal block such as aluminum.
  • a first refrigerant inlet 88 and a first refrigerant outlet 89 are formed on the side surface and the other side surface, respectively.
  • the first refrigerant inlet 88 and the first refrigerant outlet 89 extend between the first refrigerant inlet 88 and the first refrigerant outlet 89.
  • a refrigerant passage 91 is formed.
  • a second refrigerant inlet 92 and a second refrigerant outlet 93 are formed on the other side surface and the one side surface of the second housing member 87, respectively.
  • the second refrigerant inlet 92 and the second refrigerant inlet 92 are formed inside the second housing member 87.
  • a second refrigerant passage 94 extending between the two refrigerant outlets 93 is formed.
  • the first opening / closing valve portion 21 includes a first valve seat 21 ⁇ / b> A provided in the first refrigerant passage 91 and a first valve body 21 ⁇ / b> B for contacting the first valve seat 21 ⁇ / b> A to open and close the first refrigerant passage 91.
  • the second opening / closing valve portion 22 includes a second valve seat 22 ⁇ / b> A provided in the second refrigerant passage 94 and a second valve seat 22 ⁇ / b> A for abutting on the second valve seat 22 ⁇ / b> A to open and close the second refrigerant passage 94. It consists of two valve bodies 22B.
  • the first housing member 86 and the second housing member 87 are joined together to form an integrated housing 82, and the drive unit 83 is attached to the other surface of the second housing member 87.
  • An actuator 84 of the driving device 83 is provided from the second housing member 87 to the first housing member 86 so as to penetrate the second housing member 87, and the first valve body 21B of the first opening / closing valve portion 21 is provided at the tip thereof.
  • the second valve body 22B of the second on-off valve portion 22 is mounted on the drive device 83 side of the first valve body 21B (the actuator 84 ahead of the second valve body 22B is shown in a thin and simplified manner). .
  • the first valve body 21B and the second valve body 22B are simultaneously driven by the actuator 84. That is, in the embodiment, when the drive device 83 is not energized, the actuator 84 protrudes, the first valve body 21B contacts the first valve seat 21A, the first opening / closing valve portion 21 closes the first refrigerant passage 91, and Then, the second valve body 22B abuts on the second valve seat 22A, and the second on-off valve portion 22 closes the second refrigerant passage 94 (FIG. 2).
  • the composite valve 81 is configured such that the two on-off valve portions 21 and 22 are simultaneously opened and closed by the single driving device 83.
  • first refrigerant passage 91 on the first refrigerant inlet 88 side from the first valve seat 21A is formed close to one surface of the first housing member 86, and a first communication portion extending from this close portion to one surface.
  • 96A are formed.
  • the second refrigerant passage 94 on the second refrigerant outlet 93 side from the second valve seat 22A is formed close to one surface of the second housing member 87, and a second communication portion extending from this close portion to one surface.
  • 96B are formed. Then, the communication portions 96A and 96B are matched with each other in a state where one surfaces of the housing members 86 and 87 are connected to each other, and form the communication passage 96.
  • the check valve 18 is attached to one of the communication portions (96A or 96B), and when the respective housing members 86 and 87 are connected, the check valve 18 is inserted into the other communication portion (96B or 96A). If it is made to enter, the check valve 18 can also be easily attached. Further, in this configuration, the first refrigerant passage 91 on the first refrigerant inlet 88 side from the first valve seat 21A and the second refrigerant passage 94 on the second refrigerant outlet 93 side from the second valve seat 22A are adjacent in the housing 82. It is a form to be done.
  • the communication passage 96 communicates between the first refrigerant passage 91 on the first refrigerant inlet 88 side from the first valve seat 21A and the second refrigerant passage 94 on the second refrigerant outlet 93 side from the second valve seat 22A.
  • the check valve 18 is provided in the communication passage 96, and the direction of the second refrigerant passage 94 is set to the forward direction.
  • the first valve 21B of the first opening / closing valve 21 and the second valve 22B of the second opening / closing valve 22 are driven by the driving device 83 as shown in FIG.
  • the passage 94 When the passage 94 is opened, the refrigerant flowing from the first refrigerant inlet 88 passes through the first on-off valve portion 21 and flows out of the first refrigerant outlet 89, and the refrigerant flowing from the second refrigerant inlet 92 flows into the second on-off valve portion
  • the refrigerant passes through the second refrigerant outlet 93 through the second refrigerant outlet 22 (indicated by a white arrow in FIG. 1).
  • FIG. 3 shows a configuration diagram of the vehicle air conditioner 1 of one embodiment.
  • a vehicle to which the vehicle air conditioner 1 of the embodiment is applied is an electric vehicle (EV) without an engine (internal combustion engine) mounted thereon, and a battery (for example, a lithium battery) is mounted on the vehicle.
  • the vehicle is driven and driven by supplying electric power charged to a battery from an external power supply to a traveling motor (electric motor).
  • a traveling motor electric motor
  • the vehicle air conditioner 1 performs the heating mode by the heat pump operation using the refrigerant circuit R in the electric vehicle that cannot perform heating by the engine waste heat, and further performs the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the cooling / cooling mode.
  • the air conditioning of the vehicle interior is performed, and the cooling target 55 to be described later is also cooled. .
  • the present invention is not limited to an electric vehicle as a vehicle, but is also applicable to a so-called hybrid vehicle using an engine and an electric motor for traveling or a normal engine-driven vehicle.
  • the vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and an electric compressor (electric compressor) 2 that compresses a refrigerant.
  • a radiator 4 provided in the air flow passage 3 of the HVAC unit 10 through which the vehicle interior air is circulated to radiate the refrigerant and heat the air supplied to the vehicle interior, and decompress and expand the refrigerant during heating.
  • An outdoor expansion valve 6 comprising an electric valve for cooling, and an outdoor for exchanging heat between the refrigerant and the outside air to function as a radiator for radiating the refrigerant during cooling and to function as an evaporator for absorbing the refrigerant during heating.
  • the outdoor expansion valve 6 and the indoor expansion valve 8 are capable of decompressing and expanding the refrigerant, and can be fully opened and fully closed.
  • the refrigerant inlet of the radiator 4 is connected to a refrigerant pipe 13 ⁇ / b> G on the discharge side of the compressor 2.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing the outside air through the outdoor heat exchanger 7, so that the outdoor blower 15 can stop the outdoor operation even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is configured such that outside air is passed through the heat exchanger 7.
  • the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the first refrigerant inlet 88 of the composite valve 81, and the refrigerant pipe on the refrigerant inlet side of the indoor expansion valve 8 is connected to the second refrigerant outlet 93 of the composite valve 81. 13B is connected.
  • a refrigerant pipe 13D that constitutes a part of a refrigerant pipe on the suction side of the compressor 2 is connected to a first refrigerant outlet 89 of the composite valve 81, and the refrigerant pipe 13D is connected to a refrigerant outlet side of the heat absorber 9 It is communicatively connected to the pipe 13C.
  • the refrigerant pipe 13C constitutes a main part of the refrigerant pipe on the suction side of the compressor 2.
  • a check valve 20 is connected to the refrigerant pipe 13C downstream of the connection point of the refrigerant pipe 13D, and the refrigerant pipe 13C downstream of the check valve 20 is connected to the suction side of the compressor 2 via the accumulator 12. It is connected to the.
  • the check valve 20 has a forward direction on the accumulator 12 side. Further, the entire refrigerant pipe from the refrigerant outlet side of the heat absorber 9 to the suction side of the compressor 2 is indicated by reference numeral 13C.
  • the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4 is branched into a refrigerant pipe 13J and a bypass circuit (refrigerant pipe) 13F before the outdoor expansion valve 6 (upstream of the refrigerant). Is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. That is, the refrigerant pipe 13J constitutes a part of the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4.
  • the branched bypass circuit 13F is connected to the second refrigerant inlet 92 of the composite valve 81.
  • each of an outside air suction port and an inside air suction port (represented by a suction port 25 in FIG. 3).
  • 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between inside air (inside air circulation) as air inside the vehicle compartment and outside air (introduction of outside air) as air outside the vehicle compartment.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided downstream of the suction switching damper 26 in the air.
  • reference numeral 23 denotes an auxiliary heater as an auxiliary heating device.
  • the auxiliary heater 23 is formed of a PTC heater (electric heater) in the embodiment, and is provided in the air flow passage 3 on the downstream side of the radiator 4 with respect to the flow of air in the air flow passage 3. I have.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, it becomes a so-called heater core, which complements the heating of the vehicle interior.
  • the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 upstream of the radiator 4 in the air.
  • An air mix damper 28 is provided for adjusting the rate of air flow to the heater 4 and the auxiliary heater 23.
  • FOOT (foot), VENT (vent), and DEF (def) outlets are formed in the air flow passage 3 downstream of the radiator 4 in the air.
  • the air outlet 29 is provided with an air outlet switching damper 31 for controlling the air blowing from each of the air outlets.
  • the temperature control target in the present invention is not limited to the battery and the traveling motor, but also includes an electric device such as an inverter circuit for driving the traveling motor.
  • the cooling device 61 to be heated includes a circulating pump 62 as a circulating device for circulating a heat medium through the heating target 55 and a heat exchanger 64 for the heating target.
  • the adjustment target 55 is connected by a heat medium pipe 68.
  • the inlet of the heat medium flow path 64A of the heat exchanger for temperature control 64 is connected to the discharge side of the circulation pump 62, and the temperature control target 55 is connected to the outlet of the heat medium flow path 64A. ing.
  • the outlet of the temperature control target 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the cooling device 61 to be temperature-controlled for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be used.
  • a refrigerant such as HFO-1234yf
  • a liquid such as a coolant
  • a gas such as air
  • water is used as the heat medium.
  • a jacket structure is provided around the temperature control target 55 (battery) so that, for example, a heat medium can flow through the heat control target 55 in a heat exchange relationship.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium passage 64A of the heat exchanger 64 for temperature control.
  • the heat medium that has exited the heat medium flow path 64A of the heat control target heat exchanger 64 reaches the temperature control target 55, where the heat medium exchanges heat with the temperature control target 55.
  • the heat medium that has exchanged heat with the temperature control target 55 is circulated in the heat medium pipe 68 by being sucked into the circulation pump 62.
  • a branch pipe 72 is connected to the refrigerant pipe 13B on the refrigerant inlet side of the indoor expansion valve 8.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73 constituted by an electric valve.
  • the auxiliary expansion valve 73 is capable of reducing and expanding the refrigerant flowing into a later-described refrigerant flow path 64B of the heat exchanger for temperature control 64, and is also capable of being fully closed.
  • the other end of the branch pipe 72 is connected to a refrigerant inlet of a refrigerant flow path 64B of the heat exchanger 64 for temperature control, and a refrigerant outlet of the refrigerant flow path 64B is connected to the refrigerant pipe 74 through a check valve.
