WO2020040414A1 - 3d 프린터용 광경화형 고분자 조성물 - Google Patents

3d 프린터용 광경화형 고분자 조성물 Download PDF

Info

Publication number
WO2020040414A1
WO2020040414A1 PCT/KR2019/007232 KR2019007232W WO2020040414A1 WO 2020040414 A1 WO2020040414 A1 WO 2020040414A1 KR 2019007232 W KR2019007232 W KR 2019007232W WO 2020040414 A1 WO2020040414 A1 WO 2020040414A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
printer
polymer composition
Prior art date
Application number
PCT/KR2019/007232
Other languages
English (en)
French (fr)
Inventor
심운섭
Original Assignee
주식회사 그래피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그래피 filed Critical 주식회사 그래피
Priority to JP2021516349A priority Critical patent/JP7180924B2/ja
Priority to CN201980029997.4A priority patent/CN112074570A/zh
Priority to EP19851356.6A priority patent/EP3778778A4/en
Priority to US17/053,062 priority patent/US11873362B2/en
Publication of WO2020040414A1 publication Critical patent/WO2020040414A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/147Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention is a photocurable polymer composition for 3D printer, more specifically a photocurable polymer of a form that can be applied to 3D printing, by using it, by 3D printing, physical properties such as thermal properties, strength, elastic modulus and tensile elongation
  • the present invention relates to a photocurable polymer composition for a 3D printer capable of producing a 3D printing output capable of excellent shape restoration.
  • the 3D printer has a 3D printing mechanism configured to form physical objects in 3D.
  • 3D printing inks which allow such 3D printers to form physical objects in 3D, research related to the resin composition for 3D printing continues.
  • the advantage of 3D printing is that even if only one product is produced, the production cost is relatively low, and any shape product can be freely produced.
  • the cost of making a product is very high because the mold is produced after the mold is manufactured, but the 3D printing technology produces the product by laminating the raw materials one by one without the mold. It is very suitable for small quantity production of many kinds.
  • 3D printing technology even a product having a complicated shape can be easily produced, and thus, the types of products that can be produced using the 3D printing technology are virtually unlimited.
  • 3D printing technology is expected to change the paradigm of technology in various fields, such as manufacturing, healthcare, and IT, and lead industrial innovation.
  • thermoplastic resins the most commonly used filament materials are polylactic acid and ABS (acrylonitrile butadiene styrene), and PEI (Polyetherimide) is a high heat and high functional material. ), PC (Polycarbonate), etc. are used.
  • PEI Polyetherimide
  • PC Polycarbonate
  • Poly lactic acid one of the common materials in 3D printers, is an eco-friendly resin made from corn starch. It is a harmful substance such as heavy metals and environmental hormones even if it contains hot food, bites or sucks into children's mouths. It is not detected and has a stable characteristic to be used in real life.
  • biodegradable polymer has the same characteristics as a normal plastic during use, but has the advantage of being 100% biodegraded by microorganisms when disposed.
  • Polylactic acid has recently been attracting attention in terms of plastic waste issues due to its biodegradable properties, which are harmless to humans and the environment.
  • Patent Document 1 KR 10-1831819 B1
  • Another object of the present invention is to provide a photocurable polymer composition for a 3D printer capable of producing a 3D printing output having excellent physical properties such as thermal properties, strength, elastic modulus and elongation.
  • Another object of the present invention relates to a photocurable polymer composition for a 3D printer capable of producing a 3D printing output capable of restoring a shape, even if the original shape is deformed by use.
  • the photocurable polymer composition for a 3D printer is a UV curable polyurethane oligomer represented by the following formula (1); Photoinitiators; Silane coupling agents; Oligomers; And stabilizers may include:
  • A is a substituent represented by the formula (2)
  • R 1 to R 8 are the same as or different from each other, and each independently a substituted or unsubstituted alkylene group having 1 to 200 carbon atoms, a substituted or unsubstituted arylene group having 6 to 200 carbon atoms, a substituted or unsubstituted nuclear atom 5 It is a heteroarylene group of 200 to 200 and a substituted or unsubstituted cycloalkylene group having 3 to 200 carbon atoms,
  • the substituted alkylene group, substituted arylene group, substituted heteroarylene group and substituted cycloalkylene group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, 1 to 20 carbon atoms
  • Heteroarylalkyl group alkoxy group of 1 to 30 carbon atoms, alkylamino group of 1 to 30 carbon atoms, arylamino group of 6 to 30 carbon atoms, aralkylamino group of 6 to 30 carbon atoms, heteroarylaryl group of 2 to 24 carbon
  • the UV cured polyurethane oligomers have a weight average molecular weight of 10,000 to 1,000,000.
  • the photoinitiator is a compound represented by the following formula (4):
  • X 1 is S, O or N (R 11 ),
  • R 9 to R 11 are the same as or different from each other, and each independently hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, substituted or unsubstituted C1-30 alkyl group and substituted or unsubstituted C3-30 It is a cycloalkyl group,
  • the substituted alkyl group and substituted cycloalkyl group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, C1-30 alkyl group, C1-20 cycloalkyl group, C2-30 alkenyl group, C2 An alkynyl group having 24 to 24 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a heteroaryl group having 5 to 60 nuclear atoms, a heteroarylalkyl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, C1-C30 alkylamino group, C6-C30 arylamino group, C6-C30 aralkylamino group, C2-C24 hetero arylamino group, C1-C30 alkylsilyl group, C6-C30 arylsilyl And one or more substituents selected from the group consisting of
  • the oligomers may be selected from the group consisting of epoxy acrylate oligomers, H 12 diane-bis-glycidyl ether (4,4 '-(1-Methylethylidene) biscyclohexanol, polymer with (chloromethyl) oxirane) and mixtures thereof. .
  • the stabilizer may be selected from the group consisting of 2,6-di-tert-butyl-p-cresol, diethylethanolamine, trihexylamine, hindered amine, organic phosphate, hindered phenol and mixtures thereof.
  • the polymer composition for 3D printer includes a UV cured polyurethane oligomer, and based on 100 parts by weight of the UV cured polyurethane oligomer, 1.5 to 15 parts by weight of a photoinitiator; 0.1 to 1.5 parts by weight of the silane coupling agent; 15 to 45 parts by weight of oligomer; And 0.1 to 2 parts by weight of a stabilizer.
  • 3D printing of the present invention refers to a process of manufacturing a three-dimensional object by laminating materials using 3D digital data.
  • 3D printing technology is described based on Digital Light Processing (DLP), Stereo Lithography Apparatus (SLA), and PolyJet, it may be understood that the present invention is applicable to other 3D printing technologies.
  • the photocurable polymer of the present invention refers to a polymer which is cured by light irradiation and crosslinked and polymerized into a polymer network.
  • the UV light is described mainly, but the present invention is not limited to UV light but may be applied to other light.
  • Photocurable polymer composition for 3D printer is a UV-curable polyurethane oligomer represented by the formula (1); Photoinitiators; Silane coupling agents; Oligomers; And stabilizers include:
  • A is a substituent represented by the formula (2)
  • R 1 to R 8 are the same as or different from each other, and each independently a substituted or unsubstituted alkylene group having 1 to 200 carbon atoms, a substituted or unsubstituted arylene group having 6 to 200 carbon atoms, a substituted or unsubstituted nuclear atom 5 It is a heteroarylene group of 200 to 200 and a substituted or unsubstituted cycloalkylene group having 3 to 200 carbon atoms,
  • the substituted alkylene group, substituted arylene group, substituted heteroarylene group and substituted cycloalkylene group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, 1 to 20 carbon atoms
  • Heteroarylalkyl group alkoxy group of 1 to 30 carbon atoms, alkylamino group of 1 to 30 carbon atoms, arylamino group of 6 to 30 carbon atoms, aralkylamino group of 6 to 30 carbon atoms, heteroarylaryl group of 2 to 24 carbon
  • the UV cured polyurethane oligomer is a polymer having a weight average molecular weight of 10,000 to 1,000,000.
  • the UV cured polyurethane oligomer is a compound represented by the formula:
  • n and m are the same as or different from each other, and each independently an integer of 1 to 200,
  • A is as defined in the formula (1).
  • the photocurable functional group is a substituent represented by the formula (2).
  • the UV-curable polyurethane oligomer includes a polyurethane structure as a main chain, a photocurable functional group is bonded to the polyurethane structure, the combination of the polyurethane structure and the photocuring functional period is a soft functional group bonded to the urethane linker Linkers that combine hard functional groups with linkers and urethane linkers are used.
