WO2017082691A1 - 플라즈마 방전수를 이용한 콩나물 재배방법, 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법 - Google Patents

플라즈마 방전수를 이용한 콩나물 재배방법, 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법 Download PDF

Info

Publication number
WO2017082691A1
WO2017082691A1 PCT/KR2016/013032 KR2016013032W WO2017082691A1 WO 2017082691 A1 WO2017082691 A1 WO 2017082691A1 KR 2016013032 W KR2016013032 W KR 2016013032W WO 2017082691 A1 WO2017082691 A1 WO 2017082691A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
plasma
electrode
discharge
active
Prior art date
Application number
PCT/KR2016/013032
Other languages
English (en)
French (fr)
Inventor
김윤지
이은정
구옥경
김주성
Original Assignee
한국식품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150158915A external-priority patent/KR101782565B1/ko
Priority claimed from KR1020160149435A external-priority patent/KR101893657B1/ko
Application filed by 한국식품연구원 filed Critical 한국식품연구원
Publication of WO2017082691A1 publication Critical patent/WO2017082691A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G17/00Cultivation of hops, vines, fruit trees, or like trees
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a method for cultivating bean sprouts using plasma discharged water, a discharge gas generating device comprising active oxygen species and active nitrogen species in water using plasma, and more particularly, to cultivating large scale through sterilization of cultivated water. It is possible to circulate the cultivated water at the factory, and the method of cultivating bean sprouts using plasma discharge water to increase the concentration of physiologically active substances contained in soybean sprouts, and reactive oxygen species and active nitrogen species generated from dielectric barrier discharge plasma.
  • the present invention relates to an electrode and a gas pipe structure capable of smoothly being injected into water and a method of using the same.
  • Traditional bean sprout cultivation method uses a variety of active ingredients released from growing bean sprouts by re-cultivating the water used to produce the bean sprouts. Since there is an endogenous substance that suppresses the sprouting of soybean sprouts in the active ingredient, it is possible to exclude the use of pesticides (growth regulators, indole ratios) that are currently used to promote the growth of bean sprouts and to suppress the occurrence of soybean sprouts. Can dispel consumer distrust.
  • pesticides growth regulators, indole ratios
  • soybean sprouts contain bioactive substances such as vitamin C, minerals and amino acids. Especially, aspartic acid contained in soybean sprouts has the effect of relieving hangover and fatigue, and GABA, one of the neurotransmitters, has high blood pressure. It is known to be effective in prevention, mental stability and stress relief.
  • the conventional bean sprouts manufacturing technology is often focused on the technology for preventing contamination of the water or increasing the growth rate, and even if there is an attempt to effectively increase the concentration of nutrients contained in such bean sprouts.
  • a technique of increasing the functionality as a food of soybean sprouts by cultivating by adding various natural materials to the cultivation water is only known.
  • Plasma is applied to bio and environmental fields, and the research on active application of plasma is being actively conducted, as it is known that highly reactive reactive oxygen species and active nitrogen species generated by plasma cause microbial sterilization. Accordingly, sterilizing water is sometimes produced using plasma, and low temperature plasma is discharged at atmospheric pressure to be used for food sterilization.
  • Korean Patent No. 10-1461085 et al. Describes a technique for treating an atmospheric pressure low temperature plasma on a food surface. This method should be combined with conventional food washing to wash foreign substances with water. However, if the treated water using the discharge gas is used, the food treatment method will be performed with plasma sterilization at the same time as water washing. see.
  • the gas containing oxygen should be limited to a certain degree to the plasma discharge interval, and must be effectively delivered to the water without loss of the active species generated by the plasma.
  • the plasma apparatus for food non-heat sterilization which can be variously applied in real life, should also have electrical safety and thermal stability.
  • the active radicals generated by the plasma discharge must be rich, and the facts that the inventors found through practical experiments found that the hydroxyl groups are rather than the ozone generated by the plasma discharge. (OH -) or nitrogen oxide species (NOx -) to a higher treatment effect by.
  • ozone has a negligible effect on the processing of food ingredients, it has a problem of harming the respiratory health of workers, so that the desired treatment can be performed only by controlling the type and amount of radicals generated by the plasma discharge device.
  • the present invention has been made to solve the above problems, and aims to provide a bean sprout cultivation method that can be used by circulating the cultivation water by lowering the degree of contamination of the bean sprouts cultivation water, preventing the microbial growth.
  • Another object of the present invention is to provide a bean sprout cultivation method for increasing the concentration of the bioactive substance contained in the bean sprouts.
  • Still another object of the present invention is to provide a bean sprout cultivation method for improving the growth rate of bean sprouts.
  • An object of the present invention to improve the efficiency of generation of active oxygen species and active nitrogen species generated by the plasma, and finally to improve the efficiency of delivery to the water to provide a smooth food non-heating sterilization apparatus, based on this portability, electrical It is an object of the present invention to provide a plasma food material non-heat sterilization apparatus having both safety and thermal safety. That is, the main purpose of the present invention is to sterilize an object by injecting an active gas of plasma generated in air into the water for sterilization cleaning of food ingredients, processing equipment, environment, and tableware in water.
  • the present invention comprises the steps of preparing a plasma discharge water by discharging the plasma in water; And it provides a bean sprout cultivation method using the plasma discharge water comprising the step of cultivating the bean sprouts using the prepared plasma discharge water as the cultivation process water for cultivating the bean sprouts.
  • the present invention comprises the steps of: (a) injecting water into the plasma apparatus to discharge the plasma to produce plasma discharge water; (b) cultivating the bean sprouts using the prepared plasma discharge water as a cultivation process water for cultivating bean sprouts; (c) recovering the cultivation process number of step (b) and introducing the same into the plasma apparatus to discharge the plasma; (d) cultivating bean sprouts using the discharge water of step (c) as a circulating cultivation process water for cultivating bean sprouts; And (e) provides a method for cultivating bean sprouts using the plasma discharge water comprising the steps of repeating the steps (c) and (d).
  • the bioactive substance is characterized in that at least one member selected from the group consisting of vitamin C, aspartic acid and gamma aminobutyric acid ( ⁇ -Aminobutyric acid, GABA).
  • the plasma discharge may include at least one plasma electrode selected from a dielectric barrier discharge (DBD), a radio frequency (RF), a corona, and a microwave type.
  • DBD dielectric barrier discharge
  • RF radio frequency
  • corona corona
  • microwave type a plasma electrode selected from a dielectric barrier discharge (DBD), a radio frequency (RF), a corona, and a microwave type.
  • the plasma discharge is characterized in that the plasma electrode is placed in water, and then discharge gas is discharged for 3 to 7 minutes at an air velocity of 0.5 to 50 L / min.
  • the plasma discharge water cultivation circulation rate is characterized in that circulating water for 1 to 5 minutes cultivated water every 30 minutes to 2 hours.
  • an input voltage is 12 to 48 V
  • an output voltage is 2000 to 35000 V.
  • the input voltage is 110 to 380 V
  • the output voltage is 2000 to 35000 V.
  • the present invention improves the generation efficiency of reactive oxygen species and active nitrogen species by installing a dielectric tube that is in close contact with the outside of the electrode and a gas tube so that the injected gas passes only the section where the plasma is generated.
  • a dielectric tube that is in close contact with the outside of the electrode and a gas tube so that the injected gas passes only the section where the plasma is generated.
  • An external dielectric tube in which the first electrode and the second electrode are arranged in parallel with each other in a state of being put in each internal dielectric tube, and having a discharge gas supplied thereto;
  • a bubble diffuser connected to the outer dielectric tube end and submerged in water
  • a power supply connected to the electrode; and a plasma generating device is configured,
  • the plasma is discharged through the gas injected into the external dielectric tube to generate active species including at least one of hydroxyl group, reactive oxygen species or active nitrogen species, and injected into the water in the form of fine bubbles, thereby treating plasma Form,
  • the plasma generating apparatus generates a plasma of energy of 100 to 150 mJ / sec, sterilizes the target object by injecting active species including at least one of hydroxyl group, active oxygen species or active nitrogen species generated therefrom into water. It provides a cleaning method characterized in that the cleaning.
  • the to-be-processed object contains one or more of a foodstuff, a foodstuff processing tool, a foodstuff processing environment, a medical instrument, a medical device, or coatings.
  • An external dielectric tube in which the first electrode and the second electrode are arranged in parallel with each other in a state of being put in each internal dielectric tube, and having a discharge gas supplied thereto;
  • a bubble diffuser connected to the outer dielectric tube end and submerged in water
  • a power supply connected to the electrode; and a plasma generating device is configured,
  • the plasma is discharged through the gas injected into the external dielectric tube to generate active species including at least one of hydroxyl group, reactive oxygen species or active nitrogen species, and injected into the water in the form of fine bubbles, thereby treating plasma Form the
  • It provides a cleaning method characterized in that to wash the object to be treated with the plasma treated water.
  • An external dielectric tube in which the first electrode and the second electrode are arranged in parallel with each other in a state of being put in each internal dielectric tube, and having a discharge gas supplied thereto;
  • a bubble diffuser connected to the outer dielectric tube end
  • a plasma generator including a power supply connected to the electrode;
  • the bubble diffuser of the plasma generator is put in water
  • the plasma is discharged through the gas injected into the external dielectric tube to generate active species including at least one of hydroxyl group, reactive oxygen species or active nitrogen species, and injected into the water in the form of fine bubbles, thereby treating plasma Form,
  • Cleaning is characterized in that to generate a plasma of the energy of 100 to 150mJ / sec for the object to be treated, supplying the active species including at least one hydroxyl group, active oxygen species or active nitrogen species generated in water to sterilization and cleaning Provide the device.
  • an auxiliary electrode is formed outside the outer dielectric tube to improve the generation of active species including at least one of hydroxyl group, active oxygen species or active nitrogen species of plasma, and to clean the object to be injected into water. It provides a cleaning device characterized in that.
  • 1 is a schematic diagram of an apparatus for producing plasma discharge water for use as bean sprout cultivation water.
  • Figure 2 is a graph showing the change in the number of bacteria of sprouts cultivation water when grown at 25 °C room temperature.
  • Figure 3 is a graph showing the bacterial count changes according to the plasma underwater discharge treatment time of cultivated water grown with bean sprouts for one day.
  • Figure 4 is a graph showing the total number of cultivation changes when the culture solution was circulated irrigation for 5 days to 25 °C room temperature control and when the cultivation water supplied by plasma discharge twice a day.
  • 5 and 6 is a photograph of the bean sprouts harvested by cultivating the selected 100 soybeans with tap water (FIG. 5) or plasma underwater discharge (FIG. 6) for 5 days.
  • Figure 7 is a photograph of the bean sprouts harvested by cultivating the selected 100 soybeans with a tap water (Control) or plasma underwater discharge (Treatment) for 5 days.
  • FIG. 8 is a block diagram showing a plasma generating apparatus according to the present invention.
  • Figure 9 is a photograph showing the overall configuration of the plasma generating apparatus according to the present invention.
  • FIG. 10 is a device configuration and experimental condition table for an experiment for sterilizing the crops such as sesame leaves using the plasma generating apparatus according to the present invention.
  • FIG. 11 is a light-spectrum graph for analyzing a voltage-current graph applied to the plasma generator of FIG. 10 and active species generated from the plasma generator.
  • 12 is a device and conditions for measuring the concentration of active species NO 2 generated from a plasma generator in a discharge gas, and measurement results.
  • FIG. 13 is a graph illustrating changes in state of temperature, pH, and the like in water, including concentration change of active species according to voltage application time for a plasma generator.
  • Figure 14 is a picture showing that sterilized bacteria in water using the plasma generating apparatus of the present invention.
  • FIG. 15 is a photograph and a graph of an experiment in which bactericidal power was confirmed by treating plasma with sesame leaves infected with bacteria as in the experiment of FIG. 10.
  • FIG. 15 is a photograph and a graph of an experiment in which bactericidal power was confirmed by treating plasma with sesame leaves infected with bacteria as in the experiment of FIG. 10.
  • FIG. 16 is a front view and a cross-sectional view showing in detail the improved plasma electrode configuration according to the present invention, the auxiliary electrode formed on the outside of the outer outer dielectric tube of FIG.
  • 17 is a photograph showing that the plasma is discharged by applying power to the plasma electrode of FIG.
  • the present invention comprises the steps of preparing a plasma discharge water by discharging the plasma in water; And it relates to a bean sprout cultivation method using the plasma discharge water comprising the step of cultivating the bean sprouts using the prepared plasma discharge water as the cultivation process water for cultivating the bean sprouts.
  • the present invention is a cultivation method which can be applied to cultivate bean sprouts in a bean sprouts manufacturing plant, and in particular, a large-scale manufacturing plant cannot circulate the cultivated water due to contamination by cultivated water, According to the present invention, it is possible to reduce the contamination of cultivated water and to prevent the increase of microorganisms, and to solve such problems, as well as to increase the concentration of various bioactive substances contained in the cultivated bean sprouts. Bean sprouts can be grown.
  • sprouts such as bean sprouts synthesize various nutrients and bioactive substances for growth at the time of sprouting from seeds, it is possible to increase the concentration of bioactive substances synthesized by appropriately controlling the growing conditions.
  • the bioactive material that can be increased from the cultivation method may be a variety of bioactive materials contained in soybean sprouts, various kinds of amino acids, vitamins, minerals , For example aspartic acid, glutamic acid, asparagine, serine, glutamine, histidine, glycine, threonine, arginine, alanine, gamma-Amino Butyric Acid (GABA), tyrosine, valine, methionine, tryptophan, phenylalanine, isoleucine, leucine, lysine For example, proline, vitamin C and vitamin B1.
  • amino acids for example aspartic acid, glutamic acid, asparagine, serine, glutamine, histidine, glycine, threonine, arginine, alanine, gamma-Amino Butyric Acid (GABA), tyrosine, valine, methionine, tryptophan, phenylalanine, isoleucine,
  • the concentration may be increased by the cultivation method
  • Bioactive substances are especially vitamin C, aspartic acid or gamma aminobutyric acid ( ⁇ -Aminobutyric acid, GABA).
  • the plasma generating apparatus that can be used in the step of preparing the discharge water using the plasma can be used without limitation as long as the plasma generating apparatus can be installed in the water to perform the plasma discharge.
