WO2020085782A1 - 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기 - Google Patents

기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기 Download PDF

Info

Publication number
WO2020085782A1
WO2020085782A1 PCT/KR2019/013943 KR2019013943W WO2020085782A1 WO 2020085782 A1 WO2020085782 A1 WO 2020085782A1 KR 2019013943 W KR2019013943 W KR 2019013943W WO 2020085782 A1 WO2020085782 A1 WO 2020085782A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
content
functional material
ultraviolet
light
Prior art date
Application number
PCT/KR2019/013943
Other languages
English (en)
French (fr)
Inventor
고상민
김세령
김진원
Original Assignee
서울바이오시스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사 filed Critical 서울바이오시스주식회사
Priority to JP2021521997A priority Critical patent/JP2022505599A/ja
Priority to EP19875435.0A priority patent/EP3871490A4/en
Priority to CN201980002968.9A priority patent/CN111356359A/zh
Priority to KR1020217008923A priority patent/KR20210064226A/ko
Publication of WO2020085782A1 publication Critical patent/WO2020085782A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/40Fabaceae, e.g. beans or peas
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • A01C1/02Germinating apparatus; Determining germination capacity of seeds or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/35Bulbs; Alliums, e.g. onions or leeks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/109Outdoor lighting of gardens

Definitions

  • the present invention relates to a plant cultivation method and a light processor for increasing the content of functional substances.
  • Plants have photosynthesis by using light energy to synthesize organic matter from carbon dioxide and water. Plants use the chemical energy of organic matter obtained through photosynthesis as a nutrient for growth. Plants contain useful substances that are effective against the desired target.
  • Plant functional substances have various effects such as antioxidant, anti-cancer, and anti-inflammatory properties, and are used to treat various diseases and symptoms. Recently, various methods have been tried to increase the content of functional substances in plants.
  • the problem to be solved by the present invention is to provide a plant cultivation method and a light processor for increasing the content of functional materials.
  • Another problem to be solved by the present invention is to provide a plant cultivation method and a light processor capable of increasing the content of functional materials without degrading the growth of plants.
  • the step of germinating the seed to grow the plant, the ultraviolet treatment to the plant to increase the content of the functional material resveratrol (Resveratrol), and harvesting the plant of the functional material Methods of plant cultivation to increase content are provided.
  • the ultraviolet treatment in the step of increasing the content of the functional material is to irradiate the plant with ultraviolet light emitted from the LED.
  • an optical processor for increasing the amount of resveratrol, a functional material of a plant, by irradiating a cultivated plant before harvesting at least one of UVB and UVC.
  • the UV treatment of the plant is performed immediately before harvesting, so that the content of the functional substance can be increased without deteriorating the growth of the plant.
  • 1 is an exemplary view showing a cultivator for growing plants.
  • FIG. 2 is a graph showing the total phenol content of plants grown according to an embodiment of the present invention.
  • Figure 3 is a graph showing the antioxidant degree of plants cultivated according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the resveratrol content of a plant grown according to an embodiment of the present invention.
  • 5 is a graph showing the dry weight of a plant grown according to an embodiment of the present invention.
  • Figure 6 shows the content of the functional material of the peanut sprouts according to the ultraviolet wavelength band.
  • 9 is a graph showing the change in the content of functional materials of peanut sprouts according to storage time after UV treatment.
  • Figure 10 is another graph showing the change in the content of the functional material of the peanut sprouts according to the storage time after UV treatment.
  • a plant cultivation method includes a step of growing a plant by germinating seeds, a step of treating the plant with ultraviolet light, and a step of harvesting the plant.
  • peanut sprouts having an increased content of a functional substance, resveratrol were grown using peanut seeds.
  • peanut seeds are soaked in water for a certain period of time. For example, peanut seeds are soaked in water for 0.5 to 6 hours.
  • the peanut seeds soaked in water are grown for a total of 7 days in dark conditions. During cultivation, peanut seeds germinate and grow into peanut sprouts. At this time, the cultivation temperature is maintained at 20-25 ° C, and water is supplied to the peanut seeds and peanut sprouts every 20 minutes.
  • peanut buds are irradiated for 24 hours.
  • the peanut sprouts are irradiated with UVC or UVB for 24 hours at a light amount of 10 ⁇ W / cm 2.
  • UV treatment increases the content of resveratrol, a functional substance in peanut sprouts.
  • ultraviolet rays degrade plant growth. If the peanut seeds are treated with UV light, the problem of poor germination may occur due to the problem of deterioration in growth. In addition, even after seed germination, if the peanut sprouts are treated with ultraviolet rays when they are too young, growth may be deteriorated. Therefore, considering the growth of peanut sprouts and the increase in functional substances, the timing of ultraviolet treatment, the time of ultraviolet treatment, and the amount of ultraviolet light should be determined. In view of this, in the present invention, ultraviolet treatment is performed at a light amount of 10 ⁇ W / cm 2 for 24 hours immediately before harvesting.
  • peanut sprouts are treated with UV light for 24 hours to increase the content of resveratrol, and then peanut sprouts are harvested.
  • both cultivation of peanut sprouts and ultraviolet treatment may be performed in the cultivator 100 of FIG. 1.
  • FIG. 1 shows an example of a cultivator 100 for growing plants, and is a cross-sectional view of the cultivator 100.
  • the cultivator 100 includes a housing 110, a cultivation plate 120, a water supply 130, a light processor 140, a pump 150, and a pipe 160.
  • the housing 110 constitutes a space in which peanut sprouts are grown.
  • a cultivation plate 120 for cultivating peanut sprouts In the inner space of the housing 110, a cultivation plate 120 for cultivating peanut sprouts, a water supply 130, a light processor 140, a pump 150 and a pipe 160 are arranged.
  • the housing 110 blocks external light. That is, the housing 110 is formed of a material through which light does not penetrate, preventing external light from entering the interior space. In addition, the housing 110 prevents ultraviolet rays emitted from the light processor 140 from leaking out of the housing 110. The peanut sprout can be cultivated under dark conditions by the housing 110.
  • the redistribution plate 120 is positioned spaced upward from the lower surface of the interior of the housing 110. Water is stored in the space between the redistribution plate 120 and the lower surface of the housing 110. At this time, the redistribution plate 120 is positioned to be spaced apart from the water stored in the housing 110.
  • the moisture supply 130 discharges moisture to the cultivation plate 120 to supply moisture to the peanut seeds sown in the cultivation plate 120 and the cultivated peanut sprouts.
  • the water supply 130 may have a plurality of outlets through which water is discharged in an elongated structure.
  • the moisture supply 130 may be a sprinkler.
  • the water supply 130 may be connected to a control device for controlling the water supply time. Therefore, the water supply unit 130 may provide a predetermined amount of moisture to the peanut sprout at a predetermined time. For example, the moisture supply 130 may supply moisture to the peanut sprout once every 20 minutes.
  • the water supply 130 may be fixed to the upper portion of the housing 110 so as to be rotatable in the left and right directions. When the water supply 130 rotates, water can be more evenly supplied to the entire area of the redistribution plate 120.
  • the pump 150 is located under the redistribution plate 120.
  • the pump 150 and the water supply 130 are connected by a pipe 160.
  • the pump 150 moves the water stored in the lower portion of the redistribution plate 120 to the water supply 130.
  • the light processor 140 increases the content of resveratrol, a functional material of plants.
  • the light processor 140 emits ultraviolet rays as peanut sprouts grown in the cultivation plate 120.
  • the light processor 140 may be located above the redistribution plate 120.
  • the ultraviolet light emitted from the light processor 140 may be at least one of UVB and UVC.
  • the light processor 140 includes at least one LED 141 that emits ultraviolet light.
  • the light processor 140 may include LEDs that emit UVB or LEDs that emit UVC.
  • the light processor 140 may include both an LED emitting UVB and an LED emitting UVC.
  • the UVB may be ultraviolet rays in a wavelength band of 295 nm.
  • the UVC may be ultraviolet light in a wavelength band of 275 nm.
  • the LED 141 used in the light processor 140 may include a light emitting structure and a plurality of electrodes including the light emitting structure.
  • the light emitting structure includes a first semiconductor layer, a second semiconductor layer, and an active layer formed between the first semiconductor layer and the second semiconductor layer.
  • the first semiconductor layer may be a nitride-based semiconductor layer doped with a first conductivity type dopant.
  • the nitride-based semiconductor layer may be made of GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN.
  • the first conductivity type impurity is a p type impurity, and may be Mg, Zn, Ca, Sr, Ba, or the like.
  • the second semiconductor layer may be a nitride-based semiconductor layer doped with a second conductivity type impurity.
  • the second conductivity type impurity is an n type impurity, and may include Si, Ge, Se, Te, O, C, and the like.
  • the active layer In the active layer, electrons (or holes) injected from the first semiconductor layer and holes (or electrons) injected from the second semiconductor layer meet each other, and light is generated by a difference in the band gap of the energy band of the active layer.
  • the active layer 225 may be made of at least one of Group 3-5 or 2-6 group compound semiconductors.
  • the plurality of electrodes are respectively connected to the first semiconductor layer and the second semiconductor layer.
  • the electrode may include a first electrode connected to the first semiconductor layer and a second electrode connected to the second semiconductor layer.
  • the electrode may be made of various metals such as Al, Ti, Cr, Ni, Au, Ag, Ti, Sn, Ni, Cr, W, Cu or alloys thereof. Further, the electrode may be formed of a single layer or multiple layers.
  • the electrode may be connected to the first semiconductor layer and the second semiconductor layer in various forms at various locations.
  • the light processor uses the LED 141 rather than the general lamp as a light source.
