WO2020032677A1 - 식물 재배 장치 및 식물 재배 방법 - Google Patents

식물 재배 장치 및 식물 재배 방법 Download PDF

Info

Publication number
WO2020032677A1
WO2020032677A1 PCT/KR2019/010065 KR2019010065W WO2020032677A1 WO 2020032677 A1 WO2020032677 A1 WO 2020032677A1 KR 2019010065 W KR2019010065 W KR 2019010065W WO 2020032677 A1 WO2020032677 A1 WO 2020032677A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
plant
wavelength band
plant cultivation
Prior art date
Application number
PCT/KR2019/010065
Other languages
English (en)
French (fr)
Inventor
고상민
송현수
김세령
구종현
김진원
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to KR1020217004203A priority Critical patent/KR20210032440A/ko
Priority to CN201980003241.2A priority patent/CN111107739A/zh
Priority to JP2021530762A priority patent/JP7476192B2/ja
Priority to EP19848125.1A priority patent/EP3834606A4/en
Publication of WO2020032677A1 publication Critical patent/WO2020032677A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S10/00Lighting devices or systems producing a varying lighting effect
    • F21S10/02Lighting devices or systems producing a varying lighting effect changing colors
    • F21S10/023Lighting devices or systems producing a varying lighting effect changing colors by selectively switching fixed light sources
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/40Fabaceae, e.g. beans or peas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/109Outdoor lighting of gardens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to a plant cultivation apparatus and a plant cultivation method.
  • An object of the present invention is to provide a plant having a high total amount of phenolic compounds and high antioxidant activity.
  • the first light source for emitting a first light of the first wavelength band; And a second light source emitting second light of a second wavelength band different from the first wavelength band, wherein the second wavelength band includes an ultraviolet wavelength band, and the first light source emits the first light. While the second light source is driven independently of the first light source to determine whether to emit the second light, a plant cultivation light source is provided.
  • the first light source is provided with a plant cultivation light source, which is turned on to emit the first light in bright conditions, which is turned off in dark conditions.
  • a plant cultivation light source is provided, wherein the second light source is turned on to emit the second light under the bright condition or turned off so as not to emit the second light.
  • the light condition and the dark condition is provided in a plant cultivation light source, which is repeated every day.
  • the ratio of the light condition and the dark condition is provided, the plant cultivation light source is 1: 1 to 2: 1.
  • the first wavelength band is provided with a plant cultivation light source, including a visible light wavelength band.
  • the second wavelength band is provided with a plant cultivation light source comprising a wavelength band of about 250nm to about 380nm.
  • the second light is provided with a plant cultivation light source having a peak wavelength at about 270 nm to about 300 nm.
  • the second light source is provided with a plant cultivation light source, which is turned on or off so that the dose of the second light is at least about 1 kJ / m 2 s or more and about 14 kJ / m 2 s.
  • the first light source is a plant cultivation light source that emits the first light having a relatively high light intensity in the wavelength band of about 440nm to about 495nm and about 620nm to about 750nm Is provided.
  • the light source unit for emitting light in the visible and ultraviolet wavelength band;
  • a housing provided with a plant and the light source unit mounted therein;
  • a control unit for controlling the light source unit, wherein the light source unit comprises: a first light source that emits first light in a first wavelength band; And a second light source for emitting a second light of a second wavelength band different from the first wavelength band, wherein the second wavelength band includes an ultraviolet wavelength band, and the controller controls the first light source under bright conditions. Is turned on and controls the first light source to turn off in a dark condition, and the controller controls the second light source to be turned on or off independently of the first light source in the bright condition, A plant cultivation apparatus is provided.
  • the first wavelength band is provided with a plant cultivation apparatus, including a visible light wavelength band.
  • control unit is provided with a plant cultivation apparatus for controlling the light condition and other dark conditions and the bright condition is repeated in units of one day.
  • the second light is provided with a plant cultivation apparatus having a peak wavelength from about 270nm to about 300nm.
  • control unit is provided with a plant cultivation apparatus for controlling the dose of the second light to about 1 kJ / m2s or more and about 14 kJ / m2s or less.
  • the apparatus further includes a housing providing a space in which the plant is disposed and grown, wherein the first light source and the second light source are provided on the inner surface of the housing.
  • the housing includes a lower case and an upper case which are fastened to each other to be opened and closed, and the first and second light sources are provided with a plant cultivation apparatus provided on an inner surface of the upper case.
  • the ratio of the light condition and the dark condition is 1: 1 to 2: 1, a plant cultivation apparatus is provided.
  • control unit is provided with a plant cultivation apparatus, the second light source to control the second light source to irradiate the plant with light for a third time before the harvest of the plant.
  • the plant is a plant cultivation apparatus, which is a legume (Fabaceae Family) or Poaceae family plants.
  • FIG. 1 is a cross-sectional view of a plant cultivation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view conceptually showing a plant cultivation apparatus according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a plant cultivation apparatus according to an embodiment of the present invention.
  • FIG. 4A is a plan view illustrating a light source unit in a cultivation apparatus according to an embodiment of the present invention
  • FIG. 4B schematically illustrates a light emitting diode according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing a light source unit in the cultivation apparatus according to the embodiment of the present invention.
  • FIG. 6 illustrates a spectrum of light emitted from the first light source when the first light source has a wavelength band similar to sunlight in the cultivation apparatus according to the exemplary embodiment of the present invention.
  • FIG. 7 is a flowchart showing a plant cultivation method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart showing a plant cultivation method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart sequentially showing a cultivation method according to an embodiment of the present invention.
  • 10 is a graph showing the amount of phenolic compound according to the wavelength of the second light.
  • FIG. 11 shows photographs of barley sprouts after proceeding under the same conditions as those of Experimental Example 2, but applying the second light to the barley sprouts at different doses with light having a peak wavelength at 285 nm.
  • FIG. 13 shows photographs of wheat sprouts after the same conditions as those of Experimental Example 2, but the second light is applied to the wheat sprouts at different doses with light having a peak wavelength at 285 nm.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • the terms “comprise” or “have” are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof. In addition, when a part of a layer, film, region, plate, etc. is said to be “on” another part, this includes not only the case where the other part is “right on” but also another part in the middle.
  • the formed direction is not limited to the upper direction but includes a side or a lower part.
  • a part such as a layer, film, region, plate, etc. is “below” another part, this includes not only the other part “below” but also another part in the middle.
  • the plant cultivation method it is possible to grow plants with a high total amount of phenolic compounds. Specifically, germinate the seeds for a first time, and irradiate the germinated seeds with light of the first wavelength band for a second time to allow the plants to grow from the seeds, and then to the plants grown for the third time just before harvesting. By irradiating light of 2 wavelength bands, a plant with a high total amount of phenolic compounds can be obtained.
  • FIG. 1 is a cross-sectional view of a plant cultivation apparatus according to an embodiment of the present invention.
  • the plant cultivation apparatus 10 includes a main body part 100, a first light source part 200, and a second light source part 300, and a main body part 100. Seed 400 is provided within.
  • the main body 100 may include an empty space in which the seed 400 may be provided, and may be provided in a box shape to prevent external light.
  • the main body 100 provides an environment in which the seeds 400 provided therein may grow.
  • the main body 100 may be provided with a plurality of seeds 400 and have a size capable of growing.
  • the size of the main body 100 may vary depending on the use of the plant cultivation apparatus 10. For example, when the plant cultivation apparatus 10 is used for small scale plant cultivation at home, the size of the main body 100 may be relatively small. When the plant cultivation apparatus 10 is used to grow and sell plants commercially, the size of the main body portion 100 may be relatively large.
  • the main body 100 may block light so that light outside the main body 100 does not flow into the main body 100. Therefore, a dark room environment isolated from the outside may be provided inside the main body 100. Accordingly, it is possible to prevent the external light from being irradiated to the seed 400 provided inside the main body 100 unnecessarily.
  • the main body 100 may prevent the external visible light from being irradiated to the seed 400.
  • the body part 100 may be designed to be partially opened to receive external light as it is.
  • a photocatalyst may be applied to the inner surface of the body part 100.
  • the photocatalyst may receive light emitted from the first light source unit 200 to activate the photocatalytic reaction.
  • the photocatalyst material for performing this function may be at least one selected from titanium dioxide (TiO 2 ), zirconia (ZrO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and tin oxide (SnO 2 ).
  • the main body 100 may include a moisture supply unit 110 and a growing zone 120.
  • the moisture supply unit 110 supplies moisture to the seeds 400 provided inside the main body 100.
  • the water supply unit 110 may be provided at the top of the main body 100 to inject water onto the growing zone 120 provided at the bottom of the main body 100.
  • the shape of the water supply unit 110 is not limited to the above-described one, and may provide various types of water supply units 110 according to the shape of the main body unit 100 and the arrangement of the growing zone 120.
  • the water supply unit 110 may be provided in the form of a rotating sprinkler, mist nozzle spray, mist generator, and the like.
  • One or more moisture supply units 110 may be provided.
  • the number of the water supply unit 110 may vary depending on the size of the main body unit 100. In the case of a relatively small sized home plant cultivation apparatus 10, since the size of the main body unit 100 is small, the water supply unit 110 ) May be provided. On the contrary, in the case of the relatively large commercial plant cultivation apparatus 10, since the size of the main body portion 100 is large, a plurality of water supply units 110 may be provided.
  • the water supply unit 110 may be connected to a water tank provided in the main body unit 100 or a faucet outside the main body unit 100.
  • the water supply unit 110 may further include a filtration device so that pollutants suspended in water are not provided to the seeds 400.
  • the filtering device may include a filter such as activated carbon, a nonwoven fabric, and thus, the water that has passed through the filtering device may be purified.
  • the filtering device may further include a light irradiation filter in some cases, the light irradiation filter may irradiate water with ultraviolet rays to remove bacteria, bacteria, mold spores, etc. present in the water. Since the water supply unit 110 includes the above-described filtration devices, even when the water from the water discharge unit is recycled or rainwater is used for cultivation, the inside of the main body 100 and the seeds 400 may be contaminated. none.
  • the moisture supply unit 110 may include a timer. Accordingly, the moisture supplier 110 may supply moisture to the seed 400 at predetermined time intervals without a user's manipulation. The interval for supplying moisture to the seed 400 may vary depending on the type of the seed 400. Plants that require a lot of water to grow can supply moisture at relatively short intervals, and plants that require less water to grow can supply moisture at relatively long intervals.
  • Water provided from the water supply unit 110 may include nutrients necessary for plant growth.
  • water contains nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), manganese (Mn), and copper (Cu).
  • Inorganic elements required for plant growth such as zinc (Zn), boron (B), molybdenum (Mo) may be included.
  • Sachs liquid, Knop liquid, Hoagland liquid, Hewitt liquid, etc. may be supplied from the water supply unit 110.
  • Seeds 400 are provided on the growing table 120.
  • the growing table 120 may support the seeds 400 and provide nutrients for the seeds 400 to grow. Therefore, the growing zone 120 may include a medium (Culture Medium) required for the seed 400 to grow, and the medium may include nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium ( It may be a medium containing inorganic elements such as Mg), sulfur (S), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), boron (B), molybdenum (Mo).
  • the growing table 120 may thus be provided in a form including a medium and a container for receiving the medium.
  • the container may be provided on at least one side, for example in the form of a box with the top exposed.
  • the medium and seeds 400 may be provided inside the box-shaped container. Seeds 400 may be provided in a form buried in the medium, or may be provided on the surface of the medium depending on the type.
  • the size and shape of the cultivation stand 120 may vary according to the shape of the main body part 100 and the provision forms of the first light source part 200 and the second light source part 300.
  • the size and shape of the growing table 120 may be configured so that the seeds 400 provided on the growing table 120 fall within the irradiation range of light emitted from the first light source 200 and the second light source 300. have. Accordingly, even if the plurality of seeds 400 are provided on the growing table 120, the plant may be grown from the seeds 400 uniformly regardless of the location of the seeds 400.
  • the first light source unit 200 irradiates the seeds 400 with light of a first wavelength band.
  • the seeds 400 may grow by being irradiated with light in a first wavelength band.
  • the first wavelength band emitted by the first light source unit 200 may be a visible light wavelength band. Accordingly, the seeds 400 may photosynthesize by receiving light of a first wavelength band emitted from the first light source unit 200. Plants may grow from the seeds 400 by photosynthesis.
  • the first light source unit 200 may include one or a plurality of light emitting diodes to emit light in the visible light wavelength band.
  • the above-described light emitting diode may be a light emitting diode emitting white light.
  • the plurality of light emitting diodes may emit light having different wavelength bands, respectively.
  • the plurality of light emitting diodes may include, for example, a light emitting diode emitting red light and a light emitting diode emitting blue light.
  • the plant may actively perform photosynthesis by receiving visible light emitted from the above-described light emitting diodes.
  • red light may promote plant photosynthesis to promote plant growth from seed 400
  • blue light may increase morphology and environmental resistance of plant leaves germinated from seed 400.
  • the first light source unit 200 may include a light emitting diode emitting green light. The light emitting diode including green light can increase the photosynthetic efficiency of the plant in the colony due to high light transmittance.
  • the composition ratio of the light emitting diodes may vary depending on the wavelength. For example, light emitting diodes emitting red and blue light may be provided less than light emitting diodes emitting green light. The ratio of the light emitting diodes emitting the red light, the blue light, and the green light may be determined according to the type of the seed 400. The composition ratio can vary depending on the ratio. Alternatively, light emitting diodes emitting light of each wavelength band may be provided in equal numbers, and the light emitting diodes may be driven at different ratios according to plant types.
  • the light emitting diodes provided to the first light source unit 200 have a waveform having a particularly high peak at a specific wavelength, it is possible to provide a light irradiation tailored to the type of seed 400. Thus, plants can grow faster and larger with less power.
  • the first light source unit 200 may be provided on an upper surface of the main body unit 100 to irradiate light to the seeds 400 provided on the lower surface of the main body unit 100.
  • the first light source unit 200 on the upper surface of the main body unit 100 may be determined in consideration of the irradiation angle of the light emitted by the first light source unit 200 and the position of the growing zone 120 provided with the seeds 400.
  • the first light source unit 200 may emit light of an infrared (Infra-Red) or near infrared (Near Infra-Red) wavelength band.
  • Infra-Red infrared
  • Near Infra-Red near infrared
  • the first light source unit 200 may have a waterproof structure. Accordingly, even if water splashes on the first light source unit 200, the first light source unit 200 may not be broken.
  • the second light source 300 emits light of the second wavelength band toward the seed 400.
  • the second wavelength band is different from the first wavelength band and may be about 200 nm to about 400 nm.
  • the light emitted from the second light source unit 300 may include light having a wavelength of about 275 nm and light having a wavelength of about 295 nm.
  • the second light source 300 may include a light emitting diode to irradiate light.
  • a plurality of light emitting diodes included in the second light source 300 or the second light source 300 may be provided.
  • the plurality of light emitting diodes may emit light having different wavelengths.
  • some of the second light source 300 or the light emitting diode emits light having a wavelength of about 275 nm, and another second light source 300 or the light emitting diode configures the second light source 300 to emit light having a wavelength of about 295 nm. can do.
  • the second light source unit 300 may have a waterproof structure. Accordingly, even if water splashes on the second light source 300, the second light source 300 may not be broken.
  • the seed 400 may be provided inside the main body 100 and may grow by being supplied with moisture, light of a first wavelength band, and light of a second wavelength band.
  • the seed 400 may be a seed of a legume (Fabaceae Family) or a family of Poaceae family.
  • the seed 400 may be a seed such as soybean, mung bean, pea, alfalfa, wheat, barley, rice, bamboo, oat, millet, sorghum, sugar cane, corn.
  • the total amount or antioxidant activity of the phenolic compound is very high. Details thereof will be described later.
  • the seed 400 receives light emitted from the second light source 300 during the cultivation process.
  • the light irradiated from the second light source 300 increases the total amount of the phenolic compound of the plant grown from the seed 400.
  • the light of the second wavelength band irradiated from the second light source unit 300 may activate the secondary metabolite biosynthesis of the plant to increase the total amount of phenolic compound and antioxidant activity.
  • the light of the second wavelength band is irradiated to the plant, the light of the above-mentioned wavelength causes a DNA-damaging effect on the plant cells and generates free radicals, which causes damage to severe cells and tissues. do. In order to protect tissue cells, plants will promote the production of secondary metabolites that can absorb the above-mentioned light or eliminate free radicals.
  • an enzyme such as Phenylalanine ammonia-lyase is involved in the biosynthesis of secondary metabolites with the above-mentioned activity. Is activated.
  • the biosynthesis of phenolic compounds is promoted, and as a result, the antioxidant activity of the plant is enhanced and the tissue damage caused by the aforementioned light is alleviated.
  • Antioxidant substances included in plants provided by the above-described method may be a phenolic compound (Phenolic Compound), vitamins (Vitamin), carotene substances (Carotenoid) and the like.
  • the phenolic compounds include flavonoids, phenolic acids, polyphenols, stilbenoids, hydrocinnamic acids, and coumarin acids. ) May be included.
  • a plant cultivation apparatus 10 including the main body portion 100, the first light source unit 200, and the second light source unit 300, a phenolic system without the influence of the external environment Plants with a high total amount of compounds and high antioxidant activity can be grown.
  • a phenolic system without the influence of the external environment Plants with a high total amount of compounds and high antioxidant activity can be grown.
  • the first wavelength band and the second wavelength band emitted from the first light source unit 200 and the second light source unit 300 according to the type of the seed 400, respectively, to provide an optimized growth environment for each type of plant. can do.
  • the plant cultivation apparatus may have a shape different from that disclosed in FIG. 1.
  • FIG. 2 is a cultivation apparatus conceptually showing a plant cultivation apparatus according to an embodiment of the present invention.
  • the plant cultivation apparatus 10 is provided in the main body portion 100, the main body portion 100 having an internal space capable of growing plant sprouts and emits light It includes a first light source unit 200.
  • the main body 100 provides an empty space therein which can grow into plant buds after the seed of the plant is provided therein.
  • the main body 100 may be provided in the form of a box that can block external light.
  • the main body 100 may include a lower case 101 opened in the upper direction, and an upper case 103 opened in the lower direction.
  • the lower case 101 and the upper case 103 may be fastened to form a box that blocks external light.
  • the lower case 101 includes a bottom portion and sidewall portions extending upwardly from the bottom portion.
  • the upper case 103 includes a cover portion and sidewall portions extending downward from the cover portion.
  • the side walls of the lower case 101 and the upper case 103 may have a structure in which they are engaged with each other.
  • the lower case 101 and the upper case 103 may be fastened or separated according to the intention of the user, and thus the user may open or close the main body 100.
  • the main body 100 may be provided in various shapes. For example, it may have an approximately cuboid shape, or may have a cylindrical shape. However, the shape of the main body 100 is not limited thereto, and may be provided in a different shape.
  • the space in the main body 100 may be provided as one. However, this is for convenience of description and may be divided into a plurality of zones. That is, in the main body 100, partition walls for dividing the space in the main body 100 into a plurality may be provided.
  • the first light source unit 200 provides light to the plant shoots in the space in the main body unit 100.
  • the first light source unit 200 is provided on the inner surface of the upper case 103 or the lower case 101.
  • the first light source 200 may be provided on the cover of the upper case 103.
  • the first light source 200 is provided on the inner surface of the cover of the upper case 103, but is not limited thereto.
  • the first light source 200 may be provided on the side wall of the upper case 103.
  • the first light source unit 200 may be provided on the side wall portion of the lower case 101, for example, may be provided on the top of the side wall portion.
  • the first light source 200 may be provided at at least one of a cover part of the upper case 103, a side wall part of the upper case 103, and a side wall part of the lower case 101. It may be.
  • a planting stand 130 may be provided to facilitate planting, for example, to grow hydroponic plants.
  • the growing table 130 is formed of a plate-like plate 131 spaced apart from the bottom of the main body portion 100 in an upward direction.
  • the plate 131 may be provided with a through hole 133 of a predetermined size.
  • the cultivation table 130 is for growing rice and plant seeds on the upper surface of the plate 131, and a plurality of rice and plant seeds are placed on the upper surface to supply water when the water is supplied. It may have four through holes 133.
  • the through hole 133 may be provided in a size such that rice and plant seeds are not swept downward. For example, the diameter of the through hole 133 may have a size smaller than that of rice and plant seeds.
  • the space between the growing table 130 and the bottom of the lower case 101 may function as a water tank in which the drained water is stored. Accordingly, the water drained downward through the through hole 133 of the growing zone 130 may be stored in the space between the bottom of the lower case 101 and the growing zone 130.
  • the rice plant buds may be grown by methods other than hydroponic cultivation, in which case, the space in the main body 100 may be supplied with moisture and / or nutrients necessary for rice plant buds.
  • Water, a medium, soil, etc. may be provided so that the body portion 100 may function as a container.