  • plasma electrodes such as dielectric barrier discharge (DBD), radio frequency (RF), low frequency (LF), corona, microwave type, etc.
  • DBD dielectric barrier discharge
  • RF radio frequency
  • LF low frequency
  • corona microwave type
  • the method for producing plasma discharge water using the DBD electrode is by placing the plasma electrode in the water, and then discharge the discharge gas for 3 to 7 minutes at an air speed of 0.5 to 50L / min Plasma discharge water can be produced.
  • the plasma discharged water may be circulated when used as cultivated water, and may be discarded after one use.
  • the plasma discharge water according to the cultivation method of the present invention can prevent the contamination and microbial growth of the cultivated water by plasma treatment, even when circulating the cultivated water can be used in an uncontaminated state, a large-scale manufacturing plant
  • by allowing the cultivation of the cultivated water can be obtained a variety of benefits by the cultivated circulation.
  • the bean sprout cultivation method for circulating the cultivation water may include the following configuration steps.
  • step (c) recovering the cultivation process number of step (b) and introducing the same into the plasma apparatus to discharge the plasma;
  • step (d) cultivating bean sprouts using the discharge water of step (c) as a circulating cultivation process water for cultivating bean sprouts;
  • the circulation rate of the cultivated water when the cultivated water is circulated and used, may be used within the range of the circulating speed used when cultivating the existing bean sprouts. One to five minutes of circulating water can be used every two hours.
  • the plasma generated discharge pressure is 12 to 48V when the input voltage is DC, 110 to 380V when AC is used, and the output voltage is within a range of 2000 to 35000V. It is desirable to treat the current to less than 2A. In the case of treatment with a voltage lower than the above voltage range, the concentration of the active species is low, which is not preferable.
  • a bean sprout cultivation water is prepared by placing a water and a plasma discharge device in an acryl bath and plasma discharge for 5 minutes.
  • 1 is a schematic diagram of an apparatus for producing plasma discharge water for use as bean sprout cultivation water.
  • Figure 2 measures the change in the number of bacteria of bean sprouts cultivation water when grown at 25 °C room temperature.
  • the bacterial count changes according to the plasma underwater discharge treatment time of the cultivated water grown with bean sprouts per day are shown in FIG. 3.
  • the number of plants grown to 7.4 log CFU / ml by daily cultivation decreased to 5.2 log CFU / ml after 1 minute plasma discharge.
  • the total bacterial count of cultivated water decreased to 3.1 log CFU / ml after 5 minutes.
  • Figure 4 is a graph showing the total number of cultivated bacteria changes when the culture solution is circulated irrigation for 5 days to 25 °C room temperature control and when the cultivation water supplied by plasma discharge twice a day.
  • Vitamin C content of soybean sprouts (control) grown with tap water and soybean sprouts grown with plasma underwater discharge water is shown in Table 1 by dividing them into cotyledon, hypocotyl, and root.
  • the content of vitamin C in soybean sprouts grown with plasma underwater discharge was higher in cotyledons, hypocotyls and roots than in tap sprouts grown with tap water.
  • Beans of the same shape, color, and size were selected and soaked in 100 grains, and after 5 days, the weight of 100 bean sprouts (tap water, plasma underwater discharge) was measured. As a result, the weight of soybean sprouts grown with plasma underwater discharged water increased more than that of tap water.
  • FIG. 5 and 6 is a photograph of the bean sprouts harvested by cultivating the selected 100 soybeans with tap water (FIG. 5) or plasma underwater discharge (FIG. 6) for 5 days. Bean sprouts grown with plasma underwater discharge water had longer axis and shorter root length than tap water.
  • FIG. 7 is a photograph of soybean sprouts harvested by cultivating the selected 100 soybeans with tap water (Control) or plasma underwater discharge (Treatment) for 5 days. Bean sprouts grown with plasma underwater discharge water are longer and grow taller than tap water.
  • the dielectric tube is formed to be in close contact with the outside of the electrode, and the gas pipe is installed so that the injected gas passes only the section where the plasma is generated, thereby increasing the generation efficiency of reactive oxygen species and active nitrogen species, and the discharge period.
  • the gas pipe is installed so that the injected gas passes only the section where the plasma is generated, thereby increasing the generation efficiency of reactive oxygen species and active nitrogen species, and the discharge period.
  • FIG. 8 shows a configuration of a plasma generator used to perform food non-heating pretreatment and sterilization using the plasma of the present invention.
  • Plasma generating device is to surround the linear electrode 100 in close contact with the dielectric tube 200, it is configured to be put in the gas tube (300).
  • the electrode since the coated wire is covered with a dielectric, the electrode may be put in a gas pipe.
  • the two electrodes 100 coated with a dielectric are bundled into a fixing member 400 made of an insulator ring, and placed in an insulator gas pipe 300, and a gas connecting pipe ( 500) was fixed.
  • An opening is provided at the front of the gas connection pipe 500 to allow gas to enter and exit.
  • the pair of electrodes are arranged side by side with each other to generate a plasma discharge between the two electrodes.
  • the first and second electrodes may be called, and the dielectric tube 200 may be referred to as an internal dielectric tube, and the gas tube 300 may be referred to as an external dielectric tube.
  • the output voltage is an alternating current of 100 kHz or less and is appropriately adjusted depending on the situation at about 2.75 kV to 10 kV. That is, it will selectively control the plasma energy to be applied according to the application, such as the volume of the object to be treated and the bacterial species to be treated.
  • the discharge gas uses air without a separate gas supply tank, and preferably, a fan (not shown) for blowing air into the gas pipe 300 may be installed. That is, plasma discharge occurs due to the electrode 100 to which air is introduced and a high voltage is applied by connecting a pipe having a fan to the gas pipe 300.
  • the plasma discharge generates active species including a large amount of active oxygen species and active nitrogen species, and microbubbles are formed when air containing active oxygen species and / or active nitrogen species is sent into the water due to a fan blowing action. .
  • Such microbubbles become a medium carrying reactive oxygen species and / or active nitrogen species and spread in the supplied water to impart bactericidal power.
  • the microbubble itself is a means of high concentration of radicals so that the water injected with active species gas containing it has a very effective sterilization effect. That is, each of the bubbles forms a kind of isolated system, and the active oxygen species and / or active nitrogen species contained therein are highly concentrated in the isolated system, and are transported in such a state to provide high concentration radicals to the object to be treated.
  • the injected gas is increased in the generation efficiency of the active oxygen species by installing a gas pipe so as to pass only the section in which the plasma is generated, and minimizes the length of the discharge section and the injection hole into the water to activate in the form of fine bubbles Oxygen species were allowed to be transferred into water to increase treatment efficiency.
  • FIG. 9 is a photograph showing the overall configuration of the plasma generating apparatus according to the present embodiment.
  • the plasma source portion, the sample processing chamber structure, the slidax power supply and the voltage transformer portion are shown.
  • the electrode configuration according to Figure 1 by connecting a bubble diffuser to one end can be used for water treatment.
  • the bubble diffuser is made of a porous ceramic, which is commercially available, and can be easily purchased at an aquarium supply store.
  • the electrode may be made of a conductor other than copper, and the inner quartz tube and the outer quartz tube may be made of another dielectric material such as glass or ceramic.
  • the plasma-treated bubble water generated using the plasma generator of the present invention was applied to sterilization treatment of sesame leaves.
  • Figure 10 shows the device configuration and experimental conditions table for the experiment for sterilizing the crops such as sesame leaves using the plasma generating apparatus according to the present invention.
  • the experimental apparatus shown in the upper left of FIG. 10 connects a bubble diffuser to the end of the plasma generator and introduces it into the water tank so that the active gas generated in the plasma into the water can enter the water in the form of fine bubbles, and the bacterial suspension in the water tank.
  • sesame leaves Perilla leaves infected with bacteria can also be added with DI water.
  • the energy supplied by the plasma was 120 mJ / sec, the same result can be obtained even from 100 to 150 mJ / sec.
  • the treatment time is preferably at least 30 seconds, a sufficient effect can be obtained within about 1 minute, and can be maintained for up to 300 seconds.
  • FIG. 11 shows a voltage-current graph applied to the plasma generator of FIG. 10 and a light spectrum graph for analysis of active species generated from the plasma generator.
  • the active species generates NO, NO2, NO2-, NO3-, active species by combining N2 * (N2 second positive system: 200-310nm band) and O (O: 777, 852 nm band).
  • N2 * N2 second positive system: 200-310nm band
  • O O: 777, 852 nm band
  • ozone is produced by the following reaction.
  • the measured NO2 concentration was about 115 ppm.
  • FIG. 13 is a graph illustrating changes in state of temperature, pH, and the like, including concentration change of active species according to voltage application time for a plasma generator. Data was collected with a maximum processing time of 300 seconds with 2.75 kV and 3.75 kV applied voltages. The concentrations of hydrogen peroxide, nitrogen monoxide and hydroxyl groups are shown. The applied voltage is only one experimental value, and 2.75 to 10 kV may be applied to give sterilizing power to the treated water having a capacity of about 50 ml. Ozone concentration was measured in the gas state with the applied voltage as a variable. The voltage shown in the graph of FIG. 13 is a slidax applied voltage.
  • the concentrations of hydrogen peroxide, nitrogen monoxide, and hydroxyl groups generated by plasma were found to be higher at 3.75 kV application than at 2.75 kV application, and the concentration increased as the treatment time increased.
  • the pH gradually decreased after 30 seconds of treatment, and the ozone concentration decreased with increasing applied voltage.
  • radicals which are more effective in food processing are preferably treated for 30 seconds to 3 minutes at an applied voltage higher than 2.75 kV based on 50 ml of treated water. see.
  • the capacity of the treated water increases, it is possible to cope with a plurality of plasma sources having the same structure or increasing the applied voltage.
  • hydroxyl and nitric oxide species have a microbial disinfection effect, while ozone has a slight disinfection effect.
  • the active species exhibit an scavenging reaction with respect to the antioxidant, it is preferable that the method of the present invention is applied to the initial stage treatment without cutting the food in terms of bactericidal effect and nutrition.
  • the ingredients are cleaned and / or sterilized using the above-mentioned plasma-treated water, and then cleaned with pure water to remove residual materials that may remain on the surface of the food. This can cause the problem of browning food ingredients.
  • Figure 14 is a photograph showing that the suspension of liquid cultured bacteria (Escherichia coli and Staphylococcus aureus) using the plasma generator of the present invention. It can be seen that the concentration of plasma treated bacteria was significantly lowered for 60 seconds.
  • liquid cultured bacteria Escherichia coli and Staphylococcus aureus
  • FIG. 15 is a photograph and a graph showing bacterial bactericidal power inoculated into sesame leaves through the experiment of FIG. 10. It was confirmed that the concentrations of bacteria (E. coli and S. aureus) of plasma-treated sesame leaves were significantly lowered for 1 minute.
  • FIG. 16 and 17 show a modified embodiment in which the plasma electrode configuration is modified and improved to generate more active discharge.
  • the plasma source portion, the slidax power supply and the voltage transformer are shown.
  • the electrode configuration of the plasma source portion is shown in detail in FIG. 16.
  • Two copper electrodes are placed in an insulator inner quartz tube, arranged side by side, and then placed in the outer quartz tube with the inner quartz tube in it. Both ends of the quartz tube are sandwiched by a silicone tube and covered with an insulator stopper (eg rubber, plastic, etc.).
  • an insulator stopper eg rubber, plastic, etc.
  • the auxiliary electrode made of copper was wound around the outer wall of the outer quartz tube.
  • One terminal of the power supply is also connected to the copper electrode wound on the outer wall of the outer quartz tube. That is, it can be seen that any one of the electrodes to which the AC power is applied is placed in the inner quartz tube and wound around the outer wall of the outer quartz tube.
  • the main discharge occurs between the electrodes arranged next to each other in the inner quartz tube, and the secondary discharge occurs between the electrode wound on the outer wall of the outer quartz tube and the opposite electrode in the inner quartz tube, so that the efficiency of the plasma discharge can be expected. Radicals may be produced.
  • the opposite electrode refers to an electrode in which the auxiliary electrode and the same terminal of the power supply are not connected.
  • a bubble diffuser can be connected to one end to be used for water treatment.
  • the bubble diffuser is made of a porous ceramic, which is commercially available and can be easily purchased for an aquarium.
  • the electrode may be made of a conductor other than copper, and the inner quartz tube and the outer quartz tube may be made of another dielectric material such as glass or ceramic.
  • radicals may be present in the remaining treated water, but they have very short half-lives to be discharged without undergoing a separate wastewater treatment step. It is very advantageous industrially and environmentally friendly in that it can be.
  • the effect of sterilization cleaning can be obtained by soaking or flowing food processing tools such as a cutting board using residual radicals in the remaining treated water. That is, after the remaining treated water is recycled, it can be discharged as general water rather than waste water.
  • a bean sprout cultivation method that can be used by circulating the cultivated water by lowering the pollution degree of the bean sprout cultivation water, preventing microbial growth, increasing the concentration of the bioactive material of the bean sprouts from the bean sprout cultivation method To improve the growth of bean sprouts.
  • the present invention does not need to install a separate gas supply container using air in the atmosphere as the discharge gas, so portability is very good. Due to the gas pipe structure, the discharged plasma gas is not lost and uniform and rich active oxygen species and active nitrogen species can be obtained according to the treatment time.
  • bacteria can be sterilized by plasma treated bubble water in about 30 seconds to 1 minute, which is very useful for sterilizing and washing food ingredients.
  • hydroxyl groups, nitrogen-activated species, etc. which are useful for sterilizing and cleaning food ingredients, and to lower the production rate of ozone, which is relatively low in usefulness and may harm the safety of workers. Can be processed.
  • the plasma treated water according to the present invention is short in the half-life of the active species compared to the washing water, such as food material by the chemical treatment is not remaining because it can be treated like general water without a separate waste water treatment step is useful industrially. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명은, 수중에 플라즈마를 방전하여 플라즈마 방전수를 제조하는 단계; 및 상기 제조된 플라즈마 방전수를 콩나물의 재배를 위한 재배공정수로 사용하여 콩나물을 재배하는 단계를 포함하는 플라즈마 방전수를 이용한 콩나물 재배방법에 관한 것이다. 본 발명에 의하면, 콩나물 재배수의 오염도 및 미생물 증식을 방지함으로써 재배수를 순환하여 사용할 수 있는 콩나물 재배방법을 제공할 수 있으며, 상기 콩나물 재배방법으로부터 콩나물의 생리활성물질의 농도를 증가시키고, 콩나물의 생장을 향상시킬 수 있다. 본 발명의 목적은 플라즈마에 의해 발생되는 활성산소종 및 활성질소종의 발생 효율을 높이고 최종적으로 수중으로의 전달 효율을 높여 원활한 비가열 식재료 살균 장치를 제공하고자 하며, 이를 기반으로 휴대성, 전기적 안전성, 열적 안전성 등을 모두 구비한 플라즈마 저온 식재료 살균 장치를 제공하고자 하는 것이다. 본 발명은, 전극 외측을 밀착하여 에워싸는 유전체 관과, 주입되는 가스가 플라즈마 발생 구간만을 지날 수 있도록 가스관을 설치함으로써 활성산소종 및 활성질소종의 발생 효율을 높였고, 방전 구간과 수중으로의 주입구까지의 길이를 최소화하여 미세 버블 형태로 활성산소종 및 활성질소종을 수중으로 전달되게 하여 처리 효율을 높였다. 또한 본 발명은 외부유전체관의 외부에 보조전극을 설치하여 활성산소종 및 활성질소종의 발생효율을 높이는 개선된 형태의 플라즈마 장치이다. 본 발명은 플라즈마 처리수를 식재료 살균에 적용하였다.

