WO2020032228A1 - 前立腺がんの検出のためのキット、デバイス及び方法 - Google Patents

前立腺がんの検出のためのキット、デバイス及び方法 Download PDF

Info

Publication number
WO2020032228A1
WO2020032228A1 PCT/JP2019/031550 JP2019031550W WO2020032228A1 WO 2020032228 A1 WO2020032228 A1 WO 2020032228A1 JP 2019031550 W JP2019031550 W JP 2019031550W WO 2020032228 A1 WO2020032228 A1 WO 2020032228A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
prostate cancer
mir
nucleotide sequence
seq
Prior art date
Application number
PCT/JP2019/031550
Other languages
English (en)
French (fr)
Inventor
真紀子 吉本
裕子 須藤
敦子 宮野
聡子 小園
孝広 落谷
博行 藤元
文彦 占部
潤太郎 松▲崎▼
Original Assignee
東レ株式会社
国立研究開発法人国立がん研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社, 国立研究開発法人国立がん研究センター filed Critical 東レ株式会社
Priority to EP19847308.4A priority Critical patent/EP3835434A4/en
Priority to US17/265,060 priority patent/US11535899B2/en
Priority to JP2020535900A priority patent/JP7378739B2/ja
Publication of WO2020032228A1 publication Critical patent/WO2020032228A1/ja
Priority to US17/988,959 priority patent/US11905565B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • prostate cancers progress to cancer through benign diseases such as prostatic hyperplasia and prostatitis, which are precancerous lesions of prostate cancer.
  • benign diseases such as prostatic hyperplasia and prostatitis, which are precancerous lesions of prostate cancer.
  • the degree of progression of prostate cancer is defined in "TNM Classification of Malignant Tumours 7th Edition” (Sobin, L. et al., 2010, pp.
  • the specific performance of the PSA test is based on a large-scale study recruiting more than 5,000 subjects (Wolf, AM, et al., 2010, A Cancer Journal for Clinicians, Vol. 60 (2), pp. 70-98).
  • the sensitivity of prostate cancer as a whole is as low as 20.5%, and only high-grade prostate cancer is only 51%, indicating that the significance of tumor marker measurement as a preoperative test is poor. .
  • the present invention includes the following aspects.
  • a prostate cancer marker at least one polynucleotide selected from the group consisting of miR-1185-2-3p, miR-1185-1-3p, miR-197-5p, and miR-6076, or
  • a kit for detecting prostate cancer comprising a nucleic acid capable of specifically binding to a polynucleotide having a base sequence complementary to the polynucleotide.
  • the device is another prostate cancer marker
  • the device according to (5) or (6) further comprising a nucleic acid capable of specifically binding to a polynucleotide having a base sequence complementary to the polynucleotide.
  • the nucleic acid is a polynucleotide represented by any of the following (f) to (j):
  • the expression level of the polynucleotide is measured using a nucleic acid capable of specifically binding to the polynucleotide or a polynucleotide having a base sequence complementary to the polynucleotide, and the nucleic acid is expressed in the following (a) ) To (e): (A) a polynucleotide comprising a base sequence represented by any of SEQ ID NOs: 1 to 4 or a base sequence in which u is t in the base sequence, a mutant thereof, a derivative thereof, or 15 or more consecutive bases Its fragments, (B) a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOs: 1 to 4, (C) a polynucleotide comprising a base sequence represented by any of SEQ ID NOs: 1 to 4 or a base sequence complementary to a base sequence in which u is t in the base sequence, a mutant thereof, a derivative thereof, or 15 or more
  • a marker for detecting prostate cancer comprising at least one polynucleotide selected from the group consisting of miR-1185-2-3p, miR-1185-1-3p, miR-197-5p, and miR-6076. .
  • the marker according to (19) or (19), wherein the marker further comprises at least one polynucleotide selected from the group consisting of miR-17-3p, miR-320b, miR-6819-5p, and miR-1228-5p.
  • the polynucleotide is a polynucleotide of the following (f) or (g): (F) a polynucleotide consisting of the nucleotide sequence represented by any one of SEQ ID NOs: 5 to 8, (G) a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS: 5 to 8,
  • polynucleotide is used for a nucleic acid including any of RNA, DNA, and RNA / DNA (chimera).
  • the DNA includes any of cDNA, genomic DNA, and synthetic DNA.
  • the above-mentioned RNA includes all of total RNA, mRNA, rRNA, miRNA, siRNA, snoRNA, snRNA, non-coding RNA and synthetic RNA.
  • synthetic DNA and “synthetic RNA” are artificially synthesized based on a predetermined base sequence (either a natural sequence or a non-natural sequence) using, for example, an automatic nucleic acid synthesizer. Refers to prepared DNA and RNA.
  • non-natural sequence is intended to be used in a broad sense, and is different from the natural sequence, for example, a sequence containing substitution, deletion, insertion and / or addition of one or more nucleotides ( That is, a mutant sequence), a sequence containing one or more modified nucleotides (ie, a modified sequence), and the like.
  • polynucleotide is used interchangeably with nucleic acid.
  • fragment refers to a polynucleotide having a continuous partial base sequence of the polynucleotide, and has a length of 15 bases or more, preferably 17 bases or more, more preferably 19 bases or more. .
  • nucleic acid encoding such homologue, mutant or derivative, specifically, the nucleotide sequence represented by any one of SEQ ID NOs: 1 to 33 or the nucleotide sequence under stringent conditions described later
  • nucleic acid having a base sequence that hybridizes with a complementary sequence of the base sequence in which u is t can be mentioned.
  • the “gene” does not matter which functional region is used, but may include, for example, an expression control region, a coding region, an exon, or an intron.
  • the “gene” may be contained in a cell, may be released outside the cell, and may exist alone, or may be in a state of being included in a vesicle called an exosome.
