WO2020032390A1 - 다관절 로봇의 케이블 가이드 장치 - Google Patents

다관절 로봇의 케이블 가이드 장치 Download PDF

Info

Publication number
WO2020032390A1
WO2020032390A1 PCT/KR2019/007782 KR2019007782W WO2020032390A1 WO 2020032390 A1 WO2020032390 A1 WO 2020032390A1 KR 2019007782 W KR2019007782 W KR 2019007782W WO 2020032390 A1 WO2020032390 A1 WO 2020032390A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
base
cable guide
sliding groove
various embodiments
Prior art date
Application number
PCT/KR2019/007782
Other languages
English (en)
French (fr)
Inventor
유희종
노경식
김철희
양수상
정상전
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to CN201980052477.5A priority Critical patent/CN112566761A/zh
Priority to EP19846193.1A priority patent/EP3822051A4/en
Priority to US17/266,570 priority patent/US11584028B2/en
Publication of WO2020032390A1 publication Critical patent/WO2020032390A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • B25J19/0029Means for supplying energy to the end effector arranged within the different robot elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0456Ladders or other supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G11/00Arrangements of electric cables or lines between relatively-movable parts

Definitions

  • Various embodiments of the present invention relate to a guide device for protecting a cable disposed in a base in a cable-mounted articulated robot.
  • Industrial 6-axis articulated robots can be divided into external wiring type robots in which various cables are exposed to the outside and internal wiring type robots in which cables are embedded in the robot body.
  • the externally wired robot has a problem in that the utilization of the workspace is reduced because a wider working space must be secured due to an increase in the operating radius due to an externally installed cable.
  • Various embodiments of the present invention provide a cable guide device that reduces the risk of cable breakage and maximizes robot cable life by mounting a floating friction reducing mechanism in a single axis base through which most cables pass in an internally wired articulated robot. can do.
  • Various embodiments of the present invention can provide a cable guide device to reduce the cost and reduce the base size by using a general cable sheath instead of a high rigidity sheath.
  • Cable guide device is a base; At least one rotating arm rotatably coupled to the base; At least one cable connected to the rotating arm via the base; A cable guide block coupled to a drive unit in the base; A sliding groove formed on an outer circumferential surface of the cable guide block; And a cable friction reducing mechanism coupled with a portion of the cable received in the base and rotating along a sliding groove, such as the portion of the cable, as the rotation arm rotates.
  • the present invention can reduce the risk of cable disconnection in a cable-integrated articulated robot.
  • the present invention uses a cable friction reduction mechanism in a built-in multi-joint robot, it is possible to use a low-cost cable protection tube, it is possible to reduce the cost.
  • FIG. 1 is a perspective view illustrating an articulated robot according to various embodiments of the present disclosure.
  • FIG. 2 is a cross-sectional view illustrating an internal configuration of a base according to various embodiments of the present disclosure.
  • 3A is a perspective view illustrating a cable state disposed in a base according to various embodiments of the present disclosure.
  • 3B and 3C are perspective views illustrating a state in which a cable is protected by a friction reducing mechanism according to various embodiments of the present disclosure, and a base is removed.
  • 3D and 3E are perspective views illustrating a state in which a cable is protected by a friction reducing mechanism according to various embodiments of the present disclosure, and a base inner wall is removed.
  • 3F is a perspective view illustrating a base in a state where a cable protected by a friction reducing mechanism according to various embodiments of the present disclosure is accommodated.
  • FIG. 4A is a perspective view illustrating a first cable protecting member according to various embodiments of the present disclosure.
  • FIG. 4B is a perspective view illustrating a flowable cable guide according to various embodiments of the present disclosure.
  • 4C is a perspective view illustrating a second cable protecting member according to various embodiments of the present disclosure.
  • 4D is a perspective view illustrating a cable guide block according to various embodiments of the present disclosure.
  • FIG. 5 is a cross-sectional view illustrating a mounting state of a flexible cable guide according to various embodiments of the present disclosure.
  • FIG. 6 is a perspective view illustrating a mounting state of a first cable protection member according to various embodiments of the present disclosure.
  • FIG. 1 is a perspective view illustrating an articulated robot according to various embodiments of the present disclosure.
  • the articulated robot 10 may be a six-axis articulated robot, and a plurality of articulated robots may be installed for factory automation or unmanned operation at various manufacturing sites.
  • the cable wiring method it can be divided into an external wiring type robot in which various cables are exposed to the outside and an internal wiring type robot in which a cable is embedded in the robot body.
  • the articulated robot 10 according to various embodiments may have an internal wiring type. It can be composed of a robot.
  • the power source of the articulated robot 10 may be electrically connected to a driving unit (not shown) and the work device 16 of the plurality of rotating arms 12-14 through a wired cable.
  • the cable mentioned (eg cable 30 of FIG. 3A) may be a cable provided by a cable sheath.
  • the articulated robot 10 may include a base 11 and at least one rotating arm 12-15 rotatably connected to the base 11.
  • the working device 16 is coupled to the final rotating arm 15 of the rotating arms 12-15, so that the desired work can be performed.
  • the articulated robot 10 may include a multi-articulated robot composed of four, six, or more axes depending on the number of rotating arms.
  • the rotating arm includes a first rotating arm 12 rotating about the first hinge axis h1 at the base 11 and a second hinge axis h2 at the first rotating arm 12.
  • a second rotating arm 13 which rotates about the center
  • a third rotating arm 14 which rotates about each of the third hinge axes h3 at the second rotating arm 13, and a third rotating arm 14
  • a fourth rotating arm 15 that rotates about the fourth hinge axis h4, and a work device 16 that rotates about the fifth hinge axis h5 on the fourth rotating arm 15. can do.
  • the base 11 is mounted with a drive motor (not shown), and the drive motor is connected to the first rotation arm 12 by the reduction gear 113 to perform a rotation operation within a predetermined angle.
  • the first rotating arm 12 can rotate between (-) 175 and (+) 175 degrees on the base 11.
  • FIG. 2 is a cross-sectional view illustrating an internal configuration of a base according to various embodiments of the present disclosure.
  • the articulated robot may include a base (eg, cable 30 of FIG. 3A) drawn from an external connector (not shown). (11) After being pulled into the interior, it should be pulled out towards the first rotating arm (eg, the first rotating arm 12 in FIG. 1).
  • the base 11 is a stationary body and the first rotating arm is a rotating body, so that the articulated robot is at least one cable for protecting the cable (e.g., the cable 30 shown in FIG. 3A) accommodated in the base 11.
  • Protective devices may be installed.
  • the base 11 may be divided into three areas.
  • the base 11 may include an upper region 110, a lower region 114, and an intermediate region 112 between the upper and lower regions 110 and 114.
  • the lower region 114 of the base 11 is a fixed portion
  • the upper region of the base 11 is a portion where the first rotational arm (eg, the first rotational arm 12 of FIG. 1) is coupled to generate a rotational motion.
  • the middle region 112 of the base 11 may be a region in which the cable is tensioned according to the rotation operation of the upper region 110.
  • At least one mechanism may be installed to protect the cable 30 disposed in each of the three regions 110, 112, and 114.
