WO2020040597A1 - 식물 재배용 광원 - Google Patents

식물 재배용 광원 Download PDF

Info

Publication number
WO2020040597A1
WO2020040597A1 PCT/KR2019/010771 KR2019010771W WO2020040597A1 WO 2020040597 A1 WO2020040597 A1 WO 2020040597A1 KR 2019010771 W KR2019010771 W KR 2019010771W WO 2020040597 A1 WO2020040597 A1 WO 2020040597A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
section
plant
light source
peaks
Prior art date
Application number
PCT/KR2019/010771
Other languages
English (en)
French (fr)
Inventor
김세령
고상민
김진원
송현수
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to CN202011180670.8A priority Critical patent/CN112544267B/zh
Priority to KR1020217008930A priority patent/KR20210042989A/ko
Priority to EP19853039.6A priority patent/EP3841870A4/en
Priority to CN201980003184.8A priority patent/CN111182785B/zh
Priority to JP2021509838A priority patent/JP7443336B2/ja
Publication of WO2020040597A1 publication Critical patent/WO2020040597A1/ko
Priority to JP2024024500A priority patent/JP2024056987A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/20Forcing-frames; Lights, i.e. glass panels covering the forcing-frames
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/109Outdoor lighting of gardens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to a light source for plant cultivation, and more particularly, to a light source for emitting light optimized for photosynthesis of plants.
  • An object of the present invention is to provide a light source for plant cultivation that can easily cultivate a plant having a high content of an active substance.
  • the light source for plant cultivation is turned on or off according to the light and dark periods of the plant, and the light source for plant cultivation is turned on during the light period to provide light having a spectrum consisting of a plurality of peaks.
  • At least one peak provided in the second section but not provided in the first section may appear at a wavelength of about 300 nm or less.
  • At least one peak provided in the second section but not provided in the first section may have a wavelength of about 280 nm to about 295 nm, for example, a wavelength of 285 nm.
  • the second interval may be provided in less than about 6 hours, or may be provided for about 3 hours.
  • the light source may emit light continuously during the second period.
  • the plant may be a cruciferous plant.
  • Cruciferous plants may be at least one of red radish, red radish, turnips, Chinese cabbage, broccoli, rockets, rapeseeds, kohlrabi, bok choy, bluish green, green, kale, red cabbage.
  • the predetermined substance may be at least one of chlorophyll, flavonol, and anthocyanin.
  • the remaining peaks except for at least one peak provided in the second section but not provided in the first section may be provided in the visible light wavelength band.
  • the remaining peaks except for at least one peak provided in the second section but not provided in the first section may include peaks provided in each of the blue wavelength band and the red wavelength band.
  • the light source may include a plurality of light emitting diodes for emitting light of different wavelengths.
  • the plurality of light emitting diodes may include a first light emitting diode provided in the second section and providing light corresponding to at least one peak not provided in the first section, and the at least one light emitting diode. It may include a second light emitting diode that provides light corresponding to the remaining peaks except for the peak of.
  • the light source may be employed in a plant cultivation apparatus, the plant cultivation apparatus is provided in the housing, the above-described light source provided in the housing and irradiating light to the plant, and the light source It includes a control unit for controlling.
  • An embodiment of the present invention includes a method of cultivating a cruciferous plant using the above-described light source, the method comprising germinating seeds of the cruciferous plant, growing the germinated seeds into sprouts, and formulating the sprouts
  • the remaining sections are referred to as a second section
  • at least one of the peaks of the light emitted from the second section of the bright period may precede the second section or
  • the remaining peaks excluding at least one peak provided in the second section and not provided in the second section are substantially the same wavelength in the second section and the first section. Appears in.
  • a plant having a high content of an effective substance can be easily grown.
  • Figure 1a is a plan view showing a light source for plant cultivation according to an embodiment of the present invention in one embodiment of the present invention.
  • Figure 1b is a block diagram showing a light source module for plant cultivation according to an embodiment of the present invention.
  • FIG. 2 schematically illustrates a light emitting diode according to an embodiment of the present invention.
  • 3A to 3C illustrate a spectrum of light emitted from a light source according to an exemplary embodiment of the present invention.
  • Figure 4 shows the growth conditions of the kale according to the experimental example.
  • 6a to 6c shows the contents of chlorophyll, flavonol, and anthocyanin contained in kale harvested on the 31st day after sowing after plants were treated with light in Comparative Example 1, Experimental Example 1, and Experimental Example 2 Each graph is shown in order.
  • FIG. 8A to 8D are photographs showing experimental results of Comparative Example 2, Experimental Example 3, and Experimental Example 4.
  • FIG. 8A to 8D are photographs showing experimental results of Comparative Example 2, Experimental Example 3, and Experimental Example 4.
  • 9A to 9C show the contents of chlorophyll, flavonol, and anthocyanin contained in kale harvested on the 31st day after sowing after plants were treated with light in Comparative Example 2, Experimental Example 3, and Experimental Example 4; Each graph is shown in order.
  • FIG. 11A to 11B are photographs showing the experimental results of Comparative Example 3, Experimental Example 5, and Experimental Example 6.
  • FIG. 11A to 11B are photographs showing the experimental results of Comparative Example 3, Experimental Example 5, and Experimental Example 6.
  • 12A to 12C show the contents of chlorophyll, flavonol, and anthocyanin contained in kale harvested on the 31st day after sowing after plants were treated with light in Comparative Example 3, Experimental Example 5, and Experimental Example 6; Each graph is shown in order.
  • FIG. 14A to 14D are photographs showing experimental results of Comparative Example 4, Experimental Example 7, and Experimental Example 8.
  • FIG. 14A to 14D are photographs showing experimental results of Comparative Example 4, Experimental Example 7, and Experimental Example 8.
  • Figures 15a to 15c shows the content of chlorophyll, flavonol, and anthocyanin contained in kale harvested on the 31st day after sowing, after the light treatment on plants in Comparative Example 4, Experimental Example 7, and Experimental Example 8 Each graph is shown in order.
  • Fig. 16 shows experimental conditions in this example.
  • Figures 17a to 17c is a comparative example and experimental example tested in accordance with the experimental conditions of Figure 16, the order of the contents of chlorophyll, flavonol, and anthocyanin contained in the poly, mustard, and broccoli harvested on the 31st day after sowing Each graph is shown as follows.
  • 18A to 18C are photographs showing the experimental results of the comparative example and the experimental example tested according to the experimental conditions of FIG. 16.
  • FIG. 19 is a cultivation apparatus conceptually showing a cultivation apparatus according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • the present invention relates to a light source used in plant cultivation.
  • Plants make photosynthesis using light in the visible wavelength range and obtain energy through photosynthesis. Plant photosynthesis does not occur to the same extent in all wavelength bands.
  • the light of the wavelength band that plants use for photosynthesis in sunlight is called PAR (Photosynthetic Active Radiation) and occupies a part of the solar spectrum and corresponds to a band of about 400 nanometers to about 700 nanometers.
  • Plant cultivation light source according to an embodiment of the present invention includes the light of the above-described PAR wavelength band to provide light suitable for photosynthesis of the plant, the component that can have a positive effect on the health of people or plants when ingested (hereinafter In order to increase the content of the active ingredient)) to provide the light of the wavelength band.
  • the active ingredient here is a substance known to be necessary for humans, for example, such as chlorophyll, flavonol, anthocyanin, glycosinolate.
  • Chlorophyll is a photosynthetic pigment of green vegetables and is known to help prevent bad smell and constipation from the mouth.
  • Flavonols are antioxidants, such as quercetin, camphorol and myricetin. Quercetin is an antioxidant that has a high antioxidant capacity, and camphorol is known to prevent cancer cell proliferation by strengthening immunity, and myricetin is known to prevent cardiovascular disease by inhibiting fat accumulation.
  • Anthocyanins are representative antioxidants that have the effect of preventing aging by removing free radicals in the body. Anthocyanins also help to resynthesize the pigment called rhodopsin in the eye retina, which helps to prevent eye fatigue, decreased vision, and cataracts.
  • Glycosinolates can be broken down by intestinal microorganisms and converted into isothiocyanates when they are absorbed into the human intestine.
  • Glucosinolate is known to have cancer prevention effects and is effective in bladder cancer, breast cancer and liver cancer.
  • glucosinolate has excellent coordination ability of leukocytes and cytokines and has enzymes that inhibit tumor growth in breast, liver, colon, lung, stomach and esophagus. It is also known that indole-3-carbinol produced by glucosenolate has anticancer activity.
  • Glycosinolate is a substance represented by the following formula (1), R may be a functional group of various forms. R may be, for example, a substituted or unsubstituted allyl, benzyl, 2-phenylethyl group, or the like having 1 to 10 carbon atoms.
  • glycosinolate is according to the type of R, glucoerucin (glucoerucin), glucoraphenin (glucoraphenin), gluconapin, progoitrin (progoitrin), glucopanin (glucoraphanin), sinigrin, neoglucobrassicin, neoglucobrassicin, gluconastrutiin, glucoiberin, glucobrassicanapin, and the like.
  • the type of the plant to which the light source according to the embodiment of the present invention is applied may be variously changed.
  • the photosynthetic efficiency of the light emitted from the light source or the degree of increase in the content of the active ingredient may vary depending on the species.
  • the light source according to an embodiment of the present invention can be applied to the plants of the cruciferaceae.
  • a light source according to an embodiment of the present invention at least one of red radish, red radish, turnip, cabbage, broccoli, rocket, rapeseed, kohlrabi, bok choy, erukcheong, dacha, kale, red cabbage Can be applied to
  • the type of plant according to an embodiment of the present invention is not limited thereto, and may be applied to other species.
  • the light source according to the embodiment of the present invention is applied to a plant of the Cruciferaceae.
  • FIG. 1 is a plan view showing a light source for plant cultivation according to an embodiment of the present invention in an embodiment of the present invention
  • Figure 2 is a block diagram showing a light source module for plant cultivation according to an embodiment of the present invention.
  • the light source module for plant cultivation includes a light source 30 for emitting light required for plants, a controller 40 for controlling the light source 30, the light source 30, and / or a controller 40. It includes a power supply unit 50 for supplying power.
  • the light source 30 may include first and second light sources 31 and 33 having spectral peaks at different wavelengths. At least one of the first and second light sources 31 and 33 has a peak of the spectrum located in the visible light wavelength band.
  • the first light source 31 having a spectral peak in the visible light wavelength band will be described as an example.
  • the first light source 31 may emit light in the visible light wavelength band.
  • the light emitted from the first light source 31 is light in a wavelength band mainly used for photosynthesis of plants, and may be light in a PAR region.
  • the first light source 31 is represented as one component, but the first light source 31 is implemented as one or a plurality of light emitting diodes within the limit of emitting light in a visible light wavelength band capable of photosynthesis. Can be.
  • the light emitting diode may be implemented as one or a plurality of light emitting diodes within a limit for emitting light having a predetermined spectrum to be described later.
  • the first light source 31 may be formed of a light emitting diode that emits blue and red at the same time, or a plurality of light emitting diodes emitting light of a blue wavelength band and a plurality of light emitting diodes emitting light of a red wavelength band. It may be made of.
  • the second light source 33 may emit light having a wavelength band different from that of the first light source 31.
  • the second light source 33 may emit light in the ultraviolet wavelength band, particularly in the ultraviolet B wavelength band.
  • the second light source 33 corresponds to light for increasing the content of the active ingredient in the plant.
  • the second light source 33 may also include a single or a plurality of light emitting diodes as necessary.
  • the first light source 31 and the second light source 33 may be driven independently. Accordingly, only one light source of the first light source 31 and the second light source 33 may be turned on, or both the first and second light sources 31 and 33 may be turned on or turned off. In one embodiment of the present invention, the first light source 31 and the second light source 33 may be independently turned on / off to provide the plant with light having a predetermined spectrum.
  • the plant receives light in various forms from the light source, ie from the first and second light sources 31 and 33, depending on the time of growth, the light cycle or the dark cycle, or the harvest time. The spectrum of the light emitted from the light sources including the first and second light sources 31 and 33 will be described later.
  • the first light source 31 and the second light source 33 may be disposed on the substrate 20.
  • the substrate 20 may be a printed circuit board on which a wire or a circuit on which the first light source 31 and the second light source 33 may be directly mounted may be formed, but is not limited thereto.
  • the substrate is sufficient as long as the first light source 31 and the second light source 33 can be disposed, and the shape or structure thereof is not particularly limited and may be omitted.
  • FIG. 2 schematically illustrates a light emitting diode according to an embodiment of the present invention.
  • the light emitting diode includes a light emitting structure including a first semiconductor layer 223, an active layer 225, and a second semiconductor layer 227, a first electrode 221 and a second electrode connected to the light emitting structure. It may include an electrode 229.
  • the first semiconductor layer 223 is a semiconductor layer doped with the first conductivity type dopant.
  • the first conductivity type dopant may be a p-type dopant.
  • the first conductivity type dopant may be Mg, Zn, Ca, Sr, Ba, or the like.
  • the first semiconductor layer 223 may include a nitride-based semiconductor material.
  • the material of the first semiconductor layer 223 may be GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, or the like.
  • the active layer 225 is provided on the first semiconductor layer 223 and corresponds to the light emitting layer.
  • electrons (or holes) injected through the first semiconductor layer 223 and holes (or electrons) injected through the second semiconductor layer 227 meet each other to form a material of the active layer 225.
  • the layer emits light due to the band gap difference of the energy band.
  • the active layer 225 may be implemented with a compound semiconductor.
  • the active layer 225 may be implemented by at least one of compound semiconductors of Groups 3-5 or 2-6, for example.
  • the second semiconductor layer 227 is provided on the active layer 225.
  • the second semiconductor layer 227 is a semiconductor layer having a second conductivity type dopant having a polarity opposite to that of the first conductivity type dopant.
  • the second conductivity type dopant may be an n type dopant, and the second conductivity type dopant may include, for example, Si, Ge, Se, Te, O, C, or the like.
  • the second semiconductor layer 227 may comprise a nitride-based semiconductor material.
  • the material of the second semiconductor layer 227 include GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, and the like.
  • the first electrode 221 and the first electrode 229 may be provided in various forms so as to be connected to the first semiconductor layer 223 and the second semiconductor layer 227, respectively.
  • the first electrode 221 is provided below the first semiconductor layer 223 and the second electrode 229 is provided above the second semiconductor layer 227, the present invention is not limited thereto. no.
  • the first electrode 221 and the second electrode 229 are, for example, Al, Ti, Cr, Ni, Au, Ag, Ti, Sn, Ni, Cr, W, Cu It may be made of various metals such as or alloys thereof.
  • the first electrode 221 and the second electrode 229 may be formed in a single layer or multiple layers.
  • the light emitting diode is provided in a vertical type, but the light emitting diode does not necessarily need to be a vertical type, and may be provided in another type as long as it conforms to the concept of the present invention.
  • the following effects can be obtained by using a light emitting diode instead of a conventional general lamp as a light source to apply light to a sample.
  • the plant may be provided with light having a specific wavelength compared to light emitted from an existing general lamp (for example, an existing UV lamp).
  • the light emitted from the existing lamp has a broad spectrum in a wide area compared with the light emitted from the light emitting diode. Accordingly, in the case of the conventional UV lamp, it is not easy to separate only the light of a part of the wavelength band of the emitted light.
  • the light emitted from the light emitting diodes has a sharp peak at a specific wavelength and provides light of a specific wavelength having a very narrow half-width in comparison with the light from a conventional lamp. Accordingly, it is easy to select light of a specific wavelength and only the light of the selected specific wavelength can be provided to the sample.
  • the irradiation time may also be set in a wide range, but in the case of a light emitting diode, it is possible to provide light required for a sample within a definite time for a relatively short time.
  • the light emitting diode can provide a clear light irradiation amount due to a relatively narrow range of wavelengths, a narrow range of light amount, and a narrow range of irradiation time.
  • the controller 40 is connected to the first and / or second light sources 31 and 33 to control whether the first light source 31 and the second light source 33 operate.
  • the controller 40 may be connected to the first and / or second light sources 31 and 33 by wire or wirelessly.
  • the control unit 40 is connected to a power supply unit 50 for supplying power to the control unit 40.
  • the power supply unit 50 may be directly connected to the light source through the control unit 40 or may supply power to the light source.
  • the controller 40 turns on / off the first light source 31 and / or the second light source 33 so that the first light source 31 and the second light source 33 emit light at a predetermined intensity in a predetermined section. Can be controlled.
  • the first light source 31 and the second light source 33 may be operated individually so that the plant can photosynthesis as efficiently as possible.
  • the controller 40 may independently control the emission intensity, the emission time, and the like of the light from the first and second light sources 31 and 33, respectively.
  • the first light source 31 and / or the second light source 33 includes a plurality of light emitting diodes, individual light emitting diodes may be independently controlled.
  • the controller 40 may control the operations of the first light source 31 and the second light source 33 according to a pre-set process or according to a user input. Operation of the first light source 31 and the second light source 33 may be variously changed according to the type of plant, the growth time of the plant, and the like.
  • 3A to 3C illustrate a spectrum of light emitted from a light source according to an exemplary embodiment of the present invention.
  • the light source according to an embodiment of the present invention can emit light of different wavelength bands according to the growth period of the plant
  • Figure 3a shows the spectrum of the light in a predetermined section before planting after planting
  • 3b shows a spectrum of light for a predetermined section after planting
  • FIG. 3c shows a spectrum of light at a predetermined section other than the section in FIG. 3b after planting.
  • the seeds of the plant can be germinated in the cancer cycle after sowing.
  • the cancer cycle may last about 1.5 to 3 days, for example, 24 hours after sowing, and only purified water may be provided to seeds without a separate nutrient solution.
  • Germinated seeds are grown into shoots under light and dark cycles and can be planted during the growing season. Germinated seeds are grown into shoots by growing under light and dark cycles for about 5-9 days, for example about 7 days, which can be planted in the growing season. Sprouts grown in planters are grown using nutrient solution until adulthood.
  • the light cycle and the dark cycle can be set in various ways according to the type of plant, for example, can be arranged alternately with each other in units of 24 hours a day.
  • the cancer cycle may be maintained for about 6 hours to about 10 hours, and the light cycle may be maintained for about 18 hours to about 14 hours, and the dark cycle and the light cycle may be repeated on a daily basis.
  • the brightness in the light period can be 50 to 80 umol / m 2 / s (PPFD), for example 69.8 umol / m 2 / s.
  • the present invention provides light in the wavelength band that photosynthesis is easy in the light cycle from germination to growth before sprouting.
  • the spectrum of the light provided after germination and until sprouting is shown in FIG. 3A.
  • the light source may provide light having a peak having a narrow half width at a predetermined wavelength rather than emitting light of the entire wavelength band to the same degree.
  • the light source may have a narrower half-value width and a relatively higher peak than other portions at about 660 nanometers and about 450 nanometers determined to be mainly used for photosynthesis.
  • About 660 nanometers and about 450 nanometers are the peaks corresponding to red and blue, respectively.
  • plants can be grown after planting and grown under adult and dark cycles until harvested.
  • the period from planting to pre-harvest can take approximately 18 to 23 days, for example, it may be grown for 21 days (eg, 30 days after sowing) and then harvested thereafter.
  • the light cycle and the dark cycle can be set in various ways according to the type of plant, for example, can be arranged alternately with each other in units of 24 hours a day.
  • the cancer cycle may be maintained for about 6 hours to about 10 hours, and the light cycle may be maintained for about 18 hours to about 14 hours, and the dark cycle and the light cycle may be repeated on a daily basis.
  • the luminance of light corresponding to the visible light wavelength band in the bright period may be 50 to 80 umol / m 2 / s (PPFD), for example, 69.8 umol / m 2 / s.
  • light having a spectrum shown in FIG. 3B or 3C may be irradiated to the plant.
  • Light having the spectrum shown in FIG. 3B may be implemented by turning on only the first light source described above, and light having the spectrum shown in FIG. 3C may be implemented by turning on both the first light source and the second light source described above. Can be.
  • the light provided in FIG. 3B or 3C is provided during different sections, respectively.
  • the interval means a temporal interval.
  • light corresponding to FIG. 3B may be provided in some sections, and light corresponding to FIG. 3C may be provided in remaining sections except for the partial sections.
  • a section in which light corresponding to FIG. 3B is provided will be described as a first section, and a section in which light corresponding to FIG. 3C is provided as a second section.
  • only the first light source described above may be turned on in the first section, and both the first light source and the second light source described above may be turned on in the second section.
  • the first section or the second section is a section in which the light including the visible light wavelength band is provided and means a predetermined section under a bright period.
  • the second section corresponds to a shorter period than the first section.
  • the light source may provide light having a peak having a narrow half width at a predetermined wavelength rather than emitting light of the entire wavelength band to the same degree during the first period.
  • the light source may have a narrower half-value width and a relatively higher peak than other portions at about 660 nanometers and about 450 nanometers determined to be mainly used for photosynthesis.
  • About 660 nanometers and about 450 nanometers are the peaks corresponding to red and blue, respectively.
  • a plurality of peaks having a lower height than the peaks corresponding to blue and blue may be further provided.
  • the light corresponding to the first section before and after the formulation is the same, or may not have the same very similar spectrum.