  • the flexible property of the soft functional group may be used together, and the hard functional group may exhibit heat resistance.
  • the photocurable functional group is bonded to the UV-curable polyurethane oligomer, and as a linker, by using a soft functional group and a hard functional group, a carbon skeleton having a soft property at room temperature can be used to exhibit a flexible effect as well as room temperature. By using the carbon skeleton having a hard property in the heat resistant properties can be exhibited together.
  • UV cured polyurethane oligomer includes a carbon skeleton having hard properties
  • 3D printing output having excellent physical properties such as thermal properties, strength, elastic modulus, and tensile elongation may be manufactured.
  • the UV cured polyurethane oligomer includes a carbon skeleton having soft properties, even if the original shape is deformed by use, it is possible to produce a 3D printing output capable of shape restoration.
  • the composition for a 3D printer may include only a carbon skeleton having hard properties in order to increase the physical properties of the 3D printing output, thereby increasing the physical properties of the output, but, conversely, when the shape is deformed by use, Since shape restoration is impossible, there is a problem that cannot be used multiple times.
  • composition for a 3D printer includes only a carbon skeleton having soft properties, the physical properties of the printout are low, and thus there is a problem in that thermal properties, strength, elastic modulus, and tensile elongation that can be used as the printout are not shown.
  • the composition for 3D printers in the present invention includes a carbon skeleton having a hard property and a carbon skeleton having a soft property in the UV-curable polyurethane oligomer, and thus have excellent physical properties such as thermal properties, strength, elastic modulus and tensile elongation.
  • the flexible properties of the soft functional group can be used together, and when the shape is deformed by use, the shape can be restored and reused.
  • the photoinitiator is a compound represented by the following formula (4):
  • X 1 is S, O or N (R 11 ),
  • R 9 to R 11 are the same as or different from each other, and each independently hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, substituted or unsubstituted C1-30 alkyl group and substituted or unsubstituted C3-30 It is a cycloalkyl group,
  • the substituted alkyl group and substituted cycloalkyl group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, C1-30 alkyl group, C1-20 cycloalkyl group, C2-30 alkenyl group, C2 An alkynyl group having 24 to 24 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a heteroaryl group having 5 to 60 nuclear atoms, a heteroarylalkyl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, C1-C30 alkylamino group, C6-C30 arylamino group, C6-C30 aralkylamino group, C2-C24 hetero arylamino group, C1-C30 alkylsilyl group, C6-C30 arylsilyl And one or more substituents selected from the group consisting of
  • the compound is represented by the following formula (5):
  • the oligomer may be selected from the group consisting of an epoxy acrylate oligomer, H12 diane-bis-glycidyl ether (4,4 '-(1-Methylethylidene) biscyclohexanol, polymer with (chloromethyl) oxirane) and mixtures thereof.
  • More specifically epoxy acrylate oligomers are more specifically phenyl epoxy (meth) acrylate oligomers, bisphenol A epoxy di (meth) acrylate oligomers, aliphatic alkyl epoxy di (meth) acrylate oligomers, and aliphatic alkyl epoxy tri (meth) s
  • One or more compounds selected from the group consisting of acrylate oligomers can be used.
  • the oligomer can not only reduce the swelling phenomenon caused by the organic solvent but also improve surface hardness, wear resistance, heat resistance, and the like.
  • the silane coupling agent is more specifically 3-methacryloxypropyltrimethoxysilane, but is not limited to the above examples.
  • the stabilizer is selected from the group consisting of 2,6-di-tert-butyl-p-cresol, diethylethanolamine, trihexylamine, hindered amine, organic phosphate, hindered phenol and mixtures thereof, more specifically 2,6-di-tert-butyl-p-cresol.
  • additives such as, for example, leveling agents, slip agents, or stabilizers may be included to improve thermal and oxidative stability, storage stability, surface properties, flow properties, process properties, and the like.
  • the photocurable polymer composition for a 3D printer includes a UV curable polyurethane oligomer, and based on 100 parts by weight of the UV curable polyurethane oligomer, 1.5 to 15 parts by weight of a photoinitiator; 0.1 to 1.5 parts by weight of the silane coupling agent; 15 to 45 parts by weight of oligomer; And 0.1 to 2 parts by weight of a stabilizer.
  • a UV curable polyurethane oligomer based on 100 parts by weight of the UV curable polyurethane oligomer, 1.5 to 15 parts by weight of a photoinitiator; 0.1 to 1.5 parts by weight of the silane coupling agent; 15 to 45 parts by weight of oligomer; And 0.1 to 2 parts by weight of a stabilizer.
  • the surface energy is increased to lower the release property of the mold and the resin, and the surface hardness is increased, so that surface characteristics such as restoring force after stamping of the mold may be lowered.
  • the stabilizer when used within the use range, it is possible to reduce the peripheral curing, and to increase the strength.
  • a 3D printing output having excellent physical properties such as thermal properties, strength, elastic modulus and tensile elongation can be manufactured.
  • 1 is a photograph of a 3D printing output using the polymer composition according to an embodiment of the present invention.
  • FIG. 2 is a graph of tensile test results for a 3D output according to an embodiment of the present invention.
  • Figure 3 is a graph of the bending test results for the 3D output according to an embodiment of the present invention.
  • Figure 4 is a graph of the compression test results for the 3D output according to an embodiment of the present invention.
  • the present invention is a UV cured polyurethane oligomer represented by the formula (1); Photoinitiators; Silane coupling agents; Oligomers; And a stabilizer, the present invention relates to a photocurable polymer composition for a 3D printer:
  • A is a substituent represented by the formula (2)
  • R 1 to R 8 are the same as or different from each other, and each independently a substituted or unsubstituted alkylene group having 1 to 200 carbon atoms, a substituted or unsubstituted arylene group having 6 to 200 carbon atoms, a substituted or unsubstituted nuclear atom 5 It is a heteroarylene group of 200 to 200 and a substituted or unsubstituted cycloalkylene group having 3 to 200 carbon atoms,
  • the substituted alkylene group, substituted arylene group, substituted heteroarylene group and substituted cycloalkylene group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, 1 to 20 carbon atoms
  • Heteroarylalkyl group alkoxy group of 1 to 30 carbon atoms, alkylamino group of 1 to 30 carbon atoms, arylamino group of 6 to 30 carbon atoms, aralkylamino group of 6 to 30 carbon atoms, heteroarylaryl group of 2 to 24 carbon
  • UV-cured polyurethane oligomer represented by the formula (3); A photoinitiator represented by the following formula (5); 3-methacryloxypropyltrimethoxysilane; Epoxy acrylate oligomers; And 2,6-di-tert-butyl-p-cresol to prepare a photocurable polymer composition for a 3D printer.
  • the oligomers used in the preparation of the polymer composition were purchased and used, and the content of the components is shown in Table 1 below.
  • A is a substituent represented by the formula (2), n and m are the same as or different from each other, and each independently an integer of 1 to 200.
  • Test Machine Universal Testing Machine
  • Test environment (23 ⁇ 2) °C, (50 ⁇ 5)% R.H.
  • Test Machine Universal Testing Machine
  • Test environment (23 ⁇ 2) °C, (50 ⁇ 5)% R.H.
  • Test environment (23 ⁇ 2) °C, (50 ⁇ 5)% R.H.
  • Test environment (23 ⁇ 2) °C, (50 ⁇ 5)% R.H.
  • Test environment (23 ⁇ 2) °C, (50 ⁇ 5)% R.H.
  • the experiment was conducted by requesting the Korea Polymer Testing Institute, the specimen was provided by outputting the polymer composition of S10 to S50 of Table 1 to the specimen of Figure 1 using a 3D printer.
  • S50 As shown in Table 2, compared with the products on the market, S50 has a low viscosity and easy to handle, while it was confirmed that the relatively excellent effect in the tensile test and bending test.
  • the heat deflection temperature is higher than that of S20 and S30, but it was confirmed that it shows more excellent effects in other physical properties.
  • the difference in physical properties represents a difference depending on the content of the constituents, and through the 3D printer, it will be said that it is possible to select a suitable polymer composition according to the intended use of the printed output.
  • the present invention is a photocurable polymer composition for 3D printer, more specifically a photocurable polymer of a form that can be applied to 3D printing, by using it, by 3D printing, physical properties such as thermal properties, strength, elastic modulus and tensile elongation
  • the present invention relates to a photocurable polymer composition for a 3D printer capable of producing a 3D printing output capable of excellent shape restoration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

