WO2020045031A1 - 複合弁及びそれを用いた車両用空気調和装置 - Google Patents

複合弁及びそれを用いた車両用空気調和装置 Download PDF

Info

Publication number
WO2020045031A1
WO2020045031A1 PCT/JP2019/031366 JP2019031366W WO2020045031A1 WO 2020045031 A1 WO2020045031 A1 WO 2020045031A1 JP 2019031366 W JP2019031366 W JP 2019031366W WO 2020045031 A1 WO2020045031 A1 WO 2020045031A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
passage
refrigerant passage
composite
Prior art date
Application number
PCT/JP2019/031366
Other languages
English (en)
French (fr)
Inventor
徹也 石関
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201980053592.4A priority Critical patent/CN112543856B/zh
Publication of WO2020045031A1 publication Critical patent/WO2020045031A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/044Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with movable valve members positioned between valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/048Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with valve seats positioned between movable valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • the present invention relates to a composite valve applied to a refrigerant circuit and a heat pump type vehicle air conditioner using the same.
  • an air conditioner that can be applied to vehicles such as hybrid vehicles and electric vehicles.
  • a compressor, a radiator, a heat absorber, and a refrigerant circuit to which an outdoor heat exchanger is connected are provided.
  • the refrigerant radiates heat in the radiator, the refrigerant radiated in the radiator is decompressed by the outdoor expansion valve, and then heats the vehicle interior by absorbing heat in the outdoor heat exchanger.
  • An air conditioner for a vehicle has been developed in which heat is released in an outdoor heat exchanger, decompressed by an indoor expansion valve, and then absorbed by a heat absorber to switch and execute a cooling mode for cooling a vehicle interior. Further, such an operation mode in the vehicle compartment has been realized by switching using a large number of solenoid valves and expansion valves (for example, see Patent Document 1).
  • the present invention has been made to solve such a conventional technical problem, and by combining a plurality of solenoid valves and expansion valves conventionally used in a vehicle air conditioner, the number of parts can be reduced. It is an object of the present invention to provide a composite valve capable of reducing fuel consumption and a vehicle air conditioner using the same.
  • the composite valve of the present invention is applied to a refrigerant circuit, and includes a housing having a first refrigerant inlet, a first refrigerant outlet, a second refrigerant inlet, a second refrigerant outlet, and a third refrigerant outlet.
  • a drive device for driving the valve portion a first refrigerant passage formed in the housing and located closer to the first refrigerant inlet than the first opening / closing valve portion, and a second refrigerant passage located closer to the second refrigerant outlet than the second opening / closing valve portion.
  • a check valve provided in the communication passage, the second refrigerant passage having a forward direction.
  • the first opening / closing valve portion and the second opening / closing valve portion open the first refrigerant passage and the second refrigerant passage by the driving device
  • the expansion valve portion is the first opening / closing valve portion.
  • the first refrigerant passage on the first refrigerant inlet side from the first on-off valve portion and the second refrigerant passage on the second refrigerant outlet side from the second on-off valve portion in each of the above inventions is characterized by being formed adjacent in the housing.
  • the housing includes a first housing member provided with a first refrigerant inlet, a first refrigerant outlet, a first refrigerant passage, and a first on-off valve portion;
  • a second housing member provided with a second refrigerant inlet, a second refrigerant outlet, a second refrigerant passage, and a second on-off valve portion, and a third refrigerant outlet, a third refrigerant passage, and an expansion valve portion were provided.
  • An actuator is provided over each housing member to drive the expansion valve section and each opening / closing valve section.
  • the first refrigerant passage closer to the first refrigerant inlet than the first on-off valve portion is formed in the first housing member in proximity to one surface of the first housing member
  • a second refrigerant passage on the second refrigerant outlet side of the second on-off valve portion is formed in the second housing member close to one surface of the second housing member
  • the first housing member is provided with a first on-off valve.
  • a first communication passage extending from the first refrigerant passage on the first refrigerant inlet side to the one surface of the first housing member, and the second housing member includes a second refrigerant on the second refrigerant outlet side from the second on-off valve.
  • a third housing member a second housing member Characterized in that it is coupled on the other side.
  • an air conditioner for a vehicle wherein the composite valve according to any of the above aspects, a compressor for compressing the refrigerant, and a refrigerant inlet connected to the refrigerant pipe on the discharge side of the compressor to release the refrigerant and release the refrigerant.
  • the refrigerant pipe on the refrigerant inlet side of the indoor expansion valve is connected to the second refrigerant inlet of The refrigerant pipe is connected to the second refrigerant outlet of the valve, the refrigerant pipe on the refrigerant inlet side of the outdoor heat exchanger is connected to the third refrigerant outlet of the composite valve, and the driving device of the composite valve is controlled by the control device. .
  • the control device controls the driving device of the composite valve, so that the first opening / closing valve portion and the second opening / closing valve portion of the composite valve make the first valve.
  • the refrigerant passage and the second refrigerant passage are opened, and the degree of opening of the third refrigerant passage is adjusted by the expansion valve to prevent the refrigerant from flowing into the heat absorber and radiate the refrigerant discharged from the compressor.
  • the heat is radiated by the heat exchanger and the radiated refrigerant is decompressed by the expansion valve, the heat is absorbed by the outdoor heat exchanger, and the first opening / closing valve of the composite valve and the first opening / closing valve are used for the first operation.
  • the refrigerant passage and the second refrigerant passage are opened, the opening degree of the third refrigerant passage is adjusted by the expansion valve portion, the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is expanded.
  • the heat is absorbed by the outdoor heat exchanger and The dehumidifying and heating mode in which the refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber, and the first refrigerant passage and the second refrigerant passage by the first on-off valve and the second on-off valve of the composite valve Is closed, the opening degree of the third refrigerant passage is adjusted by the expansion valve portion, the refrigerant discharged from the compressor is radiated by the radiator and the outdoor heat exchanger, and the radiated refrigerant is checked by the check valve of the composite valve.
  • the pressure is reduced by the indoor expansion valve, then the dehumidifying cooling mode in which the heat is absorbed by the heat absorber, the first on-off valve portion of the composite valve, and the first refrigerant passage by the second on-off valve portion, And, in a state in which the second refrigerant passage is closed, the refrigerant discharged from the compressor is radiated by the outdoor heat exchanger, and the radiated refrigerant flows through the check valve of the composite valve to the indoor expansion valve, and the indoor expansion valve After switching to the cooling mode in which the heat is absorbed by the heat absorber, It is characterized in.
  • An air conditioner for a vehicle includes a cooling target cooling device for cooling a temperature control target mounted on a vehicle using a refrigerant in the invention according to the sixth or seventh aspect.
  • the temperature control target cooling device is a temperature control target heat exchanger for absorbing the refrigerant to cool the temperature control target, and an auxiliary expansion valve for reducing the pressure of the refrigerant flowing into the temperature control target heat exchanger.
  • the refrigerant inlet of the heat exchanger for temperature control is connected to a branch pipe branched from the refrigerant pipe on the refrigerant inlet side of the indoor expansion valve, and the refrigerant outlet of the heat exchanger for temperature control is the compressor outlet.
  • the controller is connected to the suction-side refrigerant pipe, and the control device controls the driving device of the composite valve, so that the first on-off valve portion of the composite valve and the first refrigerant passage by the second on-off valve portion, and With the second refrigerant passage closed, the refrigerant discharged from the compressor is radiated by the outdoor heat exchanger. Then, the radiated refrigerant flows through the check valve of the composite valve to the indoor expansion valve and the auxiliary expansion valve, and after the pressure is reduced by the indoor expansion valve, the heat is absorbed by the heat absorber, the pressure is reduced by the auxiliary expansion valve, and the temperature is reduced.
  • the cooling / cooling target cooling mode in which heat is absorbed by the control target heat exchanger, and the first refrigerant passage and the second refrigerant passage are closed by the first on-off valve portion and the second on-off valve portion of the composite valve.
  • the refrigerant is prevented from flowing into the heat absorber, the refrigerant discharged from the compressor is radiated by the outdoor heat exchanger, and the radiated refrigerant flows through the check valve of the composite valve to the auxiliary expansion valve.
  • the cooling operation is performed by switching between a temperature control target cooling mode in which heat is absorbed by the temperature control target heat exchanger.
  • a housing having a first refrigerant inlet, a first refrigerant outlet, a second refrigerant inlet, a second refrigerant outlet, and a third refrigerant outlet; A first coolant passage formed between the first coolant inlet and the first coolant outlet, a second coolant passage formed in the housing and provided between the second coolant inlet and the second coolant outlet, and a first coolant passage.
  • a first opening / closing valve portion provided in the second refrigerant passage for opening / closing the first refrigerant passage; a second opening / closing valve portion provided in the second refrigerant passage for opening / closing the second refrigerant passage;
  • a third refrigerant passage extending from the second refrigerant passage on the second refrigerant inlet side to the third refrigerant outlet from the on-off valve portion, and an expansion valve portion provided in the third refrigerant passage for adjusting the opening degree of the third refrigerant passage.
  • a drive device for driving the valve portion a first refrigerant passage formed in the housing and located closer to the first refrigerant inlet than the first opening / closing valve portion, and a second refrigerant passage located closer to the second refrigerant outlet than the second opening / closing valve portion. And a check valve provided in the communication passage, the second refrigerant passage having a forward direction.
  • the first opening / closing by the driving device according to the invention of claim 2 is provided.
  • valve portion and the second on-off valve portion open the first refrigerant passage and the second refrigerant passage, and the expansion valve portion adjusts the opening degree of the third refrigerant passage, the first on-off valve portion, and
  • the second opening / closing valve unit closes the first refrigerant passage and the second refrigerant passage, and the expansion valve unit can adjust the opening degree of the third refrigerant passage.
  • the compressor that compresses the refrigerant and the refrigerant inlet is connected to the refrigerant pipe on the discharge side of the compressor.
  • a radiator for heating the supplied air a refrigerant outlet having a refrigerant outlet connected to the refrigerant pipe on the suction side of the compressor to absorb heat of the refrigerant to cool the air supplied to the vehicle interior; Applied to an air conditioner for vehicles equipped with an outdoor heat exchanger connected to the refrigerant pipe on the refrigerant outlet side and provided outside the vehicle compartment, an indoor expansion valve for reducing the pressure of the refrigerant flowing into the heat absorber, and a control device
  • the refrigerant pipe on the refrigerant outlet side of the outdoor heat exchanger is connected to the first refrigerant inlet of the composite valve, the refrigerant pipe on the suction side of the compressor is connected to the first refrigerant outlet of the composite valve, and the refrigerant outlet of the radiator is connected.
  • the control device controls the driving device of the composite valve. This makes it possible to switch between the heating mode, the dehumidifying / heating mode, the dehumidifying / cooling mode, and the cooling mode and execute the same.
  • a cooling device for cooling a temperature-controlled object mounted on a vehicle using a refrigerant as in the invention of claim 8 is provided, and the cooling device for temperature-controlled is cooled by absorbing heat of the refrigerant.
  • a heat exchanger for cooling the temperature control target, and a refrigerant inlet of the heat exchanger for temperature control by providing an auxiliary expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger for temperature control. Is connected to a branch pipe branched from the refrigerant pipe on the refrigerant inlet side of the indoor expansion valve, and the refrigerant outlet of the heat exchanger for temperature control is connected to the refrigerant pipe on the suction side of the compressor.
  • the function of switching the operation mode of the air conditioner for a vehicle, which has been conventionally performed by a plurality of solenoid valves, and the function of reducing the pressure of the refrigerant, which has been performed by an expansion valve, can be integrated into a composite valve.
  • the first refrigerant passage on the first refrigerant inlet side from the first on-off valve portion and the second refrigerant passage on the second refrigerant outlet side from the second on-off valve portion are adjacent to each other in the housing. If formed, the first refrigerant passage and the second refrigerant passage can be communicated with a communication passage having a short dimension, and loss such as pressure loss in the communication passage can be suppressed to a minimum. .
  • first housing member provided with the first refrigerant inlet, the first refrigerant outlet, the first refrigerant passage, and the first opening / closing valve portion, the second refrigerant inlet,
  • a second housing member provided with a second refrigerant outlet, a second refrigerant passage, and a second on-off valve portion, and a third housing member provided with a third refrigerant outlet, a third refrigerant passage, and an expansion valve portion. If the actuator is provided across each housing member to drive the expansion valve portion and each opening / closing valve portion, the production / assembly operation of the composite valve becomes easy.
  • the first refrigerant passage on the first refrigerant inlet side from the first on-off valve portion is formed in the first housing member close to one surface of the first housing member, and the second on-off valve is provided.
  • a second refrigerant passage closer to one surface of the second housing member is formed in the second housing member near the one surface of the second housing member, and the first housing member is provided with a first refrigerant inlet from the first opening / closing valve portion.
  • the third housing member includes a second housing member. If you connect it to the other side of the member, The communication path of law easily configured, both become easy mounting of the check valve, it is possible to even the third housing member without trouble bond.
  • FIG. 1 is a cross-sectional view of a composite valve according to an embodiment to which the present invention is applied (a state in which an expansion valve adjusts an opening degree and a first on-off valve and a second on-off valve are opened).
  • FIG. 2 is a cross-sectional view of the composite valve of FIG. 1 in a state in which an expansion valve unit completely closes a third refrigerant passage, and a first on-off valve unit and a second on-off valve unit open first and second refrigerant passages.
  • FIG. 2 is a cross-sectional view of the composite valve of FIG.
  • FIG. 2 is a cross-sectional view of the composite valve of FIG. 1 in a state where an expansion valve part fully opens a third refrigerant passage and a first on-off valve part and a second on-off valve part close the first and second refrigerant passages. It is a figure explaining operation of a compound valve.