  • the intensity of the light corresponding to the first section may be different. For example, higher intensity light may be provided to plants after planting than before planting.
  • the light intensity in the bright period may be 50 to 80 umol / m 2 / s (PPFD), for example, 69.8 umol / m 2 / s.
  • a light source has a spectrum similar to light provided in the first section in some wavelength bands during the second period, but different from light provided in the first section in some wavelength bands.
  • the light source may provide light having a peak having a narrow half width at a predetermined wavelength, rather than emitting light of the entire wavelength band to the same degree in the second section.
  • the light source may have a narrower half-value width and a relatively higher peak than other portions at about 660 nanometers and about 450 nanometers determined to be mainly used for photosynthesis.
  • the spectrum of the light source has a relatively higher peak than other portions in the wavelength band other than visible light, for example, the ultraviolet wavelength band.
  • the spectrum of the light source has a narrow peak at half maximum in the wavelength band of about 300 nm or less. In one embodiment of the present invention, the spectrum of the light source may have a peak having a narrow half width at about 285 nm.
  • the light source in the second section may have the same or similar spectrum as in the first section in the visible light wavelength band. That is, the visible light may be provided in a form in which light in a wavelength band other than the visible light, for example, an ultraviolet wavelength band (for example, a wavelength band of ultraviolet light B) is added in a state where the light in the wavelength band is not changed. have.
  • the spectrum of the light source in each of the first and second sections may be implemented by driving the light source shown in FIG. 1.
  • the spectrum can be implemented by independently and selectively turning on or off the first and second light sources.
  • the light source shown in FIG. 1 may be used, but only the first light source may be turned on in the first section.
  • the first light source When the first light source is turned on, the light source may emit light in the visible light wavelength band, for example, light in the spectrum shown in FIG. 3B.
  • the first light source and the second light source may be turned on.
  • the first and second light sources When the first and second light sources are turned on, the light sources may emit light in the visible light wavelength band and the ultraviolet wavelength band, for example, light in the spectrum shown in FIG. 3C.
  • the first section and the second section may be arranged in various ways depending on the growth time and harvest time of the plant.
  • the first section may be arranged after planting and before harvesting.
  • the second section may be disposed adjacent to the first section, and may be disposed immediately before the harvest time within the overall schedule.
  • the second section may be arranged at a time other than the first section immediately before the harvest, followed by the first section. The plant is then harvested.
  • the second section may be provided between the first section over one to three days immediately before harvest.
  • plants may be grown under light and dark cycles that are alternated for about 20 days after planting, where the bright period may correspond to the first section. Then, after the formulation, the first section and the second section may sequentially follow the first cycle and the second section, or the second section and the first section sequentially. If the first cycle of the 21st period is 16 hours, The first section may last for about 13 hours and the second section may continue for the remaining 3 hours. Alternatively, the second section may continue for 3 hours and the first section may continue for 13 hours.
  • the light source according to an embodiment of the present invention is turned on or off according to the light cycle and dark cycle of the plant, and can be used for plant cultivation.
  • the light source for plant cultivation according to an embodiment of the present invention is turned on in the light period and emits light having a spectrum consisting of a plurality of peaks to the plant.
  • the light emitted from the light source includes light of a wavelength band for increasing the content of a predetermined substance in the plant.
  • At least one of the peaks of the light emitted in the second section of the bright period is not provided in the first section preceding or following the second section. That is, light corresponding to an ultraviolet wavelength band, for example, a wavelength band of 300 nm or less, is provided in the second section but not in the first section.
  • at least one peak provided in the second section but not provided in the first section may have a wavelength of about 280 nm to about 295 nm, for example, a wavelength of 285 nm.
  • the remaining peaks except for at least one peak provided in the second section but not provided in the first section are located in the visible light wavelength band and may be provided in both the second section and the first section.
  • the remaining peaks except for at least one peak provided in the second section but not provided in the first section may include peaks provided in each of the blue wavelength band and the red wavelength band. Except for at least one peak provided in the second section but not provided in the first section, the remaining peaks may appear at substantially the same wavelength as each other.
  • the second section is disposed immediately before the harvest of the plant, may be provided in less than about 6 hours.
  • the second interval may be provided for about three hours.
  • the light provided to the plant during the second interval is continuous light.
  • the light source in order to provide the above-mentioned light to the plant, may have a structure as shown in FIGS. 1 and 2.
  • the light source may include a plurality of light emitting diodes emitting light having different wavelengths, and the light emitting diodes may be combined in various forms to emit light having a spectrum of the above-described form.
  • the first light source and the second light source may each independently include a single or a plurality of light emitting diodes.
  • the present invention in the case of using a light source for plant cultivation, it is possible to independently provide a growth environment suitable for the type of plant even under conditions in which sunlight is not sufficient or does not provide sunlight. In addition, it is possible to easily cultivate a plant having a high content of the active substance.
  • the sprouts were grown on the deep-flow technique (DFT) hydroponic cultivation system on day 10.
  • DFT deep-flow technique
  • kale was grown in nutrient solution under light and dark cycles.
  • the nutrient solution was used Hoagland stock solution, the pH was maintained at 5.5 to 6.5.
  • the light cycle and the dark cycle were provided for 24 hours a day, and the light cycle was maintained for 16 hours and the dark cycle for 8 hours within 24 hours a day.
  • the kale was irradiated with light having the spectrum shown in FIG. 3B, and the light was irradiated with a light intensity of about 152.8 umol / m 2 / s PPFD (Photosynthetic Photon Flux Density) in the bright period.
  • the control group was irradiated with light corresponding to FIG. 3B in the light cycle until the 30th day after the establishment.
  • Treatment group 1 was irradiated with plants under the same conditions as the control until day 29 after the establishment. However, light having a spectrum shown in FIGS. 3B and 3C was irradiated under certain conditions under the 30-day light cycle.
  • Treatment group 2 was irradiated with plants under the same conditions as the control group until day 28 after the establishment. However, light having a spectrum shown in FIGS. 3B and 3C was irradiated under constant conditions under the 29th and 30th day light cycles. Here, the light having the spectrum shown in FIG. 3C was continuously irradiated for 16 hours of light periods each of two days.
  • Treatment group 3 was irradiated with plants under the same conditions as the control until day 27 after the establishment. However, light having a spectrum shown in FIGS. 3B and 3C was irradiated under a constant condition under the period of day 28 to day 30. Here, the light having the spectrum shown in Figure 3c was irradiated blinking for a predetermined period, when the end of the light cycle in a method having a 75-minute rest after 5 minutes irradiation within a 16-hour light cycle over three days Has been repeated.
  • the light used in the second section of the experiment had substantially the same shape as the spectrum of FIG. 3b in the visible light wavelength band, except that it had a spectrum corresponding to ultraviolet light A and ultraviolet light B in the ultraviolet light wavelength band, respectively.
  • Comparative Example 1 corresponds to the control of FIG. 4, and was maintained at 8 hours of dark cycle and 16 hours of bright cycle for the last two days before harvesting.
  • Each of Experimental Example 1 and Experimental Example 2 correspond to the treatment group 2 of FIG. 4, but in Experimental Example 1, light having a peak corresponding to the ultraviolet ray B in the ultraviolet wavelength band of the spectrum shown in FIG. 3c, In this case, the light having a peak corresponding to the ultraviolet ray A in the ultraviolet wavelength band of the spectrum shown in FIG. 3C.
  • the ultraviolet rays A and ultraviolet rays B the light intensities were set differently from each other so that the total amount of energy was the same.
  • the total energy amount and light intensity of the ultraviolet ray A and the ultraviolet ray B excludes visible light and correspond to the ultraviolet wavelength band, and the ultraviolet ray B has a total energy amount of 11.52 kJ / m 2 and an optical intensity of 10 uW / It was provided in cm 2 , UV A was provided with a total energy amount of 1152 kJ / m 2 , light intensity of 1000 uW / cm 2 .
  • 6A to 6C are graphs each showing the contents of chlorophyll, flavonol, and anthocyanin in the order of the kale harvested on the 31st day after sowing after the light treatment under the above-described conditions.
  • UV B when applied to plants, both ultraviolet rays A and ultraviolet rays B increased the content of active substances in plants.
  • UV B when UV B was provided to the plant despite being provided to the plant with the same energy, it showed a significantly higher content of active substance than when UV A was provided to the plant.
  • the light used in the second section of the experiment has a peak corresponding to the visible light wavelength band and the ultraviolet light B, and has substantially the same shape as the spectrum of FIG. 3C.
  • Comparative Example 2 corresponds to the control of FIG. 4, and was maintained at a dark cycle of 8 hours and a light cycle of 16 hours for the last two days before harvesting.
  • Each of Experimental Example 3 and Experimental Example 4 correspond to the treatment group 1 of FIG. 4, but in Experimental Example 3, the light shown in FIG. 3c was applied for 3 hours under the light period, and in the case of Experimental Example 4 under the light period. It was applied for 6 hours. The total amount of energy excludes visible light and corresponds to the ultraviolet wavelength band.
  • the total energy amount of the ultraviolet-ray B in Experimental Example 3 was 1.08 kJ / m ⁇ 2>
  • the total energy amount of the ultraviolet-ray B in Experimental Example 4 was 2.16 kJ / m ⁇ 2> .
  • FIG. 8A to 8D are photographs showing experimental results of Comparative Example 2, Experimental Example 3, and Experimental Example 4.
  • FIG. 8A to 8D the kale on the left in each picture corresponds to the control group.
  • 8A is a photograph of kale at a time point after one day after light is applied according to the light conditions disclosed in Experimental Example 3, and the right photograph of FIG. 8B is applied to light according to the light conditions disclosed in Experimental Example 4 This is a picture of Kale after one day.
  • 8C is a photograph of kale after four days have elapsed after applying light according to the light conditions disclosed in Experimental Example 3, and the right photograph of FIG. 8D is applied to light according to the light conditions disclosed in Experimental Example 4 Four days later, a picture of Kale.
  • 9A to 9C are graphs showing the amounts of chlorophyll, flavonol, and anthocyanin contained in kale harvested on the 31st day after sowing in Comparative Example 2, Experimental Example 3, and Experimental Example 4, respectively.
  • FIG. 10 shows experimental conditions in this example and corresponds to the control group and the treatment group 3 of FIG. 4.
  • Comparative Example 3 corresponds to the control of FIG. 4 and was maintained at 8 hours of dark cycle and 16 hours of bright cycle for the last two days before harvesting.
  • Experimental Example 5 and Experimental Example 6 each corresponded to Treatment Group 3 of FIG. 4, but in Experimental Example 5, the light of the spectrum shown in FIG. 3C was provided for 3 hours under light period and the spectrum shown in FIG. 3B for the remaining period. The light is provided for 13 hours under the light cycle. Light irradiation in this manner was repeated for three days.
  • Experimental Example 6 the light having the spectrum shown in FIG.
  • FIGS. 11A-11B are photographs showing the experimental results of Comparative Example 3, Experimental Example 5, and Experimental Example 6.
  • 11A is a photograph of kale at the time of harvesting after applying light according to the light conditions disclosed in Experimental Example 5, and the right photograph of FIG. 11B is applied after light is applied according to the light conditions disclosed in Experimental Example 6 A picture of kale at harvest time.
  • 12A to 12C are graphs showing the amounts of chlorophyll, flavonol, and anthocyanin contained in kale harvested on the 31st day after sowing in Comparative Example 3, Experimental Example 5, and Experimental Example 6, respectively.
  • FIG. 13 shows experimental conditions in this example and corresponds to the control group and treatment group 1 of FIG. 4.
  • Comparative Example 4 corresponds to the control of FIG. 4, and was maintained at 8 hours of dark cycle and 16 hours of bright cycle for the last day before harvesting.
  • Each of Experimental Example 7 and Experimental Example 8 correspond to Treatment Group 1 of FIG. 4, but in Experimental Example 7, light of a spectrum corresponding to UVB was provided for 3 hours under a dark period and the spectrum corresponding to FIG. 3b under a light period. The light was irradiated for 16 hours.
  • the light provided under the dark period is UVB only, and no light in the visible wavelength range is provided.
  • Experimental Example 8 provides the light of the spectrum corresponding to FIG.
  • the total amount of energy disclosed in FIG. 13 is a value corresponding to an ultraviolet wavelength band excluding visible light.
  • the total energy amount of the ultraviolet-ray B in Experiment 7 and Experiment 8 was 1.08 kJ / m ⁇ 2> .
  • FIG. 14A to 14D are photographs showing experimental results of Comparative Example 4, Experimental Example 7, and Experimental Example 8.
  • FIG. 14A to 14D the kale on the left side of each picture corresponds to the control group.
  • the right picture of FIG. 14A is a picture of kale after one day has elapsed after applying light according to the light conditions disclosed in Experimental Example 7, and the right picture of FIG. 14B is applied to light according to the light conditions disclosed in Experimental Example 8.
  • the right photograph of FIG. 14C is a photograph of kale four days after the light is applied according to the light conditions disclosed in Experimental Example 7, and the right photograph of FIG. 14D is applied to light according to the light conditions disclosed in Experimental Example 8. Four days later, a picture of Kale.
  • 15A to 15C are graphs showing the amounts of chlorophyll, flavonol, and anthocyanin contained in kale harvested on the 31st day after sowing in Comparative Example 4, Experimental Example 7, and Experimental Example 8, respectively.
  • FIG. 16 shows experimental conditions in this example, in which comparative examples and experimental examples correspond to comparative example 4 and experimental example 7 of FIG. 13, respectively, and the experimental conditions are the same.
  • Figures 17a to 17c is a comparative example and experimental example tested in accordance with the experimental conditions of Figure 16, the order of the contents of chlorophyll, flavonol, and anthocyanin contained in the poly, mustard, and broccoli harvested on the 31st day after sowing Each graph is shown as follows.
  • 18A to 18C are photographs showing the experimental results of the comparative example and the experimental example tested according to the experimental conditions of FIG. 16.
  • the light source according to an embodiment of the present invention by providing the plant in a specific form for a certain period of light for a certain period to the adult of the plant to obtain a plant with a high content of the active ingredient can do.
  • the light source according to an embodiment of the present invention may be used for plant cultivation, and may be applied to a plant cultivation apparatus equipped with a light source, a greenhouse, and the like.
  • FIG. 19 is a cultivation apparatus conceptually showing a cultivation apparatus according to an embodiment of the present invention.
  • the cultivation apparatus illustrated in FIG. 19 illustrates a small cultivation apparatus as an example, but is not limited thereto.
  • a cultivation apparatus 100 includes a housing 60 having an inner space for growing plants, a light source 30 provided in the housing 60, and emitting light. It includes.
  • the housing 60 provides an empty space therein through which plants can be provided and grow.
  • the housing 60 may be provided in the form of a box that can block external light.
  • the housing 60 may include a lower case 61 opened in the upper direction, and an upper case 63 opened in the lower direction.
  • the lower case 61 and the upper case 63 may be fastened to form a box that blocks external light.
  • the lower case 61 includes a bottom portion and sidewall portions extending upwardly from the bottom portion.
  • the upper case 63 includes a cover portion and sidewall portions extending downward from the cover portion.
  • the side walls of the lower case 61 and the upper case 63 may have a structure in which they are engaged with each other.
  • the lower case 61 and the upper case 63 may be fastened or separated according to the intention of the user, and thus the user may open or close the housing 60.
  • the housing 60 may be provided in various shapes. For example, it may have an approximately cuboid shape, or may have a cylindrical shape. However, the shape of the housing 60 is not limited thereto, and may be provided in a different shape.
  • the housing 60 provides an environment in which plants provided therein can grow.
  • the housing 60 may be provided with a size that can accommodate the plurality of plants even when they are grown.
  • the size of the housing 60 may vary depending on the use of the plant cultivation apparatus 100. For example, when the plant cultivation apparatus 100 is used for small scale plant cultivation at home, the size of the housing 60 may be relatively small. When the plant cultivation apparatus 100 is used to grow and sell plants commercially, the size of the housing 60 may be relatively large.
  • the housing 60 may block the light so that light outside the housing 60 does not flow into the housing 60.
  • the interior of the housing 60 may be provided with a dark room environment isolated from the outside. Accordingly, it is possible to prevent the external light from being irradiated to the plants provided inside the housing 60 unnecessarily.
  • the housing 60 can prevent the external visible light from being irradiated to the plant.
  • the housing 60 may be designed to be partially opened to receive external light as it is.
  • the space in the housing 60 may be provided as one. However, this is for convenience of description and may be divided into a plurality of zones. That is, the housing 60 may be provided with partition walls for dividing the space in the housing 60 into a plurality.
  • the light source provides light to the plant in space within the housing 60.
  • the light source is provided on the inner surface of the upper case 63 or the lower case 61.
  • the light source may be provided on the cover portion of the upper case 63.
  • the light source is provided on the inner surface of the cover portion of the upper case 63, but is not limited thereto.
  • the light source may be provided on the side wall portion of the upper case 63.
  • the light source may be provided on the side wall portion of the lower case 61, for example, may be provided on the top of the side wall portion.
  • the light source may be provided at at least one of the cover portion of the upper case 63, the side wall portion of the upper case 63, the side wall portion of the lower case 61.
  • a space 70 may be provided in the space in the housing 60 to facilitate plant growth, for example, to hydroponic cultivation.
  • the growing table 70 may be formed of a plate-like plate 71 spaced apart from the bottom of the housing 60 in an upward direction.
  • the plate 71 may be provided with a through hole 73 having a predetermined size.
  • the cultivation table 70 is for allowing plants to grow on an upper surface of the plate 71 and may have a plurality of through holes 73 so that the supplied water can be drained when the water is supplied.
  • the through hole 73 may be provided in a size to prevent the plant from being washed down. For example, the diameter of the through hole 73 may have a size smaller than that of the plant.
  • the space between the growing table 70 and the bottom of the lower case 61 may function as a water tank in which the drained water is stored. Accordingly, the water drained downward through the through hole 73 of the growing table 70 may be stored in the space between the bottom of the lower case 61 and the growing table 70.
  • the rice plant may be grown by a method other than hydroponic cultivation, and in this case, the space in the housing 60 may be water so that the water and / or nutrients necessary for the rice plant may be supplied.
  • Medium, soil, or the like may be provided, in which case the housing 60 may function as a container.
  • the medium or soil may include nutrients in which plants can grow, such as potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and the like.
  • the plant may be provided in a form buried in the medium, or may be provided in a form lying on the surface of the medium.
  • the size and shape of the growing table 70 may vary according to the shape of the housing 60 and the provision form of the first light source and the second light source.
  • the size and shape of the cultivation zone 70 may be configured such that the plants provided on the cultivation zone 70 fall within the irradiation range of light irradiated from the first light source and the second light source.
  • the housing 60 may be provided with a moisture supply device for supplying moisture to the plant.
  • the water supply device may be configured to be provided on an upper surface of the housing 60, for example, on an inner surface of the cover part of the upper case 63 to spray water onto the housing 60 growing stand 70.
  • the shape of the water supply device is not limited to the above-described one, but may vary depending on the shape of the housing 60 and the arrangement form of the growing table 70.
  • a user may directly supply water to the housing 60 without a separate water supply device.
  • One or more moisture supply devices may be provided.
  • the number of moisture supply devices may vary depending on the size of the housing. For example, in the case of a relatively small sized home plant cultivation apparatus, since the housing is small in size, one moisture supply apparatus may be provided. On the contrary, in the case of a relatively large commercial plant cultivation apparatus, several moisture supply apparatuses may be provided because of the large housing size. However, the number of the water supply devices is not limited thereto and may be provided at various locations in various numbers.
  • the water supply device may be connected to a water bath provided in the housing 60 or to a faucet outside the housing 60.
  • the water supply device may further include a filtration device so that the pollutant suspended in the water is not provided to the plant.
  • the filtering device may include a filter such as activated carbon, a nonwoven fabric, and thus, the water that has passed through the filtering device may be purified.
  • the filtering device may further include a light irradiation filter in some cases, the light irradiation filter may irradiate water with ultraviolet rays to remove bacteria, bacteria, mold spores, etc. present in the water. Since the water supply device includes the above-described filtration devices, there is no fear that the inside of the housing 60 and the plant may be contaminated even when water is recycled or rainwater is used for cultivation.
  • the water provided by the water supply device may be provided only by water itself (for example, purified water) without additional nutrients, but is not limited thereto and may include nutrients necessary for plant growth.
  • water includes potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and other materials such as nitrate, phosphate, sulfate, Chloride (Cl) and the like.
  • Sachs liquid, Knop liquid, Hoagland liquid, Hewitt liquid, and the like may be supplied from a water supply device.
  • the plant may be grown using the light source.
  • Plant cultivation method may include the step of germinating the seeds of the plant, and providing the light of the visible wavelength band to the germinated plant.
  • the light provided to the plant is emitted from the light sources according to the above-described embodiments, and the light of the visible wavelength band may include at least two or three lights of the first to fourth lights having different light spectra. have.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Cultivation Of Plants (AREA)

