WO2014002411A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2014002411A1
WO2014002411A1 PCT/JP2013/003678 JP2013003678W WO2014002411A1 WO 2014002411 A1 WO2014002411 A1 WO 2014002411A1 JP 2013003678 W JP2013003678 W JP 2013003678W WO 2014002411 A1 WO2014002411 A1 WO 2014002411A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
vehicle
refrigerant
compressor
ventilation
Prior art date
Application number
PCT/JP2013/003678
Other languages
English (en)
French (fr)
Inventor
粕谷 潤一郎
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to DE112013003304.6T priority Critical patent/DE112013003304T5/de
Priority to US14/406,113 priority patent/US9562712B2/en
Publication of WO2014002411A1 publication Critical patent/WO2014002411A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/039Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from air leaving the interior of the vehicle, i.e. heat recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to a vehicle air conditioner that uses a heat pump including a refrigerant circuit composed of a compressor, a radiator, and a heat exchanger outside and inside the vehicle to air-condition the vehicle interior.
  • the COP can be made 1 or more. Under the environment, the temperature difference to be pumped becomes large and the compression ratio of the compressor becomes high, so that there is a problem that the heating capacity and efficiency are lowered.
  • a ventilation heat exchanger that collects the heat in the air exhausted from the passenger compartment for ventilation is provided, and in addition to the heat pump from the outside air, the heat in the ventilated air is also recovered to heat the passenger compartment.
  • the air conditioner was developed first (refer patent document 1).
  • the defrosting of the heat exchanger outside the passenger compartment is difficult to melt by ventilation when the outside air is below freezing. Furthermore, when the defrost heater is used, the battery power is consumed and the cruising distance is further shortened.
  • the present invention has been made in view of the above-described conventional situation, and in the vehicle air conditioner that heats the passenger compartment by heat pump operation of a refrigerant circuit using a compressor, the heating capacity is improved particularly at a low outside temperature.
  • the purpose is to plan.
  • the vehicle air conditioner according to the first aspect of the present invention includes a compressor, a radiator, a vehicle exterior heat exchanger, a vehicle interior heat exchanger, and ventilation for absorbing heat from the air exhausted from the vehicle interior to the vehicle exterior.
  • a refrigerant circuit is configured from the heat exchanger, and the refrigerant discharged from the compressor during heating is radiated to the vehicle interior by the radiator, and after the heat is radiated by the radiator, the decompressed refrigerant is supplied to the vehicle exterior heat exchanger and / Or evaporates in a ventilation heat exchanger, and during cooling, the refrigerant discharged from the compressor dissipates heat in the vehicle exterior heat exchanger, dissipates heat in the vehicle exterior heat exchanger, and then the decompressed refrigerant is heated in the vehicle interior heat.
  • a hot gas cycle circuit that absorbs heat from the passenger compartment by evaporating in the exchanger, decompresses a part of the refrigerant discharged from the compressor, flows to the passenger compartment heat exchanger, and dissipates heat to the passenger compartment. It is characterized by that.
  • the air conditioner for a vehicle according to the invention of claim 2 is provided in the case where the outside heat exchanger is defrosted during heating in the above invention and / or when the outside air temperature is a predetermined low value,
  • the refrigerant is characterized in that, without flowing the refrigerant, the refrigerant radiated by the radiator is depressurized and flows to the ventilation heat exchanger, and part of the refrigerant discharged from the compressor is caused to flow to the hot gas cycle circuit.
  • a vehicle air conditioner that sucks the refrigerant evaporated in the vehicle exterior heat exchanger or the heat released in the vehicle interior heat exchanger through the hot gas cycle circuit into the low pressure portion of the compressor.
  • the refrigerant evaporated in the ventilation heat exchanger is returned to the intermediate pressure portion of the compressor.
  • a vehicle air conditioner according to the above invention, wherein no refrigerant is passed through the vehicle exterior heat exchanger and the hot gas cycle circuit, or the vehicle interior temperature is a predetermined low value.
  • the refrigerant evaporated by the exchanger is returned to the low pressure part of the compressor.
  • the air conditioner for a vehicle according to a fifth aspect of the present invention is the air conditioner for a vehicle according to the second aspect of the present invention, in which the defrosting of each heat exchanger is performed while the inflow of the refrigerant to the outdoor heat exchanger and the ventilation heat exchanger is alternately stopped during heating. While judging necessity, when performing defrosting of a ventilation heat exchanger, it is characterized by not flowing a refrigerant into the ventilation heat exchanger concerned.
  • a vehicle air conditioner according to a sixth aspect of the present invention is the air conditioner for a vehicle according to the second aspect of the present invention, wherein when the defrosting of the heat exchanger outside the vehicle is completed during heating, the refrigerant does not flow through the hot gas cycle circuit, and the refrigerant is transferred to the heat exchanger outside the vehicle. When the temperature outside the vehicle compartment is below freezing, it is not determined whether or not the defrosting of the heat exchanger outside the vehicle has been completed.
  • a vehicle air conditioner according to a seventh aspect of the invention is characterized in that, in the first aspect of the invention, an evaporating pressure adjusting valve for preventing the evaporating temperature of the refrigerant in the ventilation heat exchanger from dropping below freezing point is provided.
  • the vehicle air conditioner of the invention of claim 8 is characterized in that in the invention of claim 1, the air in the passenger compartment that has passed through the ventilation heat exchanger is circulated to the heat exchanger outside the passenger compartment.
  • An air conditioner for a vehicle includes a duct for circulating outside air to the vehicle exterior heat exchanger in the above invention, and the air in the vehicle interior that has passed through the ventilation heat exchanger in the duct upstream of the vehicle exterior heat exchanger. And the opening of the inflow portion of the passenger compartment air is narrowed.
  • a vehicle air conditioner according to a tenth aspect of the present invention is characterized in that in the above invention, a damper is provided for adjusting an opening amount of an inflow portion of the passenger compartment air in the duct.
  • the vehicle air conditioner according to an eleventh aspect of the invention is characterized in that in the invention according to the first aspect, an electric heater is provided for heating the passenger compartment during heating.
  • a vehicle air conditioner includes a compressor, a radiator, a vehicle exterior heat exchanger, a vehicle interior heat exchanger, and ventilation for absorbing heat from the air exhausted from the vehicle interior to the vehicle exterior.
  • a refrigerant circuit is configured from the heat exchanger, and the refrigerant discharged from the compressor during heating is radiated to the vehicle interior by the radiator, and after the heat is radiated by the radiator, the decompressed refrigerant is supplied to the vehicle exterior heat exchanger and / Or evaporates in a ventilation heat exchanger, and during cooling, the refrigerant discharged from the compressor dissipates heat in the vehicle exterior heat exchanger, dissipates heat in the vehicle exterior heat exchanger, and then the decompressed refrigerant is heated in the vehicle interior heat.
  • the refrigerant circuit is configured to radiate the refrigerant discharged from the compressor during heating to the vehicle interior by a radiator, and after the heat is radiated by the radiator, the decompressed refrigerant is used as an outside heat exchanger and / or ventilation.
  • the refrigerant discharged from the compressor is radiated by the outside heat exchanger, and after the heat is radiated by the outside heat exchanger, the decompressed refrigerant is transferred to the inside heat exchanger.
  • a hot gas cycle circuit is provided that depressurizes a part of the refrigerant discharged from the compressor and flows it to the passenger compartment heat exchanger to dissipate heat into the passenger compartment.
  • This hot gas cycle circuit is discharged from the compressor By flowing a portion of the high-temperature refrigerant, in addition to the heating by the radiator, also by heat radiation in the passenger compartment at the passenger compartment heat exchanger, it is possible to heating.
  • vehicle interior heating by heat pump operation in a low outside air temperature environment can be performed extremely effectively and efficiently, and in the situation where the outside air temperature is higher than the freezing point, heat exchange outside the vehicle interior by ventilation of the outside air is performed.
  • the defrosting of the vessel can also proceed at the same time, and particularly in an electric vehicle in which the compressor is driven by a battery, it is possible to realize a very suitable vehicle interior air conditioning and to prevent a decrease in the cruising distance. .
  • the refrigerant evaporated in the vehicle exterior heat exchanger as in the invention of claim 3 or the refrigerant dissipated in the vehicle interior heat exchanger through the hot gas cycle circuit is sucked into the low-pressure portion of the compressor, and the ventilation heat exchange is performed. If the refrigerant evaporated in the compressor is returned to the intermediate pressure section of the compressor, the amount of refrigerant circulating in the radiator can be increased to increase the heat dissipation capacity, and the compression work in the compressor can also be reduced to improve efficiency. Can be planned.
  • the refrigerant evaporated in the ventilation heat exchanger can be switched back to the low pressure portion of the compressor. Even under the situation where the refrigerant returns to the compressor only from the ventilation heat exchanger, the compression work in the compressor can be performed without any trouble.
  • the refrigerant evaporated in the ventilation heat exchanger is returned to the low pressure part of the compressor, the refrigerant temperature in the ventilation heat exchanger is low, and the compressor Even under a situation where the pressure is equal to or lower than the intermediate pressure portion, the refrigerant having passed through the ventilation heat exchanger can be sucked into the compressor without any trouble.
  • each heat exchanger is determined in a state where the inflow of refrigerant to the outdoor heat exchanger and the ventilation heat exchanger is alternately stopped during heating as in the invention of claim 5, It becomes possible to accurately determine whether the vehicle exterior heat exchanger and the ventilation heat exchanger are clogged due to frost formation and whether defrosting is necessary.
  • the ventilation heat exchanger is clogged due to frost formation, if the refrigerant is not allowed to flow through the ventilation heat exchanger, the ventilation heat exchanger is caused by the air in the vehicle compartment having a relatively high temperature. Can be defrosted smoothly.
  • the refrigerant is not supplied to the hot gas cycle circuit, but is returned to the state in which the refrigerant is supplied to the vehicle exterior heat exchanger. It is possible to return to the heat pump operation without any trouble by pumping up the heat inside.
  • an evaporation pressure adjusting valve is provided to prevent the evaporation temperature of the refrigerant in the ventilation heat exchanger from dropping below the freezing point as in the invention of claim 7, the ventilation heat exchanger is maintained in a state where no frost formation occurs. Thus, it becomes possible to avoid the function stop of the ventilation heat exchanger accompanying defrosting.
  • the air in the vehicle compartment that has passed through the ventilation heat exchanger is circulated to the heat exchanger outside the vehicle as in the invention of claim 8, even if it passes through the ventilation heat exchanger at the time of heating, It is possible to reduce the compressor power by increasing the temperature of the outside air flowing through the vehicle exterior heat exchanger by flowing air through the vehicle exterior heat exchanger and increasing the evaporation temperature.
  • the air in the passenger compartment which is lower in temperature than the outside air, flows to the heat exchanger outside the passenger compartment to lower the temperature of the outside air that is vented to the heat exchanger outside the passenger compartment, and the condensation temperature is lowered to similarly reduce the compressor power It is possible to plan.
  • the damper for adjusting the opening amount of the inflow portion of the passenger compartment air in the duct is provided as in the invention of the tenth aspect, the amount of air in the passenger compartment sucked out by this damper can be adjusted. For example, even if the amount of outside air passed through the vehicle exterior heat exchanger changes due to changes in the vehicle speed or the rotational speed of the blower for the vehicle exterior heat exchanger, it is possible to keep the ventilation rate from the vehicle interior constant. It becomes.
  • an electric heater for heating the passenger compartment during heating is provided as in the invention of claim 11, the heating capacity of the passenger compartment of the electric vehicle is supplemented by the electric heater within the allowable range of the battery, and a more comfortable vehicle interior environment is provided. It can be realized.
  • the refrigerant circuit is configured to radiate the refrigerant discharged from the compressor during heating to the vehicle interior by a radiator, and after the heat is radiated by the radiator, the decompressed refrigerant is used as an outside heat exchanger and / or ventilation.
  • the refrigerant discharged from the compressor is radiated by the outside heat exchanger, and after the heat is radiated by the outside heat exchanger, the decompressed refrigerant is transferred to the inside heat exchanger.
  • a vehicle air conditioner that evaporates and absorbs heat from the passenger compartment, when an electric heater is provided and the outside heat exchanger is defrosted during heating, no heat is passed through the outside heat exchanger, and the heat is dissipated by the radiator.
  • the vehicle interior is heated by an electric heater, and further, the heat in the air in the vehicle interior that is exhausted to the outside by the ventilation heat exchanger Can be recovered.
  • FIG. 5 is a ph diagram of the vehicle air conditioner in the case of FIG. 4. It is a block diagram explaining the state at the time of dehumidification heating of the vehicle air conditioner of FIG.
  • Example 6 It is a block diagram explaining the state at the time of the heating of the vehicle air conditioner of other Example to which this invention is applied (Example 6). It is a block diagram explaining the state at the time of defrosting of the vehicle exterior heat exchanger of the vehicle air conditioner of FIG. It is a block diagram explaining the state which heats using a vehicle interior heat exchanger, defrosting the vehicle exterior heat exchanger of the vehicle air conditioner of FIG.