  • the refrigerant pipe 13C is connected to a refrigerant pipe 13C downstream of the accumulator 12 and upstream of the accumulator 12 (upstream of the refrigerant). Therefore, the refrigerant pipe 74 also constitutes a part of the refrigerant pipe on the suction side of the compressor 2.
  • the auxiliary expansion valve 73 and the like also constitute a part of the refrigerant circuit R and also constitute a part of the cooling device 61 to be temperature-controlled.
  • the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 72, is decompressed by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the heat exchanger 64 for temperature control. And evaporate there.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and is then sucked into the compressor 2 via the accumulator 12.
  • Air conditioning controller 32 (control device) of vehicle air conditioner 1
  • reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the air conditioner 1 for a vehicle.
  • the air-conditioning controller 32 is connected via a vehicle communication bus 45 to a vehicle controller 35 (ECU) that controls the entire vehicle including the control of the temperature-controlled object 55 (battery and running motor), and transmits and receives information. It has a configuration.
  • Each of the air conditioning controller 32 and the vehicle controller 35 (ECU) is configured by a microcomputer as an example of a computer having a processor.
  • the inputs of the air-conditioning controller 32 include an outside air temperature sensor 33 for detecting the outside air temperature (Tam) of the vehicle, an outside air humidity sensor 34 for detecting the outside air humidity, and a suction from the air inlet 25 into the air flow passage 3.
  • HVAC suction temperature sensor 36 for detecting the temperature of the air
  • inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the cabin
  • inside air humidity sensor 38 for detecting the humidity of the air in the cabin
  • An indoor CO 2 concentration sensor 39 for detecting carbon concentration
  • An outlet temperature sensor 41 for detecting the temperature of the air blown into the passenger compartment from the outlet 29, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a discharge refrigerant temperature of the compressor 2
  • a suction temperature sensor 44 for detecting a suction refrigerant temperature of the compressor 2, a temperature of the radiator 4 (a temperature of the air passing through the radiator 4, or a temperature of the radiator 4 itself: heat radiation).
  • a radiator temperature sensor 46 for detecting the radiator temperature TCI) and a radiator for detecting the refrigerant pressure of the radiator 4 (pressure of the refrigerant in the radiator 4 or immediately after leaving the radiator 4: radiator pressure PCI).
  • a pressure sensor 47 a heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9, or the temperature of the heat absorber 9 itself: the heat absorber temperature Te), and the refrigerant pressure of the heat absorber 9 (Inside or out of the heat absorber 9
  • Heat sensor pressure sensor 49 for detecting the following refrigerant pressure), for example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, and a vehicle speed for detecting the moving speed (vehicle speed) of the vehicle.
  • the outdoor heat exchanger temperature TXO is the evaporation temperature of the refrigerant in the outdoor heat exchanger 7.
  • the outdoor heat for detecting the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or the pressure of the refrigerant immediately after leaving the outdoor heat exchanger 7).
  • Each output of exchanger pressure sensor 56 It is connected.
  • the input of the air-conditioning controller 32 further includes the temperature of the temperature control target 55 (for example, a battery) mounted on the vehicle (the temperature of the temperature control target 55 itself, or the heat medium exiting the temperature control target 55). Or the output of a temperature control target temperature sensor 76 for detecting the temperature of the heat medium entering the temperature control target 55: the temperature control target temperature Tw).
  • the temperature control target 55 for example, a battery mounted on the vehicle
  • the outputs of the air conditioning controller 32 include the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31, the outdoor
  • the expansion valve 6, the indoor expansion valve 8, the driving device 83 of the composite valve 81, the auxiliary heater 23, the circulation pump 62 of the cooling device 61 to be heated and the auxiliary expansion valve 73 are connected.
  • the air-conditioning controller 32 controls these based on the outputs of the sensors, the settings input by the air-conditioning operation unit 53, and information from the vehicle controller 35.
  • the air-conditioning controller 32 (control device) can be executed by switching among a heating mode, a dehumidifying / heating mode, a dehumidifying cooling mode, a cooling mode, a cooling / temperature controlled cooling mode, and a temperature controlled cooling mode. Have been.
  • each operation mode will be described.
  • FIG. 5 shows the flow of the refrigerant in the refrigerant circuit R in the heating mode (solid line arrow).
  • the air-conditioning controller 32 energizes the driving device 83 of the composite valve 81 and the actuator 84 Is pulled up, and the first refrigerant passage 91 and the second refrigerant passage 94 are opened by the first opening / closing valve portion 21 and the second opening / closing valve portion 22 (the state of FIG. 1). Further, the indoor expansion valve 8 and the auxiliary expansion valve 73 are fully closed (the flow of the refrigerant into the heat absorber 9 and the heat exchanger 64 for temperature regulation is prevented).
  • the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws heat by traveling or from outside air passed through the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 enters the first refrigerant passage 91 of the composite valve 81 from the refrigerant pipe 13A, and exits the refrigerant pipe 13D via the first opening / closing valve portion 21.
  • the air-conditioning controller 32 calculates a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the air temperature on the leeward side of the radiator 4) calculated from a target outlet temperature TAO described later. Is controlled, and the number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • FIG. 6 shows the flow of the refrigerant in the refrigerant circuit R in the dehumidifying heating mode (solid line arrow).
  • the air conditioning controller 32 opens the indoor expansion valve 8 and causes the refrigerant to decompress and expand in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is divided into the bypass circuit 13F, and the divided refrigerant enters the second refrigerant passage 94 from the second refrigerant inlet 92 of the composite valve 81,
  • the refrigerant flows into the refrigerant pipe 13B from the second refrigerant outlet 93 via the second on-off valve portion 22, flows from the refrigerant pipe 13B to the indoor expansion valve 8, and the remaining refrigerant flows to the outdoor expansion valve 6. That is, a part of the divided refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate.
  • the air conditioning controller 32 controls the opening degree of the indoor expansion valve 8 so as to maintain the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value. As the moisture in the air blown out from the indoor blower 27 condenses on the heat absorber 9 and adheres, the air is cooled and dehumidified. The remaining refrigerant that has flowed into the refrigerant pipe 13 ⁇ / b> J is decompressed by the outdoor expansion valve 6, and then evaporates in the outdoor heat exchanger 7.
  • SH superheat
  • the refrigerant evaporated by the heat absorber 9 flows out to the refrigerant pipe 13C and merges with the refrigerant from the refrigerant pipe 13D (the refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeated circulation. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification and heating of the vehicle interior is performed.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the outdoor expansion valve 6 can be fully closed. Therefore, when the outdoor expansion valve 6 is fully closed in the dehumidifying and heating mode of FIG. 6, the inflow of the refrigerant into the outdoor heat exchanger 7 is blocked, and the refrigerant pipe 13E passes through the radiator 4. All of the condensed refrigerant flowing through the bypass circuit 13F. Then, the refrigerant flowing through the refrigerant pipe 13 ⁇ / b> F passes through the second refrigerant passage 94 and the second on-off valve part 22 of the composite valve 81 to reach the indoor expansion valve 8 from the refrigerant pipe 13 ⁇ / b> B. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C, and repeats the circulation sucked into the compressor 2 via the check valve 20 and the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, the dehumidification and heating of the vehicle interior is performed by this operation. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the interior, the pumping of heat from the outside air is not performed, and the heating capacity for the power consumed by the compressor 2 is exhibited. Will be. Therefore, since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying effect, the dehumidifying capacity is high, but the heating capacity is low.
  • FIG. 7 shows the flow of the refrigerant in the refrigerant circuit R in the dehumidifying cooling mode (solid line arrow).
  • the air conditioning controller 32 opens the indoor expansion valve 8 so as to decompress and expand the refrigerant, deactivates the driving device 83 of the composite valve 81, lowers the actuator 84, lowers the first on-off valve unit 21, and The first refrigerant passage 91 and the second refrigerant passage 94 are closed by the second on-off valve portion 22 (the state shown in FIG. 2).
  • the outdoor expansion valve 6 is controlled to be slightly opened, and the auxiliary expansion valve 73 is fully closed (prevents the refrigerant from flowing into the heat control target heat exchanger 64).
  • the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled and condensed there by traveling or by the outside air passed by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 flows out to the refrigerant pipe 13A, and enters the first refrigerant passage 91 from the first refrigerant inlet 88 of the composite valve 81.
  • the refrigerant flowing into the first refrigerant passage 91 enters the second refrigerant passage 94 via the communication passage 96 and the check valve 18.
  • the refrigerant flowing into the refrigerant pipe 13B reaches the indoor expansion valve 8, is depressurized by the indoor expansion valve 8, flows into the heat absorber 9, and evaporates.
  • the moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (reheating: lower in heat dissipation performance than in heating and dehumidifying and heating) in the process of passing through the radiator 4, whereby the dehumidifying and cooling in the vehicle compartment is performed. Will be done.
  • the air conditioning controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO as its target value.
  • the radiator pressure PCI high pressure of the refrigerant circuit R
  • the target radiator pressure PCO radius pressure
  • the flow of the refrigerant circuit R is the same as in the dehumidifying and cooling mode of FIG.
  • the air conditioning controller 32 fully opens the outdoor expansion valve 6 in the dehumidifying cooling mode.
  • the air mix damper 28 is in a state of adjusting the rate at which air is passed through the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated to the radiator 4, the ratio thereof is small (only for reheating at the time of cooling).
  • the refrigerant reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the refrigerant directly passes through the refrigerant pipe 13J via the outdoor expansion valve 6, flows into the outdoor heat exchanger 7, and travels there or is ventilated by the outdoor blower 15.
  • the air is cooled by the outside air and condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the first refrigerant passage 91 of the composite valve 81, the communication passage 96 (the check valve 18), and the second refrigerant passage 94, and the indoor expansion valve To 8.
  • the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action, and the air is cooled.
  • the refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown out from the outlet 29 into the vehicle interior, whereby the vehicle interior is cooled.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the air conditioning controller 32 calculates the above-described target outlet temperature TAO from the following equation (I).
  • the target outlet temperature TAO is a target value of the temperature of the air blown from the outlet 29 into the vehicle interior.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) ⁇ ⁇ (I)
  • Tset is the temperature set in the cabin set by the air-conditioning operation unit 53
  • Tin is the temperature of the cabin air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the sunshine sensor 51 detects the temperature. This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
  • the air-conditioning controller 32 operates in one of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO. Select After the start, each of the operation modes is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blowout temperature TAO and the set conditions.
  • the cooling / cooling target cooling mode by the air-conditioning controller 32 during the cooling mode will be described with reference to FIG.
  • the temperature of the battery rises due to the outside air temperature, and also rises due to self-heating during charging and discharging. That is, when the outside air temperature is a high temperature environment, the temperature of the battery becomes extremely high, and it becomes difficult to charge and discharge the battery. May break down).
  • the air-conditioning controller 32 of the vehicle air conditioner 1 of the embodiment has a predetermined target temperature control target temperature TWO (for example, a target temperature of the battery) and a predetermined hysteresis above and below the target temperature target temperature Tw.