Abstract

식물 재배용 광원은 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되며, 상기 식물 재배용 광원은 명주기에 턴 온되어 복수 개의 피크로 이루어진 스펙트럼을 갖는 광을 상기 식물에 출사하여 상기 식물 내 소정 물질의 함량을 높인다.

Description

식물 재배용 광원
본 발명은 식물 재배용 광원에 관한 것으로서, 상세하게는 식물의 광합성에 최적화된 광을 출사하는 광원에 관한 것이다.
식물 재배용 조명 기구로서 태양광을 대신하는 다양한 광원들이 개발되어 사용되고 있다. 기존에는 식물 재배용 조명 기구로서 백열등, 형광등 등이 주로 사용되었다. 그러나, 기존의 식물 재배용 조명 기구는 단순히 식물의 광합성만을 위해 소정 파장의 광만 식물에 제공하며, 그외의 추가적인 기능이 없는 것이 대부분이다.
식물은 다양한 스트레스에 저항하는 과정에서 사람에게 유용한 물질들을 합성할 수 있는 바, 사람에게 유용한 물질이 다량 함유된 식물을 재배할 수 있는 광원, 재배 장치, 재배 방법 등이 다양하게 요구된다.
본 발명은 유효 물질의 함량이 높은 식물을 용이하게 재배할 수 있는 식물 재배용 광원을 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따르면, 식물 재배용 광원은 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되며, 상기 식물 재배용 광원은 명주기에 턴 온되어 복수 개의 피크로 이루어진 스펙트럼을 갖는 광을 상기 식물에 출사하여 상기 식물 내 소정 물질의 함량을 높이며, 상기 명주기 중 일부 구간을 제1 구간으로, 나머지 구간을 제2 구간이라고 할 때, 상기 명주기의 제2 구간에서 출사된 상기 광의 피크들 중 적어도 하나는, 상기 제2 구간보다 선행하거나 후행하는 제1 구간에서 제공되지 않으며, 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 상기 제2 구간과 상기 제1 구간에서 실질적으로 서로 동일한 파장에서 나타난다.
본 발명의 일 실시예에 있어서, 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크는 약 300nm 이하의 파장에서 나타날 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크는 약 280 nm 내지 약 295nm 의 파장, 예를 들어 285nm의 파장을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 구간은 약 6시간 미만으로 제공될 수 있으며, 또는 약 3시간 동안 제공될 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 구간 동안 상기 광원은 연속적으로 광을 출사할 수 있다.
본 발명의 일 실시예에 있어서, 상기 식물은 십자화과 식물일 수 있다. 십자화과 식물은 적무, 홍염무, 순무, 배추, 브로콜리, 로켓, 유채, 콜라비, 청경채, 얼청갓, 다채, 케일, 적양배추 중 적어도 하나일 수 있다.
본 발명의 일 실시예에 있어서, 상기 소정 물질은 클로로필, 플라보놀, 및 안토시아닌 중 적어도 어느 하나일 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 가시광선 파장 대역에 제공될 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 청색 파장 대역 및 적색 파장 대역 각각에 제공된 피크들을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 광원은 서로 다른 파장의 광을 출사하는 복수 개로 발광 다이오드를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 복수 개의 발광 다이오드는 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크에 해당하는 광을 제공하는 제1 발광 다이오드와, 상기 적어도 하나의 피크를 제외한 나머지 피크들에 해당하는 광을 제공하는 제2 발광 다이오드를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 광원은 식물 재배 장치에 채용될 수 있으며, 식물 재배 장치는 식물이 제공되는 하우징, 상기 하우징 내에 제공되며 상기 식물로 광을 조사하는 상술한 광원, 및 상기 광원을 제어하는 제어부를 포함한다.
본 발명의 일 실시예는 상술한 광원을 이용하여 십자화과 식물을 재배하는 방법을 포함하며, 상기 방법은 십자화과 식물의 씨앗을 발아시키는 단계, 상기 발아된 씨앗을 새싹으로 키우는 단계, 상기 새싹을 정식하여 성체로 키우는 단계, 및 상기 성체의 수확 직전에 광을 조사하여 상기 십자화과 식물 내 소정 물질의 함량을 높이는 단계를 포함하며, 상기 성체의 수확 전에 광을 조사하는 단계는 명주기에 복수 개의 피크로 이루어진 스펙트럼을 갖는 광을 상기 식물에 출사한다. 이때, 상기 명주기 중 일부 구간을 제1 구간으로, 나머지 구간을 제2 구간이라고 할 때, 상기 명주기의 제2 구간에서 출사된 상기 광의 피크들 중 적어도 하나는, 상기 제2 구간보다 선행하거나 후행하는 제1 구간에서 제공되지 않으며, 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 상기 제2 구간과 상기 제1 구간에서 실질적으로 서로 동일한 파장에서 나타난다.
본 발명의 일 실시예에 따르면, 태양광이 충분하지 않거나, 태양광을 제공하지 못하는 조건하에서도, 식물의 종류에 맞는 성장 환경을 제공할 수 있다. 본 발명의 일 실시예에 따르면, 유효 물질의 함량이 높은 식물을 용이하게 재배할 수 있다.
도 1a는 본 발명의 일 실시예에 본 발명의 일 실시예에 따른 식물 재배용 광원을 도시한 평면도이다.
도 1b는 본 발명의 일 실시예에 따른 식물 재배용 광원 모듈을 도시한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드를 개략적으로 도시한 것이다.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 광원이 출사하는 광의 스펙트럼을 도시한 것이다.
도 4는 실험예에 따른 케일의 생육 조건을 도시한 것이다.
도 5는 일 실시예에서의 실험 조건을 도시한 것이다.
도 6a 내지 도 6c는 비교예 1, 실험예 1, 및 실험예 2에 있어서, 식물에 광 처리를 수행한 후, 파종 후 31일차에 수확한 케일에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 7은 일 실시예에서의 실험 조건을 도시한 것이다.
도 8a 내지 도 8d는 비교예 2, 실험예 3, 및 실험예 4의 실험 결과를 도시한 사진이다.
도 9a 내지 도 9c는 비교예 2, 실험예 3, 및 실험예 4에 있어서, 식물에 광 처리를 수행한 후, 파종 후 31일차에 수확한 케일에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 10는 일 실시예에서의 실험 조건을 도시한 것이다.
도 11a 내지 도 11b는 비교예 3, 실험예 5, 및 실험예 6의 실험 결과를 도시한 사진이다.
도 12a 내지 도 12c는 비교예 3, 실험예 5, 및 실험예 6에 있어서, 식물에 광 처리를 수행한 후, 파종 후 31일차에 수확한 케일에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 13은 일 실시예에서의 실험 조건을 도시한 것이다.
도 14a 내지 도 14d는 비교예 4, 실험예 7, 및 실험예 8의 실험 결과를 도시한 사진이다.
도 15a 내지 도 15c는 비교예 4, 실험예 7, 및 실험예 8에 있어서, 식물에 광 처리를 수행한 후, 파종 후 31일차에 수확한 케일에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 16은 본 실시예에서의 실험 조건을 도시한 것이다.
도 17a 내지 도 17c는 도 16의 실험 조건에 따라 실험한 비교예 및 실험예에 있어서, 파종 후 31일차에 수확한 다채, 겨자, 및 브로콜리에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 18a 내지 도 18c는 도 16의 실험 조건에 따라 실험한 비교예 및 실험예의 실험 결과를 도시한 사진이다.
도 19는 본 발명의 일 실시예에 따른 재배 장치를 개념적으로 도시한 재배 장치이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 식물 재배시 사용되는 광원에 관한 것이다.
식물은 가시광선 파장 대역의 광을 이용하여 광합성을 하며, 광합성을 통해 에너지를 얻는다. 식물의 광합성은 모든 파장 대역에서 동일한 정도로 이루어지지는 않는다. 태양광 중 식물이 광합성에 이용하는 파장 대역의 광은 PAR(Photosynthetic Active Radiation)라고 하며, 태양광 스펙트럼의 일부를 차지하며, 약 400 나노미터 내지 약 700나노미터의 대역에 해당한다. 본 발명의 일 실시예에 따른 식물 재배용 광원은 상기한 PAR 파장대역의 광을 포함함으로써 식물의 광합성에 적절한 광을 제공하되, 섭취시 사람 또는 식물의 건강에 긍정적인 영향을 미칠 수 있는 성분(이하에서는 유효 성분이라 칭함)의 함량을 증가시키기 위한 파장 대역의 광도 함께 제공하기 위한 것이다. 여기서 유효 성분은 사람에게 필요하다고 알려진 물질로서, 예를 들어, 클로로필, 플라보놀, 안토시아닌, 글리코시놀레이트과 같은 물질이다.
클로로필은 녹색채소의 광합성 색소로서 입에서 나는 악취와 변비 예방에 도움을 주는 것으로 알려져 있다. 플라보놀은 항산화 물질로서, 퀘세틴, 캠페롤, 미리세틴 등이 대표적인 물질이다. 퀘세틴은 항산화능이 높은 항산화 물질이며, 켐페롤은 면역력을 강화함으로써 암세포의 증식을 방지한다고 알려져 있으며, 미리세틴은 지방의 축적을 억제하여 심혈관 질환을 예방한다고 알려져 있다. 안토시아닌은 대표적은 항산화물질로서 몸속의 활성 산소를 제거함으로써 노화를 예방하는 효과가 있다. 안토시아닌은 그 이외에도 안구 망막에 있는 로돕신이라는 색소의 재합성을 도와 눈의 피로와 시력 저하, 백내장 예방에 도움을 준다.
글리코시놀레이트는 사람의 장 내에 흡수되면 장내 미생물에 의하여 분해되어 아이소싸이오사이아네이트(isothiocyanate)로 변환될 수 있다. 글루코시놀레이트는 암 예방 효과가 있는 것으로 알려져 있는 바, 방광암, 유방암, 간암 등에 효과적이다. 특히 글루코시놀레이트는 백혈구와 사이토카인의 조율 능력이 뛰어나며 유방, 간, 대장, 폐, 위, 식도 등에서 종양이 성장을 억제하는 효소를 가지고 있다. 또한, 글루코세놀레이트에 의해 생산되는 인돌-3-카비놀(indole-3-carbinol)에도 항암작용이 있는 것으로 알려져 있다.
글리코시놀레이트는 하기 화학식 1로 표시되는 물질로서, R은 다양한 형태의 기능기일 수 있다. R은 예를 들어, 탄소수 1개 내지 10개의 치환 또는 비치환된 알릴, 벤질, 2-페닐에틸기 등일 수 있다.
Figure PCTKR2019010771-appb-C000001
본 발명의 일 실시예에 있어서, 글리코시놀레이트는 R의 종류에 따라, 글루코에루신(glucoerucin), 글루코라페닌(glucoraphenin), 글루코나핀(gluconapin), 프로고이트린(progoitrin), 글루코라파닌(glucoraphanin), 시니그린(sinigrin), 네오글루코브라시신(neoglucobrassicin), 글루코나스투르티인(gluconastrutiin), 글루코이베린(glucoiberin), 글루코브라시카나핀(glucobrassicanapin) 등일 수 있다.
본 발명의 일 실시예에 따른 광원이 적용되는 식물의 종류는 다양하게 변경될 수 있다. 다만, 종에 따라 광원으로부터 출사된 광의 광합성 효율이나 상기 유효 성분의 함량 증가 정도 등은 차이가 있을 수 있다. 본 발명의 일 실시예에 따른 광원의 경우 십자화과의 식물에 적용될 수 있다. 또한, 본 발명의 일 실시예에 따른 광원의 경우, 십자화과의 식물 중 적무, 홍염무, 순무, 배추, 브로콜리, 로켓, 유채, 콜라비, 청경채, 얼청갓, 다채, 케일, 적양배추 중 적어도 하나에 적용될 수 있다. 본 발명의 일 실시예에 따른 식물의 종류는 이에만 한정되는 것은 아니며, 다른 종에도 적용될 수 있음은 물론이다. 이하에서는 설명의 편의를 위해 십자화과의 식물에 본 발명의 일 실시예에 따른 광원을 적용한 것을 일 예로 설명한다.
도 1은 본 발명의 일 실시예에 본 발명의 일 실시예에 따른 식물 재배용 광원을 도시한 평면도이며, 도 2는 본 발명의 일 실시예에 따른 식물 재배용 광원 모듈을 도시한 블록도이다.
도 1 및 도 2을 참조하면, 식물 재배용 광원 모듈은 식물이 필요한 광을 출사하는 광원(30), 상기 광원(30)을 제어하는 제어부(40), 상기 광원(30) 및/또는 제어부(40)에 전원을 제공하는 전원공급부(50)를 포함한다.
광원(30)은 서로 다른 파장에서 스펙트럼 피크를 갖는 제1 및 제2 광원(31, 33)을 포함할 수 있다. 상기 제1 및 제2 광원(31, 33) 중 적어도 하나는 스펙트럼의 피크가 가시 광선 파장 대역에 위치한다. 이하에서는 가시광선 파장대역에서 스펙트럼 피크를 갖는 제1 광원(31)을 일 예로 설명한다.
제1 광원(31)은 가시 광선 파장 대역의 광을 출사할 수 있다. 제1 광원(31)이 출사하는 광은 식물의 광합성에 주로 사용되는 파장 대역의 광으로서, PAR 영역 내의 광일 수 있다.
본 실시예에 있어서 제1 광원(31)을 하나의 구성요소로 표시하였으나, 제1 광원(31)은 광합성이 가능한 가시 광선 파장 대역의 광을 출사하는 한도 내에서 하나 또는 복수 개의 발광 다이오드로 구현될 수 있다. 또는, 후술할 소정 스펙트럼의 광을 출사하는 한도 내에서 하나 또는 복수 개의 발광 다이오드로 구현될 수 있다. 예를 들어, 제1 광원(31)은 청색과 적색을 동시에 출사하는 발광 다이오드로 이루어질 수 있으며, 또는 청색 파장 대역의 광을 출사하는 발광 다이오드와 적색 파장 대역의 광을 출사하는 복수 개의 발광 다이오드들로 이루어질 수도 있다.
제2 광원(33)은 제1 광원(31)과 다른 파장 대역의 광을 출사할 수 있다. 본 발명의 일 실시예에 있어서, 제2 광원(33)은 자외선 파장 대역, 특히 자외선 B 파장 대역의 광을 출사할 수 있다. 제2 광원(33)은 식물 내의 유효 성분의 함량을 증가시키기 위한 광에 해당한다. 제2 광원(33) 또한 필요에 따라 단수 또는 복수 개의 발광 다이오드를 포함할 수 있다.
제1 광원(31)과 제2 광원(33)은 독립적으로 구동될 수 있다. 이에 따라, 제1 광원(31) 및 제2 광원(33) 중 어느 하나의 광원만 턴 온 될 수 있으며, 또는 제1 및 제2 광원(31, 33) 모두 턴 온되거나 턴 오프될 수 있다. 본 발명의 일 실시예에 있어서, 제1 광원(31) 및 제2 광원(33)은 독립적으로 턴 온/오프되어 소정 스펙트럼을 갖는 광을 식물에 제공할 수 있다. 식물은 생장 시기에 따라, 명주기이냐 암주기이냐에 따라, 또는 수확 시기에 따라, 광원으로부터, 즉, 제1 및 제2 광원(31, 33)으로부터 다양한 형태로 광을 받게 된다. 제1 및 제2 광원(31, 33)을 포함하는 광원으로부터 출사된 광의 스펙트럼에 대해서는 후술한다.
