WO2016125697A1 - 統合弁およびヒートポンプサイクル - Google Patents

統合弁およびヒートポンプサイクル Download PDF

Info

Publication number
WO2016125697A1
WO2016125697A1 PCT/JP2016/052648 JP2016052648W WO2016125697A1 WO 2016125697 A1 WO2016125697 A1 WO 2016125697A1 JP 2016052648 W JP2016052648 W JP 2016052648W WO 2016125697 A1 WO2016125697 A1 WO 2016125697A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant
gas
intermediate pressure
cycle
Prior art date
Application number
PCT/JP2016/052648
Other languages
English (en)
French (fr)
Inventor
大石 繁次
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680008385.3A priority Critical patent/CN107208949B/zh
Priority to US15/542,770 priority patent/US10293660B2/en
Priority to JP2016573326A priority patent/JP6304407B2/ja
Priority to DE112016000605.5T priority patent/DE112016000605T5/de
Publication of WO2016125697A1 publication Critical patent/WO2016125697A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • This disclosure relates to integrated valves and heat pump cycles.
  • Patent Document 1 discloses a heat pump cycle that switches from a normal cycle to a gas injection cycle during heating operation in order to improve COP (Coefficient Of Performance) that is a coefficient of performance of the cycle during heating operation.
  • the normal cycle is a one-stage compression cycle
  • the gas injection cycle is a two-stage compression cycle.
  • the first and second decompression units that decompress the refrigerant flowing out of the radiator, and the gas-liquid separation that separates the gas-liquid of the intermediate pressure refrigerant decompressed by the first decompression unit.
  • an evaporator for evaporating the refrigerant decompressed by the first decompression unit.
  • an on-off valve that opens and closes the refrigerant passage is provided in an intermediate pressure refrigerant passage that guides the gas-phase refrigerant separated by the gas-liquid separator to the intermediate pressure port of the compressor.
  • the second decompression unit when the heat pump cycle is caused to function as a normal cycle, the second decompression unit is set to a fully open state that does not exhibit a decompression action.
  • both the first and second decompression units are set to a throttled state that exerts a decompression action in order to decompress the refrigerant flowing out of the radiator in two stages.
  • the on-off valve that opens and closes the intermediate-pressure refrigerant passage is configured by a differential pressure valve.
  • This differential pressure valve opens the intermediate pressure refrigerant passage when the differential pressure before and after the second pressure reducing unit becomes equal to or higher than a predetermined differential pressure. This simplifies the cycle configuration of the heat pump cycle.
  • Patent Document 2 discloses an example in which a compressor is configured as a scroll compressor in a heat pump cycle that functions as a gas injection cycle. Specifically, in Patent Document 2, an intermediate pressure port is formed in an end plate portion of a fixed scroll, and the intermediate pressure port is periodically opened and closed by a tooth tip that contacts the end plate portion of the fixed scroll in the movable scroll. Thus, the intermediate pressure refrigerant is combined with the refrigerant in the compression process.
  • JP 2012-181005 A Japanese Patent Laid-Open No. 09-105386
  • the intermediate pressure refrigerant passage may not be evacuated in the evacuation step.
  • the intermediate pressure refrigerant passage may not be filled in the filling step.
  • And (2) were intensively studied, and the cause of each defect (1) and (2) was clarified.
  • the present disclosure ensures that the intermediate pressure refrigerant passage is evacuated and the intermediate pressure refrigerant passage is charged in the intermediate pressure refrigerant passage in the evacuation step in the heat pump cycle that can be switched between the gas injection cycle and the normal cycle.
  • the purpose is to enable implementation.
  • the integrated valve has an intermediate pressure via a decompression chamber for decompressing the refrigerant discharged from the compressor, an intermediate pressure refrigerant passage, and a check valve.
  • a body formed with an on-off valve chamber for opening and closing a flow path of the refrigerant to be merged with the port, a first valve body disposed in the decompression chamber and constituting a decompression valve for decompressing the refrigerant discharged from the compressor;
  • a second valve body that is disposed in the on-off valve chamber and that constitutes an on-off valve for adjusting the flow rate of the refrigerant to be merged with the intermediate pressure port, and the on-off valve is fully opened when the pressure reducing valve is in a throttled state.
  • the connecting member that connects the first valve body and the second valve body so that when the pressure reducing valve is open, the on-off valve is also open, and when the pressure reducing valve is fully open, the open / close valve is closed.
  • a drive unit for driving the connecting member is also provided.
  • the connecting member is driven by the drive unit, and the opening / closing valve can be opened when the pressure reducing valve is open.
  • the intermediate pressure refrigerant passage can be evacuated reliably.
  • the connecting member is driven by the drive unit so that the open / close valve can be opened when the pressure reducing valve is in the open state. Therefore, the intermediate pressure refrigerant passage is provided via the pressure reducing valve and the open / close valve. It is also possible to reliably perform the charging of the refrigerant.
  • the heat pump cycle compresses the refrigerant discharged from the suction port and discharges it from the discharge port, and compresses it by flowing in the intermediate pressure refrigerant in the cycle.
  • a compressor having an intermediate pressure port for joining the refrigerant in the process, a check valve for preventing the refrigerant joined to the intermediate pressure port from flowing backward, and an integrated valve for reducing the pressure of the refrigerant discharged from the discharge port;
  • a gas-liquid separation unit that separates the gas-liquid of the refrigerant decompressed by the valve; and an intermediate-pressure refrigerant passage that guides the gas-phase refrigerant separated by the gas-liquid separation unit to the intermediate pressure port.
  • a decompression chamber for decompressing the refrigerant discharged from the machine, and a body formed with an on-off valve chamber for opening and closing a flow path of the refrigerant to be merged with the intermediate pressure port via the intermediate pressure refrigerant passage and the check valve; Placed in the decompression chamber A first valve body that constitutes a pressure reducing valve that depressurizes the refrigerant discharged from the compressor, and a second valve that is arranged in the on-off valve chamber and that opens and closes a refrigerant flow path that merges with the intermediate pressure port.
  • valve is fully open when the pressure reducing valve is in the throttle state, the valve is also open when the pressure reducing valve is open, and the valve is open when the pressure reducing valve is fully open.
  • a connecting member that connects the first valve body and the second valve body so as to be in a closed state, and a drive unit that drives the connecting member.
  • the connecting member is driven by the drive unit, and the opening / closing valve can be opened when the pressure reducing valve is open.
  • the intermediate pressure refrigerant passage can be evacuated reliably.
  • the connecting member is driven by the drive unit so that the open / close valve can be opened when the pressure reducing valve is open. Therefore, the intermediate pressure refrigerant passage is provided via the pressure reducing valve and the open / close valve. It is also possible to reliably charge the refrigerant into the.
  • the heat pump cycle 10 is applied to a vehicle air conditioner 1 for an electric vehicle that obtains a driving force for vehicle traveling from a traveling electric motor.
  • the heat pump cycle 10 functions in the vehicle air conditioner 1 to cool or heat the indoor blown air by using the indoor blown air blown into the vehicle interior, which is the air conditioned space, as the heat exchange target fluid.
  • the heat pump cycle 10 of the present embodiment is configured to be able to switch between the refrigerant circuit in the cooling operation mode shown in FIG. 1 for cooling the vehicle interior and the refrigerant circuit in the heating operation mode shown in FIGS. 2 and 3 for heating the vehicle interior. ing.
  • the refrigerant circuit in the first heating mode shown in FIG. 2 is executed as the heating operation mode when the outside air temperature is extremely low (for example, 0 ° C. or less).
  • the refrigerant circuit in the second heating mode shown in FIG. 3 in which normal heating is performed can be switched.
  • the refrigerant circuit in the first heating mode shown in FIG. 2 constitutes a gas injection cycle (that is, a two-stage compression cycle), and the refrigerant circuit in the cooling operation mode and the refrigerant circuit in the second heating mode are in the normal cycle (that is, 1 stage compression cycle).
  • the heat pump cycle 10 of the present embodiment is configured as a cycle that can be switched to a gas injection cycle (two-stage compression cycle) and a normal cycle (one-stage compression cycle) other than the gas injection cycle.
  • the whole block diagram of FIG. 1 has shown the refrigerant circuit at the time of switching to cooling operation mode
  • the whole block diagram of FIG. 2, FIG. 3 has shown the refrigerant circuit at the time of switching to heating operation mode. 1 to 3, the refrigerant flow in each operation mode is indicated by solid arrows.
  • the heat pump cycle 10 employs an HFC-based refrigerant (for example, R134a) as a refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • HFC-based refrigerant for example, R134a
  • coolants for example, R1234yf
  • the refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is disposed in the hood of the vehicle, and inhales, compresses and discharges the refrigerant in the heat pump cycle 10.
  • the compressor 11 is configured by an electric compressor configured to house a compression mechanism that compresses the refrigerant in the compression chamber 11a and an electric motor that rotationally drives the compression mechanism inside a housing that forms the outer shell. .
  • the housing of the compressor 11 is provided with a suction port 11b, a discharge port 11c, and an intermediate pressure port 11d.
  • the suction port 11b sucks low-pressure refrigerant into the compression chamber 11a.
  • the discharge port 11c discharges high-pressure refrigerant from the compression chamber 11a.
  • the intermediate pressure port 11d guides the intermediate pressure refrigerant in the cycle to the compression chamber 11a and joins the refrigerant in the compression process.
  • the compression mechanism periodically blocks the communication state between the intermediate pressure port 11d and the compression chamber 11a so that the intermediate pressure refrigerant is appropriately injected into the compression chamber 11a. It is configured.
  • the compression mechanism of the compressor 11 for example, a scroll type compression mechanism similar to the conventional technique of Patent Document 2 can be employed.
  • the intermediate pressure port 11d provided in the end plate portion of the fixed scroll (not shown) is periodically closed by the tooth tip of the movable scroll (not shown).
  • the compression mechanism of the compressor 11 is not limited to the scroll compression mechanism as long as the communication state between the intermediate pressure port 11d and the compression chamber 11a is temporarily blocked, and the vane compression mechanism.
  • Various types such as a rolling piston type compression mechanism can be adopted.
  • the compressor 11 allows the refrigerant to flow into the compression chamber 11a from the later-described intermediate pressure refrigerant passage 15 side connected to the intermediate pressure port 11d, and the refrigerant from the compression chamber 11a to the intermediate pressure refrigerant passage 15 side.
  • the check valve 11e for prohibiting the inflow of is incorporated.
  • the electric motor is one whose operation (number of rotations) is controlled by a control signal output from the air conditioning control device 40 described later, and any type of an AC motor and a DC motor may be adopted. And the refrigerant
  • the compressor 11 has a configuration in which an intermediate pressure refrigerant is introduced from the intermediate pressure port 11d and merged with the refrigerant in the compression process, and the space between the intermediate pressure port 11d and the compression chamber 11a is temporarily blocked by the compression mechanism. If so, a compressor having a plurality of compression mechanisms may be employed.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port 11 c of the compressor 11.
  • the indoor condenser 12 is disposed in an air conditioning case 31 of an indoor air conditioning unit 30 to be described later, radiates high-pressure refrigerant discharged from the compressor 11, and heats indoor blown air that has passed through an indoor evaporator 23 to be described later. It is a radiator.
  • An integrated valve 13 is provided between the indoor condenser 12 and a gas-liquid separator 14 described later.
  • the integrated valve 13 is configured by integrating a high stage side expansion valve 13a and an intermediate pressure on-off valve 13b.
  • the high stage side expansion valve 13a is a pressure reducing valve, and reduces the pressure of the high-pressure refrigerant flowing out of the indoor condenser 12 until it becomes an intermediate pressure refrigerant.
  • the intermediate pressure on-off valve 13 b opens and closes the intermediate pressure refrigerant passage 15 that guides the gas-phase refrigerant separated by the gas-liquid separator 14 to the intermediate pressure port 11 d of the compressor 11. Thereby, the intermediate pressure on-off valve 13b can adjust the flow rate of the refrigerant joined to the intermediate pressure port 11d.
  • the integrated valve 13 has a stepping motor capable of controlling the high stage side expansion valve 13a and the intermediate pressure on-off valve 13b in conjunction with each other. The integrated valve 13 will be described in detail later.
  • the gas-liquid separator 14 is a centrifugal gas-liquid separator that separates the gas-liquid refrigerant by the action of centrifugal force.
  • a separation space 14a for separating the gas-liquid refrigerant is formed in the housing.
  • the gas-liquid separator 14 includes a liquid-phase side outlet 14b through which the liquid-phase refrigerant separated in the separation space 14a flows out, and a gas-phase side through which the gas-phase refrigerant separated in the separation space 14a flows out.
  • An outlet 14c is provided.
  • the liquid-phase side outlet 14b of the gas-liquid separator 14 is connected to the inlet side of the middle-stage decompression unit that can decompress the liquid-phase refrigerant flowing out of the gas-liquid separator 14, and the outlet side of the middle-stage decompression unit is The refrigerant inlet side of the outdoor heat exchanger 20 is connected.
  • the middle-stage decompression unit is configured to be able to be set to a throttle state in which the refrigerant flowing out from the liquid-phase side outlet 14b of the gas-liquid separator 14 is decompressed.
  • the middle-stage decompression section of the present embodiment opens and closes a fixed throttle 17 that decompresses the refrigerant, a first bypass path 18 that bypasses the fixed throttle 17 and guides the refrigerant to the outdoor heat exchanger 20 side, and a first bypass path 18.
  • a one-pass opening / closing valve 181 is configured.
  • the first passage opening / closing valve 181 is an electromagnetic valve that opens and closes the first bypass passage 18, and its opening / closing operation is controlled by a control signal output from the air conditioning control device 40.
  • the first passage opening / closing valve 181 functions to switch the refrigerant flow path of the cycle configuration by opening and closing the first bypass passage 18. Accordingly, the first passage opening / closing valve 181 of the present embodiment constitutes a refrigerant flow switching unit that switches the refrigerant flow of the refrigerant circulating in the cycle.
  • the pressure loss that occurs when the refrigerant passes through the first passage opening and closing valve 181 is extremely small compared to the pressure loss that occurs when the refrigerant passes through the fixed throttle 17. Therefore, the refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 20 via the first bypass passage 18 when the first passage opening / closing valve 181 is open, and the first passage opening / closing valve 181 When it is closed, it flows into the outdoor heat exchanger 20 through the fixed throttle 17.
  • the middle-stage decompression unit can be changed to a throttled state that exhibits a decompression action and a fully open state that does not exhibit a decompression action by opening and closing the first passage opening and closing valve 181.
  • the middle-stage decompression unit of the present embodiment is set to a throttled state that exerts a decompression action when switched to a gas injection cycle, and the decompression action when switched to a normal cycle other than the gas injection cycle. Is set to the fully open state.
  • a nozzle, an orifice or the like having a fixed throttle opening can be employed as the fixed throttle 17.
  • fixed throttles such as nozzles and orifices
  • the area of the throttle passage is suddenly reduced or expanded rapidly, so that the refrigerant passing through the fixed throttle is changed with the change in the pressure difference between the upstream side and the downstream side (that is, the differential pressure between the inlet and outlet).
  • the flow rate and the dryness X of the fixed throttle upstream refrigerant can be self-adjusted and balanced.
  • an intermediate pressure refrigerant passage 15 is connected to the gas phase side outlet 14 c of the gas-liquid separator 14 through an intermediate pressure on-off valve 13 b of the integrated valve 13.
  • the intermediate pressure refrigerant passage 15 is a refrigerant passage that guides the gas-phase refrigerant separated by the gas-liquid separator 14 to the intermediate pressure port 11 d of the compressor 11.
  • the intermediate pressure refrigerant passage 15 is provided with an intermediate pressure on-off valve 13 b that opens and closes the intermediate pressure refrigerant passage 15. This intermediate pressure on-off valve 13 b is included in the integrated valve 13.
  • FIGS. 4 to 6 indicate the up and down directions when the integrated valve 13 is mounted on the vehicle air conditioner 1.
  • the integrated valve 13 includes a body 130, a stepping motor 28, a shaft 133, and the like.
  • the body 130 is formed as a substantially hollow metal block body.
  • the body 130 has a structure in which an upper first member 1301 and a lower second member 1302 are assembled.
  • the body 130 is formed with a first refrigerant inlet 130 a through which the high-pressure refrigerant that has flowed out of the indoor condenser 12 flows.
  • the body 130 is formed with a decompression chamber 136a for decompressing the refrigerant that has flowed from the first coolant inlet 130a.
  • the body 130 is formed with a first refrigerant outlet 130b through which the refrigerant decompressed in the decompression chamber 136a flows out.
  • the body 130 is formed with a second refrigerant inlet 130 c through which the gas-phase refrigerant flowing out from the gas-liquid separator 14 flows.
  • the body 130 is formed with an opening / closing valve chamber 136b for opening and closing the flow path of the refrigerant flowing in from the second refrigerant inlet 130c.
  • the body 130 is formed with a second refrigerant outlet 130d through which the refrigerant passing through the on-off valve chamber 136b flows out.
  • the refrigerant flowing out from the first refrigerant outlet 130b flows into the gas-liquid separator 14, and the gas-phase refrigerant separated by the gas-liquid separator 14 flows into the second refrigerant inlet 130c. Yes.
  • a valve seat 134a is provided on the surface of the decompression chamber 136a on the first refrigerant inlet 130a side.
  • a valve seat 134b is provided on the surface of the on-off valve chamber 136b on the second refrigerant outlet 130d side.
  • a guide member 135 is provided between the decompression chamber 136a and the on-off valve chamber 136b to support the shaft 133 so as to be movable in the vertical direction.
  • the guide member 135 is configured using a metal member (for example, aluminum).
  • Stepping motor 28 is a drive unit that drives shaft 133.
  • the rotation shaft 28 a rotates by a certain angle according to the pulse signal input from the air conditioning control device 40.
  • the shaft 133 is made of a metal member (for example, stainless steel) and has a cylindrical shape having a hollow portion. Screw grooves are formed on the inner peripheral surface of the shaft 133 and the outer peripheral surface of the rotating shaft 28a of the stepping motor 28, respectively. A rotating shaft 28 a of the stepping motor 28 is inserted into the hollow portion of the shaft 133. When the rotary shaft 28a of the stepping motor 28 rotates, the shaft 133 is screwed up or down in the vertical direction (that is, the axial direction of the shaft 133). Screwing means to advance while rotating. Retraction means retreating while rotating.
  • a first valve body 133a and a second valve body 133b are formed on the outer peripheral surface of the shaft 133.
  • the first valve body 133a is disposed in the decompression chamber 136a
  • the second valve body 133b is disposed in the on-off valve chamber 136b.
  • the shaft 133 is a connecting member that connects the first valve body 133a disposed in the decompression chamber 136a and the second valve body 133b disposed in the on-off valve chamber 136b.
  • the first valve body 133a and the valve seat 134a constitute the high stage side expansion valve 13a shown in FIGS. 1 to 3, and the second valve body 133b and the valve seat 134b are shown in FIGS.
  • the intermediate pressure on-off valve 13b shown is constituted.
  • the first valve body 133a comes in contact with the valve seat 134a disposed in the decompression chamber 136a according to the vertical movement of the shaft 133.