  • the medium or soil may include nutrients in which seeds can grow, for example, potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and the like. Seeds may be provided in a form buried in the medium or may be provided on the surface of the medium depending on the kind.
  • the size and shape of the cultivation stand 130 may vary according to the shape of the main body part 100 and the provision form of the first light source 201 and the second light source 203.
  • the size and shape of the cultivation zone 130 may be configured such that seeds provided on the cultivation zone 130 fall within an irradiation range of light emitted from the first light source 201 and the second light source 203.
  • the main body 100 may be provided with a moisture supply unit for supplying moisture to the seeds.
  • the water supply part may be provided on the upper portion of the main body part 100, for example, on the inner surface of the cover part of the upper case 103 to spray water onto the main body part 100 growing zone 130.
  • the shape of the moisture supply unit is not limited to the above, and may vary depending on the shape of the main body unit 100 and the arrangement form of the growing zone 130.
  • the user may directly supply water in the main body 100 without a separate water supply.
  • the plant cultivation apparatus of a simple form according to an embodiment of the present invention has been described.
  • the plant cultivation apparatus according to an embodiment of the present invention can be used for commercial plant production, and will be described in more detail with respect to other forms of plant cultivation apparatus for use in commercial plant production.
  • FIG 3 is a cross-sectional view of a plant cultivation apparatus according to an embodiment of the present invention.
  • Plant cultivation apparatus 10 may be operated in the form of plant production plant. Accordingly, the plant cultivation apparatus 10 may include a plurality of growing zones 120, a first light source unit 200, and a second light source unit 300.
  • the plurality of growing zones 120, the first light source unit 200, and the second light source unit 300 may constitute a plurality of zones. Accordingly, the body portion 100 may be provided in the form of a structure including several compartments.
  • each zone included in the main body 100 may be operated independently of each other.
  • the first light source unit 200 provided in some zones may emit more blue light than the red light
  • the first light source unit 200 provided in other zones may emit more red light than the blue light.
  • each zone of the main body 100 may be operated differently from each other in time. For example, in some zones, light of a first wavelength band may be irradiated from the first light source unit 200 to grow the plant 401, and in other zones, to increase the total amount of the phenolic compound in the plant 401.
  • the light of the second wavelength band may be irradiated from the second light source 300.
  • Each zone included in the main body 100 may be configured as a closed dark room, respectively, to be operated independently as described above. Accordingly, light emitted from the first light source unit 200 and / or the second light source unit 300 provided in any zone may not affect other zones.
  • the growing table 120 provided in the main body 100 may also include different media depending on the type of the plant 401. Therefore, it is possible to provide a customized growth environment for each type of plant 401.
  • the growing zone 120 may be separated from the main body 100. Thus, when the plant 401 growing on the some cultivation stage 120 reaches the harvesting stage, the user is provided with a cultivation stage provided with the plant 401 which has been completed cultivation without affecting the entire plant cultivation apparatus 10. Only 120 may be separated from the main body 100.
  • the main body 100 may further include a water supply unit, and the water supply unit may be provided on a surface where the main body unit 100 and the growing stand 120 are in contact with each other, and directly to the medium included in the growing stand 120. Water can be supplied. Accordingly, unlike the spray-type water supply unit, even when the cultivation zone 120 is stacked, it is possible to supply water without affecting other cultivation zones 120.
  • the first light source unit 200 may be provided in plural numbers according to the shape of the growing table 120. As described above, the first light source unit 200 may include a plurality of light emitting diodes emitting light having different wavelengths. The above-described light emitting diodes may be provided at the same ratio or at different ratios in the first light source unit 200. Can be. When the light emitting diodes emitting light having different wavelengths are provided in the same ratio in the first light source unit 200, the first wavelength band may be adjusted by the controller according to the type of the plant 401. Accordingly, it is possible to provide a growth environment suitable for the type of plant 401.
  • a plurality of second light source 300 may also be provided.
  • the plurality of second light source parts 300 may be provided in different areas in the main body part 100 and may be driven independently. Accordingly, the light of the second wavelength band can be irradiated only to the plant 401 in which growth is completed and the amount of the phenolic compound is increased.
  • the plant cultivation apparatus 10 may be used to grow a plurality of plants 401 simultaneously, and may independently provide a growth environment suitable for the type of plant 401. Accordingly, by using the plant cultivation apparatus 10 according to an embodiment of the present invention, it is possible to grow different kinds of plants 401 at the same time, and thus the cultivated plants 401 may have a total amount of phenolic compounds. This is high.
  • the first light source unit 200 may include a first light source 201 that provides light in a visible light wavelength band, and a second light source that provides light in an ultraviolet wavelength band to plant buds.
  • Light source 203 may include a first light source 201 that provides light in a visible light wavelength band, and a second light source that provides light in an ultraviolet wavelength band to plant buds.
  • the first light source 201 and the second light source 203 may be disposed on the substrate 210.
  • the substrate 210 may be a printed circuit board having wirings or circuits on which the first light source 201 and the second light source 203 may be directly mounted, but are not limited thereto.
  • the substrate 210 is sufficient as long as the first light source 201 and the second light source 203 may be disposed, and the shape or structure thereof is not particularly limited and may be omitted.
  • an upper case of a housing which will be described later, may be used as a substrate, and a first light source 201 and a second light source 203 may be disposed on the upper case.
  • the first light source 201 irradiates the seeds with light of a first wavelength band.
  • the first wavelength band may correspond to the visible light wavelength band, and the seeds may grow by being irradiated with light of the first wavelength band.
  • the seeds may photosynthesize by receiving light of a first wavelength band emitted from the first light source 201.
  • 4B schematically illustrates a light emitting diode according to an embodiment of the present invention.
  • the light emitting diode includes a light emitting structure including a first semiconductor layer 2013, an active layer 2015, and a second semiconductor layer 2017, a first electrode 2011 and a second electrode connected to the light emitting structure. It may include an electrode 2019.
  • the first semiconductor layer 2013 is a semiconductor layer doped with a first conductivity type dopant.
  • the first conductivity type dopant may be a p-type dopant.
  • the first conductivity type dopant may be Mg, Zn, Ca, Sr, Ba, or the like.
  • the first semiconductor layer 2013 may include a nitride-based semiconductor material.
  • materials of the first semiconductor layer 2013 include GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, and the like.
  • the active layer 2015 is provided on the first semiconductor layer 2013 and corresponds to the light emitting layer.
  • electrons (or holes) injected through the first semiconductor layer 2013 and holes (or electrons) injected through the second semiconductor layer 2017 meet each other and form a material of the active layer 2015.
  • the layer emits light due to the band gap difference of the energy band.
  • the active layer 2015 may be implemented with a compound semiconductor.
  • the active layer 2015 may be implemented by at least one of compound semiconductors of Groups 3-5 or 2-6, for example.
  • the second semiconductor layer 2017 is provided on the active layer 2015.
  • the second semiconductor layer 2017 is a semiconductor layer having a second conductivity type dopant having a polarity opposite to that of the first conductivity type dopant.
  • the second conductivity type dopant may be an n type dopant, and the second conductivity type dopant may include, for example, Si, Ge, Se, Te, O, C, or the like.
  • the second semiconductor layer 2017 may include a nitride-based semiconductor material.
  • the material of the second semiconductor layer 2017 include GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, and the like.
  • the first electrode 2011 and the first electrode 2019 may be provided in various forms so as to be connected to the first semiconductor layer 2013 and the second semiconductor layer 2017, respectively.
  • the first electrode 2011 is provided below the first semiconductor layer 2013, and the second electrode 2019 is provided above the second semiconductor layer 2017. no.
  • the first electrode 2011 and the second electrode 2019 are, for example, Al, Ti, Cr, Ni, Au, Ag, Ti, Sn, Ni, Cr, W, Cu It may be made of various metals such as or alloys thereof.
  • the first electrode 2011 and the second electrode 2019 may be formed in a single layer or multiple layers.
  • the light emitting diode is provided in a vertical type, but the light emitting diode does not necessarily need to be a vertical type, and may be provided in another type as long as it conforms to the concept of the present invention.
  • the following effects can be obtained by using a light emitting diode instead of a conventional general lamp as a light source to apply light to a sample.
  • a specific wavelength compared to light emitted from an existing general lamp eg, an existing UV lamp.
  • Light can be provided to plants.
  • the light emitted from the existing lamp has a broad spectrum in a wide area compared with the light emitted from the light emitting diode. Accordingly, in the case of the conventional UV lamp, it is not easy to separate only the light of a part of the wavelength band of the emitted light.
  • the light emitted from the light emitting diodes has a sharp peak at a specific wavelength and provides light of a specific wavelength having a very narrow half-width in comparison with the light from a conventional lamp. Accordingly, it is easy to select light of a specific wavelength and only the light of the selected specific wavelength can be provided to the sample.
  • the irradiation time may also be set in a wide range, but in the case of a light emitting diode, it is possible to provide light required for a sample within a definite time for a relatively short time.
  • the light emitting diode can provide a clear light irradiation amount due to a relatively narrow range of wavelengths, a narrow range of light amount, and a narrow range of irradiation time.
  • the first light source may emit light having a wavelength band similar to sunlight so that the seeds can grow to the maximum.
  • the first light source may emit light in a wavelength band of about 380 nm to about 750 nm. Most of them may fall in the visible wavelength range. That is, the first light source corresponds to a light source that emits white light.
  • the first light source may include one or a plurality of light emitting diodes to emit light in the visible light wavelength band.
  • the drawing shows that the first light source is one, the present invention is not limited thereto, and a plurality of light emitting diodes may be provided. If a plurality of light emitting diodes are provided, they may all emit light of the same wavelength band, but may also emit light of different wavelength bands.
  • the plurality of light emitting diodes may include at least one of a light emitting diode emitting red light, a light emitting diode emitting blue light, and a light emitting diode emitting green light.
  • the composition ratio of the light emitting diodes may vary depending on the wavelength. For example, a light emitting diode emitting red light may be provided less than a light emitting diode emitting blue light or green light, and a light emitting diode emitting white light may also be provided.
  • the first light source in this embodiment can provide the energy required for plant growth.
  • the first light source may provide energy in the form of light for plants to perform photosynthesis and grow.
  • the wavelength of light provided by the first light source can thus be determined in consideration of the absorption rate of the photoreceptor of the plant.
  • the first light source may emit light having a relatively high light intensity in the blue light wavelength band (about 440 nm to about 495 nm) and the red light wavelength band (about 620 nm to about 750 nm) that plants mainly use for photosynthesis. .
  • the light emission form of the first light source is not limited to the above-described one, and in some cases, the light emitted from the first light source may have a spectrum similar to that of sunlight as evenly mixed light of the entire wavelength band.
  • the first light source according to an embodiment of the present invention is different from sunlight in that it emits except most of the ultraviolet wavelength band.
  • a light source according to an embodiment of the present invention may emit light having a wavelength band of about 380 nm to about 780 nm substantially corresponding to the entire wavelength band of visible light.
  • the term “similar to sunlight” means that the area overlapping with the conventional invention is greater than or equal to a predetermined value based on the normalized solar spectrum, and the deviation of the peak from the solar spectrum ( Deviation based on the peak of the solar spectrum) also means a case below a predetermined value.
  • the first light source may emit light having an area of at least about 55% of the area of the normalized solar spectrum, and the peak of the first light is normalized sunlight. It may have a deviation of about 0.14 or less from the spectrum. As such, since the first light source has a spectrum similar to sunlight, plant shoots can be well grown through efficient photosynthesis.
  • the second light source 203 emits a second light of the second wavelength band toward the seed.
  • the second wavelength band is different from the first wavelength band and may be an ultraviolet wavelength band of about 250 nm to about 380 nm.
  • the second light may correspond to at least one of UV-A, UV-B, and UV-C.
  • the second light source 203 may emit at least one of light having peak wavelengths of 255 nm, 275 nm, 285 nm, 295 nm, 315 nm, 335 nm, and 365 nm.
  • the second light source 203 may emit light in a wavelength band of, for example, about 270 nm to about 300 nm, and in one embodiment of the invention, 275 nm, 285 nm, and Any one of light having a peak wavelength of 295 nm can be emitted. In one embodiment of the present invention, the second light source 203 may emit light having a peak wavelength of 285 nm.
  • the second light source 203 may include one or a plurality of light emitting diodes to emit light in an ultraviolet wavelength band.
  • the drawing shows that the first light source 201 is one, the present invention is not limited thereto, and a plurality of light emitting diodes may be provided. If a plurality of light emitting diodes are provided, they may all emit light of the same wavelength band, but may also emit light of different wavelength bands. For example, some second light sources 203 or light emitting diodes emit light having a wavelength of about 275 nm, and other second light sources 203 or light emitting diodes emit light having a wavelength of about 285 nm. Can be configured.
  • the second light source 203 is for increasing the content of the antioxidant substance in the plant by irradiating the plant shoots with light in the ultraviolet wavelength band. By irradiating the light emitted from the second light source 203 to the plant at a predetermined intensity for a predetermined time, the content of the antioxidants of the seeds and plant shoots may be increased.
  • a light source for emitting light in the infrared (Infra-Red) or near infrared (Near Infra-Red) wavelength band is further provided.
  • the first light source 201 may emit light including infrared or near infrared wavelength bands in addition to light in the visible wavelength band.
  • the first light source 201 and / or the second light source 203 has a control unit 220 for controlling the operation of the first light source 201 and the second light source (203) It can be wired or wirelessly connected.
  • the control unit 220 is connected to a power supply unit 50 for supplying power to the control unit 220.
  • the power supply unit 50 may be directly connected to the first light source unit 200 through the control unit 220 or to supply power to the light source unit 30.
  • the control unit 220 turns on / off the first light source 201 and / or the second light source 203 so that the first light source 201 and the second light source 203 emit light at a predetermined intensity in a predetermined section. Can be controlled.
  • the first light source 201 and the second light source 203 may be individually operated to cultivate the plant shoots so as to contain the antioxidant material as much as possible.
  • the controller 220 may independently control the first light source 201 and the second light source 203 so that the first light and / or the second light is emitted at a predetermined number of times in a predetermined wavelength band.
  • the first light source 201 and / or the second light source 203 includes a plurality of light emitting diodes, individual light emitting diodes may be independently controlled.
  • the first light sources 201 and / or the second light sources 203 may be provided in various numbers in the plurality of zones.
  • the controller 220 may independently control the first light sources 201 and / or the second light sources 203 corresponding to the respective zones so that light is variously irradiated to the various zones.
  • light of the first wavelength band may be irradiated from the first light source 201 to grow plant shoots
  • the second light source 203 may be used to increase the content of antioxidant substances in the plant shoots.
  • the light of the second wavelength band can be irradiated from the.
  • Each zone included in the housing may constitute a hermetically sealed dark room so as to be able to operate independently as described above. Accordingly, light emitted from the first light source 201 and / or the second light source 203 provided in any zone may not affect other zones.
  • the controller 220 may control whether the first light source 201 and the second light source 203 operate according to a pre-set process or according to a user input. For example, the controller 220 sequentially deactivates the first light source 201 and the second light source 203 for a first time, operates the first light source 201 for a second time, The second light source 203 may be operated for a third time. Alternatively, the user may manually input the length of the first time to the third time, wherein the intensity of the light of the first light source 201 and / or the second light source 203 may be manually input.
  • control unit 220 may be connected to the moisture supply unit in addition to the first light source 201 and / or the second light source 203.
  • the controller 220 may control the amount of moisture provided through the moisture supply unit, the time at which the moisture is provided, and the like.
  • the controller 220 may supply moisture to the seed at a predetermined time interval without the user's manipulation.
  • the interval at which the seeds are moisturized may vary depending on the type of seed. Plants that require a lot of water for growth can supply moisture at relatively short intervals or continuously, and plants that require less water for growth can supply moisture at relatively long intervals.
  • the seed disposed in the growing zone may be a seed of rice plants.
  • the seeds disposed within the growing table may be seeds of barley, wheat, oats, rice, millet, sorghum, sugar cane, corn and the like.
  • the type of seed is not limited thereto.
  • the plant cultivation apparatus may be operated in the form of a large plant for obtaining a large amount of plants, that is, a plant production plant, as well as a domestic or personal cultivation apparatus for growing a relatively small amount of plants.
  • the plant cultivation apparatus may include a plurality of growing zones, a first light source, a second light source, and a water supply unit (not shown).
  • a variety of sensors may be additionally disposed in the control unit 220 in the plant cultivation apparatus operating in the form of plant production plant,
  • the controller 220 may control the first light source 201, the second light source 203, the moisture supply unit, or the like, in response to the data transmitted by the sensors.
  • a cultivation device equipped with such a plant cultivation system may transmit or receive data directly or remotely at a remote location by wire, wireless, or internet means, and through various displays, various sensors, the first light source 201 and the first light source.
  • the data from the two light sources 203 and the water supply unit can also be displayed. After reviewing the data, the user may instruct the controller 220 to implement the optimal condition.
  • the plant cultivation apparatus As described above, it is possible to easily grow a large amount of plants with improved immunity using the plant cultivation apparatus according to an embodiment of the present invention.
  • the plant cultivation apparatus according to an embodiment of the present invention while cultivating a plurality of plants at the same time, it is possible to independently provide a growth environment for the type of plant. Accordingly, by using the plant cultivation apparatus according to an embodiment of the present invention, it is possible to grow different kinds of plants at the same time, and the plants grown accordingly have high immunity.
  • FIG. 7 is a flowchart showing a plant cultivation method according to an embodiment of the present invention.
  • the seed provided to the main body is first germinated for a first time P1 (S100).
  • Germination refers to the generation of plants from seeds, and seeding refers to the young stages of germinating plants.
  • the inside of the main body part may be set according to the germination condition of the seed during the first time P1.
  • the first light source can in particular irradiate the seed with red light.
  • Red light converts phythochrome in the seed from red light absorption type (Pr) to near infrared absorption type (Pfr), and near infrared absorption type phytochrome (Pfr) increases seed content and at the same time induces seed dormancy.
  • germination may be promoted by red light.
  • the inside of the main body portion may be maintained as the dark room for the first time P1.
  • the water supply amount by the water supply unit may increase. This is because seeds must absorb enough water to begin cell metabolism and growth. Thus, the water supply can be concentrated in the germination stage so that the seed absorbs sufficient water or the seed can be imbibed.
  • the interior of the body portion may be maintained at about 20 degrees to about 30 degrees. Seed germination can be promoted in this range.
  • the body portion may include various types of temperature control devices to maintain the temperature.
  • the first time P1 to perform the germination process may vary depending on the type of plant. Therefore, the user or the controller may adjust the first time P1 differently according to the type of plant to be grown.
  • the germinated seeds are irradiated with light of the first wavelength band (S200).
  • Light of the first wavelength band may be irradiated to the germinated seeds for a second time. By irradiating the germinated seeds with light of the first wavelength band, plants can grow from the seeds.
  • the first wavelength band may be a visible light wavelength band, but may include a near infrared wavelength band in some cases. As described above, the first wavelength band may vary depending on the type of plant to be grown.
  • Light of the first wavelength band may be irradiated on the germinated seeds with a light amount of about 50 ⁇ mol / m 2 s to about 300 ⁇ mol / m 2 s.
  • light in the first wavelength band may be irradiated on the germinated seeds in a light amount of about 50 ⁇ mol / m 2 s to about 70 ⁇ mol / m 2 s.
  • the amount of light in the first wavelength band is less than about 50 ⁇ mol / m 2 s, chlorophyll production and photosynthesis by the light in the first wavelength band may not occur sufficiently, resulting in slow plant growth.
  • the amount of light in the first wavelength band exceeds about 300 ⁇ mol / m 2 s, which is a light saturation point, light of more than the amount of light available to the plant may be irradiated to dry the plant. May vary by stage of growth. For example, for some legume and rice seedlings, the light saturation point may be about 70 ⁇ mol / m 2 s. Accordingly, light of the first wavelength band may be irradiated with an amount of light of about 50 ⁇ mol / m 2 s to about 70 ⁇ mol / m 2 s.
  • the second time when the light of the first wavelength band is irradiated may vary depending on the type of plant. Therefore, the user or the controller may adjust the second time differently according to the type of plant to be grown.
  • the plant grown from the seed is irradiated with light of the second wavelength band (S300).
  • Light of the second wavelength band may be irradiated to the plant for a third time.
  • the total amount of the phenolic compound in the plant can be increased.
  • Light of the second wavelength band may be irradiated to the plant for a third time immediately before harvest of the plant grown from the seed. Accordingly, the plant may be inverted from the harvest time and receive light for a third time, thereby facilitating secondary metabolism in the plant, thereby increasing the total amount of the phenolic compound.