제1 광원(31) 및 제2 광원(33)은 기판(20) 상에 배치될 수 있다. 기판(20)은 제1 광원(31) 및 제2 광원(33)이 직접 실장될 수 있는 배선이나 회로 등이 형성된 인쇄 회로 기판일 수 있으나, 이에 한정되는 것은 아니다. 기판은 제1 광원(31) 및 제2 광원(33)이 배치될 수 있는 것이라면 족하며, 그 형상이나 구조는 특별히 한정되는 것은 아니며, 생략될 수도 있다.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드를 개략적으로 도시한 것이다.
도 2를 참조하면, 발광 다이오드는 제1 반도체층(223), 활성층(225), 및 제2 반도체층(227)을 포함하는 발광 구조체와, 발광 구조체에 연결된 제1 전극(221) 및 제2 전극(229)를 포함할 수 있다.
제1 반도체층(223)은 제1 도전형 도펀트가 도핑된 반도체 층이다. 제1 도전형 도펀트는 p형 도펀트일 수 있다. 제1 도전형 도펀트는 Mg, Zn, Ca, Sr, Ba 등일 수 있다. 본 발명의 일 실시예에 있어서, 제1 반도체층(223)은 질화물계 반도체 재료를 포함할 수 있다. 본 발명의 일 실시예에 있어서, 제1 반도체층(223)의 재료로는 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등을 들 수 있다.
활성층(225)은 제1 반도체층(223) 상에 제공되며 발광층에 해당한다. 활성층(225)은 제1 반도체층(223)을 통해서 주입되는 전자(또는 정공)와 제2 반도체층(227)을 통해서 주입되는 정공(또는 전자)이 서로 만나서, 활성층(225)의 형성 물질에 따른 에너지 밴드(Energy Band)의 밴드 갭(Band Gap) 차이에 의해서 빛을 방출하는 층이다.
활성층(225)은 화합물 반도체로 구현될 수 있다. 활성층(225)은 예로서 3족-5족 또는 2족-6족의 화합물반도체 중에서 적어도 하나로 구현될 수 있다.
제2 반도체층(227)은 활성층(225) 상에 제공된다. 제2 반도체층(227)은 제1 도전형 도펀트와 반대의 극성을 갖는 제2 도전형 도펀트를 갖는 반도체층이다. 제2 도전형 도펀트는 n형 도펀트일 수 있는 바, 제2 도전형 도펀트는 예를 들어, Si, Ge, Se, Te, O, C 등을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 제2 반도체층(227)은 질화물계 반도체 재료를 포함할 수 있다. 제2 반도체층(227)의 재료로는 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, 등을 들 수 있다.
제1 전극(221)과 제1 전극(229)은 각각 제1 반도체층(223)과 제2 반도체층(227)과 연결되도록 다양한 형태로 제공될 수 있다. 본 실시예에서는 제1 반도체층(223)의 하부에 제1 전극(221)이 제공되고, 제2 반도체층(227)의 상부에 제2 전극(229)가 제공된 것을 도시하였으나, 이에 한정되는 것은 아니다. 본 발명의 일 실시예에 있어서, 제1 전극(221) 및 제2 전극(229)는 예를 들어, Al, Ti, Cr, Ni, Au, Ag, Ti, Sn, Ni, Cr, W, Cu 등의 다양한 금속 또는 이들의 합금으로 이루어질 수 있다. 제1 전극(221) 및 제2 전극(229)는 단일층 또는 다중층으로 형성될 수 있다.
본 발명의 일 실시예에 있어서, 발광 다이오드가 버티컬 타입으로 제공된 것을 설명하였으나, 발광 다이오드가 반드시 버티컬 타입일 필요는 없으며, 본 발명의 개념에 부합하는 한, 다른 타입으로 제공될 수도 있다.
본 발명의 일 실시예에 따르면 시료에 광을 인가하기 위해 광원으로서, 기존의 일반적인 램프가 아닌 발광 다이오드를 사용함으로써 다음과 같은 효과를 얻을 수 있다.
본 발명의 일 실시예에 따라 발광 다이오드를 광원으로 사용하는 경우, 기존 일반 램프(예를 들어, 기존 UV 램프)로부터 출사된 광 대비 특정 파장의 광을 식물에 제공할 수 있다. 기존 램프로부터 출사된 광은, 발광 다이오드로부터 출사된 광 대비 넓은 영역에서 브로드한 스펙트럼을 갖는다. 이에 따라, 기존의 UV 램프의 경우 출사된 광의 파장 대역 중 일부 대역의 광만을 분리하는 것이 용이하지 않다. 이에 비해 발광 다이오드로부터 출사된 광은 특정 파장에서의 샤프한 피크를 가지며 기존 램프로부터의 광에 비해 반치폭이 매우 좁은 특정 파장의 광을 제공한다. 이에 따라, 특정 파장의 광을 선택하는 것이 용이하며 그 선택된 특정 파장의 광만을 시료에 제공할 수 있다.
또한, 기존 램프의 경우 시료에 광을 제공하되 광량의 정확한 한정이 어려울 수 있으나, 발광 다이오드의 경우 광량을 명확하게 한정하여 제공할 수 있다. 또한, 기존 램프의 경우 광량의 정확한 한정이 어려울 수 있으므로 조사 시간 또한 넓은 범위로 설정될 수 있으나, 발광 다이오드의 경우 상대적으로 짧은 시간 동안 명확한 시간 내에 시료에 필요한 광을 제공할 수 있다.
상술한 바와 같이, 기존 램프의 경우 상대적으로 넓은 범위의 파장, 넓은 범위의 광량, 및 넓은 범위의 조사 시간으로 인해 광 조사량의 명확한 판단이 어렵다. 이에 비해 발광 다이오드의 경우 상대적으로 좁은 범위의 파장, 좁은 범위의 광량, 및 좁은 범위의 조사 시간으로 인해 명확한 광 조사량을 제공할 수 있다.
이에 더해, 기존 램프의 경우 전원을 켠 후 최대 광량까지 도달하는 데 시간이 상당히 소요되었다. 이에 비해, 발광 다이오드를 사용하는 경우, 전원을 켠 후 워밍업 시간이 실질적으로 거의 없이 바로 최대 광량까지 도달한다. 따라서, 발광 다이오드 광원의 경우, 식물에 특정 파장의 광을 조사할 때 광의 조사 시간을 명확하게 제어할 수 있다.
본 발명의 일 실시예에 있어서, 제어부(40)는 제1 및/또는 제2 광원(31, 33)에 연결되어 제1 광원(31)과 제2 광원(33)의 동작 여부를 제어한다. 제어부(40)는 제1 및/또는 제2 광원(31, 33)에 유선 또는 무선으로 연결될 수 있다. 제어부(40)에는 제어부(40)에 전원을 공급하는 전원공급부(50)가 연결된다. 전원공급부(50)는 제어부(40)를 통해, 또는 광원에 직접 연결되어, 광원에 전원을 공급할 수 있다.
제어부(40)는, 제1 광원(31)과 제2 광원(33)을 소정 구간에 소정의 강도로 광을 출사하도록 제1 광원(31) 및/또는 제2 광원(33)의 온/오프를 제어할 수 있다. 식물이 광합성을 최대한 효율적으로 하도록 제1 광원(31)과 제2 광원(33)이 각각 개별적으로 동작될 수 있다. 제어부(40)는 제1 및 제2 광원(31, 33)으로부터의 광의 출사 강도나 출사 시간 등을 각각 독립적으로 제어할 수 있다. 또한, 제1 광원(31) 및/또는 제2 광원(33)이 복수 개의 발광 다이오드들을 포함하는 경우, 개별적인 발광 다이오드를 독립적으로 제어할 수 있다.
제어부(40)는 제1 광원(31)과 제2 광원(33)의 동작을 선 셋팅된 프로세스에 따라, 또는 사용자의 입력에 따라 제어할 수 있다. 제1 광원(31)과 제2 광원(33)의 동작은 식물의 종류, 식물의 생장 시기 등에 따라 다양하게 변경될 수 있다.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 광원이 출사하는 광의 스펙트럼을 도시한 것이다.
본 발명의 일 실시예에 따른 광원은 식물의 성장 시기에 따라 서로 다른 파장 대역의 광을 출사할 수 있는 바, 도 3a는 식물의 파종 후 정식 전 소정 구간에서의 광의 스펙트럼을 도시한 것이며, 도 3b는 식물의 정식 후 소정의 구간 동안의 광의 스펙트럼을 도시한 것이며, 도 3c는 식물의 정식 후, 도 3b에서의 구간이 아닌 다른 소정의 구간에서의 광의 스펙트럼을 도시한 것이다.
본 발명의 일 실시예에 있이서, 식물의 씨앗은 파종 후 암주기에서 발아될 수 있다. 씨앗의 발아를 위해서 상기 암주기는 약 1.5~3일, 예를 들어, 파종 후 24시간 동안 지속될 수 있으며, 별도의 양액 없이 정제수만 씨앗에 제공될 수 있다
발아된 씨앗은 명주기와 암주기 하에서 새싹으로 생육되며 소정 기간이 지난 후 재배기에 정식(定植)될 수 있다. 발아된 씨앗은 약 5일 내지 9일, 예를 들어, 약 7일 동안 명주기와 암주기 하에서 생육됨으로써 새싹으로 자라나며, 상기 새싹은 재배기에 정식될 수 있다. 재배기로 정식된 새싹은 양액을 이용하여 성체가 될 때까지 생육된다.
상기 명주기와 암주기는 식물의 종류에 따라 다양하게 설정될 수 있으며, 예를 들어, 하루 24시간을 단위로 서로 교번하여 배치될 수 있다. 예를 들어, 약 6시간 내지 약 10시간 동안 암주기가 유지되다가, 약 18시간 내지 약 14시간 동안 명주기가 유지될 수 있으며, 하루를 단위로 암주기와 명주기가 반복될 수 있다. 명주기에서의 광도는 50 내지 80 umol/m2/s (PPFD)일 수 있으며, 예를 들어, 69.8 umol/m2/s일 수 있다.
본 발명의 일 실시예에 있어서, 발아된 후 정식 전의 새싹으로 생육되기까지 명주기에서 광합성이 용이한 파장 대역의 광을 제공한다. 발아된 후 정식 전까지 새싹으로 생육될 때까지 제공되는 광의 스펙트럼은 도 3a에 도시된 바와 같다.
도 3a를 참조하면, 본 발명의 일 실시예에 따른 광원은 전체적인 파장 대역의 광을 동일한 정도로 출사하기 보다는 소정 파장에서 반치폭이 좁은 피크를 갖는 광을 제공할 수 있다. 예를 들어, 광원은 주로 광합성에 사용된다고 판단된 약 660 나노미터 및 약 450나노미터에서 반치폭이 좁으며 강도가 다른 부분보다 상대적으로 높은 피크를 가질 수 있다. 약 660 나노미터 및 약 450나노미터는 각각 적색과 청색에 해당되는 피크들이다.
본 발명의 일 실시예에 있어서, 정식 후 식물이 생육되어 성체가 된 후 수확될 때까지 명주기와 암주기 하에서 생육될 수 있다. 정식 후 수확전까지의 기간은 대략 18일 내지 23일 가량이 소요될 수 있으며, 예를 들어, 21일 동안 생육(예를 들어, 파종 후 30일 동안 생육)된 후 그 이후에 수확될 수 있다. 상기 명주기와 암주기는 식물의 종류에 따라 다양하게 설정될 수 있으며, 예를 들어, 하루 24시간을 단위로 서로 교번하여 배치될 수 있다. 예를 들어, 약 6시간 내지 약 10시간 동안 암주기가 유지되다가, 약 18시간 내지 약 14시간 동안 명주기가 유지될 수 있으며, 하루를 단위로 암주기와 명주기가 반복될 수 있다. 명주기에서의 가시 광선 파장대역에 해당하는 광의 광도는 50 내지 80 umol/m2/s (PPFD)일 수 있으며, 예를 들어, 69.8 umol/m2/s일 수 있다.
본 발명의 일 실시예에 있어서, 정식 후 명주기에서는 도 3b 또는 도 3c에 도시된 스펙트럼을 갖는 광이 식물에 조사될 수 있다. 도 3b에 도시된 스펙트럼을 갖는 광은 상술한 제1 광원만을 턴 온함으로써 구현될 수 있으며, 도 3C에 도시된 스펙트럼을 갖는 광은 상술한 제1 광원과 제2 광원을 둘다 턴 온함으로써 구현될 수 있다.
도 3b 또는 도 3c에 제공되는 광은 각각 서로 다른 구간 동안 제공된다. 여기서 구간은 시간적인 구간을 의미한다. 예를 들어, 일부 구간에서는 도 3b에 해당하는 광이 제공될 수 있으며, 상기 일부 구간을 제외한 나머지 구간에서는 도 3C에 해당하는 광이 제공될 수 있다. 이하에서는, 설명의 편의를 위해, 도 3b에 해당하는 광이 제공되는 구간을 제1 구간으로, 도 3c에 해당하는 광이 제공되는 구간을 제2 구간으로 설명한다. 다시 설명하면 제1 구간에서는 상술한 제1 광원만이 턴 온되며, 제2 구간에서는 상술한 제1 광원과 제2 광원이 둘다 턴 온될 수 있다.
여기서, 제1 구간이나 제2 구간은 가시광선 파장 대역이 포함된 광이 제공되는 구간으로서 명주기 하에서의 소정 구간을 의미한다. 본 발명의 일 실시예에 있어서, 제2 구간은 제1 구간보다 짧은 기간에 해당한다.
도 3b를 참조하면, 본 발명의 일 실시예에 따른 광원은 제1 구간 동안 전체적인 파장 대역의 광을 동일한 정도로 출사하기 보다는 소정 파장에서 반치폭이 좁은 피크를 갖는 광을 제공할 수 있다. 예를 들어, 광원은 주로 광합성에 사용된다고 판단된 약 660 나노미터 및 약 450나노미터에서 반치폭이 좁으며 강도가 다른 부분보다 상대적으로 높은 피크를 가질 수 있다. 약 660 나노미터 및 약 450나노미터는 각각 적색과 청색에 해당되는 피크들이다. 적색과 청색에 해당되는 피크 이외에도 상기 청색과 청색에 해당되는 피크보다 낮은 높이를 갖는 다수 개의 피크가 더 제공될 수 있다. 본 발명의 일 실시예에 있어서, 도 3a와 도 3b에 도시된 바와 같이, 정식 전과 정식 후 제1 구간에 해당하는 광은 동일하거나, 동일하지는 않더라도 실질적으로 매우 유사한 스펙트럼을 가질 수 있다. 다만, 정식 전과, 정식 후 제1 구간에 해당하는 광의 강도가 서로 다를 수 있다. 예를 들어, 정식 전보다 정식 후에 더 강도가 높은 광이 식물에 제공될 수 있다. 본 발명의 일 실시예에 있어서, 명주기에서의 광도는 50 내지 80 umol/m2/s (PPFD)일 수 있으며, 예를 들어, 69.8 umol/m2/s일 수 있다.
도 3c를 참조하면, 본 발명의 일 실시예에 따른 광원은 제2 구간 동안 일부 파장 대역에서는 제1 구간에 제공된 광과 유사한 스펙트럼을 가지되 일부 파장 대역에서는 제1 구간에 제공된 광과 다른 스펙트럼을 갖는다. 여기서, 광원은 제2 구간에서도 전체적인 파장 대역의 광을 동일한 정도로 출사하기 보다는 소정 파장에서 반치폭이 좁은 피크를 갖는 광을 제공할 수 있다. 예를 들어, 광원은 주로 광합성에 사용된다고 판단된 약 660 나노미터 및 약 450나노미터에서 반치폭이 좁으며 강도가 다른 부분보다 상대적으로 높은 피크를 가질 수 있다. 이에 더해, 광원의 스펙트럼은 가시 광선이 아닌 파장 대역, 예를 들어, 자외선 파장 대역에서 다른 부분보다 상대적으로 높은 피크를 갖는다. 본 발명의 일 실시예에 있어서, 광원의 스펙트럼은 약 300nm 이하의 파장 대역에서 반치폭이 좁은 피크를 갖는다. 본 발명의 일 실시예에 있어서, 광원의 스펙트럼은 약 285nm 에서 반치폭이 좁은 피크를 가질 수 있다. 제2 구간에서의 광원은 가시광선 파장 대역에서 제1 구간에서와 동일하거나 유사한 스펙트럼을 가질 수 있다. 즉, 가시광선은 파장 대역의 광은 변경되지 않은 상태에서 가시광선 이외의 파장 대역, 예를 들어, 자외선 파장 대역(예를 들어, 자외선 B의 파장 대역)의 광이 추가된 형태로 제공될 수 있다.
제1 구간과 제2 구간 각각에 있어서의 광원의 스펙트럼은 도 1에 도시된 광원을 구동함으로써 구현될 수 있다. 특히, 상기 스펙트럼은 제1 광원과 제2 광원을 독립적으로 그리고 선택적으로 턴 온 또는 턴 오프 시킴으로써 구현될 수 있다. 예를 들어, 도 1에 도시된 광원을 이용하되, 제1 구간에서는 제1 광원만 턴 온 시킬 수 있다. 제1 광원이 턴 온되는 경우 광원은 가시 광선 파장 대역의 광, 예를 들어 도 3b에 도시된 스펙트럼의 광을 출사할 수 있다. 제2 구간에서는 제1 광원 및 제2 광원을 턴온 시킬 수 있다. 제1 및 제2 광원이 턴 온되는 경우, 광원은 가시 광선 파장 대역 및 자외선 파장 대역의 광, 예를 들어, 도 3c에 도시된 스펙트럼의 광을 출사할 수 있다.