  • LEDs have sharp peaks at specific wavelengths and emit light with a narrower half width than conventional lamps. Therefore, it is easy to provide the light of a specific wavelength band to the sample through the LED.
  • the existing lamp needs to set a long light irradiation time.
  • the amount of light can be clearly limited and provided to the sample. Therefore, when using the LED, it is possible to accurately calculate the light irradiation time to provide a sufficient amount of light to the sample. That is, by using the LED, it is possible to provide the sample with light of a specific wavelength band for a specific time in an accurate light amount.
  • the LED emits light at the maximum amount of light almost immediately after the power is turned on. Accordingly, the LED can clearly control the light irradiation time when providing light of a specific wavelength to the sample.
  • the light processor 140 may be connected to a control device capable of controlling the amount of ultraviolet light, ultraviolet emission time, and ultraviolet wavelength. For example, the light processor 140 may irradiate the peanut sprout with ultraviolet light of 10 dl / cm 2 for 24 hours after 6 days of sowing the peanut seeds.
  • the cultivator 100 may further include a temperature control device.
  • the temperature control device may maintain the internal space of the cultivator 100 at a predetermined constant temperature. Therefore, the cultivator 100 may allow the peanut sprout to grow at a constant temperature.
  • the temperature control device may maintain the temperature of the interior space of the cultivator 100 at 20-25 ° C.
  • Peanut sprouts were sown seeds in water for 0.5-6 hours in a cultivator (100 in FIG. 1), and were cultivated for a total of 7 days.
  • the cultivator (100 in FIG. 1) was supplied with water to the peanut sprout once every 20 minutes while maintaining a temperature of 20-25 ° C.
  • the control group was a peanut sprout without UV treatment. That is, the control group is a peanut sprout grown in a cultivator (100 in FIG. 1) for a total of 7 days without UV treatment.
  • Experimental group 1 is a peanut sprout treated with UVB and ultraviolet treatment
  • experimental group 2 is a peanut sprout treated with UVC and ultraviolet treatment.
  • UVB is ultraviolet in the 295 nm wavelength band
  • UVC is ultraviolet in the 275 nm wavelength band.
  • Figure 2 is a graph showing the total phenol content of peanut sprouts that are plants grown according to an embodiment of the present invention.
  • the experimental group 1 when the total phenol content of the peanut sprout is 100%, the experimental group 1 is 108.3% and the experimental group 2 is 106.2%. That is, the total phenol content of the peanut sprouts treated with UV rays for 24 hours before harvesting and the peanut sprouts without UV treatment showed similar values.
  • Figure 3 is a graph showing the antioxidant degree of peanut sprouts that are cultivated plants according to an embodiment of the present invention.
  • the antioxidant level of the peanut sprout is 100%
  • the experimental group 1 is 110.9% and the experimental group 2 is 103.0%. That is, the antioxidant level of the peanut sprouts treated with UV rays for 24 hours before harvesting and the peanut sprouts without UV treatment showed similar values.
  • FIG. 4 is a graph showing the resveratrol content of a peanut sprout that is a plant grown according to an embodiment of the present invention.
  • the experimental group 1 when the content of resveratrol in the peanut sprout is 100%, the experimental group 1 is 203.2% and the experimental group 2 is 485.7%.
  • the resveratrol content of the peanut sprouts treated with UVB for 24 hours before harvesting is at least twice the resveratrol content of the peanut sprouts not treated with ultraviolet rays.
  • the resveratrol content of the peanut sprouts treated with UVC for 24 hours before harvesting is 4 times or more of the resveratrol content of the peanut sprouts not treated with ultraviolet rays.
  • the experimental group 1 and the experimental group 2 had similar values of the total phenol content and antioxidant level to the control group, but the resveratrol content increased significantly.
  • the total content of the functional substance does not change, but only the content of resveratrol increases. That is, it can be seen that the ultraviolet treatment performed on the peanut sprouts before harvesting significantly affects the increase in the content of resveratrol compared to other functional materials.
  • 5 is a graph showing the dry weight of a peanut sprout that is a plant grown according to an embodiment of the present invention.
  • the harvested peanut buds were frozen with liquid nitrogen and dried in a state in which bioactivity was stopped, and the weight was measured. Freeze drying of the peanut sprouts was performed using a freeze dryer.
  • the dry weight of the experimental group 1 was increased by 2.1% compared to the control group.
  • the dry weight was reduced by 3.3% compared to the control group. That is, the numerical values of the dry weight of the experimental group 1 and the experimental group 2 are very similar to the control group. Therefore, it can be confirmed that the ultraviolet treatment performed before harvesting did not affect the growth of the peanut sprout.
  • UV treatment using UVB and UVC for 24 hours before harvesting increases the content of resveratrol more than 2 times without lowering the growth of peanut sprouts. .
  • Figure 6 shows the content of the functional material of the peanut sprouts according to the ultraviolet wavelength band.
  • Peanut sprouts were cultivated by sowing seeds soaked in water for 0.5-6 hours in a cultivator (100 in FIG. 1). In the cultivator (100 in FIG. 1), the peanut sprout was hydrated once every 20 minutes while maintaining a temperature of 26 ⁇ 2 ° C.
  • control group is a peanut sprout without UV treatment.
  • Experimental group 1 is a peanut sprout treated with UV light at a wavelength of 295 nm.
  • Experimental group 2 is a peanut sprout treated with UV light at a wavelength of 285 nm.
  • Experimental Group 3 is a peanut sprout treated with UV treatment at a wavelength of 275 nm.
  • Figure 6 is a graph showing the content of the functional material of the peanut sprout according to the ultraviolet wavelength band.
  • the resveratrol content was significantly increased compared to the control group.
  • the content of resveratrol increased the most in peanut sprouts (Experiment 2) treated with ultraviolet rays at a wavelength of 285 nm.
  • the peanut sprouts were harvested to measure the content of the functional substance, resveratrol, and compared with the control group.
  • control group is a peanut sprout without UV treatment.
  • Experimental group 1 is a peanut sprout subjected to UV treatment for 24 hours at a wavelength of 285 nm.
  • Experimental Group 2 is a peanut sprout subjected to UV treatment for 48 hours at a wavelength of 285 nm.
  • Experimental Group 1 increased approximately 9 times compared to the control group.
  • experimental group 2 was increased approximately 10 times compared to the control group. That is, it can be seen that when the peanut sprout is treated with ultraviolet rays, the content of resveratrol is significantly increased compared to when the peanut sprout is not treated with ultraviolet rays.
  • the peanut sprouts were harvested to measure the content of the functional substance, resveratrol, and compared with the control group.
  • control group is a peanut sprout without UV treatment.
  • Experimental group 1 is a peanut sprout treated with UV light for 1 hour at a wavelength of 285 nm.
  • Experimental group 2 is a peanut sprout treated with UV light for 3 hours at a wavelength of 285 nm.
  • Experimental group 3 is a peanut sprout subjected to UV treatment for 6 hours at a wavelength of 285 nm.
  • Experimental group 4 is a peanut sprout treated with UV light for 12 hours at a wavelength of 285 nm.
  • Experimental Group 5 is a peanut sprout treated with UV light for 24 hours at a wavelength of 285 nm.
  • the experimental group 1, the experimental group 2, and the experimental group 3 have a slightly lower content of resveratrol than the control group.
  • the experimental group 3 and the experimental group 4 have higher resveratrol content than the control group.
  • the experimental group 4 shows a significant increase in the resveratrol content when compared to the experimental group 3.
  • the UV treatment time should be 24 hours or more for a significant increase in resveratrol content than peanut sprouts without UV treatment. Considering the cultivation period, the effective UV treatment time is 24 hours.
  • Table 1 below shows the average content of resveratrol per peanut sprout.
  • Resveratrol content of peanut sprout division Resveratrol content ( ⁇ g / g)
  • Control Experiment group 1 Experiment 1 5.91 167.30
  • Experiment 2 8.16 74.04
  • Experiment 3 0.18 57.28 Average 4.75 99.54
  • the average value of the resveratrol content of the control group and the content of the resveratrol of the experimental group 1 were confirmed through each of three experiments.
  • the content of resveratrol is the content of resveratrol contained in 1 g of the building.
  • experimental group 1 contains a higher content of resveratrol than the control group.
  • the weight of a peanut sprout is about 0.8g.
  • resveratrol equivalent to 100 mg of red wine can be consumed in about 4 individuals.
  • the peanut sprout treated with ultraviolet rays has a high content of functional substances such as resveratrol, it is possible to ingest a sufficient amount of functional substances with a small population.
  • the peanut sprout has an advantage that the cultivation period is shorter and simpler than the wine production period.
  • 9 is a graph showing the change in the content of functional materials of peanut sprouts according to storage time after UV treatment.
  • the ultraviolet rays irradiated to the peanut sprouts are ultraviolet rays in the 285 nm wavelength range.
  • the peanut sprouts were refrigerated at 4 ° C after UV treatment.
  • control group is a peanut sprout immediately after UV treatment.
  • Experimental group 1 is a peanut sprout that was refrigerated for 1 day after UV treatment.
  • Experimental group 2 is a peanut sprout refrigerated for 2 days after UV treatment.
  • Experimental Group 3 is a peanut sprout that was refrigerated for 1 day after UV treatment.
  • Experimental group 2 has a larger resveratrol content than experimental group 1 and experimental group 2, but it can be seen that the content of resveratrol gradually decreases as the time for refrigerating peanut sprouts increases.
  • Figure 10 is another graph showing the change in the content of the functional material of the peanut sprouts according to the storage time after UV treatment.
  • peanut sprouts were treated with UV light, and stored at 4 ° C. for 6 days, 8 days, 10 days, and 13 days before resveratrol content was measured.
  • the control group is peanut sprout without UV treatment.
  • Experimental group 1 is a peanut sprout immediately after UV treatment.
  • Experimental group 2 is a peanut sprout refrigerated for 6 days after UV treatment.
  • Experimental group 3 is a peanut sprout refrigerated for 8 days after UV treatment.
  • Experimental group 4 is a peanut sprout refrigerated for 10 days after UV treatment.
  • Experimental Group 5 is a peanut sprout refrigerated for 13 days after UV treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Forests & Forestry (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Soil Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

