WO2020179492A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2020179492A1
WO2020179492A1 PCT/JP2020/006994 JP2020006994W WO2020179492A1 WO 2020179492 A1 WO2020179492 A1 WO 2020179492A1 JP 2020006994 W JP2020006994 W JP 2020006994W WO 2020179492 A1 WO2020179492 A1 WO 2020179492A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
radiator
expansion valve
heat
compressor
Prior art date
Application number
PCT/JP2020/006994
Other languages
English (en)
French (fr)
Inventor
尭之 松村
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN202080012855.XA priority Critical patent/CN113412397B/zh
Publication of WO2020179492A1 publication Critical patent/WO2020179492A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a heat pump type air conditioner for air-conditioning the interior of a vehicle.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided inside the vehicle interior to radiate the refrigerant, and an interior side of the vehicle interior are provided.
  • a heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is provided outside the vehicle compartment to radiate or absorb the refrigerant are provided. The refrigerant discharged from the compressor is radiated by the radiator, and the refrigerant radiated by the radiator is radiated.
  • a switchable type has been developed.
  • an outdoor expansion valve was provided at the inlet of the outdoor heat exchanger, and in the above-mentioned heating mode and dehumidifying heating mode, the refrigerant flowing into the outdoor heat exchanger was depressurized by this outdoor expansion valve. Then, in the dehumidifying / heating mode, the refrigerant discharged from the radiator is divided, one of which is decompressed by the indoor expansion valve and flows into the heat absorber to absorb the refrigerant by the heat absorber, and the other is decompressed by the outdoor expansion valve. The refrigerant has been absorbed by flowing into the outdoor heat exchanger (see, for example, Patent Document 1).
  • the radiator pressure Pci is adopted as an index indicating the heating capacity of the compressor, and this radiator pressure Pci is set as the target radiator pressure PCO (target value of the radiator pressure Pci).
  • the rotation speed NC of the compressor was controlled. Therefore, conventionally, as shown at time t11 in FIG. 12, when the radiator pressure Pci is lower than the target radiator pressure PCO, the compressor rotation speed NC is increased, and the radiator pressure Pci is the target heat dissipation even at time t12.
  • the pressure was lower than the vessel pressure PCO (the difference is indicated by ⁇ P in FIG. 12)
  • the number of revolutions NC of the compressor was further increased to control the radiator pressure Pci to the target radiator pressure PCO.
  • the radiator pressure Pci is set to the target radiator pressure PCO according to the number of revolutions of the compressor, so that the temperature of the air blown into the vehicle interior is set as the target outlet temperature. Since the radiator pressure Pci is set to the target radiator pressure PCO, the number of revolutions of the compressor is increased, and the power consumption is increased accordingly.
  • the present invention has been made to solve the conventional technical problem, and in the dehumidifying and heating mode, it is possible to achieve a target blowout temperature while suppressing an increase in power consumption of the compressor.
  • An object is to provide an air conditioner for a vehicle.
  • the vehicle air conditioner of the present invention includes a compressor for compressing a refrigerant, a radiator for radiating the refrigerant to heat the air supplied to the vehicle interior, and an air for absorbing the refrigerant to supply the air to the vehicle interior. It is equipped with a heat absorber for cooling, an indoor expansion valve for reducing the pressure of the refrigerant flowing into the heat absorber, and a control device. At least the refrigerant discharged from the compressor is dissipated by the radiator by this control device. After decompressing the radiated refrigerant with the indoor expansion valve, the heat absorber absorbs heat, and the dehumidifying heating mode that controls the number of revolutions of the compressor based on the heating capacity of the radiator and its target value is executed. Therefore, the control device is characterized in that, in the dehumidifying and heating mode, when the heating capacity of the radiator is lower than the target value, the valve opening degree of the indoor expansion valve is reduced.
  • An air conditioner for a vehicle includes an outdoor heat exchanger provided outside the vehicle compartment in the above invention, and an outdoor expansion valve for decompressing a refrigerant flowing into the outdoor heat exchanger.
  • the refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is diverted, one is depressurized by the indoor expansion valve, then the heat is absorbed by the heat exchanger, and the other is outdoors. After depressurizing with an expansion valve, heat is absorbed by an outdoor heat exchanger.
  • the vehicle air conditioner according to the invention of claim 3 is characterized in that, in each of the above inventions, the control device reduces the valve opening degree of the indoor expansion valve in a range of a control minimum value or more.
  • the control device allows the heating capacity of the radiator to be a target value or tolerable from the target value even if the opening degree of the indoor expansion valve is reduced.
  • the rotation speed of the compressor is increased to control the heating capacity of the radiator to a target value.
  • the control device is in a state in which the heating capacity of the radiator is controlled within a target value or within a predetermined error range allowed from the target value.
  • the rotational speed reduction adjustment control is performed to reduce the rotational speed of the compressor by a predetermined rotational speed and reduce the valve opening degree of the indoor expansion valve by a predetermined value.
  • the control device has a rotational speed of the compressor higher than a lower limit rotational speed for control, and a valve opening degree of the indoor expansion valve larger than a minimum control value. In some cases, it is characterized in that the rotation speed reduction adjustment control is executed.
  • the control device is configured such that the rotational speed of the compressor is reduced to a lower limit rotational speed for control or the valve opening degree of the indoor expansion valve is under control. It is characterized in that the rotation speed reduction adjustment control is repeatedly executed until it is reduced to the minimum value.
  • a compressor for compressing a refrigerant
  • a radiator for radiating the refrigerant to heat the air to be supplied into the vehicle interior
  • a radiator for absorbing the refrigerant to cool the air to be supplied into the vehicle interior.
  • a heat absorber, an indoor expansion valve for reducing the pressure of the refrigerant flowing into the heat absorber, and a control device are provided, and at least the refrigerant discharged from the compressor is radiated by the radiator to dissipate heat.
  • an air conditioner for vehicles that executes a dehumidifying heating mode that controls the number of revolutions of the compressor based on the heating capacity of the radiator and its target value while depressurizing the refrigerant with the indoor expansion valve and then absorbing heat with the heat absorber.
  • the control device reduces the valve opening of the indoor expansion valve, so that the radiator can be used without increasing the number of revolutions of the compressor.
  • the refrigerant pressure can be increased.
  • an outdoor heat exchanger provided outside the vehicle compartment as in the invention of claim 2, and an outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger, and the control device is a dehumidifying heating device.
  • the refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is diverted, one is decompressed by the indoor expansion valve, then the heat is absorbed by the heat exchanger, and the other is decompressed by the outdoor expansion valve. After that, it is particularly effective when the heat is absorbed by the outdoor heat exchanger.
  • control device reduces the valve opening degree of the indoor expansion valve within the range of the minimum control value or more, the control device can control the valve opening degree of the indoor expansion valve without any trouble. Thus, it becomes possible to suppress an increase in power consumption of the compressor.
  • the control device controls the heating capacity of the radiator to the target value by increasing the rotation speed of the compressor as in the invention of Item 4, the heating capacity of the radiator is targeted in the valve opening control of the indoor expansion valve.
  • the target blowout temperature can be achieved by the rotation speed of the compressor.
  • the control device controls the rotation speed of the compressor as in the invention of claim 5. If the heating speed of the radiator is stable near the target value, it is possible to reduce the valve speed of the indoor expansion valve by a specified value and execute the rotational speed decrease adjustment control to decrease it by a specified value. By adjusting the valve opening degree of the indoor expansion valve, the rotation speed of the compressor can be reduced as much as possible and the power consumption can be suppressed.
  • the control device when the rotation speed of the compressor is higher than the control lower limit rotation speed and the valve opening degree of the indoor expansion valve is larger than the control minimum value, the control device reduces the rotation speed. By executing the adjustment control, it is possible to smoothly and smoothly reduce the rotation speed of the compressor.
  • control device according to the invention of claim 7 until the rotational speed of the compressor decreases to the lower limit rotational speed for control, or until the valve opening degree of the indoor expansion valve decreases to the minimum value for control.
  • FIG. 3 is a control block diagram related to compressor control of a heat pump controller of the control device of FIG. 2. It is a block diagram explaining control of the outdoor expansion valve in dehumidification heating mode by the heat pump controller of the control apparatus of FIG. It is a figure explaining rotation speed control of a compressor and control of an indoor expansion valve in dehumidification heating mode by the heat pump controller of the control apparatus of FIG. It is a figure explaining the compressor rotation speed decrease adjustment control in the dehumidifying heating mode by the heat pump controller of the control device of FIG. It is a figure explaining the rotation speed control of the compressor in the conventional dehumidification heating mode.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention.
  • the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and the electric power charged in the battery 55 mounted on the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 described later of the vehicle air conditioner 1 of the present invention is also driven by the electric power supplied from the battery 55. ..
  • EV electric vehicle
  • an engine internal combustion engine
  • traveling motor electric motor
  • the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, an air conditioning (priority) in an electric vehicle that cannot be heated by engine waste heat by a heat pump operation using the refrigerant circuit R. ) + Battery cooling mode, battery cooling (priority) + air conditioning mode, and battery cooling (independent) mode are switched and executed to perform air conditioning in the vehicle interior and temperature control of the battery 55.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a traveling motor.
  • a vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger or normal charger).
  • the battery 55, the traveling motor, the inverter for controlling the same, and the like, which are described above, are the objects of temperature adjustment mounted on the vehicle, but in the following embodiments, the battery 55 will be taken as an example for description.
  • the vehicle air conditioner 1 of the embodiment air-conditions (heating, cooling, dehumidifying, and ventilating) the interior of the electric vehicle, and includes an electric compressor 2 that compresses the refrigerant and the interior of the vehicle.
  • An indoor expansion valve 8 including an outdoor heat exchanger 7 that exchanges heat between the refrigerant and the outside air so as to function as an evaporator that absorbs heat from the refrigerant) and an electric valve (electronic expansion valve) that depressurizes and expands the refrigerant.