  • the high stage side expansion valve 13a is opened, and the high stage side expansion valve 13a does not exert a pressure reducing action.
  • the high stage side expansion valve 13a Exhibits a pressure reducing action for reducing the pressure of the refrigerant flowing out of the indoor condenser 12 until it becomes at least an intermediate pressure refrigerant.
  • the second valve body 133b is separated from and in contact with the valve seat 134b disposed in the on-off valve chamber 136b in accordance with the vertical movement of the shaft 133, and the flow between the on-off valve chamber 136b and the second refrigerant outlet 130d. Open and close the road.
  • FIG. 4 when the second valve body 133b and the valve seat 134b are in contact with each other, the intermediate pressure on-off valve 13b is closed and the intermediate pressure refrigerant passage 15 is closed.
  • FIGS. 5 and 6 when the second valve body 133b and the valve seat 134b are separated from each other, the intermediate pressure on-off valve 13b is fully opened and the intermediate pressure refrigerant passage 15 is opened.
  • the second refrigerant inflow port 130c is disposed above the first refrigerant inflow port 130a.
  • the intermediate pressure on-off valve 13b is arranged above the high stage side expansion valve 13a.
  • the flow path closer to the first refrigerant inlet 130a than the valve seat 134a and the on-off valve chamber 136b are arranged to be adjacent to each other via the guide member 135.
  • the high-pressure refrigerant leaks through the gap between the guide member 135 and the shaft 133 to the on-off valve chamber 136b side.
  • the valve seat 134a constitutes the high stage side expansion valve 13a.
  • the first refrigerant inflow port 130a allows the high-pressure refrigerant that has flowed out of the indoor condenser 12 to flow in.
  • the flow path portion on the first refrigerant outlet 130b side and the on-off valve chamber 136b from the valve seat 134a constituting the high stage side expansion valve 13a guide the shaft 133.
  • the guide members 135 are arranged adjacent to each other.
  • a centrifugal gas-liquid separator 14 is employed.
  • Such a centrifugal gas-liquid separator 14 has a very small pressure loss. Therefore, as in the present embodiment, the flow path portion on the first refrigerant outlet 130b side and the on-off valve chamber 136b are adjacent to each other via the guide member 135 from the valve seat 134a constituting the high stage side expansion valve 13a. The pressure difference between two adjacent flow path portions can be reduced by disposing in the position. As a result, a seal structure between the guide member 135 and the shaft 133 can be eliminated.
  • FIG. 7 shows the relationship between the opening degree of the high stage side expansion valve 13a and the intermediate pressure on-off valve 13b and the lift amount of the shaft 133 in the axial direction. It means that the shaft 133 moves upward as the axial lift amount of the shaft 133 increases.
  • the opening degree of the high stage side expansion valve 13a is fully opened, and the opening degree of the intermediate pressure on-off valve 13b is fully closed. That is, the refrigerant flows according to the solid line arrow in FIG.
  • the refrigerant is depressurized by setting the low stage side expansion valve 22 to the throttle state.
  • the opening degree of the high stage side expansion valve 13a is a predetermined intermediate opening degree, and the opening degree of the intermediate pressure on-off valve 13b is fully open. That is, the refrigerant flows according to the solid line arrow in FIG.
  • the high stage side expansion valve 13a since the refrigerant is decompressed by the high stage side expansion valve 13a and the fixed throttle 17, the high stage side expansion valve 13a until the high pressure refrigerant flowing out of the indoor condenser 12 becomes the intermediate pressure refrigerant. A throttle opening for depressurization is realized.
  • the opening degree of the high stage side expansion valve 13a is a minute opening degree, and the opening degree of the intermediate pressure on-off valve 13b is fully opened. That is, the refrigerant flows according to the solid line arrow in FIG.
  • the refrigerant is depressurized only by the high stage expansion valve 13a, and therefore, the throttle opening of the high stage expansion valve 13a is smaller than that in the first heating operation mode.
  • the high-stage expansion valve 13a and the intermediate pressure on-off valve 13b are opened simultaneously.
  • the outdoor heat exchanger 20 is disposed in the bonnet, and exchanges heat between the refrigerant circulating in the interior and the outside air (that is, outside air) blown from the blower fan 21. .
  • the outdoor heat exchanger 20 functions as an evaporator that evaporates the refrigerant and exerts an endothermic action in the first and second heating modes and the like, and a radiator that radiates the refrigerant in the cooling operation mode and the like. As a heat exchanger.
  • the refrigerant inlet side of the low stage side expansion valve 22 is connected to the refrigerant outlet side of the outdoor heat exchanger 20.
  • the low stage side expansion valve 22 depressurizes the refrigerant that flows out of the outdoor heat exchanger 20 and flows into the indoor evaporator 23 in the cooling operation mode or the like.
  • the basic configuration of the low stage side expansion valve 22 is the same as that of the high stage side expansion valve 13 a, and its operation is controlled by a control signal output from the air conditioning control device 40.
  • the refrigerant inlet side of the indoor evaporator 23 is connected to the outlet side of the low stage side expansion valve 22.
  • the indoor evaporator 23 is disposed in the air conditioning case 31 of the indoor air conditioning unit 30 on the upstream side of the blower air flow of the indoor condenser 12, and in the cooling operation mode, the refrigerant is evaporated to exert an endothermic effect. It is a heat exchanger that cools air blown into the room.
  • the inlet side of the accumulator 24 is connected to the refrigerant outlet side of the indoor evaporator 23.
  • the accumulator 24 separates the gas-liquid refrigerant flowing into the accumulator 24 and stores excess refrigerant.
  • the suction port 11 b of the compressor 11 is connected to the gas phase refrigerant outlet side of the accumulator 24. Therefore, the indoor evaporator 23 is connected so as to flow out to the suction port 11 b side of the compressor 11.
  • a second bypass passage that guides the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet side of the accumulator 24 by bypassing the low-stage expansion valve 22 and the indoor evaporator 23. 25 is connected.
  • a second passage opening / closing valve 251 for opening and closing the second bypass passage 25 is disposed in the second bypass passage 25.
  • the basic configuration of the second passage opening / closing valve 251 is the same as that of the first passage opening / closing valve 181, and is an electromagnetic valve whose opening / closing operation is controlled by a control signal output from the air conditioning control device 40.
  • the second passage opening / closing valve 251 of the present embodiment functions to switch the cycle configuration (refrigerant flow path) by opening and closing the second bypass passage 25. Therefore, the second passage opening / closing valve 251 of the present embodiment constitutes a refrigerant flow switching unit that switches the refrigerant flow of the refrigerant circulating in the cycle.
  • the pressure loss that occurs when the refrigerant passes through the second passage opening / closing valve 251 is extremely small with respect to the pressure loss that occurs when the refrigerant passes through the low-stage expansion valve 22.
  • the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 via the second bypass passage 25 when the second passage opening / closing valve 251 is open, and the second passage opening / closing valve 251 is closed.
  • the refrigerant flows into the indoor evaporator 23 via the low stage side expansion valve 22.
  • the heat pump cycle 10 requires a refrigerant filling operation for filling a refrigerant into the cycle when manufacturing a product or exchanging a cycle component device.
  • a vacuuming process for removing air and moisture in the cycle is performed, and after the vacuuming is completed, a charging process for charging a specified amount of refrigerant into the cycle is performed.
  • the heat pump cycle 10 includes a first charging port 26a for charging the refrigerant from the high pressure side in the cycle and a second charging port 26b for charging the refrigerant from the low pressure side in the cycle. Is provided.
  • the first filling port 26a is provided in the refrigerant passage from the indoor condenser 12 to the high stage side expansion valve 13a, and the second filling port 26b is the refrigerant passage from the accumulator 24 to the suction port 11b of the compressor 11. Is provided.
  • the first filling port 26a also functions as a port for performing evacuation.
  • the integrated valve 13 in the present embodiment integrates the high stage side expansion valve 13a and the intermediate pressure on / off valve 13b, and is increased by a stepping motor 28 as an actuator that operates in accordance with a control signal output from the air conditioning control device 40.
  • the stage side expansion valve 13a and the intermediate pressure on-off valve 13b are controlled in conjunction with each other.
  • the integrated valve 13 includes a body 130.
  • the body 130 is formed with a decompression chamber 136 a for decompressing the refrigerant discharged from the compressor 11.
  • the body 130 is formed with an on-off valve chamber 136b for opening and closing a flow path of the refrigerant to be merged with the intermediate pressure port 11d via the intermediate pressure refrigerant passage 15 and the check valve 11e.
  • the integrated valve 13 includes a shaft 133.
  • the shaft 133 has a first valve body 133a and a second valve body 133b.
  • the first valve body 133a is disposed in the decompression chamber 136a and constitutes a high stage side expansion valve 13a that decompresses the refrigerant discharged from the compressor 11.
  • the 2nd valve body 133b is arrange
  • the integrated valve 13 includes a stepping motor 28 that drives the shaft 133.
  • the on-off valve 13b In the shaft 133, when the high stage side expansion valve 13a is in the throttle state, the on-off valve 13b is fully opened, and when the high stage side expansion valve 13a is in the open state, the open / close valve 13b is also opened, so that the high stage side expansion is performed.
  • the first valve body 133a and the second valve body 133b are connected so that the on-off valve 13b is closed when the valve 13a is fully open.
  • the shaft 133 is driven by the stepping motor 28, and the on-off valve 13b can be opened when the high stage expansion valve 13a is opened. Therefore, the intermediate pressure refrigerant passage 15 can be evacuated reliably through the on-off valve 13b and the high stage side expansion valve 13a.
  • the shaft 133 is driven by the stepping motor 28, and the on-off valve 13b can be opened when the high stage side expansion valve 13a is in the open state. Therefore, the refrigerant can be reliably charged into the intermediate pressure refrigerant passage via the high stage side expansion valve 13a and the on-off valve 13b.
  • the indoor air conditioning unit 30 is disposed inside the instrument panel (i.e., the instrument panel) at the foremost part of the vehicle interior, forms an outer shell of the indoor air conditioning unit 30, and is blown into the interior of the vehicle interior.
  • the air-conditioning case 31 that forms the air passage is provided.
  • the air blower 32, the above-mentioned indoor condenser 12, the indoor evaporator 23, etc. are accommodated in this air passage.
  • an inside / outside air switching device 33 for switching and introducing vehicle interior air (ie, inside air) and outside air is arranged.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, so that the air volume of the inside air and the outside air are adjusted.
  • the air volume ratio with the air volume is continuously changed.
  • a blower 32 that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior is arranged on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (that is, a sirocco fan) with an electric motor, and the number of rotations and the amount of blown air are controlled by a control signal output from the air conditioning controller 40.
  • the indoor evaporator 23 and the indoor condenser 12 are arranged in the order of the indoor evaporator 23 and the indoor condenser 12 along the flow of the indoor blown air.
  • the indoor evaporator 23 is disposed on the upstream side of the air flow with respect to the indoor condenser 12.
  • a bypass passage 35 is provided in the air conditioning case 31 to flow the blown air after passing through the indoor evaporator 23, bypassing the indoor condenser 12.
  • An air mix door 34 is disposed downstream of the indoor evaporator 23 and upstream of the indoor condenser 12.
  • the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the bypass passage 35 in the blown air that has passed through the indoor evaporator 23, and the heat of the indoor condenser 12. It is a heat exchange capacity adjustment unit for adjusting the exchange capacity.
  • the air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the air conditioning controller 40.
  • a merge space 36 for merging is provided.
  • an opening hole is formed through which the blown air merged in the merge space 36 is blown into the vehicle interior that is the air conditioning target space.
  • the defroster opening hole 37a that blows the conditioned air toward the inner side surface of the front window glass of the vehicle
  • the face opening hole 37b that blows the conditioned air toward the upper body of the occupant in the vehicle interior
  • the conditioned air toward the feet of the occupant A foot opening hole 37c to be blown out is formed.
  • each of the opening holes 37a to 37c is connected to a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages.
  • a defroster door 38a for opening and closing the defroster opening hole 37a, a face door 38b for opening and closing the face opening hole 37b, and a foot door 38c for opening and closing the foot opening hole 37c are arranged on the upstream side of the air flow of each opening hole 37a to 37c.
  • Each of the doors 38a to 38c constitutes a blowing mode switching unit that switches a blowing mode of air into the vehicle interior.
  • the doors 38a to 38c are driven by a servo motor (not shown) whose operation is controlled by a control signal output from the air conditioning controller 40.
  • the air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. Both ROM and RAM are non-transitional physical storage media.
  • the air conditioning control device 40 performs various calculations and processes based on a control program stored in a ROM or the like, and controls each control device (for example, the compressor 11, the integrated valve 13, each passage opening / closing valve 181, 251 and the blower 32) are controlled.
  • a sensor group 41 for various air conditioning controls is connected to the input side of the air conditioning control device 40.
  • the sensor group 41 includes an inside air sensor that detects the temperature in the vehicle interior, an outside air sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, an evaporator temperature sensor that detects the temperature of the indoor evaporator 23, and a compressor.
  • 11 is a discharge pressure sensor that detects the pressure of the high-pressure refrigerant discharged from No. 11.
  • an operation panel (not shown) arranged near the instrument panel is connected to the input side of the air conditioning control device 40, and operation signals from various air conditioning operation switches provided on the operation panel are input.
  • various air conditioning operation switches provided on the operation panel include an operation switch of the vehicle air conditioner 1, a vehicle interior temperature setting switch for setting the vehicle interior temperature, a selection switch between the cooling operation mode and the heating operation mode, and the like. Is provided.
  • the air-conditioning control device 40 is configured such that a control unit that controls the operation of each control device connected to the output side is integrally configured, but the configuration that controls the operation of each control device (that is, hardware) And software) constitute a control unit that controls the operation of each control device.
  • a configuration that is, hardware and software that controls the opening / closing operation of each passage opening / closing valve 181, 251 constitutes a flow path switching control unit.
  • the flow path switching control unit in the air conditioning control device 40 may be configured by a control device different from the air conditioning control device 40.
  • the refrigerant filling device 5 having a vacuum pump and a refrigerant filling pump is connected to the first and second filling ports 26a and 26b. Then, with the high-stage side expansion valve 13a, the intermediate pressure on-off valve 13b, and the passage on-off valves 181 and 251 being opened, air or the like remaining in the cycle is sucked from the first filling port 26a by the refrigerant filling device 5. This is the vacuuming process. In the evacuation step, for example, air remaining in the cycle may be sucked from the second filling port 26b by the refrigerant filling device 5.
  • the heat pump cycle 10 of the present embodiment can open the high stage side expansion valve 13a and the intermediate pressure on-off valve 13b simultaneously by driving the shaft 133 by the stepping motor 28. Therefore, as shown by the solid line arrow in FIG. 8, air and moisture remaining in the intermediate pressure refrigerant passage 15 can be sucked by the refrigerant filling device 5 from the gas phase side outlet 14 c side of the gas-liquid separator 14. Therefore, even if the intermediate pressure port 11d is closed inside the compressor 11 during the evacuation step, the intermediate pressure refrigerant passage 15 can be evacuated reliably.
  • the refrigerant is filled into the cycle from the first filling port 26a and the second filling port 26b by the refrigerant filling device 5. This is the filling process.
  • the refrigerant may be filled into the cycle from one of the first filling port 26a and the second filling port 26b by the refrigerant filling device 5.
  • the intermediate pressure refrigerant passage 111 is in a vacuum state (that is, P1 ⁇ 0) by the evacuation process.
  • the differential pressure between the pressure P2 on the gas phase side outlet side of the gas-liquid separator 104 and the pressure P1 on the intermediate pressure refrigerant passage 111 side increases, and the differential pressure on-off valve 112 is closed.
  • the heat pump cycle 10 of the present embodiment can open the high stage side expansion valve 13a and the intermediate pressure on-off valve 13b simultaneously by driving the shaft 133 by the stepping motor 28. Therefore, as shown by the solid line arrow in FIG. 9, the intermediate pressure refrigerant passage from the refrigerant filling device 5 through the high stage side expansion valve 13 a of the integrated valve 13, the gas-liquid separator 14, and the intermediate pressure on-off valve 13 b of the integrated valve 13. 15 can be reliably filled with the refrigerant.
  • the vehicle air conditioner 1 can be switched to a cooling operation mode and a heating operation mode.
  • the operation in each operation mode will be described.
  • Cooling operation mode The cooling operation mode is started when, for example, the cooling operation mode is selected by the selection switch in a state where the operation switch of the operation panel is turned on (ON).
  • the air-conditioning control device 40 fully opens the high stage side expansion valve 13a (ie, does not exhibit a pressure reducing action), closes the intermediate pressure on-off valve 13b, and throttles the low stage side expansion valve 22 ( In other words, the second passage opening / closing valve 251 is brought into a closed state in a state where the pressure reducing action is exerted.
  • the heat pump cycle 10 is switched to the refrigerant circuit through which the refrigerant flows as shown by the solid line arrows in FIG.
  • the air conditioning control device 40 reads the detection signal of the sensor group 41 for air conditioning control and the operation signal of the operation panel, and calculates the target blowing temperature TAO, which is the target temperature of the air blown into the passenger compartment. Furthermore, the operating state of each control device connected to the output side of the air conditioning control device 40 is determined based on the calculated target blowing temperature TAO and the detection signal of the sensor group.
  • the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 23 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance. And the control signal output to the electric motor of the compressor 11 is determined so that the detected value (namely, blowing air temperature) of an evaporator temperature sensor approaches the target evaporator blowing temperature TEO.
  • the target supercooling degree that is determined in advance so that the degree of supercooling of the refrigerant flowing into the low-stage side expansion valve 22 approaches the COP substantially to the maximum value. It is decided to approach.
  • the air mix door 34 closes the air passage of the indoor condenser 12, and the total flow rate of the blown air after passing through the indoor evaporator 23 is the bypass passage 35. Is determined to pass.
  • control signal determined as described above is output to each control device. Thereafter, until the operation of the vehicle air conditioner 1 is requested to be stopped by the operation panel, reading of each signal, calculation of the target blowing temperature TAO, determination of the operating state of each control device, and output of the control signal are performed at predetermined control cycles. These control routines are repeated in this order. Such a control routine is repeated in the other operation modes.
  • the air mix door 34 closes the air passage of the indoor condenser 12
  • the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 without radiating heat to the indoor blowing air.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the gas-liquid separator 14 with almost no decompression at the high stage side expansion valve 13a because the high stage side expansion valve 13a is fully open.
  • the intermediate pressure on-off valve 13b is in a closed state.