본 발명의 일 실시예에 있어서, 상기 제1 구간과 제2 구간은 식물의 생육 시기 및 수확 시기에 따라 다양하게 배치될 수 있다. 예를 들어, 제1 구간은 식물의 정식 후 수확 전까지 배치될 수 있다. 제2 구간은 제1 구간에 인접하여 배치될 수 있으며, 전체적인 일정 내에서 수확 시기 직전에 배치될 수 있다. 다시 말해, 식물의 정식 후, 제1 구간이 이어지다가 수확 직전 제1 구간 이외의 시간에 제2 구간이 배치될 수 있다. 이후 식물이 수확된다. 본 발명의 일 실시예에 있어서, 제2 구간은 수확 직전 1일 내지 3일에 걸쳐서 제1 구간의 사이사이에 제공될 수 있다.
본 발명의 일 실시예에 있어서, 식물은 정식 후 약 20일 동안 교번되는 명주기와 암주기 하에서 재배될 수 있으며, 이때, 명주기는 제1 구간에 해당할 수 있다. 그 다음, 정식 후 21일차의 명주기에서 제1 구간과 제2 구간이 순차적으로, 또는 제2 구간과 제1 구간이 순차적으로 이어질 수 있는 바, 만약 21일차의 명주기가 16시간인 경우, 제1 구간이 13시간 가량 지속되고 나머지 3시간 동안 제2 구간이 이어질 수 있다. 또는 제2 구간이 3시간 동안 이어지고 제1 구간이 13 시간 동안 이어질 수 있다.
이를 다시 설명하면 다음과 같다. 본 발명의 일 실시예에 따른 광원은 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되는 것으로서, 식물 재배용으로 사용될 수 있다. 본 발명의 일 실시예에 따른 식물 재배용 광원은 명주기에 턴 온되어 복수 개의 피크로 이루어진 스펙트럼을 갖는 광을 상기 식물에 출사한다. 상기 광원으로부터 출사된 광은 식물 내 소정 물질의 함량을 높이기 위한 파장 대역의 광을 포함하고 있다.
상기 명주기의 제2 구간에서 출사된 상기 광의 피크들 중 적어도 하나는, 상기 제2 구간보다 선행하거나 후행하는 제1 구간에서 제공되지 않는다. 즉, 자외선 파장 대역, 예를 들어, 300nm 이하의 파장 대역에 해당하는 광은 제2 구간에서는 제공되나 제1 구간에서는 제공되지 않는다. 본 발명의 일 실시예에 있어서, 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크는 약 280 nm 내지 약 295nm 의 파장, 예를 들어, 285nm의 파장을 가질 수 있다.
상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 가시 광선 파장 대역에 위치하는 것으로서, 상기 제2 구간과 상기 제1 구간 모두에서 제공될 수 있다. 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 청색 파장 대역 및 적색 파장 대역 각각에 제공된 피크들을 포함할 수 있다. 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은 서로 실질적으로 서로 동일한 파장에서 나타날 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 구간은 식물의 수확 직전에 배치되며, 약 6시간 미만으로 제공될 수 있다. 예를 들어, 제2 구간은 약 3시간 동안 제공될 수 있다.
본 발명의 일 실시예에 있어서, 제2 구간 동안 식물에 제공되는 광은 연속적인 광이다.
본 발명의 일 실시예에 있어서, 상술한 광을 식물에 제공하기 위해서는 광원이 도 1 및 도 2에 도시된 것과 같은 구조를 가질 수 있다. 광원은 서로 다른 파장의 광을 출사하는 복수 개의 발광 다이오드들을 포함할 수 있으며, 상기 발광 다이오드들은 다양한 형태로 조합되어 상술한 형태의 스펙트럼을 갖는 광을 출사할 수 있다. 예를 들어, 도 1에 상기 제1 광원과 상기 제2 광원은 각각 독립적으로 단수 또는 복수 개의 발광 다이오드들을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 식물 재배용 광원을 이용하는 경우, 태양광이 충분하지 않거나, 태양광을 제공하지 못하는 조건하에서도, 식물의 종류에 맞는 성장 환경을 독립적으로 제공할 수 있다. 또한, 유효 물질의 함량이 높은 식물을 용이하게 재배할 수 있다.
실시예
1. 식물의 생육 및 광 처리 조건
이하의 실시예들에 있어서, 식물 중 십자화과 케일을 일 예로 실험이 수행되었다. 케일은 총 31일간 생육되었으며 32일차 되는 날에 수확되었다. 실험예에 따른 케일의 생육 조건은 도 4에 도시되었다. 이하 도면에서는, 설명의 편의를 위해, 도 3b에 해당하는 광이 제공되는 구간을 제1 구간으로, 도 3c에 해당하는 광이 제공되는 구간을 제2 구간으로 표시하였으며, 기타 특징적인 사항은 별도로 설명하였다.
도 4를 참조하여, 먼저 대조군을 설명하면, 파종 후 이틀 동안 암주기에서 케일을 발아시켰다. 다시 말해, 케일을 생육시키기 위해 먼저 재배용 스펀지에 케일 종자를 파종하고, 약 2일간 암주기에서 발아시켰다.
3일 차부터 파종 후 9일이 되는 날까지 명주기와 암주기 하에서 생육되었으며 이는 정식 전 조사 기간에 대응한다. 케일에는 도 3a에 도시된 스펙트럼을 갖는 광이 조사되었는 바, 명주기에서 약 69.8 umol/m2/s PPFD (Photosynthetic Photon Flux Density)의 광도로 광이 조사되었다. 발아 후 정식 전에는 정제수만 식물에 제공하였다.
키운 새싹은 10일차에 DFT(deep-flow technique) 수경 재배 시스템에 정식되었다. 정식 후 케일은 명주기와 암주기 하에서 양액으로 생육되었다. 양액은 호글랜드 스탁 용액(Hoagland stock solution)이 사용되었으며, pH는 5.5 내지 6.5로 유지되었다. 정식 후 21일 동안 하루 24시간 단위로 명주기와 암주기가 각각 제공되었으며, 하루 24시간 내에서 명주기는 16시간, 암주기는 8시간 유지되었다. 케일에는 도 3b에 도시된 스펙트럼을 갖는 광이 조사되었는 바, 명주기에서 약 152.8 umol/m2/s PPFD (Photosynthetic Photon Flux Density)의 광도로 광이 조사되었다.
대조군은 정식 후 30일차까지 명주기에 도 3b에 해당하는 광이 조사되었다.
처리군 1은 정식 후 29일차 까지는 대조군과 동일한 조건으로 식물에 광이 조사되었다. 다만, 30일차 명주기 하에서 도 3b 및 도 3c에 도시된 스펙트럼을 갖는 광이 일정 조건으로 조사되었다.
처리군 2는 정식 후 28일차 까지는 대조군과 동일한 조건으로 식물에 광이 조사되었다. 다만, 29일차 및 30일차 명주기 하에서 도 3b 및 도 3c에 도시된 스펙트럼을 갖는 광이 일정 조건으로 조사되었다. 여기서, 도 3c에 도시된 스펙트럼을 갖는 광은 이틀 각각 16시간의 명주기 동안 연속적으로 조사되었다.
처리군 3은 정식 후 27일차 까지는 대조군과 동일한 조건으로 식물에 광이 조사되었다. 다만, 28일차 내지 30일차 명주기 하에서 도 3b 및 도 3c에 도시된 스펙트럼을 갖는 광이 일정 조건으로 조사되었다. 여기서, 도 3c에 도시된 스펙트럼을 갖는 광은 소정의 구간 동안 점멸적으로 조사되었는 바, 3일에 걸쳐 16시간의 명주기 내에서 5분 조사 후 75분 휴식기를 갖는 방법으로 명주기가 끝날 때까지 반복되었다.
2. UVA와 UVB의 조사에 따른 유효 물질 함량 비교
본 실험에서는 광원의 제2 구간에서의 광 조사에 따른 식물의 영향을 관찰하였다. 본 실험의 제2 구간에서 사용된 광은 가시광선 파장 대역에서 도 3b의 스펙트럼과 실질적으로 동일한 형태를 갖되, 자외선 파장 대역에서 각각 자외선 A와 자외선 B에 해당하는 스펙트럼을 갖는 점만 달랐다.
도 5는 본 실시예에서의 실험 조건을 도시한 것으로서, 도 4의 대조군과 처리군 2에 대응한다. 상세하게는 도 5에 있어서, 비교예 1은 도 4의 대조군에 대응되며, 수확 전 마지막 이틀 동안 암주기 8시간, 명주기 16시간으로 유지되었다. 실험예 1 및 실험예 2 각각은 도 4의 처리군 2에 대응하되, 실험예 1의 경우 도 3c에 도시된 스펙트럼 중 자외선 파장 대역에서 자외선 B에 대응하는 피크를 갖는 광이며, 실험예 2의 경우, 도 3c에 도시된 스펙트럼 중 자외선 파장 대역에서 자외선 A에 대응하는 피크를 갖는 광이다. 자외선 A 및 자외선 B에 있어서, 총 에너지량은 서로 동일한 값이 되도록 서로 광 세기는 다르게 설정되었다. 본 실시예에 있어서, 자외선 A 및 자외선 B의 총 에너지량 및 광 세기는 가시 광선을 제외한 것으로서 자외선 파장 대역에 해당되는 값이며, 자외선 B는 총에너지량 11.52kJ/m2, 광세기 10 uW/cm2로 제공되었으며, 자외선 A는 총에너지량 1,152kJ/m2, 광세기 1000 uW/cm2로 제공되었다.
도 6a 내지 도 6c는 상술한 조건으로 광 처리를 수행한 후, 파종 후 31일차에 수확한 케일에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 6a 내지 도 6c를 참조하면, 자외선 A와 자외선 B는 식물에 인가하는 경우, 두 종류 모두 식물 내 유효 물질의 함량을 증가시켰다. 그러나, 동일 에너지로 식물에 제공되었음에도 불구하고 자외선 B가 식물에 제공되었을 때, 자외선 A가 식물에 제공되었을 때보다 현저하게 높은 유효 물질의 함량을 나타내었다.
이에 따라, 자외선 A와 자외선 B 중 자외선 B를 유효 물질의 함량을 높이는 광으로 사용하는 것이 더 유리함을 알 수 있으며, 이하에서는 자외선 B를 기준으로 유효 물질의 함량 및 식물의 손상 여부를 실험하였다.
3. UVB의 조사량에 따른 식물의 손상 여부와 유효 물질 함량 비교
본 실험에서는 광 조사 시간에 따른 식물의 손상여부를 관찰하였다. 본 실험의 제2 구간에서 사용된 광은 가시광선 파장 대역 및 자외선 B에 해당하는 피크를 갖는 것으로서, 도 3c의 스펙트럼과 실질적으로 동일한 형태를 갖는다.
도 7은 본 실시예에서의 실험 조건을 도시한 것으로서, 도 4의 대조군과 처리군 1에 대응한다. 상세하게는 도 7에 있어서, 비교예 2는 도 4의 대조군에 대응되며, 수확 전 마지막 이틀 동안 암주기 8시간, 명주기 16시간으로 유지되었었다. 실험예 3 및 실험예 4 각각은 도 4의 처리군 1에 대응하되, 실험예 3의 경우 도 3c에 도시된 광을 명주기 하에서 각각 3시간 동안 인가한 것이며, 실험예 4의 경우 명주기 하에서 6시간 동안 인가한 것이다. 총 에너지량은 가시 광선을 제외한 것으로서 자외선 파장 대역에 해당되는 값이다. 본 실시예에 있어서, 실험예 3에 있어서의 자외선 B의 총 에너지량은 1.08kJ/m2이며, 실험예 4에 있어서의 자외선 B의 총 에너지량은 2.16kJ/m2이었다.
도 8a 내지 도 8d는 비교예 2, 실험예 3, 및 실험예 4의 실험 결과를 도시한 사진이다. 도 8a 내지 도 8d에 있어서, 각 사진에서 좌측의 케일은 모두 대조군에 해당한다. 도 8a의 우측 사진은 실험예 3에 개시된 광 조건에 따라 광을 인가한 후 하루가 경과한 시점에서의 케일의 사진이며, 도 8b의 우측 사진은 실험예 4에 개시된 광 조건에 따라 광을 인가한 후 하루가 경과한 시점에서의 케일의 사진이다. 도 8c의 우측 사진은 실험예 3에 개시된 광 조건에 따라 광을 인가한 후 나흘이 경과한 시점에서의 케일의 사진이며, 도 8D의 우측 사진은 실험예 4에 개시된 광 조건에 따라 광을 인가한 후 나흘이 경과한 시점에서의 케일의 사진이다.
도 8a 내지 도 8d를 참조하면, 3시간 동안 UVB에 해당하는 광을 인가받은 경우 하루 경과한 시점에서는 식물의 손상 여부를 확인할 수 없었으나, 나흘이 경과한 시점에서는 6시간 광을 인가한 케일에서 잎말림 현상과 갈변 현상이 나타났다. 이를 통해 UVB의 경우 소정 시간 이상, 예를 들어 6시간 이상 인가하는 경우 식물에 손상을 일으킨다는 것이 확인되었다.
도 9a 내지 도 9c는 비교예 2, 실험예 3, 및 실험예 4에 있어서, 파종 후 31일차에 수확한 케일에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 9a 내지 도 9c를 참조하면, 자외선 B는 식물에 인가하는 경우, 적어도 유효 성분이 유지되거나, 유효 성분의 함량이 더 증가하였다. 다만, UVB 광조사 시간에 따라 유의미한 정도로 유효 성분이 증가한 경우와 유지한 경우의 경향성이 직접적으로 보이지는 않았다. 예를 들어, 클로로필의 경우 실험예 3의 경우 대조군 대비 현저하게 클로로필의 함량이 늘어난 것을 알 수 있으나, 실험예 4의 경우는 실험예 3보다는 대조군 대비 클로로필의 함량이 크게 늘어났다고 보기는 힘들다. 플라보놀의 경우, 실험예 3 및 실험예 4 모두 대조군 대비 현저하게 플라보놀의 함량이 늘어난 것을 확인할 수 있었다. 다만, 안토시아닌의 경우, 대조군 대비 실험예 3은 유의미한 변화가 있다고 보기 힘들며, 실험예 4는 현저하게 안토시아닌의 함량이 늘어난 것을 확인할 수 있었다.
본 실험을 통해, 약 2.16kJ/m2 의 에너지가 인가되도록 6 시간 이상의 UVB에 식물을 노출하는 경우 식물이 광의 조사로부터 손상을 받을 수 있다는 점을 확인할 수 있다.
4. UVB의 연속 또는 점멸 조사에 따른 식물의 손상 여부와 유효 물질 함량 비교
본 실험에서는 광원의 연속 조사 또는 점멸 조사에 따른 식물의 영향을 관찰하였다.
도 10는 본 실시예에서의 실험 조건을 도시한 것으로서, 도 4의 대조군과 처리군 3에 대응한다. 상세하게는 도 10에 있어서, 비교예 3은 도 4의 대조군에 대응되며, 수확 전 마지막 이틀 동안 암주기 8시간, 명주기 16시간으로 유지되었다. 실험예 5 및 실험예 6 각각은 도 4의 처리군 3에 대응하되, 실험예 5의 경우 도 3c에 도시된 스펙트럼의 광을 명주기 하에서 3시간 동안 제공하고 나머지 구간 동안 도 3b에 도시된 스펙트럼의 광을 명주기 하에서 13시간 제공한 것이다. 이러한 방식의 광조사가 3일 동안 반복되었다. 실험예 6의 경우, 도 3c에 도시된 스펙트럼을 갖는 광을 명주기 하에서 3시간 동안 제공하되, 16시간의 명주기 내에서 5분 조사 후 75분 휴식기를 갖는 방법으로 명주기가 끝날 때까지 반복되었다. 이러한 방식의 광조사가 3일 동안 반복되었다. 이에 따라, 실험예 5와 실험예 6은 광이 인가된 총 시간이 서로 같으며 인가된 총 에너지 또한 서로 같다. 총 에너지량은 가시 광선을 제외한 것으로서 자외선 파장 대역에 해당되는 값이다. 본 실시예에 있어서, 실험예 5 및 실험예 6에 있어서의 자외선 B의 총 에너지량은 1.08kJ/m2이었다.
도 11a 내지 도 11b는 비교예 3, 실험예 5, 및 실험예 6의 실험 결과를 도시한 사진이다. 도 11a 내지 도 11b에 있어서, 각 사진에서 좌측의 케일은 모두 대조군에 해당한다. 도 11a의 우측 사진은 실험예 5에 개시된 광 조건에 따라 광을 인가한 후 수확한 시점에서의 케일의 사진이며, 도 11b의 우측 사진은 실험예 6에 개시된 광 조건에 따라 광을 인가한 후 수확한 시점에서의 케일의 사진이다.
도 11a 내지 도 11b를 참조하면, 연속적으로 3시간 광을 조사한 실험예 5의 경우 케일에 손상이 거의 없다. 그러나, 점멸적으로 3시간 광을 조사한 실험예 6의 경우 케일의 잎말리 현상이 일어나며 약간의 색깔 변화도 관찰되었다. 이를 통해 UVB의 연속 조사가 점멸 조사보다 식물에게 더 안전하다는 것이 확인되었다.