Description

플라즈마 방전수를 이용한 콩나물 재배방법, 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법
본 발명은 플라즈마 방전수를 이용한 콩나물 재배방법, 플라즈마를 이용한 수중 활성산소종 및 활성질소종을 포함하는 방전가스 발생 장치 및 그 사용방법에 관한 것으로, 보다 상세하게는 재배수의 살균을 통해 대규모 재배공장에서 재배수를 순환하여 사용할 수 있도록 하며, 콩나물에 함유되어 있는 생리활성물질의 농도를 증가시킬 수 있는 플라즈마 방전수를 이용한 콩나물 재배방법 및 유전체 장벽 방전 플라즈마로부터 발생 된 활성산소종 및 활성질소종 등이 원활하게 수중으로 주입될 수 있는 전극 및 기체 관 구조와 이를 활용하는 방법에 관한 것이다.
전통적 콩나물 재배방법은 콩나물 생산에 사용한 물을 다시 사용하여 재배함으로 생육 중인 콩나물에서 배출되는 여러 가지 유효성분을 활용하는 방식을 이용한다. 이러한 유효성분에는 콩나물 잔뿌리 발생을 억제시키는 내생물질이 존재하므로 현재 콩나물 생장촉진과 잔뿌리 발생을 억제하기 위하여 사용하는 농약(생장조절물질, 인돌비)의 사용을 배제할 수 있어 콩나물의 식품안정성에 대한 소비자의 불신을 해소할 수 있다.
이러한 방식을 활용하여 상업적 규모로 콩나물을 재배할 경우 생육 중인 콩나물에서 분비되는 부유성 유기성분 또는 부패성 미생물의 밀도가 증가하여 재배중인 콩나물의 부패를 조장하거나 재배수가 지나치게 혼탁하게 되는 문제점이 있다. 따라서 이를 해결하기 위하여, 대규모로 콩나물을 제조하는 제조공장에서는 콩나물의 재배수를 순환하여 사용하지 않고 1회 재배수로 사용된 용수는 회수하지 아니하고 새로운 용수를 재배수로 사용하고 있다. 또한 콩나물 재배수에 의한 재배공정라인의 오염 및 미생물 증식에 의한 부패 때문에, 생산라인을 하루도 정지시키는 것이 불가능하여 1년 365일 생산라인을 운전시켜야 함으로써 공정 장비 및 작업자들의 피로도가 상승하는 문제점이 발생되었다.
따라서, 콩나물 재배수의 오염도 및 미생물 증식을 방지하면서, 전통적으로 재배한 콩나물의 관능적 품질을 유지할 수 있는 재배방법에 대한 필요성이 높아지고 있다.
한편, 콩나물에는 비타민 C, 미네랄, 아미노산 등의 생리활성물질이 함유되어 있으며, 특히 콩나물에 함유된 아스파라긴산은 숙취해소 및 피로회복의 효능을 가지고 있으며, 신경전달물질 중 하나인 가바(GABA)는 고혈압 예방, 정신 안정, 스트레스 완화 등의 효능이 있다고 알려져 있다.
그러나 종래의 콩나물 제조기술은 재배수 오염 방지 기술 혹은 성장률을 증대시키는 기술에 치우쳐 있는 것이 많았으며, 설사 이와 같은 콩나물에 함유되어 있는 영양물질의 농도를 효과적으로 증대시키기 위한 시도가 있다 하더라도, 주로 콩나물의 식품 기능성을 보강하기 위하여 재배수에 다양한 천연물질을 첨가하여 재배함으로써 콩나물의 식품으로서의 기능성을 높이는 기술이 공지되어 있을 뿐이었다.
플라즈마를 바이오 및 환경 분야에 적용하여 플라즈마에 의해 생성되는 반응성이 강한 활성산소종 및 활성질소종이 미생물 살균 작용을 일으킨다는 점이 알려져 플라즈마 응용 연구가 활발하게 진행되고 있다. 그에 따라 플라즈마를 이용하여 살균수를 제조하기도 하고, 대기압에서 저온 플라즈마를 방전시켜 식재료 살균에 이용하고 있다. 대한민국 특허 제10-1461085호 등은 대기압 저온 플라즈마를 식재료 표면에 처리하는 기술에 대해 기재한다. 이러한 방법은 이물질 등을 물로 세척하는 통상적인 식재료 세척과 병행되어야 하지만 방전가스를 이용한 처리수를 이용할 경우 물 세척과 동시에 플라즈마 살균 처리가 이루어지는 식재료 처리 방법이므로 대상물 특성에 따라 더욱 산업적 활용가치가 높을 것으로 보인다.
플라즈마 방전에 의한 활성종의 생성효율을 높이려면 플라즈마 방전 구간에 대해 산소를 포함한 기체가 어느 정도 밀폐되어 한정되어야 하고, 플라즈마에 의해 생성된 활성종들의 손실 없이 수중으로 효과적으로 전달되어야 한다.
또한, 장치의 휴대성을 부여해야 활용도가 높아지므로 가스 공급기를 없애고 대기를 이용하는 것이 바람직하므로 가스가 존재하는 공간의 한정성과 양립하는 플라즈마 발생장치를 요한다.
추가적으로, 실생활에 다양하게 적용될 수 있는 식재료 비가열 살균용 플라즈마 장치는 전기적인 안전성과 열적 안정성도 구비하여야 한다.
한편, 다양한 식재료에 대해 세정과 살균 효과를 나타내기 위해서는 플라즈마 방전에 의해 생성되는 활성 라디칼이 풍부해야 하는 것은 물론, 실질적인 실험을 통해 본 발명자들이 발견한 사실은 플라즈마 방전에 의해 생성된 오존보다 오히려 수산기(OH-) 또는 산화질소종(NOx-)에 의한 처리효과가 더 높다는 것이다.
오존의 식재료 처리 효과는 미미 한데 비해, 작업자의 호흡기 건강을 해할 수 있다는 문제점을 지니고 있어 플라즈마 방전 장치에 의해 생성되는 라디칼의 종류와 양을 제어해야만 실질적으로 원하는 처리를 할 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 콩나물 재배수의 오염도를 낮추고, 미생물 증식을 방지함으로써 재배수를 순환하여 사용할 수 있는 콩나물 재배방법을 제공하는 것을 그 목적으로 한다.
본 발명의 다른 목적은 콩나물에 함유되어 있는 생리활성물질의 농도를 증가시키는 콩나물 재배방법을 제공하는 것이다.
본 발명의 또 다른 목적은 콩나물의 생장률을 향상시키는 콩나물 재배방법을 제공하는 것이다.
본 발명의 목적은 플라즈마에 의해 발생 되는 활성산소종 및 활성질소종 등의 발생 효율을 높이고 최종적으로 수중으로의 전달 효율을 높여 원활한 식재료 비가열 살균 장치를 제공하고자 하며, 이를 기반으로 휴대성, 전기적 안전성, 열적 안전성 등을 모두 구비한 플라즈마 식재료 비가열 살균 장치를 제공하고자 하는 것이다. 즉, 본 발명의 주목적은 물속에 들어있는 식재료와 가공장비 및 환경, 식기 등의 살균 세척을 위해 공기 중에서 발생 된 플라즈마의 활성기체를 수중에 주입시켜 대상물을 살균하고자 함이다.
본 발명은 상기의 목적을 달성하기 위하여, 수중에 플라즈마를 방전하여 플라즈마 방전수를 제조하는 단계; 및 상기 제조된 플라즈마 방전수를 콩나물의 재배를 위한 재배공정수로 사용하여 콩나물을 재배하는 단계를 포함하는 플라즈마 방전수를 이용한 콩나물 재배방법을 제공한다.
본 발명은 상기의 목적을 달성하기 위하여, (a) 플라즈마 장치에 용수를 투입한 후 플라즈마를 방전시켜 플라즈마 방전수를 제조하는 단계; (b) 상기 제조된 플라즈마 방전수를 콩나물의 재배를 위한 재배공정수로 사용하여 콩나물을 재배하는 단계; (c) 상기 (b)단계의 재배공정수를 회수하여 상기 플라즈마 장치에 투입한 후 플라즈마를 방전시키는 단계; (d) 상기 (c)단계의 방전수를 콩나물의 재배를 위한 순환 재배공정수로 사용하여 콩나물을 재배하는 단계; 및 (e) 상기 (c)단계 및 (d)단계를 반복하여 실시하는 단계를 포함하는 플라즈마 방전수를 이용한 콩나물 재배방법을 제공한다.
또한, 상기 재배방법에 의하여 콩나물의 생리활성물질의 농도를 증대시키는 것을 특징으로 한다.
또한, 상기 생리활성물질은 비타민 C, 아스파라긴산 및 감마아미노부티르산(γ-Aminobutyric acid, GABA)으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 한다.
또한, 상기 플라즈마 방전은 유전체장벽방전(dielectric barrier discharge, DBD), RF(radio frequency), 코로나(corona), 마이크로웨이브(microwave) type 중 선택되는 1종 이상의 플라즈마 전극을 이용하는 것을 특징으로 한다.
또한, 상기 플라즈마 방전은 플라즈마 전극을 용수에 넣은 다음, 방전 가스를 0.5 내지 50L/min의 공기속도로 3 ~ 7분 동안 방전처리하는 것을 특징으로 한다.
또한, 상기 플라즈마 방전수 재배 순환 속도는 재배수를 30분~ 2시간마다 1~5분씩 순환 관수하는 것을 특징으로 한다.
또한, 상기 플라즈마 발생 방전시 직류의 경우 인풋(Input) 전압이 12 ~ 48 V, 아웃풋(Output) 전압이 2000 ~ 35000V의 인 것을 특징으로 한다.
또한, 상기 플라즈마 발생 방전시 교류인 경우 인풋(Input) 전압이 110 ~380 V이고, 아웃풋(Output) 전압이 2000 ~ 35000V의 인 것을 특징으로 한다.
상기 목적에 따라 본 발명은 전극 외측을 밀착하여 에워싸는 유전체관과, 주입되는 가스가 플라즈마가 발생 되는 구간만을 지날 수 있도록 가스관을 설치함으로써 활성산소종 및 활성질소종 등의 발생 효율을 높였고, 방전 구간과 수중으로의 주입구까지의 길이를 최소화하여 미세 버블 형태로 활성산소종 및 활성질소종 등을 수중으로 전달되게 하여 처리 효율을 높였다.
즉, 본 발명은,
각각의 내부 유전체 관에 넣어진 제1 전극과 제2 전극;
상기 제1 전극과 제2 전극이 각각의 내부 유전체 관에 넣어진 상태로 서로 나란히 배열되어 내장되며, 방전 가스가 공급되는 외부 유전체 관;
상기 외부 유전체 관 단부에 접속되며, 물속에 넣어지는 버블 디퓨저; 및
상기 전극에 접속되는 전원;을 포함하여 플라즈마 발생장치가 구성되고,
피처리물인 식재료, 식재료 처리도구 또는 식기를 물에 넣고,
전극에 인가된 전압으로 인해 외부 유전체관 내에 주입된 가스를 통해 플라즈마가 방전되어 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들이 생성되어 물속으로 미세 버블 형태로 주입되어 플라즈마 처리수를 형성하되,
상기 플라즈마 발생장치에 의해 100 내지 150mJ/sec의 에너지의 플라즈마를 생성시켜, 이로부터 발생된 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들을 수중에 주입시킴으로써 피처리물을 살균 및 세정하는 것을 특징으로 하는 세정방법을 제공한다.
상기에 있어서, 상기 피처리물은, 식재료, 식재료 처리도구, 식재료 처리환경, 의료기구, 의료기기 또는 피복류 중 하나 이상을 포함한다.
상기에 있어서, 플라즈마로부터 발생 된 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들을 수중에 적어도 30초 동안 주입하여 살균 및 세정하는 것을 특징으로 하는 세정방법을 제공한다.
상기에 있어서, 120 내지 150mJ/sec의 에너지로 플라즈마를 발생시켜, 생성되는 활성종 중 오존의 농도를 낮추고 수산기 또는 활성질소종들의 농도를 높여 살균 및 세정하는 것을 특징으로 하는 세정방법을 제공한다.
또한, 본 발명은,
각각의 내부 유전체 관에 넣어진 제1 전극과 제2 전극;
상기 제1 전극과 제2 전극이 각각의 내부 유전체 관에 넣어진 상태로 서로 나란히 배열되어 내장되며, 방전 가스가 공급되는 외부 유전체 관;
상기 외부 유전체 관 단부에 접속되며, 물속에 넣어지는 버블 디퓨저; 및
상기 전극에 접속되는 전원;을 포함하여 플라즈마 발생장치가 구성되고,
수조에 물을 채우고 상기 버블 디퓨저를 물에 넣고,
전극에 인가된 전압으로 인해 외부 유전체관 내에 주입된 가스를 통해 플라즈마가 방전되어 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들이 생성되어 물속으로 미세 버블 형태로 주입되어 플라즈마 처리수를 형성하고,
상기 플라즈마 처리수로 피처리물을 세척하는 것을 특징으로 하는 세정방법을 제공한다.
또한, 본 발명은,
각각의 내부 유전체 관에 넣어진 제1 전극과 제2 전극;
상기 제1 전극과 제2 전극이 각각의 내부 유전체 관에 넣어진 상태로 서로 나란히 배열되어 내장되며, 방전 가스가 공급되는 외부 유전체 관;
상기 외부 유전체 관 단부에 접속되는 버블 디퓨저 및
상기 전극에 접속되는 전원을 포함하는 플라즈마 발생장치와,
수조를 포함하여,
피처리물인 식재료, 식재료 처리도구 또는 식기를 수조 안의 물에 넣고,
상기 플라즈마 발생장치의 버블 디퓨저는 물에 넣어져,
전극에 인가된 전압으로 인해 외부 유전체관 내에 주입된 가스를 통해 플라즈마가 방전되어 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들이 생성되어 물속으로 미세 버블 형태로 주입되어 플라즈마 처리수를 형성하되,
피처리물에 대해 100 내지 150mJ/sec의 에너지의 플라즈마를 발생시켜 이로부터 발생 된 수산기, 활성산소종 또는 활성질소종을 하나 이상 포함한 활성종들을 수중으로 공급하여 살균 및 세정하는 것을 특징으로 하는 세정장치를 제공한다.
상기에 있어서, 외부 유전체관의 외부에 보조전극을 형성하여, 플라즈마의 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들을 생성을 향상시켜 물속에 주입하는 형태로 피 처리물을 세정하는 것을 특징으로 하는 세정장치를 제공한다.
도 1은 콩나물 재배수로 사용하기 위한 플라즈마 방전수를 제조하는 장치의 도식도.
도 2는 25℃ 상온에서 재배시 콩나물 재배수의 균수의 변화를 나타낸 그래프.
도 3은 콩나물을 1일 재배한 재배수의 플라즈마 수중방전 처리 시간에 따른 균수 변화를 나타낸 그래프.
도 4는 25℃ 상온에서 대조구로 5일간 배양액이 순환 관수된 경우와 재배수를 1일 2회 플라즈마 수중방전 처리하여 공급한 경우의 재배수 총균수 변화를 나타낸 그래프.
도 5 및 도 6은 선발된 100립의 콩을 수돗물(도 5) 또는 플라즈마 수중방전수(도 6)로 5일 재배하여 수확한 콩나물 사진.
도 7은 선발된 100립의 콩을 수돗물(Control) 또는 플라즈마 수중방전수(Treatment)로 5일 재배하여 수확한 콩나물 사진.
도 8은 본 발명에 따른 플라즈마 발생장치를 보여주는 구성도.
도 9는 본 발명에 따른 플라즈마 발생장치에 구성을 전체적으로 보여주는 사진.
도 10은 본 발명에 따른 플라즈마 발생장치를 이용하여 깻잎 등의 농작물에 대해 살균 처리하는 실험에 대한 장치 구성과 실험 조건표.
도 11은 도 10의 플라즈마 발생장치에 인가된 전압-전류 그래프와 플라즈마 발생장치로부터 발생되는 활성종에 대한 분석을 위한 광 스펙트럼 그래프.
도 12는 플라즈마 발생장치로부터 발생 되는 활성종 NO2의 농도를 방전기체 중에서 측정하기 위한 장치와 조건 및 측정 결과.
도 13은 플라즈마 발생장치에 대한 전압 인가 시간에 따른 활성종의 농도 변화를 비롯하여 온도, pH 등의 상태 변화를 수중에서 측정한 그래프들.
도 14는 본 발명의 플라즈마 발생장치를 이용하여 수중에서 박테리아를 살균한 것을 보이는 사진들.
도 15는 도 10의 실험과 같이 박테리아에 감염된 깻잎에 플라즈마를 처리하여 살균력을 확인한 실험에 대한 사진 및 그래프.
도 16은 본 발명에 따른, 개선된 플라즈마 전극 구성을 상세히 보여주는 정면도와 단면도로서, 도 8의 바깥쪽 외부 유전체관의 외부에 보조 전극을 형성해 준 상태.
도 17은 도 16의 플라즈마 전극에 전원을 인가하여 플라즈마가 방전되는 것을 보여주는 사진.
[부호의 설명]
100: 전극(제 1 전극, 제 2 전극)
200: 유전체 관(내부 유전체 관)
300: 가스관(외부 유전체 관)
400: 고정부재
500: 가스 연결관
600: 디퓨저
본 발명은, 수중에 플라즈마를 방전하여 플라즈마 방전수를 제조하는 단계; 및 상기 제조된 플라즈마 방전수를 콩나물의 재배를 위한 재배공정수로 사용하여 콩나물을 재배하는 단계를 포함하는 플라즈마 방전수를 이용한 콩나물 재배방법에 관한 것이다.
이하, 본 발명을 첨부한 도면을 참조하여 상세히 설명한다.
본 발명은 콩나물의 제조공장에서 콩나물을 재배하는 데에 적용할 수 있는 재배방법으로서, 특히 대규모 제조공장에서 재배수에 의한 오염 때문에 재배수를 순환시켜 사용하지 못하는 실정인데, 본 발명의 재배방법에 의하면 재배수의 오염도를 낮출 수 있고, 미생물의 증가를 방지하게 됨으로써 이와 같은 문제점을 해결할 수 있을 뿐만 아니라, 재배된 콩나물에 함유되는 여러 가지 생리활성물질의 농도를 증가시킬 수 있으므로 영양성분이 풍부한 기능성 콩나물을 재배할 수 있게 된다.
콩나물과 같은 새싹은 씨앗에서 싹이 트는 시기에 성장을 위하여 각종 영양소와 생리 활성물질을 합성하기 때문에, 재배조건을 적절하게 조절함으로써 합성되는 생리활성물질의 농도를 증가시킬 수 있다.
본 발명의 일실시예에 있어서, 상기 재배방법으로부터 증가시킬 수 있는 생리활성물질은 콩나물에 함유되어 있는 여러 가지 생리활성물질이 그 대상이 될 수 있는데, 다양한 종류의 아미노산, 비타민, 미네랄이 해당되며, 예를 들어 aspartic acid, glutamic acid, asparagine, serine, glutamine, histidine, glycine, threonine, arginine, alanine, gamma-Amino Butyric Acid(GABA), tyrosine, valine, methionine, tryptophan, phenylalanine, isoleucine, leucine, lysine, proline, 비타민 C, 비타민 B1 등을 예로 들 수 있다.
본 발명의 일실시예에 있어서, 상기 재배방법에 의하여 농도가 증가될 수 있는 생리활성물질은 특히 비타민 C, 아스파라긴산 또는 감마아미노부티르산(γ-Aminobutyric acid, GABA)이다.
본 발명의 일실시예에 있어서, 상기 플라즈마를 이용하여 방전수를 제조하는 단계에서 사용될 수 있는 플라즈마 발생 장치는 수중에 플라즈마 발생장치를 설치하여 플라즈마 방전을 행할 수 있는 것이면 제한 없이 사용 가능하며, 예를 들어 유전체장벽방전(dielectric barrier discharge, DBD), RF(radio frequency), LF(low frequency), 코로나(corona), 마이크로웨이브(microwave) type 등 플라즈마 전극을 사용하여 활성종의 비율을 조절함으로써 다양하게 이용할 수 있으며, 이 중에서 특히 유전체장벽방전(dielectric barrier discharge, DBD) 방식을 이용하는 것이 바람직하다.
본 발명의 일실시예로서, 상기 DBD 전극을 사용하여 플라즈마 방전수를 제조하는 방법은 플라즈마 전극을 용수에 넣은 다음, 방전 가스를 0.5 내지 50L/min의 공기속도로 3 ~ 7분 동안 방전 처리함으로써 플라즈마 방전수를 제조할 수 있다.
본 발명의 일실시예로서, 상기 플라즈마 방전수는 재배수로서 사용될 때에 순환하여 사용될 수 있으며, 1회 사용 후 폐기될 수도 있다. 특히 본 발명의 재배방법에 따른 플라즈마 방전수는 플라즈마 처리에 의하여 재배수의 오염도 및 미생물 증식을 방지할 수 있으므로, 재배수를 순환하여 사용하는 경우에도 오염되지 않은 상태로 사용할 수 있으므로, 대규모 제조공장에서도 재배수의 순환재배가 가능하도록 함으로써 순환재배에 의한 다양한 이점을 얻을 수 있도록 할 수 있다.
본 발명의 일실시예로서, 상기 재배수를 순환시키는 콩나물 재배 방법은 다음과 같은 구성 단계를 포함할 수 있다.
(a) 플라즈마 장치에 용수를 투입한 후 플라즈마를 방전시켜 플라즈마 방전수를 제조하는 단계;
(b) 상기 제조된 플라즈마 방전수를 콩나물의 재배를 위한 재배공정수로 사용하여 콩나물을 재배하는 단계;
(c) 상기 (b)단계의 재배공정수를 회수하여 상기 플라즈마 장치에 투입한 후 플라즈마를 방전시키는 단계;
(d) 상기 (c)단계의 방전수를 콩나물의 재배를 위한 순환 재배공정수로 사용하여 콩나물을 재배하는 단계; 및
(e) 상기 (c)단계 및 (d)단계를 반복하여 실시하는 단계
본 발명의 일실시예로서 재배수를 순환하여 사용하는 경우, 재배수의 순환 속도는 기존의 콩나물 재배시 사용되는 순환 속도 범위 내에서 사용할 수 있으며, 예를 들어 재배수를 재배수를 30분~ 2시간마다 1~5분씩 순환 관수하는 방법을 사용할 수 있다.
본 발명의 일실시예로서 상기 DBD 전극 사용시 플라즈마 발생 방전 압력은 인풋(Input) 전압이 직류인 경우 12 ~ 48V, 교류인 경우 110 ~ 380V 이고, 아웃풋(Output) 전압이 2000 ~ 35000V의 범위 내이며, 전류는 2A 미만으로 처리하는 것이 바람직하다. 상기 전압 범위보다 낮은 전압으로 처리하는 경우 활성종의 농도가 낮으므로 바람직하지 못하며, 전류가 2A 이상인 경우 높아져 작업자의 안전 측면에서 바람직하지 못하다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
[실시예]
1) 플라즈마 방전수 제조
a 플라즈마 방전 방식: Dielectric barrier discharge (DBD)
powered electrode와 ground electrode 사이에 dielectric으로 quartz tube 사용.
b. 플라즈마 방전 가스: air (5 L/min)
c. 콩나물 재배를 위한 플라즈마 처리 재배수 제조방법: 아크릴 배쓰(acryl bath)에 용수 및 플라즈마 방전 장치를 넣어 5분간 플라즈마 방전하여 콩나물 재배수를 제조한다.
도 1은 콩나물 재배수로 사용하기 위한 플라즈마 방전수를 제조하는 장치의 도식도이다.
상기 장치의 구체적인 스펙은 다음과 같다.
(1) Input voltage : 220 V(AC power)
(2) Output voltage : 18 kV
(3) Gas : Clean dry air
(4) Gas flow rate : 5L/min
(5) Quartz tube diameter : 20mm
(6) Powered electrode diameter : 7mm
(7) Powered electrode length : 360mm
(8) Powered electrode composition : Copper
(9) Ground electrode composition : Copper
(10) Tap water volume : 8L
(11) Dimensions of acryl bath : 450200155 mm3
(12) Tap water temperature : 20℃
2) 플라즈마 수중방전수를 이용한 콩나물 재배수 살균효과
수돗물 2 L를 콩나물 자동 재배기에 넣고 30분에 1분씩 순환 관수되도록 설정하였다. 이때 순환 관수하는 재배수의 균수 변화를 도 2에 나타내었다. 재배수의 균수는 재배시간이 증가함에 따라 점차 증가하여 재배 9시간에 7 log CFU/ml수준으로 증가하였다.
도 2는 25℃ 상온에서 재배시 콩나물 재배수의 균수의 변화를 측정한 것이다.
콩나물을 1일 재배한 재배수의 플라즈마 수중방전 처리 시간에 따른 균수 변화를 도 3에 나타내었다. 1일 재배로 7.4 log CFU/ml 수준으로 증가한 재배수를 플라즈마 수중방전 1분 처리 시 5.2 log CFU/ml 수준으로 감소하였다. 플라즈마 수중방전 처리시간이 증가함에 따라 재배수의 총균수는 감소하여 5분 처리 시 3.1 log CFU/ml 수준으로 감소하였다.
콩나물 재배를 위해 자동 재배기에 콩나물 100립을 치상하여 재배수가 30분마다 1분씩 순환 관수되도록 설정하였다. 도 4는 25℃ 상온에서 대조구로 5일간 배양액이 순환 관수된 경우와 재배수를 1일 2회 플라즈마 수중방전 처리하여 공급한 경우의 재배수 총균수 변화를 나타낸 그래프이다.
3) 플라즈마 수중방전수로 재배된 콩나물의 특성
수돗물로 재배한 콩나물 (대조구)과 플라즈마 수중방전수로 재배한 콩나물의 비타민 C 함량 결과를 자엽 (cotyledon), 배축 (hypocotyl), 뿌리 (root)로 나누어 표 1에 나타내었다. 수돗물로 재배한 콩나물보다 플라즈마 수중방전수로 재배한 콩나물의 비타민 C 함량이 자엽, 배축, 뿌리에서 각각 높게 나타났다.
Tap water Underwater plasma treated water
Cotyledon HypocotylRoot 70.30 5.09 2.62 74.15* 5.65* 2.86
(단위: mg/100 g)(P<0.05)
수돗물로 재배한 콩나물(대조구)과 플라즈마 수중방전수로 재배된 콩나물의 자엽, 배축, 뿌리의 아미노산 함량을 측정하였다(표 2). 그 결과 아스파라긴(asparagine)과 가바(GABA)의 함량이 플라즈마 수중방전수로 재배한 콩나물의 자엽, 배축, 뿌리에서 각각 대조구보다 높게 나타났다.
Cotyledon Hypocotyl Root
Tap water underwater plasma treated water Tap water underwater plasma treated water Tap water underwater plasma treated water
Aspartic acidGlutamic acidAsparagineSerineGlutamineHistidineGlycineThreonineArginineAlanineGABATyrosineValineMethionineTryptophanePhenylalanineIsoleucineLeucineLysineProline 0.5 2.6 31.8 1.6 0.4 2.9 0.2 0.7 3.3 0.8 2.1 0.2 1.1 0.1 1.4 2.0 0.8 0.6 0.3 0.5 0.5 3.0 40.6* 1.9* 0.4 3.3 0.2 0.9* 4.6* 0.9 2.5* 0.2 1.3 0.2* 1.7* 2.6* 1.0* 0.8* 0.4 0.7 0.6 0.5 108.7 7.5 3.1* 9.2 0.4 4.7 0.3 5.3 1.2 0.2 14.1 0.3 3.1 8.1 7.5 2.4 1.6* 2.3 0.6 0.5 120.1* 7.9* 2.9 9.7* 0.4 4.9* 0.3 5.2 1.4* 0.3* 14.9 0.3 3.4 8.7 7.7 2.3 1.3 2.1 1.0* 0.7* 75.6 3.0 2.4 5.9 0.3 2.9 0.5 1.8 1.6 0.2 5.3 0.2 2.0 1.4 2.4 1.1* 0.3 0.9* 0.8 0.5 77.2* 2.9* 2.7 5.5 0.3 2.7 0.4 1.7 1.7* 0.2 4.8 0.1 2.1 1.3 2.2 0.9 0.2 0.6
Total 47.7 50.6 121.8 131.5 99.5 105.5
(단위: mg/g)(P<0.05).
콩 입자의 형태, 색, 크기가 같은 콩을 선발하여 100립씩 치상하였고, 5일 후 재배수에 따른 (수돗물, 플라즈마 수중방전수) 100립의 콩나물 무게를 측정한 결과를 표 3에 나타내었다. 그 결과 플라즈마 수중방전수로 재배한 콩나물의 무게는 수돗물로 재배한 경우보다 증가한 것으로 나타났다.
Tap water Plasma treated water
100-sprout weight 52.87 2.37 60.34 4.81*
(단위: g) (P<0.05).
도 5 및 도 6은 선발된 100립의 콩을 수돗물(도 5) 또는 플라즈마 수중방전수(도 6)로 5일 재배하여 수확한 콩나물 사진이다. 플라즈마 수중방전수로 재배한 콩나물은 수돗물을 재배수로 사용한 경우보다 배축의 길이가 길고 뿌리의 길이는 짧은 것으로 나타났다.
도 7은 선발된 100립의 콩을 수돗물(Control) 또는 플라즈마 수중방전수(Treatment)로 5일 재배하여 수확한 콩나물 사진이다. 플라즈마 수중방전수로 재배한 콩나물은 수돗물을 재배수로 사용한 경우보다 길이가 길고 꼿꼿하게 자라는 것을 알 수 있다.
본 발명의 일 태양으로는 전극 외측을 밀착하여 에워싸는 유전체관과, 주입되는 가스가 플라즈마가 발생 되는 구간만을 지날 수 있도록 가스관을 설치함으로써 활성산소종 및 활성질소종 등의 발생 효율을 높였고, 방전 구간과 수중으로의 주입구까지의 길이를 최소화하여 미세 버블 형태로 활성산소종 및 활성질소종 등을 수중으로 전달되게 하여 처리 효율을 높였다.
도 8에는 본 발명의 플라즈마를 이용한 식재료 비가열 전처리 및 살균을 실시하는 데 사용되는 플라즈마 발생장치의 구성이 나와 있다.
플라즈마 발생장치는 선형 전극(100)을 유전체 관(200)으로 밀착하여 에워싸, 가스관(300) 안에 넣어 구성한다. 일반적으로 피복 전선은 전극이 유전체로 피복된 상태이므로 이들을 가스관에 넣어 구성할 수도 있다. 본 실시예에서는 유전체로 피복된 두 개의 전극(100)을 절연체 고리로 된 고정 부재(400)로 묶어 절연체로 된 가스관(300)에 넣고 가스관(300) 단부에 고정 부재를 이용하여 가스 연결관(500)을 고정하였다. 가스 연결관(500)의 정면에는 개구부가 있어 가스가 출입할 수 있다. 한 쌍으로 이루어진 전극은 서로 나란히 배열되어 양 전극 사이에서 플라즈마 방전이 일어난다. 편의상 제1 전극과 제2 전극으로 부를 수 있고, 유전체관(200)은 내부 유전체 관으로, 가스관(300)은 외부 유전체 관으로 부를 수 있다.
교류 전원을 각각의 전극(100)의 한쪽 단부에 인가하였고, 타 단은 그대로 두어 플로팅 DBD 플라즈마 발생장치로 만들었다. 즉, 접지 전극을 별도로 구성하지 않고 방치하여 플라즈마는 수면을 접지면으로 하여 방전된다. 출력전압은 주파수는 100 kHz 이하의 교류로서 2.75 kV 내지 10 kV 정도로 상황에 따라 적절히 조절된다. 즉, 피처리물의 용량과 처리되어야 하는 박테리아 종 등 용도에 따라 가해주어야 하는 플라즈마 에너지를 선택적으로 조절하게 될 것이다.
방전 기체는 별도의 가스공급 통 없이 공기를 사용하며, 바람직하게는 가스관(300) 안으로 공기를 불어넣는 팬(미 도시)을 설치할 수 있다. 즉, 팬을 구비한 관를 가스관(300)에 연결하여 공기가 유입되고 고전압이 인가된 전극(100)으로 인해 플라즈마 방전이 일어난다. 플라즈마 방전으로 인해 다량의 활성산소종 및 활성질소종을 포함한 활성종들이 발생 되며, 팬의 송풍작용으로 인해 활성산소종 및/또는 활성질소종 등을 포함한 공기가 물속으로 보내지면서 마이크로 버블이 형성된다. 이러한 마이크로 버블은 활성산소종 및/또는 활성질소종 등을 실어나르는 매체가 되어 공급된 물속에 퍼져 살균력을 부여한다. 마이크로 버블은 버블 자체가 라디칼을 고 농도 화하는 수단이 되어 이를 포함한 활성종 기체가 주입된 물은 매우 효과적인 살균 효과를 갖게 된다. 즉, 버블 하나하나 일종의 고립계를 형성하여 그 안에 포함된 활성산소종 및/또는 활성질소종 등은 고립계 내 고농도화되며, 이러한 상태로 운반되어 피처리물에 대해 고농도 라디칼을 제공한다.
본 실시예에서, 주입되는 가스는, 플라즈마가 발생 되는 구간만을 지날 수 있도록 가스관을 설치함으로써 활성산소 종의 발생 효율을 높였고, 방전 구간과 수중으로의 주입구까지의 길이를 최소화하여 미세 버블 형태로 활성산소 종을 수중으로 전달되게 하여 처리 효율을 높였다.
도 9에는 본 실시예에 따라 플라즈마 발생장치에 구성을 전체적으로 보여주는 사진이다. 플라즈마 소스부, 샘플 처리용 챔버구조와 슬라이닥스 전원 및 전압변압부가 나와 있다. 도 1에 따라 전극 구성 후, 일측 단부에 버블 디퓨저를 연결하여 수처리용으로 사용할 수 있다. 본 실시예에서 버블 디퓨저는 다공질 세라믹으로 된 것을 사용하였으며, 이러한 것은 상용화되어 있고, 수족관용품점에서 쉽게 구입할 수 있다.
상기에서 전극은 구리 외에 다른 도체로 구성될 수 있고, 내부 석영관과 외부 석영관도 유리, 세라믹 등의 다른 유전체 소재로 구성될 수 있다.
다음으로, 본 발명의 플라즈마 발생장치를 이용하여 생성된 플라즈마 처리 버블수를 깻잎에 대한 살균처리에 적용하였다.
도 10은 본 발명에 따른 플라즈마 발생장치를 이용하여 깻잎 등의 농작물에 대해 살균 처리하는 실험에 대한 장치 구성과 실험 조건표를 보여준다. 여기서는 슬라이닥스로 플라즈마 발생장치 전극에 인가되는 전압 세기를 조절하고 네온트렌스를 거쳐서 전극에 교류 전원을 인가하는 방식을 취하였고, 에어 컴프레서를 통해 공기를 공급하여 미세 버블을 생성하도록 하였다. 도 10의 좌측 상단에 보인 실험 장치는 플라즈마 발생장치의 단부에 버블 디퓨저를 연결하고 이를 수조에 인입시켜 수중으로 플라즈마에서 발생된 활성기체가 미세 버블형태로 수중으로 들어갈 수 있게 하였고, 수조에 박테리아 현탁액과 깻잎을 넣었다. 박테리아에 감염시킨 깻잎을 탈이온수(DI water)와 함께 넣을 수도 있다. 구체적인 실험 조건에 대해 테이블로 도시하였으나, 이러한 수치는 예시적이므로 조절될 수 있다. 플라즈마에 의해 공급된 에너지가 120mJ/sec였지만 이로부터 다소 벗어난 100 내지 150mJ/sec에서도 동일한 결과를 나타낼 수 있다. 처리시간은 최소 30초 이상으로 하는 것이 바람직하며, 1분 내외로 충분한 효과를 얻을 수 있으며, 최장 300초 정도 유지될 수 있다.
도 11은 도 10의 플라즈마 발생장치에 인가된 전압-전류 그래프와 플라즈마 발생장치로부터 발생 되는 활성종에 대한 분석을 위한 광 스펙트럼 그래프를 보인다.
이로부터 활성종은 N2*(N2 second positive system: 200~310nm 대역)와 O (O : 777, 852 nm 대역)결합에 의해, NO, NO2, NO2-, NO3-, 활성종이 생성되며, 알려진 바와 같이 다음 반응으로 오존이 생성된다.
O2 + O→ O3 (254 nm),
또한, OH·(OH radical : 309nm 대역) + OH· → H2O2 (254 nm)가 생성된다.
도 12는 플라즈마 발생장치로부터 발생 되는 NO2의 농도를 측정하기 위한 장치와 조건 및 측정 결과를 보여준다. 실측된 NO2의 농도는 115ppm 정도였다.
도 13은 플라즈마 발생장치에 대한 전압 인가 시간에 따른 활성종의 농도 변화를 비롯하여 온도, pH 등의 상태 변화를 측정한 그래프들이다. 2.75 kV와 3.75 kV의 인가전압으로 처리 시간을 최대 300초로 하여 데이터를 수집하였으며, 과산화수소, 일산화질소, 수산기의 농도가 도시되어 있다. 상기 인가전압은 하나의 실험 수치들이며, 50 ml 정도 용량의 처리수에 살균력을 부여함에 있어 2.75 내지 10 kV 정도가 인가될 수 있다. 오존 농도는 인가전압을 변인으로 하여 기체 상태에서 측정되었다. 도 13의 그래프에 표시된 전압은 슬라이닥스 인가전압이다.
플라즈마에 의해 발생된 활성기체인 과산화수소, 일산화질소, 수산기의 농도는 대부분의 경우 2.75 kV 인가시 보다 3.75 kV의 인가시 더 높아지는 것을 확인했고, 처리시간이 증가함에 따라 그 농도가 증가하는 경향을 보였다. pH는 처리 시간이 30초 경과되면 점차 감소되었고, 오존 농도는 인가전압이 증가할수록 감소됨을 보였다.
상술한 바와 같이, 식재료 처리에 더욱 효과적인 라디칼이 수산기와 산화질소종들의 농도는 높이고 오존의 농도는 낮추기 위해서는 50ml 처리수 기준으로 2.75 kV보다 높은 인가전압으로 30초 내지 3분 정도 처리하는 것이 바람직하다고 본다. 처리수 용량이 증가할 경우, 동일한 구조의 플라즈마 소스를 다수로 구성하거나 인가전압을 높이는 식으로 대응할 수 있다.
식재료 처리에 있어서, 수산기와 산화질소종들은 미생물 살균 효과를 발휘하나 상대적으로 오존은 살균효과는 미미하다. 특히, 항산화물질에 대해 활성종들은 Scavenging 반응을 보이기 때문에, 본 발명의 방법은 식재료를 절단하지 않은 상태인 초기단계 처리에 응용되는 것이 살균 효과 및 영양적인 면에서 바람직하다.
식재료에 대한 처리는 초기단계에서 상기와 같은 플라즈마 처리수를 이용하여 세정 및/또는 살균을 실시하며, 이후 순수를 이용하여 세정하여 식재료 표면에 남을 수 있는 잔류물질을 제거하는 것이 좋은데 이는 잔류물질에 의해 식재료를 갈변시키는 문제가 생길 수 있다.
도 14는 본 발명의 플라즈마 발생장치를 이용하여 액체배양 된 박테리아(Escherichia coli 및 Staphylococcus aureus) 현탁액을 살균한 것을 보이는 사진들이다. 60초 동안 플라즈마 처리된 박테리아의 농도가 크게 낮아졌음을 알수 있다.
도 15는 도 10의 실험을 통해 깻잎에 접종된 박테리아 살균력에 대한 사진 및 그래프이다. 1분 동안 플라즈마 처리된 깻잎의 박테리아(E. coli 및 S.aureus)의 농도가 크게 낮아졌음을 확인하였다.
상기 실험을 통해 플라즈마 처리 버블수로 2분 정도 처리하면 박테리아 등은 충분히 사멸된다고 결론지을 수 있다. 따라서 채소, 과일, 생선, 육류, 어패류 등의 식재료와 공정장비 및 생산현장 세척에 플라즈마 발생장치를 이용한 처리수를 적용할 수 있다.
도 16과 도 17은 플라즈마 전극 구성을 변형, 개선하여 좀 더 활발한 방전을 일으키도록 한 변형 실시예에 대한 것이다. 플라즈마 소스부와 슬라이닥스 전원 및 전압변압부가 제시되어 있다. 플라즈마 소스부의 전극 구성은 도 16에 자세히 제시되어 있다. 두 개의 구리 전극을 절연체인 내부 석영관에 넣고 나란히 배열한 다음, 내부 석영관이 들어있는 상태로 외부 석영관에 넣는다. 석영관 양단은 실리콘 튜브를 끼워 고정하고 절연체 마개(예를 들면, 고무, 플라스틱 등)로 막는다.
이러한 전극 구성 후, 각각의 전극에 전원의 양단을 접속하는 것은 도 8과 같지만, 도 16의 경우, 외부 석영관의 외벽에 인접하여 구리로 된 보조 전극을 감아주었다. 외부 석영관 외벽에 감긴 구리 전극에도 전원의 어느 한쪽 단자가 연결된다. 즉, 교류 전원이 인가되는 전극 중 어느 하나가 내부 석영관 안에 넣어지고 외부 석영관 외벽에 감긴 형태로 형성된다고 볼 수 있다. 내부 석영관 안에 있는 서로 나란히 배열된 전극 사이에 주 방전이 일어나고 외부 석영관 외벽에 감긴 전극과 내부 석영관 안에 있는 대향 전극 사이에도 보조 방전이 일어나 플라즈마 방전의 효율성을 기대할 수 있고, 그에 따라 더 많은 라디칼이 생성될 수 있다. 대향 전극이란 보조 전극과 전원의 같은 단자가 접속되지 않은 전극을 뜻한다.
이와 같은 전극 구성 후, 일측 단부에 버블 디퓨저를 연결하여 수처리용으로 사용할 수 있다. 본 실시예에서 버블 디퓨저는 다공질 세라믹으로 된 것을 사용하였으며, 이러한 것은 상용화되어 있고, 수족관용으로 쉽게 구입할 수 있다.
상기에서 전극은 구리 외에 다른 도체로 구성될 수 있고, 내부 석영관과 외부 석영관도 유리, 세라믹 등의 다른 유전체 소재로 구성될 수 있다.
도 18에는 전극 사진과 전극에서 주방전과 보조방전이 일어나고 있는 사진을 보였다.
한편, 상기한 실시예에서와 같이 구성된 플라즈마 처리수에 의해 식재료 등을 세정 및/또는 살균한 이후, 남겨진 처리수에는 라디칼이 존재할 수 있으나 이들은 반감기가 매우 짧아 별도의 폐수 처리 단계를 밟지 않고 방류될 수 있다는 점에서 산업상 매우 유리하며 친환경적이다.
또한, 남겨진 처리수에 잔류 라디칼을 이용하여 도마 등의 식재료 처리도구를 담가놓거나 흘려주어 살균 세정의 효과를 얻을 수 있다. 즉, 잔류된 처리수를 재활용한 후, 폐수가 아닌 일반 수(水)로 하여 방류될 수 있다.
이러한 구성의 전극으로 인해 매우 풍부한 플라즈마 방전과 활성종을 얻을 수 있어 더욱 효율적인 식재료 및 식기, 식재료 처리 도구, 식재료 처리환경(식재료를 다루는 공간을 말한다), 의료기기, 의료기구, 피복류 등의 살균 세척을 실시할 수 있다.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.
본 발명에 의하면, 콩나물 재배수의 오염도를 낮추고, 미생물 증식을 방지함으로써 재배수를 순환하여 사용할 수 있는 콩나물 재배방법을 제공할 수 있으며, 상기 콩나물 재배방법으로부터 콩나물의 생리활성물질의 농도를 증가시키고, 콩나물의 생장을 향상시킬 수 있다.
본 발명은 대기 중의 공기를 방전 가스로 사용하여 별도의 가스 공급통을 설치할 필요가 없어 휴대성이 매우 좋다. 상기 가스관 구조로 인해 방전된 플라즈마 가스가 손실되지 않고 처리시간에 따라 균일하고도 풍부한 활성산소종 및 활성질소종 등을 얻을 수 있다.
본 발명에 따르면 플라즈마 처리된 버블수에 의해 박테리아를 30초 내지 1분 내외에 살균할 수 있어 식재료의 살균 및 세척에 매우 유용하다.
또한, 본 발명에 따르면, 식재료의 살균 세정 처리에 유용한 수산기, 질소활성종 등의 생성율을 높이고 비교적 유용성이 낮고 작업자의 안전을 해할 수 있는 오존의 생성율은 낮출 수 있도록 제어되어 식재료 처리에 좀 더 최적화된 처리를 할 수 있다.
또한, 본 발명에 따른 플라즈마 처리수는 약품 처리에 의한 식재료 등의 세정 처리수에 비해 활성종들의 반감기가 짧아 잔류되지 않기 때문에 별도의 폐수 처리 단계없이 일반수와 같이 처리될 수 있어 산업상 유용하다.
또한, 본 발명에 따른 플라즈마 처리수로 식재료 등을 처리하거나, 가공장비, 도마 등의 도구를 담가놓거나 식재료 처리실에 대한 세척수 등으로 활용되어 미생물학적 안전성을 높일 수 있다.