  • microRNA is a protein complex called RISC that is transcribed as an RNA precursor having a hairpin-like structure, cleaved by a dsRNA cleaving enzyme having RNase III cleavage activity, unless otherwise specified. And a non-coding RNA of 15 to 25 bases involved in the suppression of translation of mRNA.
  • miRNA includes not only “miRNA” represented by a specific base sequence (or SEQ ID NO :) but also a precursor (pre-miRNA, pri-miRNA) of the “miRNA”.
  • “several” means about 10, 9, 8, 7, 6, 5, 4, 3, or 2 integers.
  • the term “derivative” refers to a modified nucleic acid, for example, but not limited to, a derivative labeled with a fluorophore or the like, a modified nucleotide (eg, a halogen, an alkyl such as methyl, an alkoxy such as methoxy, a group such as thio, carboxymethyl, or the like).
  • a derivative comprising a nucleotide and a base comprising rearrangement, saturation of a double bond, deamination, substitution of an oxygen molecule for a sulfur molecule, and the like, PNA (peptide @ nucleic @ acid; Nielsen, PE. Et al., 1991, Science, 254, pp. 1497-500), LNA (locked nucleic acid; Obika, S. et al., 1998, Tetrahedron etLett., 39, p5401-5404).
  • the term “detection” may be replaced by the term test, measurement, detection or decision support. Further, in this specification, the term “evaluation” is used in a meaning including supporting diagnosis or evaluation based on test results or measurement results.
  • Prostate cancer is a malignant tumor that occurs in the prostate, and also includes urothelial carcinoma including the renal pelvis and ureter.
  • sensitivity means the value of (the number of true positives) / (the number of true positives + the number of false negatives). Higher sensitivity allows early detection of prostate cancer, leading to complete resection of the cancer site and lower recurrence rates.
  • the term “specimen” to be determined, detected or diagnosed refers to the occurrence of prostate cancer, progression of prostate cancer, and the expression of the gene of the present invention is changed as the therapeutic effect on prostate cancer is exerted.
  • tissue and biomaterial Specifically, prostate tissue and renal pelvis, ureter, lymph node and surrounding organs, organs suspected of metastasis, skin, and blood, urine, saliva, sweat, body fluids such as tissue exudate, serum prepared from blood, Refers to plasma, stool, hair, etc.
  • tissue exudate such as tissue exudate, serum prepared from blood
  • RNA and miRNA refers to biological samples extracted from these, specifically, genes such as RNA and miRNA.
  • hsa-miR-6076 gene or “hsa-miR-6076” refers to the hsa-miR-6076 gene (miRBaseAccessionNo. MIMAT0023701) or other homologues of SEQ ID NO: 4. And orthologs.
  • the hsa-miR-6076 gene can be obtained by the method described in Voellenkle C et al., 2012, RNA, Vol. 18, p472-484.
  • hsa-miR-6076 (miRBaseAccessionNo. MI0020353, SEQ ID NO: 12) which has a hairpin-like structure as a precursor of "hsa-miR-6076" is known.
  • hsa-miR-320b gene or “hsa-miR-320b” refers to the hsa-miR-320b gene described in SEQ ID NO: 6 (miRBaseAccessionNo. MIMAT0005792) or a homolog of other species or And orthologs.
  • the hsa-miR-320b gene can be obtained by the method described in BerezikovE et al., 2006, Genome Res, 16: 1289-1298.
  • “Hsa-miR-320b” is a precursor of “hsa-mir-320b-1, hsa-mir-320b-2” (miRBaseAccessionNo. MI0003776, MI0003839, SEQ ID NOs: 14, 15) having a hairpin-like structure. It has been known.
  • hsa-miR-1228-5p gene or “hsa-miR-1228-5p” refers to the hsa-miR-1228-5p gene described in SEQ ID NO: 8 (miRBaseAccessionNo. MIMAT00055882). And other species homologs or orthologs.
  • the hsa-miR-1228-5p gene can be obtained by the method described in BerezikovE et al., 2007, MolCell, Vol. 28, p328-336.
  • hsa-mir-1228 as a precursor of “hsa-miR-1228-5p” having a hairpin-like structure is known.
  • the variants of the nucleotide sequence represented by SEQ ID NOS: 1 to 8 or the polynucleotide consisting of the nucleotide sequence in which u is t in the nucleotide sequence of the present invention for example, the shortest mutation registered in miRBase ⁇ Release ⁇ 21 Variants include polynucleotides having the sequences represented by SEQ ID NOs: 19, 21, 23, 25, 27, 29, 31, 33, respectively. In addition to these mutants and fragments, there may be mentioned many isomiR polynucleotides of SEQ ID NOS: 1 to 8, which are registered in miRBase. Furthermore, examples of the polynucleotide containing the base sequence represented by any of SEQ ID NOs: 1 to 8 include the polynucleotides represented by any of SEQ ID NOs: 9 to 17, which are precursors, respectively.
  • FIG. 6 shows one of the indices for evaluating the degree of malignancy of prostate cancer when prostate cancer is determined using a discriminant formula created by combining miR-17-3p and miR-1185-2-3p.
  • 3 shows a distribution of discriminant scores for each prostate cancer case classified according to a certain Gleason classification.
  • a positive value indicates a positive prostate cancer
  • a negative value indicates a negative prostate cancer.
  • the numerical% for each classification indicates the ratio (sensitivity) that can be determined by the present discriminant.
  • the discrimination score indicates that the case is significantly improved from a case with a low malignancy (Gleason classification 6) to a case with a higher malignancy (Gleason classification 7, ⁇ 8).
  • the seventh target gene is the hsa-miR-6819-5p gene, their homologues, their transcripts, or their mutants or derivatives. It has been known that a change in the expression of a gene or a transcription product thereof can serve as a marker for prostate cancer (Patent Document 2).