  • FIG. 15 is a ph diagram of the vehicle air conditioner in the case of FIG. 14. It is a block diagram explaining the state at the time of the heating of the vehicle air conditioner of other Example to which this invention is applied (Example 7). It is a block diagram explaining the state at the time of defrosting of the exterior heat exchanger of the vehicle air conditioner of FIG.
  • the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) that does not have an engine (internal combustion engine), and travels by driving an electric motor for traveling with electric power charged in a battery.
  • the vehicle air conditioner 1 of the present invention is also driven by battery power.
  • the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further selectively performs dehumidification heating and cooling.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling.
  • the vehicle air conditioner 1 performs heating, ventilation, and air conditioning in the passenger compartment of an electric vehicle.
  • the electric compressor 2 that compresses and boosts the refrigerant, and the passenger compartment air is circulated.
  • a radiator 4 provided in the ventilation duct 3 of the HVAC unit 10 to dissipate the high-temperature and high-pressure refrigerant discharged from the compressor 2 into the vehicle interior, and an electric first expansion that decompresses and expands the refrigerant during heating.
  • the expansion valve 8 and a vehicle interior heat exchanger 9 that is provided in the ventilation duct 3 and absorbs heat from outside the vehicle interior to the refrigerant during cooling and dehumidifying heating are sequentially connected by a refrigerant pipe 11 to form a refrigerant circuit R. ing.
  • a bypass path 12 that bypasses the expansion valve 6 is connected
  • a bypass path 13 that bypasses the expansion valve 6 and the vehicle exterior heat exchanger 7 is connected
  • the expansion valve 8 and the vehicle interior heat exchanger 9 are bypassed.
  • a bypass 14 is connected.
  • an electromagnetic valve 16 is provided in the bypass passage 12 during cooling so as to bypass the expansion valve 6 and flow refrigerant, and the bypass passage 13 communicates during dehumidification heating with a part of the refrigerant.
  • an electromagnetic valve 17 that bypasses the outside heat exchanger 7 and flows therethrough, and communicates with the bypass passage 14 during heating and dehumidifying heating to bypass the expansion valve 8 and the vehicle interior heat exchanger 9.
  • An electromagnetic valve 18 is provided.
  • the refrigerant pipe 11 between the branch portion of the bypass passage 13 on the side of the outdoor heat exchanger 7 and the branch portion of the bypass passage 14 on the side of the outdoor heat exchanger 7 communicates with the expansion valve 8 and the refrigerant in communication during cooling.
  • An electromagnetic valve 19 that flows to the vehicle interior heat exchanger 9 is interposed.
  • a ventilation heat exchanger circuit 21 is provided by branching from the refrigerant pipe 11 between the radiator 4 and the expansion valve 6, and this ventilation heat exchanger circuit 21 is connected to the intermediate pressure portion of the compressor 2. ing.
  • the ventilating heat exchanger circuit 21 includes an electric third expansion valve 22 that is opened during heating and dehumidifying heating in order from the upstream side, and ventilation for ventilating the vehicle interior by discharging the air out of the vehicle interior.
  • a ventilation heat exchanger 24 and a check valve 26 are connected to allow the refrigerant to absorb heat during heating and dehumidifying heating from the air in the passenger compartment flowing out of the passenger compartment through the duct 23.
  • the check valve 26 has a forward direction in the direction of the compressor 2.
  • air in the passenger compartment flows out of the ventilation duct 23 due to a venturi effect or pressure difference outside the passenger compartment, but a ventilation fan may be provided to forcibly exhaust the air.
  • This ventilation heat exchanger circuit 21 constitutes an injection circuit of the compressor 2.
  • the ventilation heat exchanger circuit 21 including the ventilation heat exchanger 24 contributes to an improvement in COP (coefficient of performance) during the heat pump operation of the vehicle air conditioner 1.
  • temperature sensors 27 and 28 each comprising a thermistor are attached to the refrigerant inlet and outlet of the ventilation heat exchanger 24, respectively, so that the temperature of the refrigerant can be detected.
  • a hot gas cycle circuit 31 branches from the discharge side (high pressure part) of the compressor 2 and is connected to the refrigerant pipe 11 on the refrigerant inlet side of the expansion valve 8.
  • an electromagnetic valve 32 is provided that is opened when heating is performed in the vehicle interior heat exchanger 9.
  • a bypass path 33 is connected between the upstream side of the check valve 26 of the ventilation heat exchanger circuit 21 and the low pressure portion (suction side) of the compressor 2, and the ventilation heat exchanger 24 is connected to the bypass path 33.
  • An electromagnetic valve 34 that is opened when the refrigerant from the refrigerant is sucked into the low pressure portion (suction side) of the compressor 2 is interposed.
  • the ventilation duct 3 is provided with an inside / outside air switching damper 36 for switching the air introduced into the vehicle interior between the inside air that is the air inside the vehicle interior and the outside air that is the air outside the vehicle interior.
  • An air blower 37 for supplying air to the air duct 3 is also provided.
  • the air duct 3 is provided with an air mix damper 38 that adjusts the degree of distribution of the inside air and the outside air to the radiator 4.
  • an electric heater 44 is disposed in the ventilation duct 3 on the downstream side of the ventilation air of the radiator 4.
  • a pressure sensor 39 is provided in the low pressure portion (suction side) of the compressor 2, and the pressure sensor 39 detects the suction pressure of the compressor 2.
  • the vehicle exterior heat exchanger 7 is also provided with a vehicle exterior heat exchanger blower 41 for passing outside air to the vehicle exterior heat exchanger 7 and a temperature sensor 42 for detecting the ambient temperature.
  • Reference numeral 43 denotes a controller (ECU) composed of a microcomputer.
  • the outputs of the temperature sensors 27, 28, 42 and the pressure sensor 39 are input to the controller, and the compressor 2, the ventilation fan 37, and the like.
  • Various switches such as an air conditioning activation switch (not shown) for performing the activation operation are connected.
  • the exterior heat exchanger 7 and the ventilation heat exchanger 24 are each provided with a temperature sensor (not shown) for detecting the surface temperature of the heat exchanger, and each temperature sensor is also connected to the input of the controller 43.
  • the output includes the compressor 2, the expansion valves 6, 8, 22 and the solenoid valves 16, 17, 19, 32, 34, the inside / outside air switching damper 36, the ventilation fan 37, the air mix damper 38, and the outside of the passenger compartment.
  • Devices such as a heat exchanger blower 41 and an electric heater 44 are connected.
  • FIG. 1 shows a state during heating.
  • the controller 43 operates the compressor 2, the ventilation fan 37 and the outdoor heat exchanger fan 41, opens the electromagnetic valve 18, and closes the electromagnetic valves 16, 17, 19, 32, and 34.
  • the refrigerant is decompressed by the expansion valves 6 and 22, and the air mix damper 38 closes the ventilation duct 3 other than the radiator 4.
  • the refrigerant flows through the compressor 2, the radiator 4, the expansion valve 6, and the vehicle exterior heat exchanger 7 as shown by the thick line in FIG. And is also circulated through the ventilation heat exchanger circuit 21 to heat the passenger compartment by the radiator 4.
  • part of the refrigerant that has passed through the radiator 4 flows into the ventilation heat exchanger circuit 21, is decompressed by the expansion valve 22, and evaporates in the ventilation heat exchanger 24, and thus flows out of the passenger compartment through the ventilation duct 23. Heat is absorbed from the warm air in the passenger compartment to the refrigerant.
  • the liquid or gas-liquid two-phase refrigerant flowing into the ventilation heat exchanger 24 is heated and vaporized by the air in the passenger compartment. Since the controller 43 controls the opening degree of the expansion valve 22 based on the temperature difference between the inflow refrigerant and the outflow refrigerant detected by the temperature sensors 27 and 28, the refrigerant that has passed through the ventilation heat exchanger circuit 21 is almost completely vaporized. It flows into the intermediate pressure part of the compressor 2. That is, the controller 43 adjusts the valve opening degree of the expansion valve 22 so that the refrigerant supplied to the intermediate pressure portion of the compressor 2 is overheated.
  • the refrigerant is vaporized in the ventilation heat exchanger 24 while pumping up heat from the air inside the passenger compartment that is discharged outside the passenger compartment, and the refrigerant is sufficiently vaporized in the intermediate pressure portion of the compressor 2.
  • the heating capacity can be improved and the COP can be further improved.
  • the amount of heat recovered by the ventilation heat exchanger 24 includes the amount of heat such as sunlight incident from the vehicle window, the heating effect is further improved. Therefore, even if the vehicle is an electric vehicle (EV), the power consumption of the battery by the vehicle air conditioner 1 can be suppressed, and a decrease in the cruising range of the vehicle can be effectively prevented.
  • the expansion valve 22 may be fully closed so that the ventilation heat exchanger circuit 21 does not function.
  • the controller 43 opens the electromagnetic valve 34 of the bypass passage 33 and the refrigerant from the ventilation heat exchanger 24. Is sucked into the low pressure part of the compressor 2. Thereby, even under such a situation, the refrigerant that has passed through the ventilation heat exchanger 24 can be sucked into the compressor 2 without any trouble.
  • the controller 43 determines the necessity of defrosting the exterior heat exchanger 7 and the ventilation heat exchanger 24 at regular intervals (every predetermined time).
  • the controller 43 alternately (alternatively) stops the refrigerant flowing into the outdoor heat exchanger 7 and the ventilation heat exchanger 24 by alternately closing the expansion valve 6 and the expansion valve 22 alternately.
  • the pressure sensor 39 detects the suction pressure of the compressor 2 (pressure in the low pressure part).
  • the controller 43 is also bypassed when the refrigerant is not supplied to the outdoor heat exchanger 7 and the hot gas cycle circuit 31 but only the ventilation heat exchanger 24 when the necessity of defrosting of the outdoor heat exchanger 7 is determined.
  • the electromagnetic valve 34 in the passage 33 is opened, and the refrigerant evaporated in the ventilation heat exchanger 24 is switched to a state in which it flows to the low-pressure part instead of the intermediate-pressure part of the compressor 2. Thereby, the compressor 2 can perform the compression work without any trouble.
  • the controller 43 determines that each time when the temperature converted from the suction pressure detected by the pressure sensor 39 is a predetermined low temperature (for example, ⁇ 10 ° C.) continues for a predetermined time (for example, 10 minutes or more). It is determined that defrosting of the heat exchangers 7 and 24 is necessary.
  • the expansion valve 22 is closed and the vehicle exterior heat exchanger 7 is frosted by the pressure sensor 39 in a state in which no refrigerant flows through the ventilation heat exchanger 24.
  • the pressure sensor 39 is closed in a state in which the expansion valve 6 is closed and no refrigerant is allowed to flow through the vehicle exterior heat exchanger 7 when it is determined whether the ventilation heat exchanger 24 needs to be defrosted.
  • it is determined whether or not the ventilation heat exchanger 24 is clogged due to frost formation.
  • the necessity of defrosting the heat exchangers 7 and 24 is not limited to this, and it may be determined by directly detecting that the surface temperature of the heat exchangers 7 and 24 has decreased. Alternatively, it may be determined that the difference between the evaporation temperature and the air temperature in the passenger compartment is widened, or that the wind speed passing through each of the heat exchangers 7 and 24 is detected by a wind speed sensor and decreased.
  • the high-temperature refrigerant discharged from the compressor 2 radiates heat with the radiator 4, evaporates with the ventilation heat exchanger 24, passes through the electromagnetic valve 34, and the compressor 2 It will be in the state sucked into the low-pressure part. Therefore, the passenger compartment is continuously heated by releasing the heat pumped up by the ventilation heat exchanger 24 through the radiator 4.
  • the solenoid valve 32 is also closed and the refrigerant does not flow into the hot gas cycle circuit 31, the refrigerant flows only to the ventilation heat exchanger 24. 34, and the refrigerant evaporated in the ventilation heat exchanger 24 is switched to a state where the refrigerant flows to the low pressure portion instead of the intermediate pressure portion of the compressor 2, so that the compressor 2 can similarly perform the compression work without any trouble. It becomes.
  • the controller 43 finishes defrosting the outside heat exchanger 7.
  • the controller 43 closes the expansion valve 22 from the state of FIG. 1 to the ventilation heat exchanger 24 as shown in FIG. Do not flush. Thereby, since the evaporation of the refrigerant in the ventilation heat exchanger 24 is eliminated, frost formation in the ventilation heat exchanger 24 is melted and removed by the air in the vehicle interior.
  • the controller 43 has finished defrosting the ventilation heat exchanger 24. It returns to the state of FIG.
  • the controller 43 executes one defrosting and then the other defrosting. For example, the defrosting of the outdoor heat exchanger 7 that is the key to the heating function is first performed, and the defrosting of the ventilation heat exchanger 24 is performed after the defrosting is completed.
  • the controller 43 switches the circuit from the state shown in FIG. 1 (or FIG. 2) to the state shown in FIG. That is, in FIG. 4, the controller 43 fully closes the expansion valve 6 to prevent the refrigerant from flowing into the vehicle exterior heat exchanger 7, closes the electromagnetic valve 34, and opens the electromagnetic valve 32.
  • the vehicle interior is also heated by heat radiation from the vehicle interior heat exchanger 9 in which the high-temperature refrigerant is circulated through the hot gas cycle circuit 31.
  • the high-temperature refrigerant compressed and pressurized by the compressor 2 is radiated by the radiator 4.
  • the upper side from the upper right to the left in FIG. Thereafter, the pressure is reduced by the expansion valve 22 and the pressure is reduced to an intermediate pressure.
  • the left side from the top to the bottom of FIG. 5 indicates the pressure reduction in the expansion valve 22.
  • the lower left side from the lower left to the right in FIG. 5 is the heat absorption of the ventilation heat exchanger 24.
  • part of the high-temperature refrigerant whose pressure has been increased by the compressor 2 flows into the hot gas cycle circuit 31 and is depressurized by the expansion valve 8 so that the pressure is reduced to a low pressure.
  • the right side descending from the upper right in FIG. 5 indicates the pressure reduction in the expansion valve 8. Then, it flows into the vehicle interior heat exchanger 9 and evaporates, and is sucked into the low pressure portion of the compressor 2.