  • a second light of the wavelength band can be irradiated in an amount of from about 5 ⁇ W / cm 2 to 15 ⁇ W / cm 2 to the seed or plant.
  • the total amount of the phenolic compound can be increased without damaging / modifying plant cells.
  • the stress on the plant cells is weak, and the Hormesis reaction for the production of antioxidants may not occur sufficiently. have.
  • the seeds or plants are irradiated with a light amount of greater than about 15 ⁇ W / cm 2 , the plant cells may be damaged / deformed.
  • the intensity of light in the second wavelength band is not the same in all wavelength bands.
  • light intensity of a specific wavelength band among the light having a wavelength of about 200 nm to about 400 nm may be increased.
  • the plant is wheat, it is possible to increase the intensity of light, particularly in the wavelength range of about 295nm to about 400nm. Accordingly, the light irradiation can be tailored for each type of plant, and the total amount of the phenolic compound in the plant can be maximized.
  • the seeds of the plant may be sequentially germinated, grown, and promote secondary metabolism in the plant. Accordingly, plants with high total amount of phenolic compounds and antioxidant activity can be obtained from commercial seeds.
  • the plant may be grown automatically without the user's operation, hereinafter, the method for growing the plant without the user's operation will be described in more detail.
  • FIG. 8 is a flowchart showing a plant cultivation method according to an embodiment of the present invention.
  • the plant cultivation apparatus is operated by a control unit, the control unit cultivates the plant according to the plant cultivation method according to an embodiment of the present invention without user intervention.
  • the control unit maintains the seed in the germination condition from the first time point T1 (S101).
  • the first time point T1 may be a time point at which the seed is put into the plant cultivation apparatus according to an embodiment of the present invention and the user performs an operation for starting cultivation.
  • the operation for starting cultivation may be an operation of turning on the plant cultivation apparatus and pressing a cultivation start button.
  • the controller may load and apply the germination condition suitable for the type of the plant from the database.
  • the controller compares the difference between the current time T and the first time point T1, that is, the time flowing from the first time point T1 to the current T and the first time P1 (S102).
  • the first time P1 is a time required for plant germination, and when the first time P1 has passed from the first time point T1, the controller determines that the germination of the seed is completed.
  • the controller may configure the first time P1 differently according to the type of the plant. For example, when the plant is a rice plant or legume, the first time P1 may be about 72 hours.
  • the controller controls to irradiate light of the first wavelength band to the seed (S201).
  • the time point at which the controller controls the first light source unit to emit light in the first wavelength band is the second time point T2.
  • the controller continuously maintains the inside of the plant cultivation apparatus under germination conditions.
  • the light of the first wavelength band may be a visible light wavelength band, and in some cases, may include a near infrared wavelength band.
  • the plant By irradiating light of the first wavelength band, the plant can be grown from the germinated seeds. Therefore, the light of the first wavelength band can be controlled according to the plant type so as to increase the growth rate of the plant.
  • the controller may read first wavelength band information matching the type of plant from the database, and control the first light source unit accordingly.
  • the controller may control the first wavelength band and the light amount irradiated by the first light source differently according to time.
  • the first wavelength band and the amount of light may be different from the first wavelength band and the amount of light at the early stage of growth of the plant when the first light source starts to irradiate light. Accordingly, the light optimized according to the growth stage of the plant can be irradiated.
  • the light of the first wavelength band is not necessarily irradiated continuously for the second time P2.
  • the controller may control the first light source on / off during the second time P2. Accordingly, it is possible to create an environment inside the plant cultivation apparatus such as a wild environment at sunrise and sunset.
  • the ratio of the time when the first light source emits light of the first wavelength band and the time when no light is emitted during the second time P2 may be about 1: 1 to about 2: 1. Accordingly, an environment similar to a wild environment in which the sun rises and falls regularly during the day can be created in the plant cultivation apparatus. By creating an environment similar to the wild environment, plants can maintain photosynthesis and respiration evenly within the plant cultivation apparatus.
  • the controller determines whether the difference between the current time T and the second time point T2, that is, the time passed from the second time point T2 to the present time is greater than or equal to the second time point P2 (S202).
  • the second time P2 is a time required for plant growth, and the controller determines that the plant has not grown to a desired stage if the second time P2 has not passed.
  • the second time P2 is not a time required for the plant to grow completely. For example, when the plant is to be harvested in the sprout stage, the second time P2 may be the time required for the germinated seed to grow up to the sprout.
  • the second time P2 may vary depending on the type of plant, and the controller may retrieve and apply the second time P2 suitable for the type of plant from the database.
  • the controller controls the second light source unit to irradiate the seed with light having a second wavelength band (S301).
  • the third time point T3 is when the controller controls the second light source unit to emit light in the second wavelength band.
  • the controller controls the first light source unit to continuously emit light of the first wavelength band.
  • the second wavelength band may be about 200 nm to about 400 nm as described above.
  • the controller determines whether the difference between the current time T and the third time point T3, that is, the time that flows from the third time point T3 to the current T is greater than or equal to the third time point P3 (S302). .
  • the controller stops the light of the second wavelength band from the second light source unit.
  • the control unit controls the second light source unit to continuously emit light of the second wavelength band.
  • the third time P3 may be about 48 hours or less. When the third time P3 exceeds about 48 hours when the third time P3 exceeds about 48 hours, the stress may be exerted on the plant and the plant cells may be deformed or the plant may dry up.
  • the control unit controls the second light source to emit light only for the third time P3, so that the above-described problem cannot be caused.
  • the intensity of light emitted from the second light source unit during the third time P3 may vary for each wavelength.
  • the controller may increase the intensity of light having a specific wavelength among the light having the wavelength of about 200 nm to about 400 nm according to the type of plant. Accordingly, the light irradiation can be tailored for each plant type, and the total amount of the phenolic compound in the plant can be maximized.
  • the secondary metabolic activity of the plant by the light of the second wavelength band may be achieved after the plant has grown to the desired stage. Thereby, the concern that plant growth is inhibited by light irradiation of a 2nd wavelength band can be reduced.
  • the plant is harvested (S303).
  • a harvesting device may be used, which isolates the plant from moisture after a third time P3. This can prevent the plant from growing excessively than intended.
  • Harvested plants may be transferred to a separate space in the plant cultivation apparatus by a harvesting apparatus. Accordingly, it is possible to prevent the harvested plants from growing excessively or being deformed by receiving light in the second wavelength band after being harvested.
  • plants having a high total amount of phenolic compounds may be grown according to predetermined criteria. Accordingly, a user without knowledge of plant cultivation can easily grow and harvest plants having a high total amount of phenolic compounds.
  • Tables 1 to 5 below are cultivated plants for the leguminous plants and rice plants, whether or not irradiated with light (275nm, 295nm) of the second wavelength band. Plant growing conditions are as follows.
  • Example 1A Example 2A Second wavelength band light X 295nm 275nm
  • Example 1D Example 2D Second wavelength band light X 295nm 275nm
  • Example 1E Second wavelength band light X 295nm 275nm
  • Plant cultivation conditions except for the second wavelength band light irradiation is the same in both the Examples and Comparative Examples.
  • the plants of Examples and Comparative Examples were germinated in dark conditions for about 72 hours and grown using a white light emitting diode light source for about 144 hours.
  • the white light-emitting diode light source was controlled to have a ratio of 2: 1 operating time and non-operating time of about 144 hours. That is, the plant was grown for about 144 hours by operating the white light emitting diode for about 16 hours out of 24 hours and turning off the white light emitting diode for about 8 hours.
  • the white light emitting diode was irradiated with a light amount of about 60 ⁇ mol / m 2 s during operation.
  • the plants of the example were irradiated with light in the second wavelength band for 24 hours immediately before harvesting.
  • the light of the second wavelength band was irradiated with a light amount of about 10 ⁇ W / cm 2 .
  • the plants of the comparative example were not irradiated with light in the second wavelength band.
  • Tables 6 to 10 below measure the total amount of phenolic compounds contained in the plants of Examples and Comparative Examples. On the basis of Comparative Examples 1A to 1E, it was confirmed how much the amount of the phenolic compounds contained in Examples 1A to 1E and Examples 2A to 2E increased.
  • Example 1A Example 2A Phenolic compound total amount increase and decrease rate (%) 100% 94.7% 109.8%
  • Example 1D Example 2D Phenolic compound total amount increase and decrease rate (%) 100% 126.0% 121.6%
  • Example 1E Phenolic compound total amount increase and decrease rate (%) 100% 125.7% 133.9%
  • the total amount of phenolic compounds in the plant was generally compared with Comparative Examples 1A to 1E that were not irradiated with light in the second wavelength band.
  • the total amount of the phenolic compound increased by about 9.8% in Example 2A, which received about 275 nm of light, when compared with Comparative Example 1A, which was not irradiated with light of the second wavelength band. there was.
  • Example 1B In the case of peas, the total amount of the phenolic compound was increased by about 12.7% in Example 1B, which received about 295 nm wavelength when compared to Comparative Example 1B, which was not irradiated with light in the second wavelength band, and about 275 nm wavelength. In Example 2B, which received light, it was confirmed that the total amount of the phenolic compound increased by about 18.9%.
  • Example 1C In the case of alpha wave, the total amount of the phenolic compound was increased by about 18.6% in Example 1C, which received about 295 nm wavelength when compared with Comparative Example 1C, which was not irradiated with light in the second wavelength band, about 275 nm wavelength In Example 2C received a light of it was confirmed that the total amount of the phenolic compound increased by about 19.0%.
  • Example 1D In the case of wheat, the total amount of the phenolic compound was increased by about 26.0% in Example 1D, which received about 295 nm of light when compared to Comparative Example 1D, which was not irradiated with light in the second wavelength band, and about 275 nm of light. In Example 2D received, it was confirmed that the total amount of the phenolic compound was increased by about 21.6%.
  • Example 1E when compared to Comparative Example 1E, which was not irradiated with light of the second wavelength band, the total amount of the phenolic compound was increased by about 25.7% in Example 1E, which received about 295 nm of light, and the wavelength of about 275 nm. In Example 2E, which received light, it was confirmed that the total amount of the phenolic compound was increased by about 33.9%.
  • Example 2A In the case of legumes and rice plants it was confirmed that the total amount of the phenolic compound significantly increased when receiving the light of the second wavelength band.
  • Example 2B In particular, in Example 1B, Example 2B, Example 1C, Example 2C, Example 1E, and Example 2E, a statistically significant level of phenolic compound total amount increase was confirmed.
  • an antioxidant activity measurement test was performed to confirm whether the difference in the total amount of the phenolic compound is represented by the difference in the actual antioxidant activity.
  • Antioxidant activity was measured by ABTS detection method using ABTS [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) .
  • ABTS 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid
  • Tables 11 to 15 below measure the antioxidant activity of the plants of the Examples and Comparative Examples. Based on Comparative Examples 1A-1E, it was confirmed how much more antioxidant activity of Examples 1A-1E and Examples 2A-2E was increased.
  • Example 1A Example 2A Antioxidant activity increase (%) 100% 120.6% 134.5%
  • Example 1D Example 2D Antioxidant activity increase (%) 100% 132.7% 139.5%
  • Example 1A In the case of mung beans, the antioxidant activity was increased by about 20.6% in Example 1A, which received about 295 nm of light when compared to Comparative Example 1A, which was not irradiated with light of the second wavelength band, and the light of about 275 nm wavelength. In Example 2A, it was confirmed that the antioxidant activity was increased by about 34.5%. In the case of pea, the antioxidant in Example 1B, which received light at a wavelength of about 295 nm, was compared with Comparative Example 1B, which was not irradiated with light in the second wavelength band. It was confirmed that the activity was increased by about 20.8%, and in Example 2B, which received about 275 nm of light, the antioxidant activity was increased by about 23.4%.
  • Example 1D In the case of wheat, the antioxidant activity was increased by about 32.7% in Example 1D, which received about 295 nm of light when compared to Comparative Example 1D, which was not irradiated with light in the second wavelength band, and received about 275 nm of light. In Example 2D it was confirmed that the antioxidant activity was increased by about 39.5%.
  • Example 1E when compared to Comparative Example 1E, which did not receive light in the second wavelength band, the antioxidant activity was increased by about 46.2% in Example 1E, which received light of about 295 nm wavelength, and light of about 275 nm wavelength. In Example 2E, it was confirmed that the antioxidant activity was increased by about 46.2%.
  • FIG. 9 is a flowchart sequentially showing a cultivation method according to an embodiment of the present invention.
  • the step of growing a sprout of a plant is meant to include both growing the buds to adulthood and growing the buds to a specific state before the adulthood. Growing the shoots of the plant (S17) may vary the period in consideration of the type of plant.
  • Germination of plants may be carried out by putting barley seeds in a cultivation apparatus according to an embodiment of the present invention and supplying moisture under dark conditions.
  • water may be supplied to the seeds of the plant under dark conditions of about 1 day to about 5 days.
  • plants can germinate by hydrating seeds while maintaining dark conditions for three days.
  • Seeds of plants may be soaked in purified water for more than a predetermined time to germinate. This is to ensure that the seed absorbs sufficient water, so that the seed can be moisturized in the germination step. Since the germination condition may vary depending on the type of seed of the plant, the conditions around the seed may be set according to the germination condition of the seed during the first time. For example, in the case of a germinated seed that does not require light for germination, the inside of the housing may be maintained as a dark room for the first time, and when the seed is germinated, the inside of the housing may be maintained in a dark condition.
  • the germination stage it may be maintained to have a suitable temperature and humidity to germinate the seeds of the plant.
  • Various types of thermostats such as heaters and / or coolers can be used to maintain the temperature around the seeds of the plant.
  • the seed may be supplied with moisture, such as a water supply. This is because seeds need to absorb enough water to begin cell metabolism and growth. Thus, the hydration can be concentrated at the germination stage so that the seeds absorb sufficient water or the seeds can be imbibitioned. Wherein the moisture may be provided in purified water.
  • the germinated seeds are grown into sprouts, and light in the ultraviolet wavelength band is irradiated to the sprouts.
  • the process of irradiating the light of the ultraviolet wavelength band to the sprout in the process for growing the seed to sprout may be made together. This is described as follows.
  • cancer conditions or bright conditions may be repeated.
  • the light condition may be maintained for a first time and the dark condition for a second time, and the bright condition and the dark condition may be repeated.
  • the second time at which the light of the first wavelength band is irradiated may be continuous, but may have a light cycle in which light and dark are repeated. It remains dark for hours.
  • Light and dark conditions can be repeated a certain number of times, usually on a 24-hour basis. For example, based on 24 hours, the bright condition may last for 14 to 18 hours and the dark condition may be repeated within 6 to 10 hours.
  • the light cycle may be composed of a light condition 16 hours and a dark condition 8 hours are repeated on a 24 hour basis, the photoperiod may be repeated for about 4 to 10 days.
  • the light condition may proceed for about 16 hours, the dark condition for about 8 hours, the light and dark conditions can be repeated for 7 days.
  • both the first light source and the second light source are turned off during dark conditions, and the first light source is turned on during bright conditions.
  • the first light may be irradiated to the shoots of plants with a light amount of about 60 ⁇ mol / m 2 s, and the second light may be irradiated with an energy of 10 ⁇ W / cm 2 .
  • the amount of light of the first light is for inducing photosynthesis and growth of plant shoots.
  • the second light source may be turned on for a predetermined time with a predetermined dose while the first time in the bright condition is taken.
  • the second light source may emit light for the same time as the first light source or less time than the first light source when the first light source is turned on.
  • the second light source may be repeatedly turned on and off for a predetermined time in a predetermined pattern.
  • the second light source may emit light periodically when the first light source is turned on.
  • the irradiation period of the second light source may be in various forms, and may have a repeating pattern in which turn-on and turn-off are set at a predetermined time. Irradiation of the second light may be performed continuously, but may be irradiated within a week within a limit even if the second light.
  • the dose of the second light source is limited to the dose which will not damage the plant.
  • the second light source may irradiate light with a dose of up to 13.44 kJ / m 2 s.
  • the second light source can also apply a dose of light of 1.08 kJ / m 2 s or more to the plant so that a sufficient amount of antioxidants can be produced in the plant.
  • the transplanted plant can be grown to adulthood.
  • the irradiation of the second light that is, the ultraviolet irradiation may be performed within a period from the germination of the seed to the adult.
  • one embodiment of the present invention is not limited thereto.
  • the step of cultivating the adult shoots can be omitted, it can be harvested before the shoots grow to adult with a high content of antioxidants.
  • the antioxidant content is high, and thus, the effect of preventing aging of cells in the human body can be obtained.
  • barley sprouts that are high in antioxidants can be taken by humans after harvesting or by humans after being processed separately and used as ingredients in various foods.
  • Antioxidants were performed in the form of identifying the total amount of phenolic compounds.
  • sprouts of rice plants (such as barley sprouts or wheat sprouts) were collected, and the collected sprouts were freeze-dried and ground.
  • the ground sample was placed in 0.09 g deionized water and 8 mL of 80% acetone, mixed well, and then subjected to sonication for 15 minutes. Then, the sample was extracted by keeping at least 12 hours at -20 °C / dark conditions.
  • the extracted sample was placed in a centrifuge (RCF 3000 / RPM 1350), centrifuged for 2 minutes, and then 135 ⁇ L of distilled water, 750 ⁇ L of 10% Folin-Ciocalteu reagent, 50 ⁇ L of sample, and 600 ⁇ L of 7.5% Na 2 CO 3 were added to the new test tube in that order. After mixing well for 10 seconds, and then reacted in a 45 °C constant temperature water bath for 15 minutes and then cooled sufficiently. Thereafter, 1 mL of a sufficiently cooled sample was transferred to a cuvette, and absorbance was measured on a 765 nm spectrophotometer.
  • rice plants (barley seeds or wheat seeds) were prepared and the seeds were germinated under dark conditions. Dark conditions were maintained for 3 days for seed germination. Thereafter, the light condition was set to 16 hours and the dark condition was set to 8 hours for 1 day, and the bright and dark conditions were repeated for 7 days. At this time, both the first light and the second light were turned off in the dark condition, and the first light was turned on in the bright condition.
  • the second light has a peak wavelength of 275 nm, 285 nm, and 295 nm, and is turned on and off periodically.
  • FIG. 10 is a graph showing the amount of phenolic compound according to the wavelength of the second light.
  • the amounts of phenolic compounds were significantly increased in all of Examples 1 to 3 compared to Comparative Examples. That is, in Examples 1 to 3, the total amount of the phenolic compound was increased by more than 20% compared to the comparative example. Particularly, in the case of Example 2, the amount of the phenolic compound was significantly increased in comparison with the control example compared to the control example, and when the second light had peak wavelengths of 275 nm and 295 nm, the total amount of the phenolic compound was compared. The total phenolic compound content was increased by about 38% at 285 nm compared to the comparative example by 23%.
  • the total amount of the phenolic compound is significantly increased through the irradiation of the second light, in particular, the total amount of the phenolic compound is further significantly increased by the irradiation of the second light having a peak wavelength of 285 nm. You can check it.
  • the second light was light having a peak wavelength of 285 nm, it was checked whether the barley sprouts were damaged to the dose amount in order to grasp the range of the effective dose amount.
  • FIG. 11 shows photographs of barley sprouts after proceeding under the same conditions as those of Experimental Example 2, but applying the second light to the barley sprouts at different doses with light having a peak wavelength at 285 nm.
  • the numerical values written in the photographs of FIG. 11 mean dose amounts of the second light applied to each barley sprout.
  • the application of the second light needs to be applied with a dose of about 14 kJ / m 2 s or less.
  • a second amount of light is about 3 kJ / m 2 s at least about 14kJ / m 2 s, was significantly increased compared to the total amount of both the comparative examples of the phenolic compound or less.
  • the second light was applied to the barley sprout at a dose of 8.64 kJ / m 2 s, the total amount of the phenolic compound showed a significantly higher value than the comparative example.
  • the second light was light having a peak wavelength of 285 nm, it was checked whether wheat sprouts were damaged to the dose in order to grasp the range of effective dose.
  • FIG. 13 shows photographs of wheat sprouts after the same conditions as those of Experimental Example 2, but the second light is applied to the wheat sprouts at different doses with light having a peak wavelength at 285 nm.
  • the numerical values written in each photograph of FIG. 13 mean the dose of the second light applied to each wheat sprout.
  • the cumulative irradiation amount of the second light during the day was about 2.02 kJ / m 2 or less, it was confirmed that the amount of the phenolic compound in the wheat sprout was not substantially increased. Specifically, the amount of the phenolic compound in the wheat sprouts not irradiated with the second light and the amount of the phenolic compounds in the wheat sprouts irradiated with the second light by about 2.02 kJ / m 2 per day were about 13 mg / g DW. I could confirm it.
  • the amount of phenolic compounds in the wheat sprouts could rather decrease when the cumulative dose of the second light on the wheat sprouts over 13.4 kJ / m 2 .
  • the amount of phenolic compound in the wheat sprout was confirmed to be about 14 mg / g DW. This is a small value relative to the amount of phenolic compounds is irradiation of about 4.03kJ / m 2, as for the second light to wheat sprout day, or when irradiated by about 8.06 kJ / m 2, provided in a wheat sprout.
  • the second light cumulative irradiation amount per day between about 4.03 kJ / m 2 and about 13.4 kJ / m 2 .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Abstract