  • nucleic acid probe or primer for detecting prostate cancer a nucleic acid probe or primer that can be used to detect prostate cancer or to diagnose prostate cancer is used as a target nucleic acid for prostate cancer.
  • the above-mentioned nucleic acid probe or primer comprises a polynucleotide group comprising a nucleotide sequence represented by any of SEQ ID NOS: 1 to 33 or a nucleotide sequence in which u is t in the nucleotide sequence;
  • the target nucleic acid has a length of 30 bases or less, 28 bases or less, and 25 bases or less. Is 200 bases or less, 150 bases or less, 120 bases or less, for example, when the target nucleic acid is isomiR, it is 40 bases or less, 35 bases or less, 30 bases or less, for example.
  • polynucleotides can be used as nucleic acid probes and primers for detecting the above-mentioned prostate cancer marker, which is a target nucleic acid.
  • the above-mentioned polynucleotide which can be used in the present invention can be produced using a general technique such as a DNA recombination technique, a PCR method, and a method using an automatic DNA / RNA synthesizer.
  • DNA recombination techniques and the PCR method are described, for example, in Ausubel et al., Current Protocols in Molecular Biology, John Willy & Sons, US (1993); Sambrook et al., Molecular Cloning, USA, Laboratory, USA, etc. Techniques can be used.
  • the sequences of the nucleic acid probe and the primer for detecting the polynucleotide consisting of the base sequence represented by any one of SEQ ID NOs: 1 to 8 do not exist in vivo as miRNA or its precursor.
  • the base sequence represented by SEQ ID NO: 1 is generated from the precursor represented by SEQ ID NO: 9, and this precursor has a hairpin-like structure as shown in FIG.
  • the base sequence portion represented by 1 has a mismatch sequence. Therefore, a completely complementary nucleotide sequence to the nucleotide sequence represented by SEQ ID NO: 1 is not naturally generated in vivo. Therefore, the nucleic acid probe and the primer for detecting the base sequence represented by any of SEQ ID NOs: 1 to 8 may have an artificial base sequence that does not exist in a living body.
  • Prostate cancer detection kit or device The present invention also provides a polynucleotide (for example, mutant, fragment, or the like) that can be used as a nucleic acid probe or primer in the present invention for measuring a target nucleic acid that is a prostate cancer marker. Or a derivative or a derivative thereof).
  • a polynucleotide for example, mutant, fragment, or the like
  • the additional target nucleic acids that can optionally be used for the measurement are preferably selected from Group B below.
  • Group B miR-17-3p, miR-320b, miR-6819-5p, miR-1228-5p.
  • the kit or device of the present invention is a nucleic acid capable of specifically binding to the target nucleic acid that is the above-described prostate cancer marker, preferably, one or more polynucleotides selected from the polynucleotides described in the above 2, or a polynucleotide thereof. Includes variants.
  • the kit or device of the present invention further comprises a polynucleotide comprising (or consisting of) the base sequence represented by any of SEQ ID NOS: 5 to 8, or a base sequence in which u is t in the base sequence, or a complementary sequence thereof.
  • a polynucleotide comprising (or consisting of), a polynucleotide that hybridizes to the polynucleotide under stringent conditions, or one or more variants or fragments containing 15 or more consecutive bases of the polynucleotide sequence. Can be included.
  • the fragment that can be included in the kit or device of the present invention is, for example, one or more, preferably two or more polynucleotides selected from the group consisting of the following (1) and (2): (1) A polynucleotide comprising 15 or more consecutive bases in a base sequence represented by any of SEQ ID NOs: 1 to 4 wherein u is t or a complementary sequence thereof. (2) A polynucleotide comprising 15 or more consecutive bases in the base sequence represented by any of SEQ ID NOS: 5 to 8 wherein u is t or a complementary sequence thereof.
  • the polynucleotide is a polynucleotide consisting of a base sequence represented by any one of SEQ ID NOS: 5 to 8, a base sequence in which u is t in the base sequence, and a polynucleotide consisting of a complementary sequence thereof. Nucleotides, polynucleotides that hybridize to those polynucleotides under stringent conditions, or variants thereof containing 15 or more, preferably 17 or more, more preferably 19 or more contiguous bases.
  • the polynucleotide as a target nucleic acid in the kit or device of the present invention is, specifically, one or two of the above-mentioned polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOS: 1 to 33 shown in Table 1 above, Examples of combinations of 3, 4, 5, 6, 7, 8, 9, 10, or more can be cited, but these are merely examples and other various All possible combinations are intended to be included in the present invention.
  • a kit or device for discriminating a prostate cancer patient from a healthy subject, a patient with benign bone and soft tissue tumor and a benign disease, and a subject who does not have prostate cancer, such as a cancer patient other than prostate cancer examples include a combination of two or more of the above-mentioned polynucleotides consisting of the base sequence represented by the sequence number shown in Table 1. Specifically, any two or more of the above polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 8 may be combined.
  • the polynucleotides contained in the kit of the present invention and the mutants or fragments thereof can be packaged individually or in any combination in different containers.
  • the device of the present invention is a device for measuring a cancer marker in which the above-described nucleic acid such as the polynucleotide, a mutant thereof, a derivative thereof, or a fragment thereof of the present invention is bound or attached to a solid phase, for example. is there.
  • a solid phase for example.
  • the material of the solid phase are plastic, paper, glass silicon, and the like, and the preferred material of the solid phase is plastic because of ease of processing.
  • the shape of the solid phase is arbitrary, and is, for example, a square, a round, a strip, a film, or the like.
  • the device of the present invention includes, for example, a device for measurement by a hybridization technique, and specifically includes a blotting device, a nucleic acid array (for example, a microarray, a DNA chip, an RNA chip, and the like).