  • FIG. 2 is a configuration diagram of an embodiment of a vehicle air conditioner to which the composite valve of FIG. 1 is applied.
  • FIG. 7 is a block diagram of an air conditioning controller as a control device of the vehicle air conditioner of FIG. 6.
  • FIG. 8 is a diagram illustrating a dehumidifying cooling mode / cooling mode by the air conditioning controller of FIG. 7.
  • FIG. 8 is a diagram illustrating a cooling / cooling target cooling mode by the air conditioning controller of FIG. 7.
  • FIG. 8 is a diagram illustrating a cooling mode to be temperature-controlled by the air conditioning controller of FIG. 7.
  • Composite valve 81 1 to 4 are cross-sectional views of a composite valve 81 according to one embodiment to which the present invention is applied, and FIG.
  • the composite valve 81 of the present invention is applied to a refrigerant circuit R of the vehicle air conditioner 1 and the like described below, and includes a housing 82 made of metal such as aluminum and an expansion provided in the housing 82.
  • the drive device 83 adjusts and drives the expansion valve portion 6 via the actuator 84, and further drives the first and second on-off valve portions 21 and 22 to open and close.
  • the driving device 83 of this embodiment is constituted by a stepping motor.
  • the housing 82 of the embodiment is configured by combining three parts of a first housing member 86, a second housing member 87, and a third housing member 85, each of which is formed of a metal block such as aluminum.
  • a first refrigerant inlet 88 and a first refrigerant outlet 89 are formed on one side and the other side of the one housing member 86, respectively.
  • the first refrigerant inlet 88 and the first refrigerant outlet are provided inside the first housing member 86.
  • a first refrigerant passage 91 extending between 89 is formed.
  • a second refrigerant inlet 92 and a second refrigerant outlet 93 are formed on the other side surface and the one side surface of the second housing member 87, respectively.
  • the second refrigerant inlet 92 and the second refrigerant inlet 92 are formed inside the second housing member 87.
  • a second refrigerant passage 94 extending between the two refrigerant outlets 93 is formed.
  • a third refrigerant outlet 97 is formed on the other side surface of the third housing member 85, and an opening 85A is formed on one surface, and these openings 85A and the third refrigerant outlet 97 are formed inside the third housing member 85.
  • a third refrigerant passage 98 extending between 97 is formed.
  • the first opening / closing valve portion 21 includes a first valve seat 21 ⁇ / b> A provided in the first refrigerant passage 91 and a first valve body 21 ⁇ / b> B for contacting the first valve seat 21 ⁇ / b> A to open and close the first refrigerant passage 91.
  • the second opening / closing valve portion 22 includes a second valve seat 22 ⁇ / b> A provided in the second refrigerant passage 94 and a second valve seat 22 ⁇ / b> A for abutting on the second valve seat 22 ⁇ / b> A to open and close the second refrigerant passage 94. It consists of two valve bodies 22B.
  • the expansion valve portion 6 includes a third valve seat 6A provided in the third refrigerant passage 98, and a third valve body for abutting on the third valve seat 6A to adjust the opening degree of the third refrigerant passage 98. 6B, and a needle valve element 6C which comes into contact with the third valve element 6B so as to be able to be freely attached to and detached from the third valve element 6B.
  • the third valve seat 6A is located in the third refrigerant passage 98 closer to the third refrigerant outlet 97 than the opening 85A. It is located in.
  • an internal passage 6D is formed from the surface on the third valve seat 6A side to one side surface, and the needle valve body 6C is formed on a surface of the internal passage 6D on the third valve seat 6A side. Adjust the opening of the opening.
  • the first housing member 86 and the second housing member 87 are joined together at one surface, and one surface of the third housing member 85 is joined to the other surface of the second housing member 87 (the surface opposite to the one surface) to be integrated.
  • An opening 87A communicating with the second refrigerant passage 94 on the second refrigerant inlet 92 side of the second opening / closing valve portion 22 is formed on the other surface of the second housing member 87.
  • the driving device 83 is attached to the other surface of the third housing member 85 (the surface opposite to the one surface).
  • the actuator 84 of the driving device 83 includes a first actuator member 84A, a second actuator member 84B, and a third actuator member 84C.
  • the first actuator member 84A is located on the driving device 83 side, and the needle valve body 6C is connected to the first actuator member 84C. It is attached to the tip of member 84A.
  • the second actuator member 84B is located at a portion where the openings 85A and 87A communicate with each other, and is mounted between the second valve body 22B and the surface of the third valve body 6B on the side opposite to the third valve seat 6A. I have.
  • the third actuator member 84C penetrates through the second housing member 87 and is mounted between the second valve body 22B and the first valve body 21B. Thereby, the actuator 84 is provided over each of the housing members 85, 87, and 86, and drives the expansion valve unit 6 and the on-off valve units 21 and 22.
  • the rotation of the driving device 83 is controlled by the number of pulses.
  • the driving device 83 rotates, the needle valve body 6C is moved up and down by the actuator 84 (first to third actuator members 84A to 84C), and the third valve body 6B and the first valve body are moved through the needle valve body 6C. 21B and the second valve body 22B are simultaneously driven. That is, in the embodiment, when the driving device 83 is at the position of 0 pulse, the first actuator member 84A and the needle valve element 6C are located closest to the driving device 83.
  • the third valve body 6B is in contact with the third valve seat 6A to close the third valve seat 6A, but the needle valve body 6C is close to the opening of the internal passage 6D of the third valve body 6B. Then, the internal passage 6D is opened, and a state in which the opening of the third refrigerant passage 98 is reduced (a state in which the opening is adjusted) is established. Further, the first valve body 21B is separated from the first valve seat 21A, the first opening / closing valve portion 21 opens the first refrigerant passage 91, and the second valve body 22B is separated from the second valve seat 22A. The second on-off valve portion 22 opens the second refrigerant passage 84 (FIG. 1).
  • the first actuator member 84A moves the needle valve element 6C to the third valve element 6B side, and the needle valve element 6C eventually becomes the third valve element 6B.
  • the expansion valve section 6 is brought into a state in which the third refrigerant passage 98 is fully closed in this state by contacting the opening of the internal passage 6D and closing.
  • adjusting the opening is a concept including fully closed and fully opened. This state is the state of FIG.
  • the first valve body 21B is still separated from the first valve seat 21A, the first on-off valve portion 21 opens the first refrigerant passage 91, and the second valve body 22B The second on-off valve portion 22 opens the second refrigerant passage 84 apart from the second valve seat 22A (FIG. 2).
  • the first valve body 21 ⁇ / b> B abuts on the first valve seat 21 ⁇ / b> A, the first opening / closing valve part 21 closes the first refrigerant passage 91, and the second valve body 22 ⁇ / b> B
  • the second on-off valve portion 22 closes the second refrigerant passage 84 in contact with the second valve seat 22A (FIG. 3).
  • the needle valve 6C pushes the third valve 6B in the direction of the second valve 22B, so that the third valve 6B eventually becomes the third valve seat. 6A, the third refrigerant passage 98 is fully opened.
  • This state is the state shown in FIG. 4.
  • the second actuator member 84B contracts, so that the first valve body 21B comes into contact with the first valve seat 21A and the first opening / closing valve portion 21 becomes the first refrigerant passage 91.
  • the second valve body 22B abuts the second valve seat 22A, and the second on-off valve portion 22 maintains the state in which the second refrigerant passage 84 is closed (FIG. 4).
  • FIG. 5 summarizes the above operation.
  • the horizontal axis of FIG. 5 indicates the number of pulses of the driving device 83, and the vertical axis indicates the opening area of each of the refrigerant passages 91, 94, 98.
  • the thick solid line indicates the degree of opening of the third refrigerant passage 98 by the expansion valve unit 6
  • the thick broken line indicates the open / close state of the first refrigerant passage 91 by the first on-off valve unit 21
  • the thin broken line indicates the second refrigerant by the second on-off valve 22.
  • the open / closed state of the passage 94 is shown.
  • the number of pulses indicated by P1 is the state of FIG. 1
  • P2 is the state of FIG. 2
  • P3 is the state of FIG. 3
  • P4 is the state of FIG. 4.
  • the range and “cooling” indicate a control range in a cooling mode described later.
  • the state in which the expansion valve section 6 adjusts the opening degree of the third refrigerant passage 98 to the state in which it is fully closed is used.
  • the composite valve 81 is configured so that the opening degree of the expansion valve section 6 and the opening / closing drive of the two opening / closing valve sections 21 and 22 are simultaneously performed by the single driving device 83.
  • first refrigerant passage 91 on the first refrigerant inlet 88 side from the first valve seat 21A is formed close to one surface of the first housing member 86, and a first communication portion extending from this close portion to one surface.
  • 96A are formed.
  • the second refrigerant passage 94 on the second refrigerant outlet 93 side from the second valve seat 22A is formed close to one surface of the second housing member 87, and a second communication portion extending from this close portion to one surface.
  • 96B are formed. Then, the communication portions 96A and 96B are matched with each other in a state where one surfaces of the housing members 86 and 87 are connected to each other, and form the communication passage 96.
  • the check valve 18 is attached to one of the communication portions (96A or 96B), and when the respective housing members 86 and 87 are connected, the check valve 18 is inserted into the other communication portion (96B or 96A). If it is made to enter, the check valve 18 can also be easily attached.
  • the first refrigerant passage 91 on the first refrigerant inlet 88 side from the first valve seat 21A and the second refrigerant passage 94 on the second refrigerant outlet 93 side from the second valve seat 22A are adjacent in the housing 82. It is a form to be done.
  • the communication passage 96 communicates between the first refrigerant passage 91 on the first refrigerant inlet 88 side from the first valve seat 21A and the second refrigerant passage 94 on the second refrigerant outlet 93 side from the second valve seat 22A.
  • the check valve 18 is provided in the communication passage 96, and the direction of the second refrigerant passage 94 is set to the forward direction.
  • the composite valve 81 is in a state in which the needle valve element 6C of the expansion valve part 6 opens the internal passage 6D in the third valve element 6B and adjusts the opening degree of the third refrigerant passage 98.
  • the refrigerant flowing from the second refrigerant inlet 92 is diverted.
  • the refrigerant flows out from the refrigerant outlet 97, and the other flows out from the second refrigerant outlet 93 through the second on-off valve portion 22.
  • the refrigerant flowing from the first refrigerant inlet 88 passes through the first on-off valve portion 21 and flows out of the first refrigerant outlet 89 (indicated by white arrows and thin arrows in FIG. 1).
  • the expansion valve portion 6 closes the third refrigerant passage 98, so that the refrigerant flowing from the second refrigerant inlet 92 passes through the second on-off valve portion 22, and The refrigerant flowing out of the second refrigerant outlet 93 and flowing in from the first refrigerant inlet 88 passes through the first on-off valve portion 21 and flows out of the first refrigerant outlet 89 (indicated by white arrows in FIG. 1).
  • the refrigerant flowing from the second refrigerant inlet 92 is throttled by the expansion valve portion 6, flows out from the third refrigerant outlet 97, and flows from the first refrigerant inlet 88 to the first refrigerant inlet 88.
  • the refrigerant that has flowed into the one refrigerant passage 91 reaches the second refrigerant passage 94 via the check valve 18 and flows out from the second refrigerant outlet 93 (shown by white arrows and thin arrows in FIG. 3).
  • the refrigerant flowing from the second refrigerant inlet 92 passes through the expansion valve portion 6 as it is, flows out from the third refrigerant outlet 97, and flows from the first refrigerant inlet 88 to the first refrigerant inlet 88.
  • the refrigerant flowing into the one refrigerant passage 91 reaches the second refrigerant passage 94 via the check valve 18 and flows out from the second refrigerant outlet 93 (indicated by white arrows and thin arrows in FIG. 4).
  • FIG. 6 shows a configuration diagram of the vehicle air conditioner 1 of one embodiment.
  • a vehicle to which the vehicle air conditioner 1 of the embodiment is applied is an electric vehicle (EV) without an engine (internal combustion engine) mounted thereon, and a battery (for example, a lithium battery) is mounted on the vehicle.
  • the vehicle is driven and driven by supplying electric power charged to a battery from an external power supply to a traveling motor (electric motor).
  • a traveling motor electric motor
  • the vehicle air conditioner 1 performs the heating mode by the heat pump operation using the refrigerant circuit R in the electric vehicle that cannot perform heating by the engine waste heat, and further performs the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the cooling / cooling mode.
  • the air conditioning of the vehicle interior is performed, and the cooling target 55 to be described later is also cooled. .
  • the present invention is not limited to an electric vehicle as a vehicle, but is also applicable to a so-called hybrid vehicle using an engine and an electric motor for traveling or a normal engine-driven vehicle.
  • the vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and an electric compressor (electric compressor) 2 that compresses a refrigerant.
  • a radiator 4 provided in the air flow passage 3 of the HVAC unit 10 through which the air in the vehicle compartment is circulated to radiate the refrigerant and heat the air supplied to the vehicle interior, and radiate the refrigerant during cooling.
  • An outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air to function as a radiator and as an evaporator for absorbing the refrigerant during heating, and an indoor expansion comprising an electric valve for decompressing and expanding the refrigerant.
  • a valve 8; a heat absorber 9 provided in the air flow passage 3 to cool air supplied to the vehicle interior by absorbing heat from inside and outside of the vehicle interior during cooling and dehumidification; and an accumulator 12; Valve 81 etc. are sequentially connected by 13, the refrigerant circuit R is formed.
  • the indoor expansion valve 8 is capable of decompressing and expanding the refrigerant, and is also capable of being fully opened and fully closed.
  • the refrigerant inlet of the radiator 4 is connected to a refrigerant pipe 13 ⁇ / b> G on the discharge side of the compressor 2.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing the outside air through the outdoor heat exchanger 7, so that the outdoor blower 15 can stop the outdoor operation even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is configured such that outside air is passed through the heat exchanger 7.
  • the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the first refrigerant inlet 88 of the composite valve 81, and the refrigerant pipe on the refrigerant inlet side of the indoor expansion valve 8 is connected to the second refrigerant outlet 93 of the composite valve 81. 13B is connected.
  • a refrigerant pipe 13D that constitutes a part of a refrigerant pipe on the suction side of the compressor 2 is connected to a first refrigerant outlet 89 of the composite valve 81, and the refrigerant pipe 13D is connected to a refrigerant outlet side of the heat absorber 9 It is communicatively connected to the pipe 13C.
  • the refrigerant pipe 13C constitutes a main part of the refrigerant pipe on the suction side of the compressor 2.
  • a check valve 20 is connected to the refrigerant pipe 13C downstream of the connection point of the refrigerant pipe 13D, and the refrigerant pipe 13C downstream of the check valve 20 is connected to the suction side of the compressor 2 via the accumulator 12. It is connected to the.
  • the check valve 20 has a forward direction on the accumulator 12 side. Further, the entire refrigerant pipe from the refrigerant outlet side of the heat absorber 9 to the suction side of the compressor 2 is indicated by reference numeral 13C.