  • the refrigerant flows out from the liquid-phase side outlet 14b without flowing out into the refrigerant passage 15.
  • the refrigerant flowing out from the liquid-phase side outlet 14b of the gas-liquid separator 14 is hardly depressurized in the middle-stage decompression section because the first passage opening / closing valve 181 of the middle-stage decompression section is fully open. It flows into the outdoor heat exchanger 20.
  • the refrigerant flowing into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 to radiate heat (point a11 ⁇ b11 in FIG. 10). Since the second passage opening / closing valve 251 is in the closed state, the refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the low-stage expansion valve 22 that is in the throttled state until it becomes a low-pressure refrigerant, etc. Expansion under reduced pressure is enthalpy (b11 point ⁇ c11 point in FIG. 10).
  • the refrigerant depressurized by the low stage side expansion valve 22 flows into the indoor evaporator 23 and evaporates by absorbing heat from the indoor air blown from the blower 32 (point c11 ⁇ d11 in FIG. 10). Thereby, indoor ventilation air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 23 flows into the accumulator 24 and is separated into gas and liquid.
  • the separated gas-phase refrigerant is sucked from the suction port 11b (point e11 in FIG. 10) of the compressor 11 and compressed again (point e11 ⁇ a111 point ⁇ a11 point in FIG. 10).
  • separated in the accumulator 24 is stored in the accumulator 24 as a surplus refrigerant
  • the reason why the points d11 and e11 are different in FIG. 12 is that the pressure loss generated in the gas-phase refrigerant flowing through the refrigerant pipe from the accumulator 24 to the suction port 11b of the compressor 11 and the gas-phase refrigerant are external ( That is, it represents the amount of heat absorbed from outside air). Accordingly, in an ideal cycle, it is desirable that the points d11 and e11 coincide. The same applies to the following Mollier diagram.
  • Heating operation mode Next, heating operation mode is demonstrated. This heating operation mode is started, for example, when the heating operation mode is selected by the selection switch while the operation switch of the operation panel is turned on (that is, turned on).
  • the air conditioning control device 40 reads the detection signal of the sensor group 41 and the operation signal of the operation panel, and determines the refrigerant discharge capacity of the compressor 11 (that is, the rotation speed of the compressor 11). To do. Furthermore, according to the determined rotation speed, 1st heating mode or 2nd heating mode is performed.
  • the air conditioning control device 40 opens the high stage side expansion valve 13a and the throttled state, and opens the intermediate pressure on-off valve 13b.
  • the fully open state the low-stage expansion valve 22 is fully closed, and the second passage opening / closing valve 251 is open.
  • the air-conditioning control device 40 closes the first passage opening / closing valve 181 and sets the middle-stage decompression unit to the throttled state (that is, the state of exerting the decompression action).
  • the heat pump cycle 10 is switched to a refrigerant circuit (that is, a refrigerant circuit of a gas injection cycle) through which the refrigerant flows as shown by a solid line arrow in FIG.
  • the air-conditioning control device 40 reads the detection signal of the sensor group 41 and is connected to the output side of the air-conditioning control device 40 based on the target blowing temperature TAO and the like, as in the cooling operation mode. Determine the operating state of various control devices.
  • the degree of supercooling is determined to be a predetermined target degree of supercooling.
  • the air mix door 34 closes the bypass passage 35, and the entire flow rate of the blown air after passing through the indoor evaporator 23 passes through the indoor condenser 12. To be determined.
  • the high-pressure refrigerant (point a12 in FIG. 11) discharged from the discharge port 11 c of the compressor 11 flows into the indoor condenser 12.
  • the refrigerant that has flowed into the indoor condenser 12 exchanges heat with the indoor blown air that has been blown from the blower 32 and passed through the indoor evaporator 23 to dissipate heat (point a12 ⁇ b12 in FIG. 11). Thereby, indoor blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 is decompressed and expanded in an enthalpy manner until it becomes an intermediate pressure refrigerant in the throttled high-stage expansion valve 13a (b12 point ⁇ c112 point in FIG. 11). Then, the intermediate pressure refrigerant decompressed by the high stage side expansion valve 13a flows into the gas-liquid separator 14 and the gas-liquid is separated by the gas-liquid separator 14 (point c12 ⁇ point c212 in FIG. 11, c12 point ⁇ c312 point).
  • the gas-phase refrigerant separated by the gas-liquid separator 14 flows into the intermediate-pressure refrigerant passage 15 from the gas-phase side outlet 14c because the intermediate-pressure on-off valve 13b is in the open state. It flows into the intermediate pressure port 11d of the compressor 11 through the passage 15 (point c212 in FIG. 11).
  • the refrigerant flowing into the intermediate pressure port 11d joins with the refrigerant in the compression process (point a112 in FIG. 11) in the compression chamber 11a (point a212 in FIG. 11), and is compressed in the compression chamber 11a.
  • the liquid-phase refrigerant separated by the gas-liquid separator 14 flows from the liquid-phase side outlet 14b to the middle-stage decompression unit.
  • the decompression is expanded in an enthalpy manner until the low-pressure refrigerant is obtained in the fixed throttle 17 (point c312 ⁇ c412 in FIG. 11). point).
  • the refrigerant decompressed by the fixed throttle 17 flows into the outdoor heat exchanger 20 and absorbs heat by exchanging heat with the outside air blown from the blower fan 21 (c412 point ⁇ d12 point in FIG. 11).
  • the refrigerant that has flowed out of the outdoor heat exchanger 20 has the low-stage expansion valve 22 fully closed and the second passage opening / closing valve 251 is open, so that the accumulator 24 passes through the second bypass passage 25.
  • separated with the accumulator 24 is suck
  • the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 can be radiated to the indoor blowing air, and the heated inner blowing air can be blown out into the vehicle interior. .
  • heating of a vehicle interior is realizable.
  • the low-pressure refrigerant decompressed by the fixed throttle 17 is sucked into the compressor 11, and the intermediate-pressure refrigerant decompressed by the high stage side expansion valve 13a is used as the refrigerant in the compression process of the compressor 11.
  • a gas injection cycle to be merged can be configured.
  • the pressure difference between the suction refrigerant pressure and the discharge refrigerant pressure of the compressor 11 can be reduced, and the compression efficiency of the compressor 11 can be improved.
  • the COP of the heat pump cycle 10 as a whole can be improved.
  • the air conditioning control device 40 is in a state in which the high-stage side expansion valve 13a is in the throttle state, and the intermediate pressure on-off valve 13b is in the fully open state.
  • the low-stage expansion valve 22 is fully closed, and the second passage opening / closing valve 251 is opened.
  • the air-conditioning control device 40 sets the first passage opening / closing valve 181 to the open state, and sets the middle-stage decompression unit to the fully open state (that is, the state where the decompression action is not exhibited). Thereby, the heat pump cycle 10 is switched to the refrigerant circuit through which the refrigerant flows as shown by the solid line arrows in FIG.
  • the air conditioning control device 40 reads the detection signal of the sensor group 41 and the like, and based on the target blowing temperature TAO and the like, the operating state of each control device connected to the output side of the air conditioning control device 40 is determined. decide. In addition, about the control signal etc. which are output to the high stage side expansion valve 13a at the time of 2nd heating mode, it determines similarly to 1st heating mode.
  • the refrigerant that has flowed out of the indoor condenser 12 is decompressed and expanded in an enthalpy manner until it becomes a low-pressure refrigerant in the throttled high-stage expansion valve 13a (b13 point ⁇ c13 point in FIG. 12), and gas-liquid separation Flows into the vessel 14. And the refrigerant
  • the refrigerant flowing into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 to absorb heat (point c13 ⁇ d13 in FIG. 12). Since the subsequent operation is the same as in the first heating mode, description thereof is omitted.
  • the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 can be radiated to the indoor blowing air, and the heated indoor blowing air can be blown out into the vehicle interior. .
  • heating of a vehicle interior is realizable.
  • the effect of executing the second heating mode when the heating load is relatively low, such as when the outside air temperature is high, is described with respect to the first heating mode.
  • the gas injection cycle can be configured as described above, the COP of the heat pump cycle 10 as a whole can be improved.
  • the first heating mode can exhibit higher heating performance than that in the second heating mode.
  • the number of revolutions of the compressor 11 that is, the refrigerant discharge capacity necessary for exhibiting the same heating performance is lower in the first heating mode than in the second heating mode.
  • the compressor 11 has a maximum efficiency rotational speed at which the compression efficiency is maximized (that is, a peak), and the compression efficiency is greatly reduced when the rotational speed is lower than the maximum efficient rotational speed. For this reason, when the compressor 11 is operated at a rotation speed lower than the maximum efficiency rotation speed when the heating load is relatively low, the COP may decrease in the first heating mode.
  • the second heating mode is entered. I try to switch. Note that the switching from the second heating mode to the first heating mode is performed when the rotation speed becomes equal to or higher than a predetermined rotation amount added to the reference rotation speed during execution of the second heating mode. That's fine.
  • the vehicle air conditioner 1 can implement various cycle configurations by switching the refrigerant circuit of the heat pump cycle 10 to realize appropriate cooling and heating in the vehicle interior.
  • the waste heat of the engine cannot be used for heating the vehicle interior as in a vehicle equipped with an internal combustion engine (engine). Therefore, as in the heat pump cycle 10 of the present embodiment, it is extremely effective that a high COP can be exhibited regardless of the heating load by switching to the gas injection cycle and the normal cycle in the heating operation mode.
  • the heat pump cycle 10 since the intermediate pressure on-off valve 13b and the high stage side expansion valve 13a necessary for making the heat pump cycle 10 function as a gas injection cycle are integrally configured, the heat pump cycle 10 has a simple cycle configuration. Can be realized.
  • the integrated valve 13 according to the first embodiment is configured by integrating the high stage side expansion valve 13a and the intermediate pressure on / off valve 13b, but as shown in FIG. 13, the integrated valve according to the present embodiment. 13 is configured as an integrated gas-liquid separator 14 that separates the refrigerant flowing out from the high-stage side expansion valve 13a into gas-liquid.
  • the body 130 has a structure in which a first member 1301 on the upper right side, a second member 1302 on the lower right side, a third member 1303 on the lower left side, and a fourth member 1304 on the upper left side are assembled.
  • the third member 1303 is formed as a substantially hollow metal block body, and a refrigerant inlet 141a through which the refrigerant flowing out from the high-stage side expansion valve 13a flows into the inside is formed on the outer peripheral side wall surface.
  • the refrigerant inlet 141 a communicates with a gas-liquid separation space (that is, a gas-liquid separation unit) 14 a formed inside the third member 1303.
  • the gas-liquid separation space 14a is formed in a substantially cylindrical shape whose axial direction extends in the vertical direction.
  • the refrigerant inlet 141a is provided with an O-ring 143 that seals refrigerant leakage.
  • the refrigerant passage from the refrigerant inlet 141a to the gas-liquid separation space 14a has a circular cross-section of the gas-liquid separation space 14a when viewed from the axial direction (vertical direction in the present embodiment) of the gas-liquid separation space 14a. It extends in the tangential direction of the inner peripheral side wall surface. Therefore, the refrigerant that has flowed into the gas-liquid separation space 14a from the refrigerant inlet 141a flows so as to swirl along the inner peripheral side wall surface having a circular cross section of the gas-liquid separation space 14a.
  • coolant which flowed in into the gas-liquid separation space 14a is isolate
  • coolant falls below the gas-liquid separation space 14a by the effect
  • the gas-liquid separation space 14a of the present embodiment constitutes a centrifugal gas-liquid separation unit.
  • a separated liquid phase refrigerant outlet hole 14b through which the separated liquid phase refrigerant flows out is formed.
  • the fourth member 1304 is formed as a substantially hollow metal block body.
  • the fourth member 1304 includes a gas-phase side outlet 14c that allows the gas-phase refrigerant separated in the gas-liquid separation space 14a to flow into the second refrigerant inlet 130c, a gas-liquid separation space 14a, and a gas-phase side outlet 14c.
  • the separated gas-phase refrigerant outflow pipe portion 142c and the like are provided.
  • the separated gas-phase refrigerant outflow pipe portion 142c is formed in a round tubular shape, and is arranged coaxially with the gas-liquid separation space 14a when the fourth member 1304 and the third member 1303 are integrated. Therefore, the refrigerant that has flowed into the gas-liquid separation space 14a turns around the separated gas-phase refrigerant outflow pipe portion 142c.
  • the refrigerant that has flowed from the high-stage side expansion valve 13a into the gas-liquid separation space 14a through the refrigerant inlet 141a is swirled along the inner peripheral side wall surface having a circular cross section of the gas-liquid separation space 14a. Flowing into.
  • coolant which flowed in in the gas-liquid separation space 14a is isolate
  • the gas phase refrigerant separated in the gas-liquid separation space 14a is introduced into the on-off valve chamber 136b through the gas phase side outlet 14c and the second refrigerant inlet 130c.
  • a refrigerant having a flow rate corresponding to the valve opening degree of the intermediate pressure on / off valve 13b is introduced from the on / off valve chamber 136b into the intermediate pressure port 11d of the compressor 11 through the intermediate pressure refrigerant passage 15 and the check valve 11e.
  • the integrated valve 13 of the present embodiment is configured as an integrated high-stage expansion valve 13a, intermediate pressure on-off valve 13b, and gas-liquid separator 14. That is, the gas-liquid separation unit 14a that separates the refrigerant that has flowed out from the first refrigerant outlet 130b into gas-liquid is separated into the body 130, and the gas-phase refrigerant separated by the gas-liquid separation unit 14a is further transferred to the second refrigerant inlet 130c. Since the gas-phase side outlet 14c that flows out to the gas phase and the separated liquid-phase refrigerant outlet hole 14b that allows the liquid-phase refrigerant separated by the gas-liquid separation unit 14a to flow out are formed, space saving can be achieved.
  • the high-stage expansion valve 13a, the intermediate pressure on-off valve 13b, and the gas-liquid separator 14 are integrated, but the liquid-layer refrigerant that has flowed out of the gas-liquid separator 14 is further fixed.
  • the first passage opening / closing valve 181 that opens and closes the first bypass passage 18 that bypasses the throttle 17 and leads it to the outdoor heat exchanger 20 may be integrated with at least one of the fixed throttle 17.
  • the shaft 133 is driven in the vertical direction using the stepping motor 28 as an actuator.
  • the shaft 133 is driven in the vertical direction using a drive unit other than the stepping motor 28. You may do it.
  • FIG. 15 is a schematic diagram showing a configuration (hereinafter referred to as a study example) in which the scroll compressor disclosed in Patent Document 2 is applied to a heat pump cycle capable of switching between a gas injection cycle and a normal cycle.
  • the heat pump cycle 100 of the examination example includes a scroll type compressor 101.
  • the scroll compressor 101 compresses the refrigerant sucked from the suction port 101a and discharges it from the discharge port 101b. Furthermore, the scroll compressor 101 has an intermediate pressure port 101c that allows the intermediate pressure refrigerant in the cycle to flow in and merges with the refrigerant in the compression process.
  • the compressor 101 is configured to periodically open and close the intermediate pressure port 101c by the tooth tip of the movable scroll 101e that contacts the end plate portion of the fixed scroll 101d, as in Patent Document 2.
  • the compressor 101 is provided with a check valve 101f that prevents the refrigerant from flowing backward from the intermediate pressure port 101c to the intermediate pressure refrigerant passage 111 described later.
  • the radiator 102, the first pressure reducing unit 103, and the gas-liquid separator 104 are connected to the discharge port 101b side of the compressor 101 in order from the upstream side. Further, on the outlet side of the liquid refrigerant in the gas-liquid separator 104, there are provided a fixed throttle 105a that functions as the second decompression unit 105, and an on-off valve 105b that bypasses the fixed throttle 105a and flows the refrigerant. ing.
  • an outdoor heat exchanger 106 that exchanges heat between the refrigerant and the outside air
  • a third decompression unit 107 that decompresses the refrigerant flowing out of the outdoor heat exchanger 106
  • an evaporator 108 that decompresses the refrigerant flowing out of the outdoor heat exchanger 106
  • an evaporator 108 that decompresses the refrigerant flowing out of the outdoor heat exchanger 106
  • An accumulator 109 that separates the gas-liquid refrigerant flowing out of 108 is connected.
  • an on-off valve 110a that opens and closes a bypass passage 110 that bypasses the third decompression unit 107 and the evaporator 108 and flows the refrigerant to the accumulator 109 is provided.
  • the gas-liquid separator 104 is connected to an intermediate pressure refrigerant passage 111 that guides the separated gas-phase refrigerant to the intermediate pressure port 101 c of the compressor 101.
  • the intermediate pressure refrigerant passage 111 is provided with a differential pressure on-off valve 112 that opens the intermediate pressure refrigerant passage 111 when the differential pressure across the fixed throttle 105a becomes equal to or higher than a predetermined pressure.
  • the differential pressure on-off valve 112 includes a valve body 112a that opens and closes the intermediate pressure refrigerant passage 111, a spring 112b that applies a load to the valve body 112a toward the side that closes the intermediate pressure refrigerant passage 111, and the like. It consists of
  • the heat pump cycle 100 is provided with a first filling port 113 for filling the high-pressure refrigerant passage in the cycle with the refrigerant, and a second filling port 114 for filling the low-pressure refrigerant passage in the cycle with the refrigerant.
  • the first filling port 113 also functions as a port for performing evacuation.
  • evacuation is performed via the first filling port 113 in a state where the function valves such as the on-off valves 105b and 110a are set to a fully opened state.
  • evacuation from the differential pressure on / off valve 112 side is also conceivable.
  • the pressure before and after the fixed throttle 105a becomes almost zero, the intermediate pressure refrigerant passage 111 is not opened by the biasing force of the spring 112b, and evacuation via the differential pressure on-off valve 112 cannot be performed. .
  • the intermediate pressure port 101 c is closed inside the compressor 101 in the evacuation process at the time of refrigerant filling, the intermediate pressure refrigerant passage 111 cannot be evacuated. .
  • the problem (1) occurs not only in the scroll compressor 101 but also in a compressor in which the intermediate pressure port 101c may be closed inside.
  • the differential pressure on / off valve 112 does not open, and the refrigerant cannot be sealed in the refrigerant passage from the differential pressure on / off valve 112 to the check valve 101f of the compressor 101 in the intermediate pressure refrigerant passage 111.
  • a force F23 due to the differential pressure across the fixed throttle 105a acts on the valve body 112a of the differential pressure on / off valve 112 in the valve opening direction.
  • a force F21 due to a differential pressure on the intermediate pressure port 101c side of the intermediate pressure refrigerant passage 111 and an upstream side of the fixed throttle 105a and a biasing force Fsp of the spring 112b act on the valve body 112a in the valve closing direction.
  • valve opening force F of the differential pressure on-off valve 112 can be prescribed
  • P1 is the pressure on the intermediate pressure port 101c side of the intermediate pressure refrigerant passage 111
  • P2 is the pressure on the upstream side of the fixed throttle 105a
  • P3 is the pressure on the downstream side of the fixed throttle 105a.
  • A1” is the area of the part where the pressures P1 and P2 act on the valve body 112a
  • A2 is the area of the part where the pressures P2 and P3 act on the valve body 112a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 統合弁は、ボデーと、連結部材と、駆動部を有している。ボデーには、圧縮機から吐出された冷媒を減圧させるための減圧室と、中間圧冷媒通路および逆止弁を介して中間圧ポートに合流させる冷媒の流路を開閉するための開閉弁室が形成されている。連結部材は第1弁体と第2弁体を有する。第1弁体は、減圧室に配置され、圧縮機から吐出された冷媒を減圧させる減圧弁を構成する。第2弁体は、開閉弁室に配置され、中間圧ポートに合流させる冷媒の流量を調整するための開閉弁を構成する。連結部材は、減圧弁が絞り状態のときに開閉弁が全開状態となり、減圧弁が開弁状態のときに開閉弁も開弁状態となり、減圧弁が全開状態のときに開閉弁が閉弁状態となるように第1弁体および第2弁体を連結する。駆動部は連結部材を駆動する。