  • a nucleic acid array for example, a microarray, a DNA chip, an RNA chip, and the like.
  • the kit or device of the present invention comprises at least one, preferably at least two, more preferably at least three, and most preferably all of the miRNAs that are the prostate cancer markers of Group A described above. Includes nucleic acids that can specifically bind to each of the polynucleotides having complementary base sequences.
  • the kit or device of the present invention may further optionally comprise at least one, preferably at least two, more preferably at least three, most preferably all polynucleotides of miRNAs that are prostate cancer markers of Group B above. It may include a nucleic acid capable of specifically binding to each of the polynucleotides having a base sequence complementary to the polynucleotide.
  • the present invention further provides a method for detecting prostate cancer-derived genes represented by miR-1185-2-3p, miR-1185-1-3p, miR-197-5p, and miR-6076 in a sample.
  • One or more (eg, an expression profile) of the expression level and, optionally, the expression level of a prostate cancer-derived gene represented by miR-17-3p, miR-320b, miR-6819-5p, miR-1228-5p Is measured in vitro, and using the measured expression level (and optionally, a control expression level of a healthy subject similarly measured) to evaluate in vitro whether or not the subject has prostate cancer And a method for detecting prostate cancer.
  • a subject suspected of having prostate cancer and blood, serum, and plasma samples collected from a subject not having prostate cancer, the expression level of the gene in the sample and If the expression level of the target nucleic acid in the sample is different from the control expression level of a subject not having prostate cancer (for example, by comparing both expression levels), The patient can be evaluated as having cancer.
  • the above method of the present invention enables early diagnosis of prostate cancer with low invasiveness and high sensitivity and specificity, thereby leading to early treatment and improvement of prognosis, and furthermore, monitoring of disease aggravation and surgery. Monitoring the effectiveness of therapeutic, radiotherapeutic, and chemotherapeutic treatments.
  • a reagent for extracting RNA in 3D-Gene (registered trademark) RNA extraction reagent from liquid sample kit It is particularly preferable to adjust the concentration by adding a compound, but a general acidic phenol method (Acid Guanidinium-Phenol-Chloroform (AGPC) method) may be used, or Trizol (registered trademark) (Life @ Technologies) may be used. Alternatively, it may be prepared by adding a reagent for extracting RNA containing an acidic phenol such as Trizol (life @ technologies) or Isogen (Nippon Gene). Furthermore, kits such as miRNeasy (registered trademark) Mini @ Kit (Qiagen) can be used, but are not limited to these methods.
  • the invention also provides for the use of an expression product of a prostate cancer-derived miRNA gene in a sample from a subject for in vitro detection.
  • the method of carrying out the method of the present invention is not limited.
  • the kit can be performed using the kit or device (including the above-described nucleic acid usable in the present invention) of the present invention described in (1).
  • the kit or device as described above is used which contains the polynucleotides usable in the present invention singly or in any possible combination as described above.
  • the polynucleotide contained in the kit or device of the present invention can be used as a probe or a primer.
  • TaqMan registered trademark
  • miScript @ PCR @ System from Qiagen can be used, but not limited to these methods.
  • the amount of gene expression is measured by hybridization techniques such as Northern blotting, Southern blotting, in situ hybridization, Northern hybridization, Southern hybridization, and quantitative RT-PCR.
  • a known method for specifically detecting a specific gene such as an amplification technique and a method using a next-generation sequencer, can be performed according to a conventional method.
  • body fluids such as blood, serum, plasma, urine, etc. of the subject are collected according to the type of detection method used.
  • total @ RNA prepared from such a body fluid by the above method may be used, or various polynucleotides including cDNA prepared based on the RNA may be used.
  • the expression level of the polynucleotide consisting of the base sequence represented by one or more is statistically compared with the expression level in a sample of blood, serum, plasma, urine, etc. of a subject not having prostate cancer. Is significantly higher, the subject can be assessed as having prostate cancer.
  • a method for detecting that a specimen derived from a subject does not contain prostate cancer or that containing prostate cancer is performed by collecting a body fluid such as blood, serum, plasma, or urine of the subject.
  • the expression level of the target gene (or target nucleic acid) contained therein is determined using one or more polynucleotides (including mutants, fragments or derivatives) selected from the polynucleotide group of the present invention. This includes assessing the presence or absence of prostate cancer or detecting prostate cancer by measuring.
  • prostate cancer of the present invention for example, in prostate cancer patients, for the purpose of more precise diagnosis of the disease, another prostate cancer-related test, for example, rectal examination and transrectal prostate ultrasound It can be used in combination with an image examination such as a biological tissue examination, a CT examination, an MRI examination, and a bone scintigraphy examination.
  • an image examination such as a biological tissue examination, a CT examination, an MRI examination, and a bone scintigraphy examination.
  • the methods of the present invention can be utilized prior to performing these tests to determine the need to perform these prostate cancer related tests.
  • a method for treating prostate cancer is specifically performed on a subject evaluated as having a prostate cancer as a result of performing the above detection method, on a prostate cancer.
  • Administering the above-mentioned treatment (radiation therapy, hormonal therapy, administration of a chemical agent, or a combination thereof).
  • the method of the present invention comprises, for example, the following steps (a), (b) and (c): (A) contacting a sample from a subject with the polynucleotide of the kit or device of the present invention in vitro; (B) measuring the expression level of the target nucleic acid in the sample using the polynucleotide as a nucleic acid probe or primer; (C) evaluating the presence or absence of prostate cancer (cells) in the subject based on the results of (b); Can be included.
  • the present invention relates to at least one, preferably at least 2, selected from the group consisting of miR-1185-2-3p, miR-1185-1-3p, miR-197-5p, and miR-6076.