  • the appliance may be a protective device for protecting the cable 30 from rotation of the first rotating arm 12.
  • the base 11 includes a drive motor M, a reduction gear 113, a cable (eg, the cable 30 of FIG. 3A), and a floating cable guide 22 (the floating cable guide of FIG. 3A). (22) and the cable guide block 111, and at least one or more cable protection members (21, 23) and the like can be accommodated.
  • the base 11 may include a driving motor M, a cable guide block 111, and a reduction gear 113 along the first hinge shaft h1.
  • the driving motor M, the cable guide block 111, and the reduction gear 113 may be coaxially disposed with each other and may be stacked with each other.
  • the first cable protection member 21 is disposed in the upper region 110 of the base 11, the second cable protection member 23 is disposed in the lower region 114, and the middle region 112, according to various embodiments.
  • the flexible cable guide 22 may be disposed between the inner wall of the base 11 and the cable guide block 111.
  • the reduction gear 113 may be fastened to the cable guide block 111 by a plurality of fasteners.
  • Reference number 1110 may refer to a sliding groove formed in at least a portion of the outer circumferential surface of the cable guide block 111.
  • the cable guide block (eg, the cable guide block 111 of FIG. 2) may be coupled to the reduction gear 113 at an upper end thereof, and coupled to the base 11 at the lower end thereof.
  • the cable guide block 11 may itself serve as an adapter.
  • a part of the base 11 to which the cable guide block 111 is coupled may be a driving motor M.
  • 3A is a perspective view illustrating a cable state disposed in a base according to various embodiments of the present disclosure.
  • 3B and 3C are perspective views illustrating a state in which a cable is protected by a friction reducing mechanism according to various embodiments of the present disclosure, and a base is removed.
  • 3D and 3E are perspective views illustrating a state in which a cable is protected by a friction reducing mechanism according to various embodiments of the present disclosure, and a base inner wall is removed.
  • 3F is a perspective view illustrating a base in a state where a cable protected by a friction reducing mechanism according to various embodiments of the present disclosure is accommodated.
  • the cable 30 may be covered by a cable protection tube as an electrical connection device.
  • the cable 30 may be drawn out to the first rotary arm 12 after the pair is arranged approximately symmetrically in the base 11 and may be retracted in the space between the base 11 and the drive motor M. It may be arranged to be drawn out to the one-turn arm 12.
  • the cable 30 may include a first portion 302 to a third portion 306 accommodated in the base 11.
  • the inner space of the base 11 may be defined as a middle region between the upper region (eg, the upper region 110 of FIG. 2), the lower region (eg, the lower region 114 of FIG. 2), and the upper and lower regions. 2, the first region 302 may be accommodated in the upper region 110, and the third portion 306 may be accommodated in the lower region 114.
  • the second portion 304 may be accommodated.
  • the first portion 302 of the cable is curved and may be directed towards the first rotating arm for the end to be drawn into the first rotating arm.
  • the second portion 304 is linear and may be disposed in the base internal space in a vertical state.
  • the third portion 306 is curved and may be directed toward an external connector, not shown, so that the end is drawn out of the base 11.
  • a bending portion may be formed between the first and second portions 302 and 304, and a bending portion may be formed between the second and third portions 304 and 306.
  • the third portion 306 may be horizontally disposed in the lower region 114 of the base 11.
  • the third portion 306 may be bent at the end to connect with the second portion 304 that is linearly vertically upward.
  • the second portion 304 may be bent at an end and connected to the first portion 302 horizontally in a curved shape.
  • the first cable protection member 21 may rotate, and the first cable protection member 21 may be rotated.
  • the first portion 302 of the cable rotates as the rotation of the, and the flexible cable guide 22 in the state where the second portion 304, that is, the second portion 304 penetrated by the effect of the rotation of the cable is predetermined
  • the distance may be moved by sliding along the sliding groove 1110 formed on the outer circumferential surface of the cable guide block 111. At this time, the second portion 302 may be protected by the flexible cable guide 22.
  • the first portion 302 of the cable is connected to the first rotating arm 12 and is positioned at an upper portion of the base 11 so that the moving speed of the first portion 302 may be increased. It is the same as the one-axis rotational speed and may move to the fastest portion among the first to third portions 302, 304, and 306, and thus receives the forward frictional force due to the movement.
  • the second portion 304 of the cable connects the cables of the first and third portions 302 and 306, and simultaneously rotates and advances, thereby receiving a rotational friction force and a forward friction force by the movement from the outer wall.
  • the moving speed of the second portion 304 may be approximately one half of the uniaxial rotational speed of the first rotating arm.
  • the third portion 306 of the cable is positioned at the bottom region 114 of the base 11 before entering / exiting the second portion 304, and the end of the third portion 306 is a robot. It is connected with external connector of and can communicate with controller. Since the moving speed of the third portion 306 is zero, frictional force may not exist.
  • Reference numeral 24 is a holding member, which may be a member for fixing an end of the third portion 306.
  • FIG. 4A is a perspective view illustrating a first cable protecting member according to various embodiments of the present disclosure.
  • a base may further include a first cable protection member 21 for receiving a first portion 302 of a cable.
  • the first cable protecting member 21 is an alphabet letter C, and is fastened to the rotating frame so that the first cable protecting member 21 can rotate like the rotating frame, and the first part accommodated in the first cable protecting member 21 can also rotate.
  • the first cable protection member 21 may have a plurality of fastening holes 210 for fastening to the rotating frame.
  • FIG. 4B is a perspective view illustrating a flowable cable guide according to various embodiments of the present disclosure.
  • the flexible cable guide 22 may include one end disposed to have a gap with the inner wall of the base 11 and the other end inserted into the sliding groove of the cable guide block.
  • the flexible cable guide 22 may include a body 220 and a protrusion 222.
  • the body 220 may have a hole 224 formed along the length direction.
  • the hole 224 may be a hole through which the cable passes.
  • the second portion 304 of the cable may be disposed through the hole 224.
  • the body 220 may have a protrusion 222 formed in a portion thereof and be inserted into the sliding groove.
  • the protrusion 222 may be formed at the upper or middle portion of the body 220.
  • the protrusion 222 may include a curved surface 222a having a curvature.
  • the curved surface 222a may be in contact with the sliding groove (eg, the sliding groove 1110 of FIG. 2) to allow sliding surface contact within the sliding groove.
  • the flow-type sliding guide 22 is made of an industrial synthetic resin (eg, plastic) material, and may be made of any one of MC nylon, acetel, and pepron.
  • the flexible cable guide 22 may contact the balls attached to the ball bush and the second portion 304 when the ball bush is attached and rotated to minimize rotational frictional resistance.
  • the ball bush can be used commercially available ball bushings suitable for the diameter of the cable.
  • 4C is a perspective view illustrating a second cable protecting member according to various embodiments of the present disclosure.
  • the base 11 includes a first cable protection member (eg, first portion of FIG. 4A) that receives a third portion of the cable (eg, third portion 306 of FIG. 3A).