Description

統合弁およびヒートポンプサイクル 関連出願への相互参照
 本出願は、2015年2月4日に出願された日本特許出願番号2015-20067号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、統合弁およびヒートポンプサイクルに関するものである。
 従来、電気自動車等の如く、車室内の暖房用の熱源を確保し難い車両に適用される空調装置として、ヒートポンプサイクル(すなわち、蒸気圧縮式の冷凍サイクル)の圧縮機から吐出された高温高圧の冷媒を熱源として車室内の暖房を行うものがある。
 この種のヒートポンプサイクルとして、放熱器と蒸発器の間で冷媒を2段階に減圧し、中間圧冷媒の一部である気相冷媒を、圧縮機における圧縮過程の冷媒と合流させるガスインジェクションサイクル(すなわち、エコノマイザ式冷凍サイクル)が知られている。
 例えば、特許文献1には、暖房運転時におけるサイクルの成績係数であるCOP(Coefficient Of Performance)を向上させるために、暖房運転時に通常サイクルからガスインジェクションサイクルに切り替えるヒートポンプサイクルが開示されている。ここで、通常サイクルは一段圧縮サイクルであり、ガスインジェクションサイクルは二段圧縮サイクルである。
 具体的には、特許文献1のヒートポンプサイクルは、放熱器からの流出冷媒を減圧する第1、第2減圧部、第1減圧部で減圧された中間圧冷媒の気液を分離する気液分離器、第1減圧部で減圧された冷媒を蒸発させる蒸発器等を備える。
 そして、このヒートポンプサイクルでは、気液分離器で分離された気相冷媒を圧縮機の中間圧ポートへと導く中間圧冷媒通路に、当該冷媒通路を開閉する開閉弁が設けられている。このような構成により、ガスインジェクションサイクルと、ガスインジェクションサイクル以外の通常サイクルとが切り替わる。
 ここで、ヒートポンプサイクルを通常サイクルとして機能させる際には、第2減圧部が減圧作用を発揮しない全開状態に設定される。一方、ヒートポンプサイクルをガスインジェクションサイクルとして機能させる際には、放熱器からの流出冷媒を2段階に減圧するために、第1、第2減圧部の双方が減圧作用を発揮する絞り状態に設定される。
 そこで、特許文献1では、中間圧冷媒通路を開閉する開閉弁を差圧弁で構成している。この差圧弁は、第2減圧部の前後差圧が所定差圧以上となった際に、中間圧冷媒通路を開く。これにより、ヒートポンプサイクルのサイクル構成の簡素化を図っている。
 また、特許文献2には、ガスインジェクションサイクルとして機能するヒートポンプサイクルにおいて、圧縮機をスクロール型圧縮機で構成した例が開示されている。具体的には、特許文献2では、中間圧ポートを固定スクロールの端板部に形成し、可動スクロールにおける固定スクロールの端板部に当接する歯先により、周期的に中間圧ポートを開閉することで、中間圧冷媒を圧縮過程の冷媒と合流させる構成としている。
特開2012-181005号公報 特開平09-105386号公報
 ところで、特許文献1の如く、ガスインジェクションサイクルと通常サイクルとを切り替え可能なヒートポンプサイクルに対し、特許文献2に記載の圧縮機を適用すると、サイクル内へ冷媒を充填する冷媒充填作業時に以下の不具合が生ずることが分った。
 (1)真空引き工程で中間圧冷媒通路の真空引きができない場合があること
 (2)充填工程で中間圧冷媒通路へ冷媒を充填できない場合があること
 本発明者らは、上述の不具合(1)、(2)について鋭意検討したところ、各不具合(1)、(2)の発生要因が明らかとなった。
 本開示は上記点に鑑みて、ガスインジェクションサイクルと通常サイクルとに切り替え可能なヒートポンプサイクルにおいて、真空引き工程における中間圧冷媒通路の真空引きと充填工程における中間圧冷媒通路へ冷媒の充填を確実に実施できるようにすることを目的とする。
 上記目的を達成するため、本開示の1つの観点によれば、統合弁は、圧縮機から吐出された冷媒を減圧させるための減圧室と、中間圧冷媒通路および逆止弁を介して中間圧ポートに合流させる冷媒の流路を開閉するための開閉弁室が形成されたボデーと、減圧室に配置され、圧縮機から吐出された冷媒を減圧させる減圧弁を構成する第1弁体と、開閉弁室に配置され、中間圧ポートに合流させる冷媒の流量を調整するための開閉弁を構成する第2弁体と、を有し、減圧弁が絞り状態のときに開閉弁が全開状態となり、減圧弁が開弁状態のときに開閉弁も開弁状態となり、減圧弁が全開状態のときに開閉弁が閉弁状態となるように第1弁体および第2弁体を連結した連結部材と、連結部材を駆動する駆動部と、を備えている。
 このような構成によれば、真空引き工程時に、駆動部により連結部材を駆動させ、減圧弁が開弁状態のときに開閉弁も開弁状態とすることができるので、開閉弁および減圧弁を介して中間圧冷媒通路の真空引きを確実に実施することができる。また、充填行程時に、駆動部により連結部材を駆動させ、減圧弁が開弁状態のときに開閉弁も開弁状態とすることができるので、減圧弁および開閉弁を介して中間圧冷媒通路への冷媒の充填を確実に実施することもできる。
 上記目的を達成するため、本開示の別の観点によれば、ヒートポンプサイクルは、吸入ポートから吐出された冷媒を圧縮して吐出ポートから吐出すると共に、サイクル内の中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポートを有する圧縮機と、中間圧ポートに合流させた冷媒が逆流するのを防止する逆止弁と、吐出ポートから吐出された冷媒を減圧させる統合弁と、統合弁で減圧された冷媒の気液を分離する気液分離部と、気液分離部にて分離された気相冷媒を、中間圧ポートへ導く中間圧冷媒通路と、備え、統合弁は、圧縮機から吐出された冷媒を減圧させるための減圧室と、中間圧冷媒通路および逆止弁を介して中間圧ポートに合流させる冷媒の流路を開閉するための開閉弁室が形成されたボデーと、減圧室に配置され、圧縮機から吐出された冷媒を減圧させる減圧弁を構成する第1弁体と、開閉弁室に配置され、中間圧ポートに合流させる冷媒の流路を開閉するための開閉弁を構成する第2弁体と、を有し、減圧弁が絞り状態のときに開閉弁が全開状態となり、減圧弁が開弁状態のときに開閉弁も開弁状態となり、減圧弁が全開状態のときに開閉弁が閉弁状態となるように第1弁体および第2弁体を連結した連結部材と、連結部材を駆動する駆動部と、を備えている。
 このような構成によれば、真空引き工程時に、駆動部により連結部材を駆動させ、減圧弁が開弁状態のときに開閉弁も開弁状態とすることができるので、開閉弁および減圧弁を介して中間圧冷媒通路の真空引きを確実に実施することができる。また、冷媒充填行程時に、駆動部により連結部材を駆動させ、減圧弁が開弁状態のときに開閉弁も開弁状態とすることができるので、減圧弁および開閉弁を介して中間圧冷媒通路への冷媒の充填を確実に実施することもできる。
第1実施形態に係るヒートポンプサイクルの冷房運転モード時の冷媒回路を示す全体構成図である。 第1実施形態に係るヒートポンプサイクルの第1暖房モード時の冷媒回路を示す全体構成図である。 第1実施形態に係るヒートポンプサイクルの第2暖房モード時の冷媒回路を示す全体構成図である。 第1実施形態に係る統合弁の冷房運転モード時の概略断面図である。 第1実施形態に係る統合弁の第1暖房モード時の概略断面図である。 第1実施形態に係る統合弁の第2暖房モード時の概略断面図である。 統合弁の高段側膨脹弁と中間圧開閉弁の弁開度とシャフトの軸方向のリフト量の関係を示した図である。 第1実施形態に係るヒートポンプサイクルの冷媒充填作業時の真空引き工程を説明するための全体構成図である。 第1実施形態に係るヒートポンプサイクルの冷媒充填作業時の真空引き工程を説明するための全体構成図である。 第1実施形態に係るヒートポンプサイクルの冷房運転モードを説明するための示すモリエル線図である。 第1実施形態に係るヒートポンプサイクルの第1暖房モードを説明するためのモリエル線図である。 第1実施形態に係るヒートポンプサイクルの第2暖房モードを説明するためのモリエル線図である。 第2実施形態に係るヒートポンプサイクルの冷媒回路を示す全体構成図である。 第2実施形態に係る統合弁の構成を示す断面図である。 検討例に係るヒートポンプサイクルを示す模式図である。 検討例に係る差圧開閉弁の開閉動作を説明するための図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 第1実施形態について説明する。本実施形態では、ヒートポンプサイクル10を走行用電動モータから車両走行用の駆動力を得る電気自動車の車両用空調装置1に適用している。このヒートポンプサイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される室内送風空気を熱交換対象流体とし、室内送風空気を冷却あるいは加熱する機能を果たす。
 本実施形態のヒートポンプサイクル10は、車室内を冷房する図1に示す冷房運転モードの冷媒回路、および車室内を暖房する図2、図3に示す暖房運転モードの冷媒回路を切替可能に構成されている。
 また、本実施形態のヒートポンプサイクル10では、後述するように暖房運転モードとして、外気温が極低温時(例えば、0℃以下の時)に実行される図2に示す第1暖房モードの冷媒回路、通常の暖房が実行される図3に示す第2暖房モードの冷媒回路を切替可能に構成されている。
 本実施形態では、図2に示す第1暖房モードの冷媒回路がガスインジェクションサイクル(すなわち二段圧縮サイクル)を構成し、冷房運転モードの冷媒回路や第2暖房モードの冷媒回路が通常サイクル(すなわち一段圧縮サイクル)を構成している。
 従って、本実施形態のヒートポンプサイクル10は、ガスインジェクションサイクル(二段圧縮サイクル)、およびガスインジェクションサイクル以外の通常サイクル(一段圧縮サイクル)に切り替え可能なサイクルとして構成されている。なお、図1の全体構成図は、冷房運転モードに切り替えた際の冷媒回路を示しており、図2、図3の全体構成図が暖房運転モードに切り替えた際の冷媒回路を示している。また、図1~図3では、それぞれの運転モードにおける冷媒の流れを実線矢印で示している。
 ヒートポンプサイクル10では、冷媒としてHFC系冷媒(例えば、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。勿論、HFO系冷媒(例えば、R1234yf)や二酸化炭素CO2等を採用してもよい。なお、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 ヒートポンプサイクル10の構成機器のうち、圧縮機11は、車両のボンネット内に配置され、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出するものである。圧縮機11は、外殻を構成するハウジング内部に、圧縮室11a内の冷媒を圧縮する圧縮機構、および圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機で構成されている。
 圧縮機11のハウジングには、吸入ポート11b、吐出ポート11c、および中間圧ポート11dが設けられている。吸入ポート11bは、圧縮室11aへ低圧冷媒を吸入させる。吐出ポート11cは、圧縮室11aから高圧冷媒を吐出する。中間圧ポート11dは、サイクルの中間圧冷媒を圧縮室11aへ導くと共に、圧縮過程の冷媒に合流させる。
 本実施形態の圧縮機11は、中間圧冷媒が圧縮室11a内に適切に噴射されるように、圧縮機構が中間圧ポート11dと圧縮室11aとの間の連通状態を周期的に閉塞するように構成されている。
 具体的には、圧縮機11の圧縮機構として、例えば、特許文献2の従来技術と同様のスクロール型圧縮機構を採用することができる。この場合、図示しない固定スクロールの端板部に設けられた中間圧ポート11dが、図示しない可動スクロールの歯先により周期的に閉塞される。なお、圧縮機11の圧縮機構としては、中間圧ポート11dと圧縮室11aとの間の連通状態が一時的に閉塞される圧縮機構であれば、スクロール型圧縮機構に限らず、ベーン型圧縮機構、ローリングピストン型圧縮機構等の各種形式のものを採用することができる。
 また、圧縮機11には、中間圧ポート11dに接続される後述の中間圧冷媒通路15側から圧縮室11aへの冷媒の流入を許容し、圧縮室11aから中間圧冷媒通路15側への冷媒の流入を禁止する逆止弁11eが内蔵されている。これにより、圧縮室11aの冷媒圧力が中間圧冷媒通路15の冷媒圧力(すなわち中間圧ポート11d側の冷媒圧力)よりも高くなった際に、中間圧ポート11dを介して圧縮室11aから中間圧冷媒通路15側へ冷媒が逆流してしまうことを防止できる。
 電動モータは、後述する空調制御装置40から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、この回転数制御によって、圧縮機11の冷媒吐出能力が変更される。従って、本実施形態では、電動モータが圧縮機11の吐出能力変更部を構成している。
 なお、圧縮機11は、中間圧ポート11dから中間圧冷媒を流入させて圧縮過程の冷媒に合流させると共に、圧縮機構により中間圧ポート11dと圧縮室11aとの間が一時的に閉塞される構成であれば、複数の圧縮機構を有する形式の圧縮機を採用してもよい。
 圧縮機11の吐出ポート11cには、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する室内空調ユニット30の空調ケース31内に配置され、圧縮機11から吐出された高圧冷媒を放熱させて、後述する室内蒸発器23を通過した室内送風空気を加熱する放熱器である。
 室内凝縮器12と後述する気液分離器14の間には、統合弁13が設けられている。この統合弁13は、高段側膨脹弁13aと中間圧開閉弁13bを一体化したものとして構成されている。高段側膨脹弁13aは、減圧弁であり、室内凝縮器12から流出した高圧冷媒を中間圧冷媒となるまで減圧する。中間圧開閉弁13bは、気液分離器14にて分離された気相冷媒を圧縮機11の中間圧ポート11dへ導く中間圧冷媒通路15を開閉する。これにより、中間圧開閉弁13bは、中間圧ポート11dに合流させる冷媒の流量を調整することができる。また、統合弁13は、高段側膨脹弁13aと中間圧開閉弁13bを連動して制御することが可能なステッピングモータを有している。この統合弁13については、後で詳細に説明する。
 気液分離器14は、遠心力の作用によって冷媒の気液を分離する遠心分離方式の気液分離部である。気液分離器14には、ハウジング内に冷媒の気液を分離する分離空間14aが形成されている。また、気液分離器14には、分離空間14aにて分離された液相冷媒を流出させる液相側流出口14b、および、分離空間14aにて分離された気相冷媒を流出させる気相側流出口14cが、設けられている。
 気液分離器14の液相側流出口14bには、気液分離器14から流出した液相冷媒を減圧可能な中段側減圧部の入口側が接続され、中段側減圧部の出口側には、室外熱交換器20の冷媒入口側が接続されている。
 この中段側減圧部は、気液分離器14の液相側流出口14bから流出した冷媒を減圧させる絞り状態に設定可能に構成されている。本実施形態の中段側減圧部は、冷媒を減圧させる固定絞り17、冷媒を固定絞り17を迂回させて室外熱交換器20側へ導く第1迂回通路18、第1迂回通路18を開閉する第1通路開閉弁181で構成されている。
 第1通路開閉弁181は、第1迂回通路18を開閉する電磁弁であり、空調制御装置40から出力される制御信号によって、その開閉作動が制御される。なお、第1通路開閉弁181は、第1迂回通路18を開閉することによって、サイクル構成の冷媒流路を切り替える機能を果たす。従って、本実施形態の第1通路開閉弁181は、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。
 ここで、冷媒が第1通路開閉弁181を通過する際に生じる圧力損失は、固定絞り17を通過する際に生じる圧力損失に対して極めて小さい。従って、室内凝縮器12から流出した冷媒は、第1通路開閉弁181が開いている場合には第1迂回通路18側を介して室外熱交換器20へ流入し、第1通路開閉弁181が閉じている場合には固定絞り17を介して室外熱交換器20へ流入する。これにより、中段側減圧部は、第1通路開閉弁181の開閉により、減圧作用を発揮する絞り状態と、減圧作用を発揮しない全開状態とに変更することが可能となっている。
 具体的には、本実施形態の中段側減圧部は、ガスインジェクションサイクルに切り替えられた際に減圧作用を発揮する絞り状態に設定され、ガスインジェクションサイクル以外の通常サイクルに切り替えられえた際に減圧作用を発揮しない全開状態に設定される。
 固定絞り17としては、絞り開度が固定されたノズル、オリフィス等を採用することができる。ノズル、オリフィス等の固定絞りでは、絞り通路面積が急縮小あるいは急拡大するので、上流側と下流側との圧力差(すなわち出入口間差圧)の変化に伴って、固定絞りを通過する冷媒の流量および固定絞り上流側冷媒の乾き度Xを自己調整してバランスすることができる。