  • TWO target temperature control target temperature
  • TWL predetermined target temperature control target temperature
  • Tw the temperature adjustment target temperature Tw detected by the temperature adjustment target temperature sensor 76 has risen to a predetermined upper limit value TWH or more.
  • the mode shifts from the cooling mode to the cooling mode for cooling / temperature control.
  • FIG. 8 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium of the cooling device 61 to be heated (dashed arrow) in the cooling / temperature controlled cooling mode.
  • the air conditioning controller 32 opens the auxiliary expansion valve 73 in the cooling mode of the refrigerant circuit R shown in FIG. 7, and sets the degree of superheat of the refrigerant in the temperature controlled heat exchanger 64. Is set to a state in which the valve opening is controlled based on Then, the circulation pump 62 of the cooling device 61 to be heated is operated. As a result, the refrigerant that has flowed out of the radiator 4 flows into the outdoor heat exchanger 7 as described above, where it is air-cooled by traveling or by the outside air passed by the outdoor blower 15, and condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the first refrigerant passage 91 of the composite valve 81, the communication passage 96 (the check valve 18), and the second refrigerant passage 94, and the indoor expansion valve To 8.
  • the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action, and the air is cooled.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 sequentially (indicated by solid arrows in FIG. 8).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the heat exchanger 64 for temperature control through the heat medium pipe 68, where the heat medium is absorbed by the refrigerant evaporated in the refrigerant flow passage 64B, The heating medium is cooled.
  • the heat medium that has exited the heat medium passage 64A of the heat exchanger 64 for temperature control reaches the temperature control target 55, exchanges heat with the temperature control target 55, and cools. Then, the heat medium that has exchanged heat with the temperature control target 55 repeats the circulation sucked by the circulation pump 62 (indicated by a broken line arrow in FIG. 8).
  • the air-conditioning controller 32 closes the auxiliary expansion valve 73 fully, stops the circulation pump 62, and performs cooling / heating.
  • the mode is returned from the adjustment target cooling mode to the cooling mode. In this manner, the temperature Tw of the temperature control target 55 (for example, a battery) is maintained at the predetermined target temperature control target temperature TWO.
  • the air conditioning is turned on by the air conditioning operation unit 53 (air conditioning is turned on). (Request).
  • the flow of the refrigerant in the refrigerant circuit R and the flow of the heat medium in the cooling device 61 to be temperature-controlled remain unchanged.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature control target temperature Tw detected by the temperature control target temperature sensor 76, and controls the indoor expansion valve 8 based on the heat absorber temperature Te.
  • the degree of superheat of the refrigerant in the heat absorber 9 is controlled. That is, in the cooling / cooling target cooling mode during charging, the cooling of the cooling target is prioritized, and in the cooling / cooling target cooling mode during traveling, the cooling in the vehicle compartment is prioritized.
  • the air conditioner controller 32 controls the air conditioner 32 when there is no air conditioning request in the vehicle compartment (air conditioning OFF) while charging the battery (temperature controlled object 55).
  • the cooling mode for temperature control will be described. Since the battery generates heat during charging, the air-conditioning controller 32 of the embodiment also has a predetermined target temperature control target temperature TWO (target battery temperature) and a predetermined hysteresis above and below the temperature target temperature Tw.
  • TWO target battery temperature
  • TWL predetermined hysteresis above and below the temperature target temperature Tw.
  • the upper limit value TWH and the lower limit value TWL are set, and when the temperature adjustment target temperature Tw detected by the temperature adjustment target temperature sensor 76 rises to a predetermined upper limit value TWH or more by charging, the mode shifts to the temperature adjustment target cooling mode.
  • FIG. 9 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium of the cooling device 61 to be temperature controlled (dashed
  • the air-conditioning controller 32 deenergizes the driving device 83 of the composite valve 81, lowers the actuator 84, and causes the first on-off valve portion 21 and the second on-off valve portion 22 to make the first refrigerant passage. 91 and the second refrigerant passage 94 are closed (the state of FIG. 2). Further, the outdoor expansion valve 6 is fully opened, the indoor expansion valve 8 is fully closed (prevents the refrigerant from flowing into the heat absorber 9), and the auxiliary expansion valve 73 is opened to adjust the valve opening. Further, the circulation pump 62 is operated.
  • the compressor 2 and the outdoor blower 15 are operated, and the indoor blower 27 is stopped. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the outdoor heat exchanger 7 via the radiator 4.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled by the outside air ventilated by the outdoor blower 15 and condenses.
  • the refrigerant that has exited the outdoor heat exchanger 7 flows out to the refrigerant pipe 13A, and enters the first refrigerant passage 91 from the first refrigerant inlet 88 of the composite valve 81.
  • the refrigerant flowing into the first refrigerant passage 91 enters the second refrigerant passage 94 via the communication passage 96 and the check valve 18.
  • the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 72, reaches the auxiliary expansion valve 73, is decompressed by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the heat exchanger 64 for temperature control. Inflow and evaporate.
  • the refrigerant evaporated in the refrigerant flow path 64B flows out to the refrigerant pipe 74, reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the heat exchanger 64 for temperature control through the heat medium pipe 68, where the heat medium is absorbed by the refrigerant evaporated in the refrigerant flow passage 64B, The heating medium is cooled.
  • the heat medium that has exited the heat medium passage 64A of the heat exchanger 64 for temperature control reaches the temperature control target 55, exchanges heat with the temperature control target 55, and cools. Then, the heat medium that has exchanged heat with the temperature control target 55 repeats the circulation sucked by the circulation pump 62 (indicated by a broken arrow in FIG. 9).
  • the air-conditioning controller 32 calculates the temperature to be adjusted based on the temperature of the temperature to be adjusted 55 detected by the temperature to be adjusted temperature sensor 76 (temperature to be adjusted Tw) and the target temperature to be adjusted TWO.
  • the number of revolutions of the compressor 2 is controlled so that Tw (the temperature of the battery in the embodiment) becomes the target temperature to be adjusted TWO.
  • the composite valve 81 of the present invention includes a housing 82 having a first refrigerant inlet 88, a first refrigerant outlet 89, a second refrigerant inlet 92, and a second refrigerant outlet 93, and formed in the housing 82.
  • a first refrigerant passage 91 extending between the first refrigerant inlet 88 and the first refrigerant outlet 89; a second refrigerant passage 94 formed in the housing 82 and extending between the second refrigerant inlet 92 and the second refrigerant outlet 93; A first on-off valve portion 21 provided in the first refrigerant passage 91 to open and close the first refrigerant passage 91; and a second on-off valve portion provided in the second refrigerant passage 94 to open and close the second refrigerant passage 94.
  • a driving device 83 for driving the first opening / closing valve section 21 and the second opening / closing valve section 22 via an actuator 84, and a first refrigerant inlet 88 formed in the housing 82 through the first opening / closing valve section 21.
  • a communication passage 96 communicating the second refrigerant passage 94 on the second refrigerant outlet 93 side with respect to the valve closing portion 22; and a check valve 18 provided in the communication passage 96 and having the second refrigerant passage 94 in the forward direction.
  • the compressor 2 compresses the refrigerant as in the embodiment, and the refrigerant inlet is connected to the refrigerant pipe 13G on the discharge side of the compressor 2 to radiate the refrigerant and heat the air supplied to the vehicle interior.
  • Radiator 4 a refrigerant outlet is connected to refrigerant pipe 13 ⁇ / b> C on the suction side of compressor 2, and a heat absorber 9 for absorbing heat and cooling air supplied to the vehicle interior, and a refrigerant for radiator 4
  • An indoor expansion valve 8 for reducing the pressure of the flowing refrigerant;
  • the present invention is applied to the vehicle air conditioner 1 including the bypass circuit 13F branched from the outlet-side refrigerant pipe 13E and the air-conditioning controller 32.
  • the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the first valve of the composite valve 81.
  • the refrigerant pipe 13D which is connected to the refrigerant inlet 88 and serves as a refrigerant pipe on the suction side of the compressor 2, is connected to the first refrigerant outlet 89 of the composite valve 81, and the bypass circuit 13F is connected to the second refrigerant inlet 92 of the composite valve 81.
  • the driving device 83 of the composite valve 81 is controlled by the air conditioning controller 32, as in the embodiment.
  • the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode can be switched and executed.
  • a cooling target 61 for cooling the temperature to be adjusted (a battery or a motor for traveling) mounted on the vehicle using a refrigerant is provided.
  • a heat control target heat exchanger 64 for absorbing the refrigerant to cool the temperature control target 55 and an auxiliary expansion valve 73 for reducing the pressure of the refrigerant flowing into the temperature control target heat exchanger 64 are provided.
  • the refrigerant inlet of the heat exchanger for temperature control 64 is connected to a branch pipe 72 branched from the refrigerant pipe 13B on the refrigerant inlet side of the indoor expansion valve 8, and the refrigerant outlet of the heat exchanger for temperature control 64 is connected to the refrigerant.
  • the air-conditioning controller 32 controls the driving device 83 of the composite valve to control the cooling / cooling target cooling mode and the cooling target temperature. It is possible to switch modes and execute .
  • the function of switching the operation mode of the air conditioner 1 for a vehicle which is conventionally performed by a plurality of solenoid valves (solenoid valves for heating and solenoid valves for dehumidification), can be integrated into the composite valve 81.
  • solenoid valves solenoid valves for heating and solenoid valves for dehumidification
  • the first refrigerant passage 91 on the first refrigerant inlet 88 side from the first on-off valve portion 21 and the second refrigerant passage 94 on the second refrigerant outlet 93 side from the second on-off valve portion 22 are connected to the housing 82. Since the first refrigerant passage 91 and the second refrigerant passage 94 can be communicated with each other through the communication passage 96 having a short dimension, the loss such as pressure loss in the communication passage 96 can be minimized. It can be suppressed to the minimum.
  • the housing 82 includes a first refrigerant inlet 88, a first refrigerant outlet 89, a first refrigerant passage 91, a first housing member 86 provided with a first opening / closing valve unit 21, and a second refrigerant inlet. 92, a second refrigerant outlet 93, a second refrigerant passage 94, and a second housing member 87 provided with a second on-off valve portion 22.
  • the actuator 84 extends across the housing members 86 and 87. Since the opening / closing valve portions 21 and 22 are driven so as to drive, the manufacturing / assembly work of the composite valve 81 is also facilitated.
  • the first refrigerant passage 91 on the first refrigerant inlet 88 side from the first opening / closing valve portion 21 is formed in the first housing member 86 close to one surface of the first housing member 86, and the second opening / closing operation is performed.
  • a second refrigerant passage 94 on the second refrigerant outlet 93 side from the valve portion 22 is formed in the second housing member 87 in close proximity to one surface of the second housing member 87, and the first housing member 86 has a first opening and closing position.
  • a first communication portion 96 ⁇ / b> A extending from the first refrigerant passage 91 on the first refrigerant inlet 88 side to the one surface of the first housing member 86 with respect to the valve portion 21 is formed.