  • the lower right side from the lower right to the left in FIG. 5 is the heat radiation in the vehicle interior heat exchanger 9. Therefore, since heat radiation (actually multiplied by the flow rate) with the lower right side added to the upper side of FIG. 5 becomes the heating capacity, it is compared with the case of only the radiator 4 as shown in FIG. 2 (only the upper side of FIG. 5). It turns out that heating capacity becomes high.
  • the vehicle interior heat exchanger 9 can also dissipate heat to the vehicle interior and can be heated, so that the radiator 4 and the vehicle interior heat exchanger 9 can be used to heat the vehicle interior. Heating can be pumped up and recovered from the air in the passenger compartment that is exhausted to the outside by the ventilation heat exchanger 24 while heating. As a result, vehicle interior heating by heat pump operation in a low outside air temperature environment can be performed extremely effectively and efficiently, and is particularly suitable for an electric vehicle in which the compressor 2 is driven by a battery. It is possible to achieve indoor air conditioning and prevent a decrease in the cruising range.
  • the controller 43 determines whether the vehicle exterior heat exchanger 7 Although it is determined that the defrosting has been completed and the state returns to the state shown in FIG. 1, when the outside air temperature is below freezing (0 ° C. or less), the frost on the vehicle exterior heat exchanger 7 is melted by the ventilation of the outside air. Cannot be expected. Therefore, when the outside air temperature detected by the temperature sensor 42 is below the freezing point, the controller 43 does not execute the defrosting end determination itself of the vehicle exterior heat exchanger 7. As a result, it is possible to avoid useless defrosting completion determination in a situation where it is difficult to defrost the exterior heat exchanger 7 by the outside air, and to simplify the control operation by the controller 43.
  • the high-temperature refrigerant when the vehicle exterior heat exchanger 7 is defrosted and the outside air temperature is low, the high-temperature refrigerant is allowed to flow through the hot gas cycle circuit 31.
  • the high-temperature refrigerant may always be passed through the hot gas cycle circuit 31 as shown in FIG. In that case, defrosting of the heat exchanger outside the passenger compartment by the ventilation of the outside air in a situation where the outside air temperature is higher than the freezing point can be simultaneously advanced.
  • the circuit may be switched from the state of FIG. 1 to the state of FIG.
  • Heating assistance by electric heater 44 if the temperature inside the vehicle compartment is low even after heating by heat radiation from the radiator 4 or the vehicle interior heat exchanger 9 as described above, the controller 43 energizes the electric heater 44 to generate heat, thereby heating the vehicle interior. Provide assistance. For example, if the vehicle interior temperature does not rise to the set temperature even after the heating operation has continued for a predetermined time, the controller 43 causes the electric heater 44 to generate heat, and executes control to stop energization when the temperature rises. As a result, the heating capacity in the vehicle interior can be supplemented by the electric heater 44, and a more comfortable vehicle interior environment can be realized. However, energization of the electric heater 44 is performed within the allowable range of the battery of the electric vehicle.
  • FIG. 6 has shown the state at the time of dehumidification heating.
  • the controller 43 operates the compressor 2, the air blower 37 and the outdoor heat exchanger air blower 41, and sets the solenoid valves 17 and 18. Open and solenoid valves 16, 19, 32, 34 close. Further, control is performed to decompress the refrigerant by the expansion valves 6, 8, and 22, and the air mix damper 38 closes the ventilation duct 3 other than the radiator 4. As a result, the refrigerant flows through the compressor 2, the radiator 4, the expansion valve 6, and the vehicle exterior heat exchanger 7 as shown by the thick line in FIG.
  • FIG. 7 shows a state during cooling.
  • the controller 43 operates the compressor 2, the ventilation fan 37, and the outdoor heat exchanger fan 41, and the electromagnetic valves 16, 1 9 is opened and the solenoid valves 17, 18, 32, 34 are closed.
  • the expansion valve 22 is fully closed and the refrigerant is decompressed by the expansion valve 8, and the air mix damper 38 closes the upstream side of the radiator 4, so that the air in the vehicle compartment is the ventilation duct 3 other than the radiator 4.
  • the refrigerant flows through the compressor 2, the radiator 4, the electromagnetic valve 16, and the vehicle exterior heat exchanger 7 as shown by the thick line in FIG.
  • FIG. 8 shows a heating state of the vehicle air conditioner 1 of another embodiment to which the present invention is applied.
  • the same reference numerals as those in FIG. 1 are the same.
  • the evaporation pressure adjusting valve 21 is connected to the ventilation heat exchanger circuit 21. (EPR) 46 is interposed.
  • the evaporation pressure adjusting valve 46 is a valve device that adjusts the evaporation pressure in the ventilation heat exchanger 24 so that the evaporation temperature of the refrigerant in the ventilation heat exchanger 24 does not drop below the freezing point (0 ° C. or lower).
  • the ventilation heat exchanger 24 can be maintained in a state where frost formation does not occur. Thereby, the function stop of the ventilation heat exchanger 24 as described above due to defrosting can be avoided, and heat can be always recovered from the air in the passenger compartment.
  • FIG. 9 shows a cooling state of the vehicle air conditioner 1 of still another embodiment to which the present invention is applied.
  • the same reference numerals as those in FIGS. 1 and 7 are the same.
  • the vehicle exterior heat exchanger 7 is provided in the exterior air duct 47 outside the vehicle compartment through which the outside air circulates, and the outlet 23A of the ventilation duct 23 is upstream of the exterior air flowing into the vehicle interior heat exchanger 7. On the side, it communicates with the outside air duct 47.
  • the air in the vehicle interior is sucked out due to the venturi effect of the outside air flowing through the outside air duct 47. It is not necessary to provide a separate fan. Further, the air in the passenger compartment that has passed through the ventilation heat exchanger 24 can be smoothly guided to the outdoor heat exchanger 7. In this case, the air in the vehicle compartment that has passed through the ventilation heat exchanger 24 is mixed with the outside air upstream of the vehicle exterior heat exchanger 7 and is distributed to the vehicle exterior heat exchanger 7. Therefore, the ventilation heat exchanger 24 is heated during heating.
  • the air in the vehicle compartment still having a higher temperature than the outside air can be passed through the vehicle exterior heat exchanger 7 to increase the temperature of the outside air ventilated in the vehicle exterior heat exchanger 7.
  • the power of the compressor 2 it is possible to reduce the power of the compressor 2 by increasing the evaporation temperature of the refrigerant in the vehicle exterior heat exchanger 7.
  • the air in the passenger compartment having a temperature lower than that of the outside air can be allowed to flow to the outside heat exchanger 7 during cooling, the outside air temperature passed through the outside heat exchanger 7 is lowered and the condensation temperature is lowered. Similarly, the power of the compressor 2 can be reduced.
  • FIG. 10 shows a state during cooling of the vehicle air conditioner 1 of still another embodiment to which the present invention is applied.
  • the same reference numerals as those in FIG. 9 denote the same components.
  • the vehicle exterior heat exchanger 7 is provided in the exterior air duct 47 through which the exterior air is circulated to the vehicle exterior heat exchanger 7, and the outlet 23 ⁇ / b> A of the ventilation duct 23 is from the vehicle exterior heat exchanger 7. It communicates with the outside air duct 47 on the upstream side. Accordingly, the outlet 23A serves as an inflow portion for the passenger compartment air.
  • an electric damper 48 is attached to the outlet 23A serving as the inflow portion.
  • the controller 43 controls the damper 48 to linearly adjust the opening amount of the outlet 23A. For example, by narrowing the opening of the outlet 23A (inflow portion) by the damper 48, it is possible to eliminate the disadvantage that the amount of air in the vehicle compartment sucked out by the venturi effect increases excessively. Further, for example, the controller 43 calculates the amount of outside air (speed) that is ventilated to the vehicle exterior heat exchanger 7 from the vehicle speed and the rotational speed of the vehicle exterior heat exchanger blower 41. When the amount of outside air to be ventilated through the vehicle exterior heat exchanger 7 is large, the opening of the outlet 23A is closed and narrowed by the damper 48, and conversely, when the amount of outside air to be ventilated is small, the opening is widened.
  • FIG. 11 shows a heating state of the vehicle air conditioner 1 of still another embodiment to which the present invention is applied.
  • the same reference numerals as those in FIG. 1 indicate the same or similar functions.
  • two compressors 2A and 2B are used, and the refrigerant that has passed through the vehicle exterior heat exchanger 7 or the vehicle interior heat exchanger 9 is sucked into the suction side (low pressure part) of the low-stage compressor 2A.
  • the low-stage compressor 2A compresses the refrigerant to an intermediate pressure, sucks the intermediate-pressure refrigerant into the high-stage compressor 2B, and discharges the high-temperature refrigerant compressed by the high-stage compressor 2B to the radiator 4.
  • the refrigerant that has passed through the ventilation heat exchanger 24 is sucked into the suction side of the high-stage compressor 2B, which is an intermediate pressure, through the check valve 26.
  • the low-stage compressor 2A is stopped, or the bypass passage and the solenoid valve are non-returned.
  • the upstream side of the valve 26 may be connected to the suction side of the low stage compressor 2A, and the solenoid valve may be opened so that the refrigerant from the ventilation heat exchanger 24 is sucked into the low stage compressor 2A.
  • FIGS. 12 to 15 show configuration diagrams of a vehicle air conditioner 1 of still another embodiment to which the present invention is applied.
  • 12 is used for heating the vehicle air conditioner 1 according to the sixth embodiment
  • FIG. 13 is used for defrosting the vehicle exterior heat exchanger 7
  • FIG. 14 is used for the vehicle interior heat exchanger 9 while defrosting the vehicle exterior heat exchanger.
  • FIG. 15 shows a ph diagram in that case, and corresponds to FIG. 1, FIG. 2, FIG. 4, and FIG. And in each figure, what is shown with the same code
  • the ventilation heat exchanger circuit 21 is not connected to the intermediate pressure portion of the compressor 2, but is connected to the low pressure portion of the compressor 2, and the check valve 26 and the electromagnetic valve 34 in the first embodiment are also deleted. Yes. Therefore, the refrigerant is depressurized to a low pressure in the expansion valve 22, and then the refrigerant evaporated in the ventilation heat exchanger 24 merges with the refrigerant from the vehicle exterior heat exchanger 7 and the vehicle interior heat exchanger 9. It will be sucked into the suction side (low pressure part).
  • FIG.16 and FIG.17 has shown the block diagram of the vehicle air conditioner 1 of the further another Example to which this invention is applied.
  • FIG. 16 shows the time when the vehicle air conditioner 1 of the seventh embodiment is heated
  • FIG. 17 shows the time when the outside heat exchanger 7 is defrosted, corresponding to FIGS. 1 and 2 in the first embodiment.
  • the same reference numerals as those in FIGS. 1 and 2 indicate the same or similar functions.
  • the hot gas cycle circuit 31 and the solenoid valve 32 in the first embodiment are not provided.
  • the ventilation heat exchanger circuit 21 is not connected to the intermediate pressure portion of the compressor 2, but is connected to the low pressure portion of the compressor 2, and the check valve 26 and the electromagnetic valve 34 in the first embodiment are also omitted. . Therefore, the refrigerant is depressurized to a low pressure in the expansion valve 22, and then the refrigerant evaporated in the ventilation heat exchanger 24 merges with the refrigerant from the vehicle exterior heat exchanger 7 to the suction side (low pressure portion) of the compressor 2. Will be inhaled.
  • the other refrigerant flows are the same as those in FIG.
  • the controller 43 when heating the passenger compartment, the controller 43 operates the compressor 2, the ventilation fan 37 and the outdoor heat exchanger fan 41, opens the electromagnetic valve 18, and closes the electromagnetic valves 16, 17, and 19.
  • the refrigerant is decompressed by the expansion valves 6 and 22, and the air mix damper 38 closes the ventilation duct 3 other than the radiator 4.
  • the refrigerant flows to the compressor 2, the radiator 4, the expansion valve 6, and the vehicle exterior heat exchanger 7 as shown by the thick line in FIG. 16, and then passes through the electromagnetic valve 18 and the bypass path 14 to reduce the low pressure of the compressor 2. And is also circulated through the ventilation heat exchanger circuit 21 to heat the passenger compartment by the radiator 4.
  • part of the refrigerant that has passed through the radiator 4 flows into the ventilation heat exchanger circuit 21, is decompressed by the expansion valve 22, and evaporates in the ventilation heat exchanger 24, and thus flows out of the passenger compartment through the ventilation duct 23. Heat is absorbed from the warm air in the passenger compartment to the refrigerant.
  • the controller 43 fully closes the expansion valve 6 as shown in FIG. 17 from the state of FIG. 16 so that the refrigerant does not flow into the vehicle exterior heat exchanger 7.
  • the evaporation of the refrigerant in the vehicle exterior heat exchanger 7 is eliminated, so that the frost formation in the vehicle exterior heat exchanger 7 is melted and removed by the outside air that is ventilated.
  • the hot gas cycle circuit 31 is not provided, it is impossible to dissipate heat by flowing a high-temperature refrigerant through the vehicle interior heat exchanger 9 as in the first embodiment, regardless of the outside air temperature.
  • the controller 43 energizes the electric heater 44 to generate heat when defrosting the exterior heat exchanger 7.
  • the refrigerant is not flowed to the exterior heat exchanger 7, the refrigerant radiated by the radiator 4 is decompressed and flows to the ventilation heat exchanger 24, If the vehicle interior is warmed by the electric heater 44, the vehicle interior is heated by the electric heater 44 in addition to the heating by heat radiation from the radiator 4, and further the vehicle exhausted to the outside by the ventilation heat exchanger 24. It becomes possible to recover the heat in the indoor air.
  • R Refrigerant circuit 1 Air conditioner for vehicle 2, 2A, 2B Compressor 3 Ventilation duct 4 Radiator 6, 8, 22 Expansion valve 7 Heat exchanger outside the vehicle 9 Heat exchanger inside the vehicle 16, 17, 18, 19, 32, 34 Solenoid valve 21 Ventilation heat exchanger circuit 23 Ventilation duct 24 Ventilation heat exchanger 26 Check valve 27, 28, 42 Temperature sensor 31 Hot gas cycle circuit 39 Pressure sensor 43 Controller 44 Electric heater 46 Evaporation pressure adjustment valve 47 Outside air duct 48 damper