본 발명은 3D 프린터용 광경화형 고분자 조성물에 관한 것으로, UV 경화 폴리우레탄 올리고머; 광개시제; 실란 커플링제; 올리고머; 및 안정제를 포함한다. 상기 3D 프린터용 광경화형 고분자 조성물에 의하면 열적 물성, 강도, 탄성율 및 인장신율과 같은 물리적 특성이 우수한 3D 프린팅 출력물을 제조할 수 있고, 또한, 3D 프린팅 출력물의 사용에 의해 원래 형상이 변형되더라도, 형상 복원이 가능한 3D 프린팅 출력물을 제조할 수 있다.

Description

3D 프린터용 광경화형 고분자 조성물
본 발명은 3D 프린터용 광경화형 고분자 조성물로, 보다 구체적으로 3D 프린팅에 적용할 수 있는 형태의 광경화형 고분자로, 이를 이용하여, 3D 프린팅 함으로써, 열적 물성, 강도, 탄성율 및 인장신율과 같은 물리적 특성이 우수하며, 형상 복원이 가능한 3D 프린팅 출력물을 제조할 수 있는 3D 프린터용 광경화형 고분자 조성물에 관한 것이다.
3D 프린터는 물리적 객체를 3D로 형성하도록 구성되는 3D 프린팅 메커니즘을 갖는다. 이러한 3D 프린터로 하여금 물리적 객체를 3D으로 형성하도록 하는 3D 프린팅용 잉크로서, 3D 프린팅용 수지 조성물과 관련된 연구가 계속되고 있다.
3D 프린팅의 장점은 하나의 제품만을 생산하는 경우에도 생산 비용이 비교적 적게 들고, 어떤 모양의 제품이든 자유롭게 만들어낼 수 있다는 데 있다. 기존의 모형 제조 기술에서는 틀을 만든 후, 틀을 이용하여 제품을 생산하기 때문에 하나의 제품을 만드는데 소요되는 비용이 매우 크지만, 3D 프린팅 기술은 틀 없이 원료를 한 겹씩 적층하여 제품을 생산하기 때문에 다품종 소량생산에 매우 적합하다.
또한 3D 프린팅 기술에 의하면, 아무리 복잡한 모양의 제품이라도 간단하게 생산할 수 있기 때문에, 3D 프린팅 기술을 이용하여 생산할 수 있는 제품의 종류는 사실상 무궁무진하다고 할 수 있다. 그로 인해, 3D 프린팅 기술은 제조업, 의료, IT 분야 등 다방면에서 기술의 패러다임을 바꾸며, 산업 혁신을 이끌 것으로 기대되고 있다.
3D 프린터용 소재는 FDM 방식의 경우 프린터의 노즐부에서 원활한 흐름성을 나타내기 위한 적정 융점과 흐름성을 가지고 있어야 하며, 노출부에서 압출 후 출력물의 변형 방지를 위한 빠른 고형화 속도를 가지고 있어야 한다. 열가소성수지 중 상기의 특성을 가지며, 현재 가장 보편적으로 사용되는 필라멘트 소재로는 폴리유산(poly lactic acid), ABS(acrylonitrile butadiene styrene)가 주를 이루고 있으며, 고내열, 고기능성 소재로는 PEI(Polyetherimide), PC(Polycarbonate) 등이 사용되고 있다. 하지만 원래 사출 재료로 만들어지는 방식의 소재와는 물성특성이 많이 차이가 나는 한계를 가지고 있으며, 출력후에는 특별히 강도를 더 올릴 수 있는 방법이 없다.
3D 프린터의 보편적 소재 중 하나인 폴리유산(poly lactic acid)은 옥수수의 전분에서 추출한 원료로 만든 친환경 수지로, 뜨거운 음식을 담거나, 아이가 입으로 물거나 빨아도 환경 호르몬은 물론, 중금속 등 유해 물질이 검출되지 않아 실생활에 활용되기에 안정한 특성을 가지고 있다.
또한, 이는 생분해성 고분자로 사용 중에는 일반 플라스틱과 동등한 특징을 가지지만 폐기 시 미생물에 의해 100% 생분해되는 장점을 가지고 있다. 폴리유산(poly lactic acid)은 이러한 인체 및 환경에 무해한 생분해 특성으로 인해 최근 플라스틱 폐기물 문제와 관련해 관심을 받고 있다.
그러나 상기 장점을 갖는 폴리유산(poly lactic acid) 소재의 경우 취성이 높아 내충격성이 약하고 낮은 유연성 때문에 완구와 같은 부드러운 촉감을 필요로 하거나 내 충격성을 요구하는 산업용 출력물의 적용에는 한계를 가지고 있어 새로운 소재 개발이 지속적으로 요구되고 있다. FDM 방식으로는 기술적 한계로 인하여 정밀 파트와 고기능성 파트를 제작하기 어려운 부분이 존재하므로 3D 프린터 재료 중 출력 품질도 좋고 제작속도도 빨라 산업용 전문 3D 프린터에 서 많이 사용되는 광경화성 수지로서 고분자 폴리머 특성을 가지는 재료의 발명이 필요하다.
최근, 3D 프린팅 기술은 다양한 의학 분야에서 활용되고 있으며, 기존의 절삭가공보다 제작시간과 비용, 과정측 면에서 매우 효율적이다. 그러나, 상기 언급한 바와 같이, 종래 폴리유산과 같은 3D 프린터용 소재를 이용하는 경우에, 출력물에 대한 물리적 특성의 한계로 인해, 의학 분야에 적용하기 어려운 문제가 있어, 다양한 의학 분야에 적용할 수 있는 광경화형 고분자 3D 프린터용 소재의 개발이 시급하다.
[선행기술문헌]
[특허문헌]
(특허 문헌 1) KR 10-1831819 B1
본 발명의 목적은 3D 프린터용 광경화형 고분자 조성물을 제공하는 것이다.
본 발명의 다른 목적은 열적 물성, 강도, 탄성율 및 인장신율과 같은 물리적 특성이 우수한 3D 프린팅 출력물을 제조할 수 있는 3D 프린터용 광경화형 고분자 조성물을 제공하는 것이다.
본 발명의 다른 목적은 사용에 의해 원래 형상이 변형되더라도, 형상 복원이 가능한 3D 프린팅 출력물을 제조할 수 있는 3D 프린터용 광경화형 고분자 조성물에 관한 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 3D 프린터용 광경화형 고분자 조성물은 하기 화학식 1로 표시되는 UV 경화 폴리우레탄 올리고머; 광개시제; 실란 커플링제; 올리고머; 및 안정제를 포함할 수 있다:
[화학식 1]
Figure PCTKR2019007232-appb-img-000001
[화학식 2]
Figure PCTKR2019007232-appb-img-000002
여기서,
A는 상기 화학식 2로 표시되는 치환기이며,
*는 결합되는 부분을 의미하며,
R 1 내지 R 8은 서로 동일하거나 상이하며, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 200의 알킬렌기, 치환 또는 비치환된 탄소수 6 내지 200의 아릴렌기, 치환 또는 비치환된 핵원자수 5 내지 200의 헤테로아릴렌기 및 치환 또는 비치환된 탄소수 3 내지 200의 시클로알킬렌기이며,