본 발명의 일 실시예에 따르면, 제1 파장 대역의 제1 광을 출사하는 제1 광원; 및 상기 제1 파장 대역과 상이한 제2 파장 대역의 제2 광을 출사하는 제2 광원을 포함하고, 상기 제2 파장 대역은 자외선 파장 대역을 포함하고, 상기 제1 광원이 상기 제1 광을 출사하는 동안 상기 제2 광원은 상기 제1 광원과 독립적으로 구동되어 상기 제2 광 출사 여부를 결정하는, 식물 재배 광원이 제공된다.

Description

식물 재배 장치 및 식물 재배 방법
본 발명은 식물 재배 장치 및 식물 재배 방법에 관한 것이다.
최근 건강에 대한 관심이 높아지면서, 유기농을 비롯한 안전한 먹거리에 대한 수요가 증가하고 있다. 일반 소비자의 경우, 유기농 먹거리를 마트나 시장에서 구매해서 먹는 것이 보통이지만, 최근에는 유기농 먹거리를 소비자가 직접 생산하여 소비하고자 하는 욕구도 강하다. 특히, 채소의 경우 다른 먹거리에 비하여 소비자가 직접 재배하는 것이 상대적으로 용이하기 때문에, 식물 재배 장치에 대한 수요가 크다.
아울러, 건강에 대한 관심은 안티 에이징(Anti-aging) 측면으로 강하게 표현되고 있는데, 최근에는 의학적 시술 및 처방과 같은 인위적인 방법을 통한 안티 에이징보다 식품 내에 존재하는 항산화 물질 섭취를 통한 자연 친화적인 안티 에이징 방법에 대한 관심이 높다. 활성산소는 세포 및 조직의 파괴를 일으켜 피부를 포함하는 신체 모든 조직의 노화를 촉진시키는 것으로 알려져 있는데, 항산화 물질은 이러한 활성 산소를 제거하여 신체 노화를 지연시킨다. 항산화 활성이 높은 물질에는 비타민류, 페놀류 물질, 카로틴계 물질 등이 있다. 특히 페놀류 물질은 식물계에 널리 분포하며 항산화 활성이 높고, 또한 피부노화를 촉진하는 자외선을 직접 차단하기도 한다. 항산화 물질이 많다고 알려진 식물은 콩류, 베리류, 채소류 등이다. 안전하고 건강에 좋은 먹거리에 대한 수요에 대응하기 위하여, 가정에서 일상적으로 재배하기 용이한 식물의 페놀류 화합물 총량을 높이기 위한 방법의 개발이 요구된다.
본 발명은 페놀계 화합물 총량 및 항산화 활성이 높은 식물을 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따르면, 제1 파장 대역의 제1 광을 출사하는 제1 광원; 및 상기 제1 파장 대역과 상이한 제2 파장 대역의 제2 광을 출사하는 제2 광원을 포함하고, 상기 제2 파장 대역은 자외선 파장 대역을 포함하고, 상기 제1 광원이 상기 제1 광을 출사하는 동안 상기 제2 광원은 상기 제1 광원과 독립적으로 구동되어 상기 제2 광 출사 여부를 결정하는, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 상기 제1 광원은 명조건에서 상기 제1 광을 출사하도록 턴-온되고, 암조건에서 턴-오프되는, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 상기 제2 광원은 상기 명조건에서 상기 제2 광을 출사하도록 턴-온되거나 상기 제2 광을 출사하지 않도록 턴-오프되는, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 상기 명조건과 상기 암조건은 하루 단위로 반복되는, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 상기 명조건과 상기 암조건의 비는 1:1 내지 2:1인, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 상기 제1 파장 대역은 가시광선 파장 대역을 포함하는, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 상기 제2 파장 대역은 약 250nm 내지 약 380nm 파장 대역을 포함하는, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 상기 제2 광은 약 270nm 내지 약 300nm에서 피크 파장을 갖는, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 상기 제2 광원은 상기 제2 광의 도즈량이 약 1 kJ/m2s 이상 약 14 kJ/m2s이하가 되도록 턴-온 또는 턴-오프되는, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 상기 제1 광원은 약 440nm 내지 약 495nm 파장 대역과 약 620nm 내지 약 750nm 파장 대역에서 상대적으로 높은 빛의 세기를 갖는 상기 제1 광을 출사하는, 식물 재배 광원이 제공된다.
본 발명의 일 실시예에 따르면, 가시 광선 및 자외선 파장 대역의 광을 출사하는 광원부; 식물이 제공되며 상기 광원부가 그 내부에 장착된 하우징; 및 상기 광원부를 제어하는 제어부를 포함하고, 상기 광원부는 제1 파장 대역의 제1 광을 출사하는 제1 광원; 및 상기 제1 파장 대역과 상이한 제2 파장 대역의 제2 광을 출사하는 제2 광원을 포함하고, 상기 제2 파장 대역은 자외선 파장 대역을 포함하고, 상기 제어부는 명조건에서 상기 제1 광원이 턴-온되고, 암조건에서 상기 제1 광원이 턴-오프도록 제어하고, 상기 제어부는 상기 명조건에서 상기 제2 광원이 상기 제1 광원과 독립적으로 턴-온 또는 턴-오프되도록 제어하는, 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 상기 제1 파장 대역은 가시광선 파장 대역을 포함하는, 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 상기 제어부는 상기 명조건과 다른 암조건과 상기 명조건이 하루 단위로 반복되도록 제어하는 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 상기 제2 광은 약 270nm 내지 약 300nm에서 피크 파장을 갖는 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 상기 제어부는 상기 제2 광의 도즈량을 약 1 kJ/m2s 이상 약 14 kJ/m2s이하로 제어하는 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 상기 식물이 배치되어 재배되는 공간을 제공하는 상기 하우징을 더 포함하며, 제1 광원 및 제2 광원은 상기 하우징의 내면에 제공되는 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 상기 하우징은 서로 체결되어 개폐 가능한 하부 케이스와 상부 케이스를 포함하며, 상기 제1 및 제2 광원은 상기 상부 케이스의 내면에 제공되는 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 상기 명조건과 상기 암조건의 비는 1:1 내지 2:1인, 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 상기 제어부는 상기 제2 광원이 상기 식물의 수확 전 제3 시간 동안 상기 식물에 빛을 조사하도록 상기 제2 광원을 제어하는, 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 상기 식물은 콩과(Fabaceae Family) 또는 벼과(Poaceae Family) 식물인, 식물 재배 장치가 제공된다.
본 발명의 일 실시예에 따르면, 페놀계 화합물 총량 및 항산화 활성이 높은 식물을 제공할 수 있다.
본 발명의 일 실시예에 따르면, 식물의 종류에 따라 최적화된 성장 환경을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 식물 재배 장치의 단면도이다.
도 2는 본 발명의 일 실시예에 따른 식물 재배 장치를 개념적으로 도시한 사시도이다.
도 3은 본 발명의 일 실시예에 따른 식물 재배 장치의 단면도이다.
도 4a는 본 발명의 일 실시예에 따른 재배 장치에 있어서, 광원부를 도시한 평면도이고, 도 4b는 본 발명의 일 실시예에 따른 발광 다이오드를 개략적으로 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 재배 장치에 있어서, 광원부를 도시한 블록도이다.
도 6은 본 발명의 일 실시예에 따른 재배 장치에 있어서, 제1 광원이 태양광과 유사한 파장 대역을 갖는 경우의 제1 광원으로부터 출사된 광의 스펙트럼을 도시한 것이다.
도 7은 본 발명의 일 실시예에 따른 식물 재배 방법을 나타낸 순서도이다.
도 8은 본 발명의 일 실시예에 따른 식물 재배 방법을 나타낸 순서도이다.
도 9는 본 발명의 일 실시예에 따른 재배 방법을 순차적으로 도시한 순서도이다.
도 10은 제2 광의 파장에 따른 페놀성 화합물의 양을 도시한 그래프이다.
도 11은 실험예 2의 조건과 동일한 조건으로 진행하되, 제2 광이 285nm에서 피크 파장을 갖는 광을 도즈량만 달리하여 보리 새싹에 인가한 후의 보리 새싹을 촬상한 사진들이다.
도 12는 실험예 2의 조건과 동일한 조건으로 진행하되, 제2 광이 285nm에서 피크 파장을 갖는 광을 도즈량만 달리하여 보리 새싹에 인가한 후, 그 보리 새싹에 함유된 총 페놀성 화합물의 총량을 나타낸 것이다.
도 13은 실험예 2의 조건과 동일한 조건으로 진행하되, 제2 광이 285nm에서 피크 파장을 갖는 광을 도즈량만 달리하여 밀 새싹에 인가한 후의 밀 새싹을 촬상한 사진들이다.
도 14는 실험예 2의 조건과 동일한 조건으로 진행하되, 제2 광이 285nm에서 피크 파장을 갖는 광을 도즈량만 달리하여 밀 새싹에 인가한 후, 그 밀 새싹에 함유된 총 페놀성 화합물의 총량을 나타낸 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 명세서에 있어서, 어느 층, 막, 영역, 판 등의 부분이 다른 부분 상(on)에 형성되었다고 할 경우, 상기 형성된 방향은 상부 방향만 한정되지 않으며 측면이나 하부 방향으로 형성된 것을 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
본 발명의 일 실시예에 따른 식물 재배 방법을 이용하면, 페놀계 화합물 총량이 높은 식물을 재배할 수 있다. 구체적으로, 제1 시간 동안 씨앗을 발아하고, 발아된 씨앗에 제2 시간 동안 제1 파장 대역의 빛을 조사하여 씨앗으로부터 식물이 생장하도록 하고, 이어서 수확 직전에 제3 시간 동안 생장된 식물에 제2 파장 대역의 빛을 조사함으로써, 페놀계 화합물 총량이 높은 식물을 얻을 수 있다.
이하에서는 본 발명의 일 실시예에 따른 식물 재배 방법에 따라 식물을 재배하는데 이용할 수 있는 식물 재배 장치에 대하여 먼저 살펴보고자 한다.
도 1은 본 발명의 일 실시예에 따른 식물 재배 장치의 단면도이다.
도 1을 참고하면, 본 발명의 일 실시예에 따른 식물 재배 장치(10)는 본체부(100), 제1 광원부(200), 및 제2 광원부(300)를 포함하고, 본체부(100) 내에는 씨앗(400)이 제공된다.
본체부(100)는 내부에 씨앗(400)이 제공될 수 있는 빈 공간을 포함하며, 외부의 빛을 막을 수 있는 박스 형태로 제공될 수 있다.
본체부(100)는 내부에 제공된 씨앗(400)이 생장할 수 있는 환경을 제공한다. 본체부(100) 는 복수 개의 씨앗들(400)이 제공되고, 생장할 수 있는 크기를 가질 수 있다. 아울러, 본체부(100)의 크기는 식물 재배 장치(10)의 용도에 따라 달라질 수 있다. 예를 들어, 식물 재배 장치(10)가 가정에서 사용하는 소규모 식물 재배에 이용되는 경우 본체부(100)의 크기는 상대적으로 작을 수 있다. 식물 재배 장치(10)가 상업적으로 식물을 재배하고 판매하는데 사용되는 경우 본체부(100)의 크기는 상대적으로 클 수 있다.
본체부(100)는 본체부(100) 밖의 빛이 본체부(100) 내부로 유입되지 않도록 빛을 차단할 수 있다. 따라서, 본체부(100) 내부에는 외부와 격리된 암실 환경이 제공될 수 있다. 이에 따라, 외부의 빛이 불필요하게 본체부(100) 내부에 제공된 씨앗(400)에 조사되는 것을 막을 수 있다. 특히, 본체부(100)는 외부의 가시광선이 씨앗(400)에 조사되는 것을 막을 수 있다. 다만, 경우에 따라서는 본체부(100)는 일부가 오픈되어 외부의 빛을 그대로 받을 수 있도록 설계될 수도 있다.
본체부(100) 내부 표면에는 광 촉매가 도포될 수 있다. 광 촉매는 제1 광원부(200)로부터 조사되는 빛을 받아 광 촉매 반응을 활성시킬 수 있다. 이에 따라, 본체부(100) 내부가 습기가 많은 암실 환경으로 유지되어도, 본체부(100) 내부에서 세균 또는 곰팡이가 증식하는 것을 막을 수 있다. 이러한 기능을 수행하기 위한 광촉매 물질은 이산화 티타늄(TiO2), 지르코니아(ZrO2), 텅스텐 산화물(WO3), 산화아연(ZnO), 산화주석(SnO2) 중에서 선택된 적어도 하나일 수 있다.
본체부(100)는 수분 공급부(110) 및 재배대(120)를 포함할 수 있다.
수분 공급부(110)는 본체부(100) 내부에 제공된 씨앗들(400)에 수분을 공급한다. 수분 공급부(110)는 본체부(100) 상단에 제공되어 본체부(100) 하단에 제공된 재배대(120) 상에 물을 분사하는 형태로 구성될 수 있다. 다만, 수분 공급부(110)의 형태가 상술한 것에 제한되는 것은 아니고, 본체부(100)의 형상 및 재배대(120)의 배치 형태에 따라 다양한 형태의 수분 공급부(110)를 제공할 수 있다. 예를 들어, 수분 공급부(110)는 회전하는 스프링클러, 미스트 노즐 분사, 안개발생기 등의 형태로 제공될 수도 있다.
수분 공급부(110)는 한 개 또는 복수 개 제공될 수 있다. 수분 공급부(110)의 개수는 본체부(100)의 크기에 따라 달라질 수 있는데, 상대적으로 작은 크기의 가정용 식물 재배 장치(10)의 경우, 본체부(100)의 크기가 작기 때문에 수분 공급부(110)가 하나 제공될 수 있다. 반대로, 상대적으로 크기가 큰 상업용 식물 재배 장치(10)의 경우, 본체부(100)의 크기가 크기 때문에 수분 공급부(110)가 여러 개 제공될 수 있다.
수분 공급부(110)는 본체부(100)에 제공된 수조 또는 본체부(100) 외부의 수전에 연결될 수 있다. 아울러, 수분 공급부(110)는 물 속에 부유하는 오염 물질이 씨앗들(400)에 제공되지 않도록 여과 장치를 더 포함할 수 있다. 여과 장치는 활성탄, 부직포 등의 필터를 포함할 수 있으며, 이에 따라 여과 장치를 거친 물은 정수된 것일 수 있다. 여과 장치는 경우에 따라 광조사 필터를 더 포함할 수 있는데 광조사 필터는 자외선 등을 물에 조사하여, 물 속에 존재하는 세균, 박테리아, 곰팡이 포자 등을 제거할 수 있다. 수분 공급부(110)가 상술한 여과 장치들을 포함함으로써, 수분 배출부를 통해 나온 물을 재활용하거나 빗물 등을 바로 재배에 사용하는 경우에도 본체부(100) 내부 및 씨앗들(400)이 오염될 우려가 없다.
수분 공급부(110)는 타이머를 포함할 수 있다. 이에 따라, 사용자의 조작 없이도 수분 공급부(110)는 기 설정된 시간 간격으로 씨앗(400)에 수분을 공급할 수 있다. 씨앗(400)에 수분을 공급하는 간격은 씨앗(400)의 종류에 따라 달라질 수 있다. 생장에 물을 많이 필요로 하는 식물의 경우 상대적으로 짧은 간격으로 수분을 공급할 수 있고, 생장에 물을 적게 필요로 하는 식물의 경우 상대적으로 긴 간격으로 수분을 공급할 수 있다.
수분 공급부(110)에서 제공되는 물은 식물의 생장에 필요한 양분을 포함할 수 있다. 예를 들어, 물에는 질소(N), 인(P), 칼륨(K), 칼슘(Ca), 마그네슘(Mg), 황(S), 철(Fe), 망간(Mn), 구리(Cu), 아연(Zn), 붕소(B), 몰리브덴(Mo) 등의 식물 생장에 필요한 무기원소들이 포함될 수 있다. 예를 들어 삭스(Sachs)액, 크놉(Knop)액, 호글랜드(Hoagland)액, 헤위트(Hewitt)액 등이 수분 공급부(110)로부터 공급될 수 있다.
재배대(120) 상에는 씨앗들(400)이 제공된다. 재배대(120)는 씨앗(400)을 지지하는 동시에 씨앗(400)이 자랄 수 있는 양분을 제공할 수 있다. 따라서, 재배대(120)는 씨앗(400)이 자라는데 필요한 배지(Culture Medium)를 포함할 수 있으며, 배지는 질소(N), 인(P), 칼륨(K), 칼슘(Ca), 마그네슘(Mg), 황(S), 철(Fe), 망간(Mn), 구리(Cu), 아연(Zn), 붕소(B), 몰리브덴(Mo) 등의 무기원소를 포함하는 배지일 수 있다.
재배대(120)는 따라서, 배지와 배지를 수용하기 위한 컨테이너(Container)를 포함하는 형태로 제공될 수 있다. 컨테이너는 적어도 일면, 예를 들어 상면이 노출된 박스 형태로 제공될 수 있다. 박스 형태의 컨테이너 내부에는 배지 및 씨앗들(400)이 제공될 수 있다. 씨앗들(400)은 그 종류에 따라 배지 속에 묻힌 형태로 제공되거나, 배지 표면 상에 놓인 형태로 제공될 수 있다.
재배대(120)의 크기와 형태는 본체부(100)의 형태 및 제1 광원부(200)와 제2 광원부(300)의 제공 형태에 따라 달라질 수 있다. 재배대(120)의 크기와 형태는 재배대(120) 상에 제공된 씨앗들(400)이 제1 광원부(200) 및 제2 광원부(300)로부터 조사되는 빛의 조사 범위 내에 들어오도록 구성될 수 있다. 이에 따라, 복수 개의 씨앗들(400)이 재배대(120) 상에 제공되어도 씨앗들(400)의 제공 위치와 관계 없이 균일하게 씨앗들(400)로부터 식물이 생장할 수 있다.
제1 광원부(200)는 씨앗들(400)에 제1 파장 대역의 빛을 조사한다. 씨앗들(400)은 제1 파장 대역의 빛을 조사받아 성장할 수 있다.
제1 광원부(200)가 출사하는 제1 파장 대역은 가시 광선 파장 대역일 수 있다. 이에 따라, 씨앗들(400)은 제1 광원부(200)로부터 출사된 제1 파장 대역의 빛을 받아 광합성할 수 있다. 광합성에 의하여 씨앗들(400)로부터 식물이 성장할 수 있다.
제1 광원부(200)는 상술한 것과 같이 가시 광선 파장 대역의 빛을 출사하기 위하여 한 개 또는 복수 개의 발광 다이오드를 포함할 수 있다. 제1 광원부(200)가 한 개의 발광 다이오드를 포함하는 경우, 상술한 발광 다이오드는 백색광을 출사하는 발광 다이오드일 수 있다. 제1 광원부(200)가 복수 개의 발광 다이오드를 포함하는 경우, 복수 개의 발광 다이오드들은 각각 서로 다른 파장 대역의 빛을 출사할 수 있다.
제1 광원부(200)가 복수 개의 발광 다이오드를 포함하는 때, 복수 개의 발광 다이오드들은 예를 들어, 적색광을 출사하는 발광 다이오드와 청색광을 출사하는 발광 다이오드를 포함할 수 있다. 식물은 상술한 발광 다이오드들로부터 출사되는 가시광선을 받아 활발하게 광합성을 수행할 수 있다. 이 경우, 특히 적색광은 식물의 광합성을 촉진하여 씨앗(400)으로부터 식물이 성장하는 것을 촉진할 수 있으며, 청색광은 씨앗(400)으로부터 발아된 식물 잎의 형태형성과, 환경저항성을 증대 시킬 수 있다. 제1 광원부(200)는 녹색광을 출사하는 발광 다이오드를 포함할 수 있다. 녹색광을 포함하는 발광 다이오드는 높은 광 투과성으로 인하여 군락에서의 식물의 광합성 효율을 높일 수 있다.
제1 광원부(200)가 상술한 바와 같이 서로 다른 파장의 빛을 출사하는 복수 개의 발광 다이오드들을 포함할 때, 발광 다이오드들의 구성 비율은 파장에 따라 다를 수 있다. 예를 들어, 적색광과 청색광을 출사하는 발광 다이오드는 녹색광을 출사하는 발광 다이오드에 비하여 적게 제공될 수 있다. 상술한 적색광, 청색광, 및 녹색광을 출사하는 발광 다이오드의 비율은 씨앗(400)의 종류에 따라 결정될 수 있는데, 예를 들어 척색광 수용체인 크립토크롬(cryptochrome)과 적색광 수용체인 파이토크롬(phytochrome)의 비율에 따라 구성 비율을 달리할 수 있다. 또는 각 파장 대역의 빛을 출사하는 발광 다이오드들을 동수로 제공하고, 식물의 종류에 따라 서로 다른 비율로 발광 다이오드들을 구동하는 것도 가능하다.
제1 광원부(200)에 제공된 발광 다이오드들은 특히 특정 파장에서 높은 피크를 갖는 파형을 갖기 때문에, 씨앗(400)의 종류에 맞게 맞춤형 광 조사를 제공하는 것이 가능하다. 이에 따라, 적은 전력으로도 식물을 더 빠르고 크게 생장시킬 수 있다.
제1 광원부(200)는 본체부(100)의 상면에 제공되어, 본체부(100) 하면에 제공된 씨앗들(400)에 빛을 조사할 수 있다. 본체부(100) 상면 상에서 제1 광원부(200)는 제1 광원부(200)에 의한 빛 조사각과 씨앗들(400)이 제공된 재배대(120)의 위치를 고려하여 결정될 수 있다.
제1 광원부(200)는 경우에 따라, 적외선(Infra-Red) 또는 근적외선(Near Infra-Red) 파장 대역의 빛을 출사할 수도 있다.
제1 광원부(200)는 방수 구조를 가질 수 있다. 이에 따라, 제1 광원부(200)에 물이 튀더라도 제1 광원부(200)가 고장날 우려가 없다.
제2 광원부(300)는 씨앗(400)을 향해 제2 파장 대역의 빛을 출사한다. 제2 파장 대역은 제1 파장 대역과 상이하며, 약 200nm 내지 약 400nm일 수 있다. 상술한 파장의 빛을 씨앗들(400)에 조사함으로써, 씨앗(400) 및 씨앗(400)으로부터 제공되는 식물의 페놀계 화합물 총량이 증가할 수 있다.
제2 광원부(300)가 출사하는 빛은 약 275nm 파장의 빛과 약 295nm 파장의 빛을 포함할 수 있다. 상술한 빛을 씨앗(400)에 조사함으로써, 씨앗(400)의 생장에 영향 없이, 씨앗(400) 및 식물의 페놀계 화합물 총량 및 항산화 활성(Anti-oxidant Capacity)을 향상시킬 수 있다.
제2 광원부(300)는 빛을 조사하기 위하여 발광 다이오드를 포함할 수 있다. 제2 광원부(300) 또는 제2 광원부(300)에 포함된 발광 다이오드는 각각 복수 개 제공될 수 있다. 이 경우, 복수 개의 발광 다이오드들은 서로 다른 파장의 빛을 출사할 수 있다. 예를 들어, 일부 제2 광원부(300) 또는 발광 다이오드는 약 275nm 파장의 빛을 출사하고 다른 제2 광원부(300) 또는 발광 다이오드는 약 295nm 파장의 빛을 출사하도록 제2 광원부(300)를 구성할 수 있다.
제2 광원부(300)는 방수 구조를 가질 수 있다. 이에 따라, 제2 광원부(300)에 물이 튀더라도 제2 광원부(300)가 고장날 우려가 없다.
씨앗(400)은 본체부(100) 내부에 제공되며, 수분, 제1 파장 대역의 빛, 및 제2 파장 대역의 빛을 공급 받아 성장할 수 있다. 씨앗(400)은 콩과(Fabaceae Family) 또는 벼과(Poaceae Family) 식물의 씨앗일 수 있다. 예를 들어, 씨앗(400)은 대두, 녹두, 완두, 알팔파, 밀, 보리, 벼, 대나무, 귀리, 기장, 수수, 사탕수수, 옥수수 등의 씨앗일 수 있다. 상술한 콩과와 벼과 식물의 씨앗의 경우, 본 발명의 일 실시예에 따른 식물 재배 방법에 따라 재배되었을 때, 페놀계 화합물 총량 혹은 항산화 활성이 매우 높은 것을 확인할 수 있었다. 이에 대한 자세한 내용은 후술하고자 한다.