  • a second communication portion 96B extending from the second refrigerant passage 94 on the side of the second refrigerant outlet 93 to one surface of the second housing member 87 is formed, and when the one surfaces of the housing members 86 and 87 are connected to each other, each communication portion 96A, 96B is good Since so as to constitute the communication passage 96 and, with it is possible to easily configure the communicating path 96 of shorter dimensions, it is easy mounting of the check valve 18.
  • the configuration of the composite valve 81 and the configuration of the vehicle air conditioner 1 described in the embodiment are not limited to those described above, and can be changed without departing from the spirit of the present invention.
  • the indoor expansion valve 8 and the auxiliary expansion valve 73 are constituted by electric valves, and are fully closed to prevent the refrigerant from flowing into the heat absorber 9 and the heat exchanger 64 for temperature control.
  • the invention is not limited thereto, and the indoor expansion valve 8 and the auxiliary expansion valve 73 may be configured by a mechanical expansion valve, and an electromagnetic valve may be connected in series to prevent the inflow of refrigerant.
  • the outdoor expansion valve 6 is also constituted by a mechanical expansion valve instead of an electric valve, and a solenoid valve is connected in parallel and always closed, and the above-described cooling mode, cooling / cooling target cooling mode, In the cooling mode to be adjusted, the solenoid valve may be opened.
  • the temperature control target cooling device 61 that cools the temperature control target 55 with the refrigerant via the heat medium is employed, but the present invention is not limited to this.
  • the temperature control target 55 may be directly cooled.
  • the composite valve of the present invention is applied to the air conditioner for a vehicle.
  • the present invention is not limited to this, and it goes without saying that the present invention can be applied to various devices having a refrigerant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Abstract

【課題】車両用空気調和装置で従来用いられていた複数の電磁弁を複合化することで、部品点数の削減を図ることができる複合弁を提供する。 【解決手段】複合弁81は第1冷媒入口88、第1冷媒出口89、第2冷媒入口92、第2冷媒出口93を有するハウジング82と、第1冷媒入口と第1冷媒出口間に渡る第1冷媒通路91と、第2冷媒入口と第2冷媒出口間に渡る第2冷媒通路94と、第1冷媒通路を開閉する第1開閉弁部21と、第2冷媒通路を開閉する第2開閉弁部22と、第1開閉弁部及び第2開閉弁部を駆動する駆動装置83と、第1開閉弁部より第1冷媒入口側の第1冷媒通路と第2開閉弁部より第2冷媒出口側の第2冷媒通路を連通する連通路96に設けられた逆止弁18を備える。

Description

複合弁及びそれを用いた車両用空気調和装置
 本発明は、冷媒回路に適用される複合弁、及び、それを用いたヒートポンプ式の車両用空気調和装置に関するものである。
 ハイブリッド自動車や電気自動車等の車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで車室内を暖房する暖房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させることで車室内を冷房する冷房モード等を切り換えて実行する車両用空気調和装置が開発されている。また、このような車室内の運転モードの切り換えは、多数の電磁弁を用いて行われていた(例えば、特許文献1参照)。
特開2011-237052号公報 特開2015-45453号公報
 このように、従来の車両用空気調和装置は運転モードの切り換えに多数の電磁弁を用いていたため、部品点数が多くなり、コストも高騰すると共に、限られたエンジンルーム(電気自動車の場合にはエンジンは存在しないが、走行や空調に関わる装置が設置される車室外の空間を意味する)のスペースを占有してしまう不都合があった。
 一方、単一の駆動手段で複数の弁体を駆動する統合弁(複合弁)も開発されている(例えば、特許文献2参照)。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、車両用空気調和装置で従来用いられていた複数の電磁弁を複合化することで、部品点数の削減を図ることができる複合弁、及び、それを用いた車両用空気調和装置を提供することを目的とする。
 本発明の複合弁は、冷媒回路に適用されるものであって、第1冷媒入口、第1冷媒出口、第2冷媒入口、及び、第2冷媒出口を有するハウジングと、このハウジング内に形成され、第1冷媒入口と第1冷媒出口間に渡る第1冷媒通路と、ハウジング内に形成され、第2冷媒入口と第2冷媒出口間に渡る第2冷媒通路と、第1冷媒通路に設けられ、当該第1冷媒通路を開閉する第1開閉弁部と、第2冷媒通路に設けられ、当該第2冷媒通路を開閉する第2開閉弁部と、アクチュエータを介して第1開閉弁部、及び、第2開閉弁部を駆動する駆動装置と、ハウジング内に形成され、第1開閉弁部より第1冷媒入口側の第1冷媒通路と、第2開閉弁部より第2冷媒出口側の第2冷媒通路とを連通する連通路と、この連通路に設けられ、第2冷媒通路方向を順方向とされた逆止弁を備えたことを特徴とする。
 請求項2の発明の複合弁は、上記発明において第1開閉弁部より第1冷媒入口側の第1冷媒通路と、第2開閉弁部より第2冷媒出口側の第2冷媒通路は、ハウジング内において
隣接して形成されていることを特徴とする。
 請求項3の発明の複合弁は、上記各発明においてハウジングは、第1冷媒入口、第1冷媒出口、第1冷媒通路、及び、第1開閉弁部が設けられた第1ハウジング部材と、第2冷媒入口、第2冷媒出口、第2冷媒通路、及び、第2開閉弁部が設けられた第2ハウジング部材とを結合して成り、アクチュエータが各ハウジング部材に渡って設けられ、各開閉弁部を駆動することを特徴とする。
 請求項4の発明の複合弁は、上記発明において第1開閉弁部より第1冷媒入口側の第1冷媒通路は第1ハウジング部材の一面に近接して当該第1ハウジング部材内に形成され、第2開閉弁部より第2冷媒出口側の第2冷媒通路は第2ハウジング部材の一面に近接して当該第2ハウジング部材内に形成されていると共に、第1ハウジング部材は、第1開閉弁部より第1冷媒入口側の第1冷媒通路から第1ハウジング部材の一面に至る第1連通部を有し、第2ハウジング部材は、第2開閉弁部より第2冷媒出口側の第2冷媒通路から第2ハウジング部材の一面に至る第2連通部を有し、各ハウジング部材の一面同士が結合され、その状態で各連通部は合致して連通路を構成することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明の複合弁と、冷媒を圧縮する圧縮機と、冷媒入口が圧縮機の吐出側の冷媒配管に接続され、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、冷媒出口が圧縮機の吸込側の冷媒配管に接続され、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、放熱器の冷媒出口側の冷媒配管に接続され、車室外に設けられた室外熱交換器と、この室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、吸熱器に流入する冷媒を減圧するための室内膨張弁と、放熱器の冷媒出口側の冷媒配管から分岐したバイパス回路と、制御装置を備え、室外熱交換器の冷媒出口側の冷媒配管が複合弁の第1冷媒入口に接続され、圧縮機の吸込側の冷媒配管が複合弁の第1冷媒出口に接続され、バイパス回路が複合弁の第2冷媒入口に接続され、室内膨張弁の冷媒入口側の冷媒配管が複合弁の第2冷媒出口に接続され、制御装置により複合弁の駆動装置が制御されることを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、複合弁の駆動装置を制御することにより、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を開き、吸熱器への冷媒の流入を阻止した状態で、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させる暖房モードと、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を開き、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、バイパス回路からの冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させる除湿暖房モードと、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を閉じ、圧縮機から吐出された冷媒を放熱器と室外熱交換器で放熱させ、放熱した当該冷媒を複合弁の逆止弁を経て室内膨張弁に流し、この室内膨張弁で減圧した後、吸熱器にて吸熱させる除湿冷房モードと、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を閉じ、圧縮機から吐出された冷媒を室外熱交換器で放熱させ、放熱した当該冷媒を複合弁の逆止弁を経て室内膨張弁に流し、室内膨張弁で減圧した後、吸熱器にて吸熱させる冷房モードと、を切り換えて実行することを特徴とする。
 請求項7の発明の車両用空気調和装置は、請求項5又は請求項6の発明において冷媒を用いて車両に搭載された被温調対象を冷却する被温調対象冷却装置を備え、この被温調対象冷却装置は、冷媒を吸熱させて被温調対象を冷却するための被温調対象用熱交換器と、この被温調対象用熱交換器に流入する冷媒を減圧する補助膨張弁を有し、被温調対象用熱交換器の冷媒入口が室内膨張弁の冷媒入口側の冷媒配管から分岐した分岐配管に接続され、被温調対象用熱交換器の冷媒出口が圧縮機の吸込側の冷媒配管に接続されると共に、制御装置は、複合弁の駆動装置を制御することにより、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を閉じ、圧縮機から吐出された冷媒を室外熱交換器で放熱させ、放熱した当該冷媒を複合弁の逆止弁を経て室内膨張弁と補助膨張弁に流し、室内膨張弁で減圧した後、吸熱器にて吸熱させ、補助膨張弁で減圧した後、被温調対象用熱交換器で吸熱させる冷房/被温調対象冷却モードと、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を閉じ、吸熱器への冷媒の流入を阻止した状態で、圧縮機から吐出された冷媒を室外熱交換器で放熱させ、放熱した当該冷媒を複合弁の逆止弁を経て補助膨張弁に流し、当該補助膨張弁で減圧した後、被温調対象用熱交換器で吸熱させる被温調対象冷却モードと、を切り換えて実行することを特徴とする。