  • a heat absorber 9 as an evaporator provided in the air flow passage 3 for absorbing (evaporating) the refrigerant from the inside and outside of the vehicle during cooling and dehumidifying, an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit.
  • R is configured.
  • the outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, the indoor expansion valve 8 is also capable of decompressing and expanding the refrigerant flowing into the heat absorber 9 and fully closing it.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 forcibly ventilates the outdoor air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, whereby the outdoor air is outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B to which an electromagnetic valve 17 (for cooling) which is an opening/closing valve opened when the refrigerant flows to the heat absorber 9 is connected.
  • the refrigerant pipe 13B is connected to the refrigerant inlet side of the heat absorber 9 via the check valve 18 and the indoor expansion valve 8 in this order.
  • the check valve 18 has the forward direction of the indoor expansion valve 8.
  • the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched into the refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an on-off valve opened at the time of heating. It is communicatively connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat exchanger 9.
  • the refrigerant pipe 13C is connected to the inlet side of the accumulator 12 via the check valve 35, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2.
  • the check valve 35 is in the forward direction of the accumulator 12, and the refrigerant pipe 13D is connected to the refrigerant pipe 13C on the refrigerant upstream side of the check valve 35.
  • a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F in front of the outdoor expansion valve 6 (refrigerant upstream side).
  • One of the branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13F is on the downstream side of the refrigerant of the check valve 18 and on the upstream side of the refrigerant of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an on-off valve that is opened at the time of dehumidification. It is connected and communicated with the located refrigerant pipe 13B.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected in parallel. It becomes a bypass circuit that bypasses 18.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with respective intake ports of an outside air intake port and an inside air intake port (represented by the intake port 25 in FIG. 1).
  • the suction switching damper 26 for switching the air introduced into the air flow passage 3 into the inside air (inside air circulation), which is the air inside the vehicle interior, and the outside air (outside air introduction), which is the air outside the vehicle interior, is provided.
  • an indoor blower (blower fan) 27 for feeding the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air and outside air to the air flow passage 3 is provided.
  • an auxiliary heater 23 as an auxiliary heating device composed of a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, the air (inside air or outside air) in the air flow passage 3 that flows into the air flow passage 3 on the air upstream side of the radiator 4 and passes through the heat absorber 9 is radiated. An air mix damper 28 for adjusting the ratio of ventilation to the vessel 4 and the auxiliary heater 23 is provided.
  • blower outlet 29 is provided with blower outlet switching dampers 31 for controlling the blowout of air from the blower outlets.
  • the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object of temperature adjustment).
  • the equipment temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating a heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64 as a heat exchanger for temperature control, and heating.
  • a heat medium heater 63 as a device is provided, and these and the battery 55 are annularly connected by a heat medium pipe 66.
  • the inlet of the heat medium heater 63 is connected to the discharge side of the circulation pump 62, and the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the outlet of the heat medium heater 63.
  • the outlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the device temperature adjusting device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • the heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that a jacket structure is provided around the battery 55 so that, for example, a heat medium can circulate with the battery 55 in a heat exchange relationship.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 is heated there, and then the refrigerant. -It flows into the heat medium flow path 64A of the heat medium heat exchanger 64.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55, where the heat medium exchanges heat with the battery 55.
  • the heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
  • a branch pipe 67 as a branch circuit is connected to the refrigerant downstream side of the solenoid valve 22 of the refrigerant pipe 13F of the refrigerant circuit R.
  • the branch pipe 67 is provided with an auxiliary expansion valve 68 which is an electric valve (electronic expansion valve) in the embodiment.
  • the auxiliary expansion valve 68 is capable of decompressing and expanding the refrigerant flowing into a refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, which will be described later, and is fully closed.
  • the other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B.
  • the other end is on the downstream side of the refrigerant from the check valve 35, and is connected to the refrigerant pipe 13C on the upstream side of the refrigerant from the accumulator 12.
  • the auxiliary expansion valve 68, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like form a part of the refrigerant circuit R, and at the same time, a part of the device temperature adjusting device 61.
  • the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, is decompressed by the auxiliary expansion valve 68, and then is cooled by the refrigerant-heat medium heat. It flows into the refrigerant flow path 64B of the exchanger 64 and evaporates there.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium channel 64A while flowing through the refrigerant channel 64B, and then is sucked into the compressor 2 through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 through the refrigerant pipe 13K.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 is composed of an air conditioning controller 45 and a heat pump controller 32, each of which is an example of a computer equipped with a processor, and these are CAN (Control Area Network) and LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and these air conditioning controller 45, heat pump controller 32, compressor 2, auxiliary heater 23, circulation pump 62 and heat. The medium heater 63 is configured to transmit and receive data via the vehicle communication bus 65.
  • CAN Control Area Network
  • LIN Local Interconnect Network
  • the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management system) 73 that controls charging and discharging of the battery 55, and a GPS navigation device 74.
  • the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also composed of a microcomputer which is an example of a computer equipped with a processor, and the air conditioning controller 45 and the heat pump controller 32 constituting the control device 11 use the vehicle communication bus 65.
  • Information (data) is transmitted/received to/from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via these.
  • the air conditioning controller 45 is a higher-level controller that controls the air conditioning of the vehicle interior of the vehicle.
  • the inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity.
  • a sensor 34 an HVAC suction temperature sensor 36 that detects a temperature of air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and an inside air temperature that detects an air temperature (inside air temperature Tin) in the vehicle interior.
  • An air conditioning operation unit 53 for performing an air conditioning setting operation in the vehicle interior such as switching of temperature and operation mode and information display is connected.
  • 53A is a display as a display output device provided in the air conditioning operation unit 53.
  • an outdoor blower 15, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, and an air outlet switching damper 31 are connected to the output of the air conditioning controller 45, and these are connected to the air conditioning controller 45. Controlled by.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 inputs heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2).
  • a radiator pressure sensor 47 that detects the refrigerant pressure (pressure of the radiator 4: radiator pressure Pci) and a heat exchanger temperature sensor that detects the temperature of the heat exchanger 9 (heat exchanger 9 refrigerant temperature: heat exchanger temperature Te).
  • an outdoor heat exchanger temperature sensor 49 for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature TXO), and the temperature of the auxiliary heater 23.
  • the outputs of the auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger's seat side) are connected.
  • the output of the heat pump controller 32 includes an outdoor expansion valve 6, a solenoid valve 22 (for dehumidification), a solenoid valve 17 (for cooling), a solenoid valve 21 (for heating), an indoor expansion valve 8, and an auxiliary expansion valve 68.
  • the compressor 2 the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 has a built-in controller.
  • the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
  • the circulation pump 62 and the heat medium heating heater 63 constituting the device temperature adjusting device 61 may be controlled by the battery controller 73.
  • the battery controller 73 includes a heat medium temperature sensor 76 for detecting the temperature (heat medium temperature Tw) of the heat medium on the inlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61.
  • the output of the battery temperature sensor 77 that detects the temperature of the battery 55 (the temperature of the battery 55 itself: the battery temperature Tcell) is connected.
  • the remaining amount of the battery 55 storage amount
  • information on charging of the battery 55 information that the battery is being charged, charging completion time, remaining charging time, etc.
  • heat medium temperature Tw battery temperature Tcell
  • the heat generation amount of 55 (calculated by the battery controller 73 from the energization amount and the like) and the like are transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65.
  • the information regarding the charging completion time and the remaining charging time at the time of charging the battery 55 is information supplied from an external charger such as a quick charger. Further, the output Mpower of the traveling motor is transmitted from the vehicle controller 72 to the heat pump controller 32 and the air conditioning controller 45.
  • the heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the voltage (BLV) of 27, the information from the battery controller 73, the information from the GPS navigation device 74, and the output of the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and the heat pump It is configured to be used for control by the controller 32.
  • the heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65.
  • the control device 11 controls the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, and the battery cooling.
  • Each battery cooling operation of (priority) + air conditioning mode and battery cooling (independent) mode is switched and executed.
  • the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on. However, during remote operation (pre-air conditioning, etc.), it is also executed even when the ignition is OFF. Further, it is executed when there is no battery cooling request even while the battery 55 is being charged and the air conditioning switch is turned on.
  • each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is charged. It is something.
  • the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature, etc.) other than during charging of the battery 55.
  • the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. As shown by the broken line in FIGS. 3 to 7, the heat medium is circulated in the heat medium pipe 66. Furthermore, the heat pump controller 32 of the embodiment also executes a battery heating mode in which the heat medium heating heater 63 of the device temperature adjusting device 61 is caused to generate heat to heat the battery 55.
  • FIG. 3 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow).
  • the outdoor expansion valve 6 is opened, the indoor expansion valve 8 and the auxiliary expansion valve 68 are fully closed, and the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is set to the indoor blower.
  • the ratio of the air blown out from 27 to the radiator 4 and the auxiliary heater 23 is adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is deprived of heat by air, cooled, and condensed.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, and further enters the accumulator 12 via the refrigerant pipe 13C, where gas and liquid are separated.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated. Since the air heated by the radiator 4 is blown out from the air outlet 29, the interior of the vehicle is heated by this.
  • the heat pump controller 32 has a target heater temperature TCO (heater temperature described later) calculated from a target blowing temperature TAO described later, which is a target temperature of air blown into the vehicle interior (target value of the temperature of air blown into the vehicle interior).
  • the target radiator pressure PCO is calculated from the target value Thp), and based on this target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47, While controlling the rotational speed NC, the valve opening degree of the outdoor expansion valve 6 is set based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47. The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
  • the radiator pressure Pci is an index for grasping the temperature of the air blown into the vehicle compartment in the present invention, but is detected by the heater temperature Thp and the blowout temperature sensor 41 in the same manner as described later.
  • the outlet temperature into the passenger compartment and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 may be used as the index.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23.
  • the passenger compartment can be heated without any trouble even when the outside temperature is low.
  • FIG. 4 shows the flow of the refrigerant (solid arrow) in the refrigerant circuit R in the dehumidifying / heating mode.