씨앗(400)은 재배 과정 중 제2 광원부(300)로부터 조사된 빛을 받는다. 제2 광원부(300)로부터 조사된 빛은 씨앗(400)으로부터 성장한 식물의 페놀계 화합물 총량을 증가시킨다. 구체적으로, 제2 광원부(300)로부터 조사된 제2 파장 대역의 빛은 식물의 이차대사물질 생합성을 활성화하여 페놀계 화합물 총량 및 항산화 활성이 증가할 수 있다. 식물에 제2 파장 대역의 빛이 조사되었을 때, 상술한 파장의 빛은 식물 세포에 DNA-손상 효과를 주고 활성산소를 발생시키는 등의 기작을 유발하며, 이에 따라 심각한 세포 및 조직에 손상이 발생한다. 식물은 조직 세포를 보호하기 위하여, 상술한 빛을 흡수하거나 활성산소를 소거할 수 있는 이차대사산물의 생성을 촉진하게 된다.
예를 들어, 상술한 빛이 발아된 씨앗(400)으로부터 생장된 식물에 주어졌을 때, 상술한 활성을 가진 이차대사산물의 생합성에 관여하는 페닐알라닌 암모니아-라이에이즈(Phenylalanine ammonia-lyase)와 같은 효소가 활성된다. 이에 따라 페놀류 화합물(Phenolic compounds)의 생합성이 촉진되고, 그 결과 식물의 항산화 활성 증진 및 상술된 빛에 의한 조직손상이 완화된다.
상술된 방법에 의해 제공된 식물이 포함하는 항산화 물질은 페놀계 화합물(Phenolic Compound), 비타민류(Vitamin), 카로틴류 물질(Carotenoid) 등 일 수 있다.
아울러, 페놀계 화합물은 플라보노이드(Flavonoid), 페놀산류 물질(Phenolic acid), 폴리페놀계 물질(Polyphenol), 스틸벤류 물질(Stilbenoid), 하이드로씨나몬산류 물질(Hydrocinnamic acid), 쿠마린류 물질(Coumaric acid) 등의 을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 본체부(100), 제1 광원부(200), 및 제2 광원부(300)를 포함하는 식물 재배 장치(10)를 제공함으로써, 외부 환경에 의한 영향 없이 페놀계 화합물 총량 및 항산화 활성이 높은 식물을 재배할 수 있다. 아울러, 각각 제1 광원부(200)와 제2 광원부(300)에서 출사되는 제1 파장 대역과 제2 파장 대역을 씨앗(400)의 종류에 맞게 구성함으로써, 식물의 종류 별로 최적화된 성장 환경을 제공할 수 있다.
식물 재배 장치는 도 1에 개시된 것과 다른 형상을 가질 수 있다.
도 2은 본 발명의 일 실시예에 따른 식물 재배 장치를 개념적으로 도시한 재배 장치이다.
도 2을 참고하면, 본 발명의 일 실시예에 따른 식물 재배 장치(10)는 식물 싹을 기를 수 있는 내부 공간을 갖는 본체부(100), 상기 본체부(100) 내에 제공되며 광을 출사하는 제1 광원부(200)를 포함한다.
본체부(100)는 내부에 식물의 씨앗이 제공된 후 식물 싹으로 자라날 수 있는 빈 공간을 그 내부에 제공한다. 본체부(100)는 외부의 광을 막을 수 있는 박스 형태로 제공될 수 있다. 본 발명의 일 실시예에 있어서, 본체부(100)는 상부 방향으로 개구된 하부 케이스(101)와, 하부 방향으로 개구된 상부 케이스(103)를 포함할 수 있다. 하부 케이스(101)와 상부 케이스(103)는 외부 광을 막는 박스 형태가 되도록 체결될 수 있다.
하부 케이스(101)는 바닥부와 바닥부로부터 상향 연장된 측벽부를 포함한다. 상부 케이스(103)는 커버부와 커버부로부터 하향 연장된 측벽부를 포함한다. 하부 케이스(101)와 상부 케이스(103)의 측벽부들은 서로 맞물려 체결되는 구조를 가질 수 있다. 하부 케이스(101)와 상부 케이스(103)는 사용자의 의도에 따라 체결하거나 분리할 수 있으며, 이에 따라, 사용자가 본체부(100)를 열어보거다 닫을 수 있다.
본체부(100)는 다양한 형상으로 제공될 수 있다. 예를 들어, 대략적으로 직육면체 형상을 가질 수 있으며, 또는 원통 형상을 가질 수 있다. 그러나, 본체부(100)의 형상은 이에 한정되는 것은 아니며, 이와 다른 형상으로 제공될 수도 있다.
본 실시예에 있어서, 본체부(100) 내의 공간은 하나로 제공될 수 있다. 그러나, 이는 설명의 편의를 위한 것으로 복수 개의 구역으로 분리될 수 있다. 즉, 본체부(100) 내에는 본체부(100) 내 공간을 다수 개로 나누는 격벽들이 제공될 수 있다.
제1 광원부(200)는 본체부(100) 내 공간에 식물 싹에 광을 제공한다. 제1 광원부(200)는 상부 케이스(103)나 하부 케이스(101)의 내면 상에 제공된다. 본 발명의 일 실시예에 있어서, 제1 광원부(200)는 상부 케이스(103)의 커버부 상에 제공될 수 있다. 본 실시예에서는 일 예로서, 상부 케이스(103)의 커버부 내면 상에 제1 광원부(200)가 제공된 것을 도시하였는 바, 이에 한정되는 것은 아니다. 예를 들어, 본 발명의 다른 실시예에 있어서, 제1 광원부(200)는 상부 케이스(103)의 측벽부 상에 제공될 수 있다. 또는 본 발명의 또 다른 실시예에 있어서, 제1 광원부(200)는 하부 케이스(101)의 측벽부에 제공될 수 있으며, 예를 들어, 측벽부 상단에 제공될 수도 있다. 또는 본발명의 또 다른 실시예에 있어서, 제1 광원부(200)는 상부 케이스(103)의 커버부, 상부 케이스(103)의 측벽부, 하부 케이스(101)의 측벽부 중 적어도 한 곳에 제공될 수도 있다.
본체부(100) 내의 공간에는 식물이 재배되기 용이하도록, 예를 들어, 수경 재배가 용이하도록 재배대(130)가 제공될 수 있다. 재배대(130)는 본체부(100)의 바닥부로부터 상부 방향으로 이격되어 배치된 판상의 플레이트(131)로 이루어진다. 플레이트(131)에는 일정 크기의 관통공(133)이 제공될 수 있다. 재배대(130)는 플레이트(131)의 상면에 벼과 식물 씨앗이 놓여 자라날 수 있도록 하기 위한 것으로서, 그 상면에 벼과 식물 씨앗을 위치시킨 상태에서 물을 공급하였을 때 공급된 물이 배수될 수 있도록 복수 개의 관통공(133) 가질 수 있다. 관통공(133)은 벼과 식물 씨앗이 하부로 쓸려가지 않도록 하는 크기로 제공될 수 있다. 예를 들어, 관통공(133)의 직경은 벼과 식물 씨앗보다 작은 크기를 가질 수 있다. 재배대(130)와 하부 케이스(101)의 바닥부 사이의 공간은 배수된 물이 저장되는 수조로서 기능할 수 있다. 이에 따라, 재배대(130)의 관통공(133)을 통해 하부로 배수된 물은 하부 케이스(101) 바닥부와 재배대(130) 사이의 공간에 저장될 수 있다.
그러나, 본 발명의 일 실시예에 따르면 벼과 식물 싹은 수경재배 이외의 방법으로도 재배될 수 있으며, 이 경우, 본체부(100) 내 공간은 벼과 식물싹에 필요한 수분 및/또는 양분이 공급될 수 있도록 물, 배지, 흙 등이 제공될 있으며, 이때, 본체부(100)는 컨테이너로서 기능할 수 있다. 배지나 흙 등에는 씨앗이 자랄 수 있는 양분, 예를 들어, 칼륨(K), 칼슘(Ca), 마그네슘(Mg), 나트륨(Na), 철(Fe) 등을 포함할 수 있다. 씨앗들은 그 종류에 따라 배지 속에 묻힌 형태로 제공되거나, 배지 표면 상에 놓인 형태로 제공될 수 있다.
재배대(130)의 크기와 형태는 본체부(100)의 형태 및 제1 광원(201)과 제2 광원(203)의 제공 형태에 따라 달라질 수 있다. 재배대(130)의 크기와 형태는 재배대(130) 상에 제공된 씨앗들이 제1 광원(201) 및 제2 광원(203)으로부터 조사되는 광의 조사 범위 내에 들어오도록 구성될 수 있다.
본체부(100) 내에는 씨앗에 수분을 공급하는 수분 공급부가 제공될 수 있다. 수분 공급부는 본체부(100) 상단, 예를 들어, 상부 케이스(103)의 커버부 내면 상에 제공되어 본체부(100) 재배대(130) 상에 물을 분사하는 형태로 구성될 수 있다. 다만, 수분 공급부의 형태가 상술한 것에 제한되는 것은 아니고, 본체부(100)의 형상 및 재배대(130)의 배치 형태에 따라 달라질 수 있다. 또한, 별도의 수분 공급부 없이 사용자가 직접 본체부(100) 내에 수분을 공급할 수도 있다.이상에서는 본 발명의 일 실시예에 따른 간단한 형태의 식물 재배 장치에 대하여 살펴보았다. 다만, 본 발명의 일 실시예에 따른 식물 재배 장치는 상업적 식물 생산에 이용될 수 있는 바, 상업적 식물 생산에 이용하기 위한 식물 재배 장치의 다른 형태에 대하여 더 자세히 살펴보고자 한다.
도 3는 본 발명의 일 실시예에 따른 식물 재배 장치의 단면도이다.
본 발명의 일 실시예에 따른 식물 재배 장치(10)는 식물 생산 공장 형태로 운영될 수 있다. 이에 따라, 식물 재배 장치(10)는 복수 개의 재배대(120), 제1 광원부(200), 및 제2 광원부(300)를 포함할 수 있다.
도면에 도시된 것과 같이, 복수 개의 재배대(120), 제1 광원부(200), 및 제2 광원부(300)는 여러 개의 구역을 구성할 수 있다. 따라서, 본체부(100)는 여러 개의 구역(compartment)을 포함하는 구조물의 형태로 제공될 수 있다.
본체부(100)에 포함된 여러 개의 구역은 각각 독립적으로 운영될 수 있다. 예를 들어, 일부 구역에 제공된 제1 광원부(200)에서는 적색광보다 청색광이 더 많이 조사되고, 다른 구역에 제공된 제1 광원부(200)에서는 청색광보다 적색광이 더 많이 조사될 수 있다. 아울러, 본체부(100)의 각 구역은 시간적으로도 서로 상이하게 운영될 수 있다. 예를 들어, 일부 구역에서는 식물(401)을 성장시키기 위하여 제1 광원부(200)로부터 제1 파장 대역의 빛이 조사될 수 있고, 다른 구역에서는 식물(401) 내 페놀계 화합물 총량을 높이기 위하여 제2 광원부(300)로부터 제2 파장 대역의 빛이 조사될 수 있다.
본체부(100)에 포함된 각 구역은 상술한 것과 같이 독립적으로 운영될 수 있도록 각각 밀폐된 암실을 구성할 수 있다. 이에 따라, 임의의 구역 내에 제공된 제1 광원부(200) 및/또는 제2 광원부(300)로부터 출사된 빛은 다른 구역에 영향을 미치지 않을 수 있다.
본체부(100)에 제공된 재배대(120) 역시 식물(401)의 종류에 따라 서로 다른 배지를 포함할 수 있다. 따라서, 식물(401)의 종류별로 맞춤형 성장 환경을 제공하는 것이 가능하다. 또한, 재배대(120)는 본체부(100)로부터 분리될 수 있다. 따라서, 사용자는 일부 재배대(120) 상에서 자라는 식물(401)이 수확 단계에 이르렀을 때, 식물 재배 장치(10) 전체에 영향을 주는 것 없이, 재배가 완료된 식물(401)이 제공된 재배대(120)만 본체부(100)로부터 분리할 수 있다.
본체부(100)는 아울러, 수분 공급부를 더 포함할 수 있는데, 수분 공급부는 본체부(100)와 재배대(120)가 맞닿은 면에 제공되어, 재배대(120)에 포함된 배지에 직접적으로 물을 공급할 수 있다. 이에 따라, 스프레이 형태의 수분 공급부와 달리, 재배대(120)가 층층이 쌓여있는 때에도 다른 재배대(120)에 영향을 주지 않고 수분 공급이 가능하다.
제1 광원부(200)는 재배대(120)의 형태에 따라 복수 개 제공될 수 있다. 상술한 바와 같이 제1 광원부(200)는 서로 다른 파장의 빛을 출사하는 복수 개의 발광 다이오드들을 포함할 수 있는데, 상술한 발광 다이오드들은 제1 광원부(200) 내에 같은 비율로 또는 다른 비율로 제공될 수 있다. 제1 광원부(200) 내에 서로 다른 파장의 빛을 출사하는 발광 다이오드들이 같은 비율로 제공될 때, 제어부에 의하여 식물(401)의 종류에 맞게 제1 파장 대역을 조절할 수 있다. 이에 따라, 식물(401)의 종류에 맞는 성장 환경 제공이 가능하다.
제2 광원부(300) 역시 복수 개 제공될 수 있다. 복수 개의 제2 광원부들(300)은 본체부(100) 내의 서로 다른 구역에 제공될 수 있으며 독립적으로 구동될 수 있다. 이에 따라, 성장이 완료되어 페놀계 화합물 총량 증가 단계에 있는 식물(401)에만 제2 파장 대역의 빛을 조사할 수 있다.
상술한 바와 같이, 식물 재배 장치(10)를 이용하여 복수 개의 식물(401)을 동시에 재배할 수 있으며, 식물(401)의 종류에 맞는 성장 환경을 독립적으로 제공할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 식물 재배 장치(10)를 이용하면 서로 다른 종류의 식물들(401)을 동시에 재배할 수 있으며, 이에 따라 재배된 식물들(401)은 페놀계 화합물 총량이 높다.
도 4a, 도 4b, 및 도 5를 참조하면, 제1 광원부(200)는 가시 광선 파장 대역의 광을 제공하는 제1 광원(201)과, 식물싹에 자외선 파장 대역의 광을 제공하는 제2 광원(203)을 포함한다.
제1 광원(201) 및 제2 광원(203)은 기판(210) 상에 배치될 수 있다. 기판(210)은 제1 광원(201) 및 제2 광원(203)이 직접 실장될 수 있는 배선이나 회로 등이 형성된 인쇄 회로 기판일 수 있으나, 이에 한정되는 것은 아니다. 기판(210)은 제1 광원(201) 및 제2 광원(203)이 배치될 수 있는 것이라면 족하며, 그 형상이나 구조는 특별히 한정되는 것은 아니며, 생략될 수도 있다. 예를 들어 후술할 하우징의 상부 케이스 등도 기판으로 사용될 수 있으며 상부 케이스 상에 제1 광원(201)및 제2 광원(203)이 배치될 수 있다.
제1 광원(201)은 씨앗들에 제1 파장 대역의 광을 조사한다. 제1 파장 대역은 가시 광선 파장 대역에 해당할 수 있으며, 씨앗들은 제1 파장 대역의 광을 조사받아 성장할 수 있다. 씨앗들은 제1 광원(201)으로부터 출사된 제1 파장 대역의 광을 받아 광합성할 수 있다.
도 4b는 본 발명의 일 실시예에 따른 발광 다이오드를 개략적으로 도시한 것이다.
도 4b를 참조하면, 발광 다이오드는 제1 반도체층(2013), 활성층(2015), 및 제2 반도체층(2017)을 포함하는 발광 구조체와, 발광 구조체에 연결된 제1 전극(2011) 및 제2 전극(2019)을 포함할 수 있다.
제1 반도체층(2013)은 제1 도전형 도펀트가 도핑된 반도체 층이다. 제1 도전형 도펀트는 p형 도펀트일 수 있다. 제1 도전형 도펀트는 Mg, Zn, Ca, Sr, Ba 등일 수 있다. 본 발명의 일 실시예에 있어서, 제1 반도체층(2013)은 질화물계 반도체 재료를 포함할 수 있다. 본 발명의 일 실시예에 있어서, 제1 반도체층(2013)의 재료로는 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등을 들 수 있다.
활성층(2015)은 제1 반도체층(2013) 상에 제공되며 발광층에 해당한다. 활성층(2015)은 제1 반도체층(2013)을 통해서 주입되는 전자(또는 정공)와 제2 반도체층(2017)을 통해서 주입되는 정공(또는 전자)이 서로 만나서, 활성층(2015)의 형성 물질에 따른 에너지 밴드(Energy Band)의 밴드 갭(Band Gap) 차이에 의해서 빛을 방출하는 층이다.
활성층(2015)은 화합물 반도체로 구현될 수 있다. 활성층(2015)은 예로서 3족-5족 또는 2족-6족의 화합물반도체 중에서 적어도 하나로 구현될 수 있다.
제2 반도체층(2017)은 활성층(2015) 상에 제공된다. 제2 반도체층(2017)은 제1 도전형 도펀트와 반대의 극성을 갖는 제2 도전형 도펀트를 갖는 반도체층이다. 제2 도전형 도펀트는 n형 도펀트일 수 있는 바, 제2 도전형 도펀트는 예를 들어, Si, Ge, Se, Te, O, C 등을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 제2 반도체층(2017)은 질화물계 반도체 재료를 포함할 수 있다. 제2 반도체층(2017)의 재료로는 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, 등을 들 수 있다.
제1 전극(2011)과 제1 전극(2019)은 각각 제1 반도체층(2013)과 제2 반도체층(2017)과 연결되도록 다양한 형태로 제공될 수 있다. 본 실시예에서는 제1 반도체층(2013)의 하부에 제1 전극(2011)이 제공되고, 제2 반도체층(2017)의 상부에 제2 전극(2019)가 제공된 것을 도시하였으나, 이에 한정되는 것은 아니다. 본 발명의 일 실시예에 있어서, 제1 전극(2011) 및 제2 전극(2019)는 예를 들어, Al, Ti, Cr, Ni, Au, Ag, Ti, Sn, Ni, Cr, W, Cu 등의 다양한 금속 또는 이들의 합금으로 이루어질 수 있다. 제1 전극(2011) 및 제2 전극(2019)는 단일층 또는 다중층으로 형성될 수 있다.
본 발명의 일 실시예에 있어서, 발광 다이오드가 버티컬 타입으로 제공된 것을 설명하였으나, 발광 다이오드가 반드시 버티컬 타입일 필요는 없으며, 본 발명의 개념에 부합하는 한, 다른 타입으로 제공될 수도 있다.
본 발명의 일 실시예에 따르면 시료에 광을 인가하기 위해 광원으로서, 기존의 일반적인 램프가 아닌 발광 다이오드를 사용함으로써 다음과 같은 효과를 얻을 수 있다.
본 발명의 일 실시예에 따라 발광 다이오드를 제1 광원(201) 및/또는 제2 광원(203)으로 사용하는 경우, 기존 일반 램프(예를 들어, 기존 UV 램프)로부터 출사된 광 대비 특정 파장의 광을 식물에 제공할 수 있다. 기존 램프로부터 출사된 광은, 발광 다이오드로부터 출사된 광 대비 넓은 영역에서 브로드한 스펙트럼을 갖는다. 이에 따라, 기존의 UV 램프의 경우 출사된 광의 파장 대역 중 일부 대역의 광만을 분리하는 것이 용이하지 않다. 이에 비해 발광 다이오드로부터 출사된 광은 특정 파장에서의 샤프한 피크를 가지며 기존 램프로부터의 광에 비해 반치폭이 매우 좁은 특정 파장의 광을 제공한다. 이에 따라, 특정 파장의 광을 선택하는 것이 용이하며 그 선택된 특정 파장의 광만을 시료에 제공할 수 있다.
또한, 기존 램프의 경우 시료에 광을 제공하되 광량의 정확한 한정이 어려울 수 있으나, 발광 다이오드의 경우 광량을 명확하게 한정하여 제공할 수 있다. 또한, 기존 램프의 경우 광량의 정확한 한정이 어려울 수 있으므로 조사 시간 또한 넓은 범위로 설정될 수 있으나, 발광 다이오드의 경우 상대적으로 짧은 시간 동안 명확한 시간 내에 시료에 필요한 광을 제공할 수 있다.
상술한 바와 같이, 기존 램프의 경우 상대적으로 넓은 범위의 파장, 넓은 범위의 광량, 및 넓은 범위의 조사 시간으로 인해 광 조사량의 명확한 판단이 어렵다. 이에 비해 발광 다이오드의 경우 상대적으로 좁은 범위의 파장, 좁은 범위의 광량, 및 좁은 범위의 조사 시간으로 인해 명확한 광 조사량을 제공할 수 있다.
이에 더해, 기존 램프의 경우 전원을 켠 후 최대 광량까지 도달하는 데 시간이 상당히 소요되었다. 이에 비해, 발광 다이오드를 사용하는 경우, 전원을 켠 후 워밍업 시간이 실질적으로 거의 없이 바로 최대 광량까지 도달한다. 따라서, 발광 다이오드 광원의 경우, 식물에 특정 파장의 광을 조사할 때 광의 조사 시간을 명확하게 제어할 수 있다.
본 발명의 일 실시예에 있어서, 제1 광원은 씨앗들이 최대한 성장할 수 있도록 태양광과 유사한 파장 대역을 갖는 광을 출사할 수 있다.
도 6은 본 발명의 일 실시예에 따른 재배 장치에 있어서, 제1 광원이 태양광과 유사한 파장 대역을 갖는 경우의 제1 광원으로부터 출사된 광의 스펙트럼을 도시한 것이다. 도 6을 참조하면, 제1 광원은 약 380nm 내지 약 750nm 파장 대역의 광을 출사할 수 있다. 대부분은 가시광선 파장 영역대에 해당될 수 있다. 즉, 제1 광원은 백색광을 출사하는 광원에 해당한다.
제1 광원은 가시 광선 파장 대역의 광을 출사하기 위하여 한 개 또는 복수 개의 발광 다이오드를 포함할 수 있다. 도면에서는 제1 광원이 1개인 것을 도시하였으나, 이에 한정되는 것은 아니며, 복수 개의 발광 다이오드가 제공될 수 있다. 만약, 복수 개의 발광 다이오드가 제공되는 경우 모두 동일한 파장 대역의 광을 출사할 수도 있으나, 각각이 서로 다른 파장 대역의 광을 출사할 수도 있다. 예를 들어, 복수 개의 발광 다이오드는 적색광을 출사하는 발광 다이오드, 청색광을 출사하는 발광 다이오드, 및 녹색 광을 출사하는 발광 다이오드 중 적어도 하나를 포함할 수도 있다.
본 발명의 일 실시예에 있어서, 제1 광원이 상술한 바와 같이 서로 다른 파장의 광을 출사하는 복수 개의 발광 다이오드들을 포함할 때, 발광 다이오드들의 구성 비율은 파장에 따라 다를 수 있다. 예를 들어, 적색광을 출사하는 발광 다이오드는 청색광 혹은 녹색광을 출사하는 발광 다이오드에 비하여 적게 제공될 수 있고, 백색광을 출사하는 발광 다이오드도 제공될 수 있다.
이에 더해, 본 실시예에서의 제1 광원은 식물의 생장에 필요한 에너지를 제공할 수 있다. 구체적으로, 제1 광원은 식물이 광합성을 수행하여 생장을 하는데 필요한 에너지를 빛의 형태로 제공할 수 있다. 제1 광원이 제공하는 빛의 파장은 따라서 식물의 광수용체의 흡수율을 고려하여 결정될 수 있다. 예를 들어, 제1 광원은 식물이 광합성에 주로 이용하는 청색광 파장 대역(약 440nm 내지 약 495nm) 및 적색광 파장 대역(약 620nm 내지 약 750nm)에서 상대적으로 높은 빛의 세기를 갖는 빛을 출사할 수 있다.
다만, 제1 광원의 빛 출사 형태는 상술한 것에 제한되지 않으며, 경우에 따라 제1 광원에서 출사된 빛은 전체적인 파장 대역의 광이 골고루 섞인 형태로서 태양광과 유사한 스펙트럼을 가질 수 있다. 다만, 본 발명의 일 실시예에 따른 제1 광원은 자외선 파장 대역의 대부분을 제외하고 출사한다는 점에서 태양광과 차이가 있다. 본 발명의 일 실시예에 따른 광원은 실질적으로 가시 광선의 전체 파장 대역에 대응하는 약 380nm 내지 약 780nm 파장 대역을 갖는 광을 출사할 수 있다. 본 발명의 일 실시예에 있어서, 태양광과 유사하다라는 의미는 노멀라이즈된 태양광 스펙트럼을 기준으로 할 때, 기존 발명 대비 중첩되는 면적이 소정 값 이상이며, 태양광 스펙트럼으로부터의 피크의 편차(태양광 스펙트럼의 피크를 기준으로 했을 때 벗어난 정도) 또한 소정 값 이하인 경우를 의미한다. 예를 들어, 본 발명의 일 실시예에 있어서, 제1 광원은 노멀라이즈된 태양광 스펙트럼의 면적 대비 약 55% 이상의 면적을 갖는 광을 출사할 수 있으며, 제1 광의 피크는 노멀라이즈된 태양광 스펙트럼 대비 약 0.14 이하의 편차(deviation)를 가질 수 있다. 이와 같이, 제1 광원이 태양광과 유사한 스펙트럼을 가짐으로써 식물 새싹은 효율적인 광합성을 통해 잘 성장될 수 있다.
다시, 도 4a, 도 4b, 및 도 5를 참조하면, 제2 광원(203)은 씨앗을 향해 제2 파장 대역의 제2 광을 출사한다.
제2 파장 대역은 제1 파장 대역과 상이하며, 약 250nm 내지 약 380nm의 자외선 파장 대역일 수 있다. 본 발명의 일 실시예에 있어서, 제2 광은 UV-A, UV-B, 및 UV-C 중 적어도 어느 하나에 해당할 수 있다. 발명의 일 실시예에 있어서, 제2 광원(203)은 255nm, 275nm, 285nm, 295nm, 315nm, 335nm, 및 365nm의 피크 파장을 갖는 광 중 적어도 하나의 광을 출사할 수 있다.
본 발명의 일 실시예에 있어서, 제2 광원(203)은 예를 들어, 약 270nm 내지 약 300nm의 파장 대역의 광을 출사할 수 있으며, 본 발명의 일 실시예에 있어서, 275nm, 285nm, 및 295nm의 피크 파장을 갖는 광 중 어느 하나의 광을 출사할 수 있다. 본 발명의 일 실시예에 있어서, 제2 광원(203)은 285nm의 피크 파장을 갖는 광을 출사할 수 있다.