 本発明によれば、冷媒回路に適用される複合弁において、第1冷媒入口、第1冷媒出口、第2冷媒入口、及び、第2冷媒出口を有するハウジングと、このハウジング内に形成され、第1冷媒入口と第1冷媒出口間に渡る第1冷媒通路と、ハウジング内に形成され、第2冷媒入口と第2冷媒出口間に渡る第2冷媒通路と、第1冷媒通路に設けられ、当該第1冷媒通路を開閉する第1開閉弁部と、第2冷媒通路に設けられ、当該第2冷媒通路を開閉する第2開閉弁部と、アクチュエータを介して第1開閉弁部、及び、第2開閉弁部を駆動する駆動装置と、ハウジング内に形成され、第1開閉弁部より第1冷媒入口側の第1冷媒通路と、第2開閉弁部より第2冷媒出口側の第2冷媒通路とを連通する連通路と、この連通路に設けられ、第2冷媒通路方向を順方向とされた逆止弁を備えているので、例えば、請求項5の発明の如く冷媒を圧縮する圧縮機と、冷媒入口が圧縮機の吐出側の冷媒配管に接続され、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、冷媒出口が圧縮機の吸込側の冷媒配管に接続され、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、放熱器の冷媒出口側の冷媒配管に接続され、車室外に設けられた室外熱交換器と、この室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、吸熱器に流入する冷媒を減圧するための室内膨張弁と、放熱器の冷媒出口側の冷媒配管から分岐したバイパス回路と、制御装置を備えた車両用空気調和装置に適用し、室外熱交換器の冷媒出口側の冷媒配管を複合弁の第1冷媒入口に接続し、圧縮機の吸込側の冷媒配管を複合弁の第1冷媒出口に接続し、バイパス回路を複合弁の第2冷媒入口に接続し、室内膨張弁の冷媒入口側の冷媒配管を複合弁の第2冷媒出口に接続すれば、制御装置により複合弁の駆動装置を制御することで、請求項6の発明の如き暖房モード、除湿暖房モード、除湿冷房モード、及び、冷房モードを切り換えて実行することが可能となる。
 また、請求項7の発明の如く冷媒を用いて車両に搭載された被温調対象を冷却する被温調対象冷却装置を設け、この被温調対象冷却装置に、冷媒を吸熱させて被温調対象を冷却するための被温調対象用熱交換器と、この被温調対象用熱交換器に流入する冷媒を減圧する補助膨張弁を設けて被温調対象用熱交換器の冷媒入口を室内膨張弁の冷媒入口側の冷媒配管から分岐した分岐配管に接続し、被温調対象用熱交換器の冷媒出口を圧縮機の吸込側の冷媒配管に接続すれば、制御装置により複合弁の駆動装置を制御することで、冷房/被温調対象冷却モードと被温調対象冷却モードを切り換えて実行することが可能となる。
 即ち、従来複数の電磁弁が担っていた車両用空気調和装置の運転モードの切り換え機能を、複合弁に集約することができるようになり、部品点数の削減による部品コストや生産コストの低減と、設置スペースの縮小を図ることができるようになる。
 この場合、請求項2の発明の如く第1開閉弁部より第1冷媒入口側の第1冷媒通路と、第2開閉弁部より第2冷媒出口側の第2冷媒通路を、ハウジング内において隣接して形成すれば、第1冷媒通路と第2冷媒通路を短い寸法の連通路にて連通することができるようになり、連通路における圧損等のロスを最低限に抑制することが可能となる。
 また、請求項3の発明の如くハウジングを、第1冷媒入口、第1冷媒出口、第1冷媒通路、及び、第1開閉弁部が設けられた第1ハウジング部材と、第2冷媒入口、第2冷媒出口、第2冷媒通路、及び、第2開閉弁部が設けられた第2ハウジング部材とを結合して構成し、アクチュエータを各ハウジング部材に渡って設けて各開閉弁部を駆動するようにすれば、複合弁の製造/組立作業も容易となる。
 特に、請求項4の発明の如く第1開閉弁部より第1冷媒入口側の第1冷媒通路を第1ハウジング部材の一面に近接して当該第1ハウジング部材内に形成し、第2開閉弁部より第2冷媒出口側の第2冷媒通路を第2ハウジング部材の一面に近接して当該第2ハウジング部材内に形成すると共に、第1ハウジング部材に、第1開閉弁部より第1冷媒入口側の第1冷媒通路から第1ハウジング部材の一面に至る第1連通部を形成し、第2ハウジング部材に、第2開閉弁部より第2冷媒出口側の第2冷媒通路から第2ハウジング部材の一面に至る第2連通部を形成して、各ハウジング部材の一面同士を結合したときに各連通部が合致して連通路を構成するようにすれば、短い寸法の連通路を容易に構成することができるようになると共に、逆止弁の取り付けも容易となる。
本発明を適用した一実施例の複合弁の断面図である(第1開閉弁部及び第2開閉弁部が開いた状態)。 第1開閉弁部及び第2開閉弁部を閉じた状態の図1の複合弁の断面図である。 図1の複合弁を適用した車両用空気調和装置の一実施例の構成図である。 図3の車両用空気調和装置の制御装置としての空調コントローラのブロック図である。 図4の空調コントローラによる暖房モードを説明する図である。 図4の空調コントローラによる除湿暖房モードを説明する図である。 図4の空調コントローラによる除湿冷房モード/冷房モードを説明する図である。 図4の空調コントローラによる冷房/被温調対象冷却モードを説明する図である。 図4の空調コントローラによる被温調対象冷却モードを説明する図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 (1)複合弁81
 図1及び図2は本発明を適用した一実施例の複合弁81の断面図を示している。本発明の複合弁81は後述する車両用空気調和装置1等の冷媒回路Rに適用されるものであって、アルミニウム等の金属から構成されたハウジング82と、このハウジング82内に設けられた逆止弁18、第1開閉弁部21、及び、第2開閉弁部22と、これら第1及び第2開閉弁部21、22を駆動する駆動装置83を備えている。
 駆動装置83はアクチュエータ84を介して第1及び第2開閉弁部21、22を開閉駆動するものである。この実施例の駆動装置83はソレノイドにて構成されているが、ステッピングモータにて構成してもよい。
 また、実施例のハウジング82は、何れもアルミニウム等の金属ブロックから構成された第1ハウジング部材86と第2ハウジング部材87の二部品を結合して構成されており、第1ハウジング部材86の一方の側面及び他方の側面にはそれぞれ第1冷媒入口88及び第1冷媒出口89が形成され、第1ハウジング部材86の内部にはこれら第1冷媒入口88と第1冷媒出口89間に渡る第1冷媒通路91が形成されている。また、第2ハウジング部材87の他方の側面及び一方の側面にはそれぞれ第2冷媒入口92及び第2冷媒出口93が形成され、第2ハウジング部材87の内部にはこれら第2冷媒入口92と第2冷媒出口93間に渡る第2冷媒通路94が形成されている。
 前記第1開閉弁部21は、第1冷媒通路91に設けられた第1弁座21Aとこの第1弁座21Aに当接して第1冷媒通路91を開閉するための第1弁体21Bから構成されており、前記第2開閉弁部22は、第2冷媒通路94に設けられた第2弁座22Aとこの第2弁座22Aに当接して第2冷媒通路94を開閉するための第2弁体22Bから構成されている。
 前記第1ハウジング部材86と第2ハウジング部材87はそれらの一面同士が結合されて一体化されたハウジング82となるが、駆動装置83は第2ハウジング部材87の他面に取り付けられている。駆動装置83のアクチュエータ84は第2ハウジング部材87を貫通して当該第2ハウジング部材87から第1ハウジング部材86に渡って設けられ、その先端に第1開閉弁部21の第1弁体21Bが取り付けられ、この第1弁体21Bより駆動装置83側に第2開閉弁部22の第2弁体22Bが取り付けられる(第2弁体22Bより先のアクチュエータ84は細く簡略化して示している)。
 駆動装置83が通電制御されると、アクチュエータ84により第1弁体21Bと第2弁体22Bが同時に駆動される。即ち、実施例では駆動装置83が非通電の状態ではアクチュエータ84が突出し、第1弁体21Bが第1弁座21Aに当接して第1開閉弁部21が第1冷媒通路91を閉じ、且つ、第2弁体22Bが第2弁座22Aに当接して第2開閉弁部22が第2冷媒通路94を閉じる(図2)。一方、駆動装置83が通電された状態ではアクチュエータ84が吸引され、第1弁体21Bが第1弁座21Aから離間して第1開閉弁部21が第1冷媒通路91を開き、且つ、第2弁体22Bが第2弁座22Aから離間して第2開閉弁部22が第2冷媒通路94を開く(図1)。このように、複合弁81は単一の駆動装置83により、二つの開閉弁部21及び22が同時に開閉駆動されるように構成されている。
 また、第1弁座21Aより第1冷媒入口88側の第1冷媒通路91は、第1ハウジング部材86の一面に近接して形成されており、この近接した部分から一面に至る第1連通部96Aが形成されている。また、第2弁座22Aより第2冷媒出口93側の第2冷媒通路94は、第2ハウジング部材87の一面に近接して形成されており、この近接した部分から一面に至る第2連通部96Bが形成されている。そして、各連通部96A及び96Bは各ハウジング部材86及び87の一面同士が結合された状態で相互に合致し、連通路96を構成する。このとき、逆止弁18を何れか一方の連通部(96A、或いは、96B)に取り付けておき、各ハウジング部材86、87を結合するときに他方の連通部(96B、或いは、96A)内に進入させるようにすれば、逆止弁18も容易に取り付けられるようになる。また、係る構成で第1弁座21Aより第1冷媒入口88側の第1冷媒通路91と、第2弁座22Aより第2冷媒出口93側の第2冷媒通路94は、ハウジング82内において隣接するかたちとなる。連通路96は第1弁座21Aより第1冷媒入口88側の第1冷媒通路91と、第2弁座22Aより第2冷媒出口93側の第2冷媒通路94とを連通するものであり、この連通路96に逆止弁18が設けられ、第2冷媒通路94方向を順方向とされる。
 複合弁81は図1の如く駆動装置83により第1開閉弁部21の第1弁体21B及び第2開閉弁部22の第2弁体22Bが駆動されて第1冷媒通路91及び第2冷媒通路94が開くと、第1冷媒入口88から流入した冷媒が第1開閉弁部21を通過して第1冷媒出口
89から流出し、第2冷媒入口92から流入した冷媒が第2開閉弁部22を通過して第2冷媒出口93から流出する(図1に白抜き矢印で示す)。一方、駆動装置83により第1開閉弁部21の第1弁体21B及び第2開閉弁部22の第2弁体22Bが第2冷媒通路91及び第2冷媒通路94が閉じると、第1冷媒入口88から第1冷媒通路91に流入した冷媒は逆止弁18を経て第2冷媒通路94に至り、第2冷媒出口93から流出するようになる(図2に白抜き矢印で示す)。
 (2)車両用空気調和装置1の回路構成
 次に、図3を用いて本発明の複合弁81が適用される車両用空気調和装置1について説明する。図3は一実施例の車両用空気調和装置1の構成図を示している。ここで、実施例の車両用空気調和装置1を適用する車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ(例えば、リチウム電池)が搭載され、外部電源からバッテリに充電された電力を走行用モータ(電動モータ)に供給することで駆動し、走行するものである。
 即ち、車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、冷房/被温調対象冷却モード、及び、被温調対象冷却モードの各運転モードを選択的に実行することで車室内の空調を行い、更に、後述する被温調対象55の冷却も行うものである。
 尚、車両として係る電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車や通常のエンジン駆動式の自動車にも本発明が有効であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12と、前述した複合弁81等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 尚、室外膨張弁6や室内膨張弁8は、冷媒を減圧膨張させると共に、全開や全閉も可能とされている。また、放熱器4の冷媒入口は圧縮機2の吐出側の冷媒配管13Gに接続されている。また、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7の冷媒出口側の冷媒配管13Aが複合弁81の第1冷媒入口88に接続され、複合弁81の第2冷媒出口93に室内膨張弁8の冷媒入口側の冷媒配管13Bが接続されている。複合弁81の第1冷媒出口89には圧縮機2の吸込側の冷媒配管の一部を構成する冷媒配管13Dが接続され、この冷媒配管13Dは吸熱器9の冷媒出口側に接続された冷媒配管13Cに連通接続されている。この冷媒配管13Cは圧縮機2の吸込側の冷媒配管の主体を構成するものである。そして、この冷媒配管13Dの接続点より下流側の冷媒配管13Cには逆止弁20が接続され、この逆止弁20より下流側の冷媒配管13Cがアキュムレータ12を介して圧縮機2の吸込側に接続されている。尚、逆止弁20はアキュムレータ12側が順方向とされている。また、吸熱器9の冷媒出口側から圧縮機2の吸込側に至る冷媒配管の全体を符号13Cで示す。
 更に、放熱器4の冷媒出口側の冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jとバイパス回路(冷媒配管)13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。即ち、冷媒配管13Jは放熱器4の冷媒出口側の冷媒配管13Eの一部を構成する。また、分岐したバイパス回路13Fは複合弁81の第2冷媒入口92に接続されている。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図3では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図3において23は補助加熱装置としての補助ヒータである。この補助ヒータ23は実施例ではPTCヒータ(電気ヒータ)から構成されており、空気流通路3の空気の流れに対して、放熱器4の空気下流側となる空気流通路3内に設けられている。そして、補助ヒータ23が通電されて発熱すると、これが所謂ヒータコアとなり、車室内の暖房を補完する。