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 圧縮機を用いた冷媒回路のヒートポンプ運転により車室内を暖房する車両用空調装置における、特に低外気温時の暖房能力の改善を図る。暖房時に圧縮機2から吐出された冷媒を放熱器4にて車室内に放熱させ、この放熱器で放熱した後、減圧された冷媒を車室外熱交換器7及び/又は換気熱交換器24にて蒸発させ、冷房時には圧縮機から吐出された冷媒を車室外熱交換器にて放熱させ、この車室外熱交換器で放熱した後、減圧された冷媒を車室内熱交換器9にて蒸発させて車室内から吸熱する。圧縮機から吐出された冷媒の一部を減圧して車室内熱交換器に流し、車室内に放熱させるホットガスサイクル回路31を備える。

Description

車両用空調装置
 本発明は、圧縮機や放熱器、車室内外の熱交換器から構成された冷媒回路から成るヒートポンプを用い、車両の車室内を空調する車両用空調装置に関するものである。
 従来よりエンジン(内燃機関)により走行する車両においては、エンジンにより駆動される圧縮機を備えて冷媒回路が構成された空調装置により、車室内の冷房や除湿を行うと共に、車室内の暖房はエンジン廃熱を利用して行われている。
 また、近年では地球環境問題の解消に寄与する目的から、電動モータで走行する電気自動車やエンジンに電動モータを組み合わせたハイブリッド自動車が実用化されている。このような自動車では、バッテリに充電された電力で空調装置の冷媒回路を構成する電動圧縮機を駆動し、車室内の冷房や除湿を行うことになる。
 また、車室内の暖房については、ハイブリッド自動車ではエンジン廃熱を利用できるものの、純粋な電気自動車の場合には、それも利用できないため、空調装置によりヒートポンプ運転を行って外気中の熱を汲み上げ、車室内を暖めるか、或いは、電気ヒータを用いる以外に無い。しかしながら、電気ヒータの場合にはCOP(成績係数)が最大1であるため、バッテリに蓄えられた電力の消費量が大きくなり、電気自動車の航続距離が短くなってしまう。
 一方、電動圧縮機を駆動して車室外熱交換器により外気中の熱を汲み上げるヒートポンプ運転により車室内を暖房すれば、COPを1以上とすることが可能であるが、真冬などの低外気温環境下では、汲み上げる温度差が大きくなり、圧縮機の圧縮比も高くなるため、暖房能力や効率が低下してしまう問題がある。
 そこで、換気のために車室内から排出される空気中の熱を回収する換気熱交換器を設け、外気からのヒートポンプに加えて換気される空気中の熱も回収し、車室内の暖房を行う空調装置を先に開発した(特許文献1参照)。
特開2011-152808号公報 特開平5-223357号公報
 しかしながら、低外気温時に車室外熱交換器における冷媒の蒸発温度が0℃以下になると、車室外熱交換器には着霜が成長して目詰まりを起こすようになる。そのような状態に陥ると外気との熱交換性能が悪化するため、ヒートポンプの性能は著しく低下してしまう。そのため、車室外熱交換器への冷媒循環を停止して外気を通風し、或いは、霜取りヒータに通電して霜取りを行わなければならないが、換気熱交換器を用いたヒートポンプを行ったとしても、霜取り中は車室内の暖房能力が著しく低下してしまう。
 また、車室外熱交換器の霜取りも、外気が氷点下となる状況では通風による融解は困難となる。更に、霜取りヒータを用いる場合には、バッテリの電力を消費してしまい、航続距離を一層縮めてしまうことになる。
 一方、エンジン廃熱を利用した暖房を行う車両用の空調装置においては、常には冷房のために使用する冷媒回路の蒸発器に、圧縮機から吐出された高温冷媒を流して放熱させ、暖房の補助を行う技術も開発されている(例えば、特許文献2参照)。
 本発明は、係る従来の状況に鑑みてなされたものであり、圧縮機を用いた冷媒回路のヒートポンプ運転により車室内を暖房する車両用空調装置における、特に低外気温時の暖房能力の改善を図ることを目的とする。
 請求項1の発明の車両用空調装置は、圧縮機と、放熱器と、車室外熱交換器と、車室内熱交換器と、車室内から車室外に排出される空気から吸熱するための換気熱交換器とから冷媒回路が構成され、暖房時に圧縮機から吐出された冷媒を放熱器にて車室内に放熱させ、この放熱器で放熱した後、減圧された冷媒を車室外熱交換器及び/又は換気熱交換器にて蒸発させ、冷房時には圧縮機から吐出された冷媒を車室外熱交換器にて放熱させ、この車室外熱交換器で放熱した後、減圧された冷媒を車室内熱交換器にて蒸発させて車室内から吸熱するものであって、圧縮機から吐出された冷媒の一部を減圧して車室内熱交換器に流し、車室内に放熱させるホットガスサイクル回路を備えたことを特徴とする。
 請求項2の発明の車両用空調装置は、上記発明において暖房時に車室外熱交換器の霜取りを行う場合、及び/又は、外気温度が所定の低い値である場合、車室外熱交換器には冷媒を流さず、放熱器で放熱した冷媒を減圧して換気熱交換器に流すと共に、圧縮機から吐出された冷媒の一部をホットガスサイクル回路に流すことを特徴とする。
 請求項3の発明の車両用空調装置は、上記発明において車室外熱交換器で蒸発した冷媒、又は、ホットガスサイクル回路を経て車室内熱交換器で放熱した冷媒を圧縮機の低圧部に吸引させると共に、換気熱交換器で蒸発した冷媒は圧縮機の中間圧部に戻すことを特徴とする。
 請求項4の発明の車両用空調装置は、上記発明において車室外熱交換器、及び、ホットガスサイクル回路に冷媒を流さない場合、又は、車室内温度が所定の低い値である場合、換気熱交換器で蒸発した冷媒を圧縮機の低圧部に戻すことを特徴とする。
 請求項5の発明の車両用空調装置は、請求項2の発明において、暖房時に車室外熱交換器と換気熱交換器への冷媒の流入を交互に停止した状態で各熱交換器の霜取りの必要性を判断すると共に、換気熱交換器の霜取りを行う場合には、当該換気熱交換器に冷媒を流さないことを特徴とする。
 請求項6の発明の車両用空調装置は、請求項2の発明において、暖房時に車室外熱交換器の霜取りが終了した場合、ホットガスサイクル回路に冷媒を流さず、車室外熱交換器に冷媒を流す状態に復帰すると共に、車室外の温度が氷点下である場合、車室外熱交換器の霜取りが終了したか否かの判断を行わないことを特徴とする。
 請求項7の発明の車両用空調装置は、請求項1の発明において換気熱交換器における冷媒の蒸発温度が氷点下に下がることを防止する蒸発圧力調整弁を設けたことを特徴とする。
 請求項8の発明の車両用空調装置は、請求項1の発明において換気熱交換器を経た車室内の空気を、車室外熱交換器に流通させることを特徴とする。
 請求項9の発明の車両用空調装置は、上記発明において車室外熱交換器に外気を流通さ
せるダクトを備え、車室外熱交換器より上流側におけるダクトに換気熱交換器を経た車室内の空気を流入させると共に、この車室内空気の流入部の開口を狭めたことを特徴とする。
 請求項10の発明の車両用空調装置は、上記発明においてダクトにおける車室内空気の流入部の開口量を調整するダンパを備えたことを特徴とする。
 請求項11の発明の車両用空調装置は、請求項1の発明において暖房時に車室内を暖める電気ヒータを設けたことを特徴とする。
 請求項12の発明の車両用空調装置は、圧縮機と、放熱器と、車室外熱交換器と、車室内熱交換器と、車室内から車室外に排出される空気から吸熱するための換気熱交換器とから冷媒回路が構成され、暖房時に圧縮機から吐出された冷媒を放熱器にて車室内に放熱させ、この放熱器で放熱した後、減圧された冷媒を車室外熱交換器及び/又は換気熱交換器にて蒸発させ、冷房時には圧縮機から吐出された冷媒を車室外熱交換器にて放熱させ、この車室外熱交換器で放熱した後、減圧された冷媒を車室内熱交換器にて蒸発させて車室内から吸熱するものであって、電気ヒータを設け、暖房時に車室外熱交換器の霜取りを行う場合、車室外熱交換器には冷媒を流さず、放熱器で放熱した冷媒を減圧して換気熱交換器に流すと共に、電気ヒータにより車室内を暖めることを特徴とする。
 請求項1の発明によれば、圧縮機と、放熱器と、車室外熱交換器と、車室内熱交換器と、車室内から車室外に排出される空気から吸熱するための換気熱交換器とから冷媒回路が構成され、暖房時に圧縮機から吐出された冷媒を放熱器にて車室内に放熱させ、この放熱器で放熱した後、減圧された冷媒を車室外熱交換器及び/又は換気熱交換器にて蒸発させ、冷房時には圧縮機から吐出された冷媒を車室外熱交換器にて放熱させ、この車室外熱交換器で放熱した後、減圧された冷媒を車室内熱交換器にて蒸発させて車室内から吸熱する車両用空調装置において、圧縮機から吐出された冷媒の一部を減圧して車室内熱交換器に流し、車室内に放熱させるホットガスサイクル回路を設けたので、このホットガスサイクル回路に圧縮機から吐出された高温の冷媒の一部を流すことにより、放熱器による暖房に加えて、車室内熱交換器においても車室内に放熱させ、暖房することができるようになる。
 従って、例えば請求項2の発明の如く暖房時に車室外熱交換器の霜取りを行う場合や外気温度が所定の低い値であって、外気からの熱の汲み上げができず、或いは、困難な状況となった場合に、車室外熱交換器に冷媒を流さず、放熱器で放熱した冷媒を減圧して換気熱交換器に流し、圧縮機から吐出された冷媒の一部をホットガスサイクル回路に流すことにより、放熱器と車室内熱交換器で車室内の暖房を行いながら、換気熱交換器で外部に排出される車室内の空気中から熱を汲み上げ、回収することができるようになる。
 これにより、低外気温環境下におけるヒートポンプ運転による車室内暖房を極めて効果的、且つ、効率的に行うことができるようになると共に、外気温度が氷点より高い状況では外気の通風による車室外熱交換器の霜取りも同時に進行させることが可能となり、特にバッテリで圧縮機を駆動する電気自動車において、極めて好適な車室内空調を実現し、その航続距離の低下も防止することが可能となるものである。
 また、請求項3の発明の如く車室外熱交換器で蒸発した冷媒、又は、ホットガスサイクル回路を経て車室内熱交換器で放熱した冷媒を圧縮機の低圧部に吸引させると共に、換気熱交換器で蒸発した冷媒は圧縮機の中間圧部に戻すようにすれば、放熱器の冷媒循環量を増やして放熱能力を増加させることができると共に、圧縮機における圧縮仕事も減少させ
、効率の改善を図ることができるようになる。
 この場合、請求項4の発明の如く車室外熱交換器、及び、ホットガスサイクル回路に冷媒を流さない場合、換気熱交換器で蒸発した冷媒を圧縮機の低圧部に戻すように切り換えれば、換気熱交換器からのみ圧縮機に冷媒が戻る状況下においても、圧縮機における圧縮仕事を支障なく行わせることが可能となる。
 また、車室内温度が所定の低い値である場合にも、換気熱交換器で蒸発した冷媒を圧縮機の低圧部に戻すようにすれば、換気熱交換器における冷媒温度が低く、圧縮機の中間圧部以下の圧力となる状況下においても、換気熱交換器を経た冷媒を支障なく圧縮機に吸い込ませることが可能となるものである。
 また、請求項5の発明の如く暖房時に車室外熱交換器と換気熱交換器への冷媒の流入を交互に停止した状態で各熱交換器の霜取りの必要性を判断するようにすれば、車室外熱交換器及び換気熱交換器が着霜により目詰まりを起こし、霜取りが必要となっているか否かを的確に判断することが可能となる。そして、換気熱交換器が着霜による目詰まりを起こしている場合には、当該換気熱交換器に冷媒を流さないようにすれば、比較的温度の高い車室内の空気により、換気熱交換器を円滑に霜取りすることができるようになるものである。
 そして、請求項6の発明の如く暖房時に車室外熱交換器の霜取りが終了した場合、ホットガスサイクル回路に冷媒を流さず、車室外熱交換器に冷媒を流す状態に復帰することにより、外気中の熱を汲み上げることによるヒートポンプ運転に支障なく復帰することができる。
 この場合、車室外の温度が氷点下である場合、車室外熱交換器の霜取りが終了したか否かの判断を行わないようにすれば、外気による車室外熱交換器の霜取りが困難な状況下における無駄な霜取り終了判断を回避し、制御を簡素化することが可能となる。
 また、請求項7の発明の如く換気熱交換器における冷媒の蒸発温度が氷点下に下がることを防止する蒸発圧力調整弁を設ければ、換気熱交換器については着霜が生じない状態に維持することができるようになり、霜取りに伴う換気熱交換器の機能停止を回避することが可能となる。
