WO2022225284A1 - 식물 재배용 광원 모듈 및 식물 재배 방법 - Google Patents

식물 재배용 광원 모듈 및 식물 재배 방법 Download PDF

Info

Publication number
WO2022225284A1
WO2022225284A1 PCT/KR2022/005557 KR2022005557W WO2022225284A1 WO 2022225284 A1 WO2022225284 A1 WO 2022225284A1 KR 2022005557 W KR2022005557 W KR 2022005557W WO 2022225284 A1 WO2022225284 A1 WO 2022225284A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plant
light source
auxiliary light
plant cultivation
Prior art date
Application number
PCT/KR2022/005557
Other languages
English (en)
French (fr)
Inventor
오명민
박송이
이지원
Original Assignee
서울바이오시스주식회사
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사, 충북대학교 산학협력단 filed Critical 서울바이오시스주식회사
Priority to EP22791984.2A priority Critical patent/EP4327649A1/en
Priority to US18/556,264 priority patent/US20240215495A1/en
Publication of WO2022225284A1 publication Critical patent/WO2022225284A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources

Definitions

  • the present invention relates to a light source module for plant cultivation and a plant cultivation method capable of improving a specific functional material while improving plant growth.
  • Plants use light energy to perform photosynthesis to synthesize organic matter from carbon dioxide and water. Plants use the chemical energy of organic matter obtained through photosynthesis as nutrients for growth and the like.
  • Plants contain functional substances having an effect on a target object.
  • the content of functional substances contained in plants varies according to growth and environment. Plants, for example, protect themselves by producing antioxidants to defend against stress-induced damage.
  • An object of the present invention is to provide a light source module for plant cultivation and a plant cultivation method that can improve the growth of plants without damaging the plants, and at the same time improve specific functional substances.
  • the light source module for plant cultivation may include a substrate, a main light source, and an auxiliary light source.
  • the main light source is electrically connected to the substrate and may provide background light to the plant.
  • the auxiliary light source may be electrically connected to the substrate and provide auxiliary light to the plant.
  • the background light and the auxiliary light may have different peak wavelengths.
  • the auxiliary light may include light emitting blue color to improve the growth of the plant and the content of a specific functional material.
  • the main light source may provide the plant with white light as a background light.
  • the auxiliary light may have a peak wavelength in a wavelength range between 380 nm and 500 nm.
  • the auxiliary light may have a peak wavelength of at least one of 385 nm and 395 nm.
  • the main light source may repeatedly emit and stop background light every 12 hours.
  • the auxiliary light source may continuously irradiate the auxiliary light before harvesting the plant.
  • the auxiliary light source may continuously irradiate the auxiliary light for 5 to 7 days before harvesting the plant.
  • the light energy of the auxiliary light may be 30W/m 2 .
  • the plant is an ice plant.
  • the specific functional substance of the plant may include at least one of pinitol, myo-inositol and sucrose.
  • a background light is provided to a plant every 12 hours as a plant cultivation method for improving plant growth and content of a specific functional substance, and before harvesting the plant, the background light and each other to the plant
  • Auxiliary light having different peak wavelengths may be continuously provided.
  • the auxiliary light may include light emitting blue.
  • the background light may be white light.
  • the auxiliary light may have a peak wavelength in a wavelength range between 380 nm and 500 nm.
  • the auxiliary light may have a peak wavelength of at least one of 385 nm and 395 nm.
  • the auxiliary light may be continuously provided to the plant for 5 to 7 days before harvesting the plant.
  • the light energy of the auxiliary light may be 30W/m 2 .
  • the plant is an ice plant.
  • the specific functional substance of the plant may include at least one of pinitol, myo-inositol and sucrose.
  • the light source module for plant cultivation and the plant cultivation method according to an embodiment of the present invention provide additional auxiliary light in addition to the background light to the plant, thereby improving the growth of the plant without damaging the plant.
  • the light source module for plant cultivation and the plant cultivation method according to an embodiment of the present invention may improve the growth of a plant while improving a specific functional material.
  • the light source module for plant cultivation and the plant cultivation method according to an embodiment of the present invention can improve the sugar alcohol content of an ice plant effective for blood sugar control.
  • FIG. 1 is an exemplary view briefly showing a light source module according to an embodiment of the present invention.
  • FIG. 2 is a light spectrum according to an embodiment of the present invention provided to a control.
  • 3 is a light spectrum according to an embodiment of the present invention provided to the first experimental group.
  • 5 is a light spectrum according to an embodiment of the present invention provided to the third experimental group.
  • FIG. 8 is a photograph showing the state of a plant for each light treatment condition according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the live weight of the above-ground part of a plant for each light treatment condition according to an embodiment of the present invention.
  • FIG. 10 is a graph showing the dry weight of the above-ground part of a plant for each light treatment condition according to an embodiment of the present invention.
  • FIG. 11 is a graph showing the side area of a plant for each light treatment condition according to an embodiment of the present invention.
  • FIG. 12 is a graph showing the SPAD value (chlorophyll content) of plants according to light treatment conditions according to an embodiment of the present invention.
  • 13 is a photosynthetic rate measured during the day of the 3rd day after starting light treatment with auxiliary light in plants.
  • 15 is a graph showing the maximum quantum yield (Fv/Fm) for each light processing condition according to an embodiment of the present invention.
  • 16 is a graph showing changes in the total phenol content of plants according to light treatment conditions according to an embodiment of the present invention.
  • 17 is a graph showing the change in antioxidant degree of plants according to light treatment conditions according to an embodiment of the present invention.
  • PAL phenylalanine ammonia-lyase
  • 19 is a graph showing the content of pinitol per unit gram for each light treatment condition.
  • 20 is a graph showing the content of pinitol per plant (above-ground) for each light treatment condition.
  • 21 is a graph showing the content of myo-inositol per unit gram for each light treatment condition.
  • FIG. 22 is a graph showing the content of myo-inositol per plant (above-ground) for each light treatment condition.
  • 24 is a graph showing the content of sucrose per plant (above-ground) for each light treatment condition.
  • FIG. 1 is an exemplary view briefly showing a light source module according to an embodiment of the present invention.
  • the light source module 100 is used in a space capable of controlling the cultivation environment of plants, such as a plant factory.
  • Plant factories provide a space for growing plants regardless of season by controlling the environment in which plants are grown.
  • the light source module 100 may control an environment for photosynthesis and a stress environment in a plant cultivation environment.
  • a light source module 100 includes a substrate 10 , a main light source 20 , and an auxiliary light source 30 .
  • the substrate 10 may be electrically connected to the main light source 20 and the auxiliary light source 30 .
  • the substrate 10 may control the operations of the main light source 20 and the auxiliary light source 30 according to a preset signal.
  • the substrate 10 may be a printed circuit board.
  • the main light source 20 and the auxiliary light source 30 each include a light emitting diode, and may be mounted on the substrate 10 .
  • the main light source 20 provides background light for photosynthesis to plants in a plant cultivation space, such as inside a plant factory.
  • the main light source 20 generally corresponds to an artificial light source used in a plant factory. Accordingly, the artificial light source generally provides the plant with white light having a luminous intensity of about 200 to 300 ⁇ mol/m 2 /s as background light.
  • the luminous intensity may be about 1,000 ⁇ mol/m 2 /s or more during the day.
  • the artificial light source provides the plant with background light with a lower luminous intensity compared to natural light.
  • the luminosity of the background light of the artificial light source is insufficient compared to the light saturation point of the plant.
  • the light source module 100 for plant cultivation further includes an auxiliary light source 30 in addition to the main light source 20 .
  • the light source module 100 for plant cultivation may additionally provide auxiliary light for improving photosynthetic efficiency of plants in addition to background light to plants.
  • the auxiliary light source 30 may provide the auxiliary light to the plant to reinforce the light energy required for the plant, which is insufficient with the background light emitted from the main light source 20 .
  • the auxiliary light source 30 may provide the plant with the auxiliary light that can improve the content of the specific functional material of the plant.
  • the auxiliary light emitted from the auxiliary light source 30 has a different peak wavelength from that of the background light.
  • the auxiliary light source 30 may provide auxiliary light including visible light and ultraviolet light emitting blue light to the plant. More specifically, the auxiliary light is light having a peak wavelength between about 380 nm and 500 nm.
  • the light source module 100 for plant cultivation provides auxiliary light in a wavelength band longer than UV B, not UV B, to plants, thereby causing damage to plants and reduced growth by large energy of UV B. it can be prevented
  • the light source module 100 for plant cultivation according to an embodiment of the present invention may include a plurality of main light sources 20 and auxiliary light sources 30 .
  • the plurality of auxiliary light sources 30 may emit auxiliary light having different peak wavelengths. .
  • the light source module 100 for plant cultivation can improve plant growth by providing auxiliary light to plants to improve photosynthesis of plants.
  • the light source module 100 for plant cultivation can improve the growth of a plant and increase a specific functional material of the plant.
  • the characteristics of the background light emitted from the main light source 20 and the auxiliary light emitted from the auxiliary light source 30 of the light source module 100 for plant cultivation according to an embodiment of the present invention will be described in detail through the experimental results to be described later. .
  • the type of plant used in this experiment is an ice plant.
  • the plants planted in the plant factory are in an environment where the 12 hours of dark and light cycles are repeated by a temperature of about 23°C, a relative humidity of 60%, a carbon dioxide (CO 2 ) concentration of 1,000 ⁇ mol/mol, and background light. was cultivated
  • the background light is white light
  • the light source is a light emitting diode (LED).
  • the luminous intensity of the background light is 200 ⁇ mol/m 2 /s.
  • a nutrient solution of EC 1.5 dS/m and PH 6.0 was provided to the plants during the cultivation period.
  • auxiliary light was continuously provided to the plants for one week before harvesting the plants out of a total of four weeks of plant cultivation.