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図3では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 (3)被温調対象冷却装置61
 更に、車両用空気調和装置1は、車両に搭載されたバッテリや走行用モータ等の被温調対象55に熱媒体を循環させて冷却するための被温調対象冷却装置61を備えている。即ち、実施例においてはバッテリや走行用モータが車両に搭載された被温調対象55となるが、以下は被温調対象55がバッテリであるものとして説明する。尚、本発明における被温調対象としてはバッテリや走行用モータに限らず、走行用モータを駆動するためのインバータ回路等の電気機器も含むものとする。
 実施例の被温調対象冷却装置61は、被温調対象55に熱媒体を循環させるための循環装置としての循環ポンプ62と、被温調対象用熱交換器64を備え、それらと被温調対象55が熱媒体配管68にて接続されている。実施例の場合、循環ポンプ62の吐出側に被温調対象用熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口に被温調対象55が接続されている。そして、被温調対象55の出口が循環ポンプ62の吸込側に接続されている。
 この被温調対象冷却装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、被温調対象55(バッテリ)の周囲には例えば熱媒体が当該被温調対象55と熱交換関係で流通可能なジャケット構造が施されているものとする。
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は被温調対象用熱交換器64の熱媒体流路64Aに流入する。この被温調対象用熱交換器64の熱媒体流路64Aを出た熱媒体は被温調対象55に至り、熱媒体はそこで被温調対象55と熱交換する。この被温調対象55と熱交換した熱媒体は循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される。
 一方、室内膨張弁8の冷媒入口側の冷媒配管13Bには分岐配管72の一端が接続されている。この分岐配管72には電動弁から構成された補助膨張弁73が設けられている。この補助膨張弁73は被温調対象用熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。
 そして、分岐配管72の他端は被温調対象用熱交換器64の冷媒流路64Bの冷媒入口に接続されており、この冷媒流路64Bの冷媒出口は冷媒配管74を介して逆止弁20の冷媒下流側であってアキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに連通接続されている。従って、冷媒配管74も圧縮機2の吸込側の冷媒配管の一部を構成する。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、被温調対象冷却装置61の一部をも構成することになる。
 補助膨張弁73が開いている場合、冷媒配管13Bに流入した冷媒は分岐配管72に流れ、補助膨張弁73で減圧された後、被温調対象用熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。
 (4)車両用空気調和装置1の空調コントローラ32(制御装置)
 次に、図4において、32は車両用空気調和装置1の制御を司る制御装置としての空調コントローラ32である。この空調コントローラ32は、被温調対象55(バッテリや走行用モータ)の制御を含む車両全般の制御を司る車両コントローラ35(ECU)に車両通信バス45を介して接続され、情報の送受信を行う構成とされている。これら空調コントローラ32や車両コントローラ35(ECU)は何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されている。
 空調コントローラ32(制御装置)の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、
吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、空調のON/OFF、設定温度や運転モードの切り換えを設定するための空調操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、空調コントローラ32の入力には更に、車両に搭載された被温調対象55(例えば、バッテリ)の温度(被温調対象55自体の温度、又は、被温調対象55を出た熱媒体の温度、或いは、被温調対象55に入る熱媒体の温度:被温調対象温度Tw)を検出する被温調対象温度センサ76の出力も接続されている。
 一方、空調コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6と、室内膨張弁8と、複合弁81の駆動装置83と、補助ヒータ23と、被温調対象冷却装置61の循環ポンプ62と、補助膨張弁73が接続されている。そして、空調コントローラ32は各センサの出力と空調操作部53にて入力された設定、車両コントローラ35からの情報に基づいてこれらを制御するものである。
 (5)複合弁81を含む車両用空気調和装置1の動作
 以上の構成で、次に実施例の車両用空気調和装置1の動作について説明する。空調コントローラ32(制御装置)は実施例では暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、冷房/被温調対象冷却モード、被温調対象冷却モードを切り換えて実行可能とされている。以下、各運転モードについて説明する。
 (5-1)暖房モード
 最初に、図5を参照しながら暖房モードについて説明する。図5は暖房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)を示している。空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、空調コントローラ32は複合弁81の駆動装置83に通電して、アクチュエータ84を引き上げ、第1開閉弁部21、及び、第2開閉弁部22により第1冷媒通路91、及び、第2冷媒通路94を開く(図1の状態)。また、室内膨張弁8及び補助膨張弁73を全閉とする(吸熱器9及び被温調対象用熱交換器64への冷媒の流入を阻止)。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13Aから複合弁81の第1冷媒通路91に入り、第1開閉弁部21を経て冷媒配管13Dに出る。
 冷媒配管13Dに出た冷媒は冷媒配管13Cに入り、逆止弁20を経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。尚、複合弁81の第2開閉弁部22も開いているが、室内膨張弁8及び補助膨張弁73が全閉となっているので第2冷媒通路94に冷媒は流れない。
 空調コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。また、放熱器4による暖房能力が不足する場合には補助ヒータ23に通電して発熱させ、暖房能力を補完する。
 (5-2)除湿暖房モード
 次に、図6を参照しながら除湿暖房モードについて説明する。図6は除湿暖房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房モードでは、空調コントローラ32は上記暖房モードの状態において、室内膨張弁8を開いて冷媒を減圧膨張させる状態とする。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部がバイパス回路13Fに分流され、この分流された冷媒が複合弁81の第2冷媒入口92から第2冷媒通路94に入り、第2開閉弁部22を経て第2冷媒出口93から冷媒配管13Bに流入し、この冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
 空調コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。
 尚、室外膨張弁6は全閉も可能とされている。従って、図6の除湿暖房モードにおいて室外膨張弁6が全閉となった場合には、室外熱交換器7への冷媒の流入は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒はバイパス回路13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は複合弁81の第2冷媒通路94、第2開閉弁部22を経て冷媒配管13Bから室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを流れ、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この運転では室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮されることになる。従って、除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、除湿能力は高いが、暖房能力は低くなる。
 (5-3)除湿冷房モード
 次に、図7を参照しながら除湿冷房モードについて説明する。図7は除湿冷房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿冷房モードでは、空調コントローラ32は室内膨張弁8を開いて冷媒を減圧膨張させる状態とし、複合弁81の駆動装置83を非通電として、アクチュエータ84を下げ、第1開閉弁部21、及び、第2開閉弁部22により第1冷媒通路91、及び、第2冷媒通路94を閉じる(図2の状態)。また、室外膨張弁6は開き気味で制御され、補助膨張弁73は全閉とされる(被温調対象用熱交換器64への冷媒の流入を阻止)。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aに流出し、複合弁81の第1冷媒入口88から第1冷媒通路91に入る。
 このとき、第1開閉弁部21と第2開閉弁部22は閉じているので、第1冷媒通路91に流入した冷媒は、連通路96及び逆止弁18を経て第2冷媒通路94に入り、第2冷媒出口93から冷媒配管13Bに入るようになる。この冷媒配管13Bに流入した冷媒は、室内膨張弁8に至り、この室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房、除湿暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標ヒータ温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量を得る。
 (5-4)冷房モード
 次に、冷房モードについて説明する。冷媒回路Rの流れは図7の除湿冷房モードと同様である。冷房モードでは、空調コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、エアミックスダンパ28は放熱器4及び補助ヒータ23に空気が通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそのまま室外膨張弁6を経て冷媒配管13Jを通過し、室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、複合弁81の第1冷媒通路91、連通路96(逆止弁18)、第2冷媒通路94を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。
 (5-5)暖房モード、除湿暖房モード、除湿冷房モード、及び、冷房モードの切り換え
 空調コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、空調コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて暖房モード、除湿暖房モード、除湿冷房モード、及び、冷房モードのうちの何れかの運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていくものである。
 (5-6)冷房/被温調対象冷却モード
 次に、図8を参照しながら上記冷房モード中における空調コントローラ32による冷房/被温調対象冷却モードについて説明する。ここで、バッテリ(被温調対象)は外気温度により温度が上昇すると共に、充放電時の自己発熱によっても温度が上昇する。即ち、外気温度が高温環境であるときには、バッテリの温度が極めて高くなり、充放電が困難となる(尚、走行用モータも同様に運転や環境条件によって温度が極めて高くなり、機能不全に陥って故障する場合がある)。
 そこで、実施例の車両用空気調和装置1の空調コントローラ32は、被温調対象温度Twに所定の目標被温調対象温度TWO(例えば、バッテリの目標温度)と、その上下に所定のヒステリシスをもって上限値TWH、下限値TWLを設定し、上記の如き冷房モードを実行しているときに、被温調対象温度センサ76が検出する被温調対象温度Twが所定の上限値TWH以上に上昇した場合、冷房モードから冷房/被温調対象冷却モードに移行する。図8はこの冷房/被温調対象冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象冷却装置61の熱媒体の流れ(破線矢印)を示している。