  • the second cable protection member 23 may be disposed to face the first cable protection member 21.
  • the second cable protection member 23 has a letter C shape and is fastened to the bottom of the base 11 so that the second cable protection member 23 may be fixed to the bottom of the base 11.
  • the second cable protection member 23 may have a plurality of fastening holes 230 for fastening to the base.
  • 4D is a perspective view illustrating a cable guide block according to various embodiments of the present disclosure.
  • the cable guide block 111 has a disk shape coupled to a driving motor (for example, the driving motor M of FIG. 2), and a coupling hole 1112 is formed at a center thereof.
  • a sliding groove 1110 may be formed on the outer circumferential surface thereof.
  • the sliding groove 1110 may be a portion in which a protrusion (for example, the protrusion 222 of FIG. 4B) of the floating cable guide 22 is inserted to perform sliding movement.
  • the cable guide block 111 has a coupling recess 1113 formed around the coupling hole 1112, so that the cable guide block 111 may be coupled to an upper end of the driving motor, and the plurality of coupling holes may be coupled to the case of the reduction gear 113. 1114 may be formed.
  • the pair of cables eg, the cable 30 of FIG. 3A housed inside the base 11 is connected to the first rotating arm. It is possible to repeatedly enter and exit the areas of each other according to the one-axis rotation operation.
  • the floating cable guide 22 may be utilized as a mechanism for reducing friction generated by such cable movement.
  • the second portion 304 of the cable is wired in an unconstrained flowable cable guide 22, and the wired second portion 304 is connected to the cable guide 22 in accordance with the movement of the cable. It can move freely in a protected state.
  • the frictional resistance that occurs during the movement of the second portion 304 may be received by the floating cable guide 22 instead.
  • the third portion 306 of the cable is arranged in a fixed state, but a second cable protection member 23 may be disposed to prevent friction that may be caused by the second portion 304.
  • FIG. 5 is a cross-sectional view illustrating a mounting state of a flexible cable guide according to various embodiments of the present disclosure.
  • the flexible cable guide 22 has at least a portion thereof disposed to have a gap g with an inner wall 11a of the base 11, and the protrusion 222 may be formed in the sliding groove 1110. Inserted in surface contact, the sliding movement can be arranged.
  • a portion of the flexible cable guide 22 may slide along the inner wall 11a during the articulated robot operation, and the protrusion 222 may perform a sliding movement on the surface of the sliding groove 1110.
  • Lubricant is introduced into the area a1 between the base inner wall 11a and the portion of the floating sliding guide 22 or the area a2 between the protrusion 222 and the sliding groove 1110, respectively, so that the desired flow of the sliding sliding guide 22 can be avoided.
  • One sliding movement operation may be possible.
  • 5 is a cross-sectional view illustrating a mounting state of a flexible cable guide according to various embodiments of the present disclosure.
  • FIG. 6 is a perspective view illustrating a mounting state of a first cable protection member according to various embodiments of the present disclosure.
  • the first cable protection member 21 may be coupled to a bottom surface of the rotation frame 120 coupled to the first rotation arm 12 using a plurality of fasteners.
  • a cable guide device of an articulated robot (eg, the articulated robot 10 shown in FIG. 1) includes a base (eg, the base 11 of FIG. 1) and a joint to the base. At least one rotating arm (eg; rotating arm 12, 13, 14, 15 of FIG. 1) coupled rotatably in a form and at least one cable connected to the rotating arm via the base (eg; FIG. Cable 30 of 3a, a cable guide block (e.g., cable guide block 111 of FIG. 2) coupled to a drive unit in the base, and a sliding groove formed on an outer circumferential surface of the cable guide block (e.g., FIG. 2).
  • a cable friction reducing mechanism (e.g., the flowable cable of FIG. Table guide 22).
  • the cable friction reducing mechanism may include a hole through which a portion of the cable passes.
  • the cable friction reduction mechanism may include at least one flowable cable guide (eg, flowable cable guide 22 of FIG. 3B).
  • a cable friction reducing mechanism is disposed between a base inner wall (e.g., cable inner wall 11a of FIG. 5) and a cable guide block, thereby reducing the sliding groove of the cable guide block by the cable tension. Can move along.
  • a cable may include: the first portion (eg, first portion 302 of FIG. 3A) disposed in the horizontal direction within the base; A second portion extending from one end of the first portion and disposed vertically in the base (eg, the second portion 304 of FIG. 3A); And a third portion (eg, the third portion 306 of FIG. 3A) extending from the other end of the second portion to replace the first portion and disposed horizontally in the base.
  • the first portion eg, first portion 302 of FIG. 3A
  • a second portion extending from one end of the first portion and disposed vertically in the base (eg, the second portion 304 of FIG. 3A);
  • a third portion eg, the third portion 306 of FIG. 3A
  • the flowable cable guide (flowable cable guide 22 of FIG. 3B) is disposed so that one end thereof has a gap with the base inner wall (eg, the cable inner wall 11a of FIG. 5), The other end portion is inserted into the sliding groove (for example, the sliding groove 1110 of FIG. 2), so that it can move along the sliding groove according to the rotation of the rotating arm.
  • the base inner wall e.g, the cable inner wall 11a of FIG. 5
  • the other end portion is inserted into the sliding groove (for example, the sliding groove 1110 of FIG. 2), so that it can move along the sliding groove according to the rotation of the rotating arm.
  • the flexible cable guide (eg, the flexible cable guide 22 of FIG. 3B) may have a body (eg, the body 220 of FIG. 4B) formed with the hole along the lengthwise direction through which the cable passes. ) And a protrusion (for example, the protrusion 222 of FIG. 4B) formed in a portion of the body and inserted into the sliding groove.
  • the protrusion (eg, the protrusion 222 of FIG. 4B) includes a curved surface having a curvature (eg, the curved surface 222a of FIG. 4B) and may perform a sliding movement in the sliding groove.
  • a curved surface having a curvature eg, the curved surface 222a of FIG. 4B
  • the base further includes a first cable protection member (eg, the first cable protection member 21 of FIG. 4A) for receiving the second portion, and the first cable protection member (eg The first cable protecting member 210 of FIG. 4A is an alphabet letter C and may be fastened to the rotating frame.
  • a first cable protection member eg, the first cable protection member 21 of FIG. 4A
  • the first cable protection member eg. The first cable protecting member 210 of FIG. 4A is an alphabet letter C and may be fastened to the rotating frame.
  • a base may include a second cable protection member (eg, the second cable protection member 23 of FIG. 4C) disposed facing the first cable protection member to receive the third portion.
  • the second cable protection member for example; second cable protection member 23 of Figure 4c
  • the sliding groove (eg, the sliding groove 1110 of FIG. 2) may extend along an outer circumferential surface of the cable guide block.
  • the cable may be covered by a cable sheath.
  • the cable (e.g., cable 30 of FIG. 3A) is arranged in a curved shape in the second and third portions, respectively, and is linear in the first portion, and between the first and second portions.
  • the bent shape is formed, and the first and third portions may be formed in a bent shape.
  • the cable friction reducing mechanism may be made of any one of MC nylon, acetel, and Peflon as a synthetic resin material.
  • the cable guide block (eg; cable guide block 111 of FIG. 2) is coupled to a reduction gear (eg; reduction gear 113 of FIG. 2) at the top, and coupled to the base at the bottom. It can act as an adapter by itself.
  • a reduction gear eg; reduction gear 113 of FIG. 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)
  • Electric Cable Arrangement Between Relatively Moving Parts (AREA)