  • the control group is a group of plants grown with only background light without auxiliary light.
  • Experimental groups 1 to 5 are groups of plants grown in an environment in which different auxiliary lights are added to background light.
  • the auxiliary light is provided in a wavelength band closer to the visible ray region.
  • experimental groups 4 and 5 are included in the wavelength range of the auxiliary light emitted by the light source module for plant cultivation ( 100 in FIG. 1 ) according to an embodiment of the present invention, but receive auxiliary light having different peak wavelengths.
  • Experimental group 1 is a group of plants grown by receiving the first auxiliary light having a peak wavelength of 352 nm.
  • the light source of the first auxiliary light is an ultraviolet lamp, and the energy of the first auxiliary light is about 15 to 16W/m 2 .
  • Experimental group 2 is a group of plants grown by receiving the second auxiliary light having a peak wavelength of 365 nm.
  • the light source of the second auxiliary light is an LED, and the energy of the second auxiliary light is about 30 W/m 2 .
  • Experimental group 3 is a group of plants grown by receiving the third auxiliary light having a peak wavelength of 375 nm.
  • the light source of the third auxiliary light is an LED, and the energy of the third auxiliary light is about 30 W/m 2 .
  • Experimental group 4 is a group of plants grown by receiving the fourth auxiliary light having a peak wavelength of 385 nm.
  • the light source of the fourth auxiliary light is an LED, and the energy of the fourth auxiliary light is about 30 W/m 2 .
  • Experimental group 5 is a plant group grown by receiving the fifth auxiliary light having a peak wavelength of 395 nm.
  • the light source of the fifth auxiliary light is an LED, and the energy of the fifth auxiliary light is about 30 W/m 2 .
  • FIG. 2 is a light spectrum according to an embodiment of the present invention provided to a control. That is, FIG. 2 is a light spectrum of background light provided to a plant.
  • FIG. 3 is a light spectrum according to an embodiment of the present invention provided to the first experimental group. That is, FIG. 3 is a light spectrum provided to the plant by adding the first auxiliary light to the background light.
  • FIG. 4 is a light spectrum according to an embodiment of the present invention provided to a second experimental group. That is, FIG. 4 is a light spectrum provided to a plant by adding a second auxiliary light to the background light.
  • FIG. 5 is a light spectrum according to an embodiment of the present invention provided to the third experimental group. That is, FIG. 5 is a light spectrum provided to a plant by adding a third auxiliary light to the background light.
  • FIG. 6 is a light spectrum according to an embodiment of the present invention provided to the fourth experimental group. That is, FIG. 6 is a light spectrum provided to a plant by adding a fourth auxiliary light to the background light.
  • FIG. 7 is a light spectrum according to an embodiment of the present invention provided to the fifth experimental group. That is, FIG. 7 is a light spectrum provided to a plant by adding a fourth auxiliary light to the background light.
  • 8 to 12 are graphs showing the growth results of plants according to light treatment conditions according to an embodiment of the present invention.
  • FIG. 8 is a photograph showing the state of a plant for each light treatment condition according to an embodiment of the present invention. That is, FIG. 8 is a photograph of the control group and experimental groups 1 to 5 cultivated for a total of 4 weeks.
  • the first to fifth auxiliary lights do not physically damage the plant even when continuously irradiated to the plant for a week.
  • FIG. 9 is a graph showing the live weight of the above-ground part of a plant for each light treatment condition according to an embodiment of the present invention.
  • FIG. 10 is a graph showing the dry weight of the above-ground part of the plant for each light treatment condition according to an embodiment of the present invention.
  • Live weight and dry weight were measured with a precision electronic scale (DENVER INSTRUMENT SI-234).
  • dry weight was measured after freeze-drying the above-ground parts of plants for more than 48 hours.
  • both the live weight and the dry weight of the plants were increased after light treatment.
  • the dry weight of the experimental group 5 was about 46% higher than that of the control group. Also, on the 7th day, the dry weight of the experimental groups 3 and 5 was significantly increased.
  • FIG. 11 is a graph showing the side area of a plant for each light treatment condition according to an embodiment of the present invention.
  • the side area of the experimental group 3 was about 20% higher than that of the control group.
  • FIG. 12 is a graph showing the SPAD values of plants for each light treatment condition according to an embodiment of the present invention.
  • the light treatment by the auxiliary light under the conditions according to the embodiment of the present invention is similar or the growth is further improved as compared to the control not irradiated with the auxiliary light.
  • FIG. 13 and 14 are graphs showing photosynthetic rates according to light processing conditions according to an embodiment of the present invention.
  • FIG. 13 is a photosynthetic rate measured during the day of the 3rd day after starting light treatment with auxiliary light in plants. Also, FIG. 14 shows the photosynthetic rate measured at night on the 3rd day after starting light treatment with auxiliary light on the plant.
  • the daytime photosynthesis rate of Experimental Groups 1 to 3 is not significantly different from that of the Control group.
  • the daytime photosynthesis rate of experimental group 4 was about 24% higher than that of the control group, and the daytime photosynthesis rate of experimental group 5 was about 26% higher than that of the control group.
  • the rates of photosynthesis at night were significantly higher in Experimental Groups 2 to 5 provided with the auxiliary light through the LED than in the control group in which the auxiliary light was not provided and in Experimental Group 1 in which the auxiliary light was provided through the lamp.
  • the rate of photosynthesis at night has a negative value.
  • 15 is a graph showing the maximum quantum yield (Maximum quantum efficiency of photosystem, Fv/Fm) for each light processing condition according to an embodiment of the present invention.
  • leaves of healthy plants maintain a value of the maximum quantum yield of about 0.8 to 0.83.
  • a value lower than this corresponds to a case in which the plant is damaged or is in a stressful environment.
  • experimental groups 1 to 5 decreased the maximum quantum yield value compared to the control group when light treatment was performed for 12 hours.
  • experimental groups 3 to 5 are generally similar to the control group or show high growth rates.
  • the third auxiliary light having a peak wavelength of 375 nm, the fourth auxiliary light having a peak wavelength of 385 nm, and the fifth auxiliary light having a peak wavelength of 395 nm can improve the growth and photosynthesis of the ice plant.
  • 16 to 18 are graphs showing the functional substance content of plants according to light treatment conditions according to an embodiment of the present invention.
  • FIG. 16 is a graph showing changes in the total phenol content of plants according to light treatment conditions according to an embodiment of the present invention.
  • FIG. 17 is a graph showing the change in antioxidant degree of plants according to light treatment conditions according to an embodiment of the present invention.
  • the total phenol content of experimental groups 1 to 5 was higher than that of the control group on the 3rd, 5th, and 7th days after light treatment with auxiliary light was performed.
  • the antioxidant levels of experimental groups 1 to 5 were all higher than those of the control group on the 5th and 7th days.
  • FIG. 18 is a graph showing the PAL activity of plants according to light treatment conditions according to an embodiment of the present invention.
  • the PAL activity of experimental groups 1 to 5 is higher than that of the control group from the first day after light treatment by auxiliary light is performed.
  • the auxiliary light is additionally provided to the ice plant, and from the 5th day, the PAL activity increases in order for the ice plant to overcome the stress caused by the auxiliary light.
  • both the total phenol content and the antioxidant level, which are functional substances, are improved from the 5th day after the ice plant is provided to the auxiliary light.
  • the growth of the ice plant can be improved from the 5th day of the light treatment by the auxiliary light according to the embodiment of the present invention, and the content of the functional material can also be improved.
  • 19 to 24 are graphs showing the content of specific substances in plants according to light treatment conditions according to an embodiment of the present invention.
  • sugar alcohol including pinitol, myo-inositol, and sucrose.
  • This sugar alcohol is a substance that regulates blood sugar, and is an effective substance for controlling blood sugar in diabetic patients.
  • FIG. 19 is a graph showing the content of pinitol per unit gram for each light treatment condition
  • FIG. 20 is a graph showing the content of pinitol per plant (above) for each light treatment condition.
  • both the control group and the experimental groups 1 to 5 showed a tendency to increase the pinitol content as time increased.
  • FIG. 21 is a graph showing the content of myo-inositol per unit gram for each light treatment condition
  • FIG. 22 is a graph showing the content of myo-inositol per plant (above-ground) for each light treatment condition.
  • experimental groups 1 to 3 showed a lower rate of increase in the content of myo-inositol with time than the control group. After all, on the 7th day, the myo-inositol content of experimental groups 1 to 3 was similar to or lower than that of the control group.
  • FIG. 23 is a graph showing the content of sucrose per unit gram for each light treatment condition
  • FIG. 24 is a graph showing the content of sucrose per plant (above-ground) for each light treatment condition.
  • Experimental Groups 1 to 5 had a higher or similar sucrose content than the control group.
  • auxiliary light having a peak wavelength of 385 nm and the auxiliary light having a peak wavelength of 385 nm improve both the growth of the ice plant and the amount of specific functional material compared to the auxiliary light having other peak wavelengths.
  • the insufficient light energy as the background light emitted from the artificial light source is provided to the plant.
  • the insufficient light energy as the background light emitted from the artificial light source is provided to the plant.
  • blue light having a peak wavelength of 385 nm or more which is auxiliary light according to an embodiment of the present invention, is additionally provided to plants, it is possible to not only improve plant growth but also to improve the content of specific functional substances such as sugar alcohols. Therefore, according to an embodiment of the present invention, it is possible to cultivate a plant with an increased content of sugar alcohol effective for blood sugar control.
  • the auxiliary light according to an embodiment of the present invention is light in a wavelength band longer than that of ultraviolet B. Therefore, the auxiliary light according to the embodiment of the present invention can prevent the problem of damage to the plant by the large energy of ultraviolet B.
  • auxiliary light according to an embodiment of the present invention is not UV-B, the risk of exposure to UV-B by workers who grow plants can also be prevented.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cultivation Of Plants (AREA)