도 12a 내지 도 12c는 비교예 3, 실험예 5, 및 실험예 6에 있어서, 파종 후 31일차에 수확한 케일에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 12a 내지 도 12c를 참조하면, 광 조사 시 연속적이냐 점멸적이냐에 따른 유효 성분의 함량은 유효 성분마다 일부 다르게 나타났다. 클로로필의 경우, 실험예 5의 경우 대조군 대비 클로로필의 함량에 유의차가 없으나, 실험예 6의 경우 대조군 대비 클로로필의 함량이 현저하게 증가하였다. 플라보놀의 경우, 실험예 5와 실험예 6 모두 대조군 대비 플라보놀의 함량이 현저하게 증가하였다. 안토시아닌의 경우, 실험예 5의 경우 대조군 대비 안토시아닌의 함량이 현저하게 증가하였으나, 실험예 6의 경우 대조군 대비 안토시아닌의 함량이 증가하기는 하였으나 유의차가 크다고 보기는 힘들었다. 그럼에도 광조사 자체에 의해 유효 성분의 함량은 늘어나는 경향성이 뚜렷하다고 볼 수 있으며, 점멸적인 광 조사보다는 연속적인 광 조사의 경우 유효 성분의 상승 효과가 크다는 것을 알 수 있었다.
5. 암주기 하에서 UVB를 조사하는 경우 유효 물질 함량 증가 여부
본 실험에서는 UVB에 해당하는 광이 암주기에서 조사되었을 때와 명주기에서 조사되었을 때에 따른 식물의 영향을 관찰하였다.
도 13은 본 실시예에서의 실험 조건을 도시한 것으로서, 도 4의 대조군과 처리군 1에 대응한다. 상세하게는 도 13에 있어서, 비교예 4는 도 4의 대조군에 대응되며, 수확 전 마지막 하루 동안 암주기 8시간, 명주기 16시간으로 유지하되었다. 실험예 7 및 실험예 8 각각은 도 4의 처리군 1에 대응하되, 실험예 7의 경우 UVB에 해당하는 스펙트럼의 광을 암주기 하에서 3시간 동안 제공하고 명주기 하에서 도 3b에 해당하는 스펙트럼의 광을 16시간 조사하였다. 여기서, 암주기 하에서 제공되는 광은 UVB만이며 가시광선 파장대역의 광은 제공되지 않았다. (UVB가 제공되는 제2 구간에 * 표시) 실험예 8은 명주기에서 도 3c에 해당하는 스펙트럼의 광을 3시간 동안 제공하고, 나머지 명주기에 해당하는 13시간 동안 도 3b에 해당하는 스펙트럼의 광을 조사하였다. 도 13에 개시된 총 에너지량은 가시 광선을 제외한 것으로서 자외선 파장 대역에 해당되는 값이다. 본 실시예에 있어서, 실험예 7 및 실험예 8에 있어서의 자외선 B의 총 에너지량은 1.08kJ/m2이었다.
도 14a 내지 도 14d는 비교예 4, 실험예 7, 및 실험예 8의 실험 결과를 도시한 사진이다. 도 14a 내지 도 14d에 있어서, 각 사진에서 좌측의 케일은 모두 대조군에 해당한다. 도 14a의 우측 사진은 실험예 7에 개시된 광 조건에 따라 광을 인가한 후 하루가 경과한 시점에서의 케일의 사진이며, 도 14b의 우측 사진은 실험예 8에 개시된 광 조건에 따라 광을 인가한 후 하루가 경과한 시점에서의 케일의 사진이다. 도 14c의 우측 사진은 실험예 7에 개시된 광 조건에 따라 광을 인가한 후 나흘이 경과한 시점에서의 케일의 사진이며, 도 14d의 우측 사진은 실험예 8에 개시된 광 조건에 따라 광을 인가한 후 나흘이 경과한 시점에서의 케일의 사진이다.
도 14a 내지 도 14d를 참조하면, 식물이 암주기에서 UVB에 해당하는 광을 인가받은 경우 하루 경과한 시점에서는 식물의 손상 여부를 확인할 수 없었으나, 나흘이 경과한 시점에서는 케일에서 잎말림 현상과 갈변 현상이 나타났다. 식물이 명주기에서 UVB에 해당하는 광을 인가받은 경우 하루 경과한 시점 및 나흘이 경과한 시점 모두에서 식물의 손상이 발견되지 않았다. 이를 통해 UVB의 경우 명주기 보다는 암주기에서 식물에 손상을 용이하게 일으킨다는 것이 확인되었다.
도 15a 내지 도 15c는 비교예 4, 실험예 7, 및 실험예 8에 있어서, 파종 후 31일차에 수확한 케일에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 15a 내지 도 15c를 참조하면, 명주기나 암주기 하에서 자외선 B에 해당하는 광을 식물에 인가하는 경우, 유효 성분 중 클로로필과 플라보놀의 함량이 현저하게 증가하였다. 다만, 안토시아닌의 경우 유의미한 유효 성분의 함량 증가를 확인할 수 없었다.
6. 명주기 하에서 UVB를 조사하는 경우 다양한 십자화과 식물의 유효 물질 함량 증가 여부
본 실험에서는 UVB에 해당하는 광이 조사되지 않을 때와 명주기에서 조사되었을 때에 따른 십자화과 식물의 영향을 관찰하였다. 이를 위해, 이하의 실시예에서는 십자화과 식물 중 다채, 겨자, 및 브로콜리에 대해 추가적인 실험을 실시하였다.
도 16은 본 실시예에서의 실험 조건을 도시한 것으로서, 비교예 및 실험예가 각각 도 13의 비교예 4와 실험예 7에 대응하며, 실험 조건은 동일하다.
도 17a 내지 도 17c는 도 16의 실험 조건에 따라 실험한 비교예 및 실험예에 있어서, 파종 후 31일차에 수확한 다채, 겨자, 및 브로콜리에 함유된 클로로필, 플라보놀, 및 안토시아닌의 함량을 순서대로 각각 표시한 그래프이다.
도 17a 내지 도 17c를 참조하면, 명주기에 UVB를 조사한 실험예의 경우, 조사하지 않은 비교예 대비 클로로필, 플라보놀, 안토시아닌 모두 그 함량이 증가하였다. 특히, 클로로필의 경우 다채 및 겨자에 대해 명주기에 UVB를 조사한 실험예의 경우 현저한 함량의 증가가 관찰되었으며, 플라보놀의 경우 다채, 겨자, 브로콜리 모두 명주기에 UVB를 조사한 실험예의 경우에 현저한 함량의 증가가 관찰되었다. 안토시아닌의 경우 다채, 겨자, 브로콜리 모두 현저한 정도는 아니나 상당한 정도로 함량의 증가가 관찰되었다.
도 18a 내지 도 18c는 도 16의 실험 조건에 따라 실험한 비교예 및 실험예의 실험 결과를 도시한 사진이다.
도 18a 내지 도 18c를 참조하면, 명주기에 UVB를 조사한 실험예의 경우, 조사하지 않은 비교예 대비 특별한 외형의 변화, 예를 들어, 입말림, 갈변, 고사 등이 발견되지 않았다.
상술한 실시예에서 확인할 수 있는 바와 같이, 본 발명의 일 실시예에 따른 광원은, 식물의 성체에 특정 파장의 광을 소정 구간 동안 특정 형태로 식물에 제공함으로써 유효 성분의 함량이 높은 식물을 수득할 수 있다.
본 발명의 일 실시예에 따른 광원은 식물 재배용으로 사용될 수 있는 바, 광원이 설치된 식물 재배 장치, 온실 등에 적용될 수 있다.
도 19는 본 발명의 일 실시예에 따른 재배 장치를 개념적으로 도시한 재배 장치이다. 도 19에 도시된 재배 장치는 일 예로서 소형 재배 장치를 도시한 것으로서, 이에 한정되는 것은 아니다.
도 19를 참고하면, 본 발명의 일 실시예에 따른 재배 장치(100)는 식물을 기를 수 있는 내부 공간을 갖는 하우징(60), 상기 하우징(60) 내에 제공되며 광을 출사하는 광원(30)을 포함한다.
하우징(60)는 내부에 식물이 제공되어 자라날 수 있는 빈 공간을 그 내부에 제공한다. 하우징(60)는 외부의 광을 막을 수 있는 박스 형태로 제공될 수 있다. 본 발명의 일 실시예에 있어서, 하우징(60)는 상부 방향으로 개구된 하부 케이스(61)와, 하부 방향으로 개구된 상부 케이스(63)를 포함할 수 있다. 하부 케이스(61)와 상부 케이스(63)는 외부 광을 막는 박스 형태가 되도록 체결될 수 있다.
하부 케이스(61)는 바닥부와 바닥부로부터 상향 연장된 측벽부를 포함한다. 상부 케이스(63)는 커버부와 커버부로부터 하향 연장된 측벽부를 포함한다. 하부 케이스(61)와 상부 케이스(63)의 측벽부들은 서로 맞물려 체결되는 구조를 가질 수 있다. 하부 케이스(61)와 상부 케이스(63)는 사용자의 의도에 따라 체결하거나 분리할 수 있으며, 이에 따라, 사용자가 하우징(60)를 열거나 닫을 수 있다.
하우징(60)는 다양한 형상으로 제공될 수 있다. 예를 들어, 대략적으로 직육면체 형상을 가질 수 있으며, 또는 원통 형상을 가질 수 있다. 그러나, 하우징(60)의 형상은 이에 한정되는 것은 아니며, 이와 다른 형상으로 제공될 수도 있다.
하우징(60)는 내부에 제공된 식물이 생장할 수 있는 환경을 제공한다. 하우징(60)에는 복수 개의 식물이 제공되어 생장하는 경우에도 이를 수용할 수 있는 크기로 제공될 수 있다. 아울러, 하우징(60)의 크기는 식물 재배 장치(100)의 용도에 따라 달라질 수 있다. 예를 들어, 식물 재배 장치(100)가 가정에서 사용하는 소규모 식물 재배에 이용되는 경우 하우징(60)의 크기는 상대적으로 작을 수 있다. 식물 재배 장치(100)가 상업적으로 식물을 재배하고 판매하는데 사용되는 경우 하우징(60)의 크기는 상대적으로 클 수 있다.
본 발명의 일 실시예에 있어서, 하우징(60)는 하우징(60) 밖의 광이 하우징(60) 내부로 유입되지 않도록 광을 차단할 수 있다. 따라서, 하우징(60) 내부는 외부와 격리된 암실 환경이 제공될 수 있다. 이에 따라, 외부의 광이 불필요하게 하우징(60) 내부에 제공된 식물에 조사되는 것을 막을 수 있다. 특히, 하우징(60)는 외부의 가시광선이 식물에 조사되는 것을 막을 수 있다. 다만, 경우에 따라서는 하우징(60)는 일부가 오픈되어 외부의 광을 그대로 받을 수 있도록 설계될 수도 있다.
본 실시예에 있어서, 하우징(60) 내의 공간은 하나로 제공될 수 있다. 그러나, 이는 설명의 편의를 위한 것으로 복수 개의 구역으로 분리될 수 있다. 즉, 하우징(60) 내에는 하우징(60) 내 공간을 다수 개로 나누는 격벽들이 제공될 수 있다.
광원은 하우징(60) 내 공간에 식물에 광을 제공한다. 광원은 상부 케이스(63)나 하부 케이스(61)의 내면 상에 제공된다. 본 발명의 일 실시예에 있어서, 광원은 상부 케이스(63)의 커버부 상에 제공될 수 있다. 본 실시예에서는 일 예로서, 상부 케이스(63)의 커버부 내면 상에 광원이 제공된 것을 도시하였는 바, 이에 한정되는 것은 아니다. 예를 들어, 본 발명의 다른 실시예에 있어서, 광원은 상부 케이스(63)의 측벽부 상에 제공될 수 있다. 또는 본 발명의 또 다른 실시예에 있어서, 광원은 하부 케이스(61)의 측벽부에 제공될 수 있으며, 예를 들어, 측벽부 상단에 제공될 수도 있다. 또는 본발명의 또 다른 실시예에 있어서, 광원은 상부 케이스(63)의 커버부, 상부 케이스(63)의 측벽부, 하부 케이스(61)의 측벽부 중 적어도 한 곳에 제공될 수도 있다.
하우징(60) 내의 공간에는 식물이 재배되기 용이하도록, 예를 들어, 수경 재배가 용이하도록 재배대(70)가 제공될 수 있다. 재배대(70)는 하우징(60)의 바닥부로부터 상부 방향으로 이격되어 배치된 판상의 플레이트(71)로 이루어질 수 있다. 플레이트(71)에는 일정 크기의 관통공(73)이 제공될 수 있다. 재배대(70)는 플레이트(71)의 상면에 식물이 놓여 자라날 수 있도록 하기 위한 것으로서, 그 물을 공급하였을 때 공급된 물이 배수될 수 있도록 복수 개의 관통공(73) 가질 수 있다. 관통공(73)은 식물이 하부로 쓸려가지 않도록 하는 크기로 제공될 수 있다. 예를 들어, 관통공(73)의 직경은 식물보다 작은 크기를 가질 수 있다. 재배대(70)와 하부 케이스(61)의 바닥부 사이의 공간은 배수된 물이 저장되는 수조로서 기능할 수 있다. 이에 따라, 재배대(70)의 관통공(73)을 통해 하부로 배수된 물은 하부 케이스(61) 바닥부와 재배대(70) 사이의 공간에 저장될 수 있다.
그러나, 본 발명의 일 실시예에 따르면 벼과 식물은 수경재배 이외의 방법으로도 재배될 수 있으며, 이 경우, 하우징(60) 내 공간은 벼과 식물에 필요한 수분 및/또는 양분이 공급될 수 있도록 물, 배지, 흙 등이 제공될 있으며, 이때, 하우징(60)는 컨테이너로서 기능할 수 있다. 배지나 흙 등에는 식물이 자랄 수 있는 양분, 예를 들어, 칼륨(K), 칼슘(Ca), 마그네슘(Mg), 나트륨(Na), 철(Fe) 등을 포함할 수 있다. 식물은 그 종류에 따라 배지 속에 묻힌 형태로 제공되거나, 배지 표면 상에 놓인 형태로 제공될 수 있다.
재배대(70)의 크기와 형태는 하우징(60)의 형태 및 제1 광원과 제2 광원의 제공 형태에 따라 달라질 수 있다. 재배대(70)의 크기와 형태는 재배대(70) 상에 제공된 식물이 제1 광원 및 제2 광원으로부터 조사되는 광의 조사 범위 내에 들어오도록 구성될 수 있다.
하우징(60) 내에는 식물에 수분을 공급하는 수분 공급 장치가 제공될 수 있다. 수분 공급 장치는 하우징(60) 상단, 예를 들어, 상부 케이스(63)의 커버부 내면 상에 제공되어 하우징(60) 재배대(70) 상에 물을 분사하는 형태로 구성될 수 있다. 다만, 수분 공급 장치의 형태가 상술한 것에 제한되는 것은 아니고, 하우징(60)의 형상 및 재배대(70)의 배치 형태에 따라 달라질 수 있다. 또한, 별도의 수분 공급 장치 없이 사용자가 직접 하우징(60) 내에 수분을 공급할 수도 있다.
수분 공급 장치는 한 개 또는 복수 개 제공될 수 있다. 수분 공급 장치의 개수는 하우징의 크기에 따라 달라질 수 있다. 예를 들어, 상대적으로 작은 크기의 가정용 식물 재배 장치의 경우, 하우징의 크기가 작기 때문에 수분 공급 장치가 하나 제공될 수 있다. 반대로, 상대적으로 크기가 큰 상업용 식물 재배 장치의 경우, 하우징의 크기가 크기 때문에 수분 공급 장치가 여러 개 제공될 수 있다. 그러나, 수분 공급 장치의 개수는 이에 한정되는 것은 아니며 다양한 개수로 다양한 위치에 제공될 수 있다.
수분 공급 장치는 하우징(60)에 제공된 수조 또는 하우징(60) 외부의 수전에 연결될 수 있다. 아울러, 수분 공급 장치는 물 속에 부유하는 오염 물질이 식물에 제공되지 않도록 여과 장치를 더 포함할 수 있다. 여과 장치는 활성탄, 부직포 등의 필터를 포함할 수 있으며, 이에 따라 여과 장치를 거친 물은 정수된 것일 수 있다. 여과 장치는 경우에 따라 광조사 필터를 더 포함할 수 있는데 광조사 필터는 자외선 등을 물에 조사하여, 물 속에 존재하는 세균, 박테리아, 곰팡이 포자 등을 제거할 수 있다. 수분 공급 장치가 상술한 여과 장치들을 포함함으로써, 물을 재활용하거나 빗물 등을 바로 재배에 사용하는 경우에도 하우징(60) 내부 및 식물이 오염될 우려가 없다.
수분 공급 장치에서 제공되는 물은 별도의 양분이 없이 물 자체(예를 들어 정제수)로만 제공될 수도 있으나, 이에 한정되는 것은 아니며, 식물의 생장에 필요한 양분을 포함할 수 있다. 예를 들어, 물에는 포타슘(K), 칼슘(Ca), 마그네슘(Mg), 나트륨(Na), 철(Fe) 등의 물질이나 나이트레이트(Nitrate), 포스페이트(Phosphate), 설페이트(Sulfate), 클로라이드(Cl) 등이 함유될 수 있다. 예를 들어 삭스(Sachs)액, 크놉(Knop)액, 호글랜드((Hoagland)액, 휴위트(Hewitt)액 등이 수분 공급 장치로부터 공급될 수 있다.
본 발명의 일 실시예에 따르면 상기 광원을 이용하여 식물을 재배할 수 있다.
본 발명의 일 실시예에 따른 식물의 재배 방법은 식물의 씨앗을 발아시키는 단계와, 상기 발아된 식물에 가시광선 파장 대역의 광을 제공하는 단계를 포함할 수 있다. 식물에 제공되는 광은 상술한 실시예들에 의한 광원들로부터 출사된 것으로서, 상기 가시광선 파장 대역의 광은 광 스펙트럼이 다른 제1 내지 제4 광 중 적어도 두 광, 또는 세 광을 포함할 수 있다.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.