  • the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4 is connected to the second refrigerant inlet 92 of the composite valve 81, and the refrigerant pipe 13J on the refrigerant inlet side of the outdoor heat exchanger 7 is connected to the third refrigerant of the composite valve 81. It is connected to an outlet 97.
  • each of an outside air suction port and an inside air suction port (represented by a suction port 25 in FIG. 6).
  • 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between inside air (inside air circulation) as air inside the vehicle compartment and outside air (introduction of outside air) as air outside the vehicle compartment.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided downstream of the suction switching damper 26 in the air.
  • reference numeral 23 denotes an auxiliary heater as an auxiliary heating device.
  • the auxiliary heater 23 is formed of a PTC heater (electric heater) in the embodiment, and is provided in the air flow passage 3 on the downstream side of the radiator 4 with respect to the flow of air in the air flow passage 3. I have.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, it becomes a so-called heater core, which complements the heating of the vehicle interior.
  • the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 upstream of the radiator 4 in the air.
  • An air mix damper 28 is provided for adjusting the rate of air flow to the heater 4 and the auxiliary heater 23.
  • the FOOT (foot), VENT (vent), and DEF (def) outlets are formed in the air flow passage 3 on the downstream side of the radiator 4.
  • the air outlet 29 is provided with an air outlet switching damper 31 for controlling the air blowing from each of the air outlets.
  • the temperature control target in the present invention is not limited to the battery and the traveling motor, but also includes an electric device such as an inverter circuit for driving the traveling motor.
  • the cooling device 61 to be heated includes a circulating pump 62 as a circulating device for circulating a heat medium through the heating target 55 and a heat exchanger 64 for the heating target.
  • the adjustment target 55 is connected by a heat medium pipe 68.
  • the inlet of the heat medium flow path 64A of the heat exchanger for temperature control 64 is connected to the discharge side of the circulation pump 62, and the temperature control target 55 is connected to the outlet of the heat medium flow path 64A. ing.
  • the outlet of the temperature control target 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the cooling device 61 to be temperature-controlled for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be used.
  • a refrigerant such as HFO-1234yf
  • a liquid such as a coolant
  • a gas such as air
  • water is used as the heat medium.
  • a jacket structure is provided around the temperature control target 55 (battery) so that, for example, a heat medium can flow through the heat control target 55 in a heat exchange relationship.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium passage 64A of the heat exchanger 64 for temperature control.
  • the heat medium that has exited the heat medium flow path 64A of the heat control target heat exchanger 64 reaches the temperature control target 55, where the heat medium exchanges heat with the temperature control target 55.
  • the heat medium that has exchanged heat with the temperature control target 55 is circulated in the heat medium pipe 68 by being sucked into the circulation pump 62.
  • a branch pipe 72 is connected to the refrigerant pipe 13B on the refrigerant inlet side of the indoor expansion valve 8.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73 constituted by an electric valve.
  • the auxiliary expansion valve 73 is capable of reducing and expanding the refrigerant flowing into a later-described refrigerant flow path 64B of the heat exchanger for temperature control 64, and is also capable of being fully closed.
  • the other end of the branch pipe 72 is connected to a refrigerant inlet of a refrigerant flow path 64B of the heat exchanger 64 for temperature control, and a refrigerant outlet of the refrigerant flow path 64B is connected to the refrigerant pipe 74 through a check valve.
  • the refrigerant pipe 13C is connected to a refrigerant pipe 13C downstream of the accumulator 12 and upstream of the accumulator 12 (upstream of the refrigerant). Therefore, the refrigerant pipe 74 also constitutes a part of the refrigerant pipe on the suction side of the compressor 2.
  • the auxiliary expansion valve 73 and the like also constitute a part of the refrigerant circuit R and also constitute a part of the cooling device 61 to be temperature-controlled.
  • the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 72, is decompressed by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the heat exchanger 64 for temperature control. And evaporate there.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and is then sucked into the compressor 2 via the accumulator 12.
  • Air conditioning controller 32 (control device) of vehicle air conditioner 1
  • reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the vehicle air conditioner 1.
  • the air-conditioning controller 32 is connected via a vehicle communication bus 45 to a vehicle controller 35 (ECU) that controls the entire vehicle including the control of the temperature-controlled object 55 (battery and running motor), and transmits and receives information. It has a configuration.
  • Each of the air conditioning controller 32 and the vehicle controller 35 (ECU) is configured by a microcomputer as an example of a computer having a processor.
  • the inputs of the air-conditioning controller 32 include an outside air temperature sensor 33 for detecting the outside air temperature (Tam) of the vehicle, an outside air humidity sensor 34 for detecting the outside air humidity, and a suction from the air inlet 25 into the air flow passage 3.
  • HVAC suction temperature sensor 36 for detecting the temperature of the air
  • inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the cabin
  • inside air humidity sensor 38 for detecting the humidity of the air in the cabin
  • An indoor CO 2 concentration sensor 39 for detecting carbon concentration
  • An outlet temperature sensor 41 for detecting the temperature of the air blown into the passenger compartment from the outlet 29, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a discharge refrigerant temperature of the compressor 2
  • a suction temperature sensor 44 for detecting a suction refrigerant temperature of the compressor 2, a temperature of the radiator 4 (a temperature of the air passing through the radiator 4, or a temperature of the radiator 4 itself: heat radiation).
  • a radiator temperature sensor 46 for detecting the radiator temperature TCI) and a radiator for detecting the refrigerant pressure of the radiator 4 (pressure of the refrigerant in the radiator 4 or immediately after leaving the radiator 4: radiator pressure PCI).
  • a pressure sensor 47 a heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9, or the temperature of the heat absorber 9 itself: the heat absorber temperature Te), and the refrigerant pressure of the heat absorber 9 (Inside or out of the heat absorber 9
  • Heat sensor pressure sensor 49 for detecting the following refrigerant pressure), for example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, and a vehicle speed for detecting the moving speed (vehicle speed) of the vehicle.
  • the outdoor heat exchanger temperature TXO is the evaporation temperature of the refrigerant in the outdoor heat exchanger 7.
  • the outdoor heat for detecting the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or the pressure of the refrigerant immediately after leaving the outdoor heat exchanger 7).
  • Each output of exchanger pressure sensor 56 It is connected.
  • the input of the air-conditioning controller 32 further includes the temperature of the temperature control target 55 (for example, a battery) mounted on the vehicle (the temperature of the temperature control target 55 itself, or the heat medium exiting the temperature control target 55). Or the output of a temperature control target temperature sensor 76 for detecting the temperature of the heat medium entering the temperature control target 55: the temperature control target temperature Tw).
  • the temperature control target 55 for example, a battery mounted on the vehicle
  • the outputs of the air conditioning controller 32 include the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31,
  • the expansion valve 8, the driving device 83 of the composite valve 81, the auxiliary heater 23, the circulation pump 62 of the cooling device 61 to be heated and the auxiliary expansion valve 73 are connected.
  • the air-conditioning controller 32 controls these based on the outputs of the sensors, the settings input by the air-conditioning operation unit 53, and information from the vehicle controller 35.
  • the air-conditioning controller 32 (control device) can be executed by switching among a heating mode, a dehumidifying / heating mode, a dehumidifying cooling mode, a cooling mode, a cooling / temperature controlled cooling mode, and a temperature controlled cooling mode. Have been.
  • each operation mode will be described.
  • FIG. 8 shows the flow of the refrigerant in the refrigerant circuit R in the heating mode (solid line arrow).
  • the air-conditioning controller 32 controls the driving device 83 of the composite valve 81 and the actuator 84
  • the expansion valve section 6 adjusts the degree of opening of the third refrigerant passage 98 by the first and second opening / closing valve sections 21 and 22 so that the first refrigerant passage 91 and the second refrigerant passage 94 are adjusted. Open (state of FIG. 1). Further, the indoor expansion valve 8 and the auxiliary expansion valve 73 are fully closed (the flow of the refrigerant into the heat absorber 9 and the heat exchanger 64 for temperature regulation is prevented).
  • the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and reaches the expansion valve section 6 of the composite valve 81 via the refrigerant pipe 13E.
  • the refrigerant flowing into the expansion valve section 6 is decompressed there, and then flows into the outdoor heat exchanger 7 via the refrigerant pipe 13J.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws heat by traveling or from outside air passed through the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 enters the first refrigerant passage 91 of the composite valve 81 from the refrigerant pipe 13A, and exits the refrigerant pipe 13D via the first opening / closing valve portion 21.
  • the air-conditioning controller 32 calculates a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the air temperature on the leeward side of the radiator 4) calculated from a target outlet temperature TAO described later. Is controlled, and the number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. At the same time, based on the temperature of the radiator 4 (radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47, the driving device 83 of the composite valve 81 is controlled to expand.
  • a target radiator pressure PCO a target value of the pressure PCI of the radiator 4
  • TCO a target value of the air temperature on the leeward side of the radiator 4
  • the degree of opening of the third refrigerant passage 98 by the valve section 6 is adjusted, and the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
  • FIG. 9 shows the flow of the refrigerant in the refrigerant circuit R in the dehumidifying heating mode (solid line arrow).
  • the air conditioning controller 32 opens the indoor expansion valve 8 and causes the refrigerant to decompress and expand in the heating mode.
  • part of the refrigerant that has reached the second refrigerant inlet 92 of the composite valve 81 from the refrigerant pipe 13E via the radiator 4 is diverted to the second refrigerant passage 94 via the second on-off valve portion 22 of the composite valve 81,
  • the divided refrigerant flows into the refrigerant pipe 13B from the second refrigerant outlet 93, flows from the refrigerant pipe 13B to the indoor expansion valve 8, and the remaining refrigerant flows to the expansion valve section 6. That is, a part of the divided refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate.
  • the air conditioning controller 32 controls the opening degree of the indoor expansion valve 8 so as to maintain the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value. As the moisture in the air blown out from the indoor blower 27 condenses on the heat absorber 9 and adheres, the air is cooled and dehumidified. The remaining divided refrigerant is decompressed by the expansion valve unit 6, enters the outdoor heat exchanger 7 via the refrigerant pipe 13J, and evaporates.
  • SH superheat
  • the refrigerant evaporated by the heat absorber 9 flows out to the refrigerant pipe 13C and merges with the refrigerant from the refrigerant pipe 13D (the refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeated circulation. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification and heating of the vehicle interior is performed.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the driving device 83 of the composite valve 81 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, and the opening degree of the third refrigerant passage 98 by the expansion valve portion 6 is adjusted. I do.
  • the expansion valve portion 6 of the composite valve 81 is also fully closed. Therefore, when the expansion valve section 6 is fully closed as shown in FIG. 2 in the dehumidifying and heating mode of FIG. 9, the refrigerant is prevented from flowing into the outdoor heat exchanger 7, so that the radiator 4 is The condensed refrigerant flowing through the refrigerant pipe 13E flows through the second on-off valve portion 22 of the composite valve 81 entirely. Then, the refrigerant reaches the indoor expansion valve 8 from the refrigerant pipe 13B via the second refrigerant passage 94 of the composite valve 81.
  • the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C, and repeats the circulation sucked into the compressor 2 via the check valve 20 and the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, the dehumidification and heating of the vehicle interior is performed by this operation. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the interior, the pumping of heat from the outside air is not performed, and the heating capacity for the power consumed by the compressor 2 is exhibited. Will be. Therefore, since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying effect, the dehumidifying capacity is high, but the heating capacity is low.
  • FIG. 10 shows the flow of the refrigerant in the refrigerant circuit R in the dehumidification cooling mode (solid line arrow).
  • the air-conditioning controller 32 opens the indoor expansion valve 8 to make the refrigerant decompress and expand, and the opening degree of the third refrigerant passage 98 by the driving device 83 of the composite valve 81 via the actuator 84 via the actuator 84.
  • first refrigerant passage 91 and the second refrigerant passage 94 are closed by the first opening / closing valve portion 21 and the second opening / closing valve portion 22 (the state of FIG. 3). Further, the auxiliary expansion valve 73 is fully closed (prevents the refrigerant from flowing into the heat exchanger 64 for temperature regulation).
  • the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant that has exited the radiator 4 reaches the expansion valve portion 6 of the composite valve 81 via the refrigerant pipe 13E, is slightly throttled there, and then flows into the outdoor heat exchanger 7 via the refrigerant pipe 13J.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled and condensed there by traveling or by the outside air passed by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 flows out to the refrigerant pipe 13A, and enters the first refrigerant passage 91 from the first refrigerant inlet 88 of the composite valve 81.
  • the refrigerant flowing into the first refrigerant passage 91 enters the second refrigerant passage 94 via the communication passage 96 and the check valve 18.
  • the refrigerant flowing into the refrigerant pipe 13B reaches the indoor expansion valve 8, is depressurized by the indoor expansion valve 8, flows into the heat absorber 9, and evaporates.
  • the moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (reheating: lower in heat dissipation performance than in heating and dehumidifying and heating) in the process of passing through the radiator 4, whereby the dehumidifying and cooling in the vehicle compartment is performed. Will be done.
  • the air conditioning controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO as its target value.
  • the radiator pressure PCI high pressure of the refrigerant circuit R
  • the target radiator pressure PCO radius pressure
  • the flow of the refrigerant circuit R is the same as in the dehumidifying cooling mode of FIG.
  • the air-conditioning controller 32 fully opens the expansion valve section 6 of the composite valve 81 in the dehumidifying / cooling mode (the state of FIG. 4).
  • the air mix damper 28 is in a state of adjusting the rate at which air is passed through the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated to the radiator 4, the ratio thereof is small (only for reheating at the time of cooling).
  • the refrigerant reaches the expansion valve section 6 of the composite valve 81 via the refrigerant pipe 13E.
  • the expansion valve section 6 fully opens the third refrigerant passage 98, the refrigerant passes through the refrigerant pipe 13J as it is via the expansion valve section 6 and flows into the outdoor heat exchanger 7, where it travels or is driven by an outdoor blower.