 更に、請求項8の発明の如く換気熱交換器を経た車室内の空気を、車室外熱交換器に流通させれば、暖房時に換気熱交換器を経ても未だ外気より温度の高い車室内の空気を車室外熱交換器に流して当該車室外熱交換器に通風される外気温度を上げ、蒸発温度を上げて圧縮機動力の低減を図ることが可能となる。
 一方、冷房時には外気より温度の低い車室内の空気を車室外熱交換器に流して当該車室外熱交換器に通風される外気温度を下げ、凝縮温度を下げて同様に圧縮機動力の低減を図ることが可能となるものである。
 特に、請求項9の発明の如く車室外熱交換器に外気を流通させるダクトを設け、車室外熱交換器より上流側におけるダクトに換気熱交換器を経た車室内の空気を流入させることにより、換気熱交換器を経た車室内の空気を円滑に車室外熱交換器に導くことができるようになると共に、この車室内空気の流入部の開口を狭めることにより、ベンチュリ効果で吸い出される車室内の空気量が増えすぎる不都合も解消することが可能となる。
 この場合、請求項10の発明の如くダクトにおける車室内空気の流入部の開口量を調整
するダンパを設ければ、このダンパにより吸い出される車室内の空気量を調整することができるようになり、例えば、車速や車室外熱交換器用の送風機の回転数の変化等により、車室外熱交換器に通風される外気量が変化しても、車室内からの換気量を一定に保つことが可能となる。
 そして、請求項11の発明の如く暖房時に車室内を暖める電気ヒータを設ければ、バッテリの許される範囲で電気自動車の車室内の暖房能力を電気ヒータにより補完し、より快適な車室内環境を実現することが可能となる。
 請求項12の発明によれば、圧縮機と、放熱器と、車室外熱交換器と、車室内熱交換器と、車室内から車室外に排出される空気から吸熱するための換気熱交換器とから冷媒回路が構成され、暖房時に圧縮機から吐出された冷媒を放熱器にて車室内に放熱させ、この放熱器で放熱した後、減圧された冷媒を車室外熱交換器及び/又は換気熱交換器にて蒸発させ、冷房時には圧縮機から吐出された冷媒を車室外熱交換器にて放熱させ、この車室外熱交換器で放熱した後、減圧された冷媒を車室内熱交換器にて蒸発させて車室内から吸熱する車両用空調装置において、電気ヒータを設け、暖房時に車室外熱交換器の霜取りを行う場合、車室外熱交換器には冷媒を流さず、放熱器で放熱した冷媒を減圧して換気熱交換器に流すと共に、電気ヒータにより車室内を暖めるようにしたので、放熱器からの放熱による暖房に加えて、電気ヒータにより車室内を暖房し、更に換気熱交換器にて車室外に排出される車室内の空気中の熱を回収することができるようになる。
 これにより、暖房中の車室外熱交換器の霜取りを行うためにヒートポンプ運転による外気からの熱の汲み上げができなくなった場合に、放熱器による暖房を電気ヒータにて補完し、低外気温時にも快適な車室内暖房を実現しながら、換気熱交換器で車室外に廃棄される熱も回収し、効率の悪化を最小限に抑制することが可能となる。従って、特にバッテリで圧縮機を駆動する電気自動車において、その航続距離の低下も最小限に抑制することが可能となる。一方、外気温度が氷点より高ければ、外気の通風による車室外熱交換器の霜取りも同時に進行させることができるようになるものである。
本発明を適用した一実施例の車両用空調装置の暖房時の状態を説明する構成図である(実施例1)。 図1の車両用空調装置の車室外熱交換器の霜取り時の状態を説明する構成図である。 図1の車両用空調装置の換気熱交換器の霜取り時の状態を説明する構成図である。 図1の車両用空調装置の車室外熱交換器の霜取りを行いながら車室内熱交換器を用いた暖房を行う状態を説明する構成図である。 図4の場合の車両用空調装置のp-h線図である。 図1の車両用空調装置の除湿暖房時の状態を説明する構成図である。 図1の車両用空調装置の冷房時の状態を説明する構成図である。 本発明を適用した他の実施例の車両用空調装置の暖房時の状態を説明する構成図である(実施例2)。 本発明を適用した更に他の実施例の車両用空調装置の冷房時の状態を説明する構成図である(実施例3)。 本発明を適用した更に他の実施例の車両用空調装置の冷房時の状態を説明する構成図である(実施例4)。 本発明を適用した更に他の実施例の車両用空調装置の暖房時の状態を説明する構成図である(実施例5)。 本発明を適用した更に他の実施例の車両用空調装置の暖房時の状態を説明する構成図である(実施例6)。 図12の車両用空調装置の車室外熱交換器の霜取り時の状態を説明する構成図である。 図12の車両用空調装置の車室外熱交換器の霜取りを行いながら車室内熱交換器を用いた暖房を行う状態を説明する構成図である。 図14の場合の車両用空調装置のp-h線図である。 本発明を適用した更に他の実施例の車両用空調装置の暖房時の状態を説明する構成図である(実施例7)。 図16の車両用空調装置の車室外熱交換器の霜取り時の状態を説明する構成図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1乃至図7は本発明の実施例1に係る車両用空調装置1の構成図を示している。この場合、本発明を適用する実施例の車両は、エンジン(内燃機関)を有さない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空調装置1も、バッテリの電力で駆動されるものである。
 即ち、実施例の車両用空調装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や冷房を選択的に実行するものである。尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効である。
 実施例の車両用空調装置1は、電気自動車の車室内の暖房、換気、及び、空調を行うものであり、冷媒を圧縮して昇圧する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の通気ダクト3内に設けられて圧縮機2から吐出された高温高圧の冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動式の第1の膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる車室外熱交換器7と、冷媒を減圧膨張させる電動式の第2の膨張弁8と、通気ダクト3内に設けられて冷房時及び除湿暖房時に車室内外から冷媒に吸熱する車室内熱交換器9とが冷媒配管11により順次接続され、冷媒回路Rが構成されている。
 また、膨張弁6をバイパスするバイパス路12が接続され、膨張弁6と車室外熱交換器7をバイパスするバイパス路13が接続されると共に、膨張弁8及び車室内熱交換器9をバイパスするバイパス路14が接続されている。更に、バイパス路12には冷房時に連通して膨張弁6を迂回させて冷媒を流す電磁弁16が介設され、バイパス路13には除湿暖房時に連通して冷媒の一部を、膨張弁6及び車室外熱交換器7を迂回させて流す電磁弁17が介設され、バイパス路14には暖房時及び除湿暖房時に連通して冷媒を、膨張弁8及び車室内熱交換器9を迂回させて流す電磁弁18が介設されている。また、バイパス路13の車室外熱交換器7側の分岐部とバイパス路14の車室外熱交換器7側の分岐部間の冷媒配管11には、冷房時に連通して冷媒を膨張弁8及び車室内熱交換器9に流す電磁弁19が介設されている。
 更に、放熱器4と膨張弁6の間の冷媒配管11からは分岐して換気熱交換器用回路21が設けられており、この換気熱交換器用回路21は圧縮機2の中間圧部に接続されている。この換気熱交換器用回路21には、上流側から順に暖房時及び除湿暖房時に開放される
電動式の第3の膨張弁22と、車室内の空気を車室外に排出して換気するための換気ダクト23内を通って車室外に流出する車室内の空気中から暖房時及び除湿暖房時に冷媒に吸熱させる換気熱交換器24及び逆止弁26が接続されている。尚、逆止弁26は圧縮機2方向を順方向とされている。また、車室内の空気は車室外におけるベンチュリ効果や圧力差によって換気ダクト23から流出するものであるが、換気用送風機を設けて強制的に排出するようにしてもよい。
 この換気熱交換器用回路21は圧縮機2のインジェクション回路を構成している。そして、この換気熱交換器24を含む換気熱交換器用回路21は、車両用空調装置1のヒートポンプ運転時のCOP(成績係数)向上に寄与する。また、換気熱交換器24の冷媒入口と出口には、それぞれサーミスタから成る温度センサ27、28が取り付けられて冷媒の温度を検出できるように構成されている。
 また、圧縮機2の吐出側(高圧部)からはホットガスサイクル回路31が分岐し、膨張弁8の冷媒入口側の冷媒配管11に接続されており、このホットガスサイクル回路31には車室外熱交換器7が目詰まりして霜取りする際に車室内熱交換器9にて暖房を行わせるときに開放される電磁弁32が介設されている。
 また、換気熱交換器用回路21の逆止弁26の上流側と圧縮機2の低圧部(吸込側)間にはバイパス路33が接続されており、このバイパス路33には換気熱交換器24からの冷媒を圧縮機2の低圧部(吸込側)に吸い込ませるときに開放される電磁弁34が介設されている。
 更に、通気ダクト3には車室内に導入する空気を車室内の空気である内気と、車室外の空気である外気とに切り換える内外気切換ダンパ36が設けられており、導入した内気や外気を通気ダクト3に送給するための通気用送風機37も設けられている。また、通気ダクト3には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ38が設けられている。更に、放熱器4の通風空気の下流側における通気ダクト3内には、電気ヒータ44が配置されている。
 また、圧縮機2の低圧部(吸込側)には圧力センサ39が設けられ、この圧力センサ39は圧縮機2の吸込圧力を検出する。また、車室外熱交換器7には外気を当該車室外熱交換器7に通風する車室外熱交換器用送風機41が設けられると共に、外気温度を検出する温度センサ42も設けられている。
 そして、43はマイクロコンピュータから構成されたコントローラ(ECU)であり、このコントローラには各温度センサ27、28、42や圧力センサ39の出力が入力されると共に、圧縮機2、通気用送風機37等の起動操作を行う空調起動スイッチ(図示せず)等の各種スイッチが接続されている。尚、図示しないが車室外熱交換器7と換気熱交換器24には、当該熱交換器の表面温度を検出する図示しない温度センサが取り付けられており、各温度センサもコントローラ43の入力に接続されているものとする。また、出力には前記圧縮機2や各膨張弁6、8、22、各電磁弁16、17、19、32、34、内外気切換ダンパ36、通気用送風機37、エアミックスダンパ38、車室外熱交換器用送風機41、電気ヒータ44等の機器が接続されている。
 以上の構成で、次にコントローラ43による実施例の車両用空調装置1の動作を説明する。尚、各図において白抜きで示す弁は開いており、黒ずみで示す弁は閉じているものとする。また、白抜きで示す電気ヒータ44は非通電、黒ずみで示す電気ヒータ44は通電された状態を示すものとする。
 (暖房時)
 図1は暖房時の状態を示している。車室内の暖房を行う場合、コントローラ43は圧縮機2、通気用送風機37及び室外熱交換器用送風機41を運転し、電磁弁18を開き、電磁弁16、17、19、32、34は閉じる。また、膨張弁6及び22により冷媒を減圧する制御を実行すると共に、エアミックスダンパ38は放熱器4以外の通気ダクト3を閉じる。これにより、冷媒は図1中太線で示す如く圧縮機2、放熱器4、膨張弁6、車室外熱交換器7に流れた後、電磁弁18、バイパス路14を通って圧縮機2の低圧部に吸い込まれると共に、換気熱交換器用回路21にも循環され、放熱器4による車室内の暖房が行われる。