 具体的には、圧力差が比較的大きい場合には、サイクルを循環させる必要のある必要循環冷媒流量が減少するに伴って、固定絞り上流側冷媒の乾き度が大きくなるようにバランスする。一方、圧力差が比較的小さい場合には、必要循環冷媒流量が増加するに伴って、固定絞り上流側冷媒の乾き度が小さくなるようにバランスする。
 また、気液分離器14の気相側流出口14cには、統合弁13の中間圧開閉弁13bを介して中間圧冷媒通路15が接続されている。この中間圧冷媒通路15は、気液分離器14にて分離された気相冷媒を圧縮機11の中間圧ポート11dへ導く冷媒通路である。中間圧冷媒通路15には、中間圧冷媒通路15を開閉する中間圧開閉弁13bが設けられている。この中間圧開閉弁13bは、統合弁13に含まれる。
 以下、本実施形態の統合弁13の構成について図4~図6を用いて説明する。なお、図4~図6における上下の各矢印は、統合弁13を車両用空調装置1に搭載した状態における上下の各方向を示している。
 図4に示すように、統合弁13は、ボデー130、ステッピングモータ28、シャフト133等を有している。
 ボデー130は、略中空形状の金属ブロック体として形成される。ボデー130は、上側の第1部材1301と下側の第2部材1302を組み付けた構造となっている。また、ボデー130には、室内凝縮器12から流出した高圧冷媒を流入させる第1冷媒流入口130aが形成されている。また、ボデー130には、この第1冷媒流入口130aより流入した冷媒を減圧させるための減圧室136aが形成されている。また、ボデー130には、この減圧室136aで減圧された冷媒を流出する第1冷媒流出口130bが形成されている。また、ボデー130には、気液分離器14から流出する気相冷媒を流入させる第2冷媒流入口130cが形成されている。また、ボデー130には、この第2冷媒流入口130cより流入した冷媒の流路を開閉するための開閉弁室136bが形成されている。また、ボデー130には、この開閉弁室136bを通過する冷媒を流出する第2冷媒出口130dが形成されている。
 なお、第1冷媒流出口130bより流出した冷媒は、気液分離器14に流入し、気液分離器14で分離された気相冷媒は、第2冷媒流入口130cに流入するようになっている。
 減圧室136aの第1冷媒流入口130a側の面には弁座134aが設けられている。また、開閉弁室136bの第2冷媒出口130d側の面には、弁座134bが設けられている。
 また、減圧室136aと開閉弁室136bの間には、シャフト133を上下方向に移動可能に支持するガイド部材135が設けられている。ガイド部材135は、金属製部材(例えば、アルミニウム)を用いて構成されている。
 ステッピングモータ28は、シャフト133を駆動する駆動部である。ステッピングモータ28では、空調制御装置40より入力されるパルス信号に応じて一定角度ずつ回転軸28aが回転する。
 シャフト133は、金属製部材(例えば、ステンレス)を用いて構成され、中空部を有する円筒形状をなしている。シャフト133の内周面と、ステッピングモータ28の回転軸28aの外周面には、それぞれネジ溝が形成されている。また、シャフト133の中空部には、ステッピングモータ28の回転軸28aが挿入されている。ステッピングモータ28の回転軸28aが回転すると、シャフト133が上下方向(すなわち、シャフト133の軸方向)に螺進または螺退するようになっている。螺進は、回転しながら進むことをいう。螺退は、回転しながら後退することをいう。
 シャフト133の外周面には、第1弁体133aと第2弁体133bが形成されている。第1弁体133aは、減圧室136aに配置され、第2弁体133bは、開閉弁室136bに配置される。シャフト133は、減圧室136aに配置された第1弁体133aと、開閉弁室136bに配置された第2弁体133bを連結する連結部材である。なお、第1弁体133aと弁座134aは、図1~図3に示した高段側膨脹弁13aを構成しており、第2弁体133bと弁座134bは、図1~図3に示した中間圧開閉弁13bを構成している。
 第1弁体133aは、シャフト133の上下方向の移動に応じて減圧室136aに配置された弁座134aに対して離接する。図4、図5に示すように、第1弁体133aと弁座134aとが離れた状態では、高段側膨脹弁13aは開弁状態となり、高段側膨脹弁13aは減圧作用を発揮しない。また、図6に示すように、第1弁体133aと弁座134aとの距離が短く高段側膨脹弁13aの弁開度が微小開度となっている状態では、高段側膨脹弁13aは、室内凝縮器12から流出した冷媒を少なくとも中間圧冷媒となるまで減圧させる減圧作用を発揮する。
 また、第2弁体133bは、シャフト133の上下方向の移動に応じて開閉弁室136bに配置された弁座134bに対して離接し、開閉弁室136bと第2冷媒出口130dの間の流路を開閉する。図4に示すように、第2弁体133bと弁座134bとが接した状態では、中間圧開閉弁13bは閉弁状態となり、中間圧冷媒通路15は閉状態となる。また、図5、図6に示すように、第2弁体133bと弁座134bとが離れた状態では、中間圧開閉弁13bは全開状態となり、中間圧冷媒通路15は開状態となる。
 ここで、気液分離器14により分離された気相冷媒は液相冷媒と比較して軽いため、第2冷媒流入口130cの方が第1冷媒流入口130aよりも上側に配置されている。このため、中間圧開閉弁13bは、高段側膨脹弁13aよりも上側に配置されている。
 ここで、例えば、弁座134aよりも第1冷媒流入口130a側の流路と開閉弁室136bとをガイド部材135を介して隣り合うように配置する構成としたとする。この場合、隣り合う2つの流路部間に大きな圧力差が生じるため、高圧冷媒がガイド部材135とシャフト133の間の隙間を通って開閉弁室136b側へ漏れ出してしまう。なお、この弁座134aは高段側膨脹弁13aを構成している。また、この第1冷媒流入口130aは室内凝縮器12から流出した高圧冷媒を流入させる。
 そこで、本実施形態の統合弁13では、高段側膨脹弁13aを構成している弁座134aよりも第1冷媒流出口130b側の流路部と開閉弁室136bが、シャフト133を案内するガイド部材135を介して隣り合うように配置されている。
 なお、本実施形態では、遠心分離方式の気液分離器14を採用している。このような遠心分離方式の気液分離器14は、圧力損失が非常に小さい。そのため、本実施形態のように高段側膨脹弁13aを構成している弁座134aよりも第1冷媒流出口130b側の流路部と開閉弁室136bをガイド部材135を介して隣り合うように配置することにより隣り合う2つの流路部間の圧力差を小さくできる。その結果、ガイド部材135とシャフト133の間のシール構造を不要とすることができる。
 図7は、高段側膨脹弁13aと中間圧開閉弁13bの弁開度とシャフト133の軸方向のリフト量の関係を示したものである。シャフト133の軸方向のリフト量が大きいほどシャフト133は上側に移動することを意味する。
 冷房運転モード時においては、高段側膨脹弁13aの弁開度は全開となり、中間圧開閉弁13bの弁開度は全閉となる。すなわち、図1中の実線矢印に従って冷媒が流れる。なお、冷房運転モードでは、低段側膨脹弁22を絞り状態にして冷媒を減圧させる。
 また、第1暖房運転モード時においては、高段側膨脹弁13aの弁開度は所定の中間開度となり、中間圧開閉弁13bの弁開度は全開となる。すなわち、図2中の実線矢印に従って冷媒が流れる。なお、第1暖房運転モードでは、高段側膨脹弁13aと固定絞り17により冷媒を減圧させるため、高段側膨脹弁13aでは、室内凝縮器12から流出した高圧冷媒を中間圧冷媒となるまで減圧させる絞り開度が実現される。
 また、第2暖房運転モード時においては、高段側膨脹弁13aの弁開度は微小開度となり、中間圧開閉弁13bの弁開度は全開となる。すなわち、図3中の実線矢印に従って冷媒が流れる。なお、第2暖房運転モードでは、高段側膨張弁13aのみで冷媒を減圧させるため、第1暖房運転モードの場合と比較して高段側膨脹弁13aの絞り開度は小さくなる。
 なお、第1、第2暖房運転モード時において、中間圧開閉弁13bの弁開度が全開となるが、本実施形態の圧縮機11は、逆止弁11eを備えているので、中間圧ポートに合流させた冷媒が逆流して気液分離器14側へ流入するのを防止することができる。
 なお、詳細については後述するが、真空引きおよび冷媒充填の作業を実施する際には、高段側膨脹弁13aと中間圧開閉弁13bを同時に開弁状態にして作業を実施する。
 図1~図3に戻り、室外熱交換器20は、ボンネット内に配置されて、内部を流通する冷媒と送風ファン21から送風された車室外空気(すなわち外気)とを熱交換させるものである。この室外熱交換器20は、第1、第2暖房モード時等には、冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房運転モード時等には、冷媒を放熱させる放熱器として機能する熱交換器である。
 室外熱交換器20の冷媒出口側には、低段側膨脹弁22の冷媒入口側が接続されている。低段側膨脹弁22は、冷房運転モード時等に室外熱交換器20から流出し、室内蒸発器23へ流入する冷媒を減圧させるものである。この低段側膨脹弁22の基本的構成は、高段側膨脹弁13aと同様であり、空調制御装置40から出力される制御信号によって、その作動が制御される。
 低段側膨脹弁22の出口側には、室内蒸発器23の冷媒入口側が接続されている。室内蒸発器23は、室内空調ユニット30の空調ケース31内のうち、室内凝縮器12の送風空気流れ上流側に配置され、冷房運転モード時に、冷媒を蒸発させて吸熱作用を発揮させることにより車室内への送風空気を冷却する熱交換器である。
 室内蒸発器23の冷媒出口側には、アキュムレータ24の入口側が接続されている。アキュムレータ24は、その内部に流入した冷媒の気液を分離して余剰冷媒を蓄えるものである。さらに、アキュムレータ24の気相冷媒出口側には、圧縮機11の吸入ポート11bが接続されている。従って、室内蒸発器23は、圧縮機11の吸入ポート11b側へ流出させるように接続されている。
 さらに、室外熱交換器20の冷媒出口側には、室外熱交換器20から流出した冷媒を低段側膨脹弁22および室内蒸発器23を迂回させてアキュムレータ24の入口側へ導く第2迂回通路25が接続されている。
 この第2迂回通路25には、第2迂回通路25を開閉する第2通路開閉弁251が配置されている。なお、第2通路開閉弁251の基本的構成は、第1通路開閉弁181と同様であり、空調制御装置40から出力される制御信号によって、その開閉作動が制御される電磁弁である。
 本実施形態の第2通路開閉弁251は、第2迂回通路25を開閉することによって、サイクル構成(冷媒流路)を切り替える機能を果たす。従って、本実施形態の第2通路開閉弁251は、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。なお、冷媒が第2通路開閉弁251を通過する際に生じる圧力損失は、低段側膨脹弁22を通過する際に生じる圧力損失に対して極めて小さい。従って、室外熱交換器20から流出した冷媒は、第2通路開閉弁251が開いている場合には第2迂回通路25を介してアキュムレータ24へ流入し、第2通路開閉弁251が閉じている場合には低段側膨脹弁22を介して室内蒸発器23へ流入する。
 ところで、ヒートポンプサイクル10は、製品の製造時やサイクル構成機器の交換等を実施する際に、サイクル内へ冷媒を充填する冷媒充填作業が必要となる。この冷媒充填作業では、サイクル内の空気や水分を取り除く真空引き工程を実施し、真空引き完了後にサイクル内へ規定量の冷媒を充填する充填工程を実施する。
 このような冷媒充填作業を実施するために、ヒートポンプサイクル10には、サイクル内の高圧側から冷媒を充填する第1充填ポート26a、サイクル内における低圧側から冷媒を充填する第2充填ポート26bが設けられている。
 本実施形態では、第1充填ポート26aが室内凝縮器12から高段側膨脹弁13aへ至る冷媒通路に設けられ、第2充填ポート26bがアキュムレータ24から圧縮機11の吸入ポート11bへ至る冷媒通路に設けられている。なお、本実施形態では、第1充填ポート26aが真空引きを実施するためのポートとしても機能する。
 ここで、特許文献1の技術と特許文献2の技術を組み合わせたヒートポンプサイクルでは、後述の備考欄で説明するように、以下の2つの不具合が生ずることがある。
(1)冷媒充填作業時に中間圧冷媒通路111の真空引きを実施できない場合がある。
(2)冷媒充填作業時に中間圧冷媒通路111へ冷媒の充填が実施できない場合がある。
 そこで、本実施形態における統合弁13は、高段側膨脹弁13aと中間圧開閉弁13bを一体化し、空調制御装置40から出力される制御信号に応じて動作するアクチュエータとしてのステッピングモータ28により高段側膨脹弁13aと中間圧開閉弁13bを連動して制御する構成となっている。
 統合弁13は、ボデー130を備えている。ボデー130には、圧縮機11から吐出された冷媒を減圧させるための減圧室136aが形成されている。またボデー130には、中間圧冷媒通路15および逆止弁11eを介して中間圧ポート11dに合流させる冷媒の流路を開閉するための開閉弁室136bが形成されている。
 また、統合弁13は、シャフト133を備えている。シャフト133は、第1弁体133aと第2弁体133bとを有する。第1弁体133aは、減圧室136aに配置され、圧縮機11から吐出された冷媒を減圧させる高段側膨脹弁13aを構成する。第2弁体133bは、開閉弁室136bに配置され、中間圧ポート11dに合流させる冷媒の流路を開閉するための開閉弁13bを構成する。
 また、統合弁13は、シャフト133を駆動するステッピングモータ28を備えている。シャフト133は、高段側膨脹弁13aが絞り状態のときに開閉弁13bが全開状態となり、高段側膨脹弁13aが開弁状態のときに開閉弁13bも開弁状態となり、高段側膨脹弁13aが全開状態のときに開閉弁13bが閉弁状態となるように第1弁体133aおよび第2弁体133bを連結する。
 ここで、冷媒充填作業の真空引き工程では、ステッピングモータ28によりシャフト133を駆動させ、高段側膨脹弁13aが開弁状態のときに開閉弁13bも開弁状態とすることができる。したがって、開閉弁13bおよび高段側膨脹弁13aを介して中間圧冷媒通路15の真空引きを確実に実施することができる。
 また、充填行程時に、ステッピングモータ28によりシャフト133を駆動させ、高段側膨脹弁13aが開弁状態のときに開閉弁13bも開弁状態とすることができる。したがって、高段側膨脹弁13aおよび開閉弁13bを介して中間圧冷媒通路への冷媒の充填を確実に実施することもできる。
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(すなわちインストルメントパネル)の内側に配置されて、室内空調ユニット30の外殻を形成すると共に、その内部に車室内に送風される室内送風空気の空気通路を形成する空調ケース31を有している。そして、この空気通路に送風機32、前述の室内凝縮器12、室内蒸発器23等が収容されている。
 空調ケース31の空気流れ最上流側には、車室内空気(すなわち内気)と外気とを切替導入する内外気切替装置33が配置されている。この内外気切替装置33は、空調ケース31内に内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。
 内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機32が配置されている。この送風機32は、遠心多翼ファン(すなわちシロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置40から出力される制御信号によって回転数および送風量が制御される。
 送風機32の空気流れ下流側には、前述の室内蒸発器23および室内凝縮器12が、室内送風空気の流れに沿って、室内蒸発器23、室内凝縮器12の順に配置されている。換言すると、室内蒸発器23は、室内凝縮器12に対して、空気流れ上流側に配置されている。
 また、空調ケース31内には、室内蒸発器23通過後の送風空気を、室内凝縮器12を迂回して流すバイパス通路35が設けられている。室内蒸発器23の空気流れ下流側であって、室内凝縮器12の空気流れ上流側には、エアミックスドア34が配置されている。
 このエアミックスドア34は、室内蒸発器23通過後の送風空気のうち、室内凝縮器12を通過させる風量とバイパス通路35を通過させる風量との風量割合を調整して、室内凝縮器12の熱交換能力を調整する熱交換能力調整部である。なお、エアミックスドア34は、空調制御装置40から出力される制御信号によって作動が制御される図示しないサーボモータによって駆動される。
 また、室内凝縮器12およびバイパス通路35の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された送風空気とバイパス通路35を通過して加熱されていない送風空気が合流する合流空間36が設けられている。