  • a nucleic acid capable of specifically binding to one polynucleotide or a polynucleotide consisting of a nucleotide sequence complementary to the polynucleotide the expression level of a target nucleic acid in a sample of a subject is measured, and the measured expression level and Assessing in vitro whether the subject has prostate cancer using the control expression level of a subject not having prostate cancer and also measured in vitro.
  • Provide a detection method a detection method.
  • the nucleic acid in the method of the present invention is a polynucleotide represented by any of the following (a) to (e): (A) a polynucleotide comprising a base sequence represented by any of SEQ ID NOs: 1 to 4 or a base sequence in which u is t in the base sequence, a mutant thereof, a derivative thereof, or 15 or more consecutive bases Its fragments, (B) a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOs: 1 to 4, (C) a polynucleotide comprising a base sequence represented by any of SEQ ID NOs: 1 to 4 or a base sequence complementary to a base sequence in which u is t in the base sequence, a mutant thereof, a derivative thereof, or 15 or more A fragment thereof containing consecutive bases of (D) a polynucleotide comprising a nucleotide sequence represented by any of the following (a) to (e): (A
  • miR-17-3p is hsa-miR-17-3p
  • miR-320b is hsa-miR-320b
  • miR-6819-5p is hsa-miR-6819-5p
  • -1228-5p is hsa-miR-1228-5p.
  • the target nucleic acid has a length of 30 bases or less, 28 bases or less, and 25 bases or less. Is 200 bases or less, 150 bases or less, 120 bases or less, for example, when the target nucleic acid is isomiR, it is 40 bases or less, 35 bases or less, 30 bases or less, for example.
  • the steps can be changed according to the type of the sample used as the measurement target.
  • the method for detecting prostate cancer includes, for example, the following steps (a), (b) and (c): (A) RNA prepared from a subject sample (where the 3 'end of the RNA may be polyadenylated, or either or both, for quantitative RT-PCR in step (b) Binding an arbitrary sequence to a terminal by a ligation method or the like) or a complementary polynucleotide (cDNA) transcribed therefrom, and a polynucleotide of the kit of the present invention; (B) measuring RNA derived from a sample bound to the polynucleotide or cDNA synthesized from the RNA by hybridization using the polynucleotide as a nucleic acid probe or by quantitative RT-PCR using the polynucleotide as a primer Step to do, (C) evaluating the presence or absence of prostate cancer (or a gene derived from prostate cancer) based on the measurement result of
  • TaqMan registered trademark
  • MicroRNA Assays Life Technologies
  • LNA registered trademark
  • MicroRNA PCR Exiqon
  • Ncode registered trademark
  • miRNA qRT-PCT kit Invitrogen
  • a commercially available measurement kit specially devised for quantitatively measuring miRNA may be used.
  • stringent conditions refers to the extent to which a nucleic acid probe is detectably greater (e.g., the average of background measurements + the standard of background measurements) than to other sequences, as described above. (Measured value of error ⁇ 2 or more), which is the condition for hybridizing to the target sequence.
  • Stringent conditions are defined by hybridization and subsequent washing.
  • the conditions for the hybridization are not limited, but are, for example, 30 ° C. to 60 ° C. for 1 to 24 hours in a solution containing SSC, surfactant, formamide, dextran sulfate, blocking agent and the like.
  • 1 ⁇ SSC is an aqueous solution (pH 7.0) containing 150 mM sodium chloride and 15 mM sodium citrate
  • the surfactant includes SDS (sodium dodecyl sulfate), Triton, Tween, or the like.
  • Hybridization conditions more preferably include 3 to 10 ⁇ SSC and 0.1 to 1% SDS.
  • Washing conditions after hybridization which is another condition for defining stringent conditions, include, for example, a solution containing 0.5 ⁇ SSC and 0.1% SDS at 30 ° C., and a solution containing 0.1% SDS at 30 ° C. Conditions such as continuous washing with a solution containing ⁇ SSC and 0.1% SDS and a 0.05 ⁇ SSC solution at 30 ° C. can be given.
  • the complementary strand desirably maintains a hybridized state with the target positive strand even when washed under such conditions.
  • a complementary strand consisting of a nucleotide sequence completely complementary to the nucleotide sequence of the target positive strand, and at least 80%, preferably at least 85%, more preferably A chain consisting of a base sequence having at least 90% or at least 95% homology (identity) can be exemplified.
  • the expression level of the target gene may be measured by using a sequencer in addition to the above hybridization method.
  • a sequencer any of a first-generation DNA sequencer based on the Sanger method, a second generation having a short read size, and a third generation having a long read size can be used (second generation and third generation).
  • next-generation sequencer is used herein, including generation sequencers.
  • Miseq / Hiseq / NexSeq (Illumina), Ion / Proton / Ion / PGM / Ion / S5 / S5 / XL (Thermo Fisher Scientific), PacBio / RS / II / Sequel (Pacific / Bioscience), and Nanopoise when using Nanopoise
  • a commercially available measurement kit specially devised for measuring miRNA may be used by utilizing MinION (Oxford Nanopore Technologies) or the like.
  • the discriminant is any discriminant analysis method capable of creating a discriminant for discriminating the presence or absence of prostate cancer, for example, Fisher's discriminant analysis, nonlinear discriminant analysis by Mahalanobis distance, Neural networks, Support Vector Machine (SVM), logistic regression analysis (especially, LASS (Logistic regression analysis using the Least Absolute Shrinkage and Selection Electric Operator) method), k-neighbor method, and decision tree using discriminant tree
  • the present invention is not limited to these specific examples.
  • the value obtained by the discriminant is called a discriminant score, and the measured value of the newly given data set is substituted into the discriminant as an explanatory variable, and the grouping can be discriminated by the sign of the discriminant score.