Abstract

본 발명은 식물 재배용 광원 모듈 및 식물 재배 방법에 관한 것이다. 본 발명의 실시 예에 따르면 식물 재배용 광원 모듈은 기판, 주 광원 및 보조 광원을 포함할 수 있다. 주 광원은 기판과 전기적으로 연결되며, 식물에 배경광을 제공할 수 있다. 또한, 보조 광원은 기판과 전기적으로 연결되며, 식물에 보조광을 제공할 수 있다. 여기서, 배경광과 보조광은 서로 다른 피크 파장을 가질 수 있다. 또한, 보조광은 식물의 생장 및 특정 기능성 물질의 함량을 향상시키는 청색으로 발광하는 광을 포함할 수 있다.

Description

식물 재배용 광원 모듈 및 식물 재배 방법
본 발명은 식물의 생장을 향상시키면서 특정 기능성 물질을 향상시킬 수 있는 식물 재배용 광원 모듈 및 식물 재배 방법에 관한 것이다.
식물은 빛 에너지를 이용하여 이산화탄소와 물로부터 유기물을 합성하는 광합성 작용을 한다. 식물은 광합성 작용으로 얻어진 유기물의 화학 에너지를 생장 등을 위한 영양분으로 사용하고 있다.
식물은 목적하는 대상에 효력을 갖는 기능성 물질을 포함하고 있다. 식물은 성장 및 환경에 따라 함유하는 기능성 물질의 함량이 달라진다. 예를 들어, 식물은 스트레스로 인한 손상을 방어하기 위해서 항산화 물질을 생성하여 스스로를 보호한다.
최근에서는 식물의 기능성 물질 향상을 위해서 식물에 자외선 처리를 수행하여 스트레스를 주는 재배 방식이 이용되고 있다.
그러나 식물에 강한 에너지의 자외선을 조사하는 경우 식물이 죽거나 잎의 마름, 갈변 현상과 같은 복용 또는 기능성 물질의 추출이 어려울 수준의 외형 손상을 받게 된다.
본 발명의 해결하고자 하는 과제는 식물의 손상없이 식물의 생장을 향상시키고, 동시에 특정 기능성 물질을 향상시킬 수 있는 식물 재배용 광원 모듈 및 식물 재배 방법을 제공하는 데 있다.
본 발명의 일 실시 예에 따르면, 식물 재배용 광원 모듈은 기판, 주 광원 및 보조 광원을 포함할 수 있다. 상기 주 광원은 상기 기판과 전기적으로 연결되며, 식물에 배경광을 제공할 수 있다. 또한, 상기 보조 광원은 상기 기판과 전기적으로 연결되며, 상기 식물에 보조광을 제공할 수 있다.
여기서, 상기 배경광과 상기 보조광은 서로 다른 피크 파장을 가질 수 있다.
또한, 상기 보조광은 상기 식물의 생장 및 특정 기능성 물질의 함량을 향상시키는 청색으로 발광하는 광을 포함할 수 있다.
상기 주 광원은 백색광을 배경광으로 하여 상기 식물에 제공할 수 있다.
상기 보조광은 380nm 내지 500nm 사이의 파장대에서 피크 파장을 가질 수 있다.
예를 들어, 상기 보조광은 385nm 및 395nm 중 적어도 하나의 피크 파장을 가질 수 있다.
상기 주 광원은 상기 12시간마다 배경광을 방출 및 중단을 반복할 수 있다.
또한, 상기 보조 광원은 상기 식물을 수확하기 전에 상기 보조광을 연속 조사할 수 있다.
예를 들어, 상기 보조 광원은 상기 식물을 수확하기 전 5일 내지 7일 동안 상기 보조광을 연속 조사할 수 있다.
상기 보조광의 광 에너지는 30W/m2일 수 있다.
상기 식물은 아이스플랜트이다.
또한, 상기 식물의 상기 특정 기능성 물질은 피니톨, 미오 이노시톨 및 수크로스 중 적어도 하나를 포함할 수 있다.
본 발명의 다른 실시 예에 따르면, 식물의 생장 및 특정 기능성 물질을 함량을 향상시키는 식물 재배 방법으로 식물에 12시간마다 배경광을 제공하고, 상기 식물을 수확하기 전에 상기 식물에 상기 배경광과 서로 다른 피크 파장을 갖는 보조광을 연속으로 제공할 수 있다. 이때, 보조광은 청색으로 발광하는 광을 포함할 수 있다.
상기 배경광은 백색광일 수 있다.
또한, 상기 보조광은 380nm 내지 500nm 사이의 파장대에서 피크 파장을 가질 수 있다.
예를 들어, 상기 보조광은 385nm 및 395nm 중 적어도 하나의 피크 파장을 가질 수 있다.
이때, 상기 보조광은 상기 식물을 수확하기 전에 상기 식물에 5일 내지 7일 동안 연속으로 제공될 수 있다.
상기 보조광의 광 에너지는 30W/m2일 수 있다.
상기 식물은 아이스플랜트이다.
또한, 상기 식물의 상기 특정 기능성 물질은 피니톨, 미오 이노시톨 및 수크로스 중 적어도 하나를 포함할 수 있다.
본 발명의 실시 예에 따른 식물 재배용 광원 모듈 및 식물 재배 방법은 식물에 배경광 이외에 추가적으로 보조광을 제공함으로써, 식물의 손상없이 식물의 생장을 향상시킬 수 있다.
또한, 본 발명의 실시 예에 따른 식물 재배용 광원 모듈 및 식물 재배 방법은 식물의 생장을 향상시키는 동시에 특정 기능성 물질을 향상시킬 수 있다.
특히, 본 발명의 실시 예에 따른 식물 재배용 광원 모듈 및 식물 재배 방법은 혈당 조절에 효과적인 아이스플랜트의 당알콜의 함량을 향상시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 광원 모듈을 간략하게 나타낸 예시도이다.
도 2는 대조구에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다.
도 3은 제1 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다.
도 4는 제2 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다.
도 5는 제3 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다.
도 6은 제4 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다.
도 7은 제5 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다.
도 8은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 상태를 나타낸 사진이다.
도 9는 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 지상부의 생체중을 나타낸 그래프이다.
도 10은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 지상부의 건물중을 나타낸 그래프이다.
도 11은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 옆면적을 나타낸 그래프이다.
도 12는 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 SPAD 값(엽록소 함량)을 나타낸 그래프이다.
도 13은 식물에 보조광으로 광 처리를 시작하고 3일째 낮에 측정된 광합성률이다.
도 14는 식물에 보조광으로 광 처리를 시작하고 3일째 밤에 측정된 광합성율이다.
도 15는 본 발명의 실시 예에 따른 광 처리 조건 별 최대 양자 수율(Fv/Fm)을 나타낸 그래프이다.
도 16은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 총 페놀 함량의 변화를 나타낸 그래프이다.
도 17은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 항산화도 변화를 나타낸 그래프이다.
도 18은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 PAL(phenylalanine ammonia-lyase) 활성을 나타낸 그래프이다.
도 19는 광 처리 조건 별로 단위 그램당 피니톨의 함량을 나타낸 그래프이다.
도 20은 광 처리 조건 별로 식물체(지상부)당 피니톨의 함량을 나타낸 그래프이다.
도 21은 광 처리 조건 별로 단위 그램당 미오 이노시톨의 함량을 나타낸 그래프이다.
도 22는 광 처리 조건 별로 식물체(지상부)당 미오 이노시톨의 함량을 나타낸 그래프이다.
도 23은 광 처리 조건 별로 단위 그램당 수크로스의 함량을 나타낸 그래프이다.
도 24는 광 처리 조건 별로 식물체(지상부)당 수크로스의 함량을 나타낸 그래프이다.
이하, 첨부한 도면들을 참조하여 본 개시의 실시 예들을 상세히 설명하기로 한다. 다음에 소개되는 실시 예들은 당업자에게 본 개시의 사상이 충분히 전달될 수 있도록 하기 위한 예시로써 제공되는 것이다. 따라서, 본 개시는 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타내고 유사한 참조번호는 대응하는 유사한 구성요소를 나타낸다.
도 1은 본 발명의 실시 예에 따른 광원 모듈을 간략하게 나타낸 예시도이다.
본 발명의 실시 예에 따른 광원 모듈(100)은 식물 공장과 같은 식물의 재배 환경을 제어할 수 있는 공간에 사용된다.
식물 공장은 식물이 재배되는 환경을 제어함으로써, 계절에 상관없이 식물을 재배할 수 있는 공간을 제공한다.
본 발명의 실시 예에 따른 광원 모듈(100)은 식물의 재배 환경 중에서 광합성을 위한 환경 및 스트레스 환경을 제어할 수 있다.
도 1을 참고하면, 본 발명의 실시 예에 따른 광원 모듈(100)은 기판(10), 주 광원(20) 및 보조 광원(30)을 포함한다. 기판(10)은 주 광원(20) 및 보조 광원(30)과 전기적으로 연결될 수 있다.
기판(10)은 미리 설정된 신호에 따라 주 광원(20) 및 보조 광원(30)의 동작을 제어할 수 있다.
예를 들어, 기판(10)은 인쇄회로기판일 수 있다. 또한, 주 광원(20) 및 보조 광원(30)은 각각 발광 다이오드(light emitting diode)를 포함하며, 기판(10) 상에 실장될 수 있다.
주 광원(20)은 식물 공장 내부와 같은 식물의 재배 공간에 광합성을 위한 배경광을 식물에 제공한다.
본 발명의 실시 예에 따르면 주 광원(20)은 일반적으로 식물 공장에서 사용되는 인공 광원에 해당한다. 따라서, 인공 광원은 일반적으로 약 200 내지 300μmol/m2/s의 광도의 백색광을 배경광으로 하여 식물에 제공한다.
태양광과 같은 자연광의 경우 낮에는 광도가 약 1,000μmol/m2/s이상일 수 있다.
즉, 인공 광원은 자연광에 비해 낮은 광도의 배경광을 식물에 제공한다. 또한, 인공 광원의 배경광의 광도는 식물의 광 포화점에 비해 부족하다.
본 발명의 실시 예에 따른 식물 재배용 광원 모듈(100)은 주 광원(20)에 추가적으로 보조 광원(30)을 더 포함한다.
따라서, 본 발명의 실시 예에 따른 식물 재배용 광원 모듈(100)은 식물에 배경광 이외에 식물의 광합성 효율을 향상시키기 위한 보조광을 추가로 제공할 수 있다.
본 발명의 실시 예에 따르면, 보조 광원(30)은 주 광원(20)에서 방출되는 배경광으로는 부족한 식물에 필요한 광 에너지를 보강하도록 보조광을 식물에 제공할 수 있다. 또한, 보조 광원(30)은 식물의 특정 기능성 물질의 함량의 향상시킬 수 있는 보조광을 식물에 제공할 수 있다.
이와 같은 보조 광원(30)에서 방출되는 보조광은 배경광과는 서로 다른 피크 파장을 갖는다.
예를 들어, 보조 광원(30)은 청색으로 발광하는 가시광선 및 자외선을 포함하는 보조광을 식물에 제공할 수 있다. 더 자세히는 보조광은 약 380nm 내지 500nm 사이에 피크 파장을 갖는 광이다.
이와 같이, 본 발명의 실시 예에 따른 식물 재배용 광원 모듈(100)은 자외선 B가 아닌 자외선 B보다 긴 파장대의 보조광을 식물에 제공함으로써, 자외선 B의 큰 에너지에 의해서 식물이 손상되고 생장이 저하되는 것을 방지할 수 있다.
본 발명의 실시 예에 따른 식물 재배용 광원 모듈(100)은 주 광원(20) 및 보조 광원(30)이 복수로 구성될 수 있다. 또한, 본 발명의 실시 예에 따른 식물 재배용 광원 모듈(100)이 복수의 보조 광원(30)을 포함하는 경우, 복수의 보조 광원(30)은 서로 다른 피크 파장을 갖는 보조광을 방출하는 것도 가능하다.
이와 같은 본 발명의 실시 예에 따른 식물 재배용 광원 모듈(100)은 보조광을 식물에 제공하여 식물의 광합성을 향상시켜 식물의 생장을 향상시킬 수 있다.
또한, 본 발명의 실시 예에 따른 식물 재배용 광원 모듈(100)은 식물의 생장을 향상시키는 동시에 해당 식물의 특정한 기능성 물질을 증가시킬 수 있다.
본 발명의 실시 예에 따른 식물 재배용 광원 모듈(100)의 주 광원(20)에서 방출되는 배경광 및 보조 광원(30)에서 방출되는 보조광에 대한 특징은 이후 설명하는 실험 결과를 통해서 자세히 설명하도록 한다.
본 발명에서는 보조광 처리에 따른 식물의 성장 및 기능성 물질 함량의 변화를 확인하기 위한 실험을 수행하였다.
본 실험에 사용된 식물의 종류는 아이스플랜트(ice plant)이다.
3주된 식물의 묘목을 인공 조명이 있는 식물 공장에 정식한 후 총 4주간 재배하였다.
이때, 식물 공장에 정식된 식물은 약 23℃의 온도, 60%의 상대 습도, 1,000μmol/mol의 이산화탄소(CO2) 농도 및 배경광에 의한 12시간의 암주기와 명주기가 반복되는 환경에서 재배되었다.
여기서 배경광은 백색광이며, 광원은 LED(Light emitting diode)이다. 또한, 배경광의 광도는 200μmol/m2/s이다.
또한, 재배 기간 동안 EC 1.5dS/m 및 PH 6.0의 양액이 식물에 제공되었다.
본 실험에서 식물의 재배하는 총 4주의 기간 중에서 식물을 수확하기 전 1주일 동안 보조광이 연속적으로 식물에 제공되었다.
본 실험에서는 서로 다른 보조광을 제공받으며 재배된 식물들을 수확하여, 생장 및 기능성 물질의 함량을 비교하였다.
대조군은 보조광 없이 배경광만을 제공받아 재배된 식물 그룹이다.
실험군 1 내지 실험군 5는 배경광에 서로 다른 보조광이 추가된 환경에서 재배된 식물 그룹이다.
이때, 실험군 1에서 실험군 5로 갈수록 가시광선 영역에 가까운 파장대의 보조광을 제공받는다.
특히, 실험군 4 및 실험군 5는 본 발명의 실시 예에 따른 식물 재배용 광원 모듈(도 1의 100)이 방출하는 보조광의 파장 범위에 포함되지만 서로 다른 피크 파장을 갖는 보조광을 제공받는다.
실험군 1은 352nm의 피크 파장을 갖는 제1 보조광을 제공받아 재배된 식물 그룹이다. 이때, 제1 보조광의 광원은 자외선 램프이며, 제1 보조광의 에너지는 약 15~16W/m2이다.
실험군 2는 365nm의 피크 파장을 갖는 제2 보조광을 제공받아 재배된 식물 그룹이다. 이때, 제2 보조광의 광원은 LED이며, 제2 보조광의 에너지는 약 30W/m2이다.
실험군 3은 375nm의 피크 파장을 갖는 제3 보조광을 제공받아 재배된 식물 그룹이다. 이때, 제3 보조광의 광원은 LED이며, 제3 보조광의 에너지는 약 30W/m2이다.
실험군 4는 385nm의 피크 파장을 갖는 제4 보조광을 제공받아 재배된 식물 그룹이다. 이때, 제4 보조광의 광원은 LED이며, 제4 보조광의 에너지는 약 30W/m2이다.
실험군 5는 395nm의 피크 파장을 갖는 제5 보조광을 제공받아 재배된 식물 그룹이다. 이때, 제5 보조광의 광원은 LED이며, 제5 보조광의 에너지는 약 30W/m2이다.
도 2 내지 도 7은 본 발명의 실험에서 식물에게 제공된 광 스펙트럼을 나타낸다.
도 2는 대조구에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다. 즉, 도 2는 식물에 제공된 배경광의 광 스펙트럼이다.
도 3은 제1 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다. 즉, 도 3은 배경광에 제1 보조광이 추가되어 식물에 제공된 광 스펙트럼이다.
도 4는 제2 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다. 즉, 도 4는 배경광에 제2 보조광이 추가되어 식물에 제공된 광 스펙트럼이다.
도 5는 제3 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다. 즉, 도 5는 배경광에 제3 보조광이 추가되어 식물에 제공된 광 스펙트럼이다.
도 6은 제4 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다. 즉, 도 6은 배경광에 제4 보조광이 추가되어 식물에 제공된 광 스펙트럼이다.
또한, 도 7은 제5 실험군에 제공된 본 발명의 실시 예에 따른 광 스펙트럼이다. 즉, 도 7은 배경광에 제4 보조광이 추가되어 식물에 제공된 광 스펙트럼이다.
도 8 내지 도 12는 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 생장 결과를 나타낸 그래프이다.
도 8은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 상태를 나타낸 사진이다. 즉, 도 8은 총 4주간 재배된 대조구 및 실험군 1 내지 실험군 5의 사진이다.
도 8을 참고하면, 대조군, 실험군 1 내지 실험군 5에 모두 시각적으로 확인되는 손상이 발견되지 않았다.
따라서, 제1 보조광 내지 제5 보조광은 일주일동안 식물에 연속적으로 조사되어도 식물에 물리적인 손상을 주지 않는다는 것을 알 수 있다.
또한, 식물에 광처리를 시작하고 1일째, 3일째, 5일째 및 7일째에 각각 식물을 수확하여 식물의 생장 변화를 확인하였다.
도 9는 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 지상부의 생체중을 나타낸 그래프이다.
또한, 도 10은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 지상부의 건물중을 나타낸 그래프이다.
생체중과 건물중은 정밀전자저울(DENVER INSTRUMENT SI-234)로 측정하였다. 특히 건물중은 식물의 지상부를 48시간 이상 동결건조한 후 측정되었다.
도 9 및 도 10을 참고하면, 식물의 생체중 및 건물중은 모두 광 처리 이후에 증가하였다.
도 10을 참고하면, 5일째에는 실험군 5의 건물중이 대조구보다 약 46% 높게 나타냈다. 또한, 7일째에는 실험군 3 및 실험군 5의 건물중이 현저하게 증가하였다.
도 11은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 옆면적을 나타낸 그래프이다.
도 11을 참고하면, 광 처리 7일 째에 실험군 3의 옆면적은 대조군보다 약 20%정도 높게 나타났다.
또한, 광 처리 7일 째에 실험군 5의 옆면적은 대조군보다 약 10%정도 높게 나타났다.
도 12는 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 SPAD 값을 나타낸 그래프이다.
엽록소 함량을 나타내는 SPAD 값은 광 처리 5일 째를 제외하고는 모든 실험군 및 대조군에서 유의미한 차이가 있지 않았다.
이와 같이 도 8 내지 도 12에서 본 발명의 실시 예에 따른 조건의 보조광으로 광 처리를 수행하는 경우 식물의 생장에 손상을 주지 않는다는 것을 알 수 있다.
또한, 본 발명의 실시 예에 따른 조건의 보조광에 의한 광 처리는 보조광을 조사하지 않는 대조군과 비교하였을 때, 유사하거나 생장이 더 향상되는 것을 알 수 있다.
도 13 및 도 14는 본 발명의 실시 예에 따른 광 처리 조건 별 광합성율을 나타낸 그래프이다.
도 13은 식물에 보조광으로 광 처리를 시작하고 3일째 낮에 측정된 광합성률이다. 또한, 도 14는 식물에 보조광으로 광 처리를 시작하고 3일째 밤에 측정된 광합성율이다.
도 13을 참고하면, 실험군 1 내지 실험군 3의 낮 광합성률은 대조군과 유의미한 차이가 없다.
그러나 실험군 4의 낮 광합성률은 대조군보다 약 24%정도 높으며, 실험군 5의 낮 광합성률은 대조군보다 약 26%정도 높다.
또한, 도 14를 참고하면, 밤 광합성률은 LED를 통해 보조광이 제공된 실험군 2 내지 실험군 5가 보조광이 제공되지 않은 대조군 및 램프를 통해 보조광이 제공된 실험군 1보다 현격하게 높다.
특히, 보조광이 제공되지 않은 대조군의 경우 밤 광합성률은 마이너스 값을 가진다.
도 15는 본 발명의 실시 예에 따른 광 처리 조건 별 최대 양자 수율(Maximum quantum efficiency of photosystem, Fv/Fm)을 나타낸 그래프이다.
일반적으로 건강한 식물의 잎은 약 0.8~0.83정도의 최대 양자 수율의 값을 유지한다. 이보다 낮은 값을 갖는 경우 식물이 손상을 입거나 스트레스 환경에 있는 경우에 해당한다.
도 15를 참고하면, 실험군 1 내지 실험군 5는 12시간 동안 광 처리가 수행되었을 때, 대조군에 비해 최대 양자 수율 값이 감소한 것을 알 수 있다.
특히, 실험군 2의 경우 광 처리가 수행된지 12시간 후에 최대 양자 수율이 급격히 감소하였다.
그러나 실험군 1 내지 실험군 5는 광 처리 시간이 증가할수록 최대 양자 수율 값이 광 처리 12시간 때와 유사한 값을 유지하거나 조금은 증가한 경향을 보인다.
광 처리 시간이 168시간을 경과하였을 때, 실험군 2를 제외한 다른 실험군들의 최대 양자 수율 값은 대체적으로 서로 비슷한 수준을 유지하며, 대조군과도 큰 차이는 없었다.
이를 통해서, 식물은 초반에 보조광에 의한 스트레스를 받았다는 것을 알 수 있다. 또한, 보조광에 노출되는 시간이 증가할수록 보조광에 의한 스트레스가 초반보다는 감소한다는 것을 알 수 있다.
또한, 실험군 1, 실험군 3 내지 실험군 5의 경우 각각의 보조광에 의한 광 처리가 수행되었을 때, 식물의 스트레스 정도는 대조군과 비교하여 큰 차이가 없다는 것을 알 수 있다.
도 8 내지 도 15를 통해서 서로 다른 피크 파장을 갖는 각각의 보조광을 추가적으로 아이스플랜트에 제공하였을 때, 아이스플랜트의 생장 변화를 확인하였다.
도 8 내지 도 15의 생체중, 건물중, 광합성률 및 최대 양자 수율을 살펴보면, 실험군 3 내지 실험군 5는 대체적으로 대조구와 유사하거나 높은 생장률을 보인다는 것을 알 수 있다.
특히, 실험군 3 내지 실험군 5는 각각의 보조광에 의한 광 처리가 수행되어 식물의 생장이 향상되었다.
또한, 실험군 4 및 실험군 5는 각각의 보조광에 의한 광 처리가 수행되어 광합성률이 향상되었다.
즉, 375nm의 피크 파장을 갖는 제3 보조광, 385nm의 피크 파장을 갖는 제4 보조광 및 395nm의 피크 파장을 갖는 제5 보조광은 아이스플랜트의 생장 및 광합성을 향상시킬 수 있다는 것을 알 수 있다.
도 16 내지 도 18은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 기능성 물질 함량을 나타낸 그래프이다.
도 16은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 총 페놀 함량의 변화를 나타낸 그래프이다. 또한, 도 17은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 항산화도 변화를 나타낸 그래프이다.
도 16을 참고하면, 보조광에 의한 광 처리가 수행되고 3일째, 5일째 및 7일째에 실험군 1 내지 실험군 5의 총 페놀 함량은 모두 대조구보다 높게 나타났다.
도 17을 참고하면, 보조광에 의한 광 처리가 수행되고 5일째 및 7일째에 실험군 1 내지 실험군 5의 항산화도가 모두 대조구보다 높게 나타났다.
도 18은 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 PAL 활성을 나타낸 그래프이다.
도 18을 참고하면, 보조광에 의한 광 처리가 수행되고 1일째부터 실험군 1 내지 실험군 5의 PAL 활성이 모두 대조구보다 높게 나타난다.
또한, 광 처리가 수행되고 5일째부터는 실험군 1 내지 실험군 5의 PAL 활성이 대조구보다 유의미하게 높게 나타난다.
즉, 아이스플랜트에 추가적으로 보조광이 제공되고 5일째부터는 아이스플랜트가 보조광에 의한 스트레스를 극복하기 위해서 PAL 활성이 증가하게 된다는 것을 알 수 있다. 그 결과, 아이스플랜트는 보조광에 제공되고 5일째부터 기능성 물질인 총 페놀 함량과 항산화도가 모두 향상된다 할 수 있다.
도 8 내지 도 18을 통해서, 본 발명의 실시 예에 따른 보조광에 의해 광 처리 5일째부터 아이스플랜트의 생장을 향상시킬 수 있는 동시에 기능성 물질의 함량 역시 향상시킬 수 있다는 것을 알 수 있다.
도 19 내지 도 24는 본 발명의 실시 예에 따른 광 처리 조건 별 식물의 특정 물질의 함량을 나타낸 그래프이다.
아이스플랜트의 대표적인 기능성 물질로는 피니톨(pinitol), 미오 이노시톨(myo-inositol) 및 수크로스 (sucrose) 등을 포함하는 당알콜(sugar alcohol)이 있다. 이 당알콜은 혈당을 조절하는 물질로, 당뇨병 환자의 혈당 조절에 효과적인 물질이다.
본 실험에서는 보조광에 의한 광 처리 5일째부터 아이스플랜트의 대표적인 기능성 물질인 피니톨, 미오 이노시톨 및 수크로스의 함량 변화를 확인하였다.
도 19는 광 처리 조건 별로 단위 그램당 피니톨의 함량을 나타낸 그래프이며, 도 20은 광 처리 조건 별로 식물체(지상부)당 피니톨의 함량을 나타낸 그래프이다.
도 19 및 도 20을 참고하면, 대조군 및 실험군 1 내지 실험군 5는 모두 시간이 증가함에 따라 피니톨 함량이 증가하는 경향을 보이고 있다.
또한, 보조광이 제공된 실험군 1 내지 실험군 5는 모두 피니톨의 함량이 대조군보다 높게 나타난다.
특히, 실험군 3 내지 실험군 5는 단위 그램당 피니톨의 함량 및 식물체당 피니톨의 함량이 대조군보다 유의미하게 높게 나타난다.
도 21은 광 처리 조건 별로 단위 그램당 미오 이노시톨의 함량을 나타낸 그래프이며, 도 22는 광 처리 조건 별로 식물체(지상부)당 미오 이노시톨의 함량을 나타낸 그래프이다.
도 21 내지 도 22를 참고하면, 대조군, 실험군1, 실험군 3 내지 실험군 5는 시간이 증가함에 따라 미오 이노시톨의 함량이 증가하는 경향을 보이고 있다.
그러나 실험군 1 내지 실험군 3은 대조군보다 시간에 따른 미오 이노시톨의 함량 증가율이 낮다. 결국 7일째에는 실험군 1 내지 실험군 3의 미오 이노시톨의 함량은 대조군과 유사하거나 낮다.
즉, 실험군 4 및 실험군 5의 미오 이노시톨 함량이 대조군보다 유의미하게 높게 나타났다.
도 23은 광 처리 조건 별로 단위 그램당 수크로스의 함량을 나타낸 그래프이며, 도 24는 광 처리 조건 별로 식물체(지상부)당 수크로스의 함량을 나타낸 그래프이다.
도 23 및 도 24를 참고하면, 실험군 1 내지 실험군 5는 수크로스의 함량이 대조군보다 높거나 유사하다.
특히, 실험군 3 내지 실험군 5의 경우 단위 그램당 수크로스의 함량 및 식물체당 수크로스의 함량이 대조군보다 유의미하게 높다는 것을 알 수 있다.
또한, 도 23 및 도 24를 비교하면, 실험군 3 내지 실험군 5는 시간에 따라 단위 그램당 수크로스의 함량이 감소하지만, 식물체당 수크로스의 함량은 증가하는 경향을 보인다.
이를 통해서, 제3 보조광 내지 제5 보조광을 이용한 광 처리에 의해 식물의 생장이 증대되어 식물체당 수크로스의 함량이 향상된 것을 알 수 있다.
도 19 내지 도 24를 살펴보면, 실험군 4 및 실험군 5의 경우 아이스플랜트의 특징 물질인 피니톨, 미오 이노시톨 및 수크로스의 함량이 모두 대조군보다 유의미하게 높았다.
도 8 내지 도 24의 실험 결과를 통해서 385nm의 피크 파장을 갖는 보조광과 385nm의 피크 파장을 갖는 보조광이 다른 피크 파장을 갖는 보조광에 비해 아이스플랜트의 생장 및 특정 기능성 물질의 햠량을 모두 향상시킨다는 것을 알 수 있다.
즉, 식물을 재배할 때, 본 발명의 실시 예에 따른 보조광인 385nm 이상의 피크 파장을 갖는 청색광을 추가적으로 식물에 제공되는 경우, 인공 광원에서 방출되는 배경광으로 부족한 광 에너지를 식물에 제공하여 식물의 광합성을 향상시킬 수 있다. 이에 따라 식물의 생장이 향상될 수 있다.
또한, 본 발명의 실시 예에 따른 보조광인 385nm 이상의 피크 파장을 갖는 청색광을 추가적으로 식물에 제공되는 경우, 식물의 생장을 향상시키는 것뿐만 아니라 당알콜과 같은 특정 기능성 물질의 함량을 향상시킬 수 있다. 따라서, 본 발명의 실시 예에 따르면, 혈당 조절에 효과적인 당알콜의 함량이 증대된 식물 재배가 가능하다.
또한, 본 발명의 실시 예에 따른 보조광은 자외선 B보다 긴 파장대의 광이다. 따라서, 본 발명의 실시 예에 따른 보조광은 자외선 B의 큰 에너지에 의해서 식물이 손상되는 문제를 방지할 수 있다.
또한, 본 발명의 실시 예에 따른 보조광은 자외선 B가 아니기 때문에 식물을 재배하는 작업자가 자외선 B에 노출되는 위험을 역시 방지할 수 있다.
위에서 설명한 바와 같이 본 개시에 대한 자세한 설명은 첨부된 도면을 참조한 실시 예에 의해서 이루어졌지만, 상술한 실시 예는 본 개시의 바람직한 예를 들어 설명하였을 뿐이므로, 본 개시가 상기 실시 예에만 국한되는 것으로 이해돼서는 안 되며, 본 개시의 권리 범위는 후술하는 청구범위 및 그 등가개념으로 이해되어야 할 것이다.

Claims (18)

  1. 기판;
    상기 기판과 전기적으로 연결되며, 식물에 배경광을 제공하는 주 광원; 및
    상기 기판과 전기적으로 연결되며, 상기 식물에 보조광을 제공하는 보조 광원;을 포함하고,
    상기 배경광과 상기 보조광은 서로 다른 피크 파장을 가지며,
    상기 보조광은 상기 식물의 생장 및 특정 기능성 물질의 함량을 향상시키기 위한 자색 영역 내지 청색 영역을 사이의 피크 파장을 갖는 광을 포함하는 식물 재배용 광원 모듈.
  2. 청구항 1에 있어서,
    상기 주 광원은 백색광을 배경광으로 하여 상기 식물에 제공하는 식물 재배용 광원 모듈.
  3. 청구항 1에 있어서,
    상기 보조광은 380nm 내지 500nm 사이의 파장대에서 피크 파장을 갖는 식물 재배용 광원 모듈.
  4. 청구항 3에 있어서,
    상기 보조광은 385nm 및 395nm 중 적어도 하나의 피크 파장을 갖는 식물 재배용 광원 모듈.
  5. 청구항 1에 있어서,
    상기 주 광원은 12시간마다 배경광을 방출 및 중단을 반복하는 식물 재배용 광원 모듈.
  6. 청구항 1에 있어서,
    상기 보조 광원은 상기 식물을 수확하기 전에 상기 보조광을 연속 조사하는 식물 재배용 광원 모듈.
  7. 청구항 6에 있어서,
    상기 보조 광원은 상기 식물을 수확하기 전 5일 내지 7일 동안 상기 보조광을 상기 식물에 연속 조사하는 식물 재배용 광원 모듈.
  8. 청구항 1에 있어서,
    상기 보조광의 광 에너지는 30W/m2인 식물 재배용 광원 모듈.
  9. 청구항 1에 있어서,
    상기 식물은 아이스플랜트인 식물 재배용 광원 모듈.
  10. 청구항 9에 있어서,
    상기 식물의 상기 특정 기능성 물질은 피니톨, 미오 이노시톨 및 수크로스 중 적어도 하나를 포함하는 식물 재배용 광원 모듈.
  11. 식물에 12시간마다 배경광을 제공하고,
    상기 식물을 수확하기 전에 상기 식물에 상기 배경광과 서로 다른 피크 파장을 갖는 보조광을 연속으로 제공하며,
    상기 보조광은 청색으로 발광하는 광을 포함하는 식물의 생장 및 특정 기능성 물질의 함량을 향상시키는 식물 재배 방법.
  12. 청구항 11에 있어서,
    상기 배경광은 백색광인 식물의 생장 및 특정 기능성 물질의 함량을 향상시키는 식물 재배 방법.
  13. 청구항 11에 있어서,
    상기 보조광은 380nm 내지 500nm 사이의 파장대에서 피크 파장을 갖는 식물의 생장 및 특정 기능성 물질의 함량을 향상시키는 식물 재배 방법.
  14. 청구항 13에 있어서,
    상기 보조광은 385nm 및 395nm 중 적어도 하나의 피크 파장을 갖는 식물의 생장 및 특정 기능성 물질의 함량을 향상시키는 식물 재배 방법.
  15. 청구항 11에 있어서,
    상기 보조광은 상기 식물을 수확하기 전 5일 내지 7일 동안 상기 식물에 연속으로 제공되는 식물의 생장 및 특정 기능성 물질의 함량을 향상시키는 식물 재배 방법.
  16. 청구항 11에 있어서,
    상기 보조광의 광 에너지는 30W/m2인 식물의 생장 및 특정 기능성 물질의 함량을 향상시키는 식물 재배 방법.
  17. 청구항 11에 있어서,
    상기 식물은 아이스플랜트인 식물의 생장 및 특정 기능성 물질의 함량을 향상시키는 식물 재배 방법.
  18. 청구항 17에 있어서,
    상기 식물의 상기 특정 기능성 물질은 피니톨, 미오 이노시톨 및 수크로스 중 적어도 하나를 포함하는 물의 생장 및 특정 기능성 물질의 함량을 향상시키는 식물 재배 방법.
PCT/KR2022/005557 2021-04-19 2022-04-18 식물 재배용 광원 모듈 및 식물 재배 방법 WO2022225284A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22791984.2A EP4327649A1 (en) 2021-04-19 2022-04-18 Light source module for plant cultivation, and plant cultivation method
US18/556,264 US20240215495A1 (en) 2021-04-19 2022-04-18 Light source module for plant cultivation, and plant cultivation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0050459 2021-04-19
KR1020210050459A KR20220144151A (ko) 2021-04-19 2021-04-19 식물 재배용 광원 모듈 및 식물 재배 방법

Publications (1)

Publication Number Publication Date
WO2022225284A1 true WO2022225284A1 (ko) 2022-10-27

Family

ID=83722499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005557 WO2022225284A1 (ko) 2021-04-19 2022-04-18 식물 재배용 광원 모듈 및 식물 재배 방법

Country Status (4)

Country Link
US (1) US20240215495A1 (ko)
EP (1) EP4327649A1 (ko)
KR (1) KR20220144151A (ko)
WO (1) WO2022225284A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118760A1 (ja) * 2012-02-06 2013-08-15 ツジコー株式会社 アイスプラント由来の機能性素材の製法技術と機能性成分
JP2015167544A (ja) * 2014-03-10 2015-09-28 岡山県 連続光障害を発生する植物に対する植物栽培方法及び植物栽培装置
KR20150115388A (ko) * 2014-04-04 2015-10-14 농업회사법인 홍원(주) 폐쇄형 공간에서 인공광원을 이용한 아이스플랜트 육묘방법 및 아이스플랜트 육묘시설
KR20180073023A (ko) * 2016-12-22 2018-07-02 경상대학교산학협력단 엘이디광원을 이용한 아이스플랜트 재배방법
JP2018125237A (ja) * 2017-02-03 2018-08-09 宮崎県 多波長光源制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118760A1 (ja) * 2012-02-06 2013-08-15 ツジコー株式会社 アイスプラント由来の機能性素材の製法技術と機能性成分
JP2015167544A (ja) * 2014-03-10 2015-09-28 岡山県 連続光障害を発生する植物に対する植物栽培方法及び植物栽培装置
KR20150115388A (ko) * 2014-04-04 2015-10-14 농업회사법인 홍원(주) 폐쇄형 공간에서 인공광원을 이용한 아이스플랜트 육묘방법 및 아이스플랜트 육묘시설
KR20180073023A (ko) * 2016-12-22 2018-07-02 경상대학교산학협력단 엘이디광원을 이용한 아이스플랜트 재배방법
JP2018125237A (ja) * 2017-02-03 2018-08-09 宮崎県 多波長光源制御システム

Also Published As

Publication number Publication date
US20240215495A1 (en) 2024-07-04
EP4327649A1 (en) 2024-02-28
KR20220144151A (ko) 2022-10-26

Similar Documents

Publication Publication Date Title
WO2019203597A1 (ko) Uv를 이용한 식물 재배 방법 및 이를 위한 식물 재배 시스템
WO2020197284A1 (ko) 식물 재배 광원 및 식물 재배 장치
WO2020085782A1 (ko) 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기
WO2020040597A1 (ko) 식물 재배용 광원
WO2021194234A1 (ko) 기능성 물질의 함량을 증가시키는 식물 재배 방법
WO2017188719A1 (ko) 이고들빼기의 생장 및 생리활성 물질 증진 방법
WO2013183897A1 (ko) 과채류의 호르메시스 유도 장치
GB2353913A (en) Method for imager device color calibration utilizing light emitting diodes or other spectral light sources
WO2018230957A1 (ko) 파장변환필름을 포함하는 태양광 변환 장치
WO2019151823A1 (en) Illumination device, plant storage apparatus and method for higher retention of phytochemical content of plant
CN101808500A (zh) 植物病害防治用照明装置
WO2014069849A1 (ko) 인공광을 이용한 식물 재배기
WO2020032601A2 (ko) 식물 재배 장치 및 이를 이용한 재배 방법
WO2022225284A1 (ko) 식물 재배용 광원 모듈 및 식물 재배 방법
WO2021020856A1 (ko) 딸기 육묘용 led 조명장치
WO2017082691A1 (ko) 플라즈마 방전수를 이용한 콩나물 재배방법, 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법
WO2020036436A1 (ko) 광 조사 장치
WO2010147259A1 (ko) 태양광의 보광 도메인 영역 제어를 통한 led형 식물재배등용 조사각도 자동조절장치 및 방법
WO2020138947A1 (ko) 추가 기능을 갖는 led 조명 장치
WO2021201634A1 (ko) 식물 재배용 광원 및 이를 이용한 식물 재배 방법
WO2021162527A1 (ko) 식물 재배용 광원 장치
WO2021137676A1 (ko) 식물 재배용 광원
BR9104517A (pt) Composto;processo para controlar insetos e acaros;composicao para controle de insetos e acaros;processo para proteger plantas em crescimento;e processo para preparacao de um composto
WO2022164232A1 (ko) 식물 재배용 광원 모듈 및 그것을 포함하는 광원 장치
WO2024076222A1 (ko) 아우레오바시디움 플루란스 ak-10 균주의 배양액 또는 균주 배양액의 추출물을 포함하는 가뭄 스트레스 저감용 조성물, 및 가뭄 스트레스 저감 유도 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18556264

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317075401

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022791984

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022791984

Country of ref document: EP

Effective date: 20231120