  • the air is cooled by the outside air to be condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the first refrigerant passage 91 of the composite valve 81, the communication passage 96 (the check valve 18), and the second refrigerant passage 94, and the indoor expansion valve To 8.
  • the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action, and the air is cooled.
  • the refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown out from the outlet 29 into the vehicle interior, whereby the vehicle interior is cooled.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the air conditioning controller 32 calculates the above-described target outlet temperature TAO from the following equation (I).
  • the target outlet temperature TAO is a target value of the temperature of the air blown from the outlet 29 into the vehicle interior.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) ⁇ ⁇ (I)
  • Tset is the temperature set in the cabin set by the air-conditioning operation unit 53
  • Tin is the temperature of the cabin air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the sunshine sensor 51 detects the temperature. This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
  • the air-conditioning controller 32 operates in one of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO. Select After the start, each of the operation modes is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blowout temperature TAO and the set conditions.
  • the cooling / cooling target cooling mode by the air conditioning controller 32 during the cooling mode will be described with reference to FIG.
  • the temperature of the battery rises due to the outside air temperature, and also rises due to self-heating during charging and discharging. That is, when the outside air temperature is a high temperature environment, the temperature of the battery becomes extremely high, and it becomes difficult to charge and discharge the battery. May break down).
  • the air-conditioning controller 32 of the vehicle air conditioner 1 of the embodiment has a predetermined target temperature control target temperature TWO (for example, a target temperature of the battery) and a predetermined hysteresis above and below the target temperature target temperature Tw.
  • TWO target temperature control target temperature
  • TWL predetermined target temperature control target temperature
  • Tw the temperature adjustment target temperature Tw detected by the temperature adjustment target temperature sensor 76 has risen to a predetermined upper limit value TWH or more.
  • the mode shifts from the cooling mode to the cooling mode for cooling / temperature control.
  • FIG. 11 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium of the cooling device 61 to be heated (dashed arrow) in the cooling / temperature controlled cooling mode.
  • the air-conditioning controller 32 opens the auxiliary expansion valve 73 in the cooling mode of the refrigerant circuit R illustrated in FIG. 10, and sets the degree of superheat of the refrigerant in the temperature controlled heat exchanger 64. Is set to a state in which the valve opening is controlled based on Then, the circulation pump 62 of the cooling device 61 to be heated is operated. As a result, the refrigerant that has flowed out of the radiator 4 passes through the expansion valve portion 6 of the composite valve 81 and flows into the outdoor heat exchanger 7 as described above, where the outside air is blown by traveling or by the outdoor blower 15. To be condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the first refrigerant passage 91 of the composite valve 81, the communication passage 96 (the check valve 18), and the second refrigerant passage 94, and the indoor expansion valve To 8.
  • the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action, and the air is cooled.
  • the refrigerant evaporated in the refrigerant passage 64B repeats the circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 sequentially (indicated by solid arrows in FIG. 11).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the heat exchanger 64 for temperature control through the heat medium pipe 68, where the heat medium is absorbed by the refrigerant evaporated in the refrigerant flow passage 64B, The heating medium is cooled.
  • the heat medium that has exited the heat medium passage 64A of the heat exchanger 64 for temperature control reaches the temperature control target 55, exchanges heat with the temperature control target 55, and cools. Then, the heat medium that has exchanged heat with the temperature control target 55 repeats the circulation sucked by the circulation pump 62 (indicated by a broken arrow in FIG. 11).
  • the air-conditioning controller 32 closes the auxiliary expansion valve 73 fully, stops the circulation pump 62, and performs cooling / heating.
  • the mode is returned from the adjustment target cooling mode to the cooling mode. In this manner, the temperature Tw of the temperature control target 55 (for example, a battery) is maintained at the predetermined target temperature control target temperature TWO.
  • the air conditioning is turned on by the air conditioning operation unit 53 (air conditioning is turned on). (Request).
  • the flow of the refrigerant in the refrigerant circuit R and the flow of the heat medium in the cooling device 61 to be temperature-controlled remain unchanged.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature control target temperature Tw detected by the temperature control target temperature sensor 76, and controls the indoor expansion valve 8 based on the heat absorber temperature Te.
  • the degree of superheat of the refrigerant in the heat absorber 9 is controlled. That is, in the cooling / cooling target cooling mode during charging, the cooling of the cooling target is prioritized, and in the cooling / cooling target cooling mode during traveling, the cooling in the vehicle compartment is prioritized.
  • the air conditioner controller 32 controls the air conditioning controller 32 when there is no request for air conditioning in the vehicle compartment (air conditioning OFF) while the battery (temperature controlled object 55) is being charged.
  • the cooling mode for temperature control will be described. Since the battery generates heat during charging, the air-conditioning controller 32 of the embodiment also has a predetermined target temperature control target temperature TWO (target battery temperature) and a predetermined hysteresis above and below the temperature target temperature Tw.
  • TWO target battery temperature
  • FIG. 12 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium of the temperature control target cooling device 61 (dashed arrow) in the temperature control target cooling mode.
  • the air conditioning controller 32 causes the driving device 83 of the composite valve 81 to fully open the third refrigerant passage 98 by the expansion valve portion 6, and the first opening / closing valve portion 21 and the second opening / closing valve portion 22. Thereby, the first refrigerant passage 91 and the second refrigerant passage 94 are closed (the state of FIG. 4). Further, the indoor expansion valve 8 is fully closed (prevents the refrigerant from flowing into the heat absorber 9), and the auxiliary expansion valve 73 is opened to adjust the valve opening. Further, the circulation pump 62 is operated.
  • the compressor 2 and the outdoor blower 15 are operated, and the indoor blower 27 is stopped.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the expansion valve section 6 of the composite valve 81 via the radiator 4 and flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled by the outside air ventilated by the outdoor blower 15 and condenses.
  • the refrigerant that has exited the outdoor heat exchanger 7 flows out to the refrigerant pipe 13A, and enters the first refrigerant passage 91 from the first refrigerant inlet 88 of the composite valve 81.
  • the refrigerant flowing into the first refrigerant passage 91 enters the second refrigerant passage 94 via the communication passage 96 and the check valve 18.
  • the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 72, reaches the auxiliary expansion valve 73, is decompressed by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the heat exchanger 64 for temperature control. Inflow and evaporate.
  • the refrigerant evaporated in the refrigerant flow path 64B flows out to the refrigerant pipe 74, reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the heat exchanger 64 for temperature control through the heat medium pipe 68, where the heat medium is absorbed by the refrigerant evaporated in the refrigerant flow passage 64B, The heating medium is cooled.
  • the heat medium that has exited the heat medium passage 64A of the heat exchanger 64 for temperature control reaches the temperature control target 55, exchanges heat with the temperature control target 55, and cools. Then, the heat medium that has exchanged heat with the temperature control target 55 repeats the circulation sucked by the circulation pump 62 (indicated by a broken line arrow in FIG. 12).
  • the air-conditioning controller 32 calculates the temperature to be adjusted based on the temperature of the temperature to be adjusted 55 detected by the temperature to be adjusted temperature sensor 76 (temperature to be adjusted Tw) and the target temperature to be adjusted TWO.
  • the number of revolutions of the compressor 2 is controlled so that Tw (the temperature of the battery in the embodiment) becomes the target temperature to be adjusted TWO.
  • the composite valve 81 of the present invention includes a housing 82 having a first refrigerant inlet 88, a first refrigerant outlet 89, a second refrigerant inlet 92, a second refrigerant outlet 973, and a third refrigerant outlet 97, A first refrigerant passage 91 formed in the housing 82 and extending between a first refrigerant inlet 88 and a first refrigerant outlet 89, and a first refrigerant passage 91 formed in the housing 82 and extending between a second refrigerant inlet 92 and a second refrigerant outlet 93.
  • the second refrigerant passage 94, the first opening / closing valve portion 21 provided in the first refrigerant passage 91 to open and close the first refrigerant passage 91, and the second refrigerant passage 94 provided to open and close the second refrigerant passage 94 A second on-off valve portion 22 formed in the housing 82, a third refrigerant passage 98 extending from the second on-off valve portion 22 to the third refrigerant outlet 97 from the second refrigerant passage 94 on the second refrigerant inlet 92 side,
  • the third refrigerant passage 98 is provided An expansion valve section 6 for adjusting the opening degree of the refrigerant passage 98; a driving device 83 for driving the expansion valve section 6, the first opening / closing valve section 21 and the second opening / closing valve section 22 via an actuator 84;
  • the first refrigerant passage 91 is formed in the first refrigerant passage 91 on the first refrigerant inlet 88 side of the first on-off valve portion 21 and
  • the first opening / closing valve portion 21 is driven by the driving device 83 as in the embodiment.
  • the expansion valve section 6 can adjust the opening degree of the third refrigerant passage 98 so that the compressor 2 compresses the refrigerant as in the embodiment, and the refrigerant inlet is on the discharge side of the compressor 2.
  • the present invention is applied to the vehicle air conditioner 1 including the indoor expansion valve 8 for reducing the pressure of the refrigerant and the air conditioning controller 32, and the refrigerant pipe 13 ⁇ / b> A on the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the first refrigerant inlet of the composite valve 81.
  • the refrigerant pipe 13C is connected to the first refrigerant outlet 89 of the composite valve 81, the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4 is connected to the second refrigerant inlet 92 of the composite valve 81, and the indoor expansion valve 8
  • the refrigerant pipe 13B on the refrigerant inlet side is connected to the second refrigerant outlet 93 of the composite valve 81, and the refrigerant pipe 13J on the refrigerant inlet side of the outdoor heat exchanger 7 is connected to the third refrigerant outlet 97 of the composite valve 81, air conditioning is achieved.
  • the controller 32 By controlling the driving device 83 of the composite valve 81 by the controller 32, it is possible to switch and execute the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode as in the embodiment.
  • a cooling target 61 for cooling the temperature to be adjusted (a battery or a motor for traveling) mounted on the vehicle using a refrigerant is provided.
  • a heat control target heat exchanger 64 for absorbing the refrigerant to cool the temperature control target 55 and an auxiliary expansion valve 73 for reducing the pressure of the refrigerant flowing into the temperature control target heat exchanger 64 are provided.
  • the refrigerant inlet of the target heat exchanger 64 is connected to a branch pipe 72 branched from the refrigerant pipe 13B on the refrigerant inlet side of the indoor expansion valve 8, and the refrigerant outlet of the target heat exchanger 64 is connected to the refrigerant pipe.
  • the air-conditioning controller 32 controls the driving device 73 of the composite valve 81, so that the cooling / temperature controlled cooling mode and the temperature controlled cooling are controlled. It is possible to switch between modes and execute That.
  • the function of switching the operation mode of the air conditioner 1 for a vehicle, which has been conventionally performed by a plurality of solenoid valves, and the function of reducing the pressure of the refrigerant, which has been performed by the outdoor expansion valve, can be integrated into the composite valve 81.
  • the first refrigerant passage 91 on the first refrigerant inlet 88 side from the first on-off valve portion 21 and the second refrigerant passage 94 on the second refrigerant outlet 93 side from the second on-off valve portion 22 are connected to the housing 82. Since the first refrigerant passage 91 and the second refrigerant passage 94 can be communicated with each other through the communication passage 96 having a short dimension, the loss such as pressure loss in the communication passage 96 can be minimized. It can be suppressed to the minimum.
  • the housing 82 includes a first refrigerant inlet 88, a first refrigerant outlet 89, a first refrigerant passage 91, a first housing member 86 provided with a first opening / closing valve unit 21, and a second refrigerant inlet. 92, a second refrigerant outlet 93, a second refrigerant passage 94, and a second housing member 87 provided with the second on-off valve portion 22, a third refrigerant outlet 97, a third refrigerant passage 98, and an expansion valve portion.
  • the first refrigerant passage 91 on the first refrigerant inlet 88 side from the first opening / closing valve portion 21 is formed in the first housing member 86 close to one surface of the first housing member 86, and the second opening / closing operation is performed.
  • a second refrigerant passage 94 on the second refrigerant outlet 93 side from the valve portion 22 is formed in the second housing member 87 in close proximity to one surface of the second housing member 87, and the first housing member 86 has a first opening and closing position.
  • a first communication portion 96 ⁇ / b> A extending from the first refrigerant passage 91 on the first refrigerant inlet 88 side to the one surface of the first housing member 86 with respect to the valve portion 21 is formed.
  • a second communication portion 96B extending from the second refrigerant passage 94 on the side of the second refrigerant outlet 93 to one surface of the second housing member 87 is formed, and when the first surfaces of the first and second housing members 86 and 87 are joined together, Communication part 96A, 6B correspond to each other to form a communication passage 96, and the third housing member 85 is coupled to the other surface of the second housing member 87. Therefore, the communication passage 96 having a short dimension can be easily formed, and the check valve can be checked. The mounting of the valve 18 becomes easy, and the third housing member 85 can be connected without any trouble.
  • the configuration of the composite valve 81 and the configuration of the vehicle air conditioner 1 described in the embodiment are not limited to those described above, and can be changed without departing from the spirit of the present invention.
  • the indoor expansion valve 8 and the auxiliary expansion valve 73 are constituted by electric valves, and are fully closed to prevent the refrigerant from flowing into the heat absorber 9 and the heat exchanger 64 for temperature control.
  • the invention is not limited thereto, and the indoor expansion valve 8 and the auxiliary expansion valve 73 may be configured by a mechanical expansion valve, and an electromagnetic valve may be connected in series to prevent the inflow of refrigerant.
  • the temperature control target cooling device 61 that cools the temperature control target 55 with the refrigerant via the heat medium is employed, but the present invention is not limited to this.
  • the temperature control target 55 may be directly cooled.
  • the composite valve of the present invention is applied to the air conditioner for a vehicle.
  • the present invention is not limited to this, and it goes without saying that the present invention can be applied to various devices having a refrigerant circuit.