  • the numerator and denominator are the inter-class variance and the intra-class variance when the data is projected in the direction of the vector w, and the discriminant coefficient wi is obtained by maximizing this ratio (Kanemori et al. Recognition ", Kyoritsu Shuppan (Tokyo, Japan) (2009), Richard O. et al., Pattern Classification Second Edition, Wiley-Interscience, 2000.
  • the Mahalanobis distance is calculated by Equation 3 in consideration of data correlation, and can be used as a nonlinear discriminant analysis for discriminating a group having a short Mahalanobis distance from each group as a belonging group.
  • is the center vector of each group
  • S ⁇ 1 is the inverse matrix of the variance-covariance matrix of that group.
  • the center vector is calculated from the explanatory variable x, and an average vector, a median vector, or the like can be used.
  • a method for dealing with a non-linear problem in the SVM a method is known in which a feature vector is non-linearly converted to a higher dimension, and linear discrimination is performed in the space.
  • An expression in which the inner product of two elements in a non-linearly mapped space is expressed only by the input in the original space is called a kernel.
  • a linear kernel, RBF (Radial ⁇ Basic ⁇ Function) is an example of the kernel. Kernel and Gaussian kernel. It is possible to construct an optimal discriminant, that is, a discriminant only by calculating the kernel, while avoiding the calculation of features in the mapped space while mapping in a higher dimension by the kernel (for example, Hideki Aso et al.
  • C-support ⁇ vector ⁇ classification which is a kind of SVM method, creates a hyperplane by learning with two groups of explanatory variables, and determines which group an unknown data set is classified into.
  • ⁇ An example of calculating a C-SVC discriminant usable in the method of the present invention is shown below.
  • all subjects are divided into two groups: prostate cancer patients and subjects not having prostate cancer.
  • a prostate tissue test can be used as a criterion for determining that the subject has a prostate cancer patient or does not have a prostate cancer.
  • a data set (hereinafter referred to as a learning sample group) comprising exhaustive gene expression levels of the serum-derived specimens of the two divided groups is prepared, and a clear difference is observed in the gene expression levels between the two groups.
  • a discriminant using C-SVC is determined, where the gene is an explanatory variable and the grouping is a target variable (eg, ⁇ 1 and +1).
  • Equation 4 is an objective function to be optimized, where e is all input vectors, y is an objective variable, a is a Lagrange undetermined multiplier vector, Q is a positive definite matrix, and C is a parameter for adjusting a constraint condition.
  • Equation 5 is a finally obtained discriminant, and the group to which the group belongs can be determined by the sign of the value obtained by the discriminant.
  • x is a support vector
  • y is a label indicating group affiliation
  • a is a corresponding coefficient
  • b is a constant term
  • K is a kernel function.
  • R As the kernel function, for example, an RBF kernel defined by Expression 6 can be used.
  • x represents a support vector
  • represents a kernel parameter for adjusting the complexity of the hyperplane.
  • Logistic regression is a multivariate analysis method in which one categorical variable (binary variable) is used as an objective variable and its occurrence probability is predicted using a plurality of explanatory variables, and is represented by the following equation 7.
  • the LASSO (Least Absolute Shrinkage and Selection Operation) method is one of the variable selection and adjustment methods when there are a large number of observed variables, and is proposed by Tibsirani (Tibsirat, R.Sat. 1996, R.Sat. Ser @ B, vol. 58, p. 267-88).
  • the LASSO method is characterized in that a penalty term is introduced when estimating the regression coefficient, thereby suppressing overfitting to the model and estimating some regression coefficients to zero.
  • a regression coefficient is estimated so as to maximize the log likelihood function represented by Expression 8.
  • the group to which a group belongs can be determined by the value obtained by substituting the value y of the discriminant obtained by the analysis by the LASSO method into the logistic function represented by the following equation 9.
  • the explanatory variable for discriminating between a prostate cancer patient and a subject not having prostate cancer according to the present invention is, for example, a gene expression level selected from the following (1) or (2): Is: (1) Prostate cancer patients and those suffering from prostate cancer, which are determined by any of DNAs containing 15 or more consecutive bases in the base sequence represented by any of SEQ ID NOs: 1 to 4 or a complementary sequence thereof The gene expression level in the serum of a non-test subject; or (2) measured by any of the DNAs containing 15 or more consecutive bases in the base sequence represented by any one of SEQ ID NOS: 5 to 8 or its complementary sequence Of gene expression in serum of patients with prostate cancer and those without prostate cancer.
  • a discriminant using one or more gene expression levels as an explanatory variable is required as a method for determining or evaluating whether or not a subject has prostate cancer for a sample derived from the subject. It is.
  • a discriminant using only one gene expression level there is a clear difference in the expression level between the prostate cancer patient group and the two groups consisting of subjects without prostate cancer. It is necessary to use a certain gene in a discriminant.
  • the gene used as the explanatory variable of the discriminant as follows. First, a comprehensive set of gene expression of a prostate cancer patient group as a learning group and a set of exhaustive gene expression of a subject group not having prostate cancer were used as a data set, and the P value of the t-test as a parametric analysis, Using the P value of the Mann-Whitney U test or the P value of the Wilcoxon test, which is a parametric analysis, the magnitude of the difference in the expression level of each gene between the two groups is determined.
  • the risk value (significance level) of the P value obtained by the test is smaller than, for example, 5%, 1% or 0.01%, it can be considered statistically significant.
  • the absolute value of the median expression ratio of each gene expression level (Fold @ change) between the gene expression level of the prostate cancer patient group and the gene expression level of the subject group not suffering from prostate cancer. ) May be calculated and a gene used as an explanatory variable of the discriminant may be selected.