본 발명은 식물의 기능성 물질의 함량을 증가시킬 수 있는 식물 재배 방법 및 식물의 기능성 물질의 함량을 증가시키는 광 처리기에 관한 것이다. 본 발명의 실시 예에 따른 기능성 물질의 함량을 증가시키는 식물의 재배 방법은 종자를 발아시켜 식물을 성장시키는 단계, 식물에 자외선 처리를 하여 기능성 물질인 레스베라트롤(Resveratrol)의 함량을 증가시키는 단계, 및 식물을 수확하는 단계를 포함한다. 여기서, 기능성 물질의 함량을 증가시키는 단계에서 자외선 처리는 LED에서 방출되는 자외선을 기능성 물질에 조사하는 것이다.

Description

기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기
본 발명은 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기에 관한 것이다.
식물은 빛 에너지를 이용하여 이산화 탄소와 물로부터 유기물을 합성하는 광합성 작용을 한다. 식물은 광합성 작용으로 얻어진 유기물의 화학 에너지를 생장 등을 위한 영양분으로 사용하고 있다. 식물은 목적하는 대상에 효력을 갖는 유용물질을 포함하고 있다.
식물의 기능성 물질은 항산화, 항암, 항염 등의 여러 가지 효능을 가지고 있으며, 여러 질환 및 증상을 치료하는데 사용되고 있다. 최근에는 식물의 기능성 물질의 함량을 증가시키기 위한 여러 가지 방법이 시도되고 있다.
본 발명이 해결하고자 하는 과제는 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기를 제공하는 데 있다.
또한, 본 발명이 해결하고자 하는 다른 과제는 식물의 생장 저하 없이 기능성 물질의 함량을 증가시킬 수 있는 식물 재배 방법 및 광 처리기를 제공하는 데 있다.
본 발명의 실시 예에 따르면, 종자를 발아시켜 식물을 성장시키는 단계, 식물에 자외선 처리를 하여 기능성 물질인 레스베라트롤(Resveratrol)의 함량을 증가시키는 단계, 및 식물을 수확하는 단계를 포함하는 기능성 물질의 함량을 증가시키는 식물 재배 방법이 제공된다. 여기서, 기능성 물질의 함량을 증가시키는 단계에서 자외선 처리는 LED에서 방출되는 자외선을 식물에 조사하는 것이다.
또한, 본 발명의 실시 예에 따르면, 재배 중인 식물에 UVB 및 UVC 중 적어도 하나의 자외선을 수확하기 전에 조사하여 식물의 기능성 물질인 레스베라트롤의 햠량을 증가시키는 광 처리기가 제공된다.
본 발명의 실시 예에 따르면, 식물에 자외선 처리를 하여 식물의 기능성 물질의 함량을 증가시킬 수 있다.
또한, 본 발명의 실시 예에 따르면, 식물의 자외선 처리를 수확 직전에 수행하여, 식물의 생장을 저하시키지 않으면서 기능성 물질의 함량을 증가시킬 수 있다.
도 1은 식물을 재배하는 재배기를 나타낸 예시도이다.
도 2는 본 발명의 실시 예에 따라 재배된 식물의 총 페놀 함량을 나타낸 그래프이다.
도 3은 본 발명의 실시 예에 따라 재배된 식물의 항산화도를 나타낸 그래프이다.
도 4는 본 발명의 실시 예에 따라 재배된 식물의 레스베라트롤 함량을 나타낸 그래프이다.
도 5는 본 발명의 실시 예에 따라 재배된 식물의 건조 중량을 나타낸 그래프이다.
도 6은 자외선 파장대에 따른 땅콩 새싹의 기능성 물질의 함량을 나타낸 것이다.
도 7은 자외선 처리 시간에 따른 기능성 물질의 함량 변화를 나타낸 그래프이다.
도 8은 자외선 처리 시간에 따른 기능성 물질의 함량 변화를 나타낸 다른 그래프이다.
도 9는 자외선 처리 후 보관 시간에 따른 땅콩 새싹의 기능성 물질의 함량 변화를 나타낸 그래프이다.
도 10은 자외선 처리 후 보관 시간에 따른 땅콩 새싹의 기능성 물질의 함량 변화는 나타낸 다른 그래프이다.
이하, 첨부한 도면들을 참고하여 본 발명의 실시 예들을 상세히 설명하기로 한다. 다음에 소개되는 실시 예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위한 예시로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참고번호들은 동일한 구성요소들을 나타내고 유사한 참고번호는 대응하는 유사한 구성요소를 나타낸다.
본 발명의 실시 예에 따르면, 식물 재배 방법은 종자를 발아시켜 식물을 성장 시키는 단계, 식물에 자외선 처리를 하는 단계, 및 식물을 수확하는 단계를 포함한다.
본 발명에서 실시 예로, 땅콩 종자를 이용하여 기능성 물질인 레스베라트롤의 함량이 증가된 땅콩 새싹을 재배하였다.
우선, 땅콩 종자를 일정 시간 동안 물에 담가서 불린다. 예를 들어, 땅콩 종자는 0.5~6시간 동안 물에 불린다.
물에 불린 땅콩 종자를 암 조건에서 총 7일 동안 재배한다. 재배하는 동안 땅콩 종자는 발아하여 땅콩 새싹이 되어 성장하게 된다. 이때, 재배 온도는 20~25℃로 유지하며, 20분마다 한 번씩 땅콩 종자 및 땅콩 새싹에 수분을 공급한다.
땅콩 종자를 파종한 후 6일이 지나면, 24시간 동안 땅콩 새싹에 자외선 처리를 한다. 이때, 땅콩 새싹에 10㎼/㎠의 광량으로 UVC 또는 UVB를 24시간 동안 조사한다. 자외선 처리로 땅콩 새싹의 기능성 물질인 레스베라트롤 함량이 증가된다.
자외선은 식물의 생장을 저하시킨다고 알려져 있다. 땅콩 종자에 자외선 처리를 하게 되면, 생장 저하 문제로 발아가 잘 안되는 문제가 발생할 수 있다. 또한, 종자가 발아한 이후라도 땅콩 새싹이 너무 어릴 때 자외선 처리를 하게 되면, 생장이 저하될 수 있다. 따라서, 땅콩 새싹의 생장과 기능성 물질 증가를 고려하여 자외선 처리 시기, 자외선 처리 시간, 자외선의 광량 등이 정해져야 한다. 이러한 점을 고려하여 본 발명에서는 수확하기 직전에 24시간 동안 10㎼/㎠의 광량으로 자외선 처리가 수행된다.
이와 같이, 땅콩 새싹에 24시간 동안 자외선 처리를 하여, 레스베라트롤의 함량을 증가시킨 후 땅콩 새싹을 수확한다.
예를 들어, 땅콩 새싹의 재배 및 자외선 처리는 모두 도 1의 재배기(100)에서 이루어질 수 있다.
도 1은 식물을 재배하는 재배기(100)의 예시를 도시한 것으로, 재배기(100)의 단면도이다.
도 1을 참고하면, 재배기(100)는 하우징(110), 재배판(120), 수분 공급기(130), 광 처리기(140), 펌프(150), 및 배관(160)을 포함한다.
하우징(110)은 땅콩 새싹이 재배되는 공간을 구성한다. 하우징(110)의 내부 공간에는 땅콩 새싹을 재배하기 위한 재배판(120), 수분 공급기(130), 광 처리기(140), 펌프(150) 및 배관(160)이 배치된다.