  • the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 22, and closes the solenoid valve 17. Further, the outdoor expansion valve 6 and the indoor expansion valve 8 are opened, and the auxiliary expansion valve 68 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is deprived of heat by air, cooled, and condensed.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption).
  • the low-temperature refrigerant that exited the outdoor heat exchanger 7 reached the refrigerant pipe 13C via the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, entered the accumulator 12 via the refrigerant pipe 13C, and gas-liquid separated there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the rest of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F and reaches the refrigerant pipe 13B via the solenoid valve 22.
  • the refrigerant reaches the indoor expansion valve 8, is depressurized by the indoor expansion valve 8, then flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the endothermic action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 goes out to the refrigerant pipe 13C, merges with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
  • the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Control the number NC. Further, the valve opening degrees of the outdoor expansion valve 6 and the indoor expansion valve 8 are controlled based on the heat absorber temperature Te, but the rotation speed control of the compressor 2 and the control of the outdoor expansion valve 6 and the indoor expansion valve 8 in the dehumidifying and heating mode. The details will be described later.
  • the heat pump controller 32 when the heating capacity by the radiator 4 (heating capacity) is insufficient with respect to the heating capacity required by the control of the compressor 2 and the indoor expansion valve 8 described later in this dehumidification heating mode, The shortage is supplemented by the heat generated by the auxiliary heater 23. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
  • FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying / cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21 and the solenoid valve 22. Further, the outdoor expansion valve 6 and the indoor expansion valve 8 are opened, and the auxiliary expansion valve 68 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is deprived of heat by air, cooled, and condensed.
  • the refrigerant leaving the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and passes through the outdoor expansion valve 6 which is controlled to be slightly open (region of a large valve opening) than the heating mode and the dehumidifying heating mode. It flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, and then reaches the indoor expansion valve 8 through the solenoid valve 17 and the check valve 18 in that order.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and is repeatedly circulated by being sucked into the compressor 2 through the refrigerant pipe 13K.
  • the dehumidified air cooled by the heat absorber 9 is reheated (the heating capacity is lower than that during dehumidifying and heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, dehumidification and cooling of the vehicle interior are performed.
  • the heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te).
  • the rotation speed NC of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure.
  • PCO target value of radiator pressure Pci
  • PCO target value of radiator pressure Pci
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidification and cooling are performed without lowering the temperature inside the vehicle interior too much.
  • Cooling mode Next, the cooling mode will be described.
  • the flow of the refrigerant in this cooling mode is the same as in FIG. That is, even in this cooling mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valves 21 and 22. Further, the outdoor expansion valve 6 is fully opened, the indoor expansion valve 8 is opened, and the auxiliary expansion valve 68 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. The auxiliary heater 23 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated through the radiator 4, the ratio is small (because it is only reheated during cooling), so that it almost passes through the radiator 4 and the radiator 4 is passed through.
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the refrigerant passes through the fully opened outdoor expansion valve 6 as it is and flows into the outdoor heat exchanger 7, where it is air-cooled by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, and then reaches the indoor expansion valve 8 through the solenoid valve 17 and the check valve 18 in that order. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the air blown out from the indoor blower 27 and exchanges heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is then sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 6 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode.
  • the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valves 21 and 22. Further, the outdoor expansion valve is fully opened, and the indoor expansion valve 8 and the auxiliary expansion valve 68 are opened.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the heat medium heater 63 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated through the radiator 4, the ratio is small (because it is only reheated during cooling), so that it almost passes through the radiator 4 and the radiator 4 is passed through.
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the outdoor expansion valve 6 is fully opened, the refrigerant flows into the outdoor heat exchanger 7 as it is, and is air-cooled by traveling there or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, is branched after passing through the electromagnetic valve 17 and the check valve 18, and one of them flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8. ..
  • the refrigerant that has flowed into the indoor expansion valve 8 is decompressed there, and then flows into the heat absorber 9 and evaporates.
  • the heat absorbing action at this time cools the air that is blown out from the indoor blower 27 and exchanges heat with the heat absorber 9.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is then sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 6).
  • the heat medium discharged from the circulation pump 62 passes through the heat medium heating heater 64 and flows through the heat medium pipe 66 in the heat medium flow of the refrigerant-heat medium heat exchanger 64. It reaches the passage 64A, where it exchanges heat with the refrigerant that evaporates in the refrigerant passage 64B and absorbs heat to cool the heat medium.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 6).
  • the heat pump controller 32 maintains the indoor expansion valve 8 in an open state, and based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the rotation speed NC of the compressor 2 is controlled.
  • the auxiliary expansion valve 68 is controlled to open/close based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
  • the heat medium temperature Tw is used as an index indicating the temperature of the battery 55 that is the temperature-controlled object in the embodiment (the same applies hereinafter).
  • the heat pump controller 32 sets the upper limit value TUL and the lower limit value TLL with a predetermined temperature difference above and below a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw. Then, when the heat medium temperature Tw becomes high due to heat generation of the battery 55 or the like from the state where the auxiliary expansion valve 68 is closed and rises to the upper limit value TUL (when it exceeds the upper limit value TUL or becomes equal to or more than the upper limit value TUL). If so, the same applies hereinafter), and the auxiliary expansion valve 68 is opened.
  • the refrigerant flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and evaporates to cool the heat medium flowing through the heat medium flow path 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
  • the auxiliary expansion valve 68 is opened. Thereafter, the auxiliary expansion valve 68 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to the cooling in the vehicle compartment, to cool the battery 55.
  • the heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I).
  • This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle interior from the outlet 29.
  • TAO (Tset-Tin) ⁇ K+Tbal(f(Tset, SUN, Tam)) ..(I)
  • Tset is the set temperature in the vehicle compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects the temperature.
  • the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
  • the heat pump controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target blowing temperature TAO at the time of startup.
  • the target outlet temperature TAO in response to operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, the heat medium temperature Tw and the battery temperature Tcell, environmental conditions, changes in setting conditions, and a battery cooling request (mode transition request) from the battery controller 73.
  • the air conditioning operation is selected and switched.
  • Battery cooling (priority) + air conditioning mode Next, the operation of the battery 55 during charging will be described. For example, when the charging plug of the quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73), the ignition (IGN) of the vehicle is turned on/off. Regardless of the above, if there is a battery cooling request and the air conditioning switch of the air conditioning operating unit 53 is turned on, the heat pump controller 32 executes battery cooling (priority)+air conditioning mode. The way the refrigerant flows in the refrigerant circuit R in the battery cooling (priority)+air conditioning mode is the same as in the air conditioning (priority)+battery cooling mode shown in FIG.
  • the heat pump controller 32 keeps the auxiliary expansion valve 68 open, and the heat medium temperature sensor 76 (transmitted from the battery controller 73) detects it.
  • the rotation speed NC of the compressor 2 is controlled based on the heat medium temperature Tw.
  • the indoor expansion valve 8 is controlled to open and close based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the heat pump controller 32 sets an upper limit value TeUL and a lower limit value TeLL with a predetermined temperature difference above and below a predetermined target heat sink temperature TEO as a target value of the heat sink temperature Te, for example.
  • the indoor expansion valve 8 is opened.
  • the refrigerant flows into the heat absorber 9 and evaporates, and cools the air flowing through the air flow passage 3.
  • the indoor expansion valve 8 is fully closed. Thereafter, such opening and closing of the indoor expansion valve 8 is repeated to give priority to the cooling of the battery 55, the heat absorber temperature Te is controlled to the target heat absorber temperature TEO, and the vehicle interior is cooled.
  • FIG. 7 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode.
  • the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valves 21 and 22. Further, the auxiliary expansion valve 68 is opened and the indoor expansion valve 8 is fully closed.
  • the compressor 2 and the outdoor blower 15 are operated.
  • the indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, in this operation mode, the heat medium heater 63 is also not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes through the radiator 4, and the refrigerant leaving the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant flows into the outdoor heat exchanger 7 as it is, and is air-cooled by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, sequentially passes through the solenoid valve 17 and the check valve 18, and then all flows into the branch pipe 67 and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant passage 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 7).
  • the heat medium discharged from the circulation pump 62 passes through the heat medium heating heater 63 and flows through the heat medium pipe 66 in the heat medium flow of the refrigerant-heat medium heat exchanger 64.
  • the refrigerant reaches the passage 64A, where heat is absorbed by the refrigerant evaporated in the refrigerant passage 64B, and the heat medium is cooled.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55 and exchanges heat with the battery 55.
  • the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 7).
  • the heat pump controller 32 cools the battery 55 by controlling the rotation speed NC of the compressor 2 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76.
  • the heat pump controller 32 executes the battery heating mode. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 to energize the heat medium heating heater 63. The auxiliary expansion valve 68 is fully closed.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium heater 63 in the heat medium pipe 66.
  • the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 to raise the temperature, and then reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, where the heat medium is heated. It passes through to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is heated, and the heat medium after heating the battery 55 is repeatedly circulated by being sucked into the circulation pump 62.
  • the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
  • FIG. 8 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci.
  • the air flow rate SW by the air mix damper 28 the target supercooling degree TGSC which is the target value of the supercooling degree SC of the refrigerant at the outlet of the radiator 4, and the target heater described above which is the target value of the heater temperature Thp.
  • the F/F operation amount TGNChff of the compressor target rotation speed is calculated.
  • the heater temperature Thp is an air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci.
  • the degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
  • the target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotation speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. It is input to 83.
  • the lower limit rotation speed ECNpdLimLo and the upper limit rotation speed ECNpdLimHi are set to TGNCh0, and then the compressor OFF control unit 84 is passed to determine the compressor target rotation speed TGNCh.
  • the heat pump controller 32 controls the operation of the compressor 2 (rotational speed NC) by the compressor target rotational speed TGNCh calculated based on the radiator pressure Pci.