Abstract

본 발명에는 다관절 로봇의 케이블 가이드 장치가 개시된다. 개시된 케이블 가이드 장치는 베이스; 상기 베이스에 관절형으로 회전가능하게 결합되는 적어도 하나 이상의 회전 아암; 상기 베이스를 경유하여 상기 회전 아암으로 연결되는 적어도 하나 이상의 케이블; 상기 베이스 내에서 구동부에 결합된 케이블 가이드 블록; 상기 케이블 가이드 블록의 외주면에 형성된 슬라이딩 홈; 및 상기 베이스 내에 수용된 상기 케이블의 일부분과 결합되며, 상기 회전 아암의 회전에 따라 상기 케이블 일부분과 같이 슬라이딩 홈을 따라 회전하는 케이블 마찰 저감 기구물을 포함할 수 있다.

Description

다관절 로봇의 케이블 가이드 장치
본 발명의 다양한 실시예는 케이블 내장형 다관절 로봇에서, 베이스 내에 배치되는 케이블을 보호하는 가이드 장치에 관한 것이다.
공장 자동화/무인화 달성을 위해 다양한 방식으로 개발된 산업용 6축 다관절 로봇이 각종 제조 현장에서 급속도로 설치되고 있다.
산업용 6축 다관절 로봇은 배선 방식에 따라 각종 케이블이 외부로 노출된 외부 배선형 로봇과 케이블이 로봇 바디 안에 내장되어 있는 내부 배선형 로봇으로 나눌 수 있다.
하지만, 외부 배선형 로봇은 외부에 설치된 케이블로 인해 동작 반경이 증가하여 더 넓은 작업 공간이 확보되어야 하므로, 작업공간에 대한 활용도가 저하되는 문제가 있다.
또한, 내부 배선형 로봇의 경우 작업공간 확보가 유리하나, 로봇의 좁은 바디 안에 케이블이 집약되어 로봇 관절 동작 시, 케이블과 바디의 마찰이 발생하므로 마찰을 완화시키는 구조/ 기구장치가 없다면 케이블의 수명 측면에서 외부 배선형 로봇 대비 매우 불리하다고 볼 수 있다.
본 발명의 다양한 실시예는 내부 배선형 다관절 로봇에서, 가장 많은 케이블이 통과하는 1축 베이스 내에 유동식 마찰 저감 기구물을 실장하여, 케이블 단선 위험을 줄이고, 로봇 케이블 수명을 극대화한 케이블 가이드 장치를 제공할 수 있다.
본 발명의 다양한 실시예는 고강성 보호관이 아닌 일반 케이블 보호관을 사용하여 비용을 절감하고 베이스 크기가 감소된 케이블 가이드 장치를 제공할 수 있다.
본 발명의 다양한 실시예에 따른 케이블 가이드 장치는 베이스; 상기 베이스에 관절형으로 회전가능하게 결합되는 적어도 하나 이상의 회전 아암; 상기 베이스를 경유하여 상기 회전 아암으로 연결되는 적어도 하나 이상의 케이블; 상기 베이스 내에서 구동부에 결합된 케이블 가이드 블록; 상기 케이블 가이드 블록의 외주면에 형성된 슬라이딩 홈; 및 상기 베이스 내에 수용된 상기 케이블의 일부분과 결합되며, 상기 회전 아암의 회전에 따라 상기 케이블 일부분과 같이 슬라이딩 홈을 따라 회전하는 케이블 마찰 저감 기구물을 포함할 수 있다.
본 발명은 케이블 내장형 다관절 로봇에서, 케이블 단선 위험을 줄일 수 있다.
또한, 본 발명은 케이블 내장형 다관절 로봇에서, 케이블 마찰 저감 기구물을 사용함으로서, 저가의 케이블 보호관 사용이 가능해서, 비용을 절감할 수 있다.
도 1은 본 발명의 다양한 실시예에 따른 다관절 로봇을 나타내는 사시도이다.
도 2는 본 발명의 다양한 실시예에 따른 베이스의 내부 구성을 나타내는 단면도이다.
도 3a는 본 발명의 다양한 실시예에 따른 베이스 내에 배치된 케이블 상태를 나타내는 사시도이다.
도 3b, 도 3c는 본 발명의 다양한 실시예에 따른 마찰 저감 기구물에 의해 케이블이 보호된 상태를 각각 나타내는 사시도로서, 베이스가 삭제된 도면이다.
도 3d, 도 3e는 본 발명의 다양한 실시예에 따른 마찰 저감 기구물에 의해 케이블이 보호된 상태를 각각 나타내는 사시도로서, 베이스 내벽이 삭제된 도면이다.
도 3f는 본 발명의 다양한 실시예에 따른 마찰 저감 기구물에 의해 보호된 케이블이 수용된 상태의 베이스를 나타내는 사시도이다.
도 4a는 본 발명의 다양한 실시예에 따른 제1케이블 보호 부재를 나타내는 사시도이다.
도 4b는 본 발명의 다양한 실시예에 따른 유동형 케이블 가이드를 나타내는 사시도이다.
도 4c는 본 발명의 다양한 실시예에 따른 제2케이블 보호 부재를 나타내는 사시도이다.
도 4d는 본 발명의 다양한 실시예에 따른 케이블 가이드 블럭를 나타내는 사시도이다.
도 5는 본 발명의 다양한 실시예에 따른 유동형 케이블 가이드의 장착 상태를 나타내는 단면도이다.
도 6은 본 발명의 다양한 실시예에 따른 제1케이블 보호 부재의 장착 상태를 나타내는 사시도이다.
이하, 본 개시의 다양한 실시예가 첨부된 도면을 참조하여 기재된다. 그러나, 이는 본 개시를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 개시의 실시예의 다양한 변경(modification), 균등물(equivalent), 및/또는 대체물(alternative)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
도 1은 본 발명의 다양한 실시예에 따른 다관절 로봇을 나타내는 사시도이다.
도 1을 참조하면, 다양한 실시예에 따른 다관절 로봇(10)은 6축 다관절 로봇으로서, 각종 제조 현장의 공장 자동화 또는 무인화를 위해서 복수개가 설치될 수 있다. 케이블 배선 방식에 따라 각종 케이블이 외부로 노출된 외부 배선형 로봇과 케이블이 로봇 바디 안에 내장되어 있는 내부 배선형 로봇으로 구분될 수 있는데, 다양한 실시예에 따른 다관절 로봇(10)은 내부 배선형 로봇으로 구성될 수 있다. 다관절 로봇(10)의 전원은 유선 케이블을 통해 복수의 회전 아암(12-14)의 구동부(미도시)와 작업 장치(16)에 전기적으로 연결될 수 있다. 언급된 케이블(예 ; 도 3a의 케이블(30))은 케이블 보호관에 의해 구비된 케이블일 수 있다.
다양한 실시예에 따른 다관절 로봇(10)은 베이스(11)와, 베이스(11)와 회전가능하게 연결된 적어도 하나 이상의 회전 아암(12-15)을 포함할 수 있다. 회전 아암 들(12-15) 중 최종의 회전 아암(15)에 작업 장치(16)가 결합되어서, 원하는 작업을 수행할 수 있다. 예컨대, 다관절 로봇(10)은 회전 아암의 개수에 따라서 4축, 6축 이상으로 구성된 다관절 로봇을 포함할 수 있다.
다양한 실시예에 따른 회전 아암은 베이스(11)에서 제1힌지축(h1)을 중심으로 회전하는 제1회전 아암(12)과, 제1회전 아암(12)에서 제2힌지축(h2)을 중심으로 회전하는 제2회전 아암(13)과, 제2회전 아암(13)에서 각각의 제3힌지축(h3)을 중심으로 회전하는 제3회전 아암(14)과, 제3회전 아암(14)에서 제4힌지축(h4)을 중심으로 회전하는 제4회전 아암(15)과, 제4회전 아암(15)에서 제5힌지축(h5)을 중심으로 회전하는 작업 장치(16)를 포함할 수 있다. 베이스(11)는 미도시된 구동 모터가 실장되고, 구동 모터는 감속 기어(113)부에 의해 제1회전 아암(12)과 연결되어서, 소정의 각도 이내에서 회전 동작을 수행할 수 있다. 예컨대, 제1회전 아암(12)은 베이스(11)에서 (-)175 내지 (+)175 도 사이에서 회전할 수 있다.
도 2는 본 발명의 다양한 실시예에 따른 베이스의 내부 구성을 나타내는 단면도이다.
도 2를 참조하면, 다양한 실시예에 따른 다관절 로봇(예 ; 도 1의 다관절 로봇(10))은 미도시된 외부 컨넥터에서 인출된 케이블(예 ; 도 3a의 케이블(30))이 베이스(11) 내부로 인입된 후, 제1회전 아암(예 ; 도 1의 제1회전 아암(12))쪽으로 인출되어야 한다. 베이스(11)는 고정체이고, 제1회전 아암은 회전체라서, 다관절 로봇은 베이스(11) 내에 수용된 케이블(예 ; 도 3a에 도시된 케이블(30))을 보호하기 위한 적어도 하나 이상의 케이블 보호 기구물이 설치될 수 있다.