또한, 하우징(110)은 외부의 광을 차단한다. 즉, 하우징(110)은 광이 관통되지 않는 재질로 형성되어, 외부의 광이 내부 공간으로 진입하는 것을 막는다. 또한, 하우징(110)은 광 처리기(140)에서 방출되는 자외선이 하우징(110)의 외부로 새어나가는 것을 방지한다. 이와 같은 하우징(110)에 의해서 땅콩 새싹을 암 조건에서 재배할 수 있다.
재배판(120)에는 땅콩 종자가 파종되어 땅콩 새싹이 재배된다. 재배판(120)은 하우징(110)의 내부의 하면으로부터 상부 방향으로 이격되어 위치한다. 재배판(120)과 하우징(110)의 하면 사이의 공간에는 물이 저장되어 있다. 이때, 재배판(120)은 하우징(110)에 저장된 물과도 이격되도록 위치한다.
수분 공급기(130)는 재배판(120)으로 수분을 배출하여 재배판(120)에 파종된 땅콩 종자 및 재배되고 있는 땅콩 새싹에 수분을 공급한다. 수분 공급기(130)는 도 1에 도시된 바와 같이, 기다란 구조에 물이 배출되는 배출구가 여러 개 형성되어 있을 수 있다. 예를 들어, 수분 공급기(130)는 스프링클러 일 수 있다. 수분 공급기(130)는 수분 공급 시간을 제어하기 위한 제어 장치와 연결될 수 있다. 따라서, 수분 공급기(130)는 정해진 시간에 정해진 양의 수분을 땅콩 새싹에 제공할 수 있다. 예를 들어, 수분 공급기(130)는 20분마다 한 번씩 땅콩 새싹에 수분을 공급할 수 있다.
수분 공급기(130)는 하우징(110)의 상부에 좌우 방향으로 회전 가능하도록 고정될 수 있다. 수분 공급기(130)가 회전을 하면, 재배판(120) 전체 영역에 더 고르게 수분을 공급할 수 있다.
펌프(150)는 재배판(120)의 하부에 위치한다. 펌프(150)와 수분 공급기(130)는 배관(160)으로 연결되어 있다. 펌프(150)는 재배판(120)의 하부에 저장되어 있는 물을 수분 공급기(130)까지 이동시킨다.
광 처리기(140)는 식물의 기능성 물질인 레스베라트롤의 함량을 증가시킨다.
광 처리기(140)는 재배판(120)에서 재배되고 있는 땅콩 새싹으로 자외선을 방출한다. 예를 들어, 광 처리기(140)는 재배판(120)의 상부에 위치할 수 있다.
광 처리기(140)에서 방출되는 자외선은 UVB 및 UVC 중 적어도 하나일 수 있다. 광 처리기(140)는 자외선을 방출하는 적어도 하나의 LED(141)를 포함한다. 예를 들어, 광 처리기(140)는 UVB를 방출하는 LED를 포함하거나 UVC를 방출하는 LED를 포함할 수 있다. 또한, 광 처리기(140)는 UVB를 방출하는 LED와 UVC를 방출하는 LED를 모두 포함할 수 있다. 여기서, UVB는 295㎚ 파장대의 자외선일 수 있다. 또한, UVC는 275㎚ 파장대의 자외선일 수 있다.
광 처리기(140)에 사용되는 LED(141)는 발광 구조체 및 발광 구조체를 포함하는 복수의 전극을 포함할 수 있다.
발광 구조체는 제1 반도체층, 제2 반도체층 및 제1 반도체층과 제2 반도체층 사이에 형성된 활성층을 포함한다.
제1 반도체층은 제1 도전형 불순물(dopant)로 도핑(doping)된 질화물계 반도체층일 수 있다. 예를 들어, 질화물계 반도체층은 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN으로 이루어 질 수 있다. 또한, 제1 도전형 불순물은 p형 불순물로, Mg, Zn, Ca, Sr, Ba 등일 수 있다.
제2 반도체층은 제2 도전형 불순물로 도핑된 질화물계 반도체층일 수 있다. 예를 들어, 제2 도전형 불순물은 n형 불순물로, Si, Ge, Se, Te, O, C 등을 포함할 수 있다.
활성층은 제1 반도체층에서 주입된 전자(또는 정공)와 제2 반도체층에서 주입된 정공(또는 전자)이 서로 만나 활성층의 에너지 밴드(energy band)의 밴드 갭(band gap) 차이에 의해서 빛을 방출한다. 예를 들어, 활성층(225)은 3족-5족 또는 2족-6족의 화합물 반도체 중에서 적어도 하나로 이루어질 수 있다.
복수의 전극은 제1 반도체층 및 제2 반도체층과 각각 연결된다. 예를 들어, 전극은 제1 반도체층과 연결되는 제1 전극 및 제2 반도체층과 연결되는 제2 전극을 포함할 수 있다. 예를 들어, 전극은 Al, Ti, Cr, Ni, Au, Ag, Ti, Sn, Ni, Cr, W, Cu 등의 다양한 금속 또는 이들의 합금으로 이루어질 수 있다. 또한, 전극은 단일층 또는 다층으로 이루어질 수 있다.
전극은 다양한 위치에서 다양한 형태로 제1 반도체층 및 제2 반도체층과 연결될 수 있다.
본 실시 예에서 광 처리기는 광원으로 일반적인 램프가 아닌 LED(141) 사용한다.
기존의 램프는 넓은 분포의 스펙트럼 갖는 광을 방출한다. 따라서, 램프의 경우 광의 파장 대역 중 일부 특정 대역의 광을 분리하는 것이 어렵다. 즉, 램프로는 특정 파장의 광을 선택하여 시료(식물)에 제공하는 것이 어렵다.
그러나 LED는 특정 파장에서 뾰족한 피크(peak)를 가지며, 기존 램프보다 좁은 반치폭을 갖는 광을 방출한다. 따라서, LED를 통해서 특정 파장 대역의 광을 시료에 제공하는 제공하는 것이 용이하다.
또한, 기존 램프는 시료에 광을 제공할 때, 광량을 정확하게 한정하는 것이 어렵다. 이에 따라 기존 램프는 시료에 충분한 광량을 제공하기 위해서 광 조사 시간을 길게 설정해야한다.
그러나 LED의 경우 광량을 명확하게 한정하여 시료에 제공할 수 있다. 따라서, LED를 이용하는 경우, 시료에 충분한 광량을 제공하기 위한 광 조사 시간을 정확하게 계산할 수 있다. 즉, LED를 이용하면, 시료에 특정 시간 동안 특정 파장대의 광을 정확한 광량으로 제공할 수 있다.
또한, 기존 램프는 전원을 켠 후에 최대 광량으로 광이 방출되기까지 상당 시간이 소요되었다.
그러나 LED는 전원을 켠 후 거의 바로 최대 광량으로 광을 방출한다. 따라서, LED는 시료에 특정 파장의 광을 제공할 때 광 조사 시간을 명확하게 제어할 수 있다.
광 처리기(140)는 자외선의 광량, 자외선 방출 시간, 자외선 파장 등을 제어할 수 있는 제어 장치와 연결될 수 있다. 예를 들어, 광 처리기(140)는 땅콩 종자 파종 6일 후 24시간 동안 10㎼/㎠ 광량의 자외선을 땅콩 새싹에 조사할 수 있다.