  • a ROC curve is created using the gene expression levels of a prostate cancer patient group and a subject group who does not have prostate cancer, and a gene used as an explanatory variable of a discriminant is selected based on the AUROC value. Good.
  • this independent prostate cancer patient or prostate cancer By substituting the gene expression level of another independent prostate cancer patient or a subject without prostate cancer into the explanatory variable for this discriminant, this independent prostate cancer patient or prostate cancer
  • the result of the discrimination of the group to which the subject does not belong is calculated. That is, a diagnostic gene set that can detect a more unbiased prostate cancer by evaluating a discriminant constructed using the found diagnostic gene set and the diagnostic gene set with an independent sample group, and Find out how to identify prostate cancer.
  • the Split-sample method for evaluating the discriminant performance (generalization property) of the discriminant That is, the data set is divided into a learning sample group and a verification sample group, a gene is selected by a statistical test and a discriminant is created in the learning sample group, and the result of discriminating the verification sample group by the discriminant and the verification sample group The accuracy, sensitivity, and specificity are calculated using the true group to which the belongs, and the discrimination performance is evaluated.
  • all samples were used to select genes by statistical test and create discriminants, and newly prepared samples were discriminated using the discriminants to determine accuracy, sensitivity, and specificity. Can be calculated and the discrimination performance can be evaluated.
  • the present invention provides a polynucleotide for detection or disease diagnosis useful for diagnosis and treatment of prostate cancer, a method for detecting prostate cancer using the polynucleotide, and a kit and device for detecting prostate cancer containing the polynucleotide.
  • the current diagnosis may lead to unnecessary additional tests by misidentifying non-prostate cancer patients as prostate cancer patients, or missing treatment opportunities due to overlooking prostate cancer patients.
  • the present invention provides a non-invasive and small sample volume that can correctly identify prostate cancer regardless of the stage, degree of invasion, histological atypia, and initial / relapse, that is, a prostate cancer marker with high accuracy of accuracy.
  • a disease diagnosis kit or device useful for prostate cancer diagnosis and treatment and a method for determining (or detecting) prostate cancer.
  • prostate cancer can be detected with high sensitivity, so that prostate cancer can be detected at an early stage.
  • early treatment is possible, which can lead to a significant improvement in survival rate.
  • the loss of treatment opportunities due to overlooking prostate cancer patients It is possible to avoid performing unnecessary additional tests by misidentifying a cancer patient as a prostate cancer patient.
  • Example collection> 1,044 prostate cancer patients positive by prostate tissue needle biopsy, 241 benign prostate cancer patients suspected of prostate cancer but negative by prostate tissue needle biopsy, and history of cancer Informed consent was obtained from 41 healthy men with no history of hospitalization within 3 months, and serum was collected using a Venoject II vacuum blood collection tube VP-AS109K63 (Termo Corporation (Japan)). Of these, 41 were due to lack of clinical information, 3 were due to concurrent other cancer types, 181 were due to the effects of treatment before blood collection, and 13 were not meeting the quality standards for gene expression measurement described below. Was excluded from the analysis. Therefore, serum samples from a total of 809 prostate cancer patients, 241 benign prostate disease patients, and 41 healthy persons were used.
  • the age distribution in these cases was an average of 67 years for prostate cancer (minimum 62 to 73 years), an average of 66 years for prostate benign (minimum 61 to 70 years), and an average of 70 years for healthy people (minimum 48 years). Up to 77 years old).
  • the distribution of Gleason classification values indicating the malignancy of prostate cancer cases was 86 in classification value 6, 244 in classification value 3 + 4, 159 in classification value 4 + 3, and 320 in classification value 8 or more. .
  • T classification indicating the size of cancer in prostate cancer cases was 256 in T1c, 354 in T2a to T2c, 183 in T3a to T3b, and 16 in T4.
  • N classification indicating the presence or absence of lymph node metastasis in prostate cancer cases N1 was 54 cases and N0 was 755 cases.
  • M1 was 64 cases and M0 was 745 cases.
  • Table 2 summarizes the above case information.
  • RNA extraction reagent in 3D-Gene (registered trademark) RNA extraction reagent from liquid sample kit (Toray Industries, Inc. (Japan) was used. Total RNA was obtained according to the protocol determined by the company.
  • MiRNA was fluorescently labeled with 3D-Gene (registered trademark) miRNA Labeling Kit (Toray Co., Ltd.) based on the protocol determined by the total RNA obtained from the sera of a total of 1,091 samples as a sample. .
  • 3D-Gene registered trademark
  • Human miRNA Oligo chip equipped with a probe having a sequence complementary to 2,588 kinds of miRNAs among miRNAs registered in miRBase release 21 )
  • Hybridization and post-hybridization washing were performed under stringent conditions based on the protocol determined by the company.
  • the DNA chip was scanned using a 3D-Gene (registered trademark) scanner (Toray Industries, Inc.), an image was obtained, and the fluorescence intensity was digitized by 3D-Gene (registered trademark) Extraction (Toray, Inc.).
  • 3D-Gene registered trademark
  • Extraction Toray, Inc.
  • the following step-by-step procedure was used to develop a method for identifying prostate cancer. That is, first, the case was divided into three groups, a search sample group, a learning sample group, and a verification sample group, marker candidates were extracted in the search sample group, a discriminant was constructed in the learning sample group, and the discriminant was verified in the verification sample group. .
  • the method of dividing the cases was as follows: prostate cancer, prostate benign disease, and healthy subjects in the search sample group were 123 cases each, a total of 123 cases, and the learning sample group and the verification sample group were half the remaining cases, that is, 384 cases of prostate cancer And a total of 484 cases of 100 prostate benign diseases. In these cases, the cases were divided so that age, Gleason classification, T classification, N classification, and M classification were equally allocated.