상기 치환된 알킬렌기, 치환된 아릴렌기, 치환된 헤테로아릴렌기 및 치환된 시클로알킬렌기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.
상기 UV 경화 폴리우레탄 올리고머는 중량 평균 분자량 10,000 내지 1,000,000이다.
상기 광개시제는 하기 화학식 4로 표시되는 화합물이다:
[화학식 4]
Figure PCTKR2019007232-appb-img-000003
여기서,
X 1은 S, O 또는 N(R 11)이며,
R 9 내지 R 11은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬기 및 치환 또는 비치환의 탄소수 3 내지 30의 시클로알킬기이며,
상기 치환된 알킬기 및 치환된 시클로알킬기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.
상기 올리고머는 에폭시 아크릴레이트 올리고머, H 12 다이안 -비스-글리시딜 이써(4,4'-(1-Methylethylidene)biscyclohexanol, polymer with (chloromethyl)oxirane) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 안정제는 2,6-디-tert-부틸-p-크레솔, 디에틸에탄올아민, 트리헥실아민, 힌더드 아민, 유기 인산염, 힌더드 페놀 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 3D 프린터용 고분자 조성물은 UV 경화 폴리우레탄 올리고머를 포함하며, 상기 UV 경화 폴리우레탄 올리고머 100 중량부에 대하여, 광개시제 1.5 내지 15 중량부; 실란 커플링제 0.1 내지 1.5 중량부; 올리고머 15 내지 45 중량부; 및 안정제 0.1 내지 2 중량부로 포함할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명의 3D 프린팅은 3D 디지털 데이터를 이용하여 소재를 적층해 3차원 물체를 제조하는 프로세스를 말한다. 본 명세서에는 3D 프린팅 기술로서 DLP(Disital Light Processing), SLA(Stereo Lithography Apparatus) 및 PolyJet 방식을 중심으로 기술하나, 다른 3D 프린팅 기술에도 적용가능한 것으로 이해될 수 있다.
본 발명의 광경화형 고분자는 광 조사에 의해 경화되는 물질로서, 가교되고 중합체 망상구조로 중합되는 고분자를 말한 다. 본 명세서에서는 UV 광을 중심으로 기술하나, UV 광에 한정되지 않고 다른 광에 대해서도 적용 가능하다.
본 발명의 일 실시예에 따른 3D 프린터용 광경화형 고분자 조성물은 하기 화학식 1로 표시되는 UV 경화 폴리우레탄 올리고머; 광개시제; 실란 커플링제; 올리고머; 및 안정제를 포함한다:
[화학식 1]
Figure PCTKR2019007232-appb-img-000004
[화학식 2]
Figure PCTKR2019007232-appb-img-000005
여기서,
A는 상기 화학식 2로 표시되는 치환기이며,
*는 결합되는 부분을 의미하며,
R 1 내지 R 8은 서로 동일하거나 상이하며, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 200의 알킬렌기, 치환 또는 비치환된 탄소수 6 내지 200의 아릴렌기, 치환 또는 비치환된 핵원자수 5 내지 200의 헤테로아릴렌기 및 치환 또는 비치환된 탄소수 3 내지 200의 시클로알킬렌기이며,
상기 치환된 알킬렌기, 치환된 아릴렌기, 치환된 헤테로아릴렌기 및 치환된 시클로알킬렌기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.
상기 UV 경화 폴리우레탄 올리고머는 중량 평균 분자량 10,000 내지 1,000,000인 고분자이다.
보바 바람직하게, UV 경화 폴리우레탄 올리고머는 하기 화학식 3으로 표시되는 화합물이다:
[화학식 3]
Figure PCTKR2019007232-appb-img-000006
여기서,
n 및 m은 서로 동일하거나 상이하며 각각 독립적으로 1 내지 200의 정수이며,
A는 상기 화학식 1에서 정의한 바와 같다.
보다 구체적으로, UV 경화를 위하여, 폴리우레탄 올리고머에, 광경화 작용기가 결합된 고분자 화합물로, 상기 광경화 작용기는 상기 화학식 2로 표시되는 치환기이다.
상기 화학식 2로 표시되는 치환기 내의 탄소간의 이중결합 구조를 포함하고 있고, 상기 탄소-탄소 이중 결합에 의해 광경화 작용을 나타낼 수 있다.
또한, 상기 UV 경화 폴리우레탄 올리고머는 메인 체인으로 폴리 우레탄 구조를 포함하며, 상기 폴리 우레탄 구조에 광경화 작용기가 결합되며, 상기 폴리 우레탄 구조 및 광경화 작용기간의 결합은 우레탄 링커에 소프트 작용기를 결합한 링커 및 우레탄 링커에 하드 작용기를 결합한 링커를 이용한다.
상기 우레탄 링커에 소프트 작용기를 결합한 링커의 경우, 소프트 작용기의 플렉서블한 성질을 함께 이용할 수 있고, 하드 작용기는 열 저항성(Heat resistant)을 나타낼 수 있다.
즉, UV 경화 폴리우레탄 올리고머에 광경화 작용기를 결합시키며, 링커로, 소프트 작용기 및 하드 작용기를 이용함에 따라, 상온에서 부드러운 성질을 갖는 탄소 골격을 이용하여, 플렉서블 효과를 나타낼 수 있을 뿐만 아니라, 상온에서 하드한 성질을 갖는 탄소 골격을 이용하여, 열에 강한 성질을 함께 나타낼 수 있다.
상기 UV 경화 폴리우레탄 올리고머는 하드한 성질을 갖는 탄소 골격을 포함함에 따라, 열적 물성, 강도, 탄성율 및 인장신율과 같은 물리적 특성이 우수한 3D 프린팅 출력물을 제조할 수 있다.
또한, UV 경화 폴리우레탄 올리고머는 소프트한 성질을 갖는 탄소 골격을 포함함에 따라, 사용에 의해 원래 형상이 변형되더라도, 형상 복원이 가능한 3D 프린팅 출력물을 제조할 수 있다.