또한, 미도시 하였지만, 재배기(100)는 온도 제어 장치를 더 포함할 수 있다. 온도 제어 장치는 재배기(100)의 내부 공간이 미리 설정된 일정한 온도로 유지되도록 할 수 있다. 따라서, 재배기(100)는 땅콩 새싹이 일정한 온도에서 성장하도록 할 수 있다. 예를 들어, 온도 제어 장치는 재배기(100)의 내부 공간의 온도가 20~25℃로 유지되도록 할 수 있다.
도 2 내지 도 5는 본 발명의 일 실시 예에 따라 재배된 식물의 기능성 물질의 함량에 관한 실험 결과이다.
땅콩 새싹은 0.5~6시간 동안 물에 불린 종자를 재배기(도 1의 100)에 파종하고, 총 7일 동안 재배되었다. 재배기(도 1의 100)는 20~25℃의 온도를 유지한 상태에서 20분마다 한 번씩 땅콩 새싹에 수분을 공급하였다.
파종 6일 후 24시간 동안 10㎼/㎠ 광량의 자외선을 땅콩 새싹에 조사하는 자외선 처리를 수행하였다. 자외선 처리 후 땅콩 새싹을 수확하여 총 페놀 함량, 항산화도 및 레스베라트롤의 함량을 측정하였다. 또한, 수확한 땅콩 새싹의 건조 중량을 측정하였다.
대조군은 자외선 처리를 하지 않은 땅콩 새싹이다. 즉, 대조군은 자외선 처리를 하지 않고 총 7일동안 재배기(도 1의 100)에서 재배된 땅콩 새싹이다.
실험군 1은 UVB로 자외선 처리를 한 땅콩 새싹이며, 실험군 2는 UVC로 자외선 처리를 한 땅콩 새싹이다. 여기서, UVB는 295㎚ 파장대의 자외선이며, UVC는 275㎚ 파장대의 자외선이다.
도 2는 본 발명의 실시 예에 따라 재배된 식물인 땅콩 새싹의 총 페놀 함량을 나타낸 그래프이다.
도 2를 참고하면, 땅콩 새싹의 총 페놀 함량은 대조군을 100%라 하였을 때, 실험군 1은 108.3%이고, 실험군 2는 106.2%이다. 즉, 수확 전 24시간 동안 자외선 처리한 땅콩 새싹과 자외선 처리를 하지 않은 땅콩 새싹의 총 페놀 함량은 유사한 수치를 나타내고 있다.
도 3은 본 발명의 실시 예에 따라 재배된 식물인 땅콩 새싹의 항산화도를 나타낸 그래프이다.
도 3을 참고하면, 땅콩 새싹의 항산화도는 대조군을 100%라 하였을 때, 실험군 1은 110.9%이고, 실험군 2는 103.0%이다. 즉, 수확 전 24시간 동안 자외선 처리한 땅콩 새싹과 자외선 처리를 하지 않은 땅콩 새싹의 항산화도는 유사한 수치를 나타내고 있다.
도 4는 본 발명의 실시 예에 따라 재배된 식물인 땅콩 새싹의 레스베라트롤 함량을 나타낸 그래프이다.
도 4를 참고하면, 땅콩 새싹의 레스베라트롤의 함량은 대조군을 100%라 하였을 때, 실험군 1은 203.2%이고, 실험군 2는 485.7%이다.
즉, 수확 전 24시간 동안 UVB로 자외선 처리한 땅콩 새싹의 레스베라트롤 함량이 자외선 처리를 하지 않은 땅콩 새싹의 레스베라트롤 함량의 2배 이상이라는 것을 확인할 수 있다.
또한, 수확 전 24시간 동안 UVC로 자외선 처리한 땅콩 새싹의 레스베라트롤 함량이 자외선 처리를 하지 않은 땅콩 새싹의 레스베라트롤 함량의 4배 이상이라는 것을 확인할 수 있다.
도 2 내지 도 4를 참고하면, 실험군 1 및 실험군 2는 대조군과 총 페놀 함량 및 항산화도의 수치가 유사하지만 레스베라트롤은 함량은 큰 차이로 증가하였다.
이에 따라, 수확 전 땅콩 새싹에 자외선 처리를 하면, 기능성 물질의 총 함량은 변화가 없지만 레스베라트롤의 함량만 증가한다는 것을 알 수 있다. 즉, 수확 전에 땅콩 새싹에 수행된 자외선 처리가 다른 기능성 물질에 비해 레스베라트롤의 함량 증가에 큰 영향을 준다는 것을 알 수 있다.
도 5는 본 발명의 실시 예에 따라 재배된 식물인 땅콩 새싹의 건조 중량을 나타낸 그래프이다.
수확한 땅콩 새싹을 액체 질소로 동결하여 생체 활동을 중단 시킨 상태에서 건조하고, 그 중량을 측정하였다. 땅콩 새싹의 동결 건조는 동결 건조기를 이용하여 수행되었다.
도 5를 참고하면, 실험군 1은 대조군에 비해 건조 중량이 2.1% 증가하였다. 또한, 실험군 2는 대조군에 비해 건조 중량이 3.3% 감소하였다. 즉, 실험군 1 및 실험군 2의 건조 중량의 수치는 대조군과 매우 유사하다. 따라서, 수확 전 수행한 자외선 처리는 땅콩 새싹의 성장에 영향을 주지 않았다는 것을 확인할 수 있다.
도 4 및 도 5의 실험 결과를 참고하면, 수확 전 24 시간 동안의 UVB 및 UVC를 이용한 자외선 처리는 땅콩 새싹의 성장을 저하시키지 않으면서, 레스베라트롤의 함량을 2배 이상 증가시킨 다는 것을 확인할 수 있다.
결과적으로, 도 2 내지 도 5의 실험을 통해서, 수확 전 24시간 동안 식물에 자외선 처리를 하면 성장 저하 없이 기능성 물질 중에서 레스베라트롤 함량을 증가시킬 수 있다.
도 6은 자외선 파장대에 따른 땅콩 새싹의 기능성 물질의 함량을 나타낸 것이다.
땅콩 새싹은 0.5~6시간 동안 물에 불린 종자를 재배기(도 1의 100)에 파종하여 재배하였다. 재배기(도 1의 100)는 26±2℃의 온도를 유지한 상태에서 20분마다 한 번씩 땅콩 새싹에 수분을 공급하였다.
파종 6일 후 24시간 동안 10㎼/㎠ 광량의 자외선을 땅콩 새싹에 조사하는 자외선 처리를 수행하였다. 자외선 처리 후 땅콩 새싹을 수확하여 기능성 물질인 레스베라트롤의 함량을 측정하여, 대조군과 비교하였다. 이때, 실험의 정확성을 위해 땅콩 새싹의 종피를 제거 한 후 레스베라트롤의 함량을 측정하였다.
본 실시 예에서, 대조군은 자외선 처리를 하지 않은 땅콩 새싹이다. 실험군 1은 295nm 파장대로 자외선 처리를 한 땅콩 새싹이다. 실험군 2는 285nm 파장대로 자외선 처리를 한 땅콩 새싹이다. 또한, 실험군 3은 275nm 파장대로 자외선 처리를 한 땅콩 새싹이다.
도 6은 자외선 파장대에 따른 땅콩 새싹의 기능성 물질의 함량을 나타낸 그래프이다.
도 6을 참고하면, 자외선 처리가 수행된 실험군 1, 실험군 2 및 실험군 3은 모두 대조군에 비해 레스베라트롤의 함량이 크게 증가하였다. 특히, 285nm 파장대로 자외선 처리를 한 땅콩 새싹(실험군 2)에서 레스베라트롤의 함량이 가장 많이 증가했다.
도 7은 자외선 처리 시간에 따른 기능성 물질의 함량 변화를 나타낸 그래프이다.
땅콩 새싹을 파종 6일 후 10㎼/㎠ 광량의 자외선을 땅콩 새싹에 조사하는 자외선 처리를 수행하였다. 여기서, 땅콩 새싹을 파종 및 재배하는 방식은 이전 실시 예와 동일하다.
자외선 처리 후 땅콩 새싹을 수확하여 기능성 물질인 레스베라트롤의 함량을 측정하여, 대조군과 비교하였다.
본 실시 예에서, 대조군은 자외선 처리를 하지 않은 땅콩 새싹이다. 실험군 1은 285nm 파장대로 24시간동안 자외선 처리를 한 땅콩 새싹이다. 또한, 실험군 2는 285nm 파장대로 48시간동안 자외선 처리를 한 땅콩 새싹이다.