 この場合、放熱器4を経た冷媒の一部は換気熱交換器用回路21に流入し、膨張弁22で減圧されて換気熱交換器24で蒸発するので、換気ダクト23を経て車室外に流出する車室内の暖かい空気から冷媒への吸熱が行われる。換気熱交換器24に流入した液状或いは気液二相状態の冷媒は車室内の空気により加熱されて気化される。コントローラ43は温度センサ27及び28が検出する流入冷媒と流出冷媒の温度差に基づいて膨張弁22の弁開度を制御するので、換気熱交換器用回路21を経た冷媒は略完全に気化されて圧縮機2の中間圧部に流入することになる。即ち、コントローラ43は圧縮機2の中間圧部に供給される冷媒が過熱状態となるように膨張弁22の弁開度を調整する。
 これにより、車室外へ排出される車室内の空気中から熱を汲み上げ、回収しながら換気熱交換器24において冷媒を気化させ、この十分に気化した状態の冷媒を圧縮機2の中間圧部に供給することができるようになり、暖房能力の向上を図り、COPの更なる向上を図ることが可能となる。この換気熱交換器24で回収される熱量には、車窓から入射する太陽光等の熱量も含まれるので、暖房効果は一層向上する。従って、車両が電気自動車(EV)であっても、車両用空調装置1によるバッテリの電力消費を抑制して車両の航続距離の低下を効果的に防止することができるようになる。尚、車室内から排出される空気の温度が所定温度(氷点下)の場合、膨張弁22を全閉として換気熱交換器用回路21を機能させないようにしてもよい。
 ここで、車室内温度(車室内の空気の温度)が低い場合、換気熱交換器24における冷媒温度が低くなり、圧縮機2の中間圧部以下の圧力となる危険性がある。そこで、車両の始動時など、車室内空気温度が例えば氷点下(0℃以下)等の極めて低い値である場合、コントローラ43はバイパス路33の電磁弁34を開いて換気熱交換器24からの冷媒を圧縮機2の低圧部に吸い込ませるようにする。これにより、係る状況下においても、換気熱交換器24を経た冷媒を支障なく圧縮機2に吸い込ませることが可能となる。
 (車室外熱交換器7及び換気熱交換器24の霜取りの必要性判断)
 ここで、暖房時に冷媒が蒸発して低温となる車室外熱交換器7や換気熱交換器24には外気や車室内空気中の水分が霜となって付着するようになる。この着霜が成長して目詰まりが発生すると、空気との熱交換ができなくなるため、熱の汲み上げ(ヒートポンプ)が困難となる。そこで、コントローラ43は定期的(所定時間毎)に車室外熱交換器7と換気熱交換器24の霜取りの必要性を判断している。
 この場合、コントローラ43は膨張弁6と膨張弁22を交互に全閉とすることにより、車室外熱交換器7と換気熱交換器24へ流入する冷媒を交互に(択一的に)停止した状態で、圧力センサ39により圧縮機2の吸込圧力(低圧部の圧力)を検出する。尚、車室外熱交換器7の霜取りの必要性判断時に車室外熱交換器7及びホットガスサイクル回路31に冷媒を流さず、換気熱交換器24のみに冷媒を流す場合も、コントローラ43はバイパス路33の電磁弁34を開き、換気熱交換器24で蒸発した冷媒を圧縮機2の中間圧部では無く、低圧部に流す状態に切り換える。これにより、圧縮機2では支障なく圧縮仕事を行うことが可能となる。
 ここで、各熱交換器7、24が着霜による目詰まりを起こしている場合、空気との熱交換が行われなくなるために蒸発温度が低下する。そこで、コントローラ43は圧力センサ39が検出する吸込圧力から換算される温度が、所定の低い温度(例えば、-10℃)である状態が所定時間(例えば、10分以上)継続した場合に、各熱交換器7、24の霜取りが必要であるものと判断する。
 例えば、車室外熱交換器7の霜取りの必要性を判断する場合には膨張弁22を閉じ、換気熱交換器24に冷媒を流さない状態で圧力センサ39により車室外熱交換器7が着霜により目詰まりしているか否かを判断し、換気熱交換器24の霜取りの必要性を判断する場合には膨張弁6を閉じ、車室外熱交換器7に冷媒を流さない状態で圧力センサ39により換気熱交換器24が着霜により目詰まりしているか否かを判断する。これにより、一つの圧力センサ39を用いて各熱交換器7、24が着霜により目詰まりを起こして霜取りが必要となっているか否かを的確に判断できるようになる。
 尚、各熱交換器7、24の霜取り必要性は、これに限らず、各熱交換器7、24の表面温度が低下したことを直接検出して判断してもよく、空気温度(外気温度や車室内の空気温度)と蒸発温度の差が開いたことや、各熱交換器7、24を通過する風速を風速センサで検出し、それが低下したことで判断するようにしてもよい。
 (車室外熱交換器7の霜取り)
 そして、車室外熱交換器7が着霜により目詰まりを起こしており、霜取りが必要であると判断した場合、コントローラ43は図1の状態から図2に示すように膨張弁6を全閉として車室外熱交換器7に冷媒を流さないようにすると共に、電磁弁34を開く(電磁弁32は閉じている)。これにより、車室外熱交換器7での冷媒の蒸発は無くなるので、車室外熱交換器7の着霜は通風される外気により融解され、除去されていくようになる。
 尚、係る車室外熱交換器7の霜取り中は、圧縮機2から吐出された高温冷媒が放熱器4で放熱し、換気熱交換器24で蒸発した後、電磁弁34を経て圧縮機2の低圧部に吸い込まれる状態となる。従って、車室内は換気熱交換器24で汲み上げた熱を放熱器4で放出することで引き続き暖房される。また、電磁弁32も閉じており、ホットガスサイクル回路31にも冷媒が流れないため、換気熱交換器24のみに冷媒を流す状態となるが、この場合もコントローラ43はバイパス路33の電磁弁34を開き、換気熱交換器24で蒸発した冷媒を圧縮機2の中間圧部では無く、低圧部に流す状態に切り換えているので、同様に圧縮機2では支障なく圧縮仕事を行うことが可能となる。
 そして、車室外熱交換器7の表面温度を検出する前記温度センサが、氷点より高い所定の温度、例えば+3℃を一定時間以上検出した場合、コントローラ43は車室外熱交換器7の霜取りが終了したものと判断して図1の状態に復帰する。
 (換気熱交換器24の霜取り)
 また、換気熱交換器24が着霜により目詰まりを起こしていると判断した場合、コントローラ43は図1の状態から図3に示すように膨張弁22を全閉として換気熱交換器24に冷媒を流さないようにする。これにより、換気熱交換器24での冷媒の蒸発は無くなるので、換気熱交換器24の着霜は通風される車室内の空気により融解され、除去されていくようになる。
 尚、係る換気熱交換器24の霜取り中は、車室内の空気からの熱の回収は停止されることになる。そして、換気熱交換器24の表面温度を検出する前記温度センサが、氷点より高い所定の温度、例えば+3℃を一定時間以上検出した場合、コントローラ43は換気熱
交換器24の霜取りが終了したものと判断して図1の状態に復帰する。
 また、上記車室外熱交換器7及び換気熱交換器24の双方が霜取り必要と判断された場合には、コントローラ43は一方の霜取りを実行してから他方の霜取りを実行するようにする。例えば、暖房機能の要となる車室外熱交換器7の霜取りを先ず実行し、その霜取りが終了してから換気熱交換器24の霜取りを実行する。
 (暖房時の車室外熱交換器7の霜取りと車室内熱交換器9を用いた暖房)
 ここで、外気温度が氷点下等の極めて低い外気温環境下では、膨張弁6を全閉として車室外熱交換器7に冷媒を流さないようにしても、外気の通風による着霜の融解は期待できない。従って、回路を図2の状態に切り換えても、図1の状態に復帰することができなくなり、或いは、復帰するまでに極めて長時間を要するようになる。そして、その間は前述したように換気熱交換器24で汲み上げた熱を放熱器4で放出するのみになるので、暖房能力が低下した状態が長く継続されることになる。
 そこで、前述同様に車室外熱交換器7が着霜により目詰まりを起こし、霜取りが必要と判断した場合であって、且つ、温度センサ42が検出する外気温度が例えば氷点下(0℃以下)等の所定の低い値である場合、コントローラ43は図1(又は図2)の状態から図4に示す状態に回路を切り換える。即ち、図4でコントローラ43は膨張弁6を全閉として車室外熱交換器7に冷媒を流さないようにすると共に、電磁弁34を閉じ、電磁弁32を開放する。
 この電磁弁32が開放されると、圧縮機2から吐出された高温冷媒の一部がホットガスサイクル回路31に流入し、膨張弁8で減圧された後、車室内熱交換器9に流入して放熱し、圧縮機2の低圧部に吸い込まれるようになる。また、圧縮機2から吐出された残りの高温冷媒は、図1と同様に放熱器4で放熱し、換気熱交換器24で蒸発した後、逆止弁26を経て圧縮機2の中間圧部に吸い込まれる状態となる。
 これにより、車室内は放熱器4からの放熱に加えて、ホットガスサイクル回路31を経て高温冷媒が循環される車室内熱交換器9からの放熱によっても暖房されることになる。この状態を図5のp-h線図で説明する。図5と図4で同一符号で示すものは同一のものである。圧縮機2で圧縮され昇圧された高温冷媒は、放熱器4で放熱する。図5の右上から左に向かう上辺がこの放熱器4における放熱である。その後、膨張弁22で減圧されて圧力が中圧まで下がる。図5の上から下に向かう左辺が膨張弁22における減圧を示している。そして、換気熱交換器24に流入して蒸発し、圧縮機2の中間圧部に吸い込まれる。図5の左下から右に向かう左下辺が換気熱交換器24の吸熱である。
 一方、圧縮機2で昇圧された高温冷媒の一部は、ホットガスサイクル回路31に流入し、膨張弁8で減圧されて圧力が低圧まで下がる。図5の右上から下に下がる右辺が膨張弁8における減圧を示している。そして、車室内熱交換器9に流入して蒸発し、圧縮機2の低圧部に吸い込まれる。図5の右下から左に向かう右下辺が車室内熱交換器9における放熱である。従って、図5の上辺に右下辺を加えた放熱(実際には流量が乗算される)が暖房能力となるので、図2のような放熱器4のみ(図5の上辺のみ)の場合に比して暖房能力が高くなることが分かる。
 このように、放熱器4による暖房に加えて、車室内熱交換器9においても車室内に放熱させ、暖房することができるようになるので、放熱器4と車室内熱交換器9で車室内の暖房を行いながら、換気熱交換器24で外部に排出される車室内の空気中から熱を汲み上げ、回収することができるようになる。これにより、低外気温環境下におけるヒートポンプ運転による車室内暖房を極めて効果的、且つ、効率的に行うことができるようになり、特
にバッテリで圧縮機2を駆動する電気自動車において、極めて好適な車室内空調を実現し、その航続距離の低下も防止することが可能となる。
 そして、前述同様に車室外熱交換器7の表面温度を検出する前記温度センサが、氷点より高い所定の温度、例えば+3℃を一定時間以上検出した場合、コントローラ43は車室外熱交換器7の霜取りが終了したものと判断して図1の状態に復帰するものであるが、外気温度が氷点下(0℃以下)の場合には、外気の通風による車室外熱交換器7の着霜の融解は期待できない。そこで、コントローラ43は温度センサ42が検出する外気温度が氷点下である場合、上記車室外熱交換器7の霜取り終了判断そのものを実行しない。これにより、外気による車室外熱交換器7の霜取りが困難な状況下における無駄な霜取り終了判断を回避し、コントローラ43による制御動作を簡素化することが可能となる。
 尚、上記実施例では車室外熱交換器7の霜取りを行う場合で、且つ、外気温度が低いときにホットガスサイクル回路31に高温冷媒を流すようにしたが、それに限らず、車室外熱交換器7の霜取りを行う場合には、常に図4の如くホットガスサイクル回路31に高温冷媒を流すようにしてもよい。その場合は、外気温度が氷点より高い状況で外気の通風による車室外熱交換器の霜取りも同時に進行させることが可能となる。
 また、外気温度が氷点下等の所定の低い値に低下した場合は、車室外熱交換器7における熱の汲み上げも困難となると考えられるので、そのような低外気温環境下では、車室外熱交換器7の霜取りの必要性に拘わらず、図1の状態から図4の状態に回路を切り換えるようにしてもよい。
 (電気ヒータ44による暖房補助)
 ここで、上記の如き放熱器4や車室内熱交換器9からの放熱による暖房を行っても車室内の温度が低い場合、コントローラ43は電気ヒータ44に通電して発熱させ、車室内の暖房補助を行う。例えば、上記暖房時の運転が所定時間継続しても車室内温度が設定温度に上昇しない場合、コントローラ43は電気ヒータ44を発熱させ、上昇した時点で通電を停止する制御を実行する。これにより、車室内の暖房能力を電気ヒータ44により補完し、より快適な車室内環境を実現することが可能となる。但し、電気ヒータ44の通電は電気自動車のバッテリの許される範囲内で実行されるものとする。