Claims (20)

  1. 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되는 식물 재배용 광원에 있어서,
    상기 식물 재배용 광원은 명주기에 턴 온되어 복수 개의 피크로 이루어진 스펙트럼을 갖는 광을 상기 식물에 출사하여 상기 식물 내 소정 물질의 함량을 높이며,
    상기 명주기 중 일부 구간을 제1 구간으로, 나머지 구간을 제2 구간이라고 할 때,
    상기 명주기의 제2 구간에서 출사된 상기 광의 피크들 중 적어도 하나는, 상기 제2 구간보다 선행하거나 후행하는 제1 구간에서 제공되지 않으며,
    상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 상기 제2 구간과 상기 제1 구간에서 실질적으로 서로 동일한 파장에서 나타나는 식물 재배용 광원.
  2. 제1 항에 있어서,
    상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크는 약 300nm 이하의 파장에서 나타나는 식물 재배용 광원.
  3. 제2 항에 있어서,
    상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크는 약 280 nm 내지 약 295nm의 파장을 갖는 식물 재배용 광원.
  4. 제3 항에 있어서,
    상기 제2 구간은 제1 구간보다 짧게 제공되는 식물 재배용 광원.
  5. 제4 항에 있어서,
    상기 제2 구간은 약 6시간 동안 제공되는 식물 재배용 광원.
  6. 제3 항에 있어서,
    상기 제2 구간 동안 상기 광원은 연속적으로 광을 출사하는 식물 재배용 광원.
  7. 제1 항에 있어서,
    상기 식물은 십자화과 식물인 식물 재배용 광원.
  8. 제7 항에 있어서,
    상기 십자화과 식물은 적무, 홍염무, 순무, 배추, 브로콜리, 로켓, 유채, 콜라비, 청경채, 얼청갓, 다채, 케일, 적양배추 중 적어도 하나인 식물 재배용 광원.
  9. 제1 항에 있어서,
    상기 소정 물질은 클로로필, 플라보놀, 및 안토시아닌 중 적어도 어느 하나인 식물 재배용 광원.
  10. 제1 항에 있어서,
    상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 가시광선 파장 대역에 제공되는 식물 재배용 광원.
  11. 제10 항에 있어서,
    상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 청색 파장 대역 및 적색 파장 대역 각각에 제공된 피크들을 포함하는 식물 재배용 광원.
  12. 제1 항에 있어서,
    상기 광원은 서로 다른 파장의 광을 출사하는 복수 개로 발광 다이오드를 포함하는 식물 재배용 광원.
  13. 제12 항에 있어서,
    상기 복수 개의 발광 다이오드는 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크에 해당하는 광을 제공하는 제1 발광 다이오드와, 상기 적어도 하나의 피크를 제외한 나머지 피크들에 해당하는 광을 제공하는 제2 발광 다이오드를 포함하는 식물 재배용 광원.
  14. 식물이 제공되는 하우징;
    상기 하우징 내에 제공되며 상기 식물로 광을 조사하는 광원; 및
    상기 광원을 제어하는 제어부를 포함하며,
    상기 광원은 상기 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되고, 상기 명주기에 턴 온되어 복수 개의 피크로 이루어진 스펙트럼을 갖는 광을 상기 식물에 조사하여 상기 식물 내 소정 물질의 함량을 높이며, 상기 명주기의 제2 구간에서 출사된 상기 광의 피크들 중 적어도 하나는, 상기 제2 구간보다 선행하거나 후행하는 제1 구간에서 제공되지 않으며, 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 상기 제2 구간과 상기 제1 구간에서 실질적으로 서로 동일한 파장에서 나타나는 식물 재배 장치.
  15. 제14 항에 있어서,
    상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크는 약 300nm 이하의 파장에서 나타나는 식물 재배 장치.
  16. 제14 항에 있어서,
    상기 제어부는 상기 암주기와 상기 명주기는 하루 단위로 반복되도록 제어하는 식물 재배 장치.
  17. 제14 항에 있어서,
    상기 식물은 십자화과의 케일이며, 상기 소정 물질은 클로로필, 플라보놀, 및 안토시아닌 중 적어도 어느 하나인 식물 재배 장치.
  18. 식물의 씨앗을 발아시키는 단계;
    상기 발아된 씨앗을 새싹으로 키우는 단계;
    상기 새싹을 정식하여 성체로 키우는 단계; 및
    상기 성체의 수확 직전에 광을 조사하여 상기 식물 내 소정 물질의 함량을 높이는 단계를 포함하며,
    상기 성체의 수확 전에 광을 조사하는 단계는 명주기에 복수 개의 피크로 이루어진 스펙트럼을 갖는 광을 상기 식물에 출사하며,
    상기 명주기 중 일부 구간을 제1 구간으로, 나머지 구간을 제2 구간이라고 할 때, 상기 명주기의 제2 구간에서 출사된 상기 광의 피크들 중 적어도 하나는, 상기 제2 구간보다 선행하거나 후행하는 제1 구간에서 제공되지 않으며, 상기 제2 구간에서 제공되되 상기 제1 구간에서 제공되지 않은 적어도 하나의 피크를 제외한 나머지 피크들은, 상기 제2 구간과 상기 제1 구간에서 실질적으로 서로 동일한 파장에서 나타나는 식물 재배 방법.
  19. 제18 항에 있어서,
    상기 명주기의 제2 구간에서 출사된 상기 광은 연속적으로 제공되는 식물 재배 방법.
  20. 제18 항에 있어서,
    상기 명주기의 제2 구간에서 출사된 상기 광은 UVB에 대응하는 파장 대역을 갖는 식물 재배 방법.
PCT/KR2019/010771 2018-08-24 2019-08-23 식물 재배용 광원 WO2020040597A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202011180670.8A CN112544267B (zh) 2018-08-24 2019-08-23 植物栽培用光源
KR1020217008930A KR20210042989A (ko) 2018-08-24 2019-08-23 식물 재배용 광원
EP19853039.6A EP3841870A4 (en) 2018-08-24 2019-08-23 LIGHT SOURCE FOR PLANT GROWING
CN201980003184.8A CN111182785B (zh) 2018-08-24 2019-08-23 植物栽培用光源
JP2021509838A JP7443336B2 (ja) 2018-08-24 2019-08-23 植物栽培用光源、植物栽培装置及び植物栽培方法
JP2024024500A JP2024056987A (ja) 2018-08-24 2024-02-21 植物栽培用光源及び植物栽培装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862722389P 2018-08-24 2018-08-24
US62/722,389 2018-08-24
US201962870905P 2019-07-05 2019-07-05
US62/870,905 2019-07-05
US16/548,337 US10820532B2 (en) 2018-08-24 2019-08-22 Light source for plant cultivation
US16/548,337 2019-08-22