일반적으로, 3D 프린터용 조성물은 3D 프린팅 출력물의 물리적인 특성을 높이기 위해, 하드한 성질을 갖는 탄소 골격만을 포함하여, 출력물의 물리적 특성을 높일 수 있으나, 반대로, 사용에 의해 형상이 변형되는 경우, 형상 복원이 불가하여, 다 회 사용이 불가한 문제가 있다.
또한, 3D 프린터용 조성물을 소프트한 성질을 갖는 탄소 골격만을 포함하는 경우에는 출력물의 물리적 특성이 낮아, 출력물로 사용 가능한 정도의 열적 물성, 강도, 탄성율 및 인장신율을 나타내지 못하는 문제가 있다.
본 발명에서의 3D 프린터용 조성물은 UV 경화 폴리우레탄 올리고머에 하드한 성질을 갖는 탄소 골격 및 소프트한 성질을 갖는 탄소 골격을 포함함에 따라, 열적 물성, 강도, 탄성율 및 인장신율과 같은 물리적 특성이 우수할 뿐만 아니라, 소프트 작용기의 플렉서블한 성질을 함께 이용할 수 있어, 사용에 의해 형상이 변형되는 경우, 형상을 복원시켜, 재사용이 가능하다.
상기 광개시제는 하기 화학식 4로 표시되는 화합물이다:
[화학식 4]
Figure PCTKR2019007232-appb-img-000007
여기서,
X 1은 S, O 또는 N(R 11)이며,
R 9 내지 R 11은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬기 및 치환 또는 비치환의 탄소수 3 내지 30의 시클로알킬기이며,
상기 치환된 알킬기 및 치환된 시클로알킬기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.
보다 바람직하게는 하기 화학식 5로 표시되는 화합물이다:
[화학식 5]
Figure PCTKR2019007232-appb-img-000008
상기 올리고머는 에폭시 아크릴레이트 올리고머, H12 다이안 -비스-글리시딜 이써(4,4'-(1-Methylethylidene)biscyclohexanol, polymer with (chloromethyl)oxirane) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
보다 구체적으로 에폭시 아크릴레이트 올리고머는 보다 구체적으로 페닐 에폭시 (메타)아크릴레이트 올리고머, 비스페놀A 에폭시 다이(메타)아크릴레이트 올리고머, 지방족 알킬 에폭시 다이(메타)아크릴레이트 올리고머, 및 지방족 알킬 에폭시 트리(메타)아크릴레이트 올리고머로 이루어지는 군에서 1종 이상 선택되는 화합물을 사용할 수 있다. 상기 올리고머는 유기용매에 의한 팽윤(swelling) 현상을 줄일 수 있을 뿐 아니라, 표면 경도, 내마모성, 내열성 등을 향상시킬 수 있다.
상기 실란 커플링제는 보다 구체적으로 3-메타아크릴옥시프로필트리메톡시실란(3-Methacryloxypropyltrimethoxysilane)이지만, 상기 예시에 국한되지 않는다.
상기 안정제는 2,6-디-tert-부틸-p-크레솔, 디에틸에탄올아민, 트리헥실아민, 힌더드 아민, 유기 인산염, 힌더드 페놀 및 이들의 혼합물로 이루어진 군으로부터 선택되며, 보다 구체적으로 2,6-디-tert-부틸-p-크레솔이다.
열적 및 산화 안정성, 저장안정성, 표면특성, 유동 특성 및 공정 특성 등을 향상시키기 위하여 예를 들어 레벨링제, 슬립제 또는 안정화제 등의 통상의 첨가제를 포함할 수 있다.
상기 3D 프린터용 광경화형 고분자 조성물은 UV 경화 폴리우레탄 올리고머를 포함하며, 상기 UV 경화 폴리우레탄 올리고머 100 중량부에 대하여, 광개시제 1.5 내지 15 중량부; 실란 커플링제 0.1 내지 1.5 중량부; 올리고머 15 내지 45 중량부; 및 안정제 0.1 내지 2 중량부로 포함할 수 있다. 상기 실란 커플링제는 상기 사용 범위 내에서 사용하는 경우, 안료와 필러 등의 표면 처리에 사용함에 있어, 수지와의 상용성 및 밀착 강도를 향상시킬 수 있다. 상기 올리고머는 사용 범위를 초과할 경우 표면 에너지가 높아져 몰드와 수지의 이형성이 저하되게 되며, 표면 경도가 높아져 몰드의 스탬핑 후 복원력과 같은 표면 특성이 저하되게 될 우려가 있다. 상기 안정제의 경우, 사용 범위 내에서 사용 시, 주변 경화를 감소시키고, 강도를 높일 수 있다.
본 발명의 3D 프린터용 광경화형 고분자 조성물에 의하면 열적 물성, 강도, 탄성율 및 인장신율과 같은 물리적 특성이 우수한 3D 프린팅 출력물을 제조할 수 있다.
또한, 3D 프린팅 출력물의 사용에 의해 원래 형상이 변형되더라도, 형상 복원이 가능한 3D 프린팅 출력물을 제조할 수 있는 3D 프린터용 고분자 조성물이다.
도 1은 본 발명의 일 실시예에 따른 고분자 조성물을 이용한 3D 프린팅 출력물에 관한 사진이다.
도 2는 본 발명의 일 실시예에 따른 3D 출력물에 대한 인장 시험 결과 그래프이다.
도 3은 본 발명의 일 실시예에 따른 3D 출력물에 대한 굴곡 시험 결과 그래프이다.
도 4는 본 발명의 일 실시예에 따른 3D 출력물에 대한 압축 시험 결과 그래프이다.
본 발명은 하기 화학식 1로 표시되는 UV 경화 폴리우레탄 올리고머; 광개시제; 실란 커플링제; 올리고머; 및 안정제를 포함하는 3D 프린터용 광경화형 고분자 조성물에 관한 것이다:
[화학식 1]
Figure PCTKR2019007232-appb-img-000009
[화학식 2]
Figure PCTKR2019007232-appb-img-000010
여기서,
A는 상기 화학식 2로 표시되는 치환기이며,
*는 결합되는 부분을 의미하며,
R 1 내지 R 8은 서로 동일하거나 상이하며, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 200의 알킬렌기, 치환 또는 비치환된 탄소수 6 내지 200의 아릴렌기, 치환 또는 비치환된 핵원자수 5 내지 200의 헤테로아릴렌기 및 치환 또는 비치환된 탄소수 3 내지 200의 시클로알킬렌기이며,
상기 치환된 알킬렌기, 치환된 아릴렌기, 치환된 헤테로아릴렌기 및 치환된 시클로알킬렌기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[제조예: 3D 프린터용 광경화형 고분자 조성물의 제조]