제2 광원(203)은 자외선 파장 대역의 광을 출사하기 위하여 한 개 또는 복수 개의 발광 다이오드를 포함할 수 있다. 도면에서는 제1 광원(201)이 1개인 것을 도시하였으나, 이에 한정되는 것은 아니며, 복수 개의 발광 다이오드가 제공될 수 있다. 만약, 복수 개의 발광 다이오드가 제공되는 경우 모두 동일한 파장 대역의 광을 출사할 수도 있으나, 각각이 서로 다른 파장 대역의 광을 출사할 수도 있다. 예를 들어, 일부 제2 광원(203) 또는 발광 다이오드는 약 275nm 파장의 광을 출사하고, 다른 제2 광원(203) 또는 발광 다이오드는 약 285nm 파장의 광을 출사하도록 제2 광원(203)을 구성할 수 있다.
제2 광원(203)은 자외선 파장 대역의 광을 식물 싹에 조사함으로써 식물 내의 항산화 물질의 함량을 증가시키기 위한 것이다. 제2 광원(203)이 출사하는 광을 식물에 소정 정도의 강도로 소정 시간 동안 조사함으로써, 씨앗 및 식물 싹의 항산화물질의 함량을 증가시킬 수 있다.
본 발명의 일 실시예에 있어서, 제1 광원(201) 및/또는 제2 광원(203) 이외에도 적외선(Infra-Red) 또는 근적외선(Near Infra-Red) 파장 대역의 광을 출사하는 광원이 더 제공될 수 있다. 또는 제1 광원(201)이 가시 광선 파장 대역의 광 이외에도 적외선이나 근적외선 파장 대역의 광을 포함하여 출사할 수도 있다.
본 발명의 일 실시예에 있어서, 상기 제1 광원(201) 및/또는 제2 광원(203)에는 제1 광원(201)과 제2 광원(203)의 동작 여부를 제어하는 제어부(220)가 유선 또는 무선으로 연결될 수 있다.
제어부(220)에는 제어부(220)에 전원을 공급하는 전원 공급부(50)가 연결된다. 전원 공급부(50)는 제어부(220)를 통해, 또는 제1 광원부(200)에 직접 연결되어, 광원부(30에 전원을 공급할 수 있다.
제어부(220)는, 제1 광원(201)과 제2 광원(203)을 소정 구간에 소정의 강도로 광을 출사하도록 제1 광원(201) 및/또는 제2 광원(203)의 온/오프를 제어할 수 있다. 식물 싹이 항산화 물질을 최대한 함유할 수 있도록 재배하기 위해서는 제1 광원(201)과 제2 광원(203)이 각각 개별적으로 동작될 수 있다.
제어부(220)는 소정의 파장대역에서 소정의 출사횟수 등으로 제1 광 및/또는 제2 광이 출사되도록 제1 광원(201)과 제2 광원(203)을 각각 독립적으로 제어할 수 있다. 또한, 제1 광원(201) 및/또는 제2 광원(203)이 복수 개의 발광 다이오드들을 포함하는 경우, 개별적인 발광 다이오드를 독립적으로 제어할 수 있다.
본 발명의 일 실시예에 있어서, 하우징이 복수 개의 구역으로 나누어지는 경우, 제1 광원들(201) 및/또는 제2 광원들(203)은 복수 개의 구역에 다양한 개수로 제공될 수 있다. 이 경우, 제어부(220)는 여러 개의 구역에 광이 다양하게 조사되도록 때 각각 구역에 해당하는 제1 광원들(201) 및/또는 제2 광원들(203)을 독립적으로 제어할 수 있다. 예를 들어, 일부 구역에서는 식물싹을 성장시키기 위하여 제1 광원(201)으로부터 제1 파장 대역의 광이 조사될 수 있고, 다른 구역에서는 식물싹의 항산화 물질의 함량 높이기 위하여 제2 광원(203)으로부터 제2 파장 대역의 광이 조사될 수 있다. 하우징에 포함된 각 구역은 상술한 것과 같이 독립적으로 운영될 수 있도록 각각 밀폐된 암실을 구성할 수 있다. 이에 따라, 임의의 구역 내에 제공된 제1 광원(201) 및/또는 제2 광원(203)으로부터 출사된 광은 다른 구역에 영향을 미치지 않을 수 있다.
본 발명의 일 실시예에 있어서, 제어부(220)는 제1 광원(201)과 제2 광원(203)의 동작 여부를 선 셋팅된 프로세스에 따라, 또는 사용자의 입력에 따라 제어할 수 있다. 예를 들어, 제어부(220)는 순차적으로, 제1 시간 동안 상기 제1 광원(201) 및 제2 광원(203)를 미동작시키고, 제2 시간 동안 상기 제1 광원(201)을 동작시키고, 제3 시간 동안 상기 제2 광원(203)을 동작시킬 수 있다. 또는 사용자가 제1 시간 내지 제3 시간의 길이, 이때 제1 광원(201) 및/또는 제2 광원(203)의 광의 세기 등을 수동으로 입력할 수 있다.
본 발명의 일 실시예에 따르면, 제어부(220)는 제1 광원(201) 및/또는 제2 광원(203) 이외에, 수분 공급부에도 연결될 수 있다. 제어부(220)는 수분 공급부를 통해 제공되는 수분의 양이나, 수분이 제공되는 시간 등을 제어할 수 있다.
예를 들어, 제어부(220)는 사용자의 조작 없이도 수분 공급부는 기 설정된 시간 간격으로 씨앗에 수분을 공급할 수 있다. 씨앗에 수분을 공급하는 간격은 씨앗의 종류에 따라 달라질 수 있다. 생장에 물을 많이 필요로 하는 식물의 경우 상대적으로 짧은 간격으로 혹은 지속적으로 수분을 공급할 수 있고, 생장에 물을 적게 필요로 하는 식물의 경우 상대적으로 긴 간격으로 수분을 공급할 수 있다.
본 발명의 일 실시예에 있어서, 재배대 내에 배치되는 씨앗은 벼과 식물의 씨앗일 수 있다. 예를 들어, 재배대 내에 배치되는 씨앗은 보리, 밀, 귀리, 벼, 기장, 수수, 사탕수수, 옥수수 등의 씨앗일 수 있다. 그러나, 씨앗의 종류는 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 상술한 식물 재배 장치를 제공함으로써, 외부 환경에 의한 영향 없이 항산화 물질의 함량이 높은 식물을 수득할 수 있다.
본 발명의 일 실시예에 따른 식물 재배 장치는 상대적으로 소량의 식물을 재배하기 위한 가정용 또는 개인용 재배 장치뿐만 아니라, 대량의 식물을 얻기 위한 대형 공장, 즉, 식물 생산 공장 형태로 운영될 수 있다. 이에 따라, 식물 재배 장치는 복수 개의 재배대, 제1 광원, 제2 광원, 및 수분 공급부(미도시)를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 식물 생산 공장 형태로 운영되는 식물 재배 장치에는 제어부(220)에 다양한 센서들(예를 들어, 온도 센서, 습도 센서, 광량 센서 등)이 추가적으로 배치될 수 있으며, 제어부(220)는 센서들에 의한 데이터를 전송받아 제1 광원(201) 및 제2 광원(203) 및 수분 공급부 등을 전체적으로 또는 개별적으로 제어할 수 있다. 이러한 식물 재배 시스템을 갖춘 재배 장치는 직접적으로 또는, 원격의 이격지에서 유선, 무선 또는 인터넷 수단 등으로 데이터를 송수신할 수도 있으며, 별도의 디스플레이를 통해 각종 센서들, 제1 광원(201) 및 제2 광원(203), 수분 공급부로부터의 데이터를 표시할 수도 있다. 사용자는 이러한 데이터를 검토한 후 제어부(220)를 통해 최적 조건이 구현되도록 지시할 수 있다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 식물 재배 장치를 이용하여 면역성이 향상된 식물을 대량으로 용이하게 재배할 수 있다. 또한, 본 발명의 일 실시예에 따른 식물 재배 장치를 이용하면 복수 개의 식물을 동시에 재배하되, 식물의 종류에 맞는 성장 환경을 독립적으로 제공할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 식물 재배 장치를 이용하면 서로 다른 종류의 식물들을 동시에 재배할 수 있으며, 이에 따라 재배된 식물들은 면역성이 높다.
이상에서는 본 발명의 일 실시예에 따른 식물 재배 장치에 대하여 살펴보았다. 이하에서는 상술한 식물 재배 장치를 이용하기 위한 식물 재배 방법에 대하여 자세히 살펴보고자 한다.
도 7은 본 발명의 일 실시예에 따른 식물 재배 방법을 나타낸 순서도이다.
도 7에 따르면, 먼저 본체부에 제공된 씨앗을 제1 시간(P1) 동안 발아시킨다(S100).
발아(germination)는 씨앗으로부터 식물이 발생하는 것을 의미하고, 유묘(seedling)는 발아한 식물의 어린 단계를 의미한다.
발아 조건은 씨앗의 종류에 따라 달라질 수 있기 때문에, 제1 시간(P1) 동안 본체부 내부를 씨앗의 발아 조건에 맞게 설정할 수 있다. 예를 들어, 발아에 빛을 필요로 하는 광발아 종자의 경우, 제1 시간(P1) 동안 제1 광원부를 이용하여 씨앗에 빛을 조사할 수 있다. 광발아 종자의 경우, 제1 광원부는 특히 적색광을 씨앗에 조사할 수 있다. 적색광은 종자 내 파이토크롬(phythochrome)을 적색광흡수형(Pr)에서 근적외선흡수형(Pfr)으로 변환시키고, 근적외선흡수형 파이토크롬(Pfr)은 지벨릴린(gibberellin) 함량을 증가시키는 동시에 종자 휴면을 유도하는 앱시스산 함량을 감소시킨다. 이에 따라, 적색광에 의하여 발아가 촉진될 수 있다. 반대로, 발아에 빛을 필요로 하지 않는 암발아 종자의 경우, 제1 시간(P1) 동안 본체부 내부가 암실과 같이 유지될 수 있다.
발아 단계에서는 수분 공급부에 의한 수분 공급량이 증가할 수 있다. 종자가 세포 대사와 성장을 시작하기 위해서는 충분한 양의 물을 흡수해야 하기 때문이다. 따라서, 종자가 충분한 물을 흡수하도록 또는 종자가 침윤(imbition)될 수 있도록 발아 단계에서 수분 공급이 집중될 수 있다.
발아 단계에서, 본체부 내부는 약 20도 내지 약 30도로 유지될 수 있다. 상기 범위에서 종자의 발아가 촉진될 수 있다. 본체부는 상기 온도를 유지하기 위하여 다양한 형태의 온도 조절 장치를 포함할 수 있다.
발아 과정을 수행하는 제1 시간(P1)은 식물의 종류에 따라 달라질 수 있다. 따라서, 사용자 또는 제어부는 재배하고자 하는 식물의 종류에 따라, 제1 시간(P1)을 다르게 조정할 수 있다.
다음으로, 발아된 씨앗에 제1 파장 대역의 빛을 조사한다(S200).
제1 파장 대역의 빛은 제2 시간 동안 발아된 씨앗에 조사될 수 있다. 제1 파장 대역의 빛이 발아된 씨앗에 조사됨으로써, 씨앗으로부터 식물이 성장할 수 있다. 제1 파장 대역은 가시광선 파장 대역일 수 있으나, 경우에 따라 근적외선 파장 대역을 포함할 수 있다. 제1 파장 대역은 앞서 서술한 바와 같이 재배하는 식물의 종류에 따라 달라질 수 있다.
제1 파장 대역의 빛은 약 50 μmol/m2s 내지 약 300 μmol/m2s의 광량으로 발아된 씨앗 상에 조사될 수 있다. 아울러, 일부 작물의 경우 제1 파장 대역의 빛은 약 50 μmol/m2s 내지 약 70 μmol/m2s의 광량으로 발아된 씨앗 상에 조사될 수 있다.
제1 파장 대역의 빛의 광량이 약 50 μmol/m2s 미만일 경우, 제1 파장 대역의 빛에 의한 엽록소 생성 및 광합성이 충분히 일어나지 않아, 식물 생장이 더딜 수 있다. 반대로, 제1 파장 대역의 빛의 광량이 광포화점인 약 300 μmol/m2s를 초과할 경우, 식물이 이용할 수 있는 광량 이상의 빛이 조사되어 식물이 마를 수 있다.다만, 광포화점은 작물 및 생장 단계마다 다를 수 있다. 예를 들어, 일부 콩과와 벼과 식물 유묘의 경우 광포화점은 약 70 μmol/m2s일 수 있다. 이에 따라, 제1 파장 대역의 빛은 약 50 μmol/m2s 내지 약 70 μmol/m2s의 광량으로 조사될 수 있다.
제1 파장 대역의 빛이 조사되는 제2 시간은 식물의 종류에 따라 달라질 수 있다. 따라서, 사용자 또는 제어부는 재배하고자 하는 식물의 종류에 따라, 제2 시간을 다르게 조정할 수 있다.
다음으로, 씨앗으로부터 성장한 식물에 제2 파장 대역의 빛을 조사한다(S300).
제2 파장 대역의 빛은 제3 시간 동안 식물에 조사될 수 있다. 제2 파장 대역의 빛을 식물에 조사함으로써, 식물 내 페놀계 화합물 총량을 증가시킬 수 있다.
제2 파장 대역의 빛은 씨앗으로부터 생장된 식물의 수확 직전에 제3 시간 동안 식물에 조사될 수 있다. 따라서, 식물은 수확 시점으로부터 역산하여 제3 시간 동안 빛을 받을 수 있고, 이에 따라 식물 내 이차대사가 촉진되어 페놀계 화합물 총량이 증가할 수 있다.
제2 파장 대역의 빛은 씨앗 또는 식물에 약 5μW/cm2 내지 15μW/cm2의 양으로 조사될 수 있다. 상술한 범위의 광량을 받음으로써, 식물 세포의 손상/변형 없이 페놀계 화합물 총량만 높일 수 있다. 예를 들어, 씨앗 또는 식물에 약 5μW/cm2 미만의 광량의 빛이 조사될 경우, 식물 세포에 가해지는 스트레스가 미약하여, 항산화 물질 생산을 위한 호르메시스(Hormesis) 반응이 충분히 일어나지 않을 수 있다. 반면, 씨앗 또는 식물에 약 15μW/cm2를 초과하는 광량의 빛이 조사될 경우, 식물 세포가 손상/변형될 수 있다.
제2 파장 대역의 빛의 세기가 모든 파장 대역에서 동일한 것은 아니다. 식물의 종류에 따라 상기 약 200nm 내지 약 400nm 파장의 빛 중 특정 파장 대역의 빛의 세기를 높일 수 있다. 예를 들어, 식물이 밀인 경우, 약 200nm 내지 약 400nm 파장 대역 중 특히 약 295nm 파장의 빛의 세기를 높일 수 있다. 이에 따라, 식물의 종류 별로 맞춤형 광 조사가 가능하고, 식물 내 페놀계 화합물 총량이 최대로 될 수 있다.
본 발명의 일 실시예에 따르면, 식물의 씨앗을 차례대로 발아시키고, 성장시키고, 식물 내 이차대사를 촉진할 수 있다. 이에 따라, 시판되는 일반적인 씨앗으로부터도 페놀계 화합물 총량 및 항산화 활성이 높은 식물을 얻을 수 있다.
이상에서는 본 발명의 일 실시예에 따라 식물을 재배하는 방법을 간략하게 살펴보았다. 본 발명의 일 실시예에 따르면, 식물은 사용자의 조작 없이 자동으로 재배될 수 있는데, 이하에서는 사용자의 조작 없이 식물을 재배하기 위한 방법에 대하여 더 자세히 살펴보고자 한다.
도 8은 본 발명의 일 실시예에 따른 식물 재배 방법을 나타낸 순서도이다.
본 발명의 일 실시예에 따르면, 식물 재배 장치는 제어부에 의하여 조작되며, 제어부는 사용자의 간섭 없이도 본 발명의 일 실시예에 따른 식물 재배 방법에 따라 식물을 재배한다.
먼저, 씨앗이 식물 재배 장치에 제공되었을 때, 제어부는 씨앗을 제1 시점(T1)부터 발아 조건으로 유지한다(S101). 제1 시점(T1)은 본 발명의 일 실시예에 따른 식물 재배 장치에 씨앗을 넣고, 사용자가 재배를 시작하기 위한 동작을 실시한 시점일 수 있다. 예를 들어, 재배를 시작하기 위한 동작이란 식물 재배 장치의 전원을 키고 재배 시작 버튼을 누르는 행위 등일 수 있다.
식물의 발아 조건은 상술한 것과 같이 식물의 종류에 따라 달라질 수 있기 때문에, 제어부는 식물의 종류에 적합한 발아 조건을 데이터 베이스로부터 불러와 적용할 수 있다.
다음으로, 제어부는 현재 시각(T)과 제1 시점(T1)의 차, 즉 제1 시점(T1)으로부터 현재(T)까지 흐른 시간과 제1 시간(P1)을 비교한다(S102). 제1 시간(P1)은 식물 발아에 필요한 시간이며, 제어부는 제1 시점(T1)으로부터 제1 시간(P1)이 지났을 때, 씨앗의 발아가 완료된 것으로 판단한다.
제1 시간(P1)은 앞서 서술한 바와 같이, 식물의 종류에 따라 달라질 수 있기 때문에 제어부는 식물의 종류에 따라 제1 시간(P1)을 다르게 구성할 수 있다. 예를 들어, 식물이 벼과 또는 콩과 식물인 경우, 제1 시간(P1)은 약 72시간일 수 있다.
다음으로, 제어부는 현재 시각(T)과 제1 시점(T1)의 차이가 제1 시간(P1) 이상일 때, 씨앗에 제1 파장 대역의 빛을 조사하도록 제어한다(S201). 이때, 제어부가 제1 광원부가 제1 파장 대역의 빛을 조사하도록 제어하는 시점이 제2 시점(T2)이다. 반면, 현재 시각(T)과 제1 시점(T1)의 차이가 제1 시간(P1)보다 작을 경우, 제어부는 식물 재배 장치 내부를 발아 조건으로 계속 유지한다.
제1 파장 대역의 빛은 앞서 서술한 바와 같이, 가시광선 파장 대역일 수 있으며, 경우에 따라 근적외선 파장 대역을 포함할 수 있다. 제1 파장 대역의 빛을 조사함으로써, 발아한 씨앗으로부터 식물이 성장할 수 있다. 따라서, 제1 파장 대역의 빛은 식물의 성장률을 높일 수 있도록 식물 종류에 맞추어서 제어될 수 있다. 제어부는 데이터 베이스로부터 식물의 종류와 매칭되는 제1 파장 대역 정보를 불러오고, 이에 맞추어 제1 광원부를 제어할 수 있다.
제어부는 제1 광원부가 조사하는 제1 파장 대역 및 광량을 시간에 따라 다르게 제어할 수 있다. 예를 들어, 제1 광원부가 빛을 조사하기 시작하였을 때인 식물의 성장 초기 단계에서 제1 파장 대역 및 광량은, 식물의 성장 완료 단계에서의 제1 파장 대역 및 광량과 다를 수 있다. 이에 따라, 식물의 성장 단계에 따라 최적화된 빛을 조사할 수 있다.
제1 파장 대역의 빛이 제2 시간(P2) 동안 반드시 연속적으로 조사되는 것은 아니다. 제어부는 제2 시간(P2) 동안 제1 광원부를 온/오프(On/Off) 제어할 수 있다. 이에 따라, 해가 뜨고 지는 야생 환경처럼 식물 재배 장치 내부 환경을 조성할 수 있다. 예를 들어, 제2 시간(P2) 동안 제1 광원부가 제1 파장 대역의 빛을 출사하는 시간과 빛을 출사하지 않는 시간의 비는 약 1:1 내지 약 2:1일 수 있다. 이에 따라, 하루 중 해가 규칙적으로 뜨고 지는 야생 환경과 유사한 환경을 식물 재배 장치 내에 조성할 수 있다. 야생 환경과 유사한 환경을 조성함에 따라, 식물 재배 장치 내에서 식물이 광합성과 호흡을 고르게 유지할 수 있다.
다음으로, 제어부는 현재 시각(T)과 제2 시점(T2)의 차이, 즉 제2 시점(T2)으로부터 현재까지 흐른 시간이 제2 시간(P2) 이상인지 판단한다(S202). 제2 시간(P2)은 식물의 성장에 필요한 시간이며, 제어부는 제2 시간(P2)이 흐르지 않았다면 식물이 원하는 단계까지 성장하지 않았다고 판단한다. 다만, 제2 시간(P2)이 식물이 완전히 성장하는데 필요한 시간은 아니다. 예를 들어, 새싹 단계에서 식물을 수확하고자 할 때, 제2 시간(P2)은 발아한 씨앗이 새싹까지 자라는데 필요한 시간일 수 있다.
제2 시간(P2)은 식물의 종류에 따라 달라질 수 있으며, 제어부는 데이터베이스로부터 식물의 종류에 적합한 제2 시간(P2)을 불러와 적용할 수 있다.
다음으로, 제어부는 현재 시각(T)과 제2 시점(T2)의 차이가 제2 시간(P2) 이상일 때, 제2 광원부가 씨앗에 제2 파장 대역의 빛을 조사하도록 제어한다(S301). 이때, 제어부가 제2 광원부가 제2 파장 대역의 빛을 조사하도록 제어하는 시점이 제3 시점(T3)이다. 반면, 현재 시각(T)과 제2 시점(T2)의 차이가 제2 시간(P2)보다 작을 경우, 제어부는 제1 광원부가 계속해서 제1 파장 대역의 빛을 조사하도록 제어한다.
제2 파장 대역은 앞서 서술한 것과 같이 약 200nm 내지 약 400nm일 수 있다. 상술한 빛이 조사됨으로써, 식물의 이차대사가 활성되고 식물 내 페놀계 화합물 총량이 증가할 수 있다.
다음으로, 제어부는 현재 시각(T)과 제3 시점(T3)의 차, 즉 제3 시점(T3)으로부터 현재(T)까지 흐른 시간이 제3 시간(P3) 시간 이상인지 판단한다(S302). 제3 시점(T3)부터 현재(T)까지 흐른 시간이 제3 시간(P3) 이상일 경우, 제어부는 제2 광원부로부터 제2 파장 대역의 빛이 출사되는 것을 중단시킨다. 반대로, 제3 시점(T3)부터 현재(T)까지 흐른 시간이 제3 시간(P3) 미만인 경우, 제어부는 제2 광원부가 계속해서 제2 파장 대역의 빛을 출사하도록 제어한다.
제3 시간(P3)은 약 48시간 이하일 수 있다. 제3 시간(P3)이 제3 시간(P3)이 약 48시간을 초과할 경우 식물에 필요 이상의 스트레스가 가해져 식물 세포가 변형되거나 식물이 말라버릴 수 있다. 제어부가 제2 광원부가 제3 시간(P3) 동안만 빛을 조사하도록 제어함으로써, 상술한 문제가 발생할 여지가 없다.
제3 시간(P3) 동안 제2 광원부가 출사하는 빛의 세기는 파장 별로 다를 수 있다. 제어부는 식물의 종류에 따라 상기 약 200nm 내지 약 400nm 파장의 빛 중 특정 파장의 빛의 세기를 높일 수 있다. 이에 따라, 식물의 종류 별로 맞춤형 광 조사가 가능하고, 식물 내 페놀계 화합물 총량이 최대로 될 수 있다.
제3 시간(P3)은 식물의 수확 직전에 제공되기 때문에, 제2 파장 대역의 빛에 의한 식물의 이차대사 활성은 식물이 원하는 단계까지 성장한 후 이루어질 수 있다. 이에 따라, 제2 파장 대역의 빛 조사에 의해 식물 성장이 저해될 우려를 줄일 수 있다.
다음으로, 식물을 수확한다(S303). 이때 수확 장치가 이용될 수 있는데, 수확 장치는 제3 시간(P3) 지난 후 식물을 수분으로부터 격리한다. 이에 따라, 식물이 목표한 것보다 과도하게 생장하는 것을 막을 수 있다. 수확된 식물은 수확 장치에 의하여 식물 재배 장치 내 별도의 공간으로 옮겨질 수 있다. 이에 따라, 수확된 식물이 과도하게 성장하거나, 수확된 후 제2 파장 대역의 빛을 받아 변형되는 것을 막을 수 있다.
본 발명의 일 실시예에 따르면, 사용자가 재배 과정에 관여하지 않아도, 기 설정된 기준에 따라 페놀계 화합물 총량이 높은 식물이 재배될 수 있다. 이에 따라, 식물 재배에 대한 지식이 없는 사용자도 쉽게 페놀계 화합물 총량이 높은 식물을 재배, 수확할 수 있다.
이상에서는 페놀계 화합물 총량이 높은 식물을 재배하기 위한 식물 재배 장치, 식물 재배 방법에 대하여 살펴보았다. 이하에서는 본 발명의 일 실시예에 따른 식물 재배 장치와 식물 재배 방법을 통해 얻을 수 있는 식물의 페놀계 화합물 총량 및 항산화 활성에 대하여 데이터를 통해 더 자세히 살펴보고자 한다.
아래 표 1 내지 표 5는 콩과 식물과 벼과 식물에 대하여, 제2 파장 대역의 빛(275nm, 295nm) 조사 여부를 달리하여 식물을 재배한 것이다. 식물 재배 조건은 아래와 같다.
녹두 (콩과)
비교예 1A 실시예 1A 실시예 2A
제2 파장 대역 빛 X 295nm 275nm
완두 (콩과)
비교예 1B 실시예 1B 실시예 2B
제2 파장 대역 빛 X 295nm 275nm
알팔파 (콩과)
비교예 1C 실시예 1C 실시예 2C
제2 파장 대역 빛 X 295nm 275nm
밀 (벼과)
비교예 1D 실시예 1D 실시예 2D
제2 파장 대역 빛 X 295nm 275nm
보리 (벼과)
비교예 1E 실시예 1E 실시예 2E
제2 파장 대역 빛 X 295nm 275nm
제2 파장 대역 빛 조사 여부를 제외한 식물 재배 조건은 실시예와 비교예 모두 동일하다. 실시예와 비교예의 식물들은 약 72시간 동안 암실 조건에서 발아되었고, 약 144시간 동안 백색 발광 다이오드 광원을 이용하여 성장되었다. 백색 발광 다이오드 광원은 약 144시간 중 작동 시간과 비작동 시간의 비를 2:1로 하여 제어됐다. 즉, 24시간 중 약 16시간 동안 백색 발광 다이오드를 작동시키고, 약 8시간 동안 백색 발광 다이오드를 끄는 것을 반복하여 약 144시간 동안 식물을 성장시켰다. 백색 발광 다이오드는 작동 중에 약 60 μmol/m2s의 광량으로 빛을 조사하였다. 식물 재배 장치 내부는 약 24℃, 상대습도 70±5%로 유지되었다. 아울러, 실시예의 식물들은 수확 직전 24시간 동안 제2 파장 대역의 빛을 조사받았다. 제2 파장 대역의 빛은 약 10μW/cm2의 광량으로 조사되었다. 비교예의 식물들은 제2 파장 대역의 빛을 조사받지 않았다.