Publications (1)

Publication Number Publication Date
WO2020040597A1 true WO2020040597A1 (ko) 2020-02-27

Family

ID=69583195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010771 WO2020040597A1 (ko) 2018-08-24 2019-08-23 식물 재배용 광원

Country Status (6)

Country Link
US (4) US10820532B2 (ko)
EP (1) EP3841870A4 (ko)
JP (2) JP7443336B2 (ko)
KR (1) KR20210042989A (ko)
CN (2) CN112544267B (ko)
WO (1) WO2020040597A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820532B2 (en) 2018-08-24 2020-11-03 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11291164B2 (en) 2018-08-24 2022-04-05 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11419277B2 (en) * 2018-10-23 2022-08-23 Seoul Viosys Co., Ltd. Plant cultivation method and light treatment unit for increasing of the content of phytochemical
US20210307254A1 (en) * 2020-04-01 2021-10-07 Chungbuk National University Industry-Academic Cooperation Foundation Light source for plant cultivation and method of plant cultivation using thereof
US11737396B2 (en) * 2020-12-28 2023-08-29 Seoul Viosys Co., Ltd. Light module for plant cultivation and plant cultivation apparatus including the same
US20220330489A1 (en) * 2021-03-03 2022-10-20 Seoul Viosys Co., Ltd. Light source module and plants cultivation device including the same
CN114885770B (zh) * 2022-05-26 2024-05-17 上海交通大学 一种基于uv-a光照的生菜品质调控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339236A (ja) * 2002-05-29 2003-12-02 Matsushita Electric Works Ltd 植物育成用照明装置及び植物育成装置並びに植物育成方法
KR20100135919A (ko) * 2008-04-24 2010-12-27 파나소닉 전공 주식회사 식물 병해 방제용 조명 장치
JP2012205520A (ja) * 2011-03-29 2012-10-25 Sharp Corp 光照射装置、イチゴ栽培システムおよびイチゴ栽培方法
JP2013123417A (ja) * 2011-12-15 2013-06-24 Panasonic Corp 植物育成病害防除照明装置
WO2017188719A1 (ko) * 2016-04-28 2017-11-02 서울바이오시스주식회사 이고들빼기의 생장 및 생리활성 물질 증진 방법

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002067660A1 (ja) * 2001-02-28 2004-09-24 シーシーエス株式会社 植物の栽培方法及び植物の栽培用照明装置
US7220018B2 (en) * 2003-12-15 2007-05-22 Orbital Technologies, Inc. Marine LED lighting system and method
US20070058368A1 (en) * 2005-09-09 2007-03-15 Partee Adam M Efficient high brightness led system that generates radiometric light energy capable of controlling growth of plants from seed to full maturity
JP2007089445A (ja) * 2005-09-28 2007-04-12 Masanobu Kojima 植物体栽培方法
US20080302004A1 (en) * 2007-06-07 2008-12-11 Lin Yu-Ho Multifunction plant cultivation led able to control the growing speed of plants
EP2025220A1 (en) 2007-08-15 2009-02-18 Lemnis Lighting Patent Holding B.V. LED lighting device for growing plants
US8297782B2 (en) * 2008-07-24 2012-10-30 Bafetti Vincent H Lighting system for growing plants
JP5077889B2 (ja) * 2008-09-18 2012-11-21 シャープ株式会社 防虫効果を備えた植物の照明栽培方法および植物栽培用照明装置
JP5047117B2 (ja) 2008-10-20 2012-10-10 パナソニック株式会社 植物病害防除用照明システム
US8643308B2 (en) * 2009-08-14 2014-02-04 Once Innovations, Inc. Spectral shift control for dimmable AC LED lighting
US8373363B2 (en) * 2009-08-14 2013-02-12 Once Innovations, Inc. Reduction of harmonic distortion for LED loads
US8531136B2 (en) * 2009-10-28 2013-09-10 Once Innovations, Inc. Architecture for high power factor and low harmonic distortion LED lighting
PL2493723T3 (pl) * 2009-10-29 2022-03-07 Signify North America Corporation Oświetlenie led do rozwoju zwierząt hodowlanych
US8302346B2 (en) * 2010-01-26 2012-11-06 University Of Georgia Research Foundation, Inc. Biological optimization systems for enhancing photosynthetic efficiency and methods of use
PL2547954T3 (pl) * 2010-03-17 2023-04-24 Signify North America Corporation Źródła światła przystosowane do czułości widmowej dziennych ptaków i ludzi
WO2011123724A1 (en) * 2010-03-31 2011-10-06 Once Innovations, Inc. Integral conduit modular lighting
JP5498904B2 (ja) 2010-09-27 2014-05-21 パナソニック株式会社 作物育成システム
JP5450559B2 (ja) * 2010-11-25 2014-03-26 シャープ株式会社 植物栽培用led光源、植物工場及び発光装置
JP5652954B2 (ja) * 2011-03-04 2015-01-14 パナソニックIpマネジメント株式会社 植物病害防除用照明装置
WO2012145648A1 (en) * 2011-04-22 2012-10-26 Once Innovations, Inc. Extended persistence and reduced flicker light sources
US20140170733A1 (en) * 2011-08-05 2014-06-19 Yamaguchi University Algae cultivation method and algae cultivation equipment
JP5192068B2 (ja) * 2011-09-16 2013-05-08 シャープ株式会社 発光装置、および発光装置を備えた光照射装置
JP2013236562A (ja) * 2012-05-11 2013-11-28 Panasonic Corp 害虫防除照明装置
CN104427882A (zh) 2012-06-04 2015-03-18 首尔伟傲世有限公司 用于果蔬的毒物兴奋效应诱导装置
EP2871931A4 (en) * 2012-07-10 2016-12-21 Once Innovations Inc SOURCES OF LIGHT ADAPTED TO THE SPECTRAL SENSITIVITY OF A PLANT
US10028448B2 (en) * 2012-07-10 2018-07-24 Once Innovations, Inc. Light sources adapted to spectral sensitivity of plants
WO2014009865A1 (en) * 2012-07-11 2014-01-16 Koninklijke Philips N.V. Lighting device capable of providing horticulture light and method of illuminating horticulture
US20140069007A1 (en) * 2012-09-13 2014-03-13 Cashido Corporation Plant growth facilitating apparatus plant growth facilitating apparatus
US9282698B2 (en) * 2012-11-27 2016-03-15 James H. Beyer Light emitting diode grow light for plant growing applications
CN109924024B (zh) * 2013-03-05 2021-11-23 现特技术有限公司 光子调制管理系统
US10292340B2 (en) * 2013-06-06 2019-05-21 Flora Fotonica Ltd. System and method for providing illumination to plants
JP6268516B2 (ja) 2013-11-13 2018-01-31 パナソニックIpマネジメント株式会社 作物育成システム
WO2015148897A1 (en) * 2014-03-28 2015-10-01 Zdenko Grajcar Devices and method of causing chemical reaction to supplement vitamin d production
EP3193579B1 (en) * 2014-07-21 2019-05-22 Once Innovations, Inc. Photonic engine system for actuating the photosynthetic electron transport chain
US10244595B2 (en) * 2014-07-21 2019-03-26 Once Innovations, Inc. Photonic engine system for actuating the photosynthetic electron transport chain
KR102320790B1 (ko) * 2014-07-25 2021-11-03 서울바이오시스 주식회사 자외선 발광 다이오드 및 그 제조 방법
WO2016154570A1 (en) 2015-03-25 2016-09-29 Vitabeam Ltd. Method and apparatus for stimulation of plant growth and development with near infrared and visible lights
JP6532368B2 (ja) * 2015-09-30 2019-06-19 大和ハウス工業株式会社 植物栽培装置及び植物栽培方法
US20170311553A1 (en) * 2016-05-02 2017-11-02 Sensor Electronic Technology, Inc. Ultraviolet Plant Illumination System
US10624978B2 (en) 2016-07-26 2020-04-21 Sensor Electronic Technology, Inc. Ultraviolet-based mildew control
US10433493B2 (en) * 2016-09-30 2019-10-08 Sensor Electronic Technology, Inc. Controlling ultraviolet intensity over a surface of a light sensitive object
JP2020525002A (ja) * 2017-06-29 2020-08-27 バイオルミック リミテッド 作物の収量および/あるいは品質を改善する方法
US11125405B2 (en) 2018-08-10 2021-09-21 Seoul Viosys Co., Ltd. Light source for plant cultivation and plant cultivation device
US10820532B2 (en) 2018-08-24 2020-11-03 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11291164B2 (en) 2018-08-24 2022-04-05 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11304376B2 (en) 2019-05-20 2022-04-19 Seoul Semiconductor Co., Ltd. Light source for plant cultivation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339236A (ja) * 2002-05-29 2003-12-02 Matsushita Electric Works Ltd 植物育成用照明装置及び植物育成装置並びに植物育成方法
KR20100135919A (ko) * 2008-04-24 2010-12-27 파나소닉 전공 주식회사 식물 병해 방제용 조명 장치
JP2012205520A (ja) * 2011-03-29 2012-10-25 Sharp Corp 光照射装置、イチゴ栽培システムおよびイチゴ栽培方法
JP2013123417A (ja) * 2011-12-15 2013-06-24 Panasonic Corp 植物育成病害防除照明装置
WO2017188719A1 (ko) * 2016-04-28 2017-11-02 서울바이오시스주식회사 이고들빼기의 생장 및 생리활성 물질 증진 방법

Also Published As

Publication number Publication date
CN112544267A (zh) 2021-03-26
US20210000021A1 (en) 2021-01-07
CN112544267B (zh) 2023-05-30
US20200060098A1 (en) 2020-02-27
US11638400B2 (en) 2023-05-02
JP7443336B2 (ja) 2024-03-05
US20230263103A1 (en) 2023-08-24
JP2024056987A (ja) 2024-04-23
US11432473B2 (en) 2022-09-06
CN111182785B (zh) 2023-07-25
EP3841870A1 (en) 2021-06-30
US10820532B2 (en) 2020-11-03
US11917958B2 (en) 2024-03-05
KR20210042989A (ko) 2021-04-20
CN111182785A (zh) 2020-05-19
US20230000022A1 (en) 2023-01-05
JP2021534756A (ja) 2021-12-16
EP3841870A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
WO2020040597A1 (ko) 식물 재배용 광원
WO2020040598A1 (ko) 식물 재배용 광원
WO2020032677A1 (ko) 식물 재배 장치 및 식물 재배 방법
TWI590757B (zh) Plant breeding lighting device and plant breeding method
EP2946654A1 (en) Method for cultivating fruit or vegetable
JP2001028947A (ja) 有用植物の育成方法
WO2020197284A1 (ko) 식물 재배 광원 및 식물 재배 장치
WO2014014267A1 (ko) 현미순 재배장치와 이를 이용한 재배방법 및 음식조리방법
WO2020032601A2 (ko) 식물 재배 장치 및 이를 이용한 재배 방법
WO2020085782A1 (ko) 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기
KR101416092B1 (ko) 비타민 함량을 증진시키는 십자화과 새싹채소의 재배방법
WO2021201634A1 (ko) 식물 재배용 광원 및 이를 이용한 식물 재배 방법
WO2021137676A1 (ko) 식물 재배용 광원
JPH0837930A (ja) 屋内植物栽培方法
JP2021058141A (ja) 植物栽培用照明

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008930

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019853039

Country of ref document: EP

Effective date: 20210324