하기 화학식 3으로 표시되는 UV 경화 폴리우레탄 올리고머; 하기 화학식 5로 표시되는 광개시제; 3-메타아크릴옥시프로필트리메톡시실란; 에폭시 아크릴레이트 올리고머; 및 2,6-디-tert-부틸-p-크레솔를 혼합하여 3D 프린터용 광경화형 고분자 조성물을 제조하였다. 상기 고분자 조성물의 제조에 이용된 올리고머 등은 구매하여 이용하였으며, 구성 성분의 함량은 하기 표 1과 같다.
[화학식 3]
Figure PCTKR2019007232-appb-img-000011
[화학식 2]
Figure PCTKR2019007232-appb-img-000012
[화학식 5]
Figure PCTKR2019007232-appb-img-000013
여기서,
A는 화학식 2로 표시되는 치환기이며, n 및 m은 서로 동일하거나 상이하며 각각 독립적으로 1 내지 200의 정수이다.
S10 S20 S30 S40 S50 S60
UV 경화 폴리우레탄 올리고머 100 100 100 100 100 100
광개시제 1 1.5 5 10 15 20
실란커플링제 0.05 0.1 0.5 1 1.5 2
올리고머 10 15 25 30 45 50
안정제 0.05 0.1 0.5 1 2 3
(단위 중량부)
[실험예: 물성 평가 실험]
1. 시험 조건
1-1. 인장 시험
시험 방법: ASTM D638
시험 기기: Universal Testing Machine
시험 속도: 50mm/min
그립 간 거리: 115mm
로드셀: 3000N
탄성구간: (0.05 ~ 0.25)%
항복점: 0.2% offset
시험환경: (23±2)℃, (50±5)% R.H.
1-2. 굴곡 시험
시험 방법: ASTM D790
시험기기: Universal Testing Machine
시험속도: 1.4mm/min
스팬 간 거리: 55mm
로드셀: 200N
탄성구간: (0.05 ~ 0.25)%
시험환경: (23±2)℃, (50±5)% R.H.
1-3. IZOD 충격강도
시험방법: ASTM D256
노치 부 깊이: 2.54mm(의뢰자 가공)
시험환경: (23±2)℃, (50±5)% R.H.
1-4. 압축시험
시험방법: ASTM D695
시험속도: 1.3mm/min
로드셀: 30,000N
시험환경: (23±2)℃, (50±5)% R.H.
1-5. Durometer 경도
시험방법: ASTM D2240
시험환경: (23±2)℃, (50±5)% R.H.
1-6. 열변형온도
시험방법: ASTM D648
시험하중: 0.45 MPa
승온속도:2℃/min
2. 시험 결과
상기 실험은 한국고분자시험연구소에 의뢰하여 실험을 진행하였으며, 시편은 상기 표 1의 S10 내지 S50의 고분자 조성물을 3D 프린터를 이용하여 도 1의 시편으로 출력하여 제공하였다.
비교 실험을 진행하기 위하여, Next Dent 사의 제품, ABS 소재 및 PC 소재를 이용하여 시편을 제조하고, S50과의 비교 실험 결과를 확인하였으며, 그 결과는 하기 표 2와 같다.
Next Dent사 ABS PC S50
Viscosity(cps,25℃) 1,020 - - 492
DOC(mm) ISO40949 1.67 - - 1.5
DUROMETER HARDNESS(D) ASTM02240 87 77 83 93
Flexural Strength ASTM D790-15(Mpa) 99 63.7 85.3 137
Flexural Modulus ASTM D790-15(Mpa) 2,400 2,200 2,300 3,250
Tensile Strength ASTM D638-15(Mpa) - 39.2 63 85.1
Tensile Modulus ASTM D638-15(Mpa) 1,780 2,160 2,770 3,800
상기 표 2에 나타낸 바와 같이, 종래 판매 중인 제품과 비교하여, S50은 낮은 점도를 나타내어 취급이 용이한 반면, 인장 시험 및 굴곡 시험에서는 상대적으로 우수한 효과를 나타냄을 확인하였다.
S10 내지 S60에 대해, 압축강도, 인장강도, 항복강도, 굴곡강도, 굴곡탄성율, 연신율 및 열변형온도를 측정하였다.
시료번호  Durometer 경도(D-type) 압축강도(MPa) 인장강도(MPa) 항복강도(MPa) 연신율(%) 인장탄성율(MPa) 굴곡강도(MPa) 굴곡탄성율(MPa) IZOD충격강도(KJ/m 2) 열변형온도(℃)
S10 50 44.46 48.28 51.181 3.1 1154 55.54 48.3 1.42 32.1
S20 83 74.55 49.38 49.38 7.56 1621 50.31 1206 2.52 52.5
S30 88 75.65 52.99 33.71 7.24 2042 71.85 1612 4.74 57.6
S40 84 73.45 70.10 45.24 7.62 1545 60.54 2950 5.34 80.5
S50 89 77.75 85.13 33.46 7.14 2151 80.57 3215 5.12 72.1
S60 65 50.45 48.22 4.21 1258 1835 2.23 80.6
상기 표 3에 나타낸 바와같이, S10 내지 S60의 물성 평가 결과, S10 및 S60은 시료의 최대하중, 인장강도, 항복강도, 표점, 최대변위, 연신율 및 탄성계수이 상대적으로 낮은 것으로 확인되었다.
S20 및 S30의 경우, 열변형 온도가 52 내지 58℃정도로 출력물이 사용에 의해 변형되는 경우, 52 내지 58℃의 물에서 원형으로 복원이 가능하며, 압축강도, 인장강도, 탄성율 등에서 우수한 효과를 나타냄을 확인하였다.
S40 및 S50의 경우에는 S20 및 S30에 비해 열변형 온도가 높으나, 다른 물성에서 더욱 우수한 효과를 나타냄을 확인하였다.
상기 S20 내지 S50에 대한, 물성의 차이는 구성 성분의 함량에 따라 차이를 나타내는 것으로, 3D 프린터를 통해, 인쇄한 출력물의 사용 용도에 따라, 적합한 고분자 조성물을 선택하여 사용이 가능하다고 할 것이다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 3D 프린터용 광경화형 고분자 조성물로, 보다 구체적으로 3D 프린팅에 적용할 수 있는 형태의 광경화형 고분자로, 이를 이용하여, 3D 프린팅 함으로써, 열적 물성, 강도, 탄성율 및 인장신율과 같은 물리적 특성이 우수하며, 형상 복원이 가능한 3D 프린팅 출력물을 제조할 수 있는 3D 프린터용 광경화형 고분자 조성물에 관한 것이다.