 この冷房/被温調対象冷却モードでは、空調コントローラ32は図7に示した冷媒回路Rの冷房モードの状態で補助膨張弁73を開き、被温調対象用熱交換器64における冷媒の過熱度に基づいてその弁開度を制御する状態とする。そして、被温調対象冷却装置61の循環ポンプ62を運転する。これにより、放熱器4から出た冷媒は前述した如く室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、複合弁81の第1冷媒通路91、連通路96(逆止弁18)、第2冷媒通路94を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。一方、冷媒配管13Bに入った冷媒の一部は分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て被温調対象用熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。
 一方、循環ポンプ62から吐出された熱媒体は熱媒体配管68内を被温調対象用熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。この被温調対象用熱交換器64の熱媒体流路64Aを出た熱媒体は、被温調対象55に至り、当該被温調対象55と熱交換して冷却する。そして、被温調対象55と熱交換した熱媒体は循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。
 このように被温調対象55が冷却されてその温度Twが下限値TWL以下に低下した場合、空調コントローラ32は、補助膨張弁73を全閉とし、循環ポンプ62も停止して冷房/被温調対象冷却モードから冷房モードに復帰する。このようにして、被温調対象55(例えば、バッテリ)の温度Twを所定の目標被温調対象温度TWOに維持するものである。
 尚、上記冷房/被温調対象冷却モードは、冷房モードの運転中のみならず、停車してバッテリ(被温調対象55)に充電しているときに、空調操作部53で空調ON(空調要求)されている場合にも実行される。冷媒回路Rの冷媒の流れ、及び、被温調対象冷却装置61の熱媒体の流れは変わらない。但し、その場合には空調コントローラ32は被温調対象温度センサ76が検出する被温調対象温度Twに基づいて圧縮機2の回転数を制御し、吸熱器温度Teに基づいて室内膨張弁8の弁開度を制御し、吸熱器9における冷媒の過熱度を制御するようになる。即ち、充電中における冷房/被温調対象冷却モードでは被温調対象の冷却が優先され、走行中の冷房/被温調対象冷却モードでは車室内の冷房が優先されることになる。
 (5-7)被温調対象冷却モード
 次に、図9を参照しながらバッテリ(被温調対象55)の充電中に車室内の空調要求が無い(空調OFF)場合における空調コントローラ32による被温調対象冷却モードについて説明する。バッテリは充電中発熱するため、実施例の空調コントローラ32はこの場合も、被温調対象温度Twに所定の目標被温調対象温度TWO(バッテリの目標温度)と、その上下に所定のヒステリシスをもって上限値TWH、下限値TWLを設定し、充電によって被温調対象温度センサ76が検出する被温調対象温度Twが所定の上限値TWH以上に上昇した場合、被温調対象冷却モードに移行する。図9はこの被温調対象冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象冷却装置61の熱媒体の流れ(破線矢印)を示している。
 この被温調対象冷却モードでは、空調コントローラ32は複合弁81の駆動装置83を非通電として、アクチュエータ84を下げ、第1開閉弁部21、及び、第2開閉弁部22により第1冷媒通路91、及び、第2冷媒通路94を閉じる(図2の状態)。また、室外膨張弁6は全開とし、室内膨張弁8は全閉とし(吸熱器9への冷媒の流入を阻止)、補助膨張弁73を開いてその弁開度を調整する状態とする。また、循環ポンプ62を運転する。
 そして、圧縮機2、及び、室外送風機15を運転し、室内送風機27は停止する。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aに流出し、複合弁81の第1冷媒入口88から第1冷媒通路91に入る。
 このとき、第1開閉弁部21と第2開閉弁部22は閉じているので、第1冷媒通路91に流入した冷媒は、連通路96及び逆止弁18を経て第2冷媒通路94に入り、第2冷媒出口93から冷媒配管13Bに入るようになる。この冷媒配管13Bに流入した冷媒は、分岐配管72に流入して補助膨張弁73に至り、この補助膨張弁73で減圧された後、被温調対象用熱交換器64の冷媒流路64Bに流入して蒸発する。
 この冷媒流路64Bで蒸発した冷媒は冷媒配管74に流出し、冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。一方、循環ポンプ62から吐出された熱媒体は熱媒体配管68内を被温調対象用熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。この被温調対象用熱交換器64の熱媒体流路64Aを出た熱媒体は、被温調対象55に至り、当該被温調対象55と熱交換して冷却する。そして、被温調対象55と熱交換した熱媒体は循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。
 空調コントローラ32は被温調対象温度センサ76が検出する被温調対象55の温度(被温調対象温度Tw)とその目標値である目標被温調対象温度TWOに基づき、被温調対象温度Tw(実施例ではバッテリの温度)を目標被温調対象温度TWOにするように圧縮機2の回転数を制御するものである。
 以上詳述した如く本発明の複合弁81は、第1冷媒入口88、第1冷媒出口89、第2冷媒入口92、及び、第2冷媒出口93を有するハウジング82と、このハウジング82内に形成され、第1冷媒入口88と第1冷媒出口89間に渡る第1冷媒通路91と、ハウジング82内に形成され、第2冷媒入口92と第2冷媒出口93間に渡る第2冷媒通路94と、第1冷媒通路91に設けられ、当該第1冷媒通路91を開閉する第1開閉弁部21と、第2冷媒通路94に設けられ、当該第2冷媒通路94を開閉する第2開閉弁部22と、アクチュエータ84を介して第1開閉弁部21、及び、第2開閉弁部22を駆動する駆動装置83と、ハウジング82内に形成され、第1開閉弁部21より第1冷媒入口88側の第1冷媒通路91と、第2開閉弁部22より第2冷媒出口93側の第2冷媒通路94とを連通する連通路96と、この連通路96に設けられ、第2冷媒通路94方向を順方向とされた逆止弁18を備えているので、実施例の如く冷媒を圧縮する圧縮機2と、冷媒入口が圧縮機2の吐出側の冷媒配管13Gに接続され、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、冷媒出口が圧縮機2の吸込側の冷媒配管13Cに接続され、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器9と、放熱器4の冷媒出口側の冷媒配管13E、13Jに接続され、車室外に設けられた室外熱交換器7と、この室外熱交換器7に流入する冷媒を減圧するための室外膨張弁6と、吸熱器9に流入する冷媒を減圧するための室内膨張弁8と、放熱器4の冷媒出口側の冷媒配管13Eから分岐したバイパス回路13Fと、空調コントローラ32を備えた車両用空気調和装置1に適用し、室外熱交換器7の冷媒出口側の冷媒配管13Aを複合弁81の第1冷媒入口88に接続し、圧縮機2の吸込側の冷媒配管となる冷媒配管13Dを複合弁81の第1冷媒出口89に接続し、バイパス回路13Fを複合弁81の第2冷媒入口92に接続し、室内膨張弁8の冷媒入口側の冷媒配管13Bを複合弁81の第2冷媒出口93に接続すれば、空調コントローラ32により複合弁81の駆動装置83を制御することで、実施例の如き暖房モード、除湿暖房モード、除湿冷房モード、及び、冷房モードを切り換えて実行することが可能となる。
 また、実施例の如く冷媒を用いて車両に搭載された被温調対象55(バッテリや走行用モータ)を冷却する被温調対象冷却装置61を設け、この被温調対象冷却装置61に、冷媒を吸熱させて被温調対象55を冷却するための被温調対象用熱交換器64と、この被温調対象用熱交換器64に流入する冷媒を減圧する補助膨張弁73を設けて被温調対象用熱交換器64の冷媒入口を室内膨張弁8の冷媒入口側の冷媒配管13Bから分岐した分岐配管72に接続し、被温調対象用熱交換器64の冷媒出口を、冷媒配管74を介して圧縮機2の吸込側の冷媒配管13Cに接続すれば、空調コントローラ32により複合弁の駆動装置83を制御することで、冷房/被温調対象冷却モードと被温調対象冷却モードを切り換えて実行することが可能となる。
 即ち、従来複数の電磁弁(暖房用の電磁弁や除湿用の電磁弁)が担っていた車両用空気調和装置1の運転モードの切り換え機能を、複合弁81に集約することができるようになり、部品点数の削減による部品コストや生産コストの低減と、設置スペースの縮小を図ることができるようになる。
 この場合、実施例では第1開閉弁部21より第1冷媒入口88側の第1冷媒通路91と、第2開閉弁部22より第2冷媒出口93側の第2冷媒通路94を、ハウジング82内において隣接して形成しているので、第1冷媒通路91と第2冷媒通路94を短い寸法の連通路96にて連通することができるようになり、連通路96における圧損等のロスを最低限に抑制することが可能となる。
 また、実施例ではハウジング82を、第1冷媒入口88、第1冷媒出口89、第1冷媒通路91、及び、第1開閉弁部21が設けられた第1ハウジング部材86と、第2冷媒入口92、第2冷媒出口93、第2冷媒通路94、及び、第2開閉弁部22が設けられた第2ハウジング部材87とを結合して構成し、アクチュエータ84を各ハウジング部材86、87に渡って設けて各開閉弁部21、22を駆動するようにしているので、複合弁81の製造/組立作業も容易となる。
 特に、実施例では第1開閉弁部21より第1冷媒入口88側の第1冷媒通路91を第1ハウジング部材86の一面に近接して当該第1ハウジング部材86内に形成し、第2開閉弁部22より第2冷媒出口93側の第2冷媒通路94を第2ハウジング部材87の一面に近接して当該第2ハウジング部材87内に形成すると共に、第1ハウジング部材86に、第1開閉弁部21より第1冷媒入口88側の第1冷媒通路91から第1ハウジング部材86の一面に至る第1連通部96Aを形成し、第2ハウジング部材87に、第2開閉弁部22より第2冷媒出口93側の第2冷媒通路94から第2ハウジング部材87の一面に至る第2連通部96Bを形成して、各ハウジング部材86、87の一面同士を結合したときに各連通部96A、96Bが合致して連通路96を構成するようにしているので、短い寸法の連通路96を容易に構成することができるようになると共に、逆止弁18の取り付けも容易となる。
 尚、実施例で説明した複合弁81の構成、車両用空気調和装置1の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能である。また、実施例では室内膨張弁8や補助膨張弁73を電動弁にて構成し、全閉として吸熱器9や被温調対象用熱交換器64への冷媒の流入を阻止するようにしたが、それに限らず、室内膨張弁8や補助膨張弁73を機械式の膨張弁にて構成し、直列に電磁弁を接続して冷媒の流入を阻止できるようにしてもよい。室外膨張弁6についても電動弁では無く機械式の膨張弁にて構成し、並列に電磁弁を接続して常には閉じておき、前述した冷房モードや冷房/被温調対象冷却モード、被温調対象冷却モードではこの電磁弁を開放するようにしてもよい。
 更に、実施例では熱媒体を介して冷媒により被温調対象55を冷却する被温調対象冷却装置61を採用したが、それに限らず、被温調対象用熱交換器64にて冷媒により被温調対象55を直接冷却するようにしてもよい。更にまた、実施例では車両用空気調和装置に本発明の複合弁を適用したが、それに限らず、冷媒回路を有する各種装置に採用可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 18 逆止弁
 21 第1開閉弁部
 22 第2開閉弁部
 32 空調コントローラ(制御装置)
 55 被温調対象
 61 被温調対象冷却装置
 62 循環ポンプ
 64 被温調対象用熱交換器
 72 分岐配管
 73 補助膨張弁
 81 複合弁
 82 ハウジング
 83 駆動装置
 84 アクチュエータ
 86 第1ハウジング部材
 87 第2ハウジング部材
 88 第1冷媒入口
 89 第1冷媒出口
 91 第1冷媒通路
 92 第2冷媒入口
 93 第2冷媒出口
 94 第2冷媒通路
 96 連通路
 96A 第1連通部
 96B 第2連通部

Claims (7)

  1.  冷媒回路に適用される複合弁であって、
     第1冷媒入口、第1冷媒出口、第2冷媒入口、及び、第2冷媒出口を有するハウジングと、
     該ハウジング内に形成され、前記第1冷媒入口と前記第1冷媒出口間に渡る第1冷媒通路と、
     前記ハウジング内に形成され、前記第2冷媒入口と前記第2冷媒出口間に渡る第2冷媒通路と、
     前記第1冷媒通路に設けられ、当該第1冷媒通路を開閉する第1開閉弁部と、
     前記第2冷媒通路に設けられ、当該第2冷媒通路を開閉する第2開閉弁部と、
     アクチュエータを介して前記第1開閉弁部、及び、前記第2開閉弁部を駆動する駆動装置と、