도 7을 참고하면, 실험군 1은 대조군에 비해 대략 9배 정도 증가하였다. 또한, 실험군 2는 대조군에 비해 대략 10배정도 증가하였다. 즉, 땅콩 새싹에 자외선 처리를 하면 자외선 처리를 하지 않을 때보다 레스베라트롤의 함량이 크게 증가한다는 것을 알 수 있다.
이때, 48시간 자외선 처리를 했을 때, 24시간 자외선 처리를 했을 때보다 레스베라트롤의 함량이 더 증가하지만, 유의미한 차이를 보이지는 않는다.
도 8은 자외선 처리 시간에 따른 기능성 물질의 함량 변화를 나타낸 다른 그래프이다.
땅콩 새싹을 파종한 6일 후 10㎼/㎠ 광량의 자외선을 땅콩 새싹에 조사하는 자외선 처리를 수행하였다. 여기서, 땅콩 새싹을 파종 및 재배하는 방식은 이전 실시 예와 동일하다.
자외선 처리 후 땅콩 새싹을 수확하여 기능성 물질인 레스베라트롤의 함량을 측정하여, 대조군과 비교하였다.
본 실시 예에서, 대조군은 자외선 처리를 하지 않은 땅콩 새싹이다. 실험군 1은 285nm 파장대로 1시간동안 자외선 처리를 한 땅콩 새싹이다. 실험군 2는 285nm 파장대로 3시간동안 자외선 처리를 한 땅콩 새싹이다. 실험군 3은 285nm 파장대로 6시간동안 자외선 처리를 한 땅콩 새싹이다. 실험군 4는 285nm 파장대로 12시간동안 자외선 처리를 한 땅콩 새싹이다. 또한, 실험군 5는 285nm 파장대로 24시간동안 자외선 처리를 한 땅콩 새싹이다.
도 8을 참고하면, 실험군 1, 실험군 2 및 실험군 3은 대조군에 비해 레스베라트롤의 함량이 조금 낮다. 그러나 실험군 3 및 실험군 4는 대조군보다 높은 레스베라트롤 함량을 갖는다. 특히 실험군 4는 실험군 3과 비교했을 때 레스베라트롤 함량의 유의미한 증가를 보인다.
도 7 및 도 8을 참고하였을 때, 자외선 처리를 하지 않은 땅콩 새싹보다 레스베라트롤 함량의 유의미한 증가를 위해서는 자외선 처리 시간은 24시간 이상이 되어야 한다. 재배 기간을 고려한다면, 효율적인 자외선 처리 시간은 24시간이 된다.
아래 표 1은 땅콩 새싹 1개체당 레스베라트롤의 함량의 평균을 나타낸 것이다.
땅콩 새싹의 레스베라트롤 함량
구분 레스베라트롤 함량(㎍/g)
대조군 실험군 1
실험 1 5.91 167.30
실험 2 8.16 74.04
실험 3 0.18 57.28
평균 4.75 99.54
각각 3번의 실험을 통해서 대조군의 레스베라트롤의 함량의 평균 값과 실험군 1의 레스베라트롤의 함량을 확인하였다. 여기서, 레스베라트롤의 함량은 건물중 1g에 포함된 레스베라트롤의 함량이다. 표 1을 참고하면, 실험군 1은 대조군보다 높은 함량의 레스베라트롤을 포함하고 있다.
일반적으로, 레드 와인 100㎎에는 300㎍의 레스베라트롤을 포함하고 있다고 알려져 있다.
땅콩 새싹의 1개체의 건물중은 대략 0.8g이다.
따라서, 레드 와인 100㎎에 해당하는 레스베라트롤 300㎍을 섭취하기 위해서는 자외선 처리를 하지 않은 땅콩 새싹의 경우 약 79개체가 필요하다.
그러나 자외선 처리를 한 땅콩 새싹의 경우 약 4개체로 레드 와인 100㎎에 해당하는 레스베라트롤을 섭취할 수 있다. 또한, 자외선 처리를 한 땅콩 새싹은 레스베라트롤과 같은 기능성 물질의 함량이 많으므로, 적은 개체수로도 충분한 양의 기능성 물질을 섭취할 수 있다.
또한, 땅콩 새싹은 와인 생산 기간보다 재배 기간이 짧고 간편하다는 이점이 있다.
도 9는 자외선 처리 후 보관 시간에 따른 땅콩 새싹의 기능성 물질의 함량 변화를 나타낸 그래프이다.
땅콩 새싹을 파종한 6일 후에 10㎼/㎠ 광량의 자외선을 24시간 동안 땅콩 새싹에 조사하는 자외선 처리를 수행하였다. 여기서, 땅콩 새싹을 파종 및 재배하는 방식은 이전 실시 예와 동일하다. 땅콩 새싹에 조사되는 자외선은 285nm 파장대의 자외선이다.
본 실시 예에서는 땅콩 새싹을 자외선 처리 후 4℃에서 냉장 보관을 하였다.
본 실시 예에서 대조군은 자외선 처리를 한 직후의 땅콩 새싹이다. 실험군 1은 자외선 처리 후 1일동안 냉장 보관을 한 땅콩 새싹이다. 실험군 2는 자외선 처리 후 2일동안 냉장 보관을 한 땅콩 새싹이다. 또한, 실험군 3은 자외선 처리 후 1일동안 냉장 보관을 한 땅콩 새싹이다.
도 9를 참고하면, 냉장 보관을 한 실험군 1, 실험군 2, 실험군 3은 모두 대조군에 비해 레스베라트롤의 함량이 감소하였다.
실험군 2가 실험군 1과 실험군 2에 비해 레스베라트롤의 함량이 크지만, 대체적으로 땅콩 새싹을 냉장 보관하는 시간이 길어짐에 따라 레스베라트롤의 함량이 점차 감소하는 것을 알 수 있다.
도 10은 자외선 처리 후 보관 시간에 따른 땅콩 새싹의 기능성 물질의 함량 변화는 나타낸 다른 그래프이다.
땅콩 새싹을 파종한 6일 후에 285nm 파장대의 자외선을 땅콩 새싹에 24시간 동안 조사하였다. 자세한 실험 방법은 이전 실시 예를 참고하도록 한다.
본 실시 예에서는 땅콩 새싹에 자외선 처리하고, 6일, 8일, 10일 및 13일 동안 4℃에서 냉장 보관한 후 레스베라트롤의 함량을 측정하였다.
대조군은 자외선 처리를 하지않은 땅콩 새싹이다. 실험군 1은 자외선 처리한 직후의 땅콩 새싹이다. 실험군 2는 자외선 처리 후 6일동안 냉장 보관한 땅콩 새싹이다. 실험군 3은 자외선 처리 후 8일동안 냉장 보관한 땅콩 새싹이다. 실험군 4는 자외선 처리 후 10일동안 냉장 보관한 땅콩 새싹이다. 또한, 실험군 5는 자외선 처리 후 13일동안 냉장 보관한 땅콩 새싹이다.
도 10을 참고하면, 실험군 1 내지 실험군 5를 비교하면, 대체적으로 땅콩 새싹을 냉장보관 시간이 길어질수록 레스베라트롤의 함량이 대체적으로 감소하는 것을 알 수 있다.
그러나 실험군 1 내지 실험군 5는 모두 대조군보다 유의미한 수준의 높은 레스베라트롤 함량을 갖는다. 즉, 오랜 기간동안 냉장 보관을 하더라도 자외선 처리를 한 땅콩 새싹이 자외선 처리를 하지 않은 땅콩 새싹보다 레스베라트롤의 함량이 크다는 것을 알 수 있다.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참고한 실시 예에 의해서 이루어졌지만, 상술한 실시 예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이므로, 본 발명이 실시 예에만 국한되는 것으로 이해돼서는 안 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가 개념으로 이해되어야 할 것이다.