Claims (16)

  1. 수중에 플라즈마를 방전하여 플라즈마 방전수를 제조하는 단계;및
    상기 제조된 플라즈마 방전수를 콩나물의 재배를 위한 재배공정수로 사용하여 콩나물을 재배하는 단계
    를 포함하는 플라즈마 방전수를 이용한 콩나물 재배방법.
  2. (a) 플라즈마 장치에 용수를 투입한 후 플라즈마를 방전시켜 플라즈마 방전수를 제조하는 단계;
    (b) 상기 제조된 플라즈마 방전수를 콩나물의 재배를 위한 재배공정수로 사용하여 콩나물을 재배하는 단계;
    (c) 상기 (b)단계의 재배공정수를 회수하여 상기 플라즈마 장치에 투입한 후 플라즈마를 방전시키는 단계;
    (d) 상기 (c)단계의 방전수를 콩나물의 재배를 위한 순환 재배공정수로 사용하여 콩나물을 재배하는 단계;및
    (e) 상기 (c)단계 및 (d)단계를 반복하여 실시하는 단계
    를 포함하는 플라즈마 방전수를 이용한 콩나물 재배방법.
  3. 제1항 또는 제2항에 있어서,
    상기 재배방법에 의하여 콩나물의 생리활성물질의 농도를 증대시키는 것을 특징으로 하는 플라즈마 방전수를 이용한 콩나물 재배방법.
  4. 제3항에 있어서,
    상기 생리활성물질은 비타민 C, 아스파라긴산 및 감마아미노부티르산(γ-Aminobutyric acid, GABA)으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 플라즈마 방전수를 이용한 콩나물 재배방법.
  5. 제1항 또는 제2항에 있어서,
    상기 플라즈마 방전은 유전체장벽방전(dielectric barrier discharge, DBD), RF(radio frequency), LF(low frequency), 코로나(corona), 마이크로웨이브(microwave) type 중 선택되는 1종 이상의 플라즈마 전극을 이용하는 것을 특징으로 하는 플라즈마 방전수를 이용한 콩나물 재배방법.
  6. 제5항에 있어서,
    상기 플라즈마 방전은 플라즈마 전극을 용수에 넣은 다음, 방전 가스를 0.5 내지 50L/min의 공기속도로 3 ~ 7분 동안 방전처리하는 것을 특징으로 하는 플라즈마 방전수를 이용한 콩나물 재배방법.
  7. 제1항 또는 제2항에 있어서,
    상기 상기 플라즈마 방전수 재배 순환 속도는 재배수를 30분~ 2시간마다 1~5분씩 순환 관수하는 것을 특징으로 하는 플라즈마 방전수를 이용한 콩나물 재배방법.
  8. 제1항 또는 제2항에 있어서,
    상기 플라즈마 발생 방전시 직류의 경우 인풋(Input) 전압이 12 ~ 48 V, 아웃풋(Output) 전압이 2000~35000V의 인 것을 특징으로 하는 플라즈마 방전수를 이용한 콩나물 재배방법.
  9. 제1항 또는 제2항에 있어서,
    상기 플라즈마 발생 방전시 교류인 경우 인풋(Input) 전압이 110 ~380 V이고, 아웃풋(Output) 전압이 2000~35000V의 인 것을 특징으로 하는 플라즈마 방전수를 이용한 콩나물 재배방법.
  10. 각각의 내부 유전체 관에 넣어진 제1 전극과 제2 전극;
    상기 제1 전극과 제2 전극이 각각의 내부 유전체 관에 넣어진 상태로 서로
    나란히 배열되어 내장되며, 방전 가스가 공급되는 외부 유전체 관;
    상기 외부 유전체 관 단부에 접속되며, 물속에 넣어지는 버블 디퓨저; 및
    상기 제1 전극과 제2 전극에 접속되는 전원;을 포함하여 플라즈마 발생장치
    가 구성되고,
    피처리물을 물에 넣고,
    전극에 인가된 전압으로 인해 외부 유전체관 내에 주입된 가스를 통해 플라즈마가 방전되어 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들이 생성되어 물속으로 미세 버블 형태로 주입되어 플라즈마 처리수를 형성하되,
    상기 플라즈마 발생장치에 의해 100 내지 150mJ/sec의 에너지의 플라즈마를 생성시켜, 이로부터 발생된 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들을 수중에 주입시킴으로써 피처리물을 살균 및 세정하는 것을 특징으로 하는 세정방법.
  11. 제10항에 있어서,
    상기 피처리물은, 식재료, 식재료 처리도구, 식재료 처리환경, 의료기구, 의료기기 또는 피복류 중 하나 이상을 포함하는 것을 특징으로 하는 세정방법.
  12. 제10항에 있어서,
    플라즈마로부터 발생 된 활성종들을 수중에 적어도 30초 동안 주입하여 살균 및 세정하는 것을 특징으로 하는 세정방법.
  13. 제10항에 있어서,
    120 내지 150mJ/sec의 에너지로 상기 플라즈마를 발생시켜, 발생되는 활성종 중 오존의 농도를 낮추고 수산기 또는 활성질소종들의 농도를 높여 살균 및 세정하는 것을 특징으로 하는 세정방법.
  14. 각각의 내부 유전체 관에 넣어진 제1 전극과 제2 전극;
    상기 제1 전극과 제2 전극이 각각의 내부 유전체 관에 넣어진 상태로 서로 나란히 배열되어 내장되며, 방전 가스가 공급되는 외부 유전체 관;
    상기 외부 유전체 관 단부에 접속되며, 물속에 넣어지는 버블 디퓨저; 및
    상기 제1 전극과 제2 전극에 접속되는 전원;을 포함하여 플라즈마 발생장치가 구성되고,
    수조에 물을 채우고 상기 버블 디퓨저를 물에 넣고,
    상기 제1 전극과 제2 전극에 인가된 전압으로 인해 외부 유전체관 내에 주입된 가스를 통해 플라즈마가 방전되어 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들이 생성되어 물속으로 미세 버블 형태로 주입되어 플라즈마 처리수를 형성하고,
    상기 플라즈마 처리수로 피처리물을 세척하는 것을 특징으로 하는 세정방법.
  15. 각각의 내부 유전체 관에 넣어진 제1 전극과 제2 전극,
    상기 제1 전극과 제2 전극이 각각의 내부 유전체 관에 넣어진 상태로 서로 나란히 배열되어 내장되며, 방전 가스가 공급되는 외부 유전체 관,
    상기 외부 유전체 관 단부에 접속되는 버블 디퓨저 및
    상기 제1 전극 및 제2 전극에 접속되는 전원을 포함하는 플라즈마 발생장치;와,
    수조;를 포함하고,
    피처리물을 상기 수조 안의 물에 넣고,
    상기 버블 디퓨저는 상기 물에 넣어져,
    상기 제1 전극 및 제2 전극에 인가된 전압으로 인해 외부 유전체관 내에 주입된 가스를 통해 플라즈마가 방전되어 수산기, 활성산소종 또는 활성질소종 중 하나 이상을 포함한 활성종들이 생성되어 물속으로 미세 버블 형태로 주입되어 플라즈마 처리수를 형성하되,
    피처리물에 대해 100 내지 150mJ/sec의 에너지의 플라즈마를 발생시켜 이로부터 발생 된 수산기, 활성산소종 또는 활성질소종을 하나 이상 포함한 활성종들을 수중으로 공급하여 살균 및 세정하는 것을 특징으로 하는 장치.
  16. 제15항에 있어서,
    외부 유전체관의 외부에 보조전극을 형성하여, 상기 활성종들을 생성을 향상시켜 물속에 주입하는 형태로 피처리물을 살균 및 세척하는 것을 특징으로 하는 장치.
PCT/KR2016/013032 2015-11-12 2016-11-11 플라즈마 방전수를 이용한 콩나물 재배방법, 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법 WO2017082691A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150158915A KR101782565B1 (ko) 2015-11-12 2015-11-12 플라즈마 방전수를 이용한 콩나물 재배방법
KR10-2015-0158915 2015-11-12
KR10-2016-0149435 2016-11-10
KR1020160149435A KR101893657B1 (ko) 2016-11-10 2016-11-10 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법