 空調ケース31の空気流れ最下流部には、合流空間36にて合流した送風空気を、空調対象空間である車室内へ吹き出す開口穴が形成されている。具体的には、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴37a、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴37b、乗員の足元に向けて空調風を吹き出すフット開口穴37cが形成されている。
 各開口穴37a~37cの空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口に接続されている。
 また、各開口穴37a~37cの空気流れ上流側には、デフロスタ開口穴37aを開閉するデフロスタドア38a、フェイス開口穴37bを開閉するフェイスドア38b、フット開口穴37cを開閉するフットドア38cが配置されている。各ドア38a~38cは、車室内への空気の吹出モードを切り替える吹出モード切替部を構成する。なお、各ドア38a~38cは、空調制御装置40から出力される制御信号によってその作動が制御される図示しないサーボモータによって駆動される。
 次に、本実施形態の電気制御部について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。ROMおよびRAMは、いずれも非遷移的実体的記憶媒体である。空調制御装置40は、ROM等に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各制御機器(例えば、圧縮機11、統合弁13、各通路開閉弁181、251、送風機32等)の作動を制御する。
 また、空調制御装置40の入力側には、各種空調制御用のセンサ群41が接続されている。センサ群41としては、車室内温度を検出する内気センサ、外気温を検出する外気センサ、車室内の日射量を検出する日射センサ、室内蒸発器23の温度を検出する蒸発器温度センサ、圧縮機11から吐出された高圧冷媒圧力を検出する吐出圧センサ等が挙げられる。
 さらに、空調制御装置40の入力側には、計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種空調操作スイッチからの操作信号が入力される。操作パネルに設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、冷房運転モードと暖房運転モードとの選択スイッチ等が設けられている。
 ここで、空調制御装置40は、その出力側に接続された各制御機器の作動を制御する制御部が一体に構成されたものであるが、各制御機器の作動を制御する構成(すなわちハードウェアおよびソフトウェア)が各制御機器の作動を制御する制御部を構成している。
 例えば、本実施形態では、各通路開閉弁181、251の開閉作動を制御する構成(すなわちハードウェアおよびソフトウェア)が流路切替制御部を構成している。なお、空調制御装置40における流路切替制御部を、空調制御装置40とは別の制御装置により構成してもよい。
 次に、上記構成における本実施形態のヒートポンプサイクル10への冷媒充填作業、および車両用空調装置1の作動について説明する。まず、本実施形態のヒートポンプサイクル10への冷媒充填作業について説明する。
 冷媒充填作業では、図8、図9に示すように、真空ポンプおよび冷媒充填ポンプを有する冷媒充填装置5を第1、第2充填ポート26a、26bに接続する。そして、高段側膨脹弁13a、中間圧開閉弁13b、各通路開閉弁181、251を開いた状態で、冷媒充填装置5によって第1充填ポート26aからサイクル内に残存する空気等を吸引する。これが真空引き工程である。なお、真空引き工程では、例えば、冷媒充填装置5によって第2充填ポート26bからサイクル内に残存する空気等を吸引するようにしてもよい。
 ここで、備考欄に検討例として記載したヒートポンプサイクルでは、真空引き工程時に圧縮機101内部で中間圧ポート101cが閉塞されていると、圧縮機101の吐出ポート101b側から中間圧冷媒通路111の真空引きを適切に実施できない。
 また、備考欄に検討例として記載したヒートポンプサイクルでは、真空引き工程時に各開閉弁105b、110aを開いていることで、固定絞り105aの前後差圧が殆ど生じない。このため、真空引き工程時に差圧開閉弁112が開かず、気液分離器104の気相側流出口側からも中間圧冷媒通路111の真空引きを実施できない。
 これに対して、本実施形態のヒートポンプサイクル10は、ステッピングモータ28によるシャフト133の駆動により、高段側膨脹弁13aと中間圧開閉弁13bを同時に開弁状態にすることができるの。したがって、図8の実線矢印で示すように、気液分離器14の気相側流出口14c側から中間圧冷媒通路15に残存する空気や水分を冷媒充填装置5により吸引することができる。したがって、真空引き工程時に圧縮機11内部で中間圧ポート11dが閉塞されていても、中間圧冷媒通路15の真空引きを確実に実施することができる。
 真空引き工程の完了後、冷媒充填装置5によって第1充填ポート26a、および第2充填ポート26bからサイクル内へ冷媒を充填する。これが充填工程である。なお、充填工程では、冷媒充填装置5によって第1充填ポート26aおよび第2充填ポート26bの一方のポートからサイクル内へ冷媒を充填するようにしてもよい。
 備考欄に検討例として記載したヒートポンプサイクルでは、真空引き工程により中間圧冷媒通路111が真空状態(すなわちP1≒0)となる。これにより充填工程時に、気液分離器104の気相側流出口側の圧力P2と中間圧冷媒通路111側の圧力P1との差圧が大きくなり、差圧開閉弁112が閉弁状態となることがある。例えば、備考欄の[数1]の右辺第2項、第3項が、「-A1×(P2-P1)-Fsp」から「-A1×P2-Fsp」となると、[数1]のFが正の値になり難くなる。この結果、差圧開閉弁112が閉弁状態に維持される。
 このため、備考欄に検討例として記載したヒートポンプサイクルでは、サイクル内へ冷媒を充填する際に、差圧開閉弁112が閉弁し、気液分離器104の気相側流出口側から中間圧冷媒通路111へ冷媒を充填することができない場合がある。
 これに対して、本実施形態のヒートポンプサイクル10は、ステッピングモータ28によるシャフト133の駆動により、高段側膨脹弁13aと中間圧開閉弁13bを同時に開弁状態にすることができる。したがって、図9の実線矢印で示すように、冷媒充填装置5から統合弁13の高段側膨脹弁13a、気液分離器14、統合弁13の中間圧開閉弁13bを介して中間圧冷媒通路15へ冷媒を確実に充填することができる。
 続いて、本実施形態の車両用空調装置1の作動を説明すると、車両用空調装置1は、冷房運転モード、および暖房運転モードに切り替えることができる。以下、各運転モードにおける作動を説明する。
 (A)冷房運転モード
 冷房運転モードは、例えば、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって冷房運転モードが選択されると開始される。
 冷房運転モードでは、空調制御装置40が、高段側膨脹弁13aを全開状態(すなわち減圧作用を発揮しない状態)、中間圧開閉弁13bを閉弁状態、低段側膨脹弁22を絞り状態(すなわち減圧作用を発揮する状態)、第2通路開閉弁251を閉弁状態とする。
 さらに、第1通路開閉弁181を開弁状態として中段側減圧部を全開状態(減圧作用を発揮しない状態)とする。これにより、ヒートポンプサイクル10は、図1の実線矢印で示すように冷媒が流れる冷媒回路に切り替えられる。
 この冷媒回路の構成で、空調制御装置40が空調制御用のセンサ群41の検出信号および操作パネルの操作信号を読み込み、車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。さらに、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、空調制御装置40の出力側に接続された各制御機器の作動状態を決定する。
 例えば、圧縮機11の電動モータに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器23の目標蒸発器吹出温度TEOを決定する。そして、蒸発器温度センサの検出値(すなわち吹出空気温度)が目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
 また、低段側膨脹弁22へ出力される制御信号については、低段側膨脹弁22へ流入する冷媒の過冷却度が、COPを略最大値に近づくように予め決定された目標過冷却度に近づくように決定される。
 また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が室内凝縮器12の空気通路を閉塞し、室内蒸発器23通過後の送風空気の全流量がバイパス通路35を通過するように決定される。
 そして、上記の如く決定された制御信号等を各制御機器へ出力する。その後、操作パネルによって車両用空調装置1の作動停止が要求されるまで、所定の制御周期毎に、各信号の読み込み、目標吹出温度TAOの算出、各制御機器の作動状態決定、制御信号の出力といった制御ルーチンがこの順に繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。
 従って、冷房運転モードのヒートポンプサイクル10では、図11のモリエル線図に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図11のa11点)が室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は殆ど室内送風空気へ放熱することなく、室内凝縮器12から流出する。
 室内凝縮器12から流出した冷媒は、高段側膨脹弁13aが全開状態となっているので、高段側膨脹弁13aにて殆ど減圧されることなく気液分離器14へ流入する。この際、気液分離器14へ流入する冷媒は過熱度を有する気相状態となっているものの、中間圧開閉弁13bが閉弁状態となっているので、気相側流出口14cから中間圧冷媒通路15へ冷媒が流出することなく、液相側流出口14bから流出する。
 気液分離器14の液相側流出口14bから流出した冷媒は、中段側減圧部の第1通路開閉弁181が全開状態となっているので、中段側減圧部にて殆ど減圧されることなく室外熱交換器20へ流入する。
 室外熱交換器20へ流入した冷媒は、送風ファン21から送風された外気と熱交換して放熱する(図10のa11点→b11点)。室外熱交換器20から流出した冷媒は、第2通路開閉弁251が閉弁状態となっているので、絞り状態となっている低段側膨脹弁22へ流入して低圧冷媒となるまで、等エンタルピ的に減圧膨脹される(図10のb11点→c11点)。
 そして、低段側膨脹弁22にて減圧された冷媒は、室内蒸発器23へ流入し、送風機32から送風された室内送風空気から吸熱して蒸発する(図10のc11点→d11点)。これにより、室内送風空気が冷却される。
 室内蒸発器23から流出した冷媒は、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11b(図10のe11点)から吸入されて、再び圧縮される(図10のe11点→a111点→a11点)。なお、アキュムレータ24にて分離された液相冷媒は、サイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。
 ここで、図12においてd11点とe11点が異なっている理由は、アキュムレータ24から圧縮機11の吸入ポート11bへ至る冷媒配管を流通する気相冷媒に生じる圧力損失と、気相冷媒が外部(すなわち外気)から吸熱する吸熱量を表したものである。従って、理想的なサイクルでは、d11点とe11点が一致していることが望ましい。このことは、以下のモリエル線図においても同様である。
 以上の如く、冷房運転モードでは、エアミックスドア34にて室内凝縮器12の空気通路を閉塞しているので、室内蒸発器23にて冷却された送風空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。
 (B)暖房運転モード
 次に、暖房運転モードについて説明する。この暖房運転モードは、例えば、操作パネルの作動スイッチが投入(すなわちON)された状態で、選択スイッチによって暖房運転モードが選択されると開始される。
 そして、暖房運転モードが開始されると、空調制御装置40がセンサ群41の検出信号および操作パネルの操作信号を読み込み、圧縮機11の冷媒吐出能力(すなわち、圧縮機11の回転数)を決定する。さらに、決定された回転数に応じて、第1暖房モードあるいは第2暖房モードを実行する。
 (B1):第1暖房モード
 まず、第1暖房モードについて説明すると、第1暖房モードでは、空調制御装置40が、高段側膨脹弁13aを開弁状態かつ絞り状態、中間圧開閉弁13bを全開状態、低段側膨脹弁22を全閉状態、第2通路開閉弁251を開弁状態とする。
 さらに、空調制御装置40が、第1通路開閉弁181を閉弁状態として中段側減圧部を絞り状態(すなわち、減圧作用を発揮する状態)とする。これにより、ヒートポンプサイクル10は、図2の実線矢印で示すように冷媒が流れる冷媒回路(すなわち、ガスインジェクションサイクルの冷媒回路)に切り替えられる。
 この冷媒回路の構成で、空調制御装置40が、冷房運転モードと同様に、センサ群41の検出信号等を読み込み、目標吹出温度TAO等に基づいて、空調制御装置40の出力側に接続された各種制御機器の作動状態を決定する。
 なお、第1暖房モード時に高段側膨脹弁13aへ出力される制御信号については、室内凝縮器12における冷媒圧力が予め定めた目標高圧となるように、あるいは、室内凝縮器12から流出する冷媒の過冷却度が予め定めた目標過冷却度となるように決定される。また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34がバイパス通路35を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を通過するように決定される。
 従って、第1暖房モードのヒートポンプサイクル10では、図11に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図11のa12点)が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過した室内送風空気と熱交換して放熱する(図11のa12点→b12点)。これにより、室内送風空気が加熱される。
 室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13aにて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される(図11のb12点→c112点)。そして、高段側膨脹弁13aにて減圧された中間圧冷媒は、気液分離器14に流入し、気液分離器14にて気液が分離される(図11のc12点→c212点、c12点→c312点)。
 気液分離器14にて分離された気相冷媒は、中間圧開閉弁13bが開弁状態となっているので、気相側流出口14cから中間圧冷媒通路15へ流入して、中間圧冷媒通路15を介して圧縮機11の中間圧ポート11dへ流入する(図11のc212点)。そして、中間圧ポート11dへ流入した冷媒は、圧縮室11aにて圧縮過程の冷媒(図11のa112点)と合流し(図11のa212点)、圧縮室11aで圧縮される。
 一方、気液分離器14にて分離された液相冷媒は、液相側流出口14bから中段側減圧部へ流入する。この際、中段側減圧部の第1通路開閉弁181が全閉状態となっているので、固定絞り17にて低圧冷媒となるまで等エンタルピ的に減圧膨脹される(図11のc312点→c412点)。そして、固定絞り17にて減圧された冷媒は、室外熱交換器20へ流入して、送風ファン21から送風された外気と熱交換して吸熱する(図11のc412点→d12点)。
 室外熱交換器20から流出した冷媒は、低段側膨脹弁22が全閉状態となり、第2通路開閉弁251が開弁状態となっているので、第2迂回通路25を介して、アキュムレータ24へ流入して気液分離される。そして、アキュムレータ24にて分離された気相冷媒が圧縮機11の吸入ポート11b(図11のe12点)から吸入されて再び圧縮される。
 以上の如く、第1暖房モードでは、室内凝縮器12にて圧縮機11から吐出された冷媒の有する熱を室内送風空気に放熱させて、加熱された内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
 この第1暖房モードでは、固定絞り17にて減圧された低圧冷媒を圧縮機11へ吸入させると共に、高段側膨脹弁13aにて減圧された中間圧冷媒を圧縮機11の圧縮過程の冷媒と合流させるガスインジェクションサイクルを構成することができる。
 これにより、圧縮機11の吸入冷媒圧力と吐出冷媒圧力との圧力差を縮小させて、圧縮機11の圧縮効率を向上させることができる。その結果、ヒートポンプサイクル10全体としてのCOPを向上させることができる。
 (B2):第2暖房モード