다양한 실시예에 따른 베이스(11)는 3가지 영역으로 구분될 수 있다. 예를 들어, 베이스(11)는 상단 영역(110)과, 하단 영역(114)과, 상하단 영역(110,114) 사이의 중간 영역(112)을 포함할 수 있다. 베이스(11)의 하단 영역(114)은 고정되는 부분이고, 베이스(11)의 상단 영역은 제1회전 아암(예 ; 도 1의 제1회전 아암(12))이 결합되어 회전 동작이 일어나는 부분이고, 베이스(11)의 중간 영역(112)은 상단 영역(110)의 회전 동작에 따라서 케이블이 장력을 받는 영역일 수 있다.
다양한 실시예에 따른 다관절 로봇(10)은 상기 각각의 세 개의 영역(110,112,114)에 배치된 케이블(30)을 보호할 수 있는 적어도 하나의 기구물이 설치될 수 있다. 예컨대, 기구물은 제1회전 아암(12)의 회전으로부터 케이블(30)을 보호하기 위한 보호 장치일 수 있다.
다양한 실시예에 따른 베이스(11)는 구동 모터(M)와, 감속 기어(113), 케이블(예 ; 도 3a의 케이블(30))과, 유동형 케이블 가이드(22)(도 3a의 유동형 케이블 가이드(22)) 및 케이블 가이드 블록(111)과, 적어도 하나 이상의 케이블 보호 부재(21,23) 등이 수용될 수 있다. 베이스(11)는 제1힌지축(h1)을 따라 구동 모터(M)와, 케이블 가이드 블록(111) 및 감속 기어(113)를 포함할 수 있다.
구동 모터(M)와, 케이블 가이드 블록(111), 감속 기어(113)는 서로 동축으로 배치되고, 서로 적층되게 배치될 수 있다.
다양한 실시예에 따른 베이스(11) 상단 영역(110)에 제1케이블 보호 부재(21)가 배치되고, 하단 영역(114)에 제2케이블 보호 부재(23)가 배치되며, 중간 영역(112)에 베이스(11) 내벽과 케이블 가이드 블록(111) 사이에 유동형 케이블 가이드(22)가 배치될 수 있다. 감속 기어(113)는 복수개의 체결구에 의해 케이블 가이드 블록(111)에 체결될 수 있다. 참보번호 1110은 케이블 가이드 블록(111)의 외주면의 적어도 일부에 형성된 슬라이딩 홈을 지칭할 수 있다.
다양한 실시예에 따르면 케이블 가이드 블록(예 ; 도 2의 케이블 가이드 블록(111))은 상단에 감속 기어(113)가 결합되고, 하단에 베이스(11)와 결합될 수 있다. 이러한 케이블 가이드 블록(111)의 결합 구조에 따라서, 상기 케이블 가이드 블록(11)은 자체적으로 어답터 역할을 수행할 수 있다. 예컨대, 케이블 가이드 블록(111)이 결합되는 베이스(11)의 일부는 구동 모터(M)일 수 있다.
도 3a는 본 발명의 다양한 실시예에 따른 베이스 내에 배치된 케이블 상태를 나타내는 사시도이다. 도 3b, 도 3c는 본 발명의 다양한 실시예에 따른 마찰 저감 기구물에 의해 케이블이 보호된 상태를 각각 나타내는 사시도로서, 베이스가 삭제된 도면이다. 도 3d, 도 3e는 본 발명의 다양한 실시예에 따른 마찰 저감 기구물에 의해 케이블이 보호된 상태를 각각 나타내는 사시도로서, 베이스 내벽이 삭제된 도면이다. 도 3f는 본 발명의 다양한 실시예에 따른 마찰 저감 기구물에 의해 보호된 케이블이 수용된 상태의 베이스를 나타내는 사시도이다.
도 3a 내지 도 3f를 참조하면, 다양한 실시예에 따른 케이블(30)은 전기적 연결 장치로서, 케이블 보호관에 의해 커버될 수 있다. 케이블(30)은 한 쌍이 베이스(11) 내에 대략적으로 대칭으로 배치된 후에 제1회전 아암(12)으로 인출될 수 있고, 베이스(11)와 구동 모터(M) 사이의 공간에 수용된 상태로 제1회전 아암(12)으로 인출되게 배치될 수 있다.
다양한 실시예에 따른 케이블(30)은 베이스(11) 내에 수용되는 제1부분(302) 내지 제3부분(306)을 포함할 수 있다. 예컨대, 베이스(11) 내부 공간을 상단 영역(예 ; 도 2의 상단 영역(110))과, 하단 영역(예 ; 도 2의 하단 영역(114)) 및 상하단 영역 사이의 중간 영역(예 ; 도 2의 중간 영역(112))으로 구분한다면, 상단 영역(110)에 제1부분(302)이 수용될 수 있고, 하단 영역(114)에 제3부분(306)이 수용될 수 있으며, 중간 영역에 제2부분(304)이 수용될 수 있다.
예를 들어, 케이블의 제1부분(302)은 곡형으로서, 단부가 제1회전 아암 내로 인출되기 위하여 제1회전 아암쪽으로 향할 수 있다. 제2부분(304)은 선형으로서, 수직한 상태로 베이스 내부 공간에 배치될 수 있다. 제3부분(306)은 곡형으로서, 단부가 베이스(11) 외부로 인출되도록 미도시된 외부 콘넥터쪽으로 향할 수 있다. 제1,2부분(302,304) 사이에 벤딩 부분이 형성되고, 제2,3부분(304,306) 사이에 벤딩 부분이 형성될 수 있다.
다양한 실시예에 따른 케이블(30)은 베이스(11) 하단 영역(114)에서 제3부분(306)이 수평하게 배치될 수 있다. 제3부분(306)은 단부에서 벤딩되어서 선형으로 수직 상방향으로 향하는 제2부분(304)과 연결될 수 있다. 제2부분(304)은 단부에서 벤딩되어서 곡형으로 수평하게 제1부분(302)과 연결될 수 있다.
다양한 실시예에 따른 제1회전 아암(예 ; 도 1의 제1회전 아암(12))의 회전에 따라서, 제1케이블 보호 부재(21)가 회전할 수 있고, 제1케이블 보호 부재(21)의 회전에 따라 케이블의 제1부분(302)이 회전하며, 케이블의 회전에 따른 영향으로 제2부분(304), 즉 제2부분(304)이 관통한 상태의 유동형 케이블 가이드(22)는 소정 거리를 케이블 가이드 블럭(111)의 외주면에 형성된 슬라이딩 홈(1110)을 따라서 슬라이딩하여 이동할 수 있다. 이 때, 제2부분(302)은 유동형 케이블 가이드(22)에 의해 보호될 수 있다.
다양한 실시예에 따른 케이블의 제1부분(302)은 제1회전 아암(12)과 연결되며, 베이스(11) 상단 부분에 위치하여, 제1부분(302)의 이동 속도는 제1회전 아암의 1축 회전 속도와 동일하며, 제1 내지 제3 부분들(302,304,306) 중 가장 빠르게 이동하므로 이동에 의한 전진 마찰력을 가장 크게 받는 부분일 수 있다.
다양한 실시예에 따른 케이블의 제2부분(304)은 제1,3부분(302,306)의 케이블을 이어주며, 회전과 전진을 동시에 하므로, 외벽으로부터 회전 마찰력과 이동에 의한 전진 마찰력을 받을 수 있다. 제2부분(304)의 이동 속도는 대략적으로 제1회전 아암의 1축 회전 속도의 1/2일 수 있다.
다양한 실시예에 따른 케이블의 제3부분(306)은 베이스(11) 하단 영역(114)에 위치하여 제2부분(304)에 진입/진출하기 전으로서, 제3부분(306)의 끝은 로봇의 외부 커넥터와 연결되어 제어기와 통신할 수 있다. 제3부분(306)의 이동 속도는 0이므로 마찰력이 존재하지 않을 수 있다. 참조부호 24는 홀딩 부재로서, 제3부분(306)의 단부를 고정시키는 부재일 수 있다.
도 4a는 본 발명의 다양한 실시예에 따른 제1케이블 보호 부재를 나타내는 사시도이다.
도 4a를 참조하면, 다양한 실시예에 따른 베이스(예 ; 도 1의 베이스(11))는 케이블의 제1부분(302)을 수용하는 제1케이블 보호 부재(21)를 더 포함할 수 있다. 예컨대, 제1케이블 보호 부재(21)는 알파벳 C자형으로서, 회전 프레임에 체결되어 짐으로서, 회전 프레임과 같이 회전할 수 있으며, 제1케이블 보호 부재(21)에 수용된 제1부분도 회전할 수 있다. 예컨대, 제1케이블 보호 부재(21)는 회전 프레임에 체결되기 위한 복수개의 체결 구멍(210)이 형성될 수 있다.
도 4b는 본 발명의 다양한 실시예에 따른 유동형 케이블 가이드를 나타내는 사시도이다.
도 4b를 참조하면, 다양한 실시예에 따른 유동형 케이블 가이드(22)는 베이스(11) 내벽과 간극을 가지게 배치되는 일단부와 케이블 가이드 블록의 슬라이딩 홈에 삽입되는 타단부를 포함할 수 있다.
다양한 실시예에 따른 유동형 케이블 가이드(22)는 몸체(220)와, 돌기(222)를 포함할 수 있다. 몸체(220)는 길이 방향을 따라서 구멍(224)이 형성될 수 있다. 구멍(224)은 케이블이 관통하는 구멍일 수 있다. 케이블의 제2부분(304)이 구멍(224)을 관통한 상태로 배치될 수 있다. 몸체(220)는 일부분에 돌기(222)가 형성되어서, 슬라이딩 홈에 삽입될 수 있다. 예컨대, 돌기(222)는 몸체(220)에서 상단이나 중간 부분에 형성될 수 있다.
다양한 실시예에 따른 돌기(222)는 곡률을 가지는 곡면(222a)을 포함할 수 있다. 곡면(222a)은 슬라이딩 홈(예 ; 도 2의 슬라이딩 홈(1110))에 접촉되어서, 슬라이딩 홈 내에서 슬라이딩 면접촉을 할 수 있다.
다양한 실시예에 따른 유동형 슬라이딩 가이드(22)는 공업용 합성 수지(예 ; 플라스틱) 재질로서, MC 나일론이나, 아세텔 또는 페프론 중 어느 하나의 재질로 구성될 수 있다. 유동형 케이블 가이드(22)는 볼부쉬를 부착하여 회전할 때 볼부쉬에 부착된 볼들과 제2부분(304)을 접촉시킴으로서, 회전 마찰 저항을 최소화할 수 있다. 볼부쉬는 케이블 직경에 맞는 상용 볼부쉬를 사용할 수 있다.
도 4c는 본 발명의 다양한 실시예에 따른 제2케이블 보호 부재를 나타내는 사시도이다.
도 4c를 참조하면, 다양한 실시예에 따른 베이스(11)는 케이블의 제3부분(예 ; 도 3a의 제3부분(306))을 수용하는, 제1케이블 보호 부재(예 ; 도 4a의 제1케이블 보호 부재(21))과 대면하게 배치되는 제2케이블 보호 부재(23)를 포함할 수 있다. 예컨대, 제2케이블 보호 부재(23)는 알파벳 C자 형상으로서, 상기 베이스(11)의 바닥에 체결되어짐으로서, 베이스(11) 바닥에 고정될 수 있다. 예컨대, 제2케이블 보호 부재(23)는 베이스에 체결되기 위한 복수개의 체결 구멍(230)이 형성될 수 있다.
도 4d는 본 발명의 다양한 실시예에 따른 케이블 가이드 블럭를 나타내는 사시도이다.
도 4d를 참조하면, 다양한 실시예에 따른 케이블 가이드 블럭(111)은 구동 모터(예 ; 도 2의 구동 모터(M)) 상에 결합된 디스크 형상으로서, 중심에 결합 홀(1112)이 형성되고, 외주면에 슬라이딩 홈(1110)이 형성될 수 있다. 슬라이딩 홈(1110)은 유동형 케이블 가이드(22)의 돌기(예 ; 도 4b의 돌기(222))가 삽입되어서, 슬라이딩 이동을 하는 부분일 수 있다. 케이블 가이드 블럭(111)은 결합 홀(1112) 주변에 결합 리세스(1113)가 형성되어서, 구동 모터의 상단과 결합될 수 있고, 감속 기어(113)의 케이스에 결합되기 위한 복수개의 체결 구멍들(1114)이 형성될 수 있다.
도 1 내지 도 4d를 참조하여 이러한 구조로 이루어지는 다관절 로봇의 동작을 살펴보면 다음과 같다.
제1회전 아암(예 ; 도 1의 제1회전 아암(12))이 회전하면, 베이스(11) 내부에 수용된 한 쌍의 케이블(예 ; 도 3a의 케이블(30))은 제1회전 아암의 1축 회전 동작에 따라서 서로의 영역으로 출입을 반복적으로 수행할 수 있다. 이러한 케이블 이동에 따라서 발생하는 마찰의 저감 기구물로서 유동형 케이블 가이드(22)가 활용될 수 있다.
케이블의 제2부분(304)은 구속되어 있지 않은 유동형 케이블 가이드(22) 안에 넣어진 상태로 배선 처리되며, 이러한 배선 처리된 제2부분(304)은 케이블의 움직임에 맞춰 케이블 가이드(22)에 의해 보호된 상태로 자유롭게 움직일 수 있다. 제2부분(304)의 이동 중 발생하는 마찰 저항은 유동형 케이블 가이드(22)가 대신 받을 수 있다. 케이블의 제3부분(306)은 고정된 상태로 배치되지만, 제2부분(304)에 의해 발생할 수 있는 마찰을 방지하기 위해 제2케이블 보호 부재(23)가 배치될 수 있다.
도 5는 본 발명의 다양한 실시예에 따른 유동형 케이블 가이드의 장착 상태를 나타내는 단면도이다.
도 5를 참조하면, 다양한 실시예에 따른 유동형 케이블 가이드(22)는 적어도 일부분이 베이스(11) 내벽(11a)과 간극(g)을 가지게 배치되고, 돌기(222)는 슬라이딩 홈(1110)에 면접촉하게 삽입되어서, 슬라이딩 이동이 가능하게 배치될 수 있다.
유동형 케이블 가이드(22)의 일부분은 다관절 로봇 동작 시에 내벽(11a)을 따라 슬라이딩 이동을 하고, 돌기(222)는 슬라이딩 홈(1110)의 면에 슬라이딩 이동을 수행할 수 있다. 베이스 내벽(11a)과 유동형 슬라이딩 가이드(22)의 일부분 사이 영역(a1) 또는 돌기(222)와 슬라이딩 홈(1110) 사이 영역(a2)에는 각각 윤활제가 투입되어서, 유동형 슬라이딩 가이드(22)의 원할한 슬라이딩 이동 동작이 가능할 수 있다. 도 5는 본 발명의 다양한 실시예에 따른 유동형 케이블 가이드의 장착 상태를 나타내는 단면도이다.
도 6은 본 발명의 다양한 실시예에 따른 제1케이블 보호 부재의 장착 상태를 나타내는 사시도이다.
도 6을 참조하면, 다양한 실시에에 따른 제1케이블 보호 부재(21)는 제1회전 아암(12)에 결합된 회전 프레임(120) 저면에 복수 개의 체결구를 이용하여 결합될 수 있다.
본 발명의 다양한 실시예에 따르면, 다관절 로봇(예 ; 도 1에 도시된 다관절 로봇(10))의 케이블 가이드 장치는 베이스(예 ; 도 1의 베이스(11))와, 상기 베이스에 관절형으로 회전가능하게 결합되는 적어도 하나 이상의 회전 아암(예 ; 도 1의 회전 아암(12,13,14,15)과, 상기 베이스를 경유하여 상기 회전 아암으로 연결되는 적어도 하나 이상의 케이블(예 ; 도 3a의 케이블(30))과, 상기 베이스 내에서 구동부에 결합된 케이블 가이드 블록(예 ; 도 2의 케이블 가이드 블록(111))과, 상기 케이블 가이드 블록의 외주면에 형성된 슬라이딩 홈(예 ; 도 2의 슬라이딩 홈(1110)) 및 상기 베이스 내에 수용된 상기 케이블의 일부분과 결합되며, 상기 회전 아암의 회전에 따라 상기 케이블 일부분과 같이 슬라이딩 홈을 따라 회전하는 케이블 마찰 저감 기구물(예 ; 도 3a의 유동형 케이블 가이드(22))을 포함할 수 있다.
본 발명의 다양한 실시예에 따르면, 케이블 마찰 저감 기구물은 상기 케이블의 일부분이 관통하는 구멍을 포함할 수 있다.
본 발명의 다양한 실시예에 따르면, 케이블 마찰 저감 기구물은 적어도 하나 이상의 유동형 케이블 가이드(예 ; 도 3b의 유동형 케이블 가이드(22))를 포함할 수 있다.
본 발명의 다양한 실시예에 따르면, 케이블 마찰 저감 기구물은 베이스 내벽(예 ; 도 5의 케이블 내벽(11a))과 케이블 가이드 블록 사이에 배치되어서, 상기 케이블 장력에 의해 상기 케이블 가이드 블록의 슬라이딩 홈을 따라 이동할 수 있다.
본 발명의 다양한 실시예에 따르면, 케이블은 상기 베이스 내에서 수평 방향으로 배치되는 상기 제1부분(예 ; 도 3a의 제1부분(302)); 상기 제1부분 일단에서 연장되되, 상기 베이스 내에 수직하게 배치되는 제2부분(예 ; 도 3a의 제2부분(304)); 및 상기 제2부분 타단에서 연장되되, 상기 제1부분과 대치하며, 상기 베이스 내에 수평하게 배치되는 제3부분(예 ; 도 3a의 제3부분(306))을 포함할 수 있다.
본 발명의 다양한 실시예에 따르면, 상기 유동형 케이블 가이드(도 3b의 유동형 케이블 가이드(22))는 일단 부분이 상기 베이스 내벽(예 ; 도 5의 케이블 내벽(11a))과 간극을 가지게 배치되고, 타단 부분이 상기 슬라이딩 홈(예 ; 도 2의 슬라이딩 홈(1110))에 삽입되어서, 상기 회전 아암의 회전에 따라서 상기 슬라이딩 홈을 따라 이동할 수 있다.
본 발명의 다양한 실시예에 따르면, 유동형 케이블 가이드(예 ; 도 3b의 유동형 케이블 가이드(22))는 상기 케이블이 관통하기 위한 상기 구멍이 길이방향을 따라서 형성된 몸체(예 ; 도 4b의 몸체(220)) 및 상기 몸체 일부에 형성되어 상기 슬라이딩 홈에 삽입되는 돌기(예 ; 도 4b의 돌기(222))를 포함할 수 있다.
본 발명의 다양한 실시예에 따르면, 돌기(예 ; 도 4b의 돌기(222))는 곡률을 가지는 곡면(예 ; 도 4b의 곡면(222a)을 포함하며, 상기 슬라이딩 홈에서 슬라이딩 이동을 수행할 수 있다.
본 발명의 다양한 실시예에 따르면, 베이스는 상기 제2부분을 수용하는 제1케이블 보호 부재(예 ; 도 4a의 제1케이블 보호 부재(21))을 더 포함하며, 제1케이블 보호 부재(예 ; 도 4a의 제1케이블 보호 부재(210)는 알파벳 C자형으로서, 상기 회전 프레임에 체결될 수 있다.
본 발명의 다양한 실시예에 따르면, 베이스는 상기 제3부분을 수용하는, 상기 제1케이블 보호 부재와 대면하게 배치되는 제2케이블 보호 부재(예 ; 도 4c의 제2케이블 보호 부재(23))를 더 포함하며, 제2케이블 보호 부재(예 ; 도 4c의 제2케이블 보호 부재(23))는 알파벳 C자 형상으로서, 상기 베이스의 바닥에 체결될 수 있다.
본 발명의 다양한 실시예에 따르면, 슬라이딩 홈(예 ; 도 2의 슬라이딩 홈(1110))은 상기 케이블 가이드 블록의 외주면을 따라 연장될 수 있다.
본 발명의 다양한 실시예에 따르면, 케이블은 케이블 보호관에 의해 커버될 수 있다.
본 발명의 다양한 실시예에 따르면, 케이블(예 ; 도 3a의 케이블(30))은 각각 제2,3부분에서는 곡형으로 배치되고, 제1부분에서 선형으로 구성되며, 상기 제1,2부분 사이는 벤딩된 형상이 형성되고, 상기 제1,3부분 사이는 벤딩된 형상으로 구성될 수 있다.
본 발명의 다양한 실시예에 따르면, 케이블 마찰 저감 기구물은 합성 수지 재질로서, MC 나일론이나, 아세텔 또는 페프론 중 어느 하나의 재질로 구성될 수 있다.
본 발명의 다양한 실시예에 따르면 케이블 가이드 블록(예 ; 도 2의 케이블 가이드 블록(111))은 상단에 감속 기어(예 ; 도 2의 감속 기어(113))가 결합되고, 하단에 베이스와 결합되어, 자체로 어댑터 역할을 할 수 있다.
본 명세서와 도면에 개시된 본 개시의 다양한 실시예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 따라서 본 개시의 범위는 여기에 개시된 실시 예들 이외에도 본 개시의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 개시의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 다관절 로봇의 케이블 가이드 장치에 있어서,
    베이스;
    상기 베이스에 관절형으로 회전가능하게 결합되는 적어도 하나 이상의 회전 아암;
    상기 베이스를 경유하여 상기 회전 아암으로 연결되는 적어도 하나 이상의 케이블;
    상기 베이스 내에서 구동부에 결합된 케이블 가이드 블록;
    상기 케이블 가이드 블록의 외주면에 형성된 슬라이딩 홈; 및
    상기 베이스 내에 수용된 상기 케이블의 일부분과 결합되며, 상기 회전 아암의 회전에 따라 상기 케이블 일부분과 같이 슬라이딩 홈을 따라 회전하는 케이블 마찰 저감 기구물을 포함하는 장치.
  2. 제1항에 있어서, 상기 케이블 마찰 저감 기구물은 상기 케이블의 일부분이 관통하는 구멍을 포함하는 장치.
  3. 제2항에 있어서, 상기 케이블 마찰 저감 기구물은 적어도 하나 이상의 유동형 케이블 가이드를 포함하는 장치.
  4. 제2항에 있어서, 상기 케이블 마찰 저감 기구물은 상기 베이스 내벽과 상기 케이블 가이드 블록 사이에 배치되어서, 상기 케이블 장력에 의해 상기 케이블 가이드 블록의 슬라이딩 홈을 따라 이동하는 장치.
  5. 제1항에 있어서, 상기 케이블은
    상기 베이스 내에서 수평 방향으로 배치되는 상기 제1부분;
    상기 제1부분 일단에서 연장되되, 상기 베이스 내에 수직하게 배치되는 제2부분; 및
    상기 제1부분 타단에서 연장되되, 상기 제1부분과 대치하며, 상기 베이스 내에 수평하게 배치되는 제3부분을 포함하는 장치.
  6. 제3항에 있어서, 상기 유동형 케이블 가이드는 일단 부분이 상기 베이스 내벽과 간극을 가지게 배치되고, 타단 부분이 상기 슬라이딩 홈에 삽입되어서, 상기 회전 아암의 회전에 따라서 상기 슬라이딩 홈을 따라 이동하는 장치.
  7. 제3항에 있어서, 상기 유동형 케이블 가이드는
    상기 케이블이 관통하기 위한 상기 구멍이 길이방향을 따라서 형성된 몸체; 및
    상기 몸체 일부에 형성되어 상기 슬라이딩 홈에 삽입되는 돌기를 포함하는 장치.
  8. 제7항에 있어서, 상기 돌기는
    곡률을 가지는 곡면을 포함하며, 상기 슬라이딩 홈에서 슬라이딩 이동을 하는 장치.
  9. 제5항에 있어서, 상기 베이스는 상기 제2부분을 수용하는 제1케이블 보호 부재를 더 포함하며,
    상기 제1케이블 보호 블록은 알파벳 C자형으로서, 상기 회전 아암의 회전 프레임에 체결되는 장치.
  10. 제5항에 있어서, 상기 베이스는 상기 제3부분을 수용하는, 상기 제1케이블 보호 부재와 대면하게 배치되는 제2케이블 보호 부재를 더 포함하며,
    상기 제2케이블 보호 부재는 알파벳 C자 형상으로서, 상기 베이스의 바닥에 체결되는 장치.
  11. 제1항에 있어서, 상기 슬라이딩 홈은 상기 회전 블록의 외주면을 따라 연장되는 장치.
  12. 제1항에 있어서, 상기 케이블은 케이블 보호관에 의해 커버되는 장치.
  13. 제5항에 있어서, 상기 케이블은 각각 제2,3부분에서는 곡형으로 배치되고, 제1부분에서 선형으로 배치되며,
    상기 제1,2부분 사이는 벤딩된 형상이 형성되고, 상기 제1,3부분 사이는 벤딩된 형상으로 구성되는 장치.
  14. 제1항에 있어서, 상기 케이블 마찰 저감 기구물은 합성 수지 재질로서, MC 나일론이나, 아세텔 또는 페프론 중 어느 하나의 재질로 구성되는 장치.
  15. 제1항에 있어서, 상기 케이블 가이드 블록은 상단에 감속 기어가 결합되고, 하단에 상기 베이스와 결합되어, 자체로 어답터 역할을 하는 장치.
PCT/KR2019/007782 2018-08-06 2019-06-27 다관절 로봇의 케이블 가이드 장치 WO2020032390A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980052477.5A CN112566761A (zh) 2018-08-06 2019-06-27 关节机器人的线缆引导装置
EP19846193.1A EP3822051A4 (en) 2018-08-06 2019-06-27 CABLE GUIDING DEVICE OF AN ARTICULATED ROBOT
US17/266,570 US11584028B2 (en) 2018-08-06 2019-06-27 Cable guide device of articulated robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180091210A KR102525041B1 (ko) 2018-08-06 2018-08-06 다관절 로봇의 케이블 가이드 장치
KR10-2018-0091210 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020032390A1 true WO2020032390A1 (ko) 2020-02-13

Family

ID=69415316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007782 WO2020032390A1 (ko) 2018-08-06 2019-06-27 다관절 로봇의 케이블 가이드 장치

Country Status (5)

Country Link
US (1) US11584028B2 (ko)
EP (1) EP3822051A4 (ko)
KR (1) KR102525041B1 (ko)
CN (1) CN112566761A (ko)
WO (1) WO2020032390A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290723A (zh) * 2020-11-04 2021-01-29 温州宇途机械科技有限公司 机械臂电机输出轴的走线结构

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048538B2 (ja) * 2019-04-25 2022-04-05 ファナック株式会社 産業用ロボットとそのリーチ延長方法
KR102215662B1 (ko) 2020-09-14 2021-02-15 주식회사 테크로드 케이블 가이드 장치
KR102272689B1 (ko) 2021-01-22 2021-07-05 이지환 Dc 모터에 의해 작동하는 케이블 가이드 장치
KR102261784B1 (ko) 2021-01-24 2021-06-07 이지환 레일 고정부를 구비한 케이블 가이드 장치
CN115566609A (zh) * 2022-09-29 2023-01-03 中国科学院西安光学精密机械研究所 一种低阻力矩的空间转动机构线束整理装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245789A (ja) * 1992-03-02 1993-09-24 Matsushita Electric Ind Co Ltd 産業用ロボットのケーブル処理装置
JPH07124886A (ja) * 1993-10-29 1995-05-16 Fanuc Ltd 産業用ロボットの関節装置
JP2559807B2 (ja) * 1988-06-01 1996-12-04 ファナック株式会社 産業用ロボットの関節部におけるケーブル処理装置
KR100239148B1 (ko) * 1996-12-24 2000-04-01 이종수 산업용 로봇의 회전관절부 배선처리장치
JP2003225883A (ja) * 2002-01-31 2003-08-12 Denso Wave Inc ロボットの関節部構造

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118834U (ja) * 1982-02-02 1983-08-13 三菱電機株式会社 揺動装置の電気用ケ−ブル配設構造
JPS60197390A (ja) 1984-03-19 1985-10-05 トキコ株式会社 工業用ロボツトのケ−ブル支持装置
IT1245433B (it) * 1991-03-04 1994-09-20 Comau Spa Polso di robot industriale
JPH09141590A (ja) * 1995-11-20 1997-06-03 Tokico Ltd 工業用ロボット
US5694813A (en) * 1996-09-23 1997-12-09 Nachi Robotics Systems Inc. Industrial robot
SE511643C2 (sv) 1998-10-16 1999-11-01 Abb Ab Styrning av yttre kablage för industrirobot
US6431018B1 (en) * 1999-09-09 2002-08-13 Fanuc Ltd. Guide device for wiring member and/or piping member and robot with guide device
DE102006056235A1 (de) * 2006-11-29 2008-06-05 Kuka Roboter Gmbh Kabelschutzvorrichtung für Energiezuführungen von Robotern
CN102114634B (zh) * 2009-12-30 2014-03-26 鸿富锦精密工业(深圳)有限公司 多轴机器人及其采用的轴固定座
JP5201186B2 (ja) 2010-09-16 2013-06-05 株式会社安川電機 ロボット
CN102001094B (zh) * 2010-10-21 2012-06-27 北京航空航天大学 可靠性关节控制驱动组件及其控制方法
JP5890653B2 (ja) 2011-10-28 2016-03-22 川崎重工業株式会社 多軸ロボット
JP5891018B2 (ja) 2011-11-29 2016-03-22 株式会社ダイヘン 産業用ロボット及び産業用ロボットのケーブル部の配置方法
KR101305975B1 (ko) 2012-03-23 2013-09-12 김상봉 다관절 로봇 및 그의 케이블 보호장치
CN104245249B (zh) * 2012-04-20 2016-01-06 三菱电机株式会社 机器人关节构造
US9796097B2 (en) 2013-09-10 2017-10-24 Seiko Epson Corporation Robot and manufacturing method for robot
WO2016035165A1 (ja) 2014-09-03 2016-03-10 富士機械製造株式会社 旋回ケーブルガイド
CN204976667U (zh) * 2015-08-26 2016-01-20 南京埃斯顿机器人工程有限公司 工业机器人底座结构
JP2017064807A (ja) 2015-09-28 2017-04-06 株式会社デンソーウェーブ ロボット回転軸のケーブル保持構造
JP2017131969A (ja) * 2016-01-25 2017-08-03 セイコーエプソン株式会社 ロボット
KR102354151B1 (ko) 2016-06-28 2022-01-20 현대중공업지주 주식회사 케이블 내장형 로봇의 상부암 및 케이블 내장형 로봇
JP2018001315A (ja) * 2016-06-29 2018-01-11 セイコーエプソン株式会社 ロボット、制御装置およびロボットシステム
JP6875332B2 (ja) * 2018-07-31 2021-05-19 ファナック株式会社 ロボット
JP6694625B1 (ja) * 2019-12-05 2020-05-20 株式会社A−Traction 受動関節装置
US11707854B2 (en) * 2020-09-18 2023-07-25 Boston Dynamics, Inc. Omega wire routing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559807B2 (ja) * 1988-06-01 1996-12-04 ファナック株式会社 産業用ロボットの関節部におけるケーブル処理装置
JPH05245789A (ja) * 1992-03-02 1993-09-24 Matsushita Electric Ind Co Ltd 産業用ロボットのケーブル処理装置
JPH07124886A (ja) * 1993-10-29 1995-05-16 Fanuc Ltd 産業用ロボットの関節装置
KR100239148B1 (ko) * 1996-12-24 2000-04-01 이종수 산업용 로봇의 회전관절부 배선처리장치
JP2003225883A (ja) * 2002-01-31 2003-08-12 Denso Wave Inc ロボットの関節部構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822051A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290723A (zh) * 2020-11-04 2021-01-29 温州宇途机械科技有限公司 机械臂电机输出轴的走线结构
CN112290723B (zh) * 2020-11-04 2021-12-07 山东欣怡翔精密机械制造有限公司 机械臂电机输出轴的走线结构

Also Published As

Publication number Publication date
EP3822051A1 (en) 2021-05-19
EP3822051A4 (en) 2021-10-06
US20210308878A1 (en) 2021-10-07
CN112566761A (zh) 2021-03-26
KR20200016029A (ko) 2020-02-14
US11584028B2 (en) 2023-02-21
KR102525041B1 (ko) 2023-04-24

Similar Documents

Publication Publication Date Title
WO2020032390A1 (ko) 다관절 로봇의 케이블 가이드 장치
WO2011142535A2 (ko) 탈부착형 4절 링크기구 구동장치를 갖는 산업용 로봇
WO2015129937A1 (ko) 소형 리니어 서보 액츄에이터
WO2011099653A1 (ko) 업라이트형 진공 청소기
WO2017007112A1 (ko) 액추에이터 모듈
WO2013039281A1 (en) Manipulator with weight compensation mechanism and face robot using the same
WO2018169199A1 (ko) 가이드 모듈 및 그를 구비하는 구동장치
WO2013162268A1 (ko) 병렬형 5자유도 마이크로 로봇
WO2016003172A1 (ko) 병렬형 마이크로 로봇 및 이를 갖는 수술 로봇 시스템
WO2020122557A2 (ko) 손가락 기구 및 이를 포함하는 로봇 핸드
WO2012064009A1 (ko) 이동 장치 및 이의 작업 방법
WO2018093056A1 (ko) 와이어를 이용한 로봇 관절 구동 장치, 이를 포함하는 내시경 로봇 장치 및 의료용 로봇 장치
WO2011025081A1 (ko) 산업용 로봇의 케이블 안내 장치
WO2015108227A1 (ko) 기기 작동용 조작 레버의 무인 조종 시스템
WO2019074296A1 (ko) 로봇 핸드
WO2019074294A1 (ko) 로봇 관절 장치
WO2018004039A1 (ko) 2축 구동 가능한 안테나가 장착되는 페데스탈 장치
WO2021133070A1 (ko) 구름구 관절
WO2023214837A1 (ko) 로봇용 관절 장치
WO2017007113A1 (ko) 액추에이터 모듈의 아이들러 혼 착탈 장치
WO2021153967A1 (ko) 핑거 어셈블리 및 이를 포함하는 로봇핸드
WO2021015430A1 (ko) 로봇의 관절 구동모듈
WO2019144266A1 (zh) 一种机械手指及机械手
WO2019102445A1 (ko) 병렬형 집적 구동장치
WO2018135698A1 (ko) 반중공형 액추에이터 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846193

Country of ref document: EP

Effective date: 20210210