Claims (19)

  1. 종자를 발아시켜 식물을 성장시키는 단계;
    상기 식물에 자외선 처리를 하여 기능성 물질의 함량을 증가시키는 단계; 및
    상기 식물을 수확하는 단계;를 포함하고,
    상기 기능성 물질은 레스베라트롤(Resveratrol)이며,
    상기 기능성 물질의 함량을 증가시키는 단계에서 상기 자외선 처리는 LED에서 방출되는 자외선을 상기 식물에 조사하는 것인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  2. 청구항 1에 있어서,
    상기 식물을 성장시키는 단계에서,
    상기 종자는 암 조건에서 수분을 공급하여 발아시키는 것인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  3. 청구항 1에 있어서,
    상기 기능성 물질의 함량을 증가시키는 단계에서,
    상기 자외선 처리는 상기 식물을 수확하기 전 24시간 동안 수행되는 것인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  4. 청구항 1에 있어서,
    상기 식물을 성장시키는 단계는,
    상기 종자를 0.5~6시간 동안 물어 담근 후 파종하는 단계; 및
    상기 종자를 7일 동안 20~25℃의 암 조건에서 20분마다 한 번씩 수분을 공급하는 단계;를 포함하는 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  5. 청구항 1에 있어서,
    상기 자외선의 광량은 10㎼/㎠인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  6. 청구항 1에 있어서,
    상기 자외선은 UVB 및 UVC 중 적어도 하나인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  7. 청구항 6에 있어서,
    상기 자외선의 파장대는 275㎚, 285㎚ 및 295㎚ 중 적어도 하나인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  8. 청구항 7에 있어서,
    상기 자외선 파장대는 285nm인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  9. 청구항 1에 있어서,
    상기 자외선 처리된 상기 식물의 상기 기능성 물질의 함량은 자외선 처리를 하지 않고 수확한 식물의 2배 이상인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  10. 청구항 9에 있어서,
    상기 UVB로 자외선 처리된 식물의 상기 기능성 물질의 함량은 자외선 처리하지 않고 수확한 식물의 2배 이상인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  11. 청구항 9에 있어서,
    상기 UVC로 자외선 처리된 식물의 상기 기능성 물질의의 함량은 자외선 처리하지 않고 수확한 식물의 4배 이상인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  12. 청구항 1에 있어서,
    상기 식물은 땅콩 새싹인 기능성 물질의 함량을 증가시키는 식물 재배 방법.
  13. 재배 중인 식물에 UVB 및 UVC 중 적어도 하나의 자외선을 수확하기 전에 조사하여 상기 식물의 기능성 물질인 레스베라트롤의 햠량을 증가시키는 식물의 기능성 물질의 함량을 증가시키는 광 처리기.
  14. 청구항 13에 있어서,
    상기 자외선의 파장대는 275㎚, 285㎚ 및 295㎚ 중 적어도 하나인 식물의 기능성 물질의 햠량을 증가시키는 광 처리기.
  15. 청구항 14에 있어서,
    상기 자외선 파장대는 285nm인 식물의 기능성 물질의 햠량을 증가시키는 광 처리기.
  16. 청구항 13에 있어서,
    상기 광 처리기는 상기 식물의 상기 기능성 물질의 함량을 자외선 처리하지 않은 식물의 2배 이상으로 증가시키는 식물의 기능성 물질의 햠량을 증가시키는 광 처리기.
  17. 청구항 16에 있어서,
    상기 광 처리기는 상기 식물에 상기 UVB를 조사하여 상기 식물의 상기 기능성 물질의 함량을 자외선 처리하지 않고 수확한 식물의 2배 이상으로 증가시키는 식물의 기능성 물질의 햠량을 증가시키는 광 처리기.
  18. 청구항 16에 있어서,
    상기 광 처리기는 상기 식물에 상기 UVC를 조사하여 상기 식물의 상기 기능성 물질의 함량을 자외선 처리하지 않고 수확한 식물의 4배 이상으로 증가시키는 식물의 기능성 물질의 햠량을 증가시키는 광 처리기.
  19. 청구항 13에 있어서,
    상기 식물은 땅콩 새싹인 식물의 기능성 물질의 햠량을 증가시키는 광 처리기.
PCT/KR2019/013943 2018-10-23 2019-10-23 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기 WO2020085782A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021521997A JP2022505599A (ja) 2018-10-23 2019-10-23 機能性物質の含量を増加させる植物栽培方法及び光処理機
EP19875435.0A EP3871490A4 (en) 2018-10-23 2019-10-23 PLANT GROWING PROCESS AND ILLUMINATOR TO INCREASE FUNCTIONAL MATERIAL CONTENT
CN201980002968.9A CN111356359A (zh) 2018-10-23 2019-10-23 增加功能性物质含量的植物栽培方法及光处理器
KR1020217008923A KR20210064226A (ko) 2018-10-23 2019-10-23 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862749386P 2018-10-23 2018-10-23
US62/749,386 2018-10-23
US16/660,510 US11419277B2 (en) 2018-10-23 2019-10-22 Plant cultivation method and light treatment unit for increasing of the content of phytochemical
US16/660,510 2019-10-22

Publications (1)

Publication Number Publication Date
WO2020085782A1 true WO2020085782A1 (ko) 2020-04-30

Family

ID=70279250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013943 WO2020085782A1 (ko) 2018-10-23 2019-10-23 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기

Country Status (6)