  • the compressor OFF control unit 84 sets the compressor target rotation speed TGNCh to the above-described lower limit rotation speed ECNpdLimLo and sets the radiator pressure Pci to the predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising to the upper limit value PUL (a state of exceeding the upper limit value PUL or a state of being equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. It enters the ON-OFF mode that controls the ON-OFF of the machine 2.
  • the compressor 2 When the radiator pressure Pci is reduced to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci is not higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
  • the radiator pressure Pci described above is adopted as an index indicating the heating capacity of the radiator 4, and the radiator pressure Pci is controlled to the target radiator pressure PCO (target value of heating capacity) described above.
  • the above-mentioned heater temperature Thp is adopted as an index indicating the heating capacity of the radiator 4, and is controlled by the heater temperature Thp and the target heater temperature TCO.
  • the temperature of the air blown into the vehicle interior detected by the blowout temperature sensor 41 is adopted as an index indicating the heating capacity of the radiator 4, and is the temperature of the air blown into the vehicle interior. You may make it control by the target blowing temperature TAO.
  • the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 is set as a radiator temperature which is an index showing the heating capacity of the radiator 4, and the refrigerant outlet temperature Tci and the target heater temperature TCO (refrigerant outlet) The target value of the temperature Tci may be controlled separately).
  • the heat pump controller 32 basically has the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 as described above.
  • the rotational speed NC of the compressor 2 is controlled based on the above (FIG. 8)
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
  • FIG. 9 shows the transition of the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and heating mode.
  • the heat pump controller 32 changes the valve opening degree of the outdoor expansion valve 6 in three stages based on the change in the heat absorber temperature Te detected by the heat absorber temperature sensor 48.
  • the heat absorber temperature Te becomes lower than the target heat absorber temperature TEO-A from the state where the outdoor expansion valve 6 is fully closed
  • the outdoor expansion valve 6 is opened and the valve opening degree is set to the predetermined valve opening degree 1.
  • the above A is a predetermined positive value.
  • the valve opening degree 1 is a predetermined opening degree smaller than the fully opened state described later.
  • valve opening degree of the outdoor expansion valve 6 when the valve opening degree of the outdoor expansion valve 6 is set to the valve opening degree 1 and the heat absorber temperature Te is further lowered to be lower than the target heat absorber temperature TEO-B, the valve opening degree of the outdoor expansion valve 6 is set to 1. Fully open. This is the maximum value for controlling the outdoor expansion valve 6 in the dehumidification heating mode. Further, B has a relationship of A ⁇ B. That is, the heat pump controller 32 increases the valve opening degree of the outdoor expansion valve 6 as the heat absorber temperature Te becomes lower than the target heat absorber temperature TEO.
  • the opening degree of the outdoor expansion valve 6 increases, the amount of refrigerant that is diverted to the indoor expansion valve 8 decreases, so the amount of refrigerant that flows into the heat absorber 9 decreases. Then, when the heat absorber temperature Te rises and becomes higher than the target heat absorber temperature TEO+C in a state where the valve opening degree of the outdoor expansion valve 6 is fully opened, the heat pump controller 32 described above the valve opening degree of the outdoor expansion valve 6. The valve opening is reduced to 1.
  • the C is also a predetermined positive value.
  • the outdoor expansion valve 6 is fully closed.
  • the D has a relationship of C ⁇ D. That is, since the heat pump controller 32 reduces the valve opening degree of the outdoor expansion valve 6 as the heat absorber temperature Te rises above the target heat absorber temperature TEO, the amount of refrigerant diverted to the indoor expansion valve 8 increases. However, the amount of refrigerant flowing into the heat absorber 9 also increases.
  • the heat pump controller 32 basically adjusts the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and heating mode to control the heat absorber temperature Te near the target heat absorber temperature TEO. This is called normal control of the outdoor expansion valve 6.
  • the heat pump controller 32 controls the compressor 2 and the indoor expansion valve 8 in the dehumidifying and heating mode. Details of control (an example) will be described. First, the heat pump controller 32 fixes the valve opening degree of the indoor expansion valve 8 as a predetermined valve opening degree 3 by default. The valve opening 3 is larger than the predetermined valve opening 2, which is the minimum value for controlling the indoor expansion valve 8.
  • the heat pump controller 32 increases the above-described target compressor rotation speed TGNCh to a predetermined target compressor rotation speed TGNCh1 while maintaining the valve opening degree of the indoor expansion valve 8 at the above-described valve opening degree 3.
  • the target compressor rotational speed TGNCh1 is set to a value that minimizes noise generated by the operation of the compressor 2, or a value that maximizes the operation efficiency of the compressor 2.
  • the heat pump controller 32 determines the rotation speed NC of the compressor 2. (Target compressor speed TGNCh) is maintained. If the radiator pressure Pci is lower than the target radiator pressure PCO at this time t2, the heat pump controller 32 reduces the valve opening degree of the indoor expansion valve 8 by a predetermined value. Since the amount of refrigerant flowing into the heat absorber 9 decreases due to the reduction in the valve opening degree of the indoor expansion valve 8, the radiator pressure Pci increases.
  • the heat pump controller 32 further reduces the valve opening degree of the indoor expansion valve 8 by a predetermined value. As a result, the radiator pressure Pci rises with the same reason. Then, when the radiator pressure Pci rises to the target radiator pressure PCO or within a predetermined error range allowable from the target radiator pressure PCO at time t4, the heat pump controller 32 thereafter determines the valve opening degree of the indoor expansion valve 8. Keep unchanged.
  • the heat pump controller 32 causes the indoor expansion valve 8 to operate.
  • the valve opening is reduced by a predetermined value.
  • the radiator pressure Pci starts to increase, but if the radiator pressure Pci is still lower than the target radiator pressure PCO at the subsequent time t6, the heat pump controller 32 further sets the valve opening degree of the indoor expansion valve 8 to a predetermined value. Decrease the value.
  • valve opening degree of the indoor expansion valve 8 decreases to the valve opening degree 2 which is the minimum value in the control described above due to such a gradual reduction of the valve opening degree
  • the heat pump controller 32 causes the indoor expansion valve 8 to continue.
  • the valve opening degree of is maintained at the valve opening degree 2. That is, when the radiator pressure Pci is lower than the target radiator pressure PCO, the heat pump controller 32 reduces the valve opening degree of the indoor expansion valve 8 in the range of the control minimum value (valve opening degree 2) or more.
  • the heat pump controller 32 If the radiator pressure Pci is still lower than the target radiator pressure PCO even when the valve opening degree of the indoor expansion valve 8 reaches the minimum control value (valve opening degree 2), the heat pump controller 32 is set to time t7. At this time, control is performed to increase the rotational speed NC of the compressor 2 this time. The control thereafter is as shown in FIG. When the radiator pressure Pci rises to the target radiator pressure PCO by controlling the rotation speed of the compressor 2, the heat pump controller 32 returns the valve opening degree of the indoor expansion valve 8 to the default value under predetermined conditions. And
  • the heat pump controller 32 sets the valve opening degree of the indoor expansion valve 8 when the radiator pressure Pci is lower than the target radiator pressure PCO, that is, when the heating capacity of the radiator 4 is lower than the target value. Since the pressure is reduced, the refrigerant pressure in the radiator 4 can be increased without increasing the rotation speed NC of the compressor 2. As a result, the heating capacity of the radiator 4 can be increased at a low rotation speed NC of the compressor 2, and the target blowing temperature can be achieved while suppressing the increase in the power consumption of the compressor 2.
  • the refrigerant discharged from the compressor 2 is radiated by the radiator 4, the radiated refrigerant is diverted, and one of the refrigerant is decompressed by the indoor expansion valve 8 and then the heat absorber 9 Is effective when the heat is absorbed by the outdoor heat exchanger 7 and the other is decompressed by the outdoor expansion valve 6.
  • the heat pump controller 32 reduces the valve opening degree of the indoor expansion valve 8 within a range equal to or more than the minimum control value (valve opening degree 2), so that the valve opening degree of the indoor expansion valve 8 can be controlled without any trouble. However, it becomes possible to suppress an increase in power consumption of the compressor 2.
  • the heat pump controller 32 sets the radiator pressure Pci to the target radiator pressure PCO or within a predetermined error range allowable from the target radiator pressure PCO even when the valve opening degree of the indoor expansion valve 8 is reduced. If this is not possible, that is, if the heating capacity of the radiator 4 cannot be set to the target value or within a predetermined error range allowed from the target value, the rotation speed NC of the compressor 2 is increased. Since the radiator pressure Pci is controlled to the target radiator pressure PCO, the heating capacity of the radiator 4 (radiator pressure Pci) is controlled by the target value (target radiator pressure PCO) in the valve opening control of the indoor expansion valve 8. If it is not possible to achieve the above, it becomes possible to achieve the target blowout temperature by the rotation speed of the compressor 2.
  • the heat pump controller 32 reduces the valve opening degree of the indoor expansion valve 8 by a predetermined value. This is called rotational speed reduction adjustment control.
  • rotational speed reduction adjustment control the radiator pressure Pci starts increasing while the rotational speed NC of the compressor 2 is reduced, and the target radiator pressure PCO, or a predetermined error allowable from the target radiator pressure PCO, again. Within the range.
  • the heat pump controller 32 When the heat pump controller 32 returns to the target radiator pressure PCO or a predetermined error range allowable from the target radiator pressure PCO due to the reduction of the valve opening degree of the indoor expansion valve 8, the rotation speed NC of the compressor 2 Is higher than the lower limit rotation speed ECNpdLimLo and the valve opening degree of the indoor expansion valve 8 is larger than the valve opening degree 2, the target compressor rotation speed TGNCh is lowered again by a predetermined rotation speed. As a result, the radiator pressure Pci also becomes lower than the target radiator pressure PCO, so the heat pump controller 32 executes again the rotational speed reduction adjustment control for reducing the valve opening degree of the indoor expansion valve 8 by a predetermined value.
  • the heat pump controller 32 repeats such rotational speed reduction adjustment control to keep the radiator pressure Pci within the target radiator pressure PCO, or within a predetermined error range allowable from the target radiator pressure PCO, while maintaining the compressor.
  • the rotation speed NC of 2 is reduced.
  • the target rotation speed TGNCh of the compressor 2 is reduced to the lower limit rotation speed ECNpdLimLo described above, or when the valve opening degree of the indoor expansion valve 8 is reduced to the valve opening degree 2 which is the minimum value in the control described above.
  • the heat pump controller 32 rotation speed reduction adjustment control is not executed.
  • the radiator pressure Pci (heating capacity of the radiator 4) is controlled within a predetermined error range allowed from the target radiator pressure PCO (target value) or the target radiator pressure PCO (target value).
  • the heat pump controller 32 reduces the rotation speed NC of the compressor 2 by a predetermined rotation speed, and executes the rotation speed reduction adjustment control that reduces the valve opening degree of the indoor expansion valve 8 by a predetermined value.
  • the number of revolutions of the compressor 2 by adjusting the valve opening of the indoor expansion valve 8 while the radiator pressure Pci (heating capacity of the radiator 4) is stable near the target radiator pressure PCO (target value). It becomes possible to reduce NC as much as possible and suppress power consumption.
  • the heat pump controller 32 sets the valve opening degree 2 at which the valve opening degree of the indoor expansion valve 8 is the minimum control value until the rotation speed NC of the compressor 3 drops to the control lower limit rotation speed ECNpdLimo. Since the rotation speed reduction adjustment control is repeatedly executed until the pressure is reduced, the compressor 2 is used as much as possible while maintaining the radiator pressure Pci (heating capacity of the radiator 4) near the target radiator pressure PCO (target value). The rotation speed NC can be reduced and the power consumption can be reduced.
  • the configuration and numerical values of the refrigerant circuit R described in the examples, and the conditions for controlling the compressor 2, the outdoor expansion valve 6, and the indoor expansion valve 8 are not limited to these, and do not deviate from the gist of the present invention. Needless to say, it can be changed with. Further, in the embodiment, the present invention has been described with reference to the vehicle air conditioner 1 having each operation mode such as heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, air conditioning (priority) + battery cooling mode, but the present invention is limited thereto. However, the present invention is also effective for, for example, a vehicle air conditioner capable of executing a dehumidifying / heating mode.
  • Air conditioner 1 Vehicle air conditioner 2 Compressor 3 Air flow passage 4 Heat sink 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 11 Controller 32 Heat pump controller 45 Air conditioning controller R Refrigerant circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】除湿暖房モードにおいて、圧縮機の消費電力の増大を抑制しながら、目標とする吹出温度を達成することができる車両用空気調和装置を提供する。 【解決手段】圧縮機2、放熱器4、室内膨張弁8、吸熱器9を備え、制御装置は、圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を室内膨張弁8により減圧した後、吸熱器9にて吸熱させると共に、放熱器4の暖房能力とその目標値に基づいて圧縮機2の回転数を制御する除湿暖房モードを実行する。制御装置は、除湿暖房モードにおいて、放熱器4の暖房能力が目標値より低い場合、室内膨張弁8の弁開度を縮小させる。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置に関するものである。
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器と室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器において放熱させ、吸熱器において吸熱させる除湿冷房モードとを切り換え可能としたものが開発されている。
 この場合、室外熱交換器の入口には室外膨張弁を設けられ、前述した暖房モードや除湿暖房モードでは、この室外膨張弁により室外熱交換器に流入する冷媒を減圧していた。そして、除湿暖房モードでは放熱器を出た冷媒を分流し、一方を室内膨張弁で減圧して吸熱器に流入させることで吸熱器にて冷媒を吸熱させ、他方は室外膨張弁で減圧して室外熱交換器に流入させることで冷媒を吸熱させていた(例えば、特許文献1参照)。
特開2014-94673号公報
 ここで、上述した除湿暖房モードでは、例えば圧縮機の暖房能力を示す指標として放熱器圧力Pciを採用し、この放熱器圧力Pciを目標放熱器圧力PCO(放熱器圧力Pciの目標値)とするように圧縮機の回転数NCを制御していた。そのため、従来では例えば図12の時刻t11に示す如く、放熱器圧力Pciが目標放熱器圧力PCOより低い場合は、圧縮機の回転数NCを上昇させ、時刻t12においても放熱器圧力Pciが目標放熱器圧力PCOより低い場合(図12ではそれらの差をΔPで示す)、更に圧縮機の回転数NCを上昇させて放熱器圧力Pciを目標放熱器圧力PCOに制御していた。
 尚、従来室内膨張弁の弁開度は変化させない。このように従来の除湿暖房モードでは、圧縮機の回転数により放熱器圧力Pciを目標放熱器圧力PCOとすることで、車室内に吹き出される空気の温度を目標とする吹出温度としていたため、放熱器圧力Pciを目標放熱器圧力PCOとするために圧縮機の回転数が高くなり、その分、消費電力が増大する問題が生じていた。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、除湿暖房モードにおいて、圧縮機の消費電力の増大を抑制しながら、目標とする吹出温度を達成することができる車両用空気調和装置を提供することを目的とする。
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器に流入する冷媒を減圧するための室内膨張弁と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室内膨張弁により減圧した後、吸熱器にて吸熱させると共に、放熱器の暖房能力とその目標値に基づいて圧縮機の回転数を制御する除湿暖房モードを実行するものであって、制御装置は、除湿暖房モードにおいて、放熱器の暖房能力が目標値より低い場合、室内膨張弁の弁開度を縮小させることを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において車室外に設けられた室外熱交換器と、この室外熱交換器に流入する冷媒を減圧するための室外膨張弁を備え、制御装置は、除湿暖房モードにおいて、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を分流し、一方を室内膨張弁により減圧した後、吸熱器にて吸熱させ、他方を室外膨張弁により減圧した後、室外熱交換器にて吸熱させることを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、制御上の最小値以上の範囲で室内膨張弁の弁開度を縮小させることを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において制御装置は、室内膨張弁の弁開度を縮小させても、放熱器の暖房能力を目標値、若しくは、当該目標値から許容される所定の誤差範囲内とすることができない場合、圧縮機の回転数を上昇させて放熱器の暖房能力を目標値に制御することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、放熱器の暖房能力が目標値、若しくは、当該目標値から許容される所定の誤差範囲内で制御されている状態で、圧縮機の回転数を所定回転数だけ低下させると共に、室内膨張弁の弁開度を所定値だけ縮小させる回転数低下調整制御を実行することを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、圧縮機の回転数が制御上の下限回転数より高く、室内膨張弁の弁開度が制御上の最小値より大きい場合に、回転数低下調整制御を実行することを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記発明において制御装置は、圧縮機の回転数が制御上の下限回転数に低下するまで、又は、室内膨張弁の弁開度が制御上の最小値に縮小するまで、回転数低下調整制御を繰り返し実行することを特徴とする。
 本発明によれば、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器に流入する冷媒を減圧するための室内膨張弁と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室内膨張弁により減圧した後、吸熱器にて吸熱させると共に、放熱器の暖房能力とその目標値に基づいて圧縮機の回転数を制御する除湿暖房モードを実行する車両用空気調和装置において、制御装置が、除湿暖房モードにおいて、放熱器の暖房能力が目標値より低い場合、室内膨張弁の弁開度を縮小させるようにしたので、圧縮機の回転数を上げること無く、放熱器の冷媒圧力を上昇させることができるようになる。
 これにより、低い圧縮機の回転数で放熱器の暖房能力を増大させ、圧縮機の消費電力の増大を抑制しながら、狙いの吹出温度を達成することができるようになる。
 上記のことは例えば請求項2の発明の如く車室外に設けられた室外熱交換器と、この室外熱交換器に流入する冷媒を減圧するための室外膨張弁を備え、制御装置が、除湿暖房モードにおいて、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を分流し、一方を室内膨張弁により減圧した後、吸熱器にて吸熱させ、他方を室外膨張弁により減圧した後、室外熱交換器にて吸熱させる場合に特に有効である。
 また、請求項3の発明の如く制御装置が、制御上の最小値以上の範囲で室内膨張弁の弁開度を縮小させるようにすれば、室内膨張弁の弁開度を支障無く制御しながら、圧縮機の消費電力の増大を抑制することができるようになる。
 更に、上記各発明において室内膨張弁の弁開度を縮小させても、放熱器の暖房能力を目標値、若しくは、当該目標値から許容される所定の誤差範囲内とすることができない場合、請求項4の発明の如く制御装置が圧縮機の回転数を上昇させて放熱器の暖房能力を目標値に制御するようにすれば、室内膨張弁の弁開度制御では放熱器の暖房能力を目標値にすることができない場合に圧縮機の回転数により狙いの吹出温度を達成することができるようになる。
 更にまた、放熱器の暖房能力が目標値、若しくは、当該目標値から許容される所定の誤差範囲内で制御されている状態で、請求項5の発明の如く制御装置が圧縮機の回転数を所定回転数だけ低下させると共に、室内膨張弁の弁開度を所定値だけ縮小させる回転数低下調整制御を実行するようにすれば、放熱器の暖房能力が目標値付近に安定している状態で、室内膨張弁の弁開度の調整により、圧縮機の回転数をできるだけ低下させ、消費電力を抑制することができるようになる。
 この場合、請求項6の発明の如く制御装置が、圧縮機の回転数が制御上の下限回転数より高く、室内膨張弁の弁開度が制御上の最小値より大きい場合に、回転数低下調整制御を実行することで、円滑且つ支障無く圧縮機の回転数低下を実現することが可能となる。
 そして、請求項7の発明の如く制御装置が、圧縮機の回転数が制御上の下限回転数に低下するまで、又は、室内膨張弁の弁開度が制御上の最小値に縮小するまで、回転数低下調整制御を繰り返し実行することで、放熱器の暖房能力を目標値付近に維持しながら、可能な限り圧縮機の回転数を低下させ、消費電力を削減することができるようになる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である。 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる除湿冷房モード及び冷房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。 図2の制御装置のヒートポンプコントローラによる除湿暖房モードでの室外膨張弁の制御を説明するブロック図である。 図2の制御装置のヒートポンプコントローラによる除湿暖房モードでの圧縮機の回転数制御と室内膨張弁の制御を説明する図である。 図2の制御装置のヒートポンプコントローラによる除湿暖房モードでの圧縮機回転数低下調整制御を説明する図である。 従来の除湿暖房モードにおける圧縮機の回転数制御を説明する図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する圧縮機2も、バッテリ55から供給される電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。
 尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や普通充電器)からバッテリ55に充電可能とされているものである。更に、前述したバッテリ55や走行用モータ、それを制御するインバータ等が車両に搭載された被温調対象となるが、以下の実施例ではバッテリ55を例に採り上げて説明する。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱(蒸発)させる蒸発器としての吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、室内膨張弁8も吸熱器9に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)が接続された冷媒配管13Bに接続され、この冷媒配管13Bは逆止弁18、室内膨張弁8を順次介して吸熱器9の冷媒入口側に接続されている。尚、逆止弁18は室内膨張弁8の方向が順方向とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cが逆止弁35を介してアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。尚、逆止弁35はアキュムレータ12の方法が順方向とされ、冷媒配管13Dはこの逆止弁35より冷媒上流側の冷媒配管13Cに接続されている。
 更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。
 更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 更に、車両用空気調和装置1は、バッテリ55(被温調対象)に熱媒体を循環させて当該バッテリ55の温度を調整するための機器温度調整装置61を備えている。実施例の機器温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、被温調対象用熱交換器としての冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。
 実施例の場合、循環ポンプ62の吐出側に熱媒体加熱ヒータ63の入口が接続され、この熱媒体加熱ヒータ63の出口に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続されている。この冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。
 この機器温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体はバッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。
 一方、冷媒回路Rの冷媒配管13Fの電磁弁22の冷媒下流側には、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では電動弁(電子膨張弁)から構成された補助膨張弁68が設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、全閉も可能とされている。
 そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は逆止弁35より冷媒下流側であって、アキュムレータ12より冷媒上流側の冷媒配管13Cに接続されている。そして、これら補助膨張弁68、冷媒-熱媒体熱交換器64の冷媒流路64B等も冷媒回路Rの一部を構成すると同時に、機器温度調整装置61の一部をも構成することになる。
 補助膨張弁68が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。
 更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。
 空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気温度(内気温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速VSP)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた表示出力装置としてのディスプレイである。
 また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9の冷媒温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、室内膨張弁8、及び、補助膨張弁68が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 尚、機器温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。また、このバッテリコントローラ73には機器温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口側の熱媒体の温度(熱媒体温度Tw)を検出する熱媒体温度センサ76と、バッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell)を検出するバッテリ温度センサ77の出力が接続されている。そして、実施例ではバッテリ55の残量(蓄電量)やバッテリ55の充電に関する情報(充電中であることの情報や充電完了時間、残充電時間等)、熱媒体温度Twやバッテリ温度Tcell、バッテリ55の発熱量(通電量等からバッテリコントローラ73が算出)等はバッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。バッテリ55の充電時における充電完了時間や残充電時間に関する情報は、急速充電器等の外部の充電器から供給される情報である。また、車両コントローラ72からは走行用モータの出力Mpowerがヒートポンプコントローラ32や空調コントローラ45に送信される。
 ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの情報、GPSナビゲーション装置74からの情報、空調操作部53の出力は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 また、ヒートポンプコントローラ32からも冷媒回路Rの制御に関するデータ(情報)が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モードの各空調運転と、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードの各バッテリ冷却運転を切り換えて実行する。
 このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。但し、リモート運転時(プレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされているときは実行される。
 一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却(単独)モードは、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。
 また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、機器温度調整装置61の循環ポンプ62を運転し、図3~図7に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、実施例のヒートポンプコントローラ32は、機器温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。
 (1)暖房モード
 先ず、図3を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図3には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁22を閉じる。また、室外膨張弁6を開き、室内膨張弁8、及び、補助膨張弁68は全閉とする、そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(後述するヒータ温度Thpの目標値)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。
 ここで、上記放熱器圧力Pciが本発明における車室内に吹き出される空気の温度を把握することができる指標であるが、後述するのと同様に、ヒータ温度Thpや吹出温度センサ41が検出する車室内への吹出温度、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciをこの指標として採用してもよい。
 また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。
 (2)除湿暖房モード
 次に、図4を参照しながら除湿暖房モードについて説明する。図4は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22を開き、電磁弁17は閉じる。また、室外膨張弁6、室内膨張弁8を開き、補助膨張弁68は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。
 一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が冷媒配管13Fに流入し、電磁弁22を経て冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御する。また、吸熱器温度Teに基づいて室外膨張弁6と室内膨張弁8の弁開度を制御するが、除湿暖房モードにおける圧縮機2の回転数制御と室外膨張弁6及び室内膨張弁8の制御については後に詳述する。
 また、ヒートポンプコントローラ32は、この除湿暖房モードにおいて後述する圧縮機2と室内膨張弁8の制御によっても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。
 (3)除湿冷房モード
 次に、図5を参照しながら除湿冷房モードについて説明する。図5は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開き、電磁弁21、電磁弁22を閉じる。また、室外膨張弁6、及び、室内膨張弁8を開き、補助膨張弁68は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aを経て冷媒配管13Bに入り、電磁弁17、逆止弁18を順次経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数NCを制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。
 また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。
 (4)冷房モード
 次に、冷房モードについて説明する。この冷房モードにおける冷媒の流れ方は図5と同様である。即ち、この冷房モードでもヒートポンプコントローラ32は電磁弁17を開き、電磁弁21、電磁弁22を閉じる。また、室外膨張弁6を全開とし、室内膨張弁8を開き、補助膨張弁68は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。冷媒は全開とされている室外膨張弁6をそのまま通過して室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13Aを経て冷媒配管13Bに入り、電磁弁17、逆止弁18を順次経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用により、室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数NCを制御する。
 (5)空調(優先)+バッテリ冷却モード
 次に、図6を参照しながら空調(優先)+バッテリ冷却モードについて説明する。図6は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17を開き、電磁弁21、及び、電磁弁22を閉じる。また、室外膨張弁を全開とし、室内膨張弁8、及び、補助膨張弁68を開く。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき室外膨張弁6は全開とされているので冷媒はそのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13Aを経て冷媒配管13Bに入り、電磁弁17、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。
 他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図6に実線矢印で示す)。
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体加熱ヒータ64を通過して熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図6に破線矢印で示す)。
 この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は室内膨張弁8を開いた状態に維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数NCを制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、補助膨張弁68を開閉制御する。尚、熱媒体温度Twは、実施例における被温調対象であるバッテリ55の温度を示す指標として採用している(以下、同じ)。
 この場合、ヒートポンプコントローラ32は、例えば熱媒体温度Twの目標値としての所定の目標熱媒体温度TWOの上下に所定の温度差を有して上限値TULと下限値TLLを設定する。そして、補助膨張弁68を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、上限値TULまで上昇した場合(上限値TULを上回った場合、又は、上限値TUL以上となった場合。以下、同じ)、補助膨張弁68を開く。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。
 その後、熱媒体温度Twが下限値TLLまで低下した場合(下限値TLLを下回った場合、又は、下限値TLL以下となった場合。以下、同じ)、補助膨張弁68を開く。以後、このような補助膨張弁68の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。
 (6)空調運転の切り換え
 ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Twやバッテリ温度Tcell等の運転条件や環境条件、設定条件の変化、バッテリコントローラ73からのバッテリ冷却要求(モード移行要求)に応じ、前記各空調運転を選択して切り換えていく。
 (7)バッテリ冷却(優先)+空調モード
 次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードを実行する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図6に示した空調(優先)+バッテリ冷却モードの場合と同様である。
 但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は補助膨張弁68を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて圧縮機2の回転数NCを制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、室内膨張弁8を開閉制御する。
 この場合、ヒートポンプコントローラ32は、例えば吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOの上下に所定の温度差を有して上限値TeULと下限値TeLLを設定する。そして、室内膨張弁8を全閉としている状態から吸熱器温度Teが高くなり、上限値TeULまで上昇した場合(上限値TeULを上回った場合、又は、上限値TeUL以上となった場合。以下、同じ)、室内膨張弁8を開く。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。
 その後、吸熱器温度Teが下限値TeLLまで低下した場合(下限値TeLLを下回った場合、又は、TeLL以下となった場合。以下、同じ)、室内膨張弁8を全閉とする。以後、このような室内膨張弁8の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。
 (8)バッテリ冷却(単独)モード
 次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。図7はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17を開き、電磁弁21、電磁弁22を閉じる。また、補助膨張弁68を開き、室内膨張弁8は全閉とする。
 そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、室外膨張弁6は全開とされているので冷媒はそのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13Aを経て冷媒配管13Bに入り、電磁弁17、逆止弁18を順次経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図7に実線矢印で示す)。
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体加熱ヒータ63を通過して熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体はバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図7に破線矢印で示す)。
 このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて圧縮機2の回転数NCを制御することにより、バッテリ55を冷却する。
 (9)バッテリ加熱モード
 また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、補助膨張弁68は全閉とする。
 これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。
 このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて熱媒体加熱ヒータ63の通電を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。
 (10)暖房モード及び除湿暖房モードにおける圧縮機2の制御
 また、ヒートポンプコントローラ32は、暖房モードと除湿暖房モードでは放熱器圧力Pciに基づき、図8の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出する。図8は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
 尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。
 リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより圧縮機2の運転(回転数NC)を制御する。
 尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態(上限値PULを上回った状態、又は、上限値PUL以上となった状態。以下、同じ)が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。
 この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合(下限値PLLを下回った場合、又は、下限値PLL以下となった場合。以下、同じ)、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。
 ここで、実施例では前述した放熱器圧力Pciを放熱器4の暖房能力を示す指標として採用し、この放熱器圧力Pciを前述した目標放熱器圧力PCO(暖房能力の目標値)に制御することで、前述した目標吹出温度TAOに制御するものであるが、それに限らず、前述したヒータ温度Thpを放熱器4の暖房能力を示す指標として採用し、このヒータ温度Thpと目標ヒータ温度TCOにより制御するようにしてもよく、或いは、吹出温度センサ41が検出する車室内に吹き出される空気の温度を放熱器4の暖房能力を示す指標として採用し、この車室内に吹き出される空気の温度と目標吹出温度TAOにより制御するようにしてもよい。更に、例えば放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciを放熱器4の暖房能力を示す指標である放熱器温度とし、この冷媒出口温度Tciと目標ヒータ温度TCO(冷媒出口温度Tciの目標値を別途設定)により制御するようにしてもよい。
 (11)除湿暖房モードにおける圧縮機2、室外膨張弁6及び室内膨張弁8の制御
 次に、図9~図11を参照しながら、除湿暖房モードにおけるヒートポンプコントローラ32による圧縮機2、室外膨張弁6、室内膨張弁8の制御の一例について詳細に説明する。ヒートポンプコントローラ32は、除湿暖房モードでは前述した如く基本的には目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御するものであるが(図8)、室外膨張弁6については吸熱器温度Teに基づいて弁開度を制御する。
 (11-1)除湿暖房モードにおける室外膨張弁6の制御
 先ず、図9を参照しながら、ヒートポンプコントローラ32による除湿暖房モードの際の室外膨張弁6の制御の実施例について説明する。図9は除湿暖房モードにおける室外膨張弁6の弁開度の遷移を示している。ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器温度Teの変化に基づき、実施例では室外膨張弁6の弁開度を三段階で変化させる。先ず、室外膨張弁6が全閉の状態から吸熱器温度Teが目標吸熱器温度TEO-Aより低くなった場合、室外膨張弁6を開き、その弁開度を所定の弁開度1とする。尚、前記Aは所定の正の値である。また、弁開度1は後述する全開よりも小さい所定の開度である。
 また、室外膨張弁6の弁開度を弁開度1とした状態で、吸熱器温度Teが更に低下して目標吸熱器温度TEO-Bより低くなった場合、室外膨張弁6の弁開度を全開とする。これは除湿暖房モードにおける室外膨張弁6の制御上の最大値である。また、前記BはA<Bの関係である。即ち、ヒートポンプコントローラ32は、吸熱器温度Teが目標吸熱器温度TEOより低下するに伴って室外膨張弁6の弁開度を拡大していく。
 室外膨張弁6の弁開度の拡大に伴い、室内膨張弁8に分流される冷媒量が減少するので、吸熱器9への冷媒の流入量は減少する。そして、室外膨張弁6の弁開度が全開の状態で、吸熱器温度Teが上昇し、目標吸熱器温度TEO+Cより高くなった場合、ヒートポンプコントローラ32は室外膨張弁6の弁開度を前述した弁開度1に縮小させる。尚、前記Cも所定の正の値である。
 また、室外膨張弁6の弁開度を弁開度1とした状態で、吸熱器温度Teが更に上昇して目標吸熱器温度TEO+Dより高くなった場合、室外膨張弁6を全閉とする。尚、前記DはC<Dの関係である。即ち、ヒートポンプコントローラ32は、吸熱器温度Teが目標吸熱器温度TEOより上昇するに伴って室外膨張弁6の弁開度を縮小していくので、室内膨張弁8に分流される冷媒量が増加し、吸熱器9への冷媒の流入量も増加することになる。
 このようにして、ヒートポンプコントローラ32は、除湿暖房モードにおいては基本的には室外膨張弁6の弁開度を調整することで、吸熱器温度Teを目標吸熱器温度TEOの近傍に制御する。これを室外膨張弁6の通常制御と称する。
 (11-2)除湿暖房モードにおける圧縮機2と室内膨張弁8の制御
 次に図10と図11を参照しながら、ヒートポンプコントローラ32による除湿暖房モードの際の圧縮機2と室内膨張弁8の制御の詳細(一例)について説明する。先ず、ヒートポンプコントローラ32はデフォルトでは室内膨張弁8の弁開度を所定の弁開度3として固定している。尚、この弁開度3は室内膨張弁8の制御上の最小値である所定の弁開度2よりも大きい値である。
 今、図10の時刻t1において放熱器圧力Pciが目標放熱器圧力PCOより所定値以上低い状態(放熱器4の暖房能力が足りない状態)となっているものとする。この場合、ヒートポンプコントローラ32は室内膨張弁8の弁開度を前述した弁開度3に維持したまま、前述した目標圧縮機回転数TGNChを所定の目標圧縮機回転数TGNCh1に上昇させる。この目標圧縮機回転数TGNCh1は、例えば圧縮機2の運転により生じるノイズが最も少なくなる値、或いは、圧縮機2の運転効率が最も良くなる値とする。
 このように目標圧縮機回転数TGNChを上昇させ、時刻t2で圧縮機2の回転数NCが前述した目標圧縮機回転数TGNCh1まで上昇した場合、ヒートポンプコントローラ32はその後、圧縮機2の回転数NC(目標圧縮機回転数TGNCh)を維持する。そして、この時刻t2の時点でも放熱器圧力Pciが目標放熱器圧力PCOより低い場合、ヒートポンプコントローラ32は室内膨張弁8の弁開度を所定値だけ縮小させる。室内膨張弁8の弁開度が縮小したことで、吸熱器9に流入する冷媒量が減少するので、放熱器圧力Pciは上昇する。
 しかしながら、この時刻t3の時点でも放熱器圧力Pciが目標放熱器圧力PCOより依然低い場合、ヒートポンプコントローラ32は室内膨張弁8の弁開度を更に所定値だけ縮小させる。これにより同じ理屈で放熱器圧力Pciは上昇する。そして、時刻t4で放熱器圧力Pciが目標放熱器圧力PCO、若しくは、目標放熱器圧力PCOから許容される所定の誤差範囲内まで上昇した場合、ヒートポンプコントローラ32は以後室内膨張弁8の弁開度を変化させずに維持する。
 その後、何らかの原因で放熱器圧力Pciが低下し、時刻t5で目標放熱器圧力PCOより所定値低くなった場合(所定値は前述した誤差範囲より大きい値)、ヒートポンプコントローラ32は室内膨張弁8の弁開度を所定値だけ縮小する。これにより、放熱器圧力Pciは上昇に転ずるが、その後の時刻t6の時点でも放熱器圧力Pciが目標放熱器圧力PCOより依然低い場合、ヒートポンプコントローラ32は室内膨張弁8の弁開度を更に所定値だけ縮小させる。
 このような段階的な弁開度の縮小により、室内膨張弁8の弁開度が前述した制御上の最小値である弁開度2まで低下した場合、ヒートポンプコントローラ32は以後は室内膨張弁8の弁開度を弁開度2に維持する。即ち、ヒートポンプコントローラ32は放熱器圧力Pciが目標放熱器圧力PCOより低い場合、制御上の最小値(弁開度2)以上の範囲で室内膨張弁8の弁開度を縮小させる。
 そして、このように室内膨張弁8の弁開度が制御上の最小値(弁開度2)となっても依然放熱器圧力Pciが目標放熱器圧力PCOより低い場合、ヒートポンプコントローラ32は時刻t7の時点で今度は圧縮機2の回転数NCを上昇させる方向に制御する。以後の制御は図8で示したものとなる。尚、圧縮機2の回転数制御によって放熱器圧力Pciが目標放熱器圧力PCOまで上昇したときには、ヒートポンプコントローラ32は所定の条件の下、室内膨張弁8の弁開度をデフォルトの値まで戻すものとする。