 次に、第2暖房モードについて説明すると、第2暖房モードでは、空調制御装置40が、高段側膨脹弁13aを絞り状態、中間圧開閉弁13bを全開状態、低段側膨脹弁22を全閉状態、第2通路開閉弁251を開弁状態とする。
 さらに、空調制御装置40が、第1通路開閉弁181を開弁状態として中段側減圧部を全開状態(すなわち、減圧作用を発揮しない状態)とする。これにより、ヒートポンプサイクル10は、図3の実線矢印で示すように冷媒が流れる冷媒回路に切り替えられる。
 この冷媒回路の構成で、空調制御装置40が、センサ群41の検出信号等を読み込み、目標吹出温度TAO等に基づいて、空調制御装置40の出力側に接続された各制御機器の作動状態を決定する。なお、第2暖房モード時に高段側膨脹弁13aへ出力される制御信号等については、第1暖房モードと同様に決定される。
 従って、第2暖房モード時のヒートポンプサイクル10では、図12に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図12のa13点)が室内凝縮器12へ流入し、室内送風空気と熱交換して放熱する(図12のa13点→b13点)。これにより、室内送風空気が加熱される。
 室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13aにて低圧冷媒となるまで等エンタルピ的に減圧膨脹され(図12のb13点→c13点)、気液分離器14に流入する。そして、気液分離器14へ流入した冷媒は、冷房運転モードと同様に、気相側流出口14cから流出することなく、液相側流出口14bから室外熱交換器20へ流入する。
 室外熱交換器20へ流入した冷媒は、送風ファン21から送風された外気と熱交換して吸熱する(図12のc13点→d13点)。以降の作動は第1暖房モードと同様であるため説明を省略する。
 以上の如く、第2暖房モードでは、室内凝縮器12にて圧縮機11から吐出された冷媒の有する熱を室内送風空気に放熱させて、加熱された室内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
 ここで、第2暖房モード時を、第1暖房モードに対して、外気温が高い場合等のように暖房負荷が比較的低い場合に実行することの効果を説明する。第1暖房モードでは、上述の如く、ガスインジェクションサイクルを構成することができるので、ヒートポンプサイクル10全体としてのCOPを向上させることができる。
 つまり、理論的には、圧縮機11の回転数が同一であれば、第1暖房モードは、第2暖房モード時よりも高い暖房性能を発揮することができる。換言すると、同一の暖房性能を発揮させるために必要な圧縮機11の回転数(すなわち冷媒吐出能力)は、第2暖房モードよりも第1暖房モード時の方が低くなる。
 ところが、圧縮機11には、圧縮効率が最大(すなわちピーク)となる最大効率回転数があり、最大効率回転数よりも回転数が低くなると、圧縮効率が大きく低下してしまうという特性がある。このため、暖房負荷が比較的低い場合に圧縮機11を最大効率回転数よりも低い回転数で作動させると、第1暖房モードでは、却ってCOPが低下してしまうことがある。
 そこで、本実施形態では、上述の最大効率回転数を基準回転数として、第1暖房モードの実行中に、圧縮機11の回転数が基準回転数以下となってしまう場合に第2暖房モードへ切り替えるようにしている。なお、第2暖房モードから第1暖房モードへの切替は、第2暖房モードの実行中に基準回転数に対して予め定めた所定量を加えた回転数以上となった際に行うようにすればよい。
 これにより、第1暖房モードおよび第2暖房モードのうち高いCOPを発揮できる運転モードを選択することができる。従って、第1暖房モードの実行中に、圧縮機11の回転数が基準回転数以下となってしまう場合であっても、第2暖房モードへ切り替えることにより、ヒートポンプサイクル10全体としてのCOPを向上させることができる。
 なお、本実施形態では、除湿と暖房を同時に行う除湿暖房運転モードの詳細な説明については省略するが、上記特許文献1と同様に除湿暖房運転モードへの切替を行うことも可能である。
 以上説明した本実施形態の車両用空調装置1では、上記の如く、ヒートポンプサイクル10の冷媒回路を切り替えることによって、種々のサイクル構成を実現して、車室内の適切な冷房および暖房を実現できる。
 本実施形態のように電気自動車に適用される車両用空調装置1では、内燃機関(エンジン)を搭載する車両のようにエンジンの廃熱を車室内の暖房のために利用できない。従って、本実施形態のヒートポンプサイクル10のように、暖房運転モード時にガスインジェクションサイクル、および通常サイクルに切り替えることで、暖房負荷によらず高いCOPを発揮させることできることは、極めて有効である。
 また、本実施形態では、ヒートポンプサイクル10をガスインジェクションサイクルとして機能させるために必要な中間圧開閉弁13bと高段側膨脹弁13aを一体で構成しているので、ヒートポンプサイクル10を簡素なサイクル構成で実現することができる。
 (第2実施形態)
 次に、図13、図14を参照して本開示の第2実施形態に係る統合弁13について説明する。上記第1実施形態に係る統合弁13は、高段側膨脹弁13aと中間圧開閉弁13bを一体化したものとして構成されているが、図13に示すように、本実施形態に係る統合弁13は、更に、高段側膨脹弁13aより流出した冷媒を気液に分離する気液分離器14を一体化したものとして構成されている。
 ボデー130は、右上側の第1部材1301と右下側の第2部材1302と左下側の第3部材1303と左上側の第4部材1304を組み付けた構造となっている。
 第3部材1303は、略中空形状の金属ブロック体として形成され、その外周側壁面には、高段側膨脹弁13aから流出した冷媒を内部へ流入させる冷媒流入口141aが形成されている。冷媒流入口141aは、第3部材1303の内部に形成された気液分離空間(すなわち気液分離部)14aに連通している。この気液分離空間14aは、その軸線方向が上下方向に延びる略円柱状に形成されている。なお、冷媒流入口141aには、冷媒の液漏れをシールするOリング143が設けられている。
 さらに、冷媒流入口141aから気液分離空間14aへ至る冷媒通路は、気液分離空間14aの軸方向(本実施形態では、上下方向)から見たときに、気液分離空間14aの断面円形状の内周側壁面の接線方向に延びている。従って、冷媒流入口141aから気液分離空間14aへ流入した冷媒は、気液分離空間14aの断面円形状の内周側壁面に沿って旋回するように流れる。
 そして、この旋回流れによって生じる遠心力の作用によって気液分離空間14a内へ流入した冷媒の気液が分離され、分離された液相冷媒が重力の作用によって気液分離空間14aの下方側へ落下する。換言すると、本実施形態の気液分離空間14aは、遠心分離方式の気液分離部を構成している。
 第3部材1303の最下方側には、分離された液相冷媒を流出させる分離液相冷媒出口穴14bが形成されている。
 第4部材1304は、略中空形状の金属ブロック体として形成されている。第4部材1304には、気液分離空間14aにて分離された気相冷媒を第2冷媒流入口130cへ流入させる気相側流出口14c、気液分離空間14aと気相側流出口14cとを連通させる分離気相冷媒流出パイプ部142c等が設けられている。
 分離気相冷媒流出パイプ部142cは、丸管状に形成されており、第4部材1304と第3部材1303が一体化された際に、気液分離空間14aと同軸上に配置される。従って、気液分離空間14a内へ流入した冷媒は、分離気相冷媒流出パイプ部142cの周囲を旋回する。
 上記した構成において、高段側膨脹弁13aから冷媒流入口141aを通って気液分離空間14aへ流入した冷媒は、気液分離空間14aの断面円形状の内周側壁面に沿って旋回するように流れる。
 そして、この旋回流れによって生じる遠心力の作用によって気液分離空間14a内へ流入した冷媒の気液が分離され、分離された液相冷媒は気液分離空間14aの下方側へ落下して分離液相冷媒出口穴14bから排出される。また、気液分離空間14aで分離された気相冷媒は、気相側流出口14cおよび第2冷媒流入口130cを通って開閉弁室136bへ導入される。
 そして、開閉弁室136bから、中間圧開閉弁13bの弁開度に応じた流量の冷媒が中間圧冷媒通路15および逆止弁11eを通って圧縮機11の中間圧ポート11dへ導入される。
 本実施形態では、上記第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 また、本実施形態の統合弁13は、高段側膨脹弁13a、中間圧開閉弁13bおよび気液分離器14を一体化したものとして構成されている。すなわち、ボデー130に、更に、第1冷媒流出口130bより流出した冷媒を気液に分離する気液分離部14a、気液分離部14aにて分離された気相冷媒を第2冷媒流入口130cへ流出させる気相側流出口14cおよび気液分離部14aにて分離された液相冷媒を流出させる分離液相冷媒出口穴14bが形成されているので、省スペース化を図ることができる。
 なお、本実施形態では、高段側膨脹弁13a、中間圧開閉弁13bおよび気液分離器14を一体化したものとして構成したが、更に、気液分離器14から流出した液層冷媒を固定絞り17を迂回させて室外熱交換器20側へ導く第1迂回通路18を開閉する第1通路開閉弁181と固定絞り17の少なくとも一方を一体化したものとして構成してもよい。
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されるものではなく、適宜変更が可能である。例えば、以下のように種々変形可能である。
 (1)上述の各実施形態では、本開示のヒートポンプサイクル10を電気自動車の車両用空調装置1に適用する例について説明したが、これに限らず、ハイブリッド自動車の如く、エンジン廃熱が不充分になり得る車両の空調装置に適用してもよい。
 (2)上述の各実施形態では、本開示のヒートポンプサイクル10を車両用空調装置1に適用した例を説明したが、本開示の適用はこれに限定されず、例えば、据置型空調装置や液体加熱装置(例えば、給湯機)等に適用してもよい。
 (3)上述の各実施形態では、アクチュエータとしてのステッピングモータ28を用いてシャフト133を上下方向に駆動するようにしたが、ステッピングモータ28以外の駆動部を用いてシャフト133を上下方向に駆動するようにしてもよい。
 (4)上述の各実施形態では、圧縮機11内に逆止弁11eを備えた構成を示したが、圧縮機11の外部に逆止弁11eを備えた構成としてもよい。
 (5)上述の各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 (6)上述の各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 (7)上述の各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
 (備考)
 ここで、特許文献1の技術と特許文献2の技術を組み合わせたヒートポンプサイクルで、以下の2つの不具合が生ずることがある点について説明する。
(1)冷媒充填作業時に中間圧冷媒通路の真空引きを実施できない場合がある。
(2)冷媒充填作業時に中間圧冷媒通路へ冷媒の充填が実施できない場合がある。
 図15は、ガスインジェクションサイクルと通常サイクルとを切り替え可能なヒートポンプサイクルに、特許文献2に開示されたスクロール型圧縮機を適用した構成(以下、検討例と呼ぶ。)を示す模式図である。
 まず、検討例の各構成要素について簡単に説明する。検討例のヒートポンプサイクル100は、スクロール型の圧縮機101を備える。スクロール型の圧縮機101は、吸入ポート101aから吸入した冷媒を圧縮して吐出ポート101bから吐出する。更にスクロール型の圧縮機101は、サイクル内の中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポート101cを有する。
 この圧縮機101は、特許文献2と同様に、固定スクロール101dの端板部に当接する可動スクロール101eの歯先により、周期的に中間圧ポート101cを開閉する構成となっている。なお、圧縮機101には、中間圧ポート101cから後述の中間圧冷媒通路111側への冷媒の逆流を防止する逆止弁101fが設けられている。
 圧縮機101の吐出ポート101b側には、上流側から順に放熱器102、第1減圧部103、気液分離器104が接続されている。そして、気液分離器104における液相冷媒の出口側には、第2減圧部105として機能する固定絞り105a、および固定絞り105aを迂回して冷媒を流すバイパス流路の開閉弁105bが設けられている。
 また、第2減圧部105の出口側には、冷媒を外気と熱交換させる室外熱交換器106、室外熱交換器106から流出した冷媒を減圧する第3減圧部107、蒸発器108、蒸発器108から流出した冷媒の気液を分離するアキュムレータ109が接続されている。なお、室外熱交換器106の出口側には、第3減圧部107および蒸発器108を迂回してアキュムレータ109へ冷媒を流すバイパス流路110を開閉する開閉弁110aが設けられている。
 さらに、気液分離器104には、分離した気相冷媒を圧縮機101の中間圧ポート101cへ導く中間圧冷媒通路111が接続されている。そして、中間圧冷媒通路111には、固定絞り105aの前後差圧が所定圧力以上となった際に、中間圧冷媒通路111を開く差圧開閉弁112が設けられている。
 具体的には、差圧開閉弁112は、図16に示すように、中間圧冷媒通路111を開閉する弁体112a、中間圧冷媒通路111を閉じる側に弁体112aに荷重をかけるスプリング112b等で構成されている。
 図15に戻り、ヒートポンプサイクル100には、サイクル内の高圧冷媒通路に冷媒を充填する第1充填ポート113、およびサイクル内の低圧冷媒通路に冷媒を充填する第2充填ポート114が設けられている。なお、第1充填ポート113は、真空引きを行うためのポートとしても機能する。
 以上までがヒートポンプサイクル100の説明であり、以下、前述の不具合(1)の発生要因について説明する。ヒートポンプサイクル100では、各開閉弁105b、110a等の機能弁が全開状態に設定された状態で、第1充填ポート113を介して真空引きが行われる。
 この真空引き工程では、中間圧冷媒通路111以外の部分については、真空引きを行うことが可能であるが、以下の場合に、中間圧冷媒通路111の真空引きを実施することができなくなってしまう。
 すなわち、図15の圧縮機101中に示すように、圧縮機101内部にて可動スクロール101eの歯先により中間圧ポート101cが閉鎖されていると、圧縮機101の中間圧ポート101c側からの真空引きを実施できない。
 一方、差圧開閉弁112側からの真空引きを行うことも考えられる。しかし、真空引きを行う際には、固定絞り105aの前後の圧力が殆どゼロとなり、スプリング112bの付勢力により中間圧冷媒通路111が開かず、差圧開閉弁112を介した真空引きも実施できない。
 このように、図15のヒートポンプサイクル100では、冷媒充填時の真空引き工程において、圧縮機101内部で中間圧ポート101cが閉塞されると、中間圧冷媒通路111の真空引きが実施できなくなってしまう。なお、不具合(1)は、スクロール型の圧縮機101に限らず、内部で中間圧ポート101cが閉鎖されることがある圧縮機において生ずる。
 次に、不具合(2)の発生要因について説明する。ヒートポンプサイクル100の真空引き工程の完了後、各充填ポート113、114の少なくとも一つを介して規定量の冷媒を充填する。
 この充填工程では、差圧開閉弁112が開かず、中間圧冷媒通路111における当該差圧開閉弁112から圧縮機101の逆止弁101fまでの冷媒通路へ冷媒を封入することができない。
 この点について図16を用いて説明する。図16に示すように、差圧開閉弁112の弁体112aには、固定絞り105a前後の差圧による力F23が開弁方向に作用する。また、弁体112aには、中間圧冷媒通路111の中間圧ポート101c側および固定絞り105aの上流側の差圧による力F21、およびスプリング112bの付勢力Fspが閉弁方向に作用する。
 そして、差圧開閉弁112の開弁力Fは、以下の数式で規定でき、開弁力F>0となる条件で開弁して、ヒートポンプサイクル100がガスインジェクションサイクルに切り替わる。
[数1]
F=F23-F21-Fsp=A2×(P2-P3)-A1×(P2-P1)-Fsp
なお、「P1」が中間圧冷媒通路111の中間圧ポート101c側の圧力、「P2」が固定絞り105a上流側の圧力、「P3」が固定絞り105a下流側の圧力である。また、「A1」が弁体112aにおいて圧力P1、P2が作用する部位の面積であり、「A2」が弁体112aにおいて圧力P2、P3が作用する部位の面積である。
 ところが、真空引き工程にて、中間圧冷媒通路111が真空状態(P1≒0)となっていると、差圧開閉弁112の弁体112aに閉弁方向に作用するF21が増大し、サイクル作動により発生する差圧では、差圧開閉弁112が開弁しない場合がある。