Claims (6)

  1. 하기 화학식 1로 표시되는 UV 경화 폴리우레탄 올리고머;
    광개시제;
    실란 커플링제;
    올리고머; 및
    안정제를 포함하는
    3D 프린터용 광경화형 고분자 조성물:
    [화학식 1]
    Figure PCTKR2019007232-appb-img-000014
    [화학식 2]
    Figure PCTKR2019007232-appb-img-000015
    여기서,
    A는 상기 화학식 2로 표시되는 치환기이며,
    *는 결합되는 부분을 의미하며,
    R 1 내지 R 8은 서로 동일하거나 상이하며, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 200의 알킬렌기, 치환 또는 비치환된 탄소수 6 내지 200의 아릴렌기, 치환 또는 비치환된 핵원자수 5 내지 200의 헤테로아릴렌기 및 치환 또는 비치환된 탄소수 3 내지 200의 시클로알킬렌기이며,
    상기 치환된 알킬렌기, 치환된 아릴렌기, 치환된 헤테로아릴렌기 및 치환된 시클로알킬렌기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.
  2. 제1항에 있어서,
    상기 UV 경화 폴리우레탄 올리고머는 중량 평균 분자량 10,000 내지 1,000,000인
    3D 프린터용 광경화형 고분자 조성물.
  3. 제1항에 있어서,
    상기 광개시제는 하기 화학식 4로 표시되는 화합물인
    3D 프린터용 광경화형 고분자 조성물:
    [화학식 4]
    Figure PCTKR2019007232-appb-img-000016
    여기서,
    X 1은 S, O 또는 N(R 11)이며,
    R 9 내지 R 11은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬기 및 치환 또는 비치환의 탄소수 3 내지 30의 시클로알킬기이며,
    상기 치환된 알킬기 및 치환된 시클로알킬기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.
  4. 제1항에 있어서,
    상기 올리고머는 에폭시 아크릴레이트 올리고머, H 12 다이안 -비스-글리시딜 이써(4,4'-(1-Methylethylidene)biscyclohexanol, polymer with (chloromethyl)oxirane) 및 이들의 혼합물로 이루어진 군으로부터 선택되는
    3D 프린터용 광경화형 고분자 조성물.
  5. 제1항에 있어서,
    상기 안정제는 2,6-디-tert-부틸-p-크레솔, 디에틸에탄올아민, 트리헥실아민, 힌더드 아민, 유기 인산염, 힌더드 페놀 및 이들의 혼합물로 이루어진 군으로부터 선택되는
    3D 프린터용 광경화형 고분자 조성물.
  6. 제1항에 있어서,
    상기 3D 프린터용 광경화형 고분자 조성물은 UV 경화 폴리우레탄 올리고머를 포함하며,
    상기 UV 경화 폴리우레탄 올리고머 100 중량부에 대하여,
    광개시제 1.5 내지 15 중량부;
    실란 커플링제 0.1 내지 1.5 중량부;
    올리고머 15 내지 45 중량부; 및
    안정제 0.1 내지 2 중량부로 포함하는
    3D 프린터용 광경화형 고분자 조성물.
PCT/KR2019/007232 2018-08-24 2019-06-14 3d 프린터용 광경화형 고분자 조성물 WO2020040414A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021516349A JP7180924B2 (ja) 2018-08-24 2019-06-14 3dプリンタ用光硬化型高分子組成物
CN201980029997.4A CN112074570A (zh) 2018-08-24 2019-06-14 用于3d打印机的光固化型高分子组合物
EP19851356.6A EP3778778A4 (en) 2019-06-14 Radiation curable polymer composition for 3d printer
US17/053,062 US11873362B2 (en) 2018-08-24 2019-06-14 Radiation curable polymer composition for 3D printer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0099277 2018-08-24
KR1020180099277A KR102067533B1 (ko) 2018-08-24 2018-08-24 3d 프린터용 광경화형 고분자 조성물

Publications (1)

Publication Number Publication Date
WO2020040414A1 true WO2020040414A1 (ko) 2020-02-27

Family

ID=69568795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007232 WO2020040414A1 (ko) 2018-08-24 2019-06-14 3d 프린터용 광경화형 고분자 조성물

Country Status (5)

Country Link
US (1) US11873362B2 (ko)
JP (1) JP7180924B2 (ko)
KR (1) KR102067533B1 (ko)
CN (1) CN112074570A (ko)
WO (1) WO2020040414A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187804A1 (ko) * 2020-03-19 2021-09-23 주식회사 그래피 광경화형 치아 수복용 조성물