     前記ハウジング内に形成され、前記第1開閉弁部より前記第1冷媒入口側の前記第1冷媒通路と、前記第2開閉弁部より前記第2冷媒出口側の前記第2冷媒通路とを連通する連通路と、
     該連通路に設けられ、前記第2冷媒通路方向を順方向とされた逆止弁を備えたことを特徴とする複合弁。
  2.  前記第1開閉弁部より前記第1冷媒入口側の前記第1冷媒通路と、前記第2開閉弁部より前記第2冷媒出口側の前記第2冷媒通路は、前記ハウジング内において隣接して形成されていることを特徴とする請求項1に記載の複合弁。
  3.  前記ハウジングは、
     前記第1冷媒入口、前記第1冷媒出口、前記第1冷媒通路、及び、前記第1開閉弁部が設けられた第1ハウジング部材と、
     前記第2冷媒入口、前記第2冷媒出口、前記第2冷媒通路、及び、前記第2開閉弁部が設けられた第2ハウジング部材とを結合して成り、
     前記アクチュエータが前記各ハウジング部材に渡って設けられ、前記各開閉弁部を駆動することを特徴とする請求項1又は請求項2に記載の複合弁。
  4.  前記第1開閉弁部より前記第1冷媒入口側の前記第1冷媒通路は前記第1ハウジング部材の一面に近接して当該第1ハウジング部材内に形成され、
     前記第2開閉弁部より前記第2冷媒出口側の前記第2冷媒通路は前記第2ハウジング部材の一面に近接して当該第2ハウジング部材内に形成されていると共に、
     前記第1ハウジング部材は、前記第1開閉弁部より前記第1冷媒入口側の前記第1冷媒通路から前記第1ハウジング部材の一面に至る第1連通部を有し、
     前記第2ハウジング部材は、前記第2開閉弁部より前記第2冷媒出口側の前記第2冷媒通路から前記第2ハウジング部材の一面に至る第2連通部を有し、
     前記各ハウジング部材の一面同士が結合され、その状態で前記各連通部は合致し、前記連通路を構成することを特徴とする請求項3に記載の複合弁。
  5.  冷媒を圧縮する圧縮機と、
     冷媒入口が前記圧縮機の吐出側の冷媒配管に接続され、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     冷媒出口が前記圧縮機の吸込側の冷媒配管に接続され、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、
     前記放熱器の冷媒出口側の冷媒配管に接続され、車室外に設けられた室外熱交換器と、
     該室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
     前記吸熱器に流入する冷媒を減圧するための室内膨張弁と、
     前記放熱器の冷媒出口側の冷媒配管から分岐したバイパス回路と、
     制御装置を備え、
     前記室外熱交換器の冷媒出口側の冷媒配管が前記複合弁の前記第1冷媒入口に接続され、
     前記圧縮機の吸込側の冷媒配管が前記複合弁の前記第1冷媒出口に接続され、
     前記バイパス回路が前記複合弁の前記第2冷媒入口に接続され、
     前記室内膨張弁の冷媒入口側の冷媒配管が前記複合弁の前記第2冷媒出口に接続され、前記制御装置により前記複合弁の駆動装置が制御されることを特徴とする請求項1乃至請求項4に記載の何れかの複合弁を用いた車両用空気調和装置。
  6.  前記制御装置は、前記複合弁の駆動装置を制御することにより、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を開き、前記吸熱器への冷媒の流入を阻止した状態で、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記室外膨張弁で減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を開き、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記室外膨張弁で減圧した後、前記室外熱交換器にて吸熱させ、前記バイパス回路からの冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる除湿暖房モードと、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を閉じ、前記圧縮機から吐出された冷媒を前記放熱器と前記室外熱交換器で放熱させ、放熱した当該冷媒を前記複合弁の逆止弁を経て前記室内膨張弁に流し、該室内膨張弁で減圧した後、前記吸熱器にて吸熱させる除湿冷房モードと、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を閉じ、前記圧縮機から吐出された冷媒を前記室外熱交換器で放熱させ、放熱した当該冷媒を前記複合弁の逆止弁を経て前記室内膨張弁に流し、前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる冷房モードと、
     を切り換えて実行することを特徴とする請求項5に記載の車両用空気調和装置。
  7.  冷媒を用いて車両に搭載された被温調対象を冷却する被温調対象冷却装置を備え、
     該被温調対象冷却装置は、冷媒を吸熱させて前記被温調対象を冷却するための被温調対象用熱交換器と、該被温調対象用熱交換器に流入する冷媒を減圧する補助膨張弁を有し、前記被温調対象用熱交換器の冷媒入口が前記室内膨張弁の冷媒入口側の冷媒配管から分岐した分岐配管に接続され、前記被温調対象用熱交換器の冷媒出口が前記圧縮機の吸込側の冷媒配管に接続されると共に、
     前記制御装置は、前記複合弁の駆動装置を制御することにより、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を閉じ、前記圧縮機から吐出された冷媒を前記室外熱交換器で放熱させ、放熱した当該冷媒を前記複合弁の逆止弁を経て前記室内膨張弁と前記補助膨張弁に流し、前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させ、前記補助膨張弁で減圧した後、前記被温調対象用熱交換器で吸熱させる冷房/被温調対象冷却モードと、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を閉じ、前記吸熱器への冷媒の流入を阻止した状態で、前記圧縮機から吐出された冷媒を前記室外熱交換器で放熱させ、放熱した当該冷媒を前記複合弁の逆止弁を経て前記補助膨張弁に流し、当該補助膨張弁で減圧した後、前記被温調対象用熱交換器で吸熱させる被温調対象冷却モードと、
     を切り換えて実行することを特徴とする請求項5又は請求項6に記載の車両用空気調和装置。
PCT/JP2019/031363 2018-08-27 2019-08-08 複合弁及びそれを用いた車両用空気調和装置 WO2020045030A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980053586.9A CN112543855B (zh) 2018-08-27 2019-08-08 复合阀及使用该复合阀的车用空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-158324 2018-08-27
JP2018158324A JP7095845B2 (ja) 2018-08-27 2018-08-27 複合弁及びそれを用いた車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2020045030A1 true WO2020045030A1 (ja) 2020-03-05

Family

ID=69644937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031363 WO2020045030A1 (ja) 2018-08-27 2019-08-08 複合弁及びそれを用いた車両用空気調和装置

Country Status (3)

Country Link
JP (1) JP7095845B2 (ja)
CN (1) CN112543855B (ja)
WO (1) WO2020045030A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114688771B (zh) * 2022-05-20 2022-08-05 海尔(深圳)研发有限责任公司 单向分流装置及可变分流换热器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166679A (ja) * 2011-02-14 2012-09-06 Tgk Co Ltd 車両用冷暖房装置および集合弁
JP2014070867A (ja) * 2012-10-01 2014-04-21 Denso Corp ヒートポンプサイクルおよびヒートポンプサイクル用統合弁
JP2014081159A (ja) * 2012-10-17 2014-05-08 Denso Corp 冷凍サイクル装置
WO2016125697A1 (ja) * 2015-02-04 2016-08-11 株式会社デンソー 統合弁およびヒートポンプサイクル
JP2017227367A (ja) * 2016-06-21 2017-12-28 株式会社デンソー 冷凍サイクル装置
JP2018124021A (ja) * 2017-02-02 2018-08-09 株式会社デンソー 熱交換モジュール、および温度調整装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063584B2 (ja) * 2002-05-20 2008-03-19 株式会社テージーケー 流出防止装置
CN200949664Y (zh) * 2006-08-29 2007-09-19 浙江春晖智能控制股份有限公司 二次节流h型汽车空调热力膨胀阀
JP5533207B2 (ja) * 2010-05-06 2014-06-25 株式会社日本自動車部品総合研究所 ヒートポンプサイクル
JP6011493B2 (ja) * 2013-08-28 2016-10-19 株式会社デンソー 統合弁、駆動システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166679A (ja) * 2011-02-14 2012-09-06 Tgk Co Ltd 車両用冷暖房装置および集合弁
JP2014070867A (ja) * 2012-10-01 2014-04-21 Denso Corp ヒートポンプサイクルおよびヒートポンプサイクル用統合弁
JP2014081159A (ja) * 2012-10-17 2014-05-08 Denso Corp 冷凍サイクル装置
WO2016125697A1 (ja) * 2015-02-04 2016-08-11 株式会社デンソー 統合弁およびヒートポンプサイクル
JP2017227367A (ja) * 2016-06-21 2017-12-28 株式会社デンソー 冷凍サイクル装置
JP2018124021A (ja) * 2017-02-02 2018-08-09 株式会社デンソー 熱交換モジュール、および温度調整装置

Also Published As

Publication number Publication date
JP7095845B2 (ja) 2022-07-05
JP2020034177A (ja) 2020-03-05
CN112543855A (zh) 2021-03-23
CN112543855B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
CN110505968B (zh) 车辆用空气调和装置
US10899198B2 (en) Air conditioner for vehicle
WO2019150830A1 (ja) 車両用空気調和装置
JP6590551B2 (ja) 車両用空気調和装置
JP6607638B2 (ja) 車両用空気調和装置
WO2020066719A1 (ja) 車両用空気調和装置
JP6963405B2 (ja) 車両用空気調和装置
JP7300264B2 (ja) 車両用空気調和装置
JP2020142789A (ja) 熱管理システム
WO2017014021A1 (ja) 車両用空気調和装置
JP7372732B2 (ja) 車両用空気調和装置
WO2019116781A1 (ja) 車両用暖房装置
JP7280770B2 (ja) 車両用空気調和装置
JP7468124B2 (ja) 車両用空調装置
WO2020184146A1 (ja) 車両用空気調和装置
WO2020045030A1 (ja) 複合弁及びそれを用いた車両用空気調和装置
US10933719B2 (en) Vehicle air-conditioning apparatus
WO2020045031A1 (ja) 複合弁及びそれを用いた車両用空気調和装置
CN112384392A (zh) 车辆用空气调节装置
WO2021187005A1 (ja) 車両用空気調和装置
JP7233953B2 (ja) 車両用空気調和装置
JP2020069929A (ja) 車両用空気調和装置
WO2020179492A1 (ja) 車両用空気調和装置
WO2021192760A1 (ja) 車両用空気調和装置
WO2019150832A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855395

Country of ref document: EP

Kind code of ref document: A1