Claims (4)

  1.  吸入ポートから吐出された冷媒を圧縮して吐出ポートから吐出すると共に、サイクル内の中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポートを有する圧縮機(11)と、前記中間圧ポートに合流させた冷媒が逆流するのを防止する逆止弁(11e)と、を有し、ガスインジェクションサイクルおよびガスインジェクションサイクル以外の通常サイクルに切替可能なヒートポンプサイクル(10)に適用される統合弁であって、
     前記圧縮機から吐出された冷媒を減圧させるための減圧室(136a)と、中間圧冷媒通路(15)および前記逆止弁を介して前記中間圧ポートに合流させる冷媒の流路を開閉するための開閉弁室(136b)が形成されたボデー(130)と、
     前記減圧室に配置され、前記圧縮機から吐出された冷媒を減圧させる減圧弁(13a)を構成する第1弁体(133a)と、前記開閉弁室に配置され、前記中間圧ポートに合流させる冷媒の流量を調整するための開閉弁(13b)を構成する第2弁体(133b)と、を有し、前記減圧弁が絞り状態のときに前記開閉弁が全開状態となり、前記減圧弁が開弁状態のときに前記開閉弁も開弁状態となり、前記減圧弁が全開状態のときに前記開閉弁が閉弁状態となるように前記第1弁体および第2弁体を連結した連結部材(133)と、
     前記連結部材を駆動する駆動部(28)と、を備えた統合弁。
  2.  前記ボデーには、前記減圧室で減圧された冷媒を気相冷媒と液相冷媒に分離する気液分離部(14)へ流出させる第1冷媒流出口(130b)が形成されており、
     前記減圧室に配置され、前記減圧弁を構成する弁座(134a)よりも前記第1冷媒流出口側の流路部と前記開閉弁室は、前記連結部材を案内するガイド部材(135)を介して隣り合うように配置されている請求項1に記載の統合弁。
  3.  前記ボデーには、前記第1冷媒流出口からの冷媒を気液に分離する気液分離部(14a)、前記気液分離部にて分離された気相冷媒を前記開閉弁室へ導入する気相側流出口(14c)および気液分離部にて分離された液相冷媒を流出させる液相側流出口(14b)が形成されている請求項1または2に記載の統合弁。
  4.  ガスインジェクションサイクルおよびガスインジェクションサイクル以外の通常サイクルに切替可能なヒートポンプサイクルであって、
     吸入ポートから吐出された冷媒を圧縮して吐出ポートから吐出すると共に、サイクル内の中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポートを有する圧縮機(11)と、
     前記中間圧ポートに合流させた冷媒が逆流するのを防止する逆止弁(11e)と、
     前記吐出ポートから吐出された冷媒を減圧させる統合弁(13)と、
     前記統合弁で減圧された冷媒の気液を分離する気液分離部(14)と、
     前記気液分離部にて分離された気相冷媒を、前記中間圧ポートへ導く中間圧冷媒通路(15)と、備え、
     前記統合弁は、前記圧縮機から吐出された冷媒を減圧させるための減圧室(136a)と、前記中間圧冷媒通路(15)および前記逆止弁を介して前記中間圧ポートに合流させる冷媒の流路を開閉するための開閉弁室(136b)が形成されたボデー(130)と、
     前記減圧室に配置され、前記圧縮機から吐出された冷媒を減圧させる減圧弁(13a)を構成する第1弁体(133a)と、前記開閉弁室に配置され、前記中間圧ポートに合流させる冷媒の流路を開閉するための開閉弁(13b)を構成する第2弁体(133b)と、を有し、前記減圧弁が絞り状態のときに前記開閉弁が全開状態となり、前記減圧弁が開弁状態のときに前記開閉弁も開弁状態となり、前記減圧弁が全開状態のときに前記開閉弁が閉弁状態となるように前記第1弁体および第2弁体を連結した連結部材(133)と、
     前記連結部材を駆動する駆動部(28)と、を備えたヒートポンプサイクル。
PCT/JP2016/052648 2015-02-04 2016-01-29 統合弁およびヒートポンプサイクル WO2016125697A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680008385.3A CN107208949B (zh) 2015-02-04 2016-01-29 集成阀和热泵循环
US15/542,770 US10293660B2 (en) 2015-02-04 2016-01-29 Integrated valve and heat pump cycle
JP2016573326A JP6304407B2 (ja) 2015-02-04 2016-01-29 統合弁およびヒートポンプサイクル
DE112016000605.5T DE112016000605T5 (de) 2015-02-04 2016-01-29 Integriertes Ventil und Wärmepumpenkreislauf

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-020067 2015-02-04
JP2015020067 2015-02-04

Publications (1)

Publication Number Publication Date
WO2016125697A1 true WO2016125697A1 (ja) 2016-08-11

Family

ID=56564043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052648 WO2016125697A1 (ja) 2015-02-04 2016-01-29 統合弁およびヒートポンプサイクル

Country Status (5)

Country Link
US (1) US10293660B2 (ja)
JP (1) JP6304407B2 (ja)
CN (1) CN107208949B (ja)
DE (1) DE112016000605T5 (ja)
WO (1) WO2016125697A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045031A1 (ja) * 2018-08-27 2020-03-05 サンデン・オートモーティブクライメイトシステム株式会社 複合弁及びそれを用いた車両用空気調和装置
JP2020034177A (ja) * 2018-08-27 2020-03-05 サンデン・オートモーティブクライメイトシステム株式会社 複合弁及びそれを用いた車両用空気調和装置
JP2021508025A (ja) * 2017-12-29 2021-02-25 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. 空調機システム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208949B (zh) * 2015-02-04 2019-10-18 株式会社电装 集成阀和热泵循环
US10556487B2 (en) * 2016-03-18 2020-02-11 Denso Corporation Accumulating/receiving device and heat pump system
CN107356003B (zh) 2016-05-10 2021-04-20 比亚迪股份有限公司 热泵空调系统及电动汽车
CN107356005B (zh) * 2016-05-10 2019-12-20 比亚迪股份有限公司 热泵空调系统及电动汽车
KR20200045727A (ko) * 2018-10-23 2020-05-06 현대자동차주식회사 차량용 히트펌프 시스템
CN110044108B (zh) * 2019-04-18 2020-10-16 浙江敏特汽车空调有限公司 汽车空调膨胀阀及制造工艺
US11267318B2 (en) * 2019-11-26 2022-03-08 Ford Global Technologies, Llc Vapor injection heat pump system and controls
KR20210070789A (ko) * 2019-12-05 2021-06-15 현대자동차주식회사 차량용 기후제어시스템 및 그 제어방법
KR20220020039A (ko) * 2020-08-11 2022-02-18 현대자동차주식회사 다기능 팽창 밸브
US11592225B2 (en) * 2020-11-24 2023-02-28 Lennox Industries Inc. Method and system for the heat-pump control to reduce liquid refrigerant migration
CN113580874B (zh) * 2021-07-19 2023-10-03 中汽研(天津)汽车工程研究院有限公司 一种可加湿的新能源汽车空调控制系统及方法
DE102021213795A1 (de) 2021-12-03 2023-06-07 Mahle International Gmbh Wärmepumpensystem
CN114454689A (zh) * 2022-01-28 2022-05-10 重庆长安新能源汽车科技有限公司 一种集成化的热泵空调系统、控制方法及汽车
KR20230147870A (ko) * 2022-04-15 2023-10-24 현대자동차주식회사 가스인젝션 타입의 차량용 열관리 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181005A (ja) * 2011-02-11 2012-09-20 Denso Corp ヒートポンプサイクル
WO2013172201A1 (ja) * 2012-05-14 2013-11-21 株式会社デンソー 冷凍サイクル用流量調整弁
JP2014196880A (ja) * 2013-03-29 2014-10-16 株式会社デンソー 統合弁

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722257A (en) 1995-10-11 1998-03-03 Denso Corporation Compressor having refrigerant injection ports
JP3745801B2 (ja) 1995-10-11 2006-02-15 株式会社日本自動車部品総合研究所 スクロール型圧縮機およびインジェクションサイクル
JPH1026430A (ja) * 1996-07-12 1998-01-27 Denso Corp ガスインジェクション式ヒートポンプ装置
JP3952545B2 (ja) * 1997-07-24 2007-08-01 株式会社デンソー 車両用空調装置
JP3890713B2 (ja) * 1997-11-27 2007-03-07 株式会社デンソー 冷凍サイクル装置
US5996360A (en) * 1997-11-27 1999-12-07 Denso Corporation Refrigerant cycle system
EP1072453B1 (en) * 1999-07-26 2006-11-15 Denso Corporation Refrigeration-cycle device
JP3985394B2 (ja) * 1999-07-30 2007-10-03 株式会社デンソー 冷凍サイクル装置
JP2012233676A (ja) * 2011-04-21 2012-11-29 Denso Corp ヒートポンプサイクル
JP5821756B2 (ja) * 2011-04-21 2015-11-24 株式会社デンソー 冷凍サイクル装置
JP6275372B2 (ja) * 2011-09-05 2018-02-07 株式会社デンソー 冷凍サイクル装置
JP5772764B2 (ja) 2011-10-05 2015-09-02 株式会社デンソー 統合弁およびヒートポンプサイクル
JP5768784B2 (ja) 2011-10-05 2015-08-26 株式会社デンソー 統合弁
JP5920178B2 (ja) * 2011-12-05 2016-05-18 株式会社デンソー ヒートポンプサイクル
JP5729359B2 (ja) * 2012-07-09 2015-06-03 株式会社デンソー 冷凍サイクル装置
JP2014070867A (ja) 2012-10-01 2014-04-21 Denso Corp ヒートポンプサイクルおよびヒートポンプサイクル用統合弁
JP5949648B2 (ja) * 2013-04-18 2016-07-13 株式会社デンソー 冷凍サイクル装置
JP6070418B2 (ja) 2013-05-29 2017-02-01 株式会社デンソー ヒートポンプサイクル
JP5991277B2 (ja) 2013-07-11 2016-09-14 株式会社デンソー ヒートポンプ用統合弁
JP6011493B2 (ja) 2013-08-28 2016-10-19 株式会社デンソー 統合弁、駆動システム
JP6119546B2 (ja) * 2013-10-09 2017-04-26 トヨタ自動車株式会社 ハイブリッド車両
JP6235857B2 (ja) * 2013-10-18 2017-11-22 株式会社Soken スクロール型圧縮機
JP6015636B2 (ja) * 2013-11-25 2016-10-26 株式会社デンソー ヒートポンプシステム
JP6455086B2 (ja) 2014-11-04 2019-01-23 株式会社Soken 統合弁、制御装置、制御装置の製造方法、および車載装置
CN107208949B (zh) * 2015-02-04 2019-10-18 株式会社电装 集成阀和热泵循环
WO2016129498A1 (ja) * 2015-02-09 2016-08-18 株式会社デンソー ヒートポンプサイクル
CN107249912B (zh) * 2015-02-24 2019-08-06 株式会社电装 车辆用空调装置
JP6361830B2 (ja) * 2015-07-14 2018-07-25 株式会社デンソー ヒートポンプサイクル
DE112016003491T5 (de) * 2015-07-31 2018-04-26 Denso Corporation Elektrische Kompressorsteuerung und Kältekreislaufvorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181005A (ja) * 2011-02-11 2012-09-20 Denso Corp ヒートポンプサイクル
WO2013172201A1 (ja) * 2012-05-14 2013-11-21 株式会社デンソー 冷凍サイクル用流量調整弁
JP2014196880A (ja) * 2013-03-29 2014-10-16 株式会社デンソー 統合弁

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508025A (ja) * 2017-12-29 2021-02-25 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. 空調機システム
WO2020045031A1 (ja) * 2018-08-27 2020-03-05 サンデン・オートモーティブクライメイトシステム株式会社 複合弁及びそれを用いた車両用空気調和装置
JP2020034178A (ja) * 2018-08-27 2020-03-05 サンデン・オートモーティブクライメイトシステム株式会社 複合弁及びそれを用いた車両用空気調和装置
JP2020034177A (ja) * 2018-08-27 2020-03-05 サンデン・オートモーティブクライメイトシステム株式会社 複合弁及びそれを用いた車両用空気調和装置
WO2020045030A1 (ja) * 2018-08-27 2020-03-05 サンデン・オートモーティブクライメイトシステム株式会社 複合弁及びそれを用いた車両用空気調和装置
CN112543855A (zh) * 2018-08-27 2021-03-23 三电汽车空调系统株式会社 复合阀及使用该复合阀的车用空调装置
CN112543855B (zh) * 2018-08-27 2022-05-10 三电汽车空调系统株式会社 复合阀及使用该复合阀的车用空调装置
JP7095845B2 (ja) 2018-08-27 2022-07-05 サンデン・オートモーティブクライメイトシステム株式会社 複合弁及びそれを用いた車両用空気調和装置
JP7153170B2 (ja) 2018-08-27 2022-10-14 サンデン株式会社 複合弁及びそれを用いた車両用空気調和装置

Also Published As

Publication number Publication date
US10293660B2 (en) 2019-05-21
DE112016000605T5 (de) 2017-10-19
CN107208949B (zh) 2019-10-18
JP6304407B2 (ja) 2018-04-04
CN107208949A (zh) 2017-09-26
JPWO2016125697A1 (ja) 2017-08-10
US20180009291A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6304407B2 (ja) 統合弁およびヒートポンプサイクル
JP6295676B2 (ja) ヒートポンプサイクル
US9581370B2 (en) Refrigerant cycle device
JP6361830B2 (ja) ヒートポンプサイクル
JP5799924B2 (ja) 冷凍サイクル装置
JP5768784B2 (ja) 統合弁
JP6394505B2 (ja) ヒートポンプサイクル
JP6011493B2 (ja) 統合弁、駆動システム
WO2018088034A1 (ja) 冷凍サイクル装置
JP2014070867A (ja) ヒートポンプサイクルおよびヒートポンプサイクル用統合弁
WO2013145537A1 (ja) 車両用の空調装置
JP6070418B2 (ja) ヒートポンプサイクル
JP6119616B2 (ja) ヒートポンプサイクル
JP5991277B2 (ja) ヒートポンプ用統合弁
WO2018096869A1 (ja) 車両用空調装置
WO2016136288A1 (ja) ヒートポンプサイクル
JP6079474B2 (ja) ヒートポンプ用差圧弁
WO2018088033A1 (ja) 冷凍サイクル装置
JP6079475B2 (ja) ヒートポンプ用差圧弁
JP6094401B2 (ja) ヒートポンプ用統合弁
JP6183223B2 (ja) ヒートポンプサイクル
WO2018003352A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573326

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15542770

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000605

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746528

Country of ref document: EP

Kind code of ref document: A1