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386434B1 (ko) * 2020-08-25 2022-04-14 주식회사 그래피 내수성이 우수한 3d 프린터용 광경화성 수지 조성물
KR20220083098A (ko) 2020-12-11 2022-06-20 현대자동차주식회사 3d 프린팅용 광경화형 올리고머 조성물 및 이를 포함하는 3d 프린팅용 광경화형 소재
KR20220083097A (ko) 2020-12-11 2022-06-20 현대자동차주식회사 3d 프린팅용 광경화형 올리고머 조성물 및 이를 포함하는 3d 프린팅용 광경화형 소재
KR20240103819A (ko) * 2022-12-27 2024-07-04 주식회사 그래피 우수한 기계적 물성을 가진 광경화성 3d 프린팅용 탄성소재 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010080997A (ko) * 1998-11-19 2001-08-25 추후제출 광중합반응에 적합한 이작용성 광개시제 및 이를 함유하는광중합성시스템
JP2014065787A (ja) * 2012-09-25 2014-04-17 Dic Corp 活性エネルギー線硬化性組成物及び硬化物
KR20160018583A (ko) * 2013-05-24 2016-02-17 아르끄마 프랑스 이소시아네이트를 갖지 않는, 아크릴레이트화 또는 메타크릴레아트화된 올리고머
KR20170010299A (ko) * 2015-07-15 2017-01-26 주식회사 루벤틱스 저점도 올리고머 및 이를 포함하는 sla 3d 프린트용 수지 조성물
KR101831819B1 (ko) 2017-01-10 2018-02-23 경상대학교산학협력단 에폭시 수지를 이용한 3d 프린트용 조성물, 이의 제조방법 및 이를 이용한 에폭시 섬유의 제조방법
JP2018083901A (ja) * 2016-11-24 2018-05-31 昭和電工株式会社 硬化性組成物及びその硬化物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525578A1 (en) * 1991-08-02 1993-02-03 E.I. Du Pont De Nemours And Company Photopolymer composition for the production of three-dimensional objects
JP4662545B2 (ja) 2005-03-28 2011-03-30 共栄社化学株式会社 不飽和基含有ウレタンオリゴマーおよびそれが重合した硬化物
JP5306903B2 (ja) * 2008-07-02 2013-10-02 富士フイルム株式会社 インプリント用硬化性組成物、これを用いた硬化物およびその製造方法、並びに、液晶表示装置用部材
CN102597122B (zh) * 2009-10-30 2015-09-02 株式会社钟化 固化性组合物
EP2436510A1 (en) 2010-10-04 2012-04-04 3D Systems, Inc. System and resin for rapid prototyping
CN104334662B (zh) 2012-05-21 2018-11-09 东进世美肯株式会社 光固化型光学透明粘合剂组合物及包含其的粘合片
FR3027306B1 (fr) 2014-10-15 2018-04-06 Arkema France Oligomeres urethane amino-acrylates mono ou multifonctionnels sans isocyanate
JP6778254B2 (ja) 2015-07-31 2020-10-28 アルケマ フランス ポリウレタン(メタ)アクリレートオリゴマー及び該オリゴマーを含む硬化性組成物
US10015124B2 (en) * 2016-09-20 2018-07-03 Google Llc Automatic response suggestions based on images received in messaging applications
CN107868443A (zh) 2017-12-01 2018-04-03 惠州市优恒科三维材料有限公司 一种3d打印的光敏树脂材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010080997A (ko) * 1998-11-19 2001-08-25 추후제출 광중합반응에 적합한 이작용성 광개시제 및 이를 함유하는광중합성시스템
JP2014065787A (ja) * 2012-09-25 2014-04-17 Dic Corp 活性エネルギー線硬化性組成物及び硬化物
KR20160018583A (ko) * 2013-05-24 2016-02-17 아르끄마 프랑스 이소시아네이트를 갖지 않는, 아크릴레이트화 또는 메타크릴레아트화된 올리고머
KR20170010299A (ko) * 2015-07-15 2017-01-26 주식회사 루벤틱스 저점도 올리고머 및 이를 포함하는 sla 3d 프린트용 수지 조성물
JP2018083901A (ja) * 2016-11-24 2018-05-31 昭和電工株式会社 硬化性組成物及びその硬化物
KR101831819B1 (ko) 2017-01-10 2018-02-23 경상대학교산학협력단 에폭시 수지를 이용한 3d 프린트용 조성물, 이의 제조방법 및 이를 이용한 에폭시 섬유의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187804A1 (ko) * 2020-03-19 2021-09-23 주식회사 그래피 광경화형 치아 수복용 조성물
KR20210117427A (ko) * 2020-03-19 2021-09-29 주식회사 그래피 광경화형 치아 수복용 조성물
KR102374377B1 (ko) 2020-03-19 2022-03-15 주식회사 그래피 광경화형 치아 수복용 조성물

Also Published As

Publication number Publication date
JP7180924B2 (ja) 2022-11-30
KR102067533B1 (ko) 2020-02-11
EP3778778A1 (en) 2021-02-17
US11873362B2 (en) 2024-01-16
JP2021524883A (ja) 2021-09-16
CN112074570A (zh) 2020-12-11
US20210189045A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2020040414A1 (ko) 3d 프린터용 광경화형 고분자 조성물
WO2020080643A1 (ko) 투명교정장치의 제조를 위한 3d 프린터용 광경화형 조성물
WO2021107366A1 (ko) 3d 프린트 출력물의 후경화 공정 및 이의 장치
WO2017052323A1 (ko) 프탈로니트릴 화합물
WO2019132472A1 (ko) 광경화성 조성물 및 이를 이용하여 제조된 성형품
WO2022124509A1 (ko) 교정력을 높인 투명 치아 교정 장치
WO2018080088A1 (ko) 화합물
WO2020159282A1 (ko) 폴리카보네이트-나노셀룰로오스 복합소재 및 이의 제조방법
WO2016190621A1 (ko) 프탈로니트릴 화합물
WO2015099443A1 (ko) 열 용융-압출 성형이 가능한 실세스퀴옥산, 이를 이용한 고투명 및 고내열 플라스틱 투명기판 및 이의 제조방법
WO2017119793A2 (ko) 프탈로니트릴 수지
WO2014133287A1 (ko) 광학소자 봉지용 수지 조성물
WO2017155229A1 (ko) 경화성 조성물
WO2012111964A2 (ko) 무용제형 조성물 및 그의 제조방법
WO2022196878A1 (ko) 실리콘계 조성물 및 이의 경화물
WO2017195927A1 (ko) 신규한 2,4,6-트리아미노트리아진계 우레탄아크릴레이트 화합물 및 그 제조방법
WO2018097496A9 (ko) 화합물
WO2017183940A1 (ko) 광학용 점착제 조성물 및 이의 광경화물을 포함하는 점착제층을 포함하는 광학용 점착 필름
WO2017073929A1 (ko) 내전리방사선성 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2022080997A1 (ko) 3d 프린터를 이용한 환자 맞춤형 부분 틀니
WO2018124826A1 (ko) 로우 컬 구현이 가능한 코팅 조성물 및 이로부터 제조되는 필름
WO2023163241A1 (ko) 3d 프린터용 광경화형 조성물 및 이의 제조 방법
WO2020235913A1 (ko) 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
WO2022108238A1 (ko) 수지 조성물
WO2023113483A1 (ko) 신규한 유기 화합물 및 이를 포함하는 3d 프린터용 광경화형 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019851356

Country of ref document: EP

Effective date: 20201109

ENP Entry into the national phase

Ref document number: 2021516349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE