WO2020034049A1 - 一种综合性能优异的铜合金及其应用 - Google Patents

一种综合性能优异的铜合金及其应用 Download PDF

Info

Publication number
WO2020034049A1
WO2020034049A1 PCT/CN2018/000311 CN2018000311W WO2020034049A1 WO 2020034049 A1 WO2020034049 A1 WO 2020034049A1 CN 2018000311 W CN2018000311 W CN 2018000311W WO 2020034049 A1 WO2020034049 A1 WO 2020034049A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
alloy
nickel
comprehensive performance
excellent comprehensive
Prior art date
Application number
PCT/CN2018/000311
Other languages
English (en)
French (fr)
Inventor
杨朝勇
李宁
李建刚
赵红彬
杨泰胜
周耀华
Original Assignee
宁波博威合金材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波博威合金材料股份有限公司 filed Critical 宁波博威合金材料股份有限公司
Priority to US16/487,428 priority Critical patent/US11655524B2/en
Priority to EP18917030.1A priority patent/EP3839083A4/en
Publication of WO2020034049A1 publication Critical patent/WO2020034049A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material

Definitions

  • the invention relates to the technical field of copper alloys, in particular to a copper alloy with excellent comprehensive performance and its application.
  • Copper and copper alloy materials with high strength and good conductivity have always been the ideal raw materials for connectors, terminals and switches.
  • higher requirements have been placed on the comprehensive performance of raw materials.
  • the metal material used to make the connector has higher strength and electrical conductivity.
  • the radius of curvature of the bending portion of the contact portion has been reduced, and the material is required to have stricter bending performance than before.
  • copper alloy materials commonly used in connectors and terminals include brass, phosphor bronze, copper nickel silicon and beryllium bronze.
  • brass has a low cost, but it is difficult to meet high demand in terms of strength and conductivity.
  • Tin phosphor bronze is a copper alloy widely used in the field of connectors and terminals. It has high strength, but the conductivity is only 18% IACS, which cannot meet the current high-performance connector's application requirements for high-conduction working conditions.
  • the application of tin phosphor bronze in some areas is limited.
  • Beryllium contained in beryllium bronze is toxic, and beryllium bronze is expensive. Generally, it is only used in some areas with high requirements on elasticity and strength.
  • Copper-nickel-silicon alloy is developed as an aging precipitation-reinforced alloy to replace beryllium bronze. Its cost is much higher than that of phosphor bronze, and it is usually used in the field of high-end connectors.
  • Cu-Ni-Sn alloy represented by C19025 alloy is currently commonly used alloy with both performance and cost advantages.
  • the alloy yield strength is ⁇ 550 MPa
  • the bending workability is significantly reduced, which cannot meet the needs of miniaturization applications.
  • the present invention uses Cu-Ni-Sn as a matrix, through composition adjustment, precipitation phase and texture control, etc., to obtain a yield strength ⁇ 550MPa, electrical conductivity ⁇ 38% IACS, including stress relaxation resistance Copper alloy material with excellent comprehensive properties including performance and bending workability.
  • the technical problem to be solved by the present invention is to provide a copper alloy with excellent comprehensive performance and its application in view of the shortcomings of the existing technology.
  • the copper alloy has a yield strength ⁇ 550 MPa, a conductivity ⁇ 38% IACS, and a bending workability: GW The value R / t ⁇ 1 in the direction and the value R / t ⁇ 2 in the BW direction. After 1000 hours of holding at 150 ° C, the stress residual rate is ⁇ 75%, and the stress relaxation resistance is excellent.
  • the technical solution adopted by the present invention to solve the above technical problems is: a copper alloy with excellent comprehensive performance.
  • the weight percentage composition of the copper alloy includes: Ni: 0.4 wt% to 2.0 wt%, and Sn: 0.2 wt% to 2.5 wt%.
  • P 0.02 wt% to 0.25 wt%
  • Si 0.001 wt% to 0.5 wt%
  • the balance is Cu and unavoidable impurities.
  • Ni element is added.
  • Ni can be infinitely solid-dissolved with Cu, and solid-dissolved in the copper matrix can improve the strength of the alloy.
  • the effect of Ni on the conductivity of copper alloys is smaller than that of Sn, Si, and P elements.
  • Ni and Si and P elements can form a precipitate phase in the form of nickel-phosphorus intermetallic compound and nickel-silicon intermetallic compound through a deformation heat treatment process.
  • the dissolution of Ni, Si, and P elements improves the strength and conductivity of the alloy.
  • the P and Si elements cannot be completely precipitated.
  • the excessive P and Si in the copper matrix can easily reduce the conductivity of the alloy. Therefore, under the premise of ensuring the strength and conductivity of the alloy, in order to ensure a slight excess of Ni, the present invention uses Ni
  • the content of the elements is controlled in the range of 0.4% to 2.0% by weight.
  • the alloy of the present invention adds Sn element.
  • Sn exists as a solid solution in a copper alloy.
  • the Zn equivalent coefficient of the Sn element is 2 and the degree of lattice distortion caused by the crystal is large, which makes the alloy have a better work hardening effect in the subsequent processing.
  • Work hardening will increase the energy storage in the deformed alloy, which will help to form more nucleation points for the precipitation of compounds during the aging process, thereby achieving the effect of improving the uniform distribution of the compounds.
  • the Sn element can increase the thermal stability of the alloy, and combined with the above work hardening can improve the stress relaxation resistance of the alloy.
  • Sn element can also improve the corrosion resistance of the alloy, thereby improving the reliability of the connector used in humid and corrosive media.
  • the introduction of Sn adversely affects the electrical conductivity of the alloy. Therefore, the present invention controls the content of the Sn element to 0.2 wt% to 2.5 wt%.
  • the alloy of the present invention adds P element.
  • Element P is a good deaerator and deoxidizer for copper alloys.
  • the element P can be dissolved in a small amount in the Cu matrix to play a role of solid solution strengthening.
  • P can also form complex nickel-phosphorus intermetallic compounds with Ni elements, such as Ni 3 P, Ni 5 P 2 , and Ni 12 P 5 .
  • the nickel-phosphorus intermetallic compound has a good strengthening effect and can improve the strength of the alloy.
  • due to the precipitation of Ni and P elements the alloy can still maintain good electrical conductivity.
  • the content of the P element is controlled in the range of 0.02 wt% to 0.25% by weight.
  • the alloy of the present invention adds Si element.
  • the zinc equivalent coefficient of Si element in brass is 10, which has good solid solution strengthening and work hardening effects.
  • Ni and Si are precipitated in the form of nickel-silicon intermetallic compound (Ni2Si) under a suitable heat treatment process, which has a good strengthening effect and improves the strength of the alloy.
  • Ni2Si nickel-silicon intermetallic compound
  • the alloy can still maintain good electrical conductivity.
  • Ni and Si cannot achieve complete aging precipitation. Excessive Si in the matrix can easily cause the conductivity of the alloy to decrease. Therefore, the present invention controls the content of the Si element to 0.001 wt% to 0.5 wt%.
  • the crystal orientation of the strip of the copper alloy satisfies: the Brass orientation ⁇ 011 ⁇ ⁇ 211> is 5% to 37% of the area where the deviation angle is less than 15 °, and the S-type orientation ⁇ 123 ⁇ ⁇ 634> is less than the deviation angle
  • the area ratio of 15 ° is 5% to 30%.
  • Common textures of copper alloy strips are: cubic texture ⁇ 001 ⁇ ⁇ 100>, copper type ⁇ 112 ⁇ ⁇ 111>, Gauss ⁇ 110 ⁇ ⁇ 001>, Brass type ⁇ 011 ⁇ ⁇ 211>, S type ⁇ 123 ⁇ ⁇ 634>, R-type ⁇ 124 ⁇ ⁇ 211>.
  • the main texture orientations of the copper alloy strip of the present invention are copper-type ⁇ 112 ⁇ ⁇ 111>, cubic ⁇ 001 ⁇ ⁇ 100>, copper-type ⁇ 112 ⁇ ⁇ 111>, Brass-type ⁇ 011 ⁇ ⁇ 211>, S-type ⁇ 123 ⁇ ⁇ 634>, R-type ⁇ 124 ⁇ ⁇ 211> orientation.
  • the present invention achieves different properties of the material by controlling the specific texture ratio.
  • EBSD Electron Backscatte Red Diffraction
  • SEM scanning electron microscope
  • the inventors of the present application have found through extensive tests that the texture and texture ratio of copper alloys in the same state are not the same, and the difference in texture and texture ratio on the final performance, especially the strength, and bending processability are also different. .
  • the alloy of the present invention controls the Brass texture and S texture and limits their proportions, thereby achieving a balance between high strength and good bending performance.
  • the experiment found that during alloy processing, a certain percentage of Brass orientation ⁇ 011 ⁇ ⁇ 211> and S-type orientation ⁇ 123 ⁇ ⁇ 634> is more conducive to promoting the proliferation of dislocations and the disordered arrangement of atoms, which is conducive to improvement. Alloy strength.
  • the turning process also promotes the increase of crystal energy storage and lattice defects, which is conducive to the dispersion and precipitation of nickel-phosphorus intermetallic compounds and nickel-silicon intermetallic compounds in the subsequent aging treatment, and is also conducive to improving the strength of the material.
  • Controlling Brass orientation ⁇ 011 ⁇ ⁇ 211>, S-type orientation ⁇ 123 ⁇ ⁇ 634> turning is the key to control the recrystallization behavior of the alloy, and the recrystallization process is the process of controlling the grain size and the precipitation and distribution of compounds. Control of grains and precipitates can improve the bending performance of the material.
  • the inventors of the present application have found that when the Brass orientation ⁇ 011 ⁇ ⁇ 211> is smaller than 15 ° and the proportion of the area is smaller than 15 °, the S-shaped orientation ⁇ 123 ⁇ ⁇ 634> is smaller than the angle of 15%. At 5% to 30%, the strength and bending workability of the alloy are improved to achieve excellent overall performance. When it is less than or beyond this range, it is difficult to achieve a balance of performances, and it cannot meet the requirements of high-strength and good bending work for miniaturized applications. High demand for performance and overall performance.
  • the weight percentages of Ni, P, and Si satisfy: 3 ⁇ Ni / (P + Si) ⁇ 20, and the weight percentages of Si and P satisfy: 0.1 ⁇ Si / P ⁇ 10.
  • the alloy When the nickel-phosphorus intermetallic compound is used for strengthening alone, the alloy is easy to achieve high conductivity, but with the increase of the amount of P element added, the effect of improving the strength of the alloy is not obvious.
  • the nickel-silicon intermetallic compound When the nickel-silicon intermetallic compound is used for strengthening alone, the alloy is easy to achieve high strength, but as the amount of Si element is increased, the conductivity is deteriorated.
  • the present invention controls the content and proportion of Ni, Si, and P elements, thereby controlling the ratio of nickel-phosphorus intermetallic compounds and nickel-silicon intermetallic compounds, and achieves the improvement of the strength of the alloy while still maintaining the alloy high through the synergistic effect of the two. Of conductivity.
  • the nickel-phosphorus intermetallic compound and the nickel-silicon intermetallic compound coexist in the alloy of the present invention, but the precipitation temperatures of the nickel-phosphorus intermetallic compound and the nickel-silicon intermetallic compound are different.
  • the nickel-phosphorus intermetallic compound precipitates before the nickel-silicon intermetallic compound.
  • the nickel-phosphorus intermetallic compound that is deposited first occupies the precipitation point with high energy storage and vacancies, thereby suppressing the precipitation and segregation of the nickel-silicon intermetallic compound, effectively promoting the dispersion distribution of the nickel-silicon intermetallic compound, thereby increasing the strength of the alloy .
  • an alloy having two precipitated compounds simultaneously has a better work hardening effect than an alloy having a single compound in subsequent processing. This is due to the synergistic effect of the two precipitation phases, which promote the diffusion distribution of each other.
  • the dispersedly distributed precipitated phase can leave more dislocation rings when dislocations bypass the precipitated phase particles in the subsequent cold deformation process, thereby promoting better work hardening effect of the alloy.
  • the alloy of the present invention can be realized with a smaller processing rate, which is beneficial to improve the bending processability of the alloy.
  • Ni / (P + Si) ⁇ 3 When Ni / (P + Si) ⁇ 3, the precipitation of P or Si is insufficient, and the residual P or Si in the matrix will seriously affect the conductivity of the alloy.
  • NiP NiP, Too little NiSi compound, the strength of the alloy is not significantly improved.
  • the ratio between Si / P does not satisfy 0.1 ⁇ Si / P ⁇ 10, the synergy between P and Si decreases significantly.
  • Si / P element weight ratio is less than 0.1, the alloy has high conductivity, but the strength is low; conversely, when Si / P element weight ratio is more than 10, the alloy has high strength, but the conductivity is low, and it cannot be used in the alloy. In the proportion, the balance of strength, electrical conductivity, and bending performance is achieved.
  • the microstructure of the copper alloy contains a nickel-phosphorus intermetallic compound and a nickel-silicon intermetallic compound, wherein the average particle diameters of the nickel-phosphorus intermetallic compound and the nickel-silicon intermetallic compound are both 5 nm to 50 nm.
  • Ni, Si, and P in the alloy of the present invention can form a nickel-phosphorus intermetallic compound and a nickel-silicon intermetallic compound.
  • the precipitation of nickel-phosphorus intermetallic compounds and nickel-silicon intermetallic compounds can significantly increase the yield strength of the alloy, and the finer the compound is dispersed, the higher the strength of the alloy. If the precipitation phase is coarse, a weak interface is likely to occur, and coarse compound particles will become the starting point of failure, which greatly increases the risk of cracking of the alloy strip during bending processing. At the same time, the fine and dispersed compound particles can obtain a sufficient pinning and fixing effect at the same time, can suppress the dislocation slip, and make the alloy have good stress relaxation resistance. Therefore, in the present invention, the average particle diameters of the nickel-phosphorus intermetallic compound and the nickel-silicon intermetallic compound are controlled to be 5 nm to 50 nm, respectively.
  • the weight percentage composition of the copper alloy further includes 0.01 wt% to 0.5 wt% Mg and / or 0.1 wt% to 2.0 wt% Zn.
  • Mg has the effects of deoxidation, desulfurization, and improving the stress relaxation resistance of the alloy.
  • the zinc equivalent coefficient of the Mg element is 2, and at the same time, it has a small effect on the electrical conductivity of the alloy, which can improve the work hardening effect of the alloy to a certain extent. When the alloy is aging, the work hardening effect is improved.
  • Mg is beneficial to improve the energy storage in the material and increase the nucleation point when the compound is precipitated. However, if the content of Mg is too large, the casting properties and bending workability of the alloy are likely to be reduced. Therefore, the present invention controls the content of Mg to 0.01 wt% to 0.5 wt%.
  • Zn has a large solid solubility in the copper matrix. When solid dissolved in the copper matrix, the strength of the alloy can be increased, and the work hardening effect in the cold working process can be promoted. In addition, Zn can also improve the casting performance, welding performance and peel resistance of the coating. If the Zn content is too low, the solid solution strengthening effect is not obvious, while if the Zn content is too high, the electrical conductivity, bending workability and stress corrosion cracking resistance of the alloy will be reduced. Therefore, the present invention controls the Zn content to be 0.01 wt% to 2.0 wt%.
  • the weight percentage composition of the copper alloy further includes 0.1 wt% to 2.0 wt% Co.
  • Co can form cobalt-phosphorus intermetallic compounds and cobalt-silicon intermetallic compounds with P and Si.
  • the strength of the alloy is enhanced by the precipitation of the strengthening phase, and the effect on the conductivity is small. Through the solution aging process, it is precipitated in the form of a compound and dispersed on the matrix, which further increases the strength of the alloy without reducing the electrical conductivity.
  • the Co content exceeds 2.0% by weight, it becomes difficult to achieve alloying.
  • the present invention controls the Co content to be 0.1 wt% to 2.0 wt%.
  • the weight percentage composition of the copper alloy further includes at least one element selected from the group consisting of Fe, Al, Zr, Cr, Mn, B, and RE in a total amount of 0.001 wt% to 1.0 wt%.
  • Fe element can refine the grains of copper alloys, improve the high temperature strength of copper alloys, promote the uniform distribution of aging treatment precipitated phases, and have a certain precipitation strengthening effect.
  • Ni, A1 elements can form complex Ni-A1 compounds through solid solution and aging processes.
  • the Ni-A1 compound can play a role of aging strengthening.
  • Zr and Cr can increase the softening temperature and high temperature strength of the alloy, and improve the high temperature stability and stress relaxation resistance of the alloy.
  • Mn can play a role of deoxidation during the melting process of the alloy, improve the purity of the alloy, improve the hot workability of the alloy, improve the basic mechanical properties of the alloy, and reduce the elastic modulus of the alloy.
  • B can refine the alloy grains, improve the stress relaxation resistance of the alloy, and improve the hot and cold workability of the alloy.
  • Re can remove impurities and oxygen during smelting, improve the purity of the metal, and can be used as the core of crystallization during smelting, reducing the proportion of columnar crystals in the ingot, thereby improving the hot workability of the material.
  • the excessive total amount of at least one element among Fe, A1, Zr, Cr, Mn, B and RE will reduce the electrical conductivity of the alloy and affect the bending processability. Therefore, the total addition amount of these elements should be controlled to 0.001 wt% ⁇ 1.0wt%.
  • the copper alloy strip has a yield strength of 550 MPa and a conductivity of 38% IACS.
  • the 90 ° bending processability of the copper alloy strip is: the value GW direction R / t ⁇ 1, the value in the BW direction R / t ⁇ 2; the copper alloy strip is kept at 150 ° C for 1000 hours
  • the stress residual rate is ⁇ 75%.
  • the alloy of the present invention can be processed into plates, strips, rods, wires, etc. according to different application requirements, and is applied to connectors, terminals, or switch components such as electrical, automotive, and communication devices.
  • the alloy of the present invention can be processed into plate, strip, bar, wire, etc. according to different application requirements.
  • the preparation process includes the following steps:
  • Hot rolling The hot-rolled slab temperature of the alloy is controlled at 700 ° C to 900 ° C, and the holding time is 3h to 6h. The final rolling reduction of the alloy is controlled to 85% or more.
  • the alloy of the invention can be used for solid solution during the hot rolling and heat preservation process. The solution time is 1 minute to 5 hours, and the temperature is 700 ° C to 900 ° C.
  • the hot rolling process ensures that the coarse precipitated phase existing in the ingot is dissolved into the matrix again and achieves the purpose of homogenization.
  • the final rolling temperature is controlled above 600 ° C.
  • the supersaturation of the matrix should be increased.
  • the solid solution temperature should be controlled between 600 ° C and 900 ° C. If the temperature is too high, tissue overburning will easily occur.
  • the solid solution treatment is a heat treatment for forming a solute element solid solution again in the matrix and performing recrystallization.
  • the solution treatment is preferably performed at a temperature of 700 ° C to 850 ° C for 1 minute to 5 hours, and more preferably 10 minutes to 50 minutes.
  • the solution treatment temperature is too low, the recrystallization is incomplete, which is not conducive to the cubic orientation ⁇ 001 ⁇ ⁇ 100>, the copper orientation ⁇ 112 ⁇ ⁇ 111>, the Brass orientation ⁇ 011 ⁇ ⁇ 211>, S in the rolling direction.
  • the control of the orientation ⁇ 123 ⁇ ⁇ 634> and the orientation R ⁇ 124 ⁇ ⁇ 211> is not conducive to subsequent processing. Re-dissolution of the solute element into the solid solution is also insufficient.
  • the solution treatment temperature is too high, the crystal grains become coarse, and both the hot and cold workability deteriorate.
  • the alloy is quenched quickly after hot rolling.
  • the temperature after the end of hot rolling is controlled to be higher than the solid solution temperature of Ni, Si, and P elements, and rapid on-line quenching is performed to achieve the purpose of solid solution.
  • Milling surface used to remove the oxide scale on the surface of the alloy after hot rolling, and mill the surface on the hot rolled plate by 0.5mm ⁇ 1.0mm.
  • One-time cold rolling The total rolling reduction of cold rolling is controlled to 80% or more. To facilitate the homogeneity and full analysis of compounds in the later aging process, and to control the uniformity of the grain structure of the alloy during the recrystallization softening process.
  • the aging temperature is controlled at 300 ° C to 600 ° C.
  • the holding time is controlled from 3h to 12h.
  • the key process for precipitation strengthening of the alloy mainly achieves the purpose of second phase precipitation and tissue softening.
  • the aged alloy has Brass orientation ⁇ 011 ⁇ ⁇ 211>, S-type orientation ⁇ 123 ⁇ ⁇ 634>, R-direction ⁇ 124 ⁇ ⁇ 211>, and copper-type orientation ⁇ 112 ⁇ ⁇ 111 along the rolling direction. >
  • the distribution ratio is small, and the alloy has good plasticity.
  • the aging temperature is controlled at 300 ° C to 600 ° C, and the holding time is 3h to 12h. More preferably, the temperature is controlled at 350 ° C to 550 ° C, and the holding time is 4h to 10h. In this way, Ni forms a compound with Si and P.
  • the fine shapes are dispersed and precipitated, which can have both high strength and excellent bending workability. If the aging temperature is too high and the time is long, the precipitates will coarsen, and the best combination of strength and grain size will not be obtained; otherwise, if The temperature is low and the time is short, and the precipitation cannot be performed sufficiently, which affects the strength and bending performance of the finished product.
  • Secondary cold rolling control the deformation of secondary cold rolling ⁇ 40%.
  • Secondary cold rolling cold rolling of the copper alloy material after heat treatment, with the cold rolling progress, the copper orientation ⁇ 112 ⁇ ⁇ 111>, Brass orientation ⁇ 011 ⁇ ⁇ 211>, S orientation along the rolling direction ⁇ 123 ⁇ ⁇ 634>, R orientation ⁇ 124 ⁇ ⁇ 211> are gradually increasing.
  • the rotation of the crystal promotes the increase of dislocations and the disordered arrangement of atoms.
  • the increased energy storage and lattice defects in the material promote the continued dissolution and uniform fine distribution of the precipitates in the subsequent aging treatment, and improve the material's electrical conductivity, yield strength, and bendability. Therefore, the secondary cold rolling deformation is controlled above 40%, the deformation is too small, the uniform dispersion of the precipitated phase is poor, and the amount of precipitation is small. At the same time, it is not conducive to the complete recrystallization of the aging structure in the later stage. The bending performance is unfavorable.
  • Two-stage aging treatment The aging temperature is controlled between 300 ° C and 600 ° C.
  • the holding time is controlled from 3h to 12h.
  • the secondary aging treatment mainly achieves the purpose of second phase precipitation and tissue softening.
  • the aged alloy has Brass orientation ⁇ 011 ⁇ ⁇ 211>, S-type orientation ⁇ 123 ⁇ ⁇ 634>, R-direction ⁇ 124 ⁇ ⁇ 211>, and copper-type orientation ⁇ 112 ⁇ ⁇ 111 along the rolling direction. > The distribution ratio is small, and the alloy has good plasticity.
  • the aging temperature is controlled at 300 ° C to 600 ° C, and the holding time is 3h to 12h. More preferably, the temperature is controlled at 350 ° C to 550 ° C, and the holding time is 4h to 10h. In this way, Ni forms a compound with Si and P.
  • the shape is dispersed and precipitated, which can have both high strength and excellent bending workability. If the aging temperature is too high and the time is long, the precipitates will coarsen, and the best combination of strength and grain size will not be obtained; otherwise, if the temperature Low, short time, precipitation cannot be fully performed, and bending workability and strength cannot be effectively improved.
  • Such rotation of the crystal plane in the crystal plane deteriorates the deformation coordination of the crystal and deteriorates the bending performance of the alloy. Among them, the deterioration of BW direction is more obvious. Therefore, the amount of deformation is controlled to 60% or less.
  • Low temperature annealing The low temperature annealing temperature is controlled between 200 ° C and 350 ° C.
  • Low temperature annealing can eliminate residual stress, which is conducive to the improvement of resistance to stress relaxation.
  • the elimination of stress can reduce the deformation of the plate under the action of temperature and stress in subsequent applications.
  • the precipitation of the compound can pin dislocations and improve the stress relaxation resistance of the alloy.
  • Different annealing temperatures are selected according to application requirements, and the optional temperature is controlled between 200 ° C and 350 ° C. If the temperature is too high, the alloy softens. When the temperature is lower than the above value, the residual stress removal is insufficient.
  • the alloy of the present invention adjusts and controls the distribution ratio between Ni, Si, and P to form a precipitate phase of nickel-phosphorus intermetallic compound and nickel-silicon intermetallic compound and disperse it in the matrix. Precipitation, adjust the specific texture ratio, and improve the strength and bending performance of the material while maintaining the conductivity of the material;
  • the alloy of the present invention satisfies the following requirements: 3 ⁇ Ni / (P + Si) ⁇ 20, 0.1 ⁇ Si / P ⁇ 10, and fully realizes the nickel-phosphorus intermetallic compound Interaction with nickel-silicon intermetallic compound, which can improve the strength of the material without reducing the conductivity of the material;
  • the present invention limits the texture orientation ratio of the Brass orientation and S-type orientation of the alloy.
  • the Brass orientation ⁇ 011 ⁇ ⁇ 211> is 5% to 37% of the area with an angle of deviation less than 15 °.
  • the S-type orientation is ⁇ 123 ⁇ ⁇ 634>
  • the proportion of the area with an angle of deviation less than 15 ° is 5% to 30%, so that the alloy still has good bending workability in a state with high yield strength, which meets the needs of miniaturization applications;
  • the average particle diameter of the nickel-phosphorus intermetallic compound and the nickel-silicon intermetallic compound is controlled to be 5 nm to 50 nm, thereby improving the yield strength and bending processing of the alloy. performance;
  • the alloy of the present invention can achieve a yield strength of more than 550 MPa and an electrical conductivity of 38% IACS or more after aging and cold-rolling deformation; the 90 ° bending processability of the copper alloy strip is: GW direction value R / t ⁇ 1 , The value of R / t in the BW direction is 2; the copper alloy strip is kept at 150 ° C for 1000 hours, the stress residual rate is ⁇ 75%, and the stress relaxation resistance is excellent;
  • the alloy of the present invention can be processed into plate, strip, bar, wire, etc. according to different application needs, and is widely used in connectors, terminals or switch parts such as electrical, automotive, and communication devices.
  • the aging plate was cold-rolled for a second time, cold-rolled to 0.33 mm, and then held at 360 ° C for 8 hours for a second aging treatment. Finally, finish rolling is performed, and the target plate thickness is 0.2 mm. After finishing rolling, it was kept at 240 ° C. for 4 h for low temperature annealing to obtain a strip sample.
  • the room temperature tensile test is performed on an electronic universal capability testing machine in accordance with "GB / T 228.1-2010 Metal Material Tensile Test Part 1: Room Temperature Test Method", using a lead sample with a width of 12.5mm and a tensile speed of 5mm / min.
  • the conductivity test is in accordance with "GB / T3048.2-2007 Wire and Cable Electrical Performance Test Method Part 2: Metal Material Resistivity Test”.
  • This testing instrument is a ZFD microcomputer bridge DC resistance tester. The sample width is 20mm and the length is 500mm.
  • the test of stress relaxation resistance is in accordance with "JCBA T309: 2004 Copper and Copper Alloy Thin Strip Bending Stress Relaxation Test Method”.
  • the samples are taken parallel to the rolling direction.
  • the sample width is 10mm and the length is 100mm.
  • the initial loading stress value is 80% of the yield strength of 0.2%. %, Test temperature is 150 °C, time is 1000h.
  • the bending performance test was performed on a bending tester in accordance with the "GBT 232-2010 Bending Test Method for Metal Materials".
  • the sample width was 5mm and the length was 50mm.
  • the texture test was performed on the Pegasus XM2EBSD equipment according to the "GBT 30703-2014 Guidelines for Microbeam Analysis Electron Backscatter Diffraction Orientation Analysis Method Guide".
  • the sample width was 10mm and the length was 10mm.
  • the alloy When testing the size of the precipitate, the alloy was prepared into a thin sheet with a diameter of 3 mm. After the ion reduction treatment, the structure of the sample was observed on a transmission electron microscope (using FEITF20, magnification: 15000), and the intermetallic compounds precipitated by the alloy were calculated based on the observation Average particle size.
  • the copper alloys of the examples of the present invention all have achieved yield strength ⁇ 550 MPa, electrical conductivity ⁇ 38% IACS, excellent bending performance, that is, the value GW direction R / t ⁇ 1, and the value B / direction R / t ⁇ 2.
  • Comparative Examples 1 to 4 it can be known from Comparative Examples 1 to 4 that when the ratios of Ni, Si, and P are different, 3 ⁇ Ni / (Si + P) ⁇ 20 and 0.1 ⁇ Si / P ⁇ 10 are not satisfied, and the performance that meets our requirements cannot be obtained. From Comparative Examples 5 and 6, it can be seen that when the Brass orientation ⁇ 011 ⁇ ⁇ 211> is less than 15 ° and the area ratio is less than 5% to 37%, the S-shaped orientation ⁇ 123 ⁇ ⁇ 634> is less than 15 °. The area ratio does not satisfy 5% to 30%, and the bending processability of the material is significantly deteriorated. It can be known from Comparative Examples 7 and 8 that when the average particle size of the material precipitates does not satisfy 5 nm to 50 nm, the bending workability and stress relaxation resistance of the alloy are significantly reduced, which cannot meet the required material properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种综合性能优异的铜合金,该铜合金的重量百分比组成包括:Ni:0.4wt%~2.0wt%,Sn:0.2wt%~2.5wt%,P:0.02wt%~0.25wt%,Si:0.001wt%~0.5wt%,余量为Cu和不可避免的杂质。该铜合金的屈服强度≥550MPa,导电率≥38%IACS,弯曲加工性能:GW方向的值R/t≤1,BW方向的值R/t≤2,在150℃下保温1000小时,应力残留率≥75%,耐应力松弛性能优异。本发明合金可以根据不同的应用需求加工成板带材、棒材、线材等,广泛应用于电气、汽车、通信器件等连接器、端子或开关部件。

Description

[根据细则26改正30.09.2018] 一种综合性能优异的铜合金及其应用 技术领域
本发明涉及铜合金技术领域,具体涉及一种综合性能优异的铜合金及其应用。
背景技术
具有高强度及良好导电性的铜及铜合金材料一直以来都是连接器、端子及开关的理想原材料。近年来,随着消费电子、汽车电子部件向着小型化、轻量化及高集成化发展,对原材料的综合性能提出了更高的要求。
由于连接器小型化后,连接器的截面积减少,为了补偿截面积减少所引起的接触压力和导电能力的降低,要求制作连接器的金属材料具有更高的强度和电导率。伴随着连接器、端子的小型化,接点部分的弯曲加工曲率半径变小,要求材料具有比以往更严格的弯曲加工性能。但是,导电性能、弯曲加工性能与强度之间存在着此消彼长的关系,要同时提高这几种性能非常不易。
目前连接器、端子常用的铜合金材料包括黄铜、磷青铜、铜镍硅及铍青铜。其中黄铜虽然成本较低,但在强度、导电性方面都难以满足高需求的领域。锡磷青铜是目前连接器、端子领域广泛使用的铜合金,其具有较高强度,但导电率仅有18%IACS,无法满足当前高性能连接器对高导电工况的应用需求。同时考虑到锡价格较高,因此在部分领域锡磷青铜的应用受到一定的限制。铍青铜中含有的铍有毒,且铍青铜价格昂贵,一般仅应用于某些对弹性和强度要求较高的领域。铜镍硅合金作为一种时效析出强化型合金,以替代铍青铜而开发,其成本大幅度高于磷青铜,通常应用于高端连接器领域。
以C19025合金为代表的Cu-Ni-Sn合金是目前常用的兼具性能及成本优势的合金,但当合金屈服强度≥550MPa时,弯曲加工性能显著下降,无法满足小 型化应用需求。
鉴于现有材料的上述不足,本发明以Cu-Ni-Sn为基体,通过成分调整、析出相及织构控制等,获得一种屈服强度≥550MPa、导电率≥38%IACS、包括耐应力松弛性能、弯曲加工性能等在内的综合性能优异的铜合金材料。
发明内容
本发明所要解决的技术问题是:针对现有技术的不足,提供一种综合性能优异的铜合金及其应用,该铜合金的屈服强度≥550MPa,导电率≥38%IACS,弯曲加工性能:GW方向的值R/t≤1,BW方向的值R/t≤2,在150℃下保温1000小时,应力残留率≥75%,耐应力松弛性能优异。
本发明解决上述技术问题所采用的技术方案为:一种综合性能优异的铜合金,该铜合金的重量百分比组成包括:Ni:0.4wt%~2.0wt%,Sn:0.2wt%~2.5wt%,P:0.02wt%~0.25wt%,Si:0.001wt%~0.5wt%,余量为Cu和不可避免的杂质。
本发明合金添加Ni元素。Ni能与Cu无限固溶,固溶于铜基体中可提高合金的强度。Ni对铜合金的导电性影响比Sn、Si、P元素小。同时Ni可以与Si、P元素通过形变热处理工艺形成镍磷金属间化合物和镍硅金属间化合物形式的析出相。Ni、Si、P元素脱溶的同时提高了合金的强度和导电性。但P、Si元素无法实现完全时效析出,铜基体中过量的P、Si易导致合金的导电性下降,因此,在保证合金强度和导电性的前提下,为确保Ni略微过量,本发明将Ni元素的含量控制在0.4wt%~2.0wt%。
本发明合金添加Sn元素。Sn在铜合金中以固溶体的方式存在,Sn元素的Zn当量系数为2,对晶体造成的晶格畸变程度较大,使合金在后续加工过程中具有较好的加工硬化效果。加工硬化会增加变形合金中的储能,在时效过程中有利于形成更多的化合物析出的形核点,从而达到改善化合物均匀分布的效果。 同时Sn元素可以增加合金的热稳定性,与上述加工硬化联合作用可提高合金的耐应力松弛性能。Sn元素还能提高合金的耐腐蚀性能,从而提高制成的连接器在潮湿、腐蚀介质中使用的可靠性。但Sn的引入对合金导电性产生不利影响。因此,本发明将Sn元素的含量控制在0.2wt%~2.5wt%。
本发明合金添加P元素。P元素是铜合金良好的除气剂、脱氧剂。P元素能少量固溶于Cu基体中,起到固溶强化的作用。P还能够与Ni元素形成复杂的镍磷金属间化合物,如Ni 3P、Ni 5P 2、Ni 12P 5。镍磷金属间化合物具有良好的强化效果,可提高合金的强度。此外,由于Ni、P元素的析出,合金仍可保持良好的导电性。但P元素过多时容易出现热轧开裂、导电性降低、铸造难度增大等问题。本发明将P元素的含量控制在0.02wt%~0.25wt%。
本发明合金添加Si元素。Si元素在黄铜中的锌当量系数为10,具有较好的固溶强化、加工硬化效果。同时Ni和Si在适当的热处理工艺下,以镍硅金属间化合物(Ni2Si)的形式析出,具有良好的强化效果,提高合金的强度。此外,由于Ni和Si从铜基体中析出,合金仍可保持良好的导电性。实际上Ni和Si无法实现完全时效析出,基体中过量的Si易导致合金的导电性下降。因此,本发明将Si元素的含量控制在0.001wt%~0.5wt%。
作为优选,该铜合金的带材的晶体取向满足:Brass取向{011}<211>偏离角度小于15°的面积占比为5%~37%,S型取向{123}<634>偏离角度小于15°的面积占比为5%~30%。
铜合金板带常见的织构为:立方织构{001}<100>、铜型{112}<111>、高斯{110}<001>、Brass型{011}<211>、S型{123}<634>、R型{124}<211>,本发明铜合金板带主要的织构取向有铜型{112}<111>、立方型 {001}<100>、铜型{112}<111>、Brass型{011}<211>、S型{123}<634>、R型{124}<211>取向。但若这些织构的构成比例发生变化,则铜合金板带的强度、弯曲加工等性能也随之发生变化,因此,本发明通过对特定织构比例进行控制,实现材料的不同性能。
本发明铜合金的带材的织构通过EBSD分析进行测试。EBSD为Electron BackscatteRed Diffraction(电子背散射衍射)的缩写,是利用在扫描电子显微镜(SEM)内向倾斜样品表面照射电子束时产生的衍射菊池线反射电子衍射的晶向分析技术。本发明铜合金带材Brass取向{011}<211>、S型取向{123}<634>的测定是在偏离角度小于15°的条件下进行。本申请发明人经过大量试验发现,相同状态的铜合金的织构及织构比例不尽相同,而织构及织构比例的不同对最终性能特别对强度、弯曲加工性能的影响也不尽相同。本发明合金通过控制Brass织构、S织构并限定其比例,从而实现高强度与良好折弯性能的平衡。试验发现,在合金加工过程中,一定比例的Brass取向{011}<211>、S型取向{123}<634>的转向更有利于促进位错的增殖和原子的错乱排布,有利于提升合金的强度。转向过程同时促进了晶体储能和晶格缺陷的增加,有利于后续时效处理中镍磷金属间化合物和镍硅金属间化合物的弥散析出,也有利于提高材料的强度。控制Brass取向{011}<211>、S型取向{123}<634>转向是控制合金再结晶行为的关键,而再结晶的过程是控制晶粒大小及化合物析出、分布的过程,通过对合金晶粒、析出物的控制可实现材料弯曲性能的提升。本申请发明人发现,当Brass取向{011}<211>偏离角度小于15°的面积占比满足5%~37%、S型取向{123}<634>偏离角度小于15°的面积占比满足5%~30%时,合金的强度、弯曲加工性能均提高,达到优异的综合性能,而小于或者超出该范围时,难以实现各性能 的均衡,无法满足小型化应用对高强度、良好弯曲加工性能及综合性能的高需要。
作为优选,Ni、P、Si的重量百分比满足:3≤Ni/(P+Si)≤20,且Si与P的重量百分比满足:0.1≤Si/P≤10。
单独采用镍磷金属间化合物进行强化时,合金易实现高导电,但随着P元素添加量的增加,合金强度改善效果并不明显。单独采用镍硅金属间化合物进行强化时,合金易实现高强度,但随着Si元素添加量的增加,导电性能恶化。本发明通过控制Ni、Si、P元素的含量及配比,从而控制镍磷金属间化合物、镍硅金属间化合物的比例,通过两者的协同作用实现在提高合金强度的同时仍保持合金较高的导电性。
本发明合金中镍磷金属间化合物、镍硅金属间化合物同时存在,但镍磷金属间化合物和镍硅金属间化合物析出温度存在差异,镍磷金属间化合物先于镍硅金属间化合物析出。先析出的镍磷金属间化合物占据了具有高储能及空位的析出点,从而抑制了镍硅金属间化合物析出偏聚,有效促使了镍硅金属间化合物的弥散分布,从而增加了合金的强度。本申请发明人发现,同时具有两种析出化合物的合金比单一化合物的合金在后续加工过程中具有更好的加工硬化效果。这是由于两种析出相协同作用,相互促进弥散分布。弥散分布的析出相可在后续冷变形过程中在位错绕过析出相粒子时留下更多的位错环,从而促使合金具有更好的加工硬化效果。在获得同样的强度时,本发明合金可用更小的加工率来实现,有利于提升合金的弯曲加工性能。而更好的加工硬化效果,在多级时效过程中,能够促进时效前合金中储能及位错密度的增加,更有利于Ni、Si、P等元素在多级时效时的析出、脱溶,从而提高合金的导电性。本申请发明 人发现,Ni、P、Si的重量百分比满足3≤Ni/(P+Si)≤20、且Si与P的重量百分比满足0.1≤Si/P≤10时,镍磷金属间化合物及镍硅金属间化合物之间的发挥的协同作用效果最佳,获得的铜合金的综合性能最好。当Ni/(P+Si)<3时,P或Si析出不充分,在基体中残留的P或Si会严重影响合金的导电性;而当Ni/(P+Si)>20时,NiP、NiSi化合物过少,合金强度提升不明显。同时当Si/P之间的比例不满足0.1≤Si/P≤10时,P和Si之间的协同作用大幅下降。其中Si/P元素重量比<0.1时,合金具有高的导电性,但强度偏低;反之当Si/P元素重量比>10时,合金具有高的强度,但导电性偏低,不能在合金配比上综合实现强度、导电性、折弯等性能的均衡。
作为优选,该铜合金的微观组织中含有镍磷金属间化合物和镍硅金属间化合物,其中,镍磷金属间化合物和镍硅金属间化合物的平均粒径均为5nm~50nm。
本发明合金中的Ni、Si、P可形成镍磷金属间化合物和镍硅金属间化合物。镍磷金属间化合物和镍硅金属间化合物的析出可显著提高合金的屈服强度,且化合物越细小弥散,合金的强度越高。若析出相粗大,则易出现弱界面,且粗大的化合物粒子会成为破坏的起点,大幅增加合金带材在弯曲加工过程中开裂的风险。而细小且弥散的化合物粒子同时可以获得充分的钉扎固定效果,可抑制位错的滑移,使合金获得良好的耐应力松弛性能。因此,本发明将镍磷金属间化合物、镍硅金属间化合物的平均粒径分别控制在5nm~50nm。
作为优选,该铜合金的重量百分比组成中还包括0.01wt%~0.5wt%的Mg和/或0.1wt%~2.0wt%的Zn。
Mg具有脱氧、脱硫以及提高合金耐应力松弛性能的效果。Mg元素的锌当 量系数为2,同时对合金的导电性能的影响较小,在一定程度上可提高合金的的加工硬化效果。在合金时效析出时,加工硬化效果的提升,Mg有利于提升材料中的储能,提高化合物析出时的形核点。但如果Mg含量过大,易导致合金的铸造性能及弯曲加工性能下降,因此本发明将Mg含量控制在0.01wt%~0.5wt%。
Zn在铜基体中有较大固溶度,固溶于铜基体中时可以提高合金的强度,促进冷加工过程中的加工硬化效果。此外Zn还可以改善合金的铸造性能、焊接性能及提高镀层的耐剥离性能。若Zn含量过低,固溶强化效果不明显,而若Zn含量过高,则会降低合金的导电率、弯曲加工性和耐应力腐蚀开裂性能。因此,本发明将Zn含量控制在0.01wt%~2.0wt%。
作为优选,该铜合金的重量百分比组成中还包括0.1wt%~2.0wt%的Co。
Co可与P、Si形成钴磷金属间化合物、钴硅金属间化合物,通过析出强化相提升合金强度的同时对导电率的影响较小。通过固溶时效工艺,以化合物形式析出,弥散分布在基体上,在进一步提高合金强度的同时而不降低导电率。但Co含量超过2.0wt%时,难以实现合金化。而Co含量低于0.1wt%时,无法形成数量足够的析出相改善材料性能,因此,本发明将Co含量控制在0.1wt%~2.0wt%。
作为优选,该铜合金的重量百分比组成中还包括总量为0.001wt%~1.0wt%的选自Fe、Al、Zr、Cr、Mn、B和RE中的至少一种元素。
Fe元素能细化铜合金晶粒,提高铜合金的高温强度,促进时效处理析出相的均匀分布,具有一定的析出强化效果。
Al在合金熔炼过程中可以起到脱氧作用,同时Ni、A1元素可通过固溶、时效工艺形成复杂的Ni-A1化合物。Ni-A1化合物能够起到时效强化的作用。
Zr、Cr可以提高合金的软化温度和高温强度,提升合金的高温稳定性和抗应力松弛性能。
Mn在合金熔炼过程中可以起到脱氧作用,提高合金的纯度,还可以改善合金的热加工性能,提高合金的基本力学性能,降低合金的弹性模量。
B可以细化合金晶粒,提高合金的抗应力松弛性能,改善合金的冷热加工性能。
Re在熔炼时可以除杂、除氧,提高金属的纯度,在熔炼时可以作为结晶的核心,减少铸锭中的柱状晶比例,从而改善材料的热加工性能。
Fe、A1、Zr、Cr、Mn、B和RE中的至少一种元素的总量过多会降低合金的导电率并影响弯曲加工性能,因此这些元素的总添加量应控制在0.001wt%~1.0wt%。
作为优选,该铜合金的带材的屈服强度≥550MPa,导电率≥38%IACS。
作为优选,该铜合金的带材的90°弯曲加工性能为:GW方向的值R/t≤1,BW方向的值R/t≤2;该铜合金的带材在150℃下保温1000小时,应力残留率≥75%。
本发明合金可以根据不同的应用需求,加工成板带材、棒材、线材等,应用于电气、汽车、通信器件等连接器、端子或开关部件。
本发明合金可以根据不同的应用需求加工成板带材、棒材、线材等。以板带材为例,制备过程包括下述步骤:
配料→半熔铸→热轧→淬火→铣面→一次冷轧→一级时效→二次冷轧→二级时效→三次冷轧→低温退火。
具体实施工艺如下:
1)配料:按配比取各组分。
2)熔炼:在1100℃~1250℃将铜合金原料熔化,然后通过半连续铸造,将其制成铸块。
3)热轧:合金的热轧开坯温度控制在700℃~900℃,保温时间3h~6h。合金终轧轧制压下率控制在85%以上。本发明合金可利于热轧加热保温过程进行固溶,固溶时间为1min~5h,温度为700℃~900℃。
热轧工艺保证铸锭中存在的粗大析出相再次固溶到基体,同时达到均匀化的目的,为了尽量减少热轧后相粒子的析出,终轧温度控制在600℃以上。为减少Ni、Si、P元素在固溶工序的溶解不充分,应提高基体的过饱和度,固溶温度控制在600℃~900℃之间,温度过高易出现组织过烧现象。其中固溶处理是一种用于在基质中再次形成溶质元素固溶体并且进行再结晶的热处理。固溶处理后沿着轧制方向立方型取向{001}<100>比例增加,铜型取向{112}<111>、Brass取向{011}<211>、S型取向{123}<634>、R型取向{124}<211>占比降低。这种转变有利于提高合金的塑形,便于后期的冷加工。固溶处理在700℃~850℃温度下优选进行1min~5h,更优选进行10min~50min。如果固溶处理温度太低,则再结晶不完全,不利于沿轧制方向立方型取向{001}<100>、铜型取向{112}<111>、Brass取向{011}<211>、S型取向{123}<634>、R型取向{124}<211>的控制,不利于后续加工。溶质元素的再溶解到固溶体中也不充分。另一方面,如果固溶处理温度太高,则晶粒变得粗大,冷热加工性能均恶化。
4)淬火:合金热轧后快速进行淬火处理。控制热轧结束后的温度高于Ni、Si、P元素的固溶温度,进行快速在线淬火,达到固溶的目的。
5)铣面:用于去除热轧后合金表面的氧化皮,在热轧板上、下铣面0.5mm~ 1.0mm。
6)一次冷轧:冷轧总压下率控制在80%以上。以利于后期时效过程化合物的均匀、充分析出,同时利于控制合金再结晶软化过程的晶粒组织均匀性。
7)一级时效处理:时效温度控制在300℃~600℃。保温时间控制在3h~12h。
合金实现析出强化的关键工艺,一级时效处理主要达到第二相析出和组织软化的目的。相对于冷轧态,时效后合金沿着轧制方向Brass取向{011}<211>、S型取向{123}<634>、R取向{124}<211>、铜型取向{112}<111>分布比例较小,合金的具有较好的塑性。时效温度控制在300℃~600℃,保持时间3h~12h,更优选是,温度控制在350℃~550℃,保持时间4h~10h,这样Ni与Si、P形成化合物,在铜母相中以微小形状弥散析出,可以兼具有高的强度和优异的弯曲加工性,如果时效温度过高、时间长,析出物粗大化,得不到最佳的强度与晶粒度的搭配;反之,如果温度低、时间短,析出不能充分进行,影响成品的强度、折弯性能。
8)二次冷轧:控制二次冷轧的变形量≥40%。
二次冷轧:对热处理后的铜合金材料进行冷轧,随着冷轧的进行,沿着轧制方向铜型取向{112}<111>、Brass取向{011}<211>、S型取向{123}<634>、R取向{124}<211>均逐渐增加。晶体的转动促进位错的增值和原子的错乱排布。材料中增加的储能和晶格缺陷促进后续的时效处理中析出物的继续脱溶及均匀微细的分布,提高材料的导电率、屈服强度和弯曲加工性。因此,二次冷轧的变形量控制在40%以上,变形量过小,析出相的均匀分散度较差、析出量较小,同时不利于后期时效组织完全再结晶的完成,对最终带材的弯曲加工性能不利。
9)二级时效处理:时效温度控制在300℃~600℃。保温时间控制在3h~12h。
二级时效处理主要达到第二相析出和组织软化的目的。相对于冷轧态,时效后合金沿着轧制方向Brass取向{011}<211>、S型取向{123}<634>、R取向{124}<211>、铜型取向{112}<111>分布比例较小,合金具有较好的塑性。时效温度控制在300℃~600℃,保持时间3h~12h,更优选是,温度控制在350℃~550℃,保持时间4h~10h,这样Ni与Si、P形成化合物,在铜基体中以微小形状弥散析出,可以兼具有高的强度和优异的弯曲加工性,如果时效温度过高、时间长,析出物粗大化,得不到最佳的强度与晶粒度的搭配;反之,如果温度低、时间短,析出不能充分进行,弯曲加工性能、强度得不到有效提升。
10)三次冷轧:成前冷轧加工率不应超过60%。根据应用工况性能进行选择。
对时效后的合金施加冷变形有利于带材强度的进一步提高,但变形量不宜过大,过大易导致易形成明显的各向异性,不利于BW方向带材的弯曲加工性能,同时影响合金晶粒的控制。随着加工率的增加,沿着轧制方向铜型取向{112}<111>、Brass取向{011}<211>、S型取向{123}<634>、R取向{124}<211>分布比例增大,其中尤以Brass取向{011}<211>、S型取向{123}<634>的增加趋势明显。晶面晶向的这种转动造成晶体的变形协调性变差,合金的折弯性能恶化。其中BW方向恶化更加明显。因此,变形量控制在60%以下。
11)低温退火:低温退火温度控制在200℃~350℃。
低温退火可消除残余应力,有利于耐应力松弛能力的提高。应力的消除可 减少后续应用时板材在温度、应力作用下的形变。合金在低温时效时存在一定的化合物析出效果,化合物的析出能对位错进行钉扎,改善合金的耐应力松弛性能。根据应用需求选择不同的退火温度,供选择的温度控制在200℃-350℃之间。温度过高,合金发生软化。温度低于上述值时去残余应力去除不充分。
12)对得到的产品进行清洗、分条、包装。
与现有技术相比,本发明的优点在于:
(1)本发明合金在Cu-Ni-Sn基础上,通过成分调整并控制Ni、Si、P之间成分配比,生成镍磷金属间化合物和镍硅金属间化合物析出相并在基体中弥散析出,调整特定织构比例,在保持材料导电性的同时提升材料的强度和折弯性能;
(2)本发明合金通过调整Ni、Si、P之间成分配比使其满足:3≤Ni/(P+Si)≤20,0.1≤Si/P≤10,充分实现了镍磷金属间化合物和镍硅金属间化合物的相互协同作用,在不降低材料导电性的同时提升材料的强度;
(3)本发明对合金Brass取向和S型取向的织构取向比例进行了限定,其中Brass取向{011}<211>偏离角度小于15°的面积占比为5%~37%,S型取向{123}<634>偏离角度小于15°的面积占比为5%~30%,使合金在具有较高屈服强度的状态下仍具有良好的弯曲加工性能,满足小型化应用的需求;
(4)本发明通过控制镍磷金属间化合物和镍硅金属间化合物的弥散分布,控制镍磷金属间化合物和镍硅金属间化合物的平均粒径5nm~50nm,提升合金的屈服强度及弯曲加工性能;
(5)本发明合金经时效和冷轧变形后可以实现屈服强度550MPa以上,导电率38%IACS以上;该铜合金的带材的90°弯曲加工性能为:GW方向的值 R/t≤1,BW方向的值R/t≤2;该铜合金的带材在150℃下保温1000小时,应力残留率≥75%,耐应力松弛性能优异;
(6)本发明合金可以根据不同的应用需求加工成板带材、棒材、线材等,广泛应用于电气、汽车、通信器件等连接器、端子或开关部件。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
按表1各实施例成分所示的铜合金配料,采用半连续铸造在1120℃~1200℃下进行熔炼,制造规格为440mm×250mm的铸锭。将上述铸锭在850℃下保温5小时之后,进行热轧使其板厚达到16.5mm。然后,由于表面除垢所以要实施铣面,热轧板上、下铣面0.5mm~1.0mm后使热轧板厚度达到15mm;之后,通过一次冷轧得到厚度为2mm的板;接着将一次冷轧后的板加热至400℃,保温8h,进行第一次时效。接着将一次时效后的板进行第二次冷轧,冷轧至0.33mm,然后在360℃中保温8h进行二次时效处理。最后进行精轧,轧制目标板厚0.2mm。在精轧后,在240℃中保温4h进行低温退火,得到带材样品。
对于制备得到的20个实施例合金和7个对比例合金的带材样品,分别测试力学性能、导电率、耐应力松弛性能、折弯性能、晶体取向及析出物平均粒径。
室温拉伸试验按照《GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法》在电子万能力学性能试验机上进行,采用宽度为12.5mm的带头试样,拉伸速度为5mm/min。
导电率测试按照《GB/T 3048.2-2007电线电缆电性能试验方法第2部分:金属材料电阻率试验》,本检测仪器为ZFD微电脑电桥直流电阻测试仪,样品宽度为20mm,长度为500mm。
耐应力松弛性能测试按照《JCBA T309:2004铜及铜合金薄板条弯曲应力 松弛试验方法》,沿平行于轧制方向取样,样品宽度10mm,长度100mm,初始加载应力值为0.2%屈服强度的80%,测试温度为150℃,时间为1000h。
折弯性能测试按照《GBT 232-2010金属材料弯曲试验方法》在折弯测试机上进行,样品宽度为5mm,长度50mm。
织构测试按照《GBT 30703-2014微束分析电子背散射衍射取向分析方法导则》在Pegasus XM2EBSD设备上进行测试,样品宽度10mm,长度10mm。
测试析出物大小时将合金制备成直径3mm的薄片,通过离子减薄处理,在透射电镜(使用设备为FEI TF20,倍率:15000)上观察样品的组织,根据观察结果计算合金析出的金属间化合物的平均粒径。
各实施例及对比例的成分及性能结果见表1所示。
根据实施例可以发现,本发明实施例铜合金的均实现了屈服强度≥550MPa,导电率≥38%IACS,弯曲加工性能优异即GW方向的值R/t≤1,BW方向的值R/t≤2。
通过对比例1~4可知,当Ni、Si、P比值不同时满足3≤Ni/(Si+P)≤20,0.1≤Si/P≤10,无法获得满足我们所需求材料的性能。通过对比例5、6可知,当Brass取向{011}<211>偏离角度小于15°的面积占比不满足5%~37%时、S型取向{123}<634>偏离角度小于15°的面积占比不满足5%~30%,材料弯曲加工性能明显变差。通过对比例7、8可知,当材料析出物平均粒径大小不满足5nm~50nm,合金的弯曲加工性能和抗应力松弛性能明显下降,无法满足所需要的材料性能。
Figure PCTCN2018000311-appb-000001
Figure PCTCN2018000311-appb-000002

Claims (10)

  1. 一种综合性能优异的铜合金,其特征在于,该铜合金的重量百分比组成包括:
    Ni:0.4wt%~2.0wt%,
    Sn:0.2wt%~2.5wt%,
    P:0.02wt%~0.25wt%,
    Si:0.001wt%~0.5wt%,
    余量为Cu和不可避免的杂质。
  2. 根据权利要求1所述的一种综合性能优异的铜合金,其特征在于,该铜合金的带材的晶体取向满足:Brass取向{011}<211>偏离角度小于15°的面积占比为5%~37%,S型取向{123}<634>偏离角度小于15°的面积占比为5%~30%。
  3. 根据权利要求1所述的一种综合性能优异的铜合金,其特征在于,Ni、P、Si的重量百分比满足:3≤Ni/(P+Si)≤20,且Si与P的重量百分比满足:0.1≤Si/P≤10。
  4. 根据权利要求1所述的一种综合性能优异的铜合金,其特征在于,该铜合金的微观组织中含有镍磷金属间化合物和镍硅金属间化合物,其中,镍磷金属间化合物和镍硅金属间化合物的平均粒径均为5nm~50nm。
  5. 根据权利要求1所述的一种综合性能优异的铜合金,其特征在于,该铜合金的重量百分比组成中还包括0.01wt%~0.5wt%的Mg和/或0.1wt%~2.0wt%的Zn。
  6. 根据权利要求1所述的一种综合性能优异的铜合金,其特征在于,该铜合金的重量百分比组成中还包括0.1wt%~2.0wt%的Co。
  7. 根据权利要求1所述的一种综合性能优异的铜合金,其特征在于,该铜合金的重量百分比组成中还包括总量为0.001wt%~1.0wt%的选自Fe、Al、Zr、Cr、Mn、B和RE中的至少一种元素。
  8. 根据权利要求1所述的一种综合性能优异的铜合金,其特征在于,该铜合金的带材的屈服强度≥550MPa,导电率≥38%IACS。
  9. 根据权利要求1所述的一种综合性能优异的铜合金,其特征在于,该铜合金的带材的90°弯曲加工性能为:GW方向的值R/t≤1,BW方向的值R/t≤2;该铜合金的带材在150℃下保温1000小时,应力残留率≥75%。
  10. 权利要求1-9中任一项所述的综合性能优异的铜合金在连接器、端子或开关部件中的应用。
PCT/CN2018/000311 2018-08-17 2018-09-04 一种综合性能优异的铜合金及其应用 WO2020034049A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/487,428 US11655524B2 (en) 2018-08-17 2018-09-04 Copper alloy with excellent comprehensive performance and application thereof
EP18917030.1A EP3839083A4 (en) 2018-08-17 2018-09-04 COPPER ALLOY WITH EXCELLENT OVERALL PERFORMANCE AND ITS USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810939276.4 2018-08-17
CN201810939276.4A CN109022900B (zh) 2018-08-17 2018-08-17 一种综合性能优异的铜合金及其应用

Publications (1)

Publication Number Publication Date
WO2020034049A1 true WO2020034049A1 (zh) 2020-02-20

Family

ID=64630812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000311 WO2020034049A1 (zh) 2018-08-17 2018-09-04 一种综合性能优异的铜合金及其应用

Country Status (4)

Country Link
US (1) US11655524B2 (zh)
EP (1) EP3839083A4 (zh)
CN (1) CN109022900B (zh)
WO (1) WO2020034049A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285988B (zh) * 2018-01-31 2019-10-18 宁波博威合金材料股份有限公司 析出强化型铜合金及其应用
CN110284018B (zh) * 2019-07-22 2021-04-13 中南大学 一种环保高导弹性耐蚀铜合金及其板带材的生产方法
CN110306077B (zh) * 2019-07-24 2021-12-03 宁波兴业盛泰集团有限公司 一种电连接器用耐蚀铜合金及其制备方法
CN110643850B (zh) * 2019-10-24 2020-12-01 宁波博威合金材料股份有限公司 一种折弯性能优异的铜合金及其制备方法和应用
CN111020283B (zh) * 2019-12-06 2021-07-20 宁波金田铜业(集团)股份有限公司 插件用铜合金带材及其制备方法
CN112853149B (zh) * 2021-01-08 2022-01-14 宁波博威合金材料股份有限公司 一种铜镍硅铝合金及其制备方法
CN113564413B (zh) * 2021-07-29 2022-07-15 公牛集团股份有限公司 一种高导耐蚀高镍含铝铜合金及其制备方法
CN113981265A (zh) * 2021-09-07 2022-01-28 铜陵有色金属集团股份有限公司金威铜业分公司 热轧性能优异的铜合金及其制造方法
CN114107727B (zh) * 2021-11-22 2022-10-04 宁波金田铜业(集团)股份有限公司 一种低板型i值锡磷青铜带材的制备方法
CN113981267B (zh) * 2021-12-28 2022-04-19 宁波兴业盛泰集团有限公司 一种铜合金引线框架材料
CN115125413B (zh) * 2022-06-30 2023-08-01 宁波金田铜业(集团)股份有限公司 一种综合性能优异的铜合金带材及其制备方法
CN115747564B (zh) * 2022-12-02 2023-11-10 浙江惟精新材料股份有限公司 一种铜镍硅磷系合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020029827A1 (en) * 1999-01-15 2002-03-14 Jin-Yaw Liu High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes and method of making the same
CN1986857A (zh) * 2005-12-22 2007-06-27 株式会社神户制钢所 具有优异应力松弛性的铜合金
CN101314825A (zh) * 2007-05-31 2008-12-03 古河电气工业株式会社 电气、电子器械用铜合金
CN108285988A (zh) * 2018-01-31 2018-07-17 宁波博威合金材料股份有限公司 析出强化型铜合金及其应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727051A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Copper nickel tin alloy for integrated circuit conductor and its manufacture
FR2698882B1 (fr) * 1992-12-04 1995-02-03 Castolin Sa Procédé pour former un revêtement protecteur sur un substrat.
US6379478B1 (en) * 1998-08-21 2002-04-30 The Miller Company Copper based alloy featuring precipitation hardening and solid-solution hardening
JP4660735B2 (ja) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 銅基合金板材の製造方法
EP2366807B1 (en) * 2005-06-08 2013-08-21 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and copper alloy plate
JP4655834B2 (ja) * 2005-09-02 2011-03-23 日立電線株式会社 電気部品用銅合金材とその製造方法
JP5306591B2 (ja) * 2005-12-07 2013-10-02 古河電気工業株式会社 配線用電線導体、配線用電線、及びそれらの製造方法
JP4750601B2 (ja) * 2006-03-31 2011-08-17 Jx日鉱日石金属株式会社 熱間加工性に優れた銅合金及びその製造方法
JP4275697B2 (ja) * 2006-11-24 2009-06-10 三菱伸銅株式会社 電子機器用銅合金およびリードフレーム材
US20110223056A1 (en) * 2007-08-07 2011-09-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet
JP4834781B1 (ja) * 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系合金
JP4799701B1 (ja) * 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系銅合金条及びその製造方法
CN107208191B (zh) * 2015-04-24 2020-03-13 古河电气工业株式会社 铜合金材料及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020029827A1 (en) * 1999-01-15 2002-03-14 Jin-Yaw Liu High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes and method of making the same
CN1986857A (zh) * 2005-12-22 2007-06-27 株式会社神户制钢所 具有优异应力松弛性的铜合金
CN101314825A (zh) * 2007-05-31 2008-12-03 古河电气工业株式会社 电气、电子器械用铜合金
CN108285988A (zh) * 2018-01-31 2018-07-17 宁波博威合金材料股份有限公司 析出强化型铜合金及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3839083A4 *

Also Published As

Publication number Publication date
US11655524B2 (en) 2023-05-23
CN109022900B (zh) 2020-05-08
US20210062301A1 (en) 2021-03-04
EP3839083A4 (en) 2022-06-15
CN109022900A (zh) 2018-12-18
EP3839083A1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
US11655524B2 (en) Copper alloy with excellent comprehensive performance and application thereof
WO2022062335A1 (zh) 一种铜铬合金带材及其制备方法
JP4596493B2 (ja) 導電性ばね材に用いられるCu−Ni−Si系合金
JP5028657B2 (ja) 異方性の少ない高強度銅合金板材およびその製造法
JP4584692B2 (ja) 曲げ加工性に優れた高強度銅合金板およびその製造方法
KR101570556B1 (ko) 전기·전자부품용 동합금 재료의 제조방법
JP5479798B2 (ja) 銅合金板材、銅合金板材の製造方法、および電気電子部品
JP3699701B2 (ja) 易加工高力高導電性銅合金
WO2011118400A1 (ja) 高強度チタン銅板及びその製造方法
CN108384986B (zh) 一种铜合金材料及其应用
CN111101016B (zh) 一种时效强化型钛铜合金及其制备方法
CN110157945B (zh) 一种抗软化的铜合金及其制备方法和应用
WO2015046459A1 (ja) 銅合金および銅合金板
CN109338151B (zh) 一种电子电气设备用铜合金及用途
KR101455964B1 (ko) 구리 합금판 및 구리 합금판의 제조 방법
WO2010134210A1 (ja) 銅合金板材およびその製造方法
WO2013145350A1 (ja) Cu-Zn-Sn-Ni-P系合金
CN114855026B (zh) 一种高性能析出强化型铜合金及其制备方法
WO2019237215A1 (zh) 一种铜合金及其应用
JP5207927B2 (ja) 高強度かつ高導電率を備えた銅合金
WO2009098810A1 (ja) 析出硬化型銅合金条の製造方法
JPH07258803A (ja) 曲げ性および応力緩和特性に優れたチタン銅合金の製造方法
CN118355138A (zh) 用于生产具有优异的强度、电导率和可弯曲性的用于汽车组件或电气/电子组件的铜合金板的方法以及由此生产的铜合金板
CN111647768A (zh) 高强度铜合金板材及其制造方法
WO2020044699A1 (ja) チタン銅板、プレス加工品およびプレス加工品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018917030

Country of ref document: EP

Effective date: 20210317