Publications (1)

Publication Number Publication Date
WO2017082691A1 true WO2017082691A1 (ko) 2017-05-18

Family

ID=58695820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013032 WO2017082691A1 (ko) 2015-11-12 2016-11-11 플라즈마 방전수를 이용한 콩나물 재배방법, 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법

Country Status (1)

Country Link
WO (1) WO2017082691A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496959A (zh) * 2018-05-11 2018-09-07 杭州德祎科技有限公司 常温大气压种子灭菌及提高种子活性的方法及种子
CN109041651A (zh) * 2018-09-28 2018-12-21 东华大学 一种低温等离子体激活麻豌豆种子的方法
CN109042272A (zh) * 2018-09-28 2018-12-21 东华大学 一种低温等离子体活化水培养麻豌豆种子的方法
CN112956650A (zh) * 2021-03-18 2021-06-15 国家粮食和物资储备局科学研究院 一种改善杂豆冲调食品风味的加工方法
KR20230075984A (ko) * 2021-11-23 2023-05-31 제주대학교 산학협력단 마이크로플라즈마 활성종을 이용한 신선편이 새싹채소 재배방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831548A (ja) * 1994-07-18 1996-02-02 Tamura Kinzoku Seisakusho:Kk 脱臭・殺菌用放電管
JPH10276597A (ja) * 1997-04-09 1998-10-20 Ryoda Sato 活性水を用いた水耕栽培システム及び養殖システム
KR200219735Y1 (ko) * 2000-10-31 2001-04-02 주식회사기산제트프라즈마 오존 용해 분해수를 생산하는 화장용 세안수기
KR20130077105A (ko) * 2011-12-29 2013-07-09 경민대학산학협력단 플라즈마를 이용한 수경재배기
JP2015136644A (ja) * 2014-01-21 2015-07-30 パナソニックIpマネジメント株式会社 液体処理装置及び液体処理方法、ならびにプラズマ処理液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831548A (ja) * 1994-07-18 1996-02-02 Tamura Kinzoku Seisakusho:Kk 脱臭・殺菌用放電管
JPH10276597A (ja) * 1997-04-09 1998-10-20 Ryoda Sato 活性水を用いた水耕栽培システム及び養殖システム
KR200219735Y1 (ko) * 2000-10-31 2001-04-02 주식회사기산제트프라즈마 오존 용해 분해수를 생산하는 화장용 세안수기
KR20130077105A (ko) * 2011-12-29 2013-07-09 경민대학산학협력단 플라즈마를 이용한 수경재배기
JP2015136644A (ja) * 2014-01-21 2015-07-30 パナソニックIpマネジメント株式会社 液体処理装置及び液体処理方法、ならびにプラズマ処理液

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496959A (zh) * 2018-05-11 2018-09-07 杭州德祎科技有限公司 常温大气压种子灭菌及提高种子活性的方法及种子
CN109041651A (zh) * 2018-09-28 2018-12-21 东华大学 一种低温等离子体激活麻豌豆种子的方法
CN109042272A (zh) * 2018-09-28 2018-12-21 东华大学 一种低温等离子体活化水培养麻豌豆种子的方法
CN112956650A (zh) * 2021-03-18 2021-06-15 国家粮食和物资储备局科学研究院 一种改善杂豆冲调食品风味的加工方法
KR20230075984A (ko) * 2021-11-23 2023-05-31 제주대학교 산학협력단 마이크로플라즈마 활성종을 이용한 신선편이 새싹채소 재배방법
KR102656722B1 (ko) 2021-11-23 2024-04-09 제주대학교 산학협력단 마이크로플라즈마 활성종을 이용한 신선편이 새싹채소 재배방법

Similar Documents

Publication Publication Date Title
WO2017082691A1 (ko) 플라즈마 방전수를 이용한 콩나물 재배방법, 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법
KR101782565B1 (ko) 플라즈마 방전수를 이용한 콩나물 재배방법
ATE248609T1 (de) Verfahren und vorrichtung zur plasmasterilisation
WO2014014267A1 (ko) 현미순 재배장치와 이를 이용한 재배방법 및 음식조리방법
WO2020032677A1 (ko) 식물 재배 장치 및 식물 재배 방법
CA2261815A1 (en) Method for growing plants and apparatus for growing plants
DK0603329T3 (da) Fremgangsmåde og sammensætning til behandling af råmaterialer, produkter og produktionsmidler, især i næringsmiddelindustrien.
AU6091396A (en) Plasma water vapor sterilizer and method
WO2019203597A1 (ko) Uv를 이용한 식물 재배 방법 및 이를 위한 식물 재배 시스템
Lazar et al. The physical environment in relation to high frequency callus and plantlet development in anther cultures of wheat (Triticum aestivum L.) cv. Chris
WO2020032601A2 (ko) 식물 재배 장치 및 이를 이용한 재배 방법
ATE409739T1 (de) Vorrichtung zur zell- oder gewebezüchtung
KR101893657B1 (ko) 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법
Agun et al. Sterilization of oyster mushroom crop residue substrate by using cold plasma technology
Ussenov et al. The effect of non-thermal atmospheric pressure plasma treatment of wheat seeds on germination parameters and α-amylase enzyme activity
WO2012102515A2 (ko) 커피 생두 발아장치 및 이를 이용한 발아방법
KR100234515B1 (ko) 오존수를 이용한 두과식물 재배방법
JPH01179629A (ja) 担子菌培地の培養促進処理方法
WO2021137676A1 (ko) 식물 재배용 광원
KR101060650B1 (ko) 자외선 조사를 이용한 조류 배양장치 및 배양방법
CN217184695U (zh) 大气压等离子体射流杀菌消毒装置
RU2207152C2 (ru) Способ стерилизации объектов
Petrukhina et al. THE EFFECT OF SEED TREATMENT WITH NON-THERMAL PLASMA
RU95111569A (ru) Устройство для плазменной обработки семян растений
CN117178890A (zh) 一种三七无菌苗培育方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864617

Country of ref document: EP

Kind code of ref document: A1