 (除湿暖房時)
 次に、図6は除湿暖房時の状態を示している。気温の低い梅雨時や車窓が曇ったとき等に車室内の除湿暖房を行う場合、コントローラ43は圧縮機2、通気用送風機37及び室外熱交換器用送風機41を運転し、電磁弁17、18を開き、電磁弁16、19、32、34は閉じる。また、膨張弁6、8、22により冷媒を減圧する制御を実行すると共に、エアミックスダンパ38は放熱器4以外の通気ダクト3を閉じるようにする。これにより、冷媒は図6中太線で示す如く圧縮機2、放熱器4、膨張弁6、車室外熱交換器7に流れた後、電磁弁18、バイパス路14を通って圧縮機2の低圧部に吸い込まれる。また、放熱器4を経た一部の冷媒は電磁弁17を経てバイパス路13を通り、膨張弁8を経て車室内熱交換器9に流れ、圧縮機2の低圧部に吸い込まれ、更に放熱器4を経た残りの冷媒は膨張弁22を経て換気熱交換器24に流入し、圧縮機2の中間圧部に戻るようになる。これにより、車室内は車室内熱交換器9による冷房(除湿)と放熱器4による暖房の双方を受けて除湿暖房されることになる。また、換気熱交換器24による車室内空気からの熱の回収も同様に実行される。
 (冷房時)
 次に、図7は冷房時の状態を示している。車室内の冷房を行う場合、コントローラ43は圧縮機2、通気用送風機37及び室外熱交換器用送風機41を運転し、電磁弁16、1
9を開き、電磁弁17、18、32、34は閉じる。また、膨張弁22を全閉とし、膨張弁8により冷媒を減圧する制御を実行すると共に、エアミックスダンパ38は放熱器4の上流側を閉じて車室内空気が放熱器4以外の通気ダクト3を通過するようにする。これにより、冷媒は図7中太線で示す如く圧縮機2、放熱器4、電磁弁16、車室外熱交換器7に流れた後、電磁弁19を通って膨張弁8にて減圧され、車室内熱交換器9に流入して蒸発した後、圧縮機2の低圧部に吸い込まれるようになる。このときの車室内熱交換器9による吸熱作用で車室内の冷房が行われる。この場合、換気熱交換器24は機能しない。
 次に、図8は本発明を適用した他の実施例の車両用空調装置1の暖房時の状態を示している。尚、この図において図1と同一符号で示すものは同一のものとする。この実施例2の場合、換気熱交換器24を経た後、圧縮機2に至る以前(実際には逆止弁26及び電磁弁34の手前)の換気熱交換器用回路21に、蒸発圧力調整弁(EPR)46が介設されている。
 この蒸発圧力調整弁46は、換気熱交換器24における冷媒の蒸発温度が氷点下(0℃以下)に下がらないように換気熱交換器24内の蒸発圧力を調整する弁装置であり、このように蒸発圧力調整弁46を設けることにより、換気熱交換器24については着霜が生じない状態に維持することができるようになる。これにより、霜取りに伴う前述の如き換気熱交換器24の機能停止を回避し、常時車室内空気からの熱の回収を行わせることができるようになる。
 次に、図9は本発明を適用した更に他の実施例の車両用空調装置1の冷房時の状態を示している。尚、この図において図1、図7と同一符号で示すものは同一のものとする。この実施例3の場合、車室外熱交換器7が外気が流通する車室外の外気ダクト47に設けられており、換気ダクト23の出口23Aがこの車室外熱交換器7に流入する外気の上流側において外気ダクト47に連通されている。
 このように換気ダクト23の出口23Aを外気ダクト47の連通させることにより、車室内の空気は外気ダクト47を流通する外気のベンチュリ効果により吸い出されることになるので、換気ダクト23内に換気用の送風機を別途設ける必要がなくなる。また、換気熱交換器24を経た車室内の空気を円滑に車室外熱交換器7に導くことができるようになる。この場合、換気熱交換器24を経た車室内の空気は車室外熱交換器7より上流側で外気に混ざり、車室外熱交換器7に流通することになるので、暖房時に換気熱交換器24を経ても未だ外気より温度の高い車室内の空気を車室外熱交換器7に流し、当該車室外熱交換器7に通風される外気温度を上げることができるようになる。これにより、車室外熱交換器7における冷媒の蒸発温度を上げて圧縮機2の動力の低減を図ることが可能となる。
 一方、冷房時には外気より温度の低い車室内の空気を車室外熱交換器7に流すことができるようになるので、当該車室外熱交換器7に通風される外気温度を下げ、凝縮温度を下げて同様に圧縮機2の動力の低減を図ることが可能となる。
 次に、図10は本発明を適用した更に他の実施例の車両用空調装置1の冷房時の状態を示している。尚、この図において図9と同一符号で示すものは同一のものとする。この実施例4の場合も車室外熱交換器7は当該車室外熱交換器7に外気を流通させる外気ダクト47内に設けられており、換気ダクト23の出口23Aは車室外熱交換器7より上流側において外気ダクト47に連通されている。従って、この出口23Aが車室内空気の流入部となるが、この実施例の場合には流入部となる出口23Aに電動のダンパ48が取り付け
られている。
 コントローラ43はこのダンパ48を制御することにより、出口23Aの開口量をリニアに調整する。例えば、ダンパ48により出口23A(流入部)の開口を狭くすることにより、ベンチュリ効果で吸い出される車室内の空気量が増えすぎる不都合を解消することが可能となる。また、例えば、コントローラ43は車速及び車室外熱交換器用送風機41の回転数から車室外熱交換器7に通風される外気量(速度)を演算する。そして、車室外熱交換器7に通風される外気量が多い場合、ダンパ48により出口23Aの開口を閉め気味として狭くし、逆に通風される外気量が少ない場合は開口を広く開放する。これにより、車速や車室外熱交換器用送風機41の回転数の変化等によって車室外熱交換器7に通風される外気量が変化しても、車室内からの換気量を一定に保つことが可能となる。
 次に、図11は本発明を適用した更に他の実施例の車両用空調装置1の暖房時の状態を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この実施例5の場合は圧縮機2A、2Bが二台使用され、車室外熱交換器7又は車室内熱交換器9を経た冷媒を低段圧縮機2Aの吸込側(低圧部)に吸い込み、この低段圧縮機2Aで中間圧まで圧縮し、この中間圧の冷媒を高段圧縮機2Bに吸い込み、この高段圧縮機2Bで圧縮された高温冷媒を放熱器4に吐出する構成としている。
 このような二段圧縮式の車両用空調装置1では、換気熱交換器24を経た冷媒は逆止弁26を経て中間圧である高段圧縮機2Bの吸込側に吸い込ませることになる。但し、前述のように車室外熱交換器7及び車室内熱交換器9の何れにも冷媒を流さない場合には、低段圧縮機2Aを停止させるか、或いはバイパス路と電磁弁を逆止弁26の上流側から低段圧縮機2Aの吸込側に接続し、電磁弁を開いて換気熱交換器24からの冷媒を低段圧縮機2Aに吸い込ませるようにしてもよい。
 次に、図12~図15は本発明を適用した更に他の実施例の車両用空調装置1の構成図を示している。図12は実施例6の車両用空調装置1の暖房時、図13は車室外熱交換器7の霜取り時、図14は車室外熱交換器の霜取りを行いながら車室内熱交換器9を用いた暖房を行う時、図15はその場合のp-h線図を示しており、それぞれ実施例1における図1、図2、図4、図5に対応している。そして、各図中において図1、図2、図4、図5と同一符号で示すものは同一とする。
 この場合、換気熱交換器用回路21は圧縮機2の中間圧部に接続されておらず、圧縮機2の低圧部に接続され、実施例1における逆止弁26や電磁弁34も削除されている。従って、膨張弁22では冷媒は低圧まで減圧され、その後、換気熱交換器24で蒸発した冷媒は、車室外熱交換器7や車室内熱交換器9からの冷媒に合流して圧縮機2の吸込側(低圧部)に吸い込まれることになる。
 このような構成とした場合、実施例1の場合に比して換気熱交換器24を経た冷媒を圧縮機2の中間圧部に戻すインジェクション効果は得られないものの、逆止弁26やバイパス路33、電磁弁34が不要となるため、回路構成が簡素化される。その一方で換気熱交換器24による熱の回収や車室内熱交換器9による暖房効果は同様に得られるので、コスト的にはこちらの方が有利なものとなる。
 次に、図16及び図17は本発明を適用した更に他の実施例の車両用空調装置1の構成図を示している。図16は実施例7の車両用空調装置1の暖房時、図17は車室外熱交換
器7の霜取り時を示しており、それぞれ実施例1における図1、図2に対応している。そして、各図中において図1、図2と同一符号で示すものは同一若しくは同様の機能を奏するとする。
 この場合、実施例1におけるホットガスサイクル回路31及び電磁弁32は設けられていない。また、換気熱交換器用回路21は圧縮機2の中間圧部に接続されておらず、圧縮機2の低圧部に接続され、実施例1における逆止弁26や電磁弁34も削除されている。従って、膨張弁22では冷媒は低圧まで減圧され、その後、換気熱交換器24で蒸発した冷媒は、車室外熱交換器7からの冷媒に合流して圧縮機2の吸込側(低圧部)に吸い込まれることになる。それ以外の冷媒の流れは実施例1の図1と同様である。
 即ち、車室内の暖房を行う場合、コントローラ43は圧縮機2、通気用送風機37及び室外熱交換器用送風機41を運転し、電磁弁18を開き、電磁弁16、17、19は閉じる。また、膨張弁6及び22により冷媒を減圧する制御を実行すると共に、エアミックスダンパ38は放熱器4以外の通気ダクト3を閉じる。これにより、冷媒は図16中太線で示す如く圧縮機2、放熱器4、膨張弁6、車室外熱交換器7に流れた後、電磁弁18、バイパス路14を通って圧縮機2の低圧部に吸い込まれると共に、換気熱交換器用回路21にも循環され、放熱器4による車室内の暖房が行われる。
 この場合も放熱器4を経た冷媒の一部は換気熱交換器用回路21に流入し、膨張弁22で減圧されて換気熱交換器24で蒸発するので、換気ダクト23を経て車室外に流出する車室内の暖かい空気から冷媒への吸熱が行われる。
 一方、車室外熱交換器7の霜取り時には、コントローラ43は図16状態から図17に示すように膨張弁6を全閉として車室外熱交換器7に冷媒を流さないようにする。これにより、車室外熱交換器7での冷媒の蒸発は無くなるので、車室外熱交換器7の着霜は通風される外気により融解され、除去されていくようになる。しかしながら、ホットガスサイクル回路31が設けられていないので、外気温度の状況に拘わらず実施例1の如く車室内熱交換器9に高温冷媒を流して放熱させることはできない。
 そこで、この実施例の場合コントローラ43は、車室外熱交換器7の霜取りを実行する場合、電気ヒータ44に通電して発熱させる。このように暖房時に車室外熱交換器7の霜取りを行う場合、車室外熱交換器7には冷媒を流さず、放熱器4で放熱した冷媒を減圧して換気熱交換器24に流すと共に、電気ヒータ44により車室内を暖めるようにすれば、放熱器4からの放熱による暖房に加えて、電気ヒータ44により車室内を暖房し、更に換気熱交換器24にて車室外に排出される車室内の空気中の熱を回収することができるようになる。
 これにより、暖房中の車室外熱交換器7の霜取りを行うためにヒートポンプ運転による外気からの熱の汲み上げができなくなった場合に、放熱器4による暖房を電気ヒータ44にて補完し、低外気温時にも快適な車室内暖房を実現しながら、換気熱交換器24で車室外に廃棄される熱も回収し、効率の悪化を最小限に抑制することが可能となる。従って、特にバッテリで圧縮機2を駆動する電気自動車において、その航続距離の低下も最小限に抑制することが可能となる。一方、外気温度が氷点より高い環境下では、外気の通風による車室外熱交換器7の霜取りも同時に進行させることができるようになる。
 R 冷媒回路
 1 車両用空調装置
 2、2A、2B 圧縮機
 3 通気ダクト
 4 放熱器
 6、8、22 膨張弁
 7 車室外熱交換器
 9 車室内熱交換器
 16、17、18、19、32、34 電磁弁
 21 換気熱交換器用回路
 23 換気ダクト
 24 換気熱交換器
 26 逆止弁
 27、28、42 温度センサ
 31 ホットガスサイクル回路
 39 圧力センサ
 43 コントローラ
 44 電気ヒータ
 46 蒸発圧力調整弁
 47 外気ダクト
 48 ダンパ