 このようにヒートポンプコントローラ32は除湿暖房モードにおいて、放熱器圧力Pciが目標放熱器圧力PCOより低い場合、即ち、放熱器4の暖房能力が目標値より低い場合、室内膨張弁8の弁開度を縮小させるようにしたので、圧縮機2の回転数NCを上げること無く、放熱器4の冷媒圧力を上昇させることができるようになる。これにより、低い圧縮機2の回転数NCで放熱器4の暖房能力を増大させ、圧縮機2の消費電力の増大を抑制しながら、狙いの吹出温度を達成することができるようになる。
 特に、実施例の如く除湿暖房モードにおいて、圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を分流し、一方を室内膨張弁8により減圧した後、吸熱器9にて吸熱させ、他方を室外膨張弁6により減圧した後、室外熱交換器7にて吸熱させる場合に有効である。
 また、実施例ではヒートポンプコントローラ32が、制御上の最小値(弁開度2)以上の範囲で室内膨張弁8の弁開度を縮小させるので、室内膨張弁8の弁開度を支障無く制御しながら、圧縮機2の消費電力の増大を抑制することができるようになる。
 更に、ヒートポンプコントローラ32は、室内膨張弁8の弁開度を縮小させても、放熱器圧力Pciを目標放熱器圧力PCO、若しくは、当該目標放熱器圧力PCOから許容される所定の誤差範囲内とすることができない場合、即ち、放熱器4の暖房能力を目標値、若しくは、当該目標値から許容される所定の誤差範囲内とすることができない場合、圧縮機2の回転数NCを上昇させて放熱器圧力Pciを目標放熱器圧力PCOに制御するようにしているので、室内膨張弁8の弁開度制御では放熱器4の暖房能力(放熱器圧力Pci)を目標値(目標放熱器圧力PCO)にすることができない場合に圧縮機2の回転数により狙いの吹出温度を達成することができるようになる。
 (11-3)除湿暖房モードにおける圧縮機2の回転数低下調整制御
 次に、図11に基づいてヒートポンプコントローラ32が実行する圧縮機2の回転数低下調整制御について説明する。図11の時刻t8で放熱器圧力Pciが目標放熱器圧力PCO、若しくは、目標放熱器圧力PCOから許容される所定の誤差範囲内で安定しているものとする。ヒートポンプコントローラ32はこのような安定状態において、圧縮機2の回転数NCが前述した下限回転数ECNpdLimLoより高く、室内膨張弁8の弁開度が前述した制御上の最小値である弁開度2より大きい場合、時刻t9で目標圧縮機回転数TGNChを所定回転数だけ低下させる。
 時刻t10で圧縮機2の回転数NCがこの所定回転数だけ低下した目標圧縮機回転数TGNChまで低下すると、放熱器圧力Pciも目標放熱器圧力PCOより低下してくる。そこで、ヒートポンプコントローラ32は、室内膨張弁8の弁開度を所定値だけ縮小させる。これを回転数低下調整制御と称する。この回転数低下調整制御により、圧縮機2の回転数NCが低下したまま、放熱器圧力Pciは上昇に転じ、再び目標放熱器圧力PCO、若しくは、目標放熱器圧力PCOから許容される所定の誤差範囲内となる。
 ヒートポンプコントローラ32は、室内膨張弁8の弁開度の縮小で目標放熱器圧力PCO、若しくは、目標放熱器圧力PCOから許容される所定の誤差範囲内に復帰した場合、圧縮機2の回転数NCが下限回転数ECNpdLimLoより高く、室内膨張弁8の弁開度が弁開度2より大きいことを条件として、目標圧縮機回転数TGNChを再度所定回転数だけ低下させる。これにより、放熱器圧力Pciも目標放熱器圧力PCOより低下してくるので、ヒートポンプコントローラ32は、室内膨張弁8の弁開度を所定値だけ縮小させる回転数低下調整制御を再度実行する。
 以後、ヒートポンプコントローラ32はこのような回転数低下調整制御を繰り返すことで放熱器圧力Pciを目標放熱器圧力PCO、若しくは、目標放熱器圧力PCOから許容される所定の誤差範囲内としながら、圧縮機2の回転数NCを低下させていく。そして、圧縮機2の目標回転数TGNChが前述した下限回転数ECNpdLimLoまで低下した場合、又は、室内膨張弁8の弁開度が前述した制御上の最小値である弁開度2まで低下した場合、以後、ヒートポンプコントローラ32回転数低下調整制御を実行しない。
 このように、放熱器圧力Pci(放熱器4の暖房能力)が目標放熱器圧力PCO(目標値)、若しくは、当該目標放熱器圧力PCO(目標値)から許容される所定の誤差範囲内で制御されている状態で、ヒートポンプコントローラ32が圧縮機2の回転数NCを所定回転数だけ低下させると共に、室内膨張弁8の弁開度を所定値だけ縮小させる回転数低下調整制御を実行することにより、放熱器圧力Pci(放熱器4の暖房能力)が目標放熱器圧力PCO(目標値)付近に安定している状態で、室内膨張弁8の弁開度の調整により、圧縮機2の回転数NCをできるだけ低下させ、消費電力を抑制することができるようになる。
 この場合、ヒートポンプコントローラ32は、圧縮機2の回転数NCが制御上の下限回転数ECNpdLimLoより高く、室内膨張弁8の弁開度が制御上の最小値である弁開度2以上より大きい場合に、回転数低下調整制御を実行するので、円滑且つ支障無く圧縮機2の回転数低下を実現することが可能となる。
 そして、ヒートポンプコントローラ32は、圧縮機3の回転数NCが制御上の下限回転数ECNpdLimLoに低下するまで、又は、室内膨張弁8の弁開度が制御上の最小値である弁開度2に縮小するまで、回転数低下調整制御を繰り返し実行するので、放熱器圧力Pci(放熱器4の暖房能力)を目標放熱器圧力PCO(目標値)付近に維持しながら、可能な限り圧縮機2の回転数NCを低下させ、消費電力を削減することができるようになる。
 尚、実施例で説明した冷媒回路Rの構成や数値、圧縮機2や室外膨張弁6、室内膨張弁8の制御に関する条件はそれらに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。また、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モード等の各運転モードを有する車両用空気調和装置1で本発明を説明したが、それに限らず、例えば除湿暖房モードを実行可能とされた車両用空気調和装置にも本発明は有効である。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 制御装置
 32 ヒートポンプコントローラ
 45 空調コントローラ
 R 冷媒回路

Claims (7)

  1.  冷媒を圧縮する圧縮機と、
     冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記車室内に供給する空気を冷却するための吸熱器と、
     該吸熱器に流入する冷媒を減圧するための室内膨張弁と、
     制御装置を備え、
     該制御装置により少なくとも、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記室内膨張弁により減圧した後、前記吸熱器にて吸熱させると共に、前記放熱器の暖房能力とその目標値に基づいて前記圧縮機の回転数を制御する除湿暖房モードを実行する車両用空気調和装置において、
     前記制御装置は、前記除湿暖房モードにおいて、前記放熱器の暖房能力が前記目標値より低い場合、前記室内膨張弁の弁開度を縮小させることを特徴とする車両用空気調和装置。
  2.  車室外に設けられた室外熱交換器と、
     該室外熱交換器に流入する冷媒を減圧するための室外膨張弁を備え、
     前記制御装置は、前記除湿暖房モードにおいて、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を分流し、一方を前記室内膨張弁により減圧した後、前記吸熱器にて吸熱させ、他方を前記室外膨張弁により減圧した後、前記室外熱交換器にて吸熱させることを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記制御装置は、制御上の最小値以上の範囲で前記室内膨張弁の弁開度を縮小させることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
  4.  前記制御装置は、前記室内膨張弁の弁開度を縮小させても、前記放熱器の暖房能力を前記目標値、若しくは、当該目標値から許容される所定の誤差範囲内とすることができない場合、前記圧縮機の回転数を上昇させて前記放熱器の暖房能力を前記目標値に制御することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
  5.  前記制御装置は、前記放熱器の暖房能力が前記目標値、若しくは、当該目標値から許容される所定の誤差範囲内で制御されている状態で、前記圧縮機の回転数を所定回転数だけ低下させると共に、前記室内膨張弁の弁開度を所定値だけ縮小させる回転数低下調整制御を実行することを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
  6.  前記制御装置は、前記圧縮機の回転数が制御上の下限回転数より高く、前記室内膨張弁の弁開度が制御上の最小値より大きい場合に、前記回転数低下調整制御を実行することを特徴とする請求項5に記載の車両用空気調和装置。
  7.  前記制御装置は、前記圧縮機の回転数が制御上の下限回転数に低下するまで、又は、前記室内膨張弁の弁開度が制御上の最小値に縮小するまで、前記回転数低下調整制御を繰り返し実行することを特徴とする請求項6に記載の車両用空気調和装置。
PCT/JP2020/006994 2019-03-06 2020-02-21 車両用空気調和装置 WO2020179492A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080012855.XA CN113412397B (zh) 2019-03-06 2020-02-21 车用空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-040479 2019-03-06
JP2019040479A JP2020142620A (ja) 2019-03-06 2019-03-06 車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2020179492A1 true WO2020179492A1 (ja) 2020-09-10

Family

ID=72337876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006994 WO2020179492A1 (ja) 2019-03-06 2020-02-21 車両用空気調和装置

Country Status (3)

Country Link
JP (1) JP2020142620A (ja)
CN (1) CN113412397B (ja)
WO (1) WO2020179492A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069964A (ja) * 2016-10-31 2018-05-10 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置及びその製造方法
JP2018118540A (ja) * 2017-01-23 2018-08-02 株式会社デンソー 冷凍サイクル装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6047387B2 (ja) * 2012-11-30 2016-12-21 サンデンホールディングス株式会社 車両用空気調和装置
JP5935714B2 (ja) * 2013-02-27 2016-06-15 株式会社デンソー 冷凍サイクル装置
WO2015159485A1 (ja) * 2014-04-18 2015-10-22 サンデンホールディングス株式会社 車両用空気調和装置
JP6418787B2 (ja) * 2014-05-26 2018-11-07 サンデンホールディングス株式会社 車両用空気調和装置
JP6633303B2 (ja) * 2015-06-25 2020-01-22 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6607638B2 (ja) * 2015-12-14 2019-11-20 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069964A (ja) * 2016-10-31 2018-05-10 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置及びその製造方法
JP2018118540A (ja) * 2017-01-23 2018-08-02 株式会社デンソー 冷凍サイクル装置

Also Published As

Publication number Publication date
JP2020142620A (ja) 2020-09-10
CN113412397B (zh) 2022-12-27
CN113412397A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
JP7095848B2 (ja) 車両用空気調和装置
JP6997558B2 (ja) 車両用空気調和装置
CN110505968B (zh) 车辆用空气调和装置
CN111615464B (zh) 车用空调装置
JP6963405B2 (ja) 車両用空気調和装置
WO2017104588A1 (ja) 車両用空気調和装置
JP7300264B2 (ja) 車両用空気調和装置
WO2020075446A1 (ja) 車両用空気調和装置
JP2020050155A (ja) 車両用空気調和装置
JP7372732B2 (ja) 車両用空気調和装置
JP2017024511A (ja) 車両用空気調和装置
CN109661317B (zh) 车用空调装置
WO2020184146A1 (ja) 車両用空気調和装置
WO2018079121A1 (ja) 車両用空気調和装置
WO2020129493A1 (ja) 車両用空気調和装置
WO2020090255A1 (ja) 車両用空気調和装置
JP2018058575A (ja) 車両用空気調和装置
WO2020166274A1 (ja) 車両用空気調和装置
WO2018061785A1 (ja) 車両用空気調和装置
WO2021192760A1 (ja) 車両用空気調和装置
JP7387520B2 (ja) 車両用空気調和装置
WO2020179492A1 (ja) 車両用空気調和装置
WO2020100523A1 (ja) 車両用空気調和装置
WO2020100524A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766976

Country of ref document: EP

Kind code of ref document: A1