Abstract

【課題】複数の電磁弁や膨張弁を複合化することで、部品点数の削減を図ることができる複合弁を提供することを目的とする。 【解決手段】複合弁81は、第1冷媒入口88、第1冷媒出口89、第2冷媒入口92、第2冷媒出口93、第3冷媒出口97を有するハウジング82と、第1冷媒通路91と、第2冷媒通路94と、第1開閉弁部21と、第2開閉弁部22と、第3冷媒通路98と、第3冷媒通路の開度を調整する膨張弁部6と、駆動装置83と、第1開閉弁部より第1冷媒入口側の第1冷媒通路と、第2開閉弁部より第2冷媒出口側の第2冷媒通路と連通する連通路96に設けた逆止弁18を備える。

Description

複合弁及びそれを用いた車両用空気調和装置
 本発明は、冷媒回路に適用される複合弁、及び、それを用いたヒートポンプ式の車両用空気調和装置に関するものである。
 ハイブリッド自動車や電気自動車等の車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外膨張弁で減圧した後、室外熱交換器において吸熱させることで車室内を暖房する暖房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、室内膨張弁で減圧した後、吸熱器において吸熱させることで車室内を冷房する冷房モード等を切り換えて実行する車両用空気調和装置が開発されている。また、このような車室内の運転モードは、多数の電磁弁や膨張弁を用いて切り換えることにより実現されていた(例えば、特許文献1参照)。
特開2011-237052号公報 特開2015-45453号公報
 このように、従来の車両用空気調和装置の運転モードを多数の電磁弁や膨張弁を用いることで切り換えていたため、部品点数が多くなり、コストも高騰すると共に、限られたエンジンルーム(電気自動車の場合にはエンジンは存在しないが、走行や空調に関わる装置が設置される車室外の空間を意味する)のスペースを占有してしまう不都合があった。
 一方、単一の駆動手段で複数の弁体を駆動する統合弁(複合弁)も開発されている(例えば、特許文献2参照)。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、車両用空気調和装置で従来用いられていた複数の電磁弁や膨張弁を複合化することで、部品点数の削減を図ることができる複合弁、及び、それを用いた車両用空気調和装置を提供することを目的とする。
 本発明の複合弁は、冷媒回路に適用されるものであって、第1冷媒入口、第1冷媒出口、第2冷媒入口、第2冷媒出口、及び、第3冷媒出口を有するハウジングと、このハウジング内に形成され、第1冷媒入口と第1冷媒出口間に渡る第1冷媒通路と、ハウジング内に形成され、第2冷媒入口と第2冷媒出口間に渡る第2冷媒通路と、第1冷媒通路に設けられ、当該第1冷媒通路を開閉する第1開閉弁部と、第2冷媒通路に設けられ、当該第2冷媒通路を開閉する第2開閉弁部と、ハウジング内に形成され、第2開閉弁部より第2冷媒入口側の第2冷媒通路から第3冷媒出口に至る第3冷媒通路と、この第3冷媒通路に設けられ、第3冷媒通路の開度を調整する膨張弁部と、アクチュエータを介して膨張弁部、第1開閉弁部、及び、第2開閉弁部を駆動する駆動装置と、ハウジング内に形成され、第1開閉弁部より第1冷媒入口側の第1冷媒通路と、第2開閉弁部より第2冷媒出口側の第2冷媒通路とを連通する連通路と、この連通路に設けられ、第2冷媒通路方向を順方向とされた逆止弁を備えたことを特徴とする。
 請求項2の発明の複合弁は、上記発明において駆動装置により、第1開閉弁部、及び、第2開閉弁部が第1冷媒通路、及び、第2冷媒通路を開き、膨張弁部が第3冷媒通路の開度を調整する状態と、第1開閉弁部、及び、第2開閉弁部が第1冷媒通路、及び、第2冷媒通路を閉じ、膨張弁部が第3冷媒通路の開度を調整する状態とすることを特徴とする。
 請求項3の発明の複合弁は、上記各発明において第1開閉弁部より第1冷媒入口側の第1冷媒通路と、第2開閉弁部より第2冷媒出口側の第2冷媒通路は、ハウジング内において隣接して形成されていることを特徴とする。
 請求項4の発明の複合弁は、上記各発明においてハウジングは、第1冷媒入口、第1冷媒出口、第1冷媒通路、及び、第1開閉弁部が設けられた第1ハウジング部材と、第2冷媒入口、第2冷媒出口、第2冷媒通路、及び、第2開閉弁部が設けられた第2ハウジング部材と、第3冷媒出口、第3冷媒通路、及び、膨張弁部が設けられた第3ハウジング部材とを結合して成り、アクチュエータが各ハウジング部材に渡って設けられ、膨張弁部及び各開閉弁部を駆動することを特徴とする。
 請求項5の発明の複合弁は、上記発明において第1開閉弁部より第1冷媒入口側の第1冷媒通路は第1ハウジング部材の一面に近接して当該第1ハウジング部材内に形成され、第2開閉弁部より第2冷媒出口側の第2冷媒通路は第2ハウジング部材の一面に近接して当該第2ハウジング部材内に形成されていると共に、第1ハウジング部材は、第1開閉弁部より第1冷媒入口側の第1冷媒通路から第1ハウジング部材の一面に至る第1連通部を有し、第2ハウジング部材は、第2開閉弁部より第2冷媒出口側の第2冷媒通路から第2ハウジング部材の一面に至る第2連通部を有し、第1及び第2ハウジング部材は、それらの一面同士が結合され、その状態で各連通部は合致して連通路を構成し、第3ハウジング部材は、第2ハウジング部材の他面に結合されることを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記各発明の複合弁と、冷媒を圧縮する圧縮機と、冷媒入口が圧縮機の吐出側の冷媒配管に接続され、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、冷媒出口が圧縮機の吸込側の冷媒配管に接続され、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、放熱器の冷媒出口側の冷媒配管に接続され、車室外に設けられた室外熱交換器と、吸熱器に流入する冷媒を減圧するための室内膨張弁と、制御装置を備え、室外熱交換器の冷媒出口側の冷媒配管が複合弁の第1冷媒入口に接続され、圧縮機の吸込側の冷媒配管が複合弁の第1冷媒出口に接続され、放熱器の冷媒出口側の冷媒配管が複合弁の第2冷媒入口に接続され、室内膨張弁の冷媒入口側の冷媒配管が複合弁の第2冷媒出口に接続され、室外熱交換器の冷媒入口側の冷媒配管が複合弁の第3冷媒出口に接続され、制御装置により複合弁の駆動装置が制御されることを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記発明において制御装置は、複合弁の駆動装置を制御することにより、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を開き、膨張弁部により第3冷媒通路の開度を調整する状態とし、吸熱器への冷媒の流入を阻止して、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を膨張弁部で減圧した後、室外熱交換器にて吸熱させる暖房モードと、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を開き、膨張弁部により第3冷媒通路の開度を調整する状態とし、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を膨張弁部で減圧した後、室外熱交換器にて吸熱させ、バイパス回路からの冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させる除湿暖房モードと、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を閉じ、膨張弁部により第3冷媒通路の開度を調整する状態とし、圧縮機から吐出された冷媒を放熱器と室外熱交換器で放熱させ、放熱した当該冷媒を複合弁の逆止弁を経て室内膨張弁に流し、この室内膨張弁で減圧した後、吸熱器にて吸熱させる除湿冷房モードと、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を閉じた状態で、圧縮機から吐出された冷媒を室外熱交換器で放熱させ、放熱した当該冷媒を複合弁の逆止弁を経て室内膨張弁に流し、室内膨張弁で減圧した後、吸熱器にて吸熱させる冷房モードと、を切り換えて実行することを特徴とする。
 請求項8の発明の車両用空気調和装置は、請求項6又は請求項7の発明において冷媒を用いて車両に搭載された被温調対象を冷却する被温調対象冷却装置を備え、この被温調対象冷却装置は、冷媒を吸熱させて被温調対象を冷却するための被温調対象用熱交換器と、この被温調対象用熱交換器に流入する冷媒を減圧する補助膨張弁を有し、被温調対象用熱交換器の冷媒入口が室内膨張弁の冷媒入口側の冷媒配管から分岐した分岐配管に接続され、被温調対象用熱交換器の冷媒出口が圧縮機の吸込側の冷媒配管に接続されると共に、制御装置は、複合弁の駆動装置を制御することにより、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を閉じた状態で、圧縮機から吐出された冷媒を室外熱交換器で放熱させ、放熱した当該冷媒を複合弁の逆止弁を経て室内膨張弁と補助膨張弁に流し、室内膨張弁で減圧した後、吸熱器にて吸熱させ、補助膨張弁で減圧した後、被温調対象用熱交換器で吸熱させる冷房/被温調対象冷却モードと、複合弁の第1開閉弁部、及び、第2開閉弁部により第1冷媒通路、及び、第2冷媒通路を閉じた状態で、吸熱器への冷媒の流入を阻止し、圧縮機から吐出された冷媒を室外熱交換器で放熱させ、放熱した当該冷媒を複合弁の逆止弁を経て補助膨張弁に流し、当該補助膨張弁で減圧した後、被温調対象用熱交換器で吸熱させる被温調対象冷却モードと、を切り換えて実行することを特徴とする。
 本発明によれば、冷媒回路に適用される複合弁において、第1冷媒入口、第1冷媒出口、第2冷媒入口、第2冷媒出口、及び、第3冷媒出口を有するハウジングと、このハウジング内に形成され、第1冷媒入口と第1冷媒出口間に渡る第1冷媒通路と、ハウジング内に形成され、第2冷媒入口と第2冷媒出口間に渡る第2冷媒通路と、第1冷媒通路に設けられ、当該第1冷媒通路を開閉する第1開閉弁部と、第2冷媒通路に設けられ、当該第2冷媒通路を開閉する第2開閉弁部と、ハウジング内に形成され、第2開閉弁部より第2冷媒入口側の第2冷媒通路から第3冷媒出口に至る第3冷媒通路と、この第3冷媒通路に設けられ、第3冷媒通路の開度を調整する膨張弁部と、アクチュエータを介して膨張弁部、第1開閉弁部、及び、第2開閉弁部を駆動する駆動装置と、ハウジング内に形成され、第1開閉弁部より第1冷媒入口側の第1冷媒通路と、第2開閉弁部より第2冷媒出口側の第2冷媒通路とを連通する連通路と、この連通路に設けられ、第2冷媒通路方向を順方向とされた逆止弁を備えているので、例えば、請求項2の発明の如く駆動装置により、第1開閉弁部、及び、第2開閉弁部が第1冷媒通路、及び、第2冷媒通路を開き、膨張弁部が第3冷媒通路の開度を調整する状態と、第1開閉弁部、及び、第2開閉弁部が第1冷媒通路、及び、第2冷媒通路を閉じ、膨張弁部が第3冷媒通路の開度を調整する状態とすることができるようにし、請求項6の発明の如く冷媒を圧縮する圧縮機と、冷媒入口が圧縮機の吐出側の冷媒配管に接続され、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、冷媒出口が圧縮機の吸込側の冷媒配管に接続され、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、放熱器の冷媒出口側の冷媒配管に接続され、車室外に設けられた室外熱交換器と、吸熱器に流入する冷媒を減圧するための室内膨張弁と、制御装置を備えた車両用空気調和装置に適用し、室外熱交換器の冷媒出口側の冷媒配管を複合弁の第1冷媒入口に接続し、圧縮機の吸込側の冷媒配管を複合弁の第1冷媒出口に接続し、放熱器の冷媒出口側の冷媒配管を複合弁の第2冷媒入口に接続し、室内膨張弁の冷媒入口側の冷媒配管を複合弁の第2冷媒出口に接続し、室外熱交換器の冷媒入口側の冷媒配管を複合弁の第3冷媒出口に接続すれば、制御装置により複合弁の駆動装置を制御することで、請求項7の発明の如き暖房モード、除湿暖房モード、除湿冷房モード、及び、冷房モードを切り換えて実行することが可能となる。
 また、請求項8の発明の如く冷媒を用いて車両に搭載された被温調対象を冷却する被温調対象冷却装置を設け、この被温調対象冷却装置に、冷媒を吸熱させて被温調対象を冷却するための被温調対象用熱交換器と、この被温調対象用熱交換器に流入する冷媒を減圧する補助膨張弁を設けて被温調対象用熱交換器の冷媒入口を室内膨張弁の冷媒入口側の冷媒配管から分岐した分岐配管に接続し、被温調対象用熱交換器の冷媒出口を圧縮機の吸込側の冷媒配管に接続すれば、制御装置により複合弁の駆動装置を制御することで、冷房/被温調対象冷却モードと被温調対象冷却モードを切り換えて実行することが可能となる。
 即ち、従来複数の電磁弁が担っていた車両用空気調和装置の運転モードの切り換え機能と、膨張弁が担っていた冷媒の減圧機能を、複合弁に集約することができるようになり、部品点数の削減による部品コストや生産コストの低減と、設置スペースの縮小を図ることができるようになる。
 この場合、請求項3の発明の如く第1開閉弁部より第1冷媒入口側の第1冷媒通路と、第2開閉弁部より第2冷媒出口側の第2冷媒通路を、ハウジング内において隣接して形成すれば、第1冷媒通路と第2冷媒通路を短い寸法の連通路にて連通することができるようになり、連通路における圧損等のロスを最低限に抑制することが可能となる。
 また、請求項4の発明の如くハウジングを、第1冷媒入口、第1冷媒出口、第1冷媒通路、及び、第1開閉弁部が設けられた第1ハウジング部材と、第2冷媒入口、第2冷媒出口、第2冷媒通路、及び、第2開閉弁部が設けられた第2ハウジング部材と、第3冷媒出口、第3冷媒通路、及び、膨張弁部が設けられた第3ハウジング部材とを結合して構成し、アクチュエータを各ハウジング部材に渡って設けて膨張弁部及び各開閉弁部を駆動するようにすれば、複合弁の製造/組立作業も容易となる。
 特に、請求項5の発明の如く第1開閉弁部より第1冷媒入口側の第1冷媒通路を第1ハウジング部材の一面に近接して当該第1ハウジング部材内に形成し、第2開閉弁部より第2冷媒出口側の第2冷媒通路を第2ハウジング部材の一面に近接して当該第2ハウジング部材内に形成すると共に、第1ハウジング部材に、第1開閉弁部より第1冷媒入口側の第1冷媒通路から第1ハウジング部材の一面に至る第1連通部を形成し、第2ハウジング部材に、第2開閉弁部より第2冷媒出口側の第2冷媒通路から第2ハウジング部材の一面に至る第2連通部を形成して、第1及び第2ハウジング部材の一面同士を結合したときに各連通部が合致して連通路を構成し、第3ハウジング部材は、第2ハウジング部材の他面に結合するようにすれば、短い寸法の連通路を容易に構成し、逆止弁の取り付けも容易となる共に、第3ハウジング部材も支障無く結合することができるようになる。
本発明を適用した一実施例の複合弁の断面図である(膨張弁部が開度を調整し、第1開閉弁部及び第2開閉弁部が開いた状態)。 膨張弁部が第3冷媒通路を全閉とし、第1開閉弁部及び第2開閉弁部が第1及び第2冷媒通路を開いた状態の図1の複合弁の断面図である。 膨張弁部が第3冷媒通路の開度を調整し、第1開閉弁部及び第2開閉弁部が第1及び第2冷媒通路を閉じた状態の図1の複合弁の断面図である。 膨張弁部が第3冷媒通路を全開とし、第1開閉弁部及び第2開閉弁部が第1及び第2冷媒通路を閉じた状態の図1の複合弁の断面図である。 複合弁の動作を説明する図である。 図1の複合弁を適用した車両用空気調和装置の一実施例の構成図である。 図6の車両用空気調和装置の制御装置としての空調コントローラのブロック図である。 図7の空調コントローラによる暖房モードを説明する図である。 図7の空調コントローラによる除湿暖房モードを説明する図である。 図7の空調コントローラによる除湿冷房モード/冷房モードを説明する図である。 図7の空調コントローラによる冷房/被温調対象冷却モードを説明する図である。 図7の空調コントローラによる被温調対象冷却モードを説明する図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 (1)複合弁81
 図1乃至図4は本発明を適用した一実施例の複合弁81の断面図を示し、図5は複合弁81の動作を説明する図である。本発明の複合弁81は後述する車両用空気調和装置1等の冷媒回路Rに適用されるものであって、アルミニウム等の金属から構成されたハウジング82と、このハウジング82内に設けられた膨張弁部6、逆止弁18、第1開閉弁部21、及び、第2開閉弁部22と、これら膨張弁部6、第1及び第2開閉弁部21、22を駆動する駆動装置83を備えている。
 駆動装置83はアクチュエータ84を介して膨張弁部6を調整駆動し、更に、第1及び第2開閉弁部21、22を開閉駆動するものである。この実施例の駆動装置83はステッピングモータにて構成されている。
 また、実施例のハウジング82は、何れもアルミニウム等の金属ブロックから構成された第1ハウジング部材86と第2ハウジング部材87と第3ハウジング部材85の三部品を結合して構成されており、第1ハウジング部材86の一方の側面及び他方の側面にはそれぞれ第1冷媒入口88及び第1冷媒出口89が形成され、第1ハウジング部材86の内部にはこれら第1冷媒入口88と第1冷媒出口89間に渡る第1冷媒通路91が形成されている。
また、第2ハウジング部材87の他方の側面及び一方の側面にはそれぞれ第2冷媒入口92及び第2冷媒出口93が形成され、第2ハウジング部材87の内部にはこれら第2冷媒入口92と第2冷媒出口93間に渡る第2冷媒通路94が形成されている。更に、第3ハウジング部材85の他方の側面には第3冷媒出口97が形成され、一面には開口85Aが形成されており、第3ハウジング部材85の内部にはこれら開口85Aと第3冷媒出口97間に渡る第3冷媒通路98が形成されている。
 前記第1開閉弁部21は、第1冷媒通路91に設けられた第1弁座21Aとこの第1弁座21Aに当接して第1冷媒通路91を開閉するための第1弁体21Bから構成されており、前記第2開閉弁部22は、第2冷媒通路94に設けられた第2弁座22Aとこの第2弁座22Aに当接して第2冷媒通路94を開閉するための第2弁体22Bから構成されている。
 前記膨張弁部6は、第3冷媒通路98に設けられた第3弁座6Aと、この第3弁座6Aに当接して第3冷媒通路98の開度を調整するための第3弁体6Bと、この第3弁体6Bに離接自在に当接するニードル弁体6Cとから構成されており、第3弁座6Aは開口85Aよりも第3冷媒出口97側の第3冷媒通路98内に位置している。第3弁体6B内には、第3弁座6A側の面から一側面に渡って内部通路6Dが形成されており、ニードル弁体6Cはこの内部通路6Dの第3弁座6A側の面の開口の開度を調整する。
 前記第1ハウジング部材86と第2ハウジング部材87はそれらの一面同士が結合され、第3ハウジング部材85の一面が第2ハウジング部材87の他面(一面の反対側の面)に結合されて一体化されたハウジング82となるが、第2ハウジング部材87の他面には第2開閉弁部22よりも第2冷媒入口92側の第2冷媒通路94に連通した開口87Aが形成されており、この開口87Aは第2ハウジング部材87の他面と第3ハウジング部材85の一面が結合されたときに第3ハウジング部材85の開口85Aと合致して相互に連通する。
 駆動装置83は第3ハウジング部材85の他面(一面の反対側の面)に取り付けられている。駆動装置83のアクチュエータ84は第1アクチュエータ部材84Aと第2アクチュエータ部材84Bと第3アクチュエータ部材84Cから成り、第1アクチュエータ部材84Aが駆動装置83側に位置し、ニードル弁体6Cはこの第1アクチュエータ部材84Aの先端に取り付けられている。第2アクチュエータ部材84Bは開口85Aと87Aの連通部分に位置して第3弁体6Bの第3弁座6Aとは反対側の面と第2弁体22B間に取り付けられ、伸縮可能とされている。第3アクチュエータ部材84Cは第2ハウジング部材87を貫通して第2弁体22Bと第1弁体21B間に取り付けられている。これにより、アクチュエータ84は各ハウジング部材85、87、86に渡って設けられ、膨張弁部6及び各開閉弁部21、22を駆動する。
 駆動装置83(ステッピングモータ)はパルス数で回転制御される。駆動装置83が回転すると、アクチュエータ84(第1~第3アクチュエータ部材84A~84C)によりニードル弁体6Cが上下に移動され、このニードル弁体6Cを介して第3弁体6B、第1弁体21B、及び、第2弁体22Bが同時に駆動される。即ち、実施例では駆動装置83が0パルスの位置にあるとき、第1アクチュエータ部材84A及びニードル弁体6Cは最も駆動装置83側に位置している。この状態では、第3弁体6Bは第3弁座6Aに当接して当該第3弁座6Aを閉じているが、ニードル弁体6Cは第3弁体6Bの内部通路6Dの開口に近接して当該内部通路6Dを開き、第3冷媒通路98の開度を絞る状態(開度を調整する状態)となる。また、第1弁体21Bは第1弁座21Aから離間して第1開閉弁部21が第1冷媒通路91を開き、且つ、第2弁体22Bが第2弁座22Aから離間して第2開閉弁部22が第2冷媒通路84を開く(図1)。
 図1の状態から駆動装置83が数パルス正回転されると、第1アクチュエータ部材84Aがニードル弁体6Cを第3弁体6B側に移動させ、やがてニードル弁体6Cが第3弁体6Bの内部通路6Dの開口に当接して閉じ、この状態で膨張弁部6は第3冷媒通路98を全閉とする状態となる。尚、この出願において開度を調整するとは全閉や全開も含む概念とする。この状態が図2の状態であり、この時点では依然第1弁体21Bは第1弁座21Aから離間して第1開閉弁部21が第1冷媒通路91を開き、第2弁体22Bが第2弁座22Aから離間して第2開閉弁部22が第2冷媒通路84を開いている(図2)。
 図2の状態から駆動装置83が更に数パルス正回転されると、ニードル弁体6Cが第3弁体6Bを第2弁体22B方向に押すので、今度は第3弁体6Bが第3弁座6Aから離間し、再度第3冷媒通路98の開度を絞る状態(開度を調整する状態)となる。この状態が図3の状態であり、この時点で第1弁体21Bは第1弁座21Aに当接して第1開閉弁部21が第1冷媒通路91を閉じ、第2弁体22Bが第2弁座22Aに当接して第2開閉弁部22が第2冷媒通路84を閉じる(図3)。
 図3の状態から駆動装置83が更に数パルス正回転されると、ニードル弁体6Cが第3弁体6Bを第2弁体22B方向に押すので、やがて第3弁体6Bが第3弁座6Aから大きく離間し、第3冷媒通路98と全開とする状態となる。この状態が図4の状態であり、この状態では第2アクチュエータ部材84Bが縮小するので、第1弁体21Bは第1弁座21Aに当接して第1開閉弁部21が第1冷媒通路91を閉じ、第2弁体22Bが第2弁座22Aに当接して第2開閉弁部22が第2冷媒通路84を閉じた状態を維持する(図4)。
 また、駆動装置83を逆回転させば上記とは逆の動作となる。図5に上記の動作を纏めて示している。尚、図5の横軸は駆動装置83のパルス数、縦軸は各冷媒通路91、94、98の開口面積を示している。図中太い実線は膨張弁部6による第3冷媒通路98の開度、太い破線は第1開閉弁部21による第1冷媒通路91の開閉状態、細い破線は第2開閉弁22による第2冷媒通路94の開閉状態を示している。図5中P1で示すパルス数が図1の状態、P2は図2の状態、P3は図3の状態、P4は図4の状態をそれぞれ示しており、この図に「暖房」で示すのは後述する車両用空気調和装置1の暖房モードでの制御範囲、「除湿暖房」で示すのは後述する除湿暖房モードでの制御範囲、「除湿冷房」で示すのは後述する除湿冷房モードでの制御範囲、「冷房」で示すのは後述する冷房モードでの制御範囲を示している。この図からの明らかな如く、除湿暖房モードでは膨張弁部6が第3冷媒通路98の開度を調整する状態から全閉とする状態までが使用される。このように、複合弁81は単一の駆動装置83により、膨張弁部6の開度調整と、二つの開閉弁部21及び22の開閉駆動を同時に行うように構成されている。
 また、第1弁座21Aより第1冷媒入口88側の第1冷媒通路91は、第1ハウジング部材86の一面に近接して形成されており、この近接した部分から一面に至る第1連通部96Aが形成されている。また、第2弁座22Aより第2冷媒出口93側の第2冷媒通路94は、第2ハウジング部材87の一面に近接して形成されており、この近接した部分から一面に至る第2連通部96Bが形成されている。そして、各連通部96A及び96Bは各ハウジング部材86及び87の一面同士が結合された状態で相互に合致し、連通路96を構成する。このとき、逆止弁18を何れか一方の連通部(96A、或いは、96B)に取り付けておき、各ハウジング部材86、87を結合するときに他方の連通部(96B、或いは、96A)内に進入させるようにすれば、逆止弁18も容易に取り付けられるようになる。
 また、係る構成で第1弁座21Aより第1冷媒入口88側の第1冷媒通路91と、第2弁座22Aより第2冷媒出口93側の第2冷媒通路94は、ハウジング82内において隣接するかたちとなる。連通路96は第1弁座21Aより第1冷媒入口88側の第1冷媒通路91と、第2弁座22Aより第2冷媒出口93側の第2冷媒通路94とを連通するものであり、この連通路96に逆止弁18が設けられ、第2冷媒通路94方向を順方向とされる。
 複合弁81は図1の如く膨張弁部6のニードル弁体6Cが第3弁体6B内の内部通路6Dを開き、第3冷媒通路98の開度を調整する状態となり、第1開閉弁部21及び第2開閉弁部22が第1冷媒通路91及び第2冷媒通路94を開くと、第2冷媒入口92から流入した冷媒は分流され、一方は膨張弁部6にて絞られて第3冷媒出口97から流出し、他方は第2開閉弁部22を通過して第2冷媒出口93から流出する。また、第1冷媒入口88から流入した冷媒は第1開閉弁部21を通過して第1冷媒出口89から流出する(図1に白抜き矢印と細線矢印で示す)。
 駆動装置83により複合弁81が図2の状態となると、膨張弁部6は第3冷媒通路98を閉じるので、第2冷媒入口92から流入した冷媒が第2開閉弁部22を通過して第2冷媒出口93から流出し、第1冷媒入口88から流入した冷媒が第1開閉弁部21を通過して第1冷媒出口89から流出する状態となる(図1に白抜き矢印で示す)。
 駆動装置83により複合弁81が図3の状態となると、第2冷媒入口92から流入した冷媒が膨張弁部6にて絞られて第3冷媒出口97から流出し、第1冷媒入口88から第1冷媒通路91に流入した冷媒が逆止弁18を経て第2冷媒通路94に至り、第2冷媒出口93から流出するようになる(図3に白抜き矢印と細線矢印で示す)。
 駆動装置83により複合弁81が図4の状態となると、第2冷媒入口92から流入した冷媒が膨張弁部6をそのまま通過して第3冷媒出口97から流出し、第1冷媒入口88から第1冷媒通路91に流入した冷媒が逆止弁18を経て第2冷媒通路94に至り、第2冷媒出口93から流出するようになる(図4に白抜き矢印と細線矢印で示す)。
 (2)車両用空気調和装置1の回路構成
 次に、図6を用いて本発明の複合弁81が適用される車両用空気調和装置1について説明する。図6は一実施例の車両用空気調和装置1の構成図を示している。ここで、実施例の車両用空気調和装置1を適用する車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ(例えば、リチウム電池)が搭載され、外部電源からバッテリに充電された電力を走行用モータ(電動モータ)に供給することで駆動し、走行するものである。
 即ち、車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、冷房/被温調対象冷却モード、及び、被温調対象冷却モードの各運転モードを選択的に実行することで車室内の空調を行い、更に、後述する被温調対象55の冷却も行うものである。
 尚、車両として係る電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車や通常のエンジン駆動式の自動車にも本発明が有効であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12と、前述した複合弁81等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 尚、室内膨張弁8は、冷媒を減圧膨張させると共に、全開や全閉も可能とされている。また、放熱器4の冷媒入口は圧縮機2の吐出側の冷媒配管13Gに接続されている。また、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7の冷媒出口側の冷媒配管13Aが複合弁81の第1冷媒入口88に接続され、複合弁81の第2冷媒出口93に室内膨張弁8の冷媒入口側の冷媒配管13Bが接続されている。複合弁81の第1冷媒出口89には圧縮機2の吸込側の冷媒配管の一部を構成する冷媒配管13Dが接続され、この冷媒配管13Dは吸熱器9の冷媒出口側に接続された冷媒配管13Cに連通接続されている。この冷媒配管13Cは圧縮機2の吸込側の冷媒配管の主体を構成するものである。そして、この冷媒配管13Dの接続点より下流側の冷媒配管13Cには逆止弁20が接続され、この逆止弁20より下流側の冷媒配管13Cがアキュムレータ12を介して圧縮機2の吸込側に接続されている。尚、逆止弁20はアキュムレータ12側が順方向とされている。また、吸熱器9の冷媒出口側から圧縮機2の吸込側に至る冷媒配管の全体を符号13Cで示す。
 更に、放熱器4の冷媒出口側の冷媒配管13Eが複合弁81の第2冷媒入口92に接続されており、室外熱交換器7の冷媒入口側の冷媒配管13Jが複合弁81の第3冷媒出口97に接続されている。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図6では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図6において23は補助加熱装置としての補助ヒータである。この補助ヒータ23は実施例ではPTCヒータ(電気ヒータ)から構成されており、空気流通路3の空気の流れに対して、放熱器4の空気下流側となる空気流通路3内に設けられている。そして、補助ヒータ23が通電されて発熱すると、これが所謂ヒータコアとなり、車室内の暖房を補完する。
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図6では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 
 (3)被温調対象冷却装置61
 更に、車両用空気調和装置1は、車両に搭載されたバッテリや走行用モータ等の被温調対象55に熱媒体を循環させて冷却するための被温調対象冷却装置61を備えている。即ち、実施例においてはバッテリや走行用モータが車両に搭載された被温調対象55となるが、以下は被温調対象55がバッテリであるものとして説明する。尚、本発明における被温調対象としてはバッテリや走行用モータに限らず、走行用モータを駆動するためのインバータ回路等の電気機器も含むものとする。
 実施例の被温調対象冷却装置61は、被温調対象55に熱媒体を循環させるための循環装置としての循環ポンプ62と、被温調対象用熱交換器64を備え、それらと被温調対象55が熱媒体配管68にて接続されている。実施例の場合、循環ポンプ62の吐出側に被温調対象用熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口に被温調対象55が接続されている。そして、被温調対象55の出口が循環ポンプ62の吸込側に接続されている。
 この被温調対象冷却装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、被温調対象55(バッテリ)の周囲には例えば熱媒体が当該被温調対象55と熱交換関係で流通可能なジャケット構造が施されているものとする。
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は被温調対象用熱交換器64の熱媒体流路64Aに流入する。この被温調対象用熱交換器64の熱媒体流路64Aを出た熱媒体は被温調対象55に至り、熱媒体はそこで被温調対象55と熱交換する。この被温調対象55と熱交換した熱媒体は循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される。
 一方、室内膨張弁8の冷媒入口側の冷媒配管13Bには分岐配管72の一端が接続されている。この分岐配管72には電動弁から構成された補助膨張弁73が設けられている。この補助膨張弁73は被温調対象用熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。
 そして、分岐配管72の他端は被温調対象用熱交換器64の冷媒流路64Bの冷媒入口に接続されており、この冷媒流路64Bの冷媒出口は冷媒配管74を介して逆止弁20の冷媒下流側であってアキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに連通接続されている。従って、冷媒配管74も圧縮機2の吸込側の冷媒配管の一部を構成する。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、被温調対象冷却装置61の一部をも構成することになる。
 補助膨張弁73が開いている場合、冷媒配管13Bに流入した冷媒は分岐配管72に流れ、補助膨張弁73で減圧された後、被温調対象用熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。
 (4)車両用空気調和装置1の空調コントローラ32(制御装置)
 次に、図7において、32は車両用空気調和装置1の制御を司る制御装置としての空調コントローラ32である。この空調コントローラ32は、被温調対象55(バッテリや走行用モータ)の制御を含む車両全般の制御を司る車両コントローラ35(ECU)に車両通信バス45を介して接続され、情報の送受信を行う構成とされている。これら空調コントローラ32や車両コントローラ35(ECU)は何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されている。
 空調コントローラ32(制御装置)の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、
吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、空調のON/OFF、設定温度や運転モードの切り換えを設定するための空調操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、空調コントローラ32の入力には更に、車両に搭載された被温調対象55(例えば、バッテリ)の温度(被温調対象55自体の温度、又は、被温調対象55を出た熱媒体の温度、或いは、被温調対象55に入る熱媒体の温度:被温調対象温度Tw)を検出する被温調対象温度センサ76の出力も接続されている。
 一方、空調コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室内膨張弁8と、複合弁81の駆動装置83と、補助ヒータ23と、被温調対象冷却装置61の循環ポンプ62と、補助膨張弁73が接続されている。そして、空調コントローラ32は各センサの出力と空調操作部53にて入力された設定、車両コントローラ35からの情報に基づいてこれらを制御するものである。
 (5)複合弁81を含む車両用空気調和装置1の動作
 以上の構成で、次に実施例の車両用空気調和装置1の動作について説明する。空調コントローラ32(制御装置)は実施例では暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、冷房/被温調対象冷却モード、被温調対象冷却モードを切り換えて実行可能とされている。以下、各運転モードについて説明する。
 (5-1)暖房モード
 最初に、図8を参照しながら暖房モードについて説明する。図8は暖房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)を示している。空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、空調コントローラ32は複合弁81の駆動装置83を制御して、アクチュエータ84により膨張弁部6が第3冷媒通路98の開度を調整する状態とし、第1開閉弁部21、及び、第2開閉弁部22により第1冷媒通路91、及び、第2冷媒通路94を開く(図1の状態)。また、室内膨張弁8及び補助膨張弁73を全閉とする(吸熱器9及び被温調対象用熱交換器64への冷媒の流入を阻止)。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て複合弁81の膨張弁部6に至る。膨張弁部6に流入した冷媒はそこで減圧された後、冷媒配管13Jを経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13Aから複合弁81の第1冷媒通路91に入り、第1開閉弁部21を経て冷媒配管13Dに出る。
 冷媒配管13Dに出た冷媒は冷媒配管13Cに入り、逆止弁20を経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。尚、複合弁81の第2開閉弁部22も開いているが、室内膨張弁8及び補助膨張弁73が全閉となっているので第2冷媒通路94に冷媒は流れない。
 空調コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づき、複合弁81の駆動装置83を制御して膨張弁部6による第3冷媒通路98の開度を調整し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。また、放熱器4による暖房能力が不足する場合には補助ヒータ23に通電して発熱させ、暖房能力を補完する。
 (5-2)除湿暖房モード
 次に、図9を参照しながら除湿暖房モードについて説明する。図9は除湿暖房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房モードでは、空調コントローラ32は上記暖房モードの状態において、室内膨張弁8を開いて冷媒を減圧膨張させる状態とする。これにより、放熱器4を経て冷媒配管13Eから複合弁81の第2冷媒入口92に至った冷媒の一部が複合弁81の第2開閉弁部22を経て第2冷媒通路94に分流され、この分流された冷媒が第2冷媒出口93から冷媒配管13Bに流入し、この冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が膨張弁部6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
 空調コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流された残りの冷媒は、膨張弁部6で減圧された後、冷媒配管13Jを経て室外熱交換器7に入り、蒸発することになる。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて複合弁81の駆動装置83を制御し、膨張弁部6による第3冷媒通路98の開度を調整する。
 尚、前述した如くこの除湿暖房モードでは複合弁81の膨張弁部6は全閉にもなる。従って、図9の除湿暖房モードにおいて図2の如く膨張弁部6が全閉となった場合には、室外熱交換器7への冷媒の流入は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は複合弁81の第2開閉弁部22に全て流れるようになる。そして、冷媒は複合弁81の第2冷媒通路94を経て冷媒配管13Bから室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを流れ、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この運転では室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮されることになる。従って、除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、除湿能力は高いが、暖房能力は低くなる。
 (5-3)除湿冷房モード
 次に、図10を参照しながら除湿冷房モードについて説明する。図10は除湿冷房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿冷房モードでは、空調コントローラ32は室内膨張弁8を開いて冷媒を減圧膨張させる状態とし、複合弁81の駆動装置83によりアクチュエータ84を介して膨張弁部6により第3冷媒通路98の開度を調整する状態とし、第1開閉弁部21、及び、第2開閉弁部22により第1冷媒通路91、及び、第2冷媒通路94を閉じる(図3の状態)。また、補助膨張弁73は全閉とされる(被温調対象用熱交換器64への冷媒の流入を阻止)。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て複合弁81の膨張弁部6に至り、そこで若干絞られた後、冷媒配管13Jを経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aに流出し、複合弁81の第1冷媒入口88から第1冷媒通路91に入る。
 このとき、第1開閉弁部21と第2開閉弁部22は閉じているので、第1冷媒通路91に流入した冷媒は、連通路96及び逆止弁18を経て第2冷媒通路94に入り、第2冷媒出口93から冷媒配管13Bに入るようになる。この冷媒配管13Bに流入した冷媒は、室内膨張弁8に至り、この室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房、除湿暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標ヒータ温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように複合弁81の駆動装置83を制御し、膨張弁部6により第3冷媒通路98の開度を制御することで放熱器4による必要なリヒート量を得る。
 (5-4)冷房モード
 次に、冷房モードについて説明する。冷媒回路Rの流れは図10の除湿冷房モードと同様である。冷房モードでは、空調コントローラ32は上記除湿冷房モードの状態において複合弁81の膨張弁部6の開度を全開とする(図4の状態)。尚、エアミックスダンパ28は放熱器4及び補助ヒータ23に空気が通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て複合弁81の膨張弁部6に至る。このとき膨張弁部6は第3冷媒通路98を全開としているので冷媒はそのまま膨張弁部6を経て冷媒配管13Jを通過し、室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、複合弁81の第1冷媒通路91、連通路96(逆止弁18)、第2冷媒通路94を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。
 (5-5)暖房モード、除湿暖房モード、除湿冷房モード、及び、冷房モードの切り換え
 空調コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、空調コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて暖房モード、除湿暖房モード、除湿冷房モード、及び、冷房モードのうちの何れかの運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていくものである。
 (5-6)冷房/被温調対象冷却モード
 次に、図11を参照しながら上記冷房モード中における空調コントローラ32による冷房/被温調対象冷却モードについて説明する。ここで、バッテリ(被温調対象)は外気温度により温度が上昇すると共に、充放電時の自己発熱によっても温度が上昇する。即ち、外気温度が高温環境であるときには、バッテリの温度が極めて高くなり、充放電が困難となる(尚、走行用モータも同様に運転や環境条件によって温度が極めて高くなり、機能不全に陥って故障する場合がある)。
 そこで、実施例の車両用空気調和装置1の空調コントローラ32は、被温調対象温度Twに所定の目標被温調対象温度TWO(例えば、バッテリの目標温度)と、その上下に所定のヒステリシスをもって上限値TWH、下限値TWLを設定し、上記の如き冷房モードを実行しているときに、被温調対象温度センサ76が検出する被温調対象温度Twが所定の上限値TWH以上に上昇した場合、冷房モードから冷房/被温調対象冷却モードに移行する。図11はこの冷房/被温調対象冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象冷却装置61の熱媒体の流れ(破線矢印)を示している。
 この冷房/被温調対象冷却モードでは、空調コントローラ32は図10に示した冷媒回路Rの冷房モードの状態で補助膨張弁73を開き、被温調対象用熱交換器64における冷媒の過熱度に基づいてその弁開度を制御する状態とする。そして、被温調対象冷却装置61の循環ポンプ62を運転する。これにより、放熱器4から出た冷媒は前述した如く複合弁81の膨張弁部6を通過して室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、複合弁81の第1冷媒通路91、連通路96(逆止弁18)、第2冷媒通路94を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。一方、冷媒配管13Bに入った冷媒の一部は分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て被温調対象用熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図11に実線矢印で示す)。
 一方、循環ポンプ62から吐出された熱媒体は熱媒体配管68内を被温調対象用熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。この被温調対象用熱交換器64の熱媒体流路64Aを出た熱媒体は、被温調対象55に至り、当該被温調対象55と熱交換して冷却する。そして、被温調対象55と熱交換した熱媒体は循環ポンプ62に吸い込まれる循環を繰り返す(図11に破線矢印で示す)。
 このように被温調対象55が冷却されてその温度Twが下限値TWL以下に低下した場合、空調コントローラ32は、補助膨張弁73を全閉とし、循環ポンプ62も停止して冷房/被温調対象冷却モードから冷房モードに復帰する。このようにして、被温調対象55(例えば、バッテリ)の温度Twを所定の目標被温調対象温度TWOに維持するものである。
 尚、上記冷房/被温調対象冷却モードは、冷房モードの運転中のみならず、停車してバッテリ(被温調対象55)に充電しているときに、空調操作部53で空調ON(空調要求)されている場合にも実行される。冷媒回路Rの冷媒の流れ、及び、被温調対象冷却装置61の熱媒体の流れは変わらない。但し、その場合には空調コントローラ32は被温調対象温度センサ76が検出する被温調対象温度Twに基づいて圧縮機2の回転数を制御し、吸熱器温度Teに基づいて室内膨張弁8の弁開度を制御し、吸熱器9における冷媒の過熱度を制御するようになる。即ち、充電中における冷房/被温調対象冷却モードでは被温調対象の冷却が優先され、走行中の冷房/被温調対象冷却モードでは車室内の冷房が優先されることになる。
 (5-7)被温調対象冷却モード
 次に、図12を参照しながらバッテリ(被温調対象55)の充電中に車室内の空調要求が無い(空調OFF)場合における空調コントローラ32による被温調対象冷却モードについて説明する。バッテリは充電中発熱するため、実施例の空調コントローラ32はこの場合も、被温調対象温度Twに所定の目標被温調対象温度TWO(バッテリの目標温度)と、その上下に所定のヒステリシスをもって上限値TWH、下限値TWLを設定し、充電によって被温調対象温度センサ76が検出する被温調対象温度Twが所定の上限値TWH以上に上昇した場合、被温調対象冷却モードに移行する。図12はこの被温調対象冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象冷却装置61の熱媒体の流れ(破線矢印)を示している。
 この被温調対象冷却モードでは、空調コントローラ32は複合弁81の駆動装置83により膨張弁部6により第3冷媒通路98を全開とし、第1開閉弁部21、及び、第2開閉弁部22により第1冷媒通路91、及び、第2冷媒通路94を閉じる(図4の状態)。また、室内膨張弁8は全閉とし(吸熱器9への冷媒の流入を阻止)、補助膨張弁73を開いてその弁開度を調整する状態とする。また、循環ポンプ62を運転する。
 そして、圧縮機2、及び、室外送風機15を運転し、室内送風機27は停止する。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て複合弁81の膨張弁部6を通過し、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aに流出し、複合弁81の第1冷媒入口88から第1冷媒通路91に入る。
 このとき、第1開閉弁部21と第2開閉弁部22は閉じているので、第1冷媒通路91に流入した冷媒は、連通路96及び逆止弁18を経て第2冷媒通路94に入り、第2冷媒出口93から冷媒配管13Bに入るようになる。この冷媒配管13Bに流入した冷媒は、分岐配管72に流入して補助膨張弁73に至り、この補助膨張弁73で減圧された後、被温調対象用熱交換器64の冷媒流路64Bに流入して蒸発する。
 この冷媒流路64Bで蒸発した冷媒は冷媒配管74に流出し、冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。一方、循環ポンプ62から吐出された熱媒体は熱媒体配管68内を被温調対象用熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。この被温調対象用熱交換器64の熱媒体流路64Aを出た熱媒体は、被温調対象55に至り、当該被温調対象55と熱交換して冷却する。そして、被温調対象55と熱交換した熱媒体は循環ポンプ62に吸い込まれる循環を繰り返す(図12に破線矢印で示す)。
 空調コントローラ32は被温調対象温度センサ76が検出する被温調対象55の温度(被温調対象温度Tw)とその目標値である目標被温調対象温度TWOに基づき、被温調対象温度Tw(実施例ではバッテリの温度)を目標被温調対象温度TWOにするように圧縮機2の回転数を制御するものである。
 以上詳述した如く本発明の複合弁81は、第1冷媒入口88、第1冷媒出口89、第2冷媒入口92、第2冷媒出口973、及び、第3冷媒出口97を有するハウジング82と、このハウジング82内に形成され、第1冷媒入口88と第1冷媒出口89間に渡る第1冷媒通路91と、ハウジング82内に形成され、第2冷媒入口92と第2冷媒出口93間に渡る第2冷媒通路94と、第1冷媒通路91に設けられ、当該第1冷媒通路91を開閉する第1開閉弁部21と、第2冷媒通路94に設けられ、当該第2冷媒通路94を開閉する第2開閉弁部22と、ハウジング82内に形成され、第2開閉弁部22より第2冷媒入口92側の第2冷媒通路94から第3冷媒出口97に至る第3冷媒通路98と、この第3冷媒通路98に設けられ、第3冷媒通路98の開度を調整する膨張弁部6と、アクチュエータ84を介して膨張弁部6、第1開閉弁部21、及び、第2開閉弁部22を駆動する駆動装置83と、ハウジング82内に形成され、第1開閉弁部21より第1冷媒入口88側の第1冷媒通路91と、第2開閉弁部22より第2冷媒出口93側の第2冷媒通路94とを連通する連通路96と、この連通路96に設けられ、第2冷媒通路94方向を順方向とされた逆止弁18を備えているので、実施例の如く駆動装置83により、第1開閉弁部21、及び、第2開閉弁部22が第1冷媒通路91、及び、第2冷媒通路94を開き、膨張弁部6が第3冷媒通路98の開度を調整する状態と、第1開閉弁部21、及び、第2開閉弁部22が第1冷媒通路91、及び、第2冷媒通路94を閉じ、膨張弁部6が第3冷媒通路98の開度を調整する状態とすることができるようにし、実施例の如く冷媒を圧縮する圧縮機2と、冷媒入口が圧縮機2の吐出側の冷媒配管13Gに接続され、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、冷媒出口が圧縮機2の吸込側の冷媒配管13Cに接続され、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器9と、放熱器4の冷媒出口側の冷媒配管13Eに接続され、車室外に設けられた室外熱交換器7と、吸熱器9に流入する冷媒を減圧するための室内膨張弁8と、空調コントローラ32を備えた車両用空気調和装置1に適用し、室外熱交換器7の冷媒出口側の冷媒配管13Aを複合弁81の第1冷媒入口88に接続し、圧縮機2の吸込側の冷媒配管13D(冷媒配管13Cに連通)を複合弁81の第1冷媒出口89に接続し、放熱器4の冷媒出口側の冷媒配管13Eを複合弁81の第2冷媒入口92に接続し、室内膨張弁8の冷媒入口側の冷媒配管13Bを複合弁81の第2冷媒出口93に接続し、室外熱交換器7の冷媒入口側の冷媒配管13Jを複合弁81の第3冷媒出口97に接続すれば、空調コントローラ32により複合弁81の駆動装置83を制御することで、実施例の如き暖房モード、除湿暖房モード、除湿冷房モード、及び、冷房モードを切り換えて実行することが可能となる。
 また、実施例の如く冷媒を用いて車両に搭載された被温調対象55(バッテリや走行用モータ)を冷却する被温調対象冷却装置61を設け、この被温調対象冷却装置61に、冷媒を吸熱させて被温調対象55を冷却するための被温調対象用熱交換器64と、この被温調対象用熱交換器64に流入する冷媒を減圧する補助膨張弁73を設けて被温調対象用熱交換器64の冷媒入口を室内膨張弁8の冷媒入口側の冷媒配管13Bから分岐した分岐配管72に接続し、被温調対象用熱交換器64の冷媒出口を冷媒配管74を介して圧縮機2の吸込側の冷媒配管13Cに接続すれば、空調コントローラ32により複合弁81の駆動装置73を制御することで、冷房/被温調対象冷却モードと被温調対象冷却モードを切り換えて実行することが可能となる。
 即ち、従来複数の電磁弁が担っていた車両用空気調和装置1の運転モードの切り換え機能と、室外膨張弁が担っていた冷媒の減圧機能を、複合弁81に集約することができるようになり、部品点数の削減による部品コストや生産コストの低減と、設置スペースの縮小を図ることができるようになる。
 この場合、実施例では第1開閉弁部21より第1冷媒入口88側の第1冷媒通路91と、第2開閉弁部22より第2冷媒出口93側の第2冷媒通路94を、ハウジング82内において隣接して形成しているので、第1冷媒通路91と第2冷媒通路94を短い寸法の連通路96にて連通することができるようになり、連通路96における圧損等のロスを最低限に抑制することが可能となる。
 また、実施例ではハウジング82を、第1冷媒入口88、第1冷媒出口89、第1冷媒通路91、及び、第1開閉弁部21が設けられた第1ハウジング部材86と、第2冷媒入口92、第2冷媒出口93、第2冷媒通路94、及び、第2開閉弁部22が設けられた第2ハウジング部材87と、第3冷媒出口97、第3冷媒通路98、及び、膨張弁部6が設けられた第3ハウジング部材85とを結合して構成し、アクチュエータ84を各ハウジング部材85、87、86に渡って設けて膨張弁部6及び各開閉弁部21、22を駆動するようにしているので、複合弁81の製造/組立作業も容易となる。
 特に、実施例では第1開閉弁部21より第1冷媒入口88側の第1冷媒通路91を第1ハウジング部材86の一面に近接して当該第1ハウジング部材86内に形成し、第2開閉弁部22より第2冷媒出口93側の第2冷媒通路94を第2ハウジング部材87の一面に近接して当該第2ハウジング部材87内に形成すると共に、第1ハウジング部材86に、第1開閉弁部21より第1冷媒入口88側の第1冷媒通路91から第1ハウジング部材86の一面に至る第1連通部96Aを形成し、第2ハウジング部材87に、第2開閉弁部22より第2冷媒出口93側の第2冷媒通路94から第2ハウジング部材87の一面に至る第2連通部96Bを形成して、第1及び第2ハウジング部材86、87の一面同士を結合したときに各連通部96A、96Bが合致して連通路96を構成し、第3ハウジング部材85は、第2ハウジング部材87の他面に結合するようにしているので、短い寸法の連通路96を容易に構成し、逆止弁18の取り付けも容易となる共に、第3ハウジング部材85も支障無く結合することができるようになる。
 尚、実施例で説明した複合弁81の構成、車両用空気調和装置1の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能である。また、実施例では室内膨張弁8や補助膨張弁73を電動弁にて構成し、全閉として吸熱器9や被温調対象用熱交換器64への冷媒の流入を阻止するようにしたが、それに限らず、室内膨張弁8や補助膨張弁73を機械式の膨張弁にて構成し、直列に電磁弁を接続して冷媒の流入を阻止できるようにしてもよい。
 更に、実施例では熱媒体を介して冷媒により被温調対象55を冷却する被温調対象冷却装置61を採用したが、それに限らず、被温調対象用熱交換器64にて冷媒により被温調対象55を直接冷却するようにしてもよい。更にまた、実施例では車両用空気調和装置に本発明の複合弁を適用したが、それに限らず、冷媒回路を有する各種装置に採用可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 4 放熱器
 6 膨張弁部
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 18 逆止弁
 21 第1開閉弁部
 22 第2開閉弁部
 32 空調コントローラ(制御装置)
 55 被温調対象
 61 被温調対象冷却装置
 62 循環ポンプ
 64 被温調対象用熱交換器
 72 分岐配管
 73 補助膨張弁
 81 複合弁
 82 ハウジング
 83 駆動装置
 84 アクチュエータ
 85 第3ハウジング部材
 86 第1ハウジング部材
 87 第2ハウジング部材
 88 第1冷媒入口
 89 第1冷媒出口
 91 第1冷媒通路
 92 第2冷媒入口
 93 第2冷媒出口
 94 第2冷媒通路
 96 連通路
 96A 第1連通部
 96B 第2連通部
 97 第3冷媒出口
 98 第3冷媒通路

Claims (8)

  1.  冷媒回路に適用される複合弁であって、
     第1冷媒入口、第1冷媒出口、第2冷媒入口、第2冷媒出口、及び、第3冷媒出口を有するハウジングと、
     該ハウジング内に形成され、前記第1冷媒入口と前記第1冷媒出口間に渡る第1冷媒通路と、
     前記ハウジング内に形成され、前記第2冷媒入口と前記第2冷媒出口間に渡る第2冷媒通路と、
     前記第1冷媒通路に設けられ、当該第1冷媒通路を開閉する第1開閉弁部と、
     前記第2冷媒通路に設けられ、当該第2冷媒通路を開閉する第2開閉弁部と、
     前記ハウジング内に形成され、前記第2開閉弁部より前記第2冷媒入口側の前記第2冷媒通路から前記第3冷媒出口に至る第3冷媒通路と、
     該第3冷媒通路に設けられ、前記第3冷媒通路の開度を調整する膨張弁部と、
     アクチュエータを介して前記膨張弁部、前記第1開閉弁部、及び、前記第2開閉弁部を駆動する駆動装置と、
     前記ハウジング内に形成され、前記第1開閉弁部より前記第1冷媒入口側の前記第1冷媒通路と、前記第2開閉弁部より前記第2冷媒出口側の前記第2冷媒通路とを連通する連通路と、
     該連通路に設けられ、前記第2冷媒通路方向を順方向とされた逆止弁を備えたことを特徴とする複合弁。
  2.  前記駆動装置により、
     前記第1開閉弁部、及び、第2開閉弁部が前記第1冷媒通路、及び、第2冷媒通路を開き、前記膨張弁部が前記第3冷媒通路の開度を調整する状態と、
     前記第1開閉弁部、及び、第2開閉弁部が前記第1冷媒通路、及び、第2冷媒通路を閉じ、前記膨張弁部が前記第3冷媒通路の開度を調整する状態とすることを特徴とする請求項1に記載の複合弁。
  3.  前記第1開閉弁部より前記第1冷媒入口側の前記第1冷媒通路と、前記第2開閉弁部より前記第2冷媒出口側の前記第2冷媒通路は、前記ハウジング内において隣接して形成されていることを特徴とする請求項1又は請求項2に記載の複合弁。
  4.  前記ハウジングは、
     前記第1冷媒入口、前記第1冷媒出口、前記第1冷媒通路、及び、前記第1開閉弁部が設けられた第1ハウジング部材と、
     前記第2冷媒入口、前記第2冷媒出口、前記第2冷媒通路、及び、前記第2開閉弁部が設けられた第2ハウジング部材と、
     前記第3冷媒出口、前記第3冷媒通路、及び、前記膨張弁部が設けられた第3ハウジング部材とを結合して成り、
     前記アクチュエータが前記各ハウジング部材に渡って設けられ、前記膨張弁部及び前記各開閉弁部を駆動することを特徴とする請求項1乃至請求項3のうちの何れかに記載の複合弁。
  5.  前記第1開閉弁部より前記第1冷媒入口側の前記第1冷媒通路は前記第1ハウジング部材の一面に近接して当該第1ハウジング部材内に形成され、
     前記第2開閉弁部より前記第2冷媒出口側の前記第2冷媒通路は前記第2ハウジング部材の一面に近接して当該第2ハウジング部材内に形成されていると共に、
     前記第1ハウジング部材は、前記第1開閉弁部より前記第1冷媒入口側の前記第1冷媒通路から前記第1ハウジング部材の一面に至る第1連通部を有し、
     前記第2ハウジング部材は、前記第2開閉弁部より前記第2冷媒出口側の前記第2冷媒通路から前記第2ハウジング部材の一面に至る第2連通部を有し、
     前記第1及び第2ハウジング部材は、それらの前記一面同士が結合され、その状態で前記各連通部は合致して前記連通路を構成し、前記第3ハウジング部材は、前記第2ハウジングの他面に結合されることを特徴とする請求項4に記載の複合弁。
  6.  冷媒を圧縮する圧縮機と、
     冷媒入口が前記圧縮機の吐出側の冷媒配管に接続され、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     冷媒出口が前記圧縮機の吸込側の冷媒配管に接続され、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、
     前記放熱器の冷媒出口側の冷媒配管に接続され、車室外に設けられた室外熱交換器と、
     前記吸熱器に流入する冷媒を減圧するための室内膨張弁と、
     制御装置を備え、
     前記室外熱交換器の冷媒出口側の冷媒配管が前記複合弁の前記第1冷媒入口に接続され、
     前記圧縮機の吸込側の冷媒配管が前記複合弁の前記第1冷媒出口に接続され、
     前記放熱器の冷媒出口側の冷媒配管が前記複合弁の前記第2冷媒入口に接続され、
     前記室内膨張弁の冷媒入口側の冷媒配管が前記複合弁の前記第2冷媒出口に接続され、
     前記室外熱交換器の冷媒入口側の冷媒配管が前記複合弁の前記第3冷媒出口に接続され、
     前記制御装置により前記複合弁の駆動装置が制御されることを特徴とする請求項1乃至請求項5に記載の何れかの複合弁を用いた車両用空気調和装置。
  7.  前記制御装置は、前記複合弁の駆動装置を制御することにより、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を開き、前記膨張弁部により前記第3冷媒通路の開度を調整する状態とし、前記吸熱器への冷媒の流入を阻止して、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記膨張弁部で減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を開き、前記膨張弁部により前記第3冷媒通路の開度を調整する状態とし、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記膨張弁部で減圧した後、前記室外熱交換器にて吸熱させ、前記バイパス回路からの冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる除湿暖房モードと、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を閉じ、前記膨張弁部により前記第3冷媒通路の開度を調整する状態とし、前記圧縮機から吐出された冷媒を前記放熱器と前記室外熱交換器で放熱させ、放熱した当該冷媒を前記複合弁の逆止弁を経て前記室内膨張弁に流し、該室内膨張弁で減圧した後、前記吸熱器にて吸熱させる除湿冷房モードと、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を閉じた状態で、前記圧縮機から吐出された冷媒を前記室外熱交換器で放熱させ、放熱した当該冷媒を前記複合弁の逆止弁を経て前記室内膨張弁に流し、前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる冷房モードと、
     を切り換えて実行することを特徴とする請求項6に記載の車両用空気調和装置。
  8.  冷媒を用いて車両に搭載された被温調対象を冷却する被温調対象冷却装置を備え、
     該被温調対象冷却装置は、冷媒を吸熱させて前記被温調対象を冷却するための被温調対象用熱交換器と、該被温調対象用熱交換器に流入する冷媒を減圧する補助膨張弁を有し、前記被温調対象用熱交換器の冷媒入口が前記室内膨張弁の冷媒入口側の冷媒配管から分岐した分岐配管に接続され、前記被温調対象用熱交換器の冷媒出口が前記圧縮機の吸込側の冷媒配管に接続されると共に、
     前記制御装置は、前記複合弁の駆動装置を制御することにより、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を閉じた状態で、前記圧縮機から吐出された冷媒を前記室外熱交換器で放熱させ、放熱した当該冷媒を前記複合弁の逆止弁を経て前記室内膨張弁と前記補助膨張弁に流し、前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させ、前記補助膨張弁で減圧した後、前記被温調対象用熱交換器で吸熱させる冷房/被温調対象冷却モードと、
     前記複合弁の前記第1開閉弁部、及び、第2開閉弁部により前記第1冷媒通路、及び、第2冷媒通路を閉じた状態で、前記吸熱器への冷媒の流入を阻止し、前記圧縮機から吐出された冷媒を前記室外熱交換器で放熱させ、放熱した当該冷媒を前記複合弁の逆止弁を経て前記補助膨張弁に流し、当該補助膨張弁で減圧した後、前記被温調対象用熱交換器で吸熱させる被温調対象冷却モードと、
     を切り換えて実行することを特徴とする請求項6又は請求項7に記載の車両用空気調和装置。
PCT/JP2019/031366 2018-08-27 2019-08-08 複合弁及びそれを用いた車両用空気調和装置 WO2020045031A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980053592.4A CN112543856B (zh) 2018-08-27 2019-08-08 复合阀及使用该复合阀的车用空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-158330 2018-08-27
JP2018158330A JP7153170B2 (ja) 2018-08-27 2018-08-27 複合弁及びそれを用いた車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2020045031A1 true WO2020045031A1 (ja) 2020-03-05

Family

ID=69644939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031366 WO2020045031A1 (ja) 2018-08-27 2019-08-08 複合弁及びそれを用いた車両用空気調和装置

Country Status (3)

Country Link
JP (1) JP7153170B2 (ja)
CN (1) CN112543856B (ja)
WO (1) WO2020045031A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117015481A (zh) * 2021-04-09 2023-11-07 株式会社不二工机 阀装置和空调装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166679A (ja) * 2011-02-14 2012-09-06 Tgk Co Ltd 車両用冷暖房装置および集合弁
JP2014070867A (ja) * 2012-10-01 2014-04-21 Denso Corp ヒートポンプサイクルおよびヒートポンプサイクル用統合弁
JP2014081159A (ja) * 2012-10-17 2014-05-08 Denso Corp 冷凍サイクル装置
WO2016125697A1 (ja) * 2015-02-04 2016-08-11 株式会社デンソー 統合弁およびヒートポンプサイクル
JP2017227367A (ja) * 2016-06-21 2017-12-28 株式会社デンソー 冷凍サイクル装置
JP2018124021A (ja) * 2017-02-02 2018-08-09 株式会社デンソー 熱交換モジュール、および温度調整装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727464B2 (ja) * 1998-01-05 2005-12-14 株式会社テージーケー 四方向切換弁
DE10162785B4 (de) * 2001-12-17 2005-03-17 Visteon Global Technologies, Inc., Dearborn Ventilkombination für einen Fluidkreislauf mit zwei Druckniveaus, insbesondere für einen kombinierten Kälteanlagen/Wärmepumpenkreislauf
JP4981663B2 (ja) * 2005-04-27 2012-07-25 イーグル工業株式会社 切替弁
CN106090304B (zh) * 2016-08-23 2018-10-23 航宇救生装备有限公司 具有回流保护功能的流量调节装置
CN207049366U (zh) * 2017-05-09 2018-02-27 浙江三花汽车零部件有限公司 电子膨胀阀以及包括电子膨胀阀的热管理组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166679A (ja) * 2011-02-14 2012-09-06 Tgk Co Ltd 車両用冷暖房装置および集合弁
JP2014070867A (ja) * 2012-10-01 2014-04-21 Denso Corp ヒートポンプサイクルおよびヒートポンプサイクル用統合弁
JP2014081159A (ja) * 2012-10-17 2014-05-08 Denso Corp 冷凍サイクル装置
WO2016125697A1 (ja) * 2015-02-04 2016-08-11 株式会社デンソー 統合弁およびヒートポンプサイクル
JP2017227367A (ja) * 2016-06-21 2017-12-28 株式会社デンソー 冷凍サイクル装置
JP2018124021A (ja) * 2017-02-02 2018-08-09 株式会社デンソー 熱交換モジュール、および温度調整装置

Also Published As

Publication number Publication date
CN112543856A (zh) 2021-03-23
CN112543856B (zh) 2022-07-01
JP2020034178A (ja) 2020-03-05
JP7153170B2 (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
JP7095848B2 (ja) 車両用空気調和装置
JP6015636B2 (ja) ヒートポンプシステム
JP5494312B2 (ja) 車両用空調装置
JP6269307B2 (ja) 車両用空調装置
WO2016208338A1 (ja) 車両用空気調和装置
WO2014002411A1 (ja) 車両用空調装置
WO2020066719A1 (ja) 車両用空気調和装置
JP6963405B2 (ja) 車両用空気調和装置
JP2021047000A (ja) 接続モジュール
JP7173064B2 (ja) 熱管理システム
JP2008308080A (ja) 自動車の吸放熱システムおよびその制御方法
JP2005263200A (ja) 車両用空調装置
WO2021049435A1 (ja) 接続モジュール
WO2019181311A1 (ja) 車両用制御システム
WO2019116781A1 (ja) 車両用暖房装置
JP7468124B2 (ja) 車両用空調装置
WO2012043062A1 (ja) 車両用空調装置
WO2020184146A1 (ja) 車両用空気調和装置
WO2020045031A1 (ja) 複合弁及びそれを用いた車両用空気調和装置
WO2020045030A1 (ja) 複合弁及びそれを用いた車両用空気調和装置
CN112384392A (zh) 车辆用空气调节装置
WO2021187005A1 (ja) 車両用空気調和装置
WO2020166274A1 (ja) 車両用空気調和装置
WO2021049340A1 (ja) 車両の熱交換システム
KR102615343B1 (ko) 전기 자동차의 공조 시스템 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854498

Country of ref document: EP

Kind code of ref document: A1