Country Link
US (1) US11419277B2 (ko)
EP (1) EP3871490A4 (ko)
JP (1) JP2022505599A (ko)
KR (1) KR20210064226A (ko)
CN (1) CN111356359A (ko)
WO (1) WO2020085782A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031122A (ja) * 2020-08-05 2022-02-18 日亜化学工業株式会社 植物中のスチルベノイド並びに/又はtca回路の代謝物、ポリアミンアルカロイド、4-アミノ酪酸、アブシジン酸及び/若しくはそれらの塩の増量方法、前記化合物含量が増加した植物の生産方法、及び前記化合物含量が増加した植物、及び前記植物を利用した食品又は飲料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220039437A1 (en) * 2020-08-05 2022-02-10 Nichia Corporation Method of treating plant and method of making plant-based food or drink product
EP4260682A1 (en) 2022-04-14 2023-10-18 Lithuanian Research Centre for Agriculture and Forestry Lighting method for promoting accumulation of secondary metabolites in chelidonium majus plants

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040086962A (ko) * 2003-04-03 2004-10-13 주식회사 에스엘에스 레스베라트롤의 함량이 증가된 땅콩의 생산방법
JP2005143377A (ja) * 2003-11-14 2005-06-09 Asama Chemical Co Ltd ブドウ由来物を用いるリスベラトロールを高濃度で含有する飲食品の製造方法および得られる飲食品
KR20050089492A (ko) * 2004-03-05 2005-09-08 피재호 환경인자를 이용한 레스베라트롤 고함유 포도의 생산방법
KR20120016383A (ko) * 2010-08-16 2012-02-24 주식회사농심 새싹땅콩의 레스베라트롤 함량을 증가시키는 방법
KR20150035817A (ko) * 2012-06-04 2015-04-07 서울바이오시스 주식회사 과채류의 호르메시스 유도 장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601602D0 (en) * 2006-01-26 2006-03-08 Scott Lionel Plant treatment method and means therefor
CN102047827B (zh) * 2010-10-18 2012-05-09 张波 一种升高葡萄白藜芦醇含量的方法
EP2892319A1 (en) * 2012-09-04 2015-07-15 Koninklijke Philips N.V. Method for enhancing the nutritional value in an edible plant part by light, and lighting device therefore
KR20140102481A (ko) * 2013-02-14 2014-08-22 서울바이오시스 주식회사 고 진세노사이드 함량의 인삼 생산을 위한 인삼 재배 장치
PL3116296T3 (pl) * 2014-03-14 2020-11-16 Biolumic Limited Sposób zwiększenia plonowania upraw i/lub odporności na stres
CN104126434A (zh) * 2014-06-28 2014-11-05 雷宗达 一种提高山葡萄中白藜芦醇含量的方法
US10750691B2 (en) * 2014-09-17 2020-08-25 Biolumic Limited Methods of seed treatment and resulting products
JP5795676B1 (ja) * 2014-11-28 2015-10-14 株式会社果実堂 発芽処理植物種子の製造方法、発芽誘導用原料種子の製造方法、発芽処理植物種子の抽出組成物、及び、スクリーニング方法
EP3324731A1 (en) * 2015-07-17 2018-05-30 Urban Crop Solutions BVBA Industrial plant growing facility and methods of use
CN207355155U (zh) * 2017-10-24 2018-05-15 广东泰翔生物科技有限公司 一种花生芽栽培装置
US11304375B2 (en) * 2018-02-02 2022-04-19 Seoul Viosys Co., Ltd. Illumination device, plant storage apparatus and method for higher retention of phytochemical content of plant
WO2020032601A2 (ko) * 2018-08-09 2020-02-13 서울바이오시스 주식회사 식물 재배 장치 및 이를 이용한 재배 방법
US10820532B2 (en) * 2018-08-24 2020-11-03 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11432474B2 (en) * 2020-03-23 2022-09-06 Seoul Viosys Co., Ltd. Plant cultivation method for increasing phytochemical content

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040086962A (ko) * 2003-04-03 2004-10-13 주식회사 에스엘에스 레스베라트롤의 함량이 증가된 땅콩의 생산방법
JP2005143377A (ja) * 2003-11-14 2005-06-09 Asama Chemical Co Ltd ブドウ由来物を用いるリスベラトロールを高濃度で含有する飲食品の製造方法および得られる飲食品
KR20050089492A (ko) * 2004-03-05 2005-09-08 피재호 환경인자를 이용한 레스베라트롤 고함유 포도의 생산방법
KR20120016383A (ko) * 2010-08-16 2012-02-24 주식회사농심 새싹땅콩의 레스베라트롤 함량을 증가시키는 방법
KR20150035817A (ko) * 2012-06-04 2015-04-07 서울바이오시스 주식회사 과채류의 호르메시스 유도 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3871490A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031122A (ja) * 2020-08-05 2022-02-18 日亜化学工業株式会社 植物中のスチルベノイド並びに/又はtca回路の代謝物、ポリアミンアルカロイド、4-アミノ酪酸、アブシジン酸及び/若しくはそれらの塩の増量方法、前記化合物含量が増加した植物の生産方法、及び前記化合物含量が増加した植物、及び前記植物を利用した食品又は飲料
JP7197813B2 (ja) 2020-08-05 2022-12-28 日亜化学工業株式会社 植物中のスチルベノイド並びに/又はtca回路の代謝物、ポリアミンアルカロイド、4-アミノ酪酸、アブシジン酸及び/若しくはそれらの塩の増量方法、前記化合物含量が増加した植物の生産方法、及び前記化合物含量が増加した植物、及び前記植物を利用した食品又は飲料

Also Published As

Publication number Publication date
EP3871490A4 (en) 2023-02-01
EP3871490A1 (en) 2021-09-01
KR20210064226A (ko) 2021-06-02
JP2022505599A (ja) 2022-01-14
CN111356359A (zh) 2020-06-30
US11419277B2 (en) 2022-08-23
US20200120878A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2020085782A1 (ko) 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기
WO2020197284A1 (ko) 식물 재배 광원 및 식물 재배 장치
WO2020040597A1 (ko) 식물 재배용 광원
WO2019203597A1 (ko) Uv를 이용한 식물 재배 방법 및 이를 위한 식물 재배 시스템
WO2020032677A1 (ko) 식물 재배 장치 및 식물 재배 방법
EP2946654A1 (en) Method for cultivating fruit or vegetable
WO2017188719A1 (ko) 이고들빼기의 생장 및 생리활성 물질 증진 방법
WO2020032601A2 (ko) 식물 재배 장치 및 이를 이용한 재배 방법
WO2021194234A1 (ko) 기능성 물질의 함량을 증가시키는 식물 재배 방법
WO2019151823A1 (en) Illumination device, plant storage apparatus and method for higher retention of phytochemical content of plant
WO2020036436A1 (ko) 광 조사 장치
WO2021201634A1 (ko) 식물 재배용 광원 및 이를 이용한 식물 재배 방법
WO2021137676A1 (ko) 식물 재배용 광원
KR20220047303A (ko) 식물 재배용 광원 유닛 및 그것을 갖는 식물 재배 장치
Eguchi et al. End-of-day far-red lighting combined with blue-rich light environment to mitigate intumescence injury of two interspecific tomato rootstocks
WO2021096274A1 (ko) 식물 재배용 광원 및 식물 재배 방법
WO2022225284A1 (ko) 식물 재배용 광원 모듈 및 식물 재배 방법
WO2022186622A1 (ko) 광원 모듈 및 그 광원 모듈을 포함하는 식물 재배 장치
WO2018009023A2 (ko) 환경 스트레스를 이용한 엽채류의 생장 및 유용물질 증진 방법
WO2020116943A1 (ko) 전색체 led 파장 변환에 따른 식물생장 증진 방법
WO2022164232A1 (ko) 식물 재배용 광원 모듈 및 그것을 포함하는 광원 장치
US20230354753A1 (en) Light module for plant cultivation and plant cultivation apparatus including the same
Thien Fundamentals and Applications of Red Light-Emitting Diodes (LEDs) In Vitro Plant Growth on Tomato Lycopersicon esculentum Mill
Tudora et al. High-power LEDs influence on germination rate of tomato seeds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019875435

Country of ref document: EP

Effective date: 20210525