아래 표 6 내지 표 10은 실시예와 비교예의 식물에 함유된 페놀계 화합물(Phenolic Compound)의 총량을 측정한 것이다. 비교예 1A~1E를 기준으로 하였을 때, 실시예 1A~1E와 실시예 2A~2E에 포함된 페놀계 화합물의 양이 얼마나 더 늘었는지 확인하였다.
녹두 (콩과)
비교예 1A 실시예 1A 실시예 2A
페놀계 화합물 총량 증감율 (%) 100% 94.7% 109.8%
완두 (콩과)
비교예 1B 실시예 1B 실시예 2B
페놀계 화합물 총량 증감율 (%) 100% 112.7% 118.9%
알팔파 (콩과)
비교예 1C 실시예 1C 실시예 2C
페놀계 화합물 총량 증감율 (%) 100% 118.6% 119.0%
밀 (벼과)
비교예 1D 실시예 1D 실시예 2D
페놀계 화합물 총량 증감율 (%) 100% 126.0% 121.6%
보리 (벼과)
비교예 1E 실시예 1E 실시예 2E
페놀계 화합물 총량 증감율 (%) 100%  125.7% 133.9%
표 6 내지 표 10를 참고하면, 실시예 1A~1E와 실시예 2A~2E의 경우 일반적으로 제2 파장 대역의 빛을 조사받지 않은 비교예 1A~1E와 비교했을 때 식물 내 페놀계 화합물 총량이 증가한 것을 확인할 수 있다.녹두의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1A와 비교했을 때, 약 275nm 파장의 빛을 받은 실시예 2A에서 페놀계 화합물 총량이 약 9.8% 증가한 것을 확인할 수 있었다.
완두의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1B와 비교했을 때, 약 295nm 파장의 빛을 받은 실시예 1B에서 페놀계 화합물 총량이 약 12.7% 증가한 것을 확인할 수 있었으며, 약 275nm 파장의 빛을 받은 실시예 2B에서는 페놀계 화합물 총량이 약 18.9% 증가한 것을 확인할 수 있었다.
알파파의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1C와 비교했을 때, 약 295nm 파장의 빛을 받은 실시예 1C에서 페놀계 화합물 총량이 약 18.6% 증가한 것을 확인할 수 있었으며, 약 275nm 파장의 빛을 받은 실시예 2C에서는 페놀계 화합물 총량이 약 19.0% 증가한 것을 확인할 수 있었다.
밀의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1D와 비교했을 때, 약 295nm 파장의 빛을 받은 실시예 1D에서 페놀계 화합물 총량이 약 26.0% 증가한 것을 확인할 수 있었으며, 약 275nm 파장의 빛을 받은 실시예 2D에서는 페놀계 화합물 총량이 약 21.6% 증가한 것을 확인할 수 있었다.
보리의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1E와 비교했을 때, 약 295nm 파장의 빛을 받은 실시예 1E에서 페놀계 화합물 총량이 약 25.7% 증가한 것을 확인할 수 있었으며, 약 275nm 파장의 빛을 받은 실시예 2E에서는 페놀계 화합물 총량이 약 33.9% 증가한 것을 확인할 수 있었다.
이에 따라, 콩과와 벼과 식물의 경우 제2 파장 대역의 빛을 받았을 때 페놀계 화합물 총량이 크게 증가함을 확인할 수 있었다. 특히, 실시예 2A, 실시예 1B, 실시예 2B, 실시예 1C, 실시예 2C, 실시예 1E, 실시예 2E의 경우, 통계적으로 유의미한 수준의 페놀계 화합물 총량 증가를 확인할 수 있었다.
다음으로, 페놀계 화합물 총량 차이가 실제 항산화 활성(Antioxidant Capacity)의 차이로 나타나는지 여부를 확인하기 위하여 항산화 활성 측정 시험을 수행하였다. 항산화 활성은 ABTS[2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid]를 이용하는 ABTS 검출법을 이용하여 측정하였다. 푸른색을 띠는 ABTS 라디컬 양이온은 항산화 물질과 만나 무색의 중성 형태로 환원되는데, 항산화 물질이 많을수록 ABTS 라디컬 양이온이 무색의 중석 형태로 환원되는 양이 증가하고, ABTS가 띠는 푸른색이 옅어진다. 따라서, 실시예와 비교예의 식물 추출액을 ABTS 용액과 반응시킨 후, ABTS 용액의 색 변화를 분광광도법적(Spectrophotometric)으로 분석하여 항산화 물질인 트롤록스(Trolox)의 항산화 활성에 대비하여 항산화 활성을 측정했다.
아래 표 11 내지 표 15는 실시예와 비교예의 식물의 항산화 활성을 측정한 것이다. 비교예 1A~1E를 기준으로 하였을 때, 실시예 1A~1E와 실시예 2A~2E의 항산화 활성이 얼마나 더 늘었는지 확인하였다.
녹두 (콩과)
비교예 1A 실시예 1A 실시예 2A
항산화 활성 증감(%) 100% 120.6% 134.5%
완두 (콩과)
비교예 1B 실시예 1B 실시예 2B
항산화 활성 증감(%) 100% 120.8% 123.4%
알팔파 (콩과)
비교예 1C 실시예 1C 실시예 2C
항산화 활성 증감(%) 100% 99.2% 99.9%
밀 (벼과)
비교예 1D 실시예 1D 실시예 2D
항산화 활성 증감(%) 100% 132.7% 139.5%
보리 (벼과)
비교예 1E 실시예 1E 실시예 2E
항산화 활성 증감(%) 100% 146.2% 146.2%
녹두의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1A와 비교했을 때, 약 295nm 파장의 빛을 받은 실시예 1A에서 항산화 활성이 약 20.6% 증가한 것을 확인할 수 있었으며, 약 275nm 파장의 빛을 받은 실시예 2A에서는 항산화 활성이 약 34.5% 증가한 것을 확인할 수 있었다.완두의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1B와 비교했을 때, 약 295nm 파장의 빛을 받은 실시예 1B에서 항산화 활성이 약 20.8% 증가한 것을 확인할 수 있었으며, 약 275nm 파장의 빛을 받은 실시예 2B에서는 항산화 활성이 약 23.4% 증가한 것을 확인할 수 있었다.
알파파의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1C와 실시예 1C, 2C를 비교했을 때, 항산화 활성이 실질적으로 변하지 않은 것을 확인할 수 있었다.
밀의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1D와 비교했을 때, 약 295nm 파장의 빛을 받은 실시예 1D에서 항산화 활성이 약 32.7% 증가한 것을 확인할 수 있었으며, 약 275nm 파장의 빛을 받은 실시예 2D에서는 항산화 활성이 약 39.5% 증가한 것을 확인할 수 있었다.
보리의 경우 제2 파장 대역의 빛을 조사받지 않은 비교예 1E와 비교했을 때, 약 295nm 파장의 빛을 받은 실시예 1E에서 항산화 활성이 약 46.2% 증가한 것을 확인할 수 있었으며, 약 275nm 파장의 빛을 받은 실시예 2E에서는 항산화 활성이 약 46.2% 증가한 것을 확인할 수 있었다.
이에 따라, 콩과와 벼과 식물의 경우, 일반적으로 페놀계 화합물 총량이 실제 항산화 활성 증가로 이어짐을 확인할 수 있었다. 특히, 실시예 1A, 실시예 2A, 실시예 1B, 실시예 2B, 실시예 1E, 실시예 2E의 경우, 통계적으로 유의미한 수준의 항산화 활성 증가를 확인할 수 있었다.
도 9는 본 발명의 일 실시예에 따른 재배 방법을 순차적으로 도시한 순서도이다.
도 9를 참조하면, 본 발명의 다른 실시예에 따르면, 식물의 씨앗을 발아시키고(S11), 상기 발아된 씨앗을 새싹으로 성장시키고(S13), 자외선 파장 대역의 광을 식물에 조사한 후(S15), 상기 식물의 새싹을 성장시키는 단계(S17)를 포함한다. 이때 식물의 새싹을 성장시키는 단계는 새싹을 성체로 성장시키는 것, 새싹을 성체가 되기 전의 특정 상태까지 성장시키는 것을 모두 포함하는 의미이다. 식물의 새싹을 성장시키는 단계(S17)는 식물의 종류를 고려하여 그 기간을 달리할 수 있다.
식물의 발아는 본 발명의 일 실시예에 따른 재배 장치에 보리 씨앗을 넣고 암조건에서 수분을 공급하는 방법으로 수행될 수 있다. 본 발명의 일 실시예에 있어서, 약 1일 내지 약 5일 내지의 암조건 하에서 수분을 식물의 씨앗에 공급할 수 있다. 예를 들어 3일 동안 암조건을 유지하면서 씨앗에 수분을 공급함으로써 식물을 발아시킬 수 있다.
식물의 씨앗은 발아되기 위해 소정 시간 이상 정제수에 불려질 수 있다. 이는, 씨앗이 충분한 물을 흡수하도록 하기 위한 것으로, 이에 따라, 씨앗에 발아 단계에서 수분이 공급될 수 있다. 발아 조건은 식물의 씨앗의 종류에 따라 달라질 수 있기 때문에, 제1 시간 동안 씨앗 주변의 조건을 씨앗의 발아 조건에 맞게 설정할 수 있다. 예를 들어, 발아에 광을 필요로 하지 않는 암발아 씨앗의 경우, 제1 시간 동안 하우징 내부가 암실과 같이 유지될 수 있는 바, 씨앗의 발아시에는 하우징 내는 암 조건으로 유지될 수 있다.
발아 단계에서, 식물의 씨앗을 발아시키기 위해 적절한 온도와 습도를 가지도록 유지될 수 있다. 식물의 씨앗 주변의 상기 온도를 유지하기 위하여 다양한 형태의 온도 조절 장치, 예를 들어, 히터 및/또는 쿨러가 사용될 수 있다.
발아 단계에서는 수분 공급부 등으로 씨앗에 수분이 공급될 수 있다. 씨앗이 세포 대사와 성장을 시작하기 위해서는 충분한 양의 물을 흡수해야 하기 때문이다. 따라서, 씨앗이 충분한 물을 흡수하도록 또는 씨앗이 침윤(imbibition)될 수 있도록 발아 단계에서 수분 공급이 집중될 수 있다. 여기서 상기 수분은 정제수로 제공될 수 있다.
다음으로, 발아된 씨앗을 새싹으로 성장시키고, 자외선 파장 대역의 광을 새싹에 조사시킨다. 여기서, 씨앗을 새싹으로 성장시키기 위한 과정에서 자외선 파장 대역의 광을 새싹에 조사시키는 과정이 함께 이루어질 수 있다. 이를 설명하면 다음과 같다.
상기 발아된 씨앗을 식물로 성장시키기 위해서는 암 조건 또는 명조건, 또는 암 조건이나 명조건이 반복될 수 있다. 본 발명의 일 실시예에 있어서, 제1 시간 동안 명조건으로 유지되고 제2 시간 동안 암 조건으로 유지될 수 있으며, 이러한 명조건과 암조 건이 반복 처리 될 수 있다. 다시 말해, 상기 제1 파장 대역의 광이 조사되는 제2 시간은 연속적일 수도 있으나, 명과 암이 반복되는 광 주기를 가질 수 있으며, 이 경우, 일정 시간 동안 명조건 상태로 유지되며, 또 다른 일정 시간 동안 암 조건 상태로 유지된다. 명조건과 암 조건은 보통 24시간을 기준으로 소정 회수로 반복될 수 있다. 예를 들어, 24시간을 기준으로, 명조건은 14시간 내지 18시간 동안 지속될 수 있으며, 암 조건은 6시간 내지 10시간 내에서 반복될 수 있다. 본 발명의 일 실시예에 있어서, 광 주기는 24시간 기준으로, 명조건 16시간과 암 조건 8시간이 반복되는 것으로 이루어질 수 있으며, 광주기는 약 4일 내지 10일 동안 반복될 수 있다. 본 발명의 일 실시예에 있어서는, 명조건으로 약 16시간, 암 조건으로 약 8시간 진행할 수 있으며, 이러한 명조건과 암조건 상태를 7일동안 반복시킬 수 있다.
본 발명의 일 실시예에 있어서, 암 조건시에는 제1 광원과 제2 광원 모두 턴-오프로 유지되고, 명조건 시에 제1 광원이 턴-온이 된다. 명조건시 제1 광은 약 60μmol/m2s의 광량으로 식물의 새싹에 조사될 수 있으며, 제2 광은 10μW/cm2의 에너지로 조사될 수 있다. 제1 광의 광량은 식물 새싹의 광합성 및 생장을 유도하기 위한 것이다.
여기서, 명조건 내 제1 시간이 소요되는 동안 제2 광원은 일정 도즈량으로 일정 시간 동안 턴-온으로 유지될 수 있다. 제2 광원은 제1 광원이 턴-온일 때 제1 광원과 동일한 시간 동안, 또는 제1 광원보다 적은 시간 동안 광을 출사할 수 있다. 또는, 제2 광원은 소정 패턴으로 일정 시간 동안 켜짐과 꺼짐이 반복될 수 있다. 다시 말해, 제2 광원은 제1 광원이 턴-온일 때 주기적으로 광을 출사할 수 있다. 여기서, 제2 광원의 조사 주기는 다양한 형태로 이루어질 수 있으며, 일정 시간에 맞추어 턴-온과 턴-오프가 설정된 반복 패턴을 가질 수 있다. 제2 광의 조사는 연속적으로 이루어질 수 있으나, 연속적으로 이루어지더라도 일주일 이내에 한도 내에서 조사될 수 있다.
그러나, 제2 광원의 조사량은 식물에 손상을 주지 않을 도즈량으로 한정된다. 예를 들어, 본 발명의 일 실시예에 있어서, 제2 광원은 최대 13.44kJ/m2s의 도즈량으로 광을 조사할 수 있다. 제2 광원은 또한, 식물에 충분한 양의 항산화 물질이 생성될 수 있도록 1.08kJ/m2s 이상의 도즈량의 빛을 식물에 인가할 수 있다.
다음으로, 이식한 식물을 성체로 성장시킬 수 있다. 여기서, 제2 광의 조사, 즉, 자외선 조사는 씨앗의 발아 이후부터 성체로 되기 전까지의 기간 내에 수행될 수 있다. 그러나, 본 발명의 일 실시예는 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 있어서, 새싹을 성체로 재배하는 단계는 생략될 수 있으며, 항산화 물질의 함량이 높은 상태로 새싹이 성체로 자라나기 전에 채취할 수 있다.
상술한 방법을 통해, 항산화성 물질의 함유량이 증가된 식물을 얻을 수 있다. 특히, 상술한 방법을 통해 항산화성 물질의 함유량이 증가된 벼과 식물을 얻을 수 있다. 이에 따라, 벼과 식물 자체가 항산화성 물질을 많이 포함함으로써 벼과 식물에 있어서의 면역성이 높아져 박테리아나 미생물 등이 쉽게 감염되지 않은 고품질의 식물을 얻을 수 있다. 이러한 박테리아나 미생물등에의 감염이 적게 발생함으로써 위한 농약살포에 따른 제제 비용, 상품성 저하, 환경오염, 작업자의 위험에 대한 노출 등이 감소될 수 있다. 이에 더해, 이러한 벼과 식물이 사람에게 섭취되는 경우 항산화성 물질의 함유량이 높기 때문에 인체 내 세포의 노화를 방지하는 효과도 얻을 수 있다. 예를 들어, 항산화 물질이 높은 보리 새싹은 채취 후 사람에 의해 섭취되거나, 별도로 가공되어 다양한 식품의 재료로 사용된 후 사람에 의해 섭취될 수 있다.
상술한 방법으로 벼과 새싹을 재배하는 경우 벼과 새싹 내 항산화물질이 증가하는 바 이에 대한 실험예를 설명한다.
실험예 1. 항산화 물질의 총량 확인 방법
항산화 물질은 페놀성 화합물의 총량을 확인하는 형태로 수행되었다.
페놀성 화합물의 총량을 확인하기 위해, 벼과 식물의 새싹(보리 새싹 또는 밀 새싹 등)를 채취한 후, 채취한 새싹을 동결 건조 및 분쇄하였다. 분쇄한 시료를 0.09g 탈이온수와 80% 아세톤 8mL에 넣은 다음, 잘 섞은 다음, 초음파 처리를 15분 동안 수행하였다. 그 다음, 시료를 -20℃/암조건에서 12시간 이상 유지하여 추출하였다. 추출한 시료를 원심분리기(RCF 3000/RPM 1350)에 넣고 2분 동안 원심분리한 다음, 새 시험관에 증류수 135μL, 10% Folin-Ciocalteu 시약 750μL, 시료 50μL, 및 7.5% Na2CO3 600μL를 순서대로 첨가하였다. 이후 10초동안 잘 섞은 다음, 45℃ 항온수조에 15분간 반응시킨 후 충분히 식혔다. 이후, 충분히 식은 시료 1mL를 큐벳에 옮겨 담아 765nm의 분광광도계에서 흡광도를 측정하였다. 이때, 갈 산(gallic acid) 1mg/mL를 희석하여 0.4/0.35/0.3/0.25/0.2/0.15/0.1/0.05 mg/ml갈 산 용액을 제조하고 이의 흡광도를 측정하여 기준 커브를 작성함으로써 벼과 식물 내 페놀성 화합물의 총량을 측정하였다.
실험예 2. 제2 광의 파장에 따른 항산화 물질 증가량
제2 광의 파장에 따른 벼과 식물의 항산화 물질 증가량을 확인하기 위해, 벼과 식물의 씨앗(보리 씨앗 또는 밀 씨앗)을 준비하고 암조건 하에서 씨앗을 발아시켰다. 씨앗의 발아를 위해 암조건은 3일 동안 유지되었다. 이후, 1일 동안 명조건은 16시간, 암조건은 8시간으로 설정되어 7일 동안 명조건과 암조건이 반복되었다. 이때, 암조건시 제1 광 및 제2 광이 모두 턴-오프였으며, 명조건 시 제1 광은 턴-온이 유지되었다. 여기에서, 명조건 시에, 제2 광은 275nm, 285nm, 및 295nm의 피크 파장을 갖는 것으로서 주기적으로 켜짐과 꺼짐이 반복되었다. 제2 광으로서 275nm, 285nm, 및 295nm의 피크 파장을 갖는 광원을 이용한 경우는 제1 내지 제3 실시예에 해당하며, 제2 광이 인가되지 않은 경우는 비교예에 해당한다. 본 실험에 있어서, 비교예 및 실시예 1 내지 3은 인가된 파장을 제외한 모든 조건이 동일하게 유지되었다.
도 10은 제2 광의 파장에 따른 페놀성 화합물의 양을 도시한 그래프이다. 도 10을 참조하면, 비교예 대비 실시예 1 내지 3에서 모두 현저하게 페놀성 화합물의 양이 증가되었다. 즉 실시예 1 내지 3에서 모두 페놀성 화합물의 총량이 비교예 대비 20% 이상 증가하였다. 특히, 실시예 2의 경우 대조군에 비해 실시예 1 및 실시예 3보다도 페놀성 화합물의 양이 현저하게 증가한 바, 제2 광이 275nm 및 295nm의 피크 파장을 가질 경우, 페놀성 화합물의 총량이 비교예 대비 약 23%이 증가함에 비해, 285nm에서 총 페놀성 화합물의 함량은 비교예 대비 약 38%나 증가하였다.
이를 통해, 제2 광의 조사를 통해 페놀성 화합물의 총량이 현저하게 증가함을 알 수 있으며, 특히 285nm의 피크 파장을 갖는 제2 광의 조사를 통해 페놀성 화합물의 총량이 한층 더 현저하게 증가함을 확인할 수 있다.
실험예 3. 자외선 도즈량에 따른 보리 새싹의 손상 여부
제2 광이 285nm의 피크 파장의 광일 때, 유효 도즈량의 범위를 파악하기 위해 도즈량에 대한 보리 새싹의 손상 여부를 확인하였다.
도 11은 실험예 2의 조건과 동일한 조건으로 진행하되, 제2 광이 285nm에서 피크 파장을 갖는 광을 도즈량만 달리하여 보리 새싹에 인가한 후의 보리 새싹을 촬상한 사진들이다. 도 11의 각 사진에 적힌 수치는 각 보리 새싹에 인가된 제2 광의 도즈량을 의미한다.
도 11을 참조하면, 제2 광의 인가량이 13.44kJ/m2s 이하인 경우, 보리 새싹에 제2 광을 인가하지 않은 경우와 외견 상의 차이가 발견되지 않았다. 이를 통해 제2 광의 인가량이 13.44kJ/m2s 이하인 경우 보리 새싹이 제2 광의 인가에 거의 영향을 받지 않는다는 것을 알 수 있다. 그러나 제2 광의 인가량이 15.12kJ/m2s 이상인 경우, 보리 새싹의 각 잎 단부에서부터 고사가 진행되어 노랗게 변색된 것을 확인할 수 있다.
이를 통해, 제2 광의 인가시 약 14 kJ/m2s 이하의 도즈량으로 인가될 필요가 있음을 확인할 수 있었다.
실험예 4. 자외선 도즈량에 따른 보리 새싹 내 항산화물 총량
도 12는 실험예 2의 조건과 동일한 조건으로 진행하되, 제2 광이 285nm에서 피크 파장을 갖는 광을 도즈량만 달리하여 보리 새싹에 인가한 후, 그 보리 새싹에 함유된 총 페놀성 화합물의 총량을 나타낸 것이다. 도 12에 있어서, 실험예 3에서와 같이, 도즈량이 약 14 kJ/m2s를 넘는 경우, 보리 새싹의 고사가 일어나는 등 제2 광에 대한 피해가 발생한 상황이므로, 도즈량이 약 14 kJ/m2s를 넘는 경우를 배제하고 약 14 kJ/m2s 이하의 경우에만 나타내었다.
도 12를 참조하면, 제2 광의 인가량이 약 14kJ/m2s 이하인 경우, 페놀성 화합물의 총량이 비교예 대비 모두 증가되었다. 이에 더해, 제2 광의 인가량이 약 3 kJ/m2s 이상 약 14kJ/m2s 이하인 경우, 페놀성 화합물의 총량이 비교예 대비 모두 현저하게 증가되었다. 특히, 8.64 kJ/m2s의 도즈량으로 보리 새싹에 제2 광을 인가한 경우 페놀성 화합물의 총량은 비교예 대비 더욱더 현저하게 높은 값을 나타내었다.
실험예 5. 자외선 도즈량에 따른 밀 새싹의 손상 여부
제2 광이 285nm의 피크 파장의 광일 때, 유효 도즈량의 범위를 파악하기 위해 도즈량에 대한 밀 새싹의 손상 여부를 확인하였다.
도 13은 실험예 2의 조건과 동일한 조건으로 진행하되, 제2 광이 285nm에서 피크 파장을 갖는 광을 도즈량만 달리하여 밀 새싹에 인가한 후의 밀 새싹을 촬상한 사진들이다. 도 13의 각 사진에 적힌 수치는 각 밀 새싹에 인가된 제2 광의 도즈량을 의미한다.
도 13을 참조하면, 제2 광의 인가량이 약 13.4kJ/m2s 이하인 경우, 밀 새싹에 제2 광을 인가하지 않은 경우와 외견 상의 차이가 발견되지 않았다. 이를 통해 제2 광의 인가량이 약 13.4kJ/m2s 이하인 경우 밀 새싹이 제2 광의 인가에 거의 영향을 받지 않는다는 것을 알 수 있다. 이를 통해, 제2 광은 약 13.4 kJ/m2s 이하의 도즈량으로 인가될 필요가 있음을 확인할 수 있었다.
실험예 6. 자외선 도즈량에 따른 밀 새싹 내 항산화물 총량
도 14는 실험예 2의 조건과 동일한 조건으로 진행하되, 제2 광이 285nm에서 피크 파장을 갖는 광을 도즈량만 달리하여 밀 새싹에 인가한 후, 그 밀 새싹에 함유된 총 페놀성 화합물의 총량을 나타낸 것이다. 도 14에 있어서, 실험예 5에서와 같이, 도즈량이 약 13.4 kJ/m2s를 넘는 경우, 밀 새싹의 고사가 일어나는 등 제2 광에 대한 피해가 발생한 상황이므로, 도즈량이 약 13.4 kJ/m2s를 넘는 경우를 배제하고 약 13.4 kJ/m2s 이하의 경우에만 나타내었다.
도 14를 참고하면, 제2 광의 하루 동안의 누적 조사량이 약 2.02kJ/m2 이하일 경우, 밀 새싹 내의 페놀성 화합물의 양이 실질적으로 증가하지 않음을 확인할 수 있었다. 구체적으로, 제2 광을 조사하지 않은 밀 새싹 내 페놀성 화합물의 양과 제2 광을 하루 동안 약 2.02kJ/m2만큼 조사한 밀 새싹 내 페놀성 화합물의 양이 모두 약 13mg/g DW 내외인 것을 확인할 수 있었다.
밀 새싹에 대한 제2 광의 하루 동안의 누적 조사량이 13.4 kJ/m2를 초과하는 경우, 밀 새싹 내 페놀성 화합물의 양이 오히려 감소할 수 있음을 알 수 있었다. 구체적으로, 밀 새싹에 제2 광을 하루 동안 약 13.4 kJ/m2만큼 조사한 경우, 밀 새싹 내 페놀성 화합물의 양은 약 14mg/g DW 내외인 것을 확인할 수 있었다. 이는 밀 새싹에 제2 광을 하루 동안 약 4.03kJ/m2만큼 조사하거나, 약 8.06 kJ/m2만큼 조사한 경우, 밀 새싹 내 제공되는 페놀성 화합물의 양에 비해 적은 수치이다.
상술한 경향은 UV 조사에 의하여 밀 새싹 내 2차 대사산물의 양이 증가하기 위해서는 UV 누적 조사량이 임계치 이상이어야 함을 시사한다. 또한, UV 누적 조사량이 증가할수록 새싹에 UV에 의한 피해가 가해지므로, UV 누적 조사량이 일정 수준 이상일 경우 페놀성 화합물을 비롯한 새싹 내 유용 물질이 UV에 의해 파괴될 수 있음을 시사한다.
따라서, 밀 새싹 내 페놀성 화합물의 총량을 높이기 위해서는 하루 동안의 제2 광 누적 조사량을 약 4.03 kJ/m2 내지 약 13.4 kJ/m2 사이로 설정하는 것이 바람직하다.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.