Claims (12)

  1.  圧縮機と、放熱器と、車室外熱交換器と、車室内熱交換器と、車室内から車室外に排出される空気から吸熱するための換気熱交換器とから冷媒回路が構成され、暖房時に前記圧縮機から吐出された冷媒を前記放熱器にて前記車室内に放熱させ、該放熱器で放熱した後、減圧された冷媒を前記車室外熱交換器及び/又は前記換気熱交換器にて蒸発させ、冷房時には前記圧縮機から吐出された冷媒を前記車室外熱交換器にて放熱させ、該車室外熱交換器で放熱した後、減圧された冷媒を前記車室内熱交換器にて蒸発させて前記車室内から吸熱する車両用空調装置において、
     前記圧縮機から吐出された冷媒の一部を減圧して前記車室内熱交換器に流し、前記車室内に放熱させるホットガスサイクル回路を備えたことを特徴とする車両用空調装置。
  2.  暖房時に前記車室外熱交換器の霜取りを行う場合、及び/又は、外気温度が所定の低い値である場合、前記車室外熱交換器には冷媒を流さず、前記放熱器で放熱した冷媒を減圧して前記換気熱交換器に流すと共に、前記圧縮機から吐出された冷媒の一部を前記ホットガスサイクル回路に流すことを特徴とする請求項1に記載の車両用空調装置。
  3.  前記車室外熱交換器で蒸発した冷媒、又は、前記ホットガスサイクル回路を経て前記車室内熱交換器で放熱した冷媒を前記圧縮機の低圧部に吸引させると共に、前記換気熱交換器で蒸発した冷媒は前記圧縮機の中間圧部に戻すことを特徴とする請求項2に記載の車両用空調装置。
  4.  前記車室外熱交換器、及び、前記ホットガスサイクル回路に冷媒を流さない場合、又は、車室内温度が所定の低い値である場合、前記換気熱交換器で蒸発した冷媒を前記圧縮機の低圧部に戻すことを特徴とする請求項3に記載の車両用空調装置。
  5.  暖房時に前記車室外熱交換器と前記換気熱交換器への冷媒の流入を交互に停止した状態で各熱交換器の霜取りの必要性を判断すると共に、前記換気熱交換器の霜取りを行う場合には、当該換気熱交換器に冷媒を流さないことを特徴とする請求項2に記載の車両用空調装置。
  6.  暖房時に前記車室外熱交換器の霜取りが終了した場合、前記ホットガスサイクル回路に冷媒を流さず、前記車室外熱交換器に冷媒を流す状態に復帰すると共に、車室外の温度が氷点下である場合、前記車室外熱交換器の霜取りが終了したか否かの判断を行わないことを特徴とする請求項2に記載の車両用空調装置。
  7.  前記換気熱交換器における冷媒の蒸発温度が氷点下に下がることを防止する蒸発圧力調整弁を設けたことを特徴とする請求項1に記載の車両用空調装置。
  8.  前記換気熱交換器を経た車室内の空気を、前記車室外熱交換器に流通させることを特徴とする請求項1に記載の車両用空調装置。
  9.  前記車室外熱交換器に外気を流通させるダクトを備え、前記車室外熱交換器より上流側における前記ダクトに前記換気熱交換器を経た車室内の空気を流入させると共に、該車室内空気の流入部の開口を狭めたことを特徴とする請求項8に記載の車両用空調装置。
  10.  前記ダクトにおける前記車室内空気の流入部の開口量を調整するダンパを備えたことを特徴とする請求項9に記載の車両用空調装置。
  11.  暖房時に車室内を暖める電気ヒータを設けたことを特徴とする請求項1に記載の車両用空調装置。
  12.  圧縮機と、放熱器と、車室外熱交換器と、車室内熱交換器と、車室内から車室外に排出される空気から吸熱するための換気熱交換器とから冷媒回路が構成され、暖房時に前記圧縮機から吐出された冷媒を前記放熱器にて前記車室内に放熱させ、該放熱器で放熱した後、減圧された冷媒を前記車室外熱交換器及び/又は前記換気熱交換器にて蒸発させ、冷房時には前記圧縮機から吐出された冷媒を前記車室外熱交換器にて放熱させ、該車室外熱交換器で放熱した後、減圧された冷媒を前記車室内熱交換器にて蒸発させて前記車室内から吸熱する車両用空調装置において、
     電気ヒータを設け、暖房時に前記車室外熱交換器の霜取りを行う場合、前記車室外熱交換器には冷媒を流さず、前記放熱器で放熱した冷媒を減圧して前記換気熱交換器に流すと共に、前記電気ヒータにより前記車室内を暖めることを特徴とする車両用空調装置。
PCT/JP2013/003678 2012-06-29 2013-06-12 車両用空調装置 WO2014002411A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013003304.6T DE112013003304T5 (de) 2012-06-29 2013-06-12 Fahrzeugklimaanlageneinheit
US14/406,113 US9562712B2 (en) 2012-06-29 2013-06-12 Vehicular air-conditioning unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012146397A JP6047314B2 (ja) 2012-06-29 2012-06-29 車両用空調装置
JP2012-146397 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002411A1 true WO2014002411A1 (ja) 2014-01-03

Family

ID=49782611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003678 WO2014002411A1 (ja) 2012-06-29 2013-06-12 車両用空調装置

Country Status (4)

Country Link
US (1) US9562712B2 (ja)
JP (1) JP6047314B2 (ja)
DE (1) DE112013003304T5 (ja)
WO (1) WO2014002411A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258388A (zh) * 2015-10-30 2016-01-20 苏州必信空调有限公司 一种节能高效制冷系统
EP3322941A4 (en) * 2015-06-15 2018-10-03 BYD Company Limited Air conditioning system for vehicle and vehicle having same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676691B2 (ja) * 2013-06-18 2015-02-25 シャープ株式会社 空気調和装置
JP6223753B2 (ja) * 2013-09-04 2017-11-01 サンデンホールディングス株式会社 車両用空気調和装置
US9823009B2 (en) * 2014-03-14 2017-11-21 Ford Global Technologies, Llc Method and system for de-icing a heat exchanger
DE102014014462B4 (de) 2014-09-26 2024-02-01 Audi Ag Fahrzeugklimaanlage, Fahrzeug damit sowie Verfahren zum Betreiben einer Fahrzeugklimaanlage
JP6415943B2 (ja) 2014-11-21 2018-10-31 三菱重工サーマルシステムズ株式会社 ヒートポンプ式車両用空調システム
JP6540180B2 (ja) * 2015-04-14 2019-07-10 株式会社デンソー 車両用熱管理システム
KR101787075B1 (ko) * 2016-12-29 2017-11-15 이래오토모티브시스템 주식회사 자동차용 히트펌프
CN109210810A (zh) * 2017-07-04 2019-01-15 开利公司 制冷系统及用于制冷系统的启动控制方法
JP7024537B2 (ja) 2018-03-22 2022-02-24 株式会社デンソー 冷却装置
DE102018218264A1 (de) * 2018-10-25 2020-04-30 Audi Ag Kälteanlage
DE102018129393B4 (de) 2018-11-22 2022-10-06 Hanon Systems Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems
US11549606B2 (en) * 2018-11-28 2023-01-10 Mahle International Gmbh Pilot-pressure-controlled flow valve and fluid system containing same
CN111907301A (zh) * 2019-05-07 2020-11-10 开利公司 组合式换热器、热交换系统及其优化方法
DE102019115416A1 (de) * 2019-06-06 2020-12-10 Konvekta Aktiengesellschaft Heiz- und Klimaanlage mit Nutzung von Abluft
DE102020106486A1 (de) 2020-03-10 2021-09-16 Bayerische Motoren Werke Aktiengesellschaft Wärmemanagementsystem für ein Kraftfahrzeug, Kraftfahrzeug mit einem solchen sowie Verfahren zum Betreiben eines Wärmemanagementsystems
DE102020129328A1 (de) 2020-11-06 2022-05-12 Rheinmetall Invent GmbH Heiz- und Kühlsystem sowie Fahrzeug
DE102021002226A1 (de) * 2021-04-27 2022-10-27 Mercedes-Benz Group AG Kühl- und Heizsystem für ein Fahrzeug sowie Fahrzeug
CN113776266A (zh) * 2021-09-06 2021-12-10 珠海格力电器股份有限公司 一种化霜控制方法、装置及冰箱
DE102021123257A1 (de) 2021-09-08 2023-03-09 Denso Automotive Deutschland Gmbh Heizungs-, Lüftungs- und Klimaanlagensystem für Fahrzeuge und Verfahren zur Entfeuchtung und Wiedererwärmung von Kabinenluft durch Verwendung des besagten Systems
DE102021210338A1 (de) 2021-09-17 2023-04-06 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Wärmepumpe für ein Kraftfahrzeug und Wärmepumpe für ein Kraftfahrzeug
US11919368B2 (en) * 2021-10-07 2024-03-05 Ford Global Technologies, Llc Heat pump for a vehicle
US11912105B2 (en) * 2021-10-07 2024-02-27 Ford Global Technologies, Llc Heat pump for a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062979A (ja) * 1992-06-16 1994-01-11 Nippondenso Co Ltd 空調装置
JP3321871B2 (ja) * 1993-01-12 2002-09-09 松下電器産業株式会社 車両用ヒートポンプ式空調装置
JP2003240371A (ja) * 2002-02-21 2003-08-27 Denso Corp 空調装置
WO2011016264A1 (ja) * 2009-08-07 2011-02-10 三菱重工業株式会社 車両用空調システム
JP2012076589A (ja) * 2010-10-01 2012-04-19 Panasonic Corp 車両用空調装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237187B2 (ja) * 1991-06-24 2001-12-10 株式会社デンソー 空調装置
JP2000111178A (ja) * 1998-10-05 2000-04-18 Toyota Autom Loom Works Ltd 空調装置
JP3584926B2 (ja) * 2001-12-05 2004-11-04 株式会社デンソー 車両用空調装置
JP5517641B2 (ja) 2010-01-26 2014-06-11 サンデン株式会社 車両の空調装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062979A (ja) * 1992-06-16 1994-01-11 Nippondenso Co Ltd 空調装置
JP3321871B2 (ja) * 1993-01-12 2002-09-09 松下電器産業株式会社 車両用ヒートポンプ式空調装置
JP2003240371A (ja) * 2002-02-21 2003-08-27 Denso Corp 空調装置
WO2011016264A1 (ja) * 2009-08-07 2011-02-10 三菱重工業株式会社 車両用空調システム
JP2012076589A (ja) * 2010-10-01 2012-04-19 Panasonic Corp 車両用空調装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3322941A4 (en) * 2015-06-15 2018-10-03 BYD Company Limited Air conditioning system for vehicle and vehicle having same
CN105258388A (zh) * 2015-10-30 2016-01-20 苏州必信空调有限公司 一种节能高效制冷系统

Also Published As

Publication number Publication date
JP6047314B2 (ja) 2016-12-21
US9562712B2 (en) 2017-02-07
JP2014008857A (ja) 2014-01-20
DE112013003304T5 (de) 2015-04-30
US20150121930A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6047314B2 (ja) 車両用空調装置
US10220678B2 (en) Air conditioning device for vehicle
JP6855281B2 (ja) 車両用空気調和装置
CN110891807B (zh) 车辆用空气调和装置
US9180754B2 (en) Heat pump system for vehicle
JP6015636B2 (ja) ヒートポンプシステム
US9656535B2 (en) Method for operating an air conditioner for a motor vehicle
JP6125325B2 (ja) 車両用空気調和装置
JP6192435B2 (ja) 車両用空気調和装置
JP2018184108A (ja) 車両用空気調和装置
WO2015174035A1 (ja) 車両用空調装置
JP7215162B2 (ja) 車両用空調装置
WO2015025905A1 (ja) 車両用空気調和装置
JP7173064B2 (ja) 熱管理システム
JP2007327740A (ja) 車両用空調ユニット及びその使用方法
WO2018198582A1 (ja) 車両用空気調和装置
JP5517641B2 (ja) 車両の空調装置
CN111491815B (zh) 车辆用制热装置
CN112384392B (zh) 车辆用空气调节装置
JP5142032B2 (ja) 車両用空調装置
CN112543855B (zh) 复合阀及使用该复合阀的车用空调装置
JP2015063169A (ja) 車両用空調装置
CN114269574A (zh) 车辆的电池冷却装置及包括该装置的车用空调装置
JP2020034178A (ja) 複合弁及びそれを用いた車両用空気調和装置
JP5845225B2 (ja) 車両の空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14406113

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130033046

Country of ref document: DE

Ref document number: 112013003304

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810166

Country of ref document: EP

Kind code of ref document: A1