Claims (20)

  1. 제1 파장 대역의 제1 광을 출사하는 제1 광원; 및
    상기 제1 파장 대역과 상이한 제2 파장 대역의 제2 광을 출사하는 제2 광원을 포함하고,
    상기 제2 파장 대역은 자외선 파장 대역을 포함하고,
    상기 제1 광원이 상기 제1 광을 출사하는 동안 상기 제2 광원은 상기 제1 광원과 독립적으로 구동되어 상기 제2 광 출사 여부를 결정하는, 식물 재배 광원.
  2. 제1항에 있어서,
    상기 제1 광원은 명조건에서 상기 제1 광을 출사하도록 턴-온되고, 암조건에서 턴-오프되는, 식물 재배 광원.
  3. 제2항에 있어서,
    상기 제2 광원은 상기 명조건에서 상기 제2 광을 출사하도록 턴-온되거나 상기 제2 광을 출사하지 않도록 턴-오프되는, 식물 재배 광원.
  4. 제2항에 있어서,
    상기 명조건과 상기 암조건은 하루 단위로 반복되는, 식물 재배 광원.
  5. 제2항에 있어서,
    상기 명조건과 상기 암조건의 비는 1:1 내지 2:1인, 식물 재배 광원.
  6. 제1항에 있어서,
    상기 제1 파장 대역은 가시광선 파장 대역을 포함하는, 식물 재배 광원.
  7. 제1항에 있어서,
    상기 제2 파장 대역은 약 250nm 내지 약 380nm 파장 대역을 포함하는, 식물 재배 광원.
  8. 제7항에 있어서,
    상기 제2 광은 약 270nm 내지 약 300nm에서 피크 파장을 갖는, 식물 재배 광원.
  9. 제1항에 있어서,
    상기 제2 광원은 상기 제2 광의 도즈량이 약 1 kJ/m2s 이상 약 14 kJ/m2s이하가 되도록 턴-온 또는 턴-오프되는, 식물 재배 광원.
  10. 제1항에 있어서,
    상기 제1 광원은 약 440nm 내지 약 495nm 파장 대역과 약 620nm 내지 약 750nm 파장 대역에서 상대적으로 높은 빛의 세기를 갖는 상기 제1 광을 출사하는, 식물 재배 광원.
  11. 가시 광선 및 자외선 파장 대역의 광을 출사하는 광원부;
    식물이 제공되며 상기 광원부가 그 내부에 장착된 하우징; 및
    상기 광원부를 제어하는 제어부를 포함하고,
    상기 광원부는
    제1 파장 대역의 제1 광을 출사하는 제1 광원; 및
    상기 제1 파장 대역과 상이한 제2 파장 대역의 제2 광을 출사하는 제2 광원을 포함하고,
    상기 제2 파장 대역은 자외선 파장 대역을 포함하고,
    상기 제어부는 명조건에서 상기 제1 광원이 턴-온되고, 암조건에서 상기 제1 광원이 턴-오프도록 제어하고,
    상기 제어부는 상기 명조건에서 상기 제2 광원이 상기 제1 광원과 독립적으로 턴-온 또는 턴-오프되도록 제어하는, 식물 재배 장치.
  12. 제11항에 있어서,
    상기 제1 파장 대역은 가시광선 파장 대역을 포함하는, 식물 재배 장치.
  13. 제11항에 있어서,
    상기 제어부는 상기 암조건과 상기 명조건이 하루 단위로 반복되도록 제어하는 식물 재배 장치.
  14. 제11항에 있어서,
    상기 제2 광은 약 270nm 내지 약 300nm에서 피크 파장을 갖는 식물 재배 장치.
  15. 제11항에 있어서,
    상기 제어부는 상기 제2 광의 도즈량을 약 1 kJ/m2s 이상 약 14 kJ/m2s이하로 제어하는 식물 재배 장치.
  16. 제11항에 있어서,
    상기 식물이 배치되어 재배되는 공간을 제공하는 상기 하우징을 더 포함하며, 제1 광원 및 제2 광원은 상기 하우징의 내면에 제공되는 식물 재배 장치.
  17. 제16항에 있어서,
    상기 하우징은 서로 체결되어 개폐 가능한 하부 케이스와 상부 케이스를 포함하며, 상기 제1 및 제2 광원은 상기 상부 케이스의 내면에 제공되는 식물 재배 장치.
  18. 제11항에 있어서,
    상기 명조건과 상기 암조건의 비는 1:1 내지 2:1인, 식물 재배 장치.
  19. 제11항에 있어서,
    상기 제어부는 상기 제2 광원이 상기 식물의 수확 전 제3 시간 동안 상기 식물에 빛을 조사하도록 상기 제2 광원을 제어하는, 식물 재배 장치.
  20. 제11항에 있어서,
    상기 식물은 콩과(Fabaceae Family) 또는 벼과(Poaceae Family) 식물인, 식물 재배 장치.
PCT/KR2019/010065 2018-08-10 2019-08-09 식물 재배 장치 및 식물 재배 방법 WO2020032677A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217004203A KR20210032440A (ko) 2018-08-10 2019-08-09 식물 재배 장치 및 식물 재배 방법
CN201980003241.2A CN111107739A (zh) 2018-08-10 2019-08-09 植物栽培装置及植物栽培方法
JP2021530762A JP7476192B2 (ja) 2018-08-10 2019-08-09 植物栽培光源および植物栽培装置
EP19848125.1A EP3834606A4 (en) 2018-08-10 2019-08-09 PLANT GROWING DEVICE AND PLANT GROWING METHOD

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862717304P 2018-08-10 2018-08-10
US62/717,304 2018-08-10
US201962824473P 2019-03-27 2019-03-27
US62/824,473 2019-03-27
US16/536,222 US11125405B2 (en) 2018-08-10 2019-08-08 Light source for plant cultivation and plant cultivation device
US16/536,222 2019-08-08

Publications (1)

Publication Number Publication Date
WO2020032677A1 true WO2020032677A1 (ko) 2020-02-13

Family

ID=69415618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010065 WO2020032677A1 (ko) 2018-08-10 2019-08-09 식물 재배 장치 및 식물 재배 방법

Country Status (6)

Country Link
US (2) US11125405B2 (ko)
EP (1) EP3834606A4 (ko)
JP (1) JP7476192B2 (ko)
KR (1) KR20210032440A (ko)
CN (1) CN111107739A (ko)
WO (1) WO2020032677A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145942A1 (ko) * 2020-12-28 2022-07-07 서울바이오시스주식회사 식물 재배용 광원 모듈 및 그것을 포함하는 식물 재배 장치
KR20220096693A (ko) * 2020-12-31 2022-07-07 강원대학교산학협력단 기능성 성분 및 항산화 활성이 증진된 새싹삼의 재배방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3003437C (en) * 2018-04-30 2019-10-01 Mondi Products Ltd. Plant cultivator with light
US10820532B2 (en) 2018-08-24 2020-11-03 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11291164B2 (en) 2018-08-24 2022-04-05 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11547060B2 (en) 2018-08-28 2023-01-10 Seoul Viosys Co., Ltd. Plant cultivation device and method for culturing plant
US11503774B2 (en) 2020-12-08 2022-11-22 Haier Us Appliance Solutions, Inc. Grow lighting profiles for indoor garden center
CN113812274B (zh) * 2021-09-24 2022-11-04 中国农业科学院都市农业研究所 一种用于农业照明的定向照明设备、系统及方法
CN114772737B (zh) * 2022-04-14 2023-05-12 中国科学院南京地理与湖泊研究所 一种用于水生植物恢复的水下光场-水质调控装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339236A (ja) * 2002-05-29 2003-12-02 Matsushita Electric Works Ltd 植物育成用照明装置及び植物育成装置並びに植物育成方法
KR20100135919A (ko) * 2008-04-24 2010-12-27 파나소닉 전공 주식회사 식물 병해 방제용 조명 장치
JP2012205520A (ja) * 2011-03-29 2012-10-25 Sharp Corp 光照射装置、イチゴ栽培システムおよびイチゴ栽培方法
JP2013123417A (ja) * 2011-12-15 2013-06-24 Panasonic Corp 植物育成病害防除照明装置
WO2017188719A1 (ko) * 2016-04-28 2017-11-02 서울바이오시스주식회사 이고들빼기의 생장 및 생리활성 물질 증진 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887709B2 (ja) * 2005-09-27 2012-02-29 パナソニック電工株式会社 植物のポリフェノール増収方法及び増収装置
JP5047117B2 (ja) * 2008-10-20 2012-10-10 パナソニック株式会社 植物病害防除用照明システム
FI20095967A (fi) * 2009-09-18 2011-03-19 Valoya Oy Valaisinsovitelma
CN102791121A (zh) * 2010-04-09 2012-11-21 夏普株式会社 照明装置、植物栽培装置、以及照明装置的冷却方法
JP5498904B2 (ja) * 2010-09-27 2014-05-21 パナソニック株式会社 作物育成システム
CN102630511A (zh) * 2011-02-14 2012-08-15 同方光电科技有限公司 一种用于植物生长的led全谱可调光源装置
JP5652954B2 (ja) * 2011-03-04 2015-01-14 パナソニックIpマネジメント株式会社 植物病害防除用照明装置
CN104427882A (zh) * 2012-06-04 2015-03-18 首尔伟傲世有限公司 用于果蔬的毒物兴奋效应诱导装置
US20140069007A1 (en) * 2012-09-13 2014-03-13 Cashido Corporation Plant growth facilitating apparatus plant growth facilitating apparatus
CN105246322A (zh) * 2013-05-24 2016-01-13 皇家飞利浦有限公司 用于园艺学的动态光配方
JP6268516B2 (ja) * 2013-11-13 2018-01-31 パナソニックIpマネジメント株式会社 作物育成システム
KR20160033815A (ko) * 2014-09-18 2016-03-29 삼성전자주식회사 반도체 발광소자
US20170311553A1 (en) * 2016-05-02 2017-11-02 Sensor Electronic Technology, Inc. Ultraviolet Plant Illumination System
US10624978B2 (en) * 2016-07-26 2020-04-21 Sensor Electronic Technology, Inc. Ultraviolet-based mildew control
KR102516217B1 (ko) * 2017-11-30 2023-04-03 서울반도체 주식회사 발광 다이오드들을 포함하는 발광 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339236A (ja) * 2002-05-29 2003-12-02 Matsushita Electric Works Ltd 植物育成用照明装置及び植物育成装置並びに植物育成方法
KR20100135919A (ko) * 2008-04-24 2010-12-27 파나소닉 전공 주식회사 식물 병해 방제용 조명 장치
JP2012205520A (ja) * 2011-03-29 2012-10-25 Sharp Corp 光照射装置、イチゴ栽培システムおよびイチゴ栽培方法
JP2013123417A (ja) * 2011-12-15 2013-06-24 Panasonic Corp 植物育成病害防除照明装置
WO2017188719A1 (ko) * 2016-04-28 2017-11-02 서울바이오시스주식회사 이고들빼기의 생장 및 생리활성 물질 증진 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3834606A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145942A1 (ko) * 2020-12-28 2022-07-07 서울바이오시스주식회사 식물 재배용 광원 모듈 및 그것을 포함하는 식물 재배 장치
US11737396B2 (en) 2020-12-28 2023-08-29 Seoul Viosys Co., Ltd. Light module for plant cultivation and plant cultivation apparatus including the same
KR20220096693A (ko) * 2020-12-31 2022-07-07 강원대학교산학협력단 기능성 성분 및 항산화 활성이 증진된 새싹삼의 재배방법
KR102499822B1 (ko) * 2020-12-31 2023-02-13 강원대학교산학협력단 기능성 성분 및 항산화 활성이 증진된 새싹삼의 재배방법

Also Published As

Publication number Publication date
EP3834606A4 (en) 2022-05-11
CN111107739A (zh) 2020-05-05
JP7476192B2 (ja) 2024-04-30
KR20210032440A (ko) 2021-03-24
US20200063931A1 (en) 2020-02-27
EP3834606A1 (en) 2021-06-16
JP2021533818A (ja) 2021-12-09
US20220003370A1 (en) 2022-01-06
US11125405B2 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2020032677A1 (ko) 식물 재배 장치 및 식물 재배 방법
WO2020032601A2 (ko) 식물 재배 장치 및 이를 이용한 재배 방법
WO2020040598A1 (ko) 식물 재배용 광원
Amoozgar et al. Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly
WO2020040597A1 (ko) 식물 재배용 광원
WO2014014267A1 (ko) 현미순 재배장치와 이를 이용한 재배방법 및 음식조리방법
Sabzalian et al. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production
Kim et al. Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes
WO2010047277A1 (ja) 植物病害防除用照明システム
WO2019203597A1 (ko) Uv를 이용한 식물 재배 방법 및 이를 위한 식물 재배 시스템
WO2009151302A2 (ko) 산삼 또는 인삼을 포함한 인삼류의 형성층 유래 식물줄기세포주를 유효성분으로 함유하는 노화방지 또는 항산화용 조성물
EP2946654A1 (en) Method for cultivating fruit or vegetable
US20190373817A1 (en) Segmented addressable light engine for horticulture
WO2017082691A1 (ko) 플라즈마 방전수를 이용한 콩나물 재배방법, 비가열 살균을 위한 수처리용 플라즈마 활성종 발생장치 및 사용방법
Tosti et al. Growing lettuce under multispectral light-emitting diodes lamps with adjustable light intensity
WO2020085782A1 (ko) 기능성 물질의 함량을 증가시키는 식물 재배 방법 및 광 처리기
WO2021201634A1 (ko) 식물 재배용 광원 및 이를 이용한 식물 재배 방법
WO2022186622A1 (ko) 광원 모듈 및 그 광원 모듈을 포함하는 식물 재배 장치
Baoxing et al. Effects of light quality on the quality formation of tomato fruits
JP2016019507A (ja) Led複合光線利用の防蛾装置。
US20220400619A1 (en) Device for improving the yield and quality of plants by exposure to uv, associated method and uses
WO2023121329A1 (ko) 식물병 저항성 증진용 조성물
WO2023191490A1 (ko) 바실러스 아밀로리쿼파시엔스 균주를 포함한 식물병 저항성 증진용 조성물 및 이의 용도
Guo et al. Effects of plasma vs. high pressure sodium lamps on plant growth, fruit yield and quality in greenhouse cucumber production
WO2023153565A1 (ko) 아미노산을 포함하는 가뭄 스트레스 경감용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217004203

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2021530762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848125

Country of ref document: EP

Effective date: 20210310