  • Example 1 ⁇ Discriminant analysis of prostate cancer by discriminant using one type of miRNA>
  • a discriminant was created for the learning sample group using each miRNA extracted as a marker candidate in the search sample group, and the performance of the discriminant created for the verification sample group was verified.
  • marker candidates were narrowed down according to the scheme shown in FIG. 2 in order to obtain more reliable diagnostic markers from all 2,588 miRNAs (measurement targets) present in humans.
  • the positive sample group prostate cancer patient
  • the negative sample group prostate benign disease patient and healthy person
  • the number of samples having 50% or more and not having a gene expression level of 2 6 or more 2 180 miRNAs were excluded because of low signal intensity and unreliable, and the remaining 408 miRNAs were subjected to the next step.
  • the discriminating ability of the eight polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOS: 1 to 8 was verified in the test sample group as well as in the test sample group.
  • the AUC of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 was 0.921 in the learning sample group and 0.917 in the verification sample group (FIG. 3).
  • the AUC of the polynucleotide consisting of the nucleotide sequences represented by SEQ ID NOs: 2 to 8 is 0.921, 0.568, 0.936, 0.971, 0.836, 0.843 in the learning sample group, respectively. , 0.707, and 0.913, 0.607, 0.940, 0.913, 0.815, 0.822, and 0.733 in the verification sample group, respectively (Table 3).
  • the AUC of the existing prostate cancer marker PSA measured from the same sample group was 0.63 in the learning sample group and 0.60 in the verification sample group (FIG. 4).
  • discrimination thresholds were provided to specify discriminants, and these markers were evaluated using sensitivity and specificity as evaluation criteria.
  • the value of the discriminant (0.903 * [hsa-miR-1185-2-3p] -6.870) prepared using the expression level of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 is positive. If the value is negative, the result is positive for prostate cancer, and if the value is negative, negative for prostate cancer.
  • Table 4 shows the sensitivities and specificities obtained by the discriminants prepared using the expression levels of the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOS: 1 to 8 in this manner.
  • the sensitivity in the learning sample group was 0.839 and the specificity was 0.930, and the sensitivity in the verification sample group was 0.844 and the specificity was 0.900.
  • the sensitivity in the learning sample group was 0.883, the specificity was 0.930, and the sensitivity in the verification sample group was 0.870, and the specificity was 0.830.
  • the sensitivity in the learning sample group was 0.711, the specificity was 0.820, and the sensitivity in the verification sample group was 0.688, and the specificity was 0.770.
  • the sensitivity in the learning sample group was 0.708, the specificity was 0.830, and the sensitivity in the verification sample group was 0.721, and the specificity was 0.800.
  • the sensitivity in the learning sample group was 0.552 and the specificity was 0.810, and the sensitivity in the verification sample group was 0.537 and the specificity was 0.840.
  • the sensitivity in the learning sample group is 0.55
  • the specificity is 0.64
  • the sensitivity and the specificity in the verification sample group were 0.47 and 0.72, respectively.
  • polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1, 2, 4, 5, 6, 7, and 8 alone are benign diseases suspected of prostate cancer with sensitivity and specificity exceeding PSA alone. Prostate cancer could be identified from the patient.
  • Example 2 ⁇ Discriminant analysis of prostate cancer by discriminant using two or more miRNAs>
  • a discriminant was created in the learning sample group by combining a plurality of 18 types of miRNAs extracted as marker candidates in the search sample group, and the performance of the discriminant created in the verification sample group was verified.
  • a Fischer's linear discriminant analysis is performed for each of the obtained 18 types of miRNA expression levels, and a cross-validation is performed, and a discriminant for determining the presence or absence of prostate cancer is obtained. It was constructed.
  • the discriminating ability of the discriminant combining the eight types of polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 8 in the learning sample group was determined by the polynucleotide consisting of the single nucleotide sequence shown in Example 1. The performance was higher than the discrimination, and the performance was also verified in the verification sample group.
  • the AUC of the discriminant formula created by combining the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1, 3, and 5 is 0.986 in the learning sample group and 0.953 in the verification sample group.
  • the AUC of a discriminant formula created by combining polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 2, 5, and 7 is 0.985 in the learning sample group and 0.954 in the verification sample group. there were.
  • the AUC of the discriminant formula prepared by combining the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 2, 3, 4, and 5 is 0.989 in the learning sample group and 0.974 in the verification sample group. Met.
  • the AUC of the discriminant prepared by combining the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 2, 3, 4, 5, and 8 is 0.990 in the learning sample group and 0 in the verification sample group. .975.
  • the AUC of the discriminant formula created by combining the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 2, 3, 4, 5, and 6 is 0.990 in the learning sample group, and 0.976.
  • the AUC of the existing prostate cancer marker PSA measured from the same sample group was 0.63 in the learning sample group and 0.60 in the verification sample group (FIG. 4).
  • the sensitivity in the learning sample group is 0.891
  • the specificity is 0.810
  • the sensitivity in the verification sample group is 0. 857
  • the specificity was 0.790 (FIG. 3)
  • the sensitivity of the discriminant prepared by combining the polynucleotides comprising the nucleotide sequences represented by SEQ ID NOS: 1 and 5 was 0.909
  • the specificity was 0.970
  • the sensitivity in the test sample group was 0.901
  • the specificity was 0.900.
  • the sensitivity in the learning sample group of the discriminant formula prepared by combining the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1, 3, and 5 was 0.909 and the specificity was 0.970, The sensitivity was 0.888 and the specificity was 0.900.
  • the sensitivity of the discriminant created by combining the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 2, 5, and 7 in the learning sample group is 0.945, the specificity is 0.920, and the verification sample group Was 0.956, and the specificity was 0.850.
  • the sensitivity of the discriminant prepared by combining the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 2, 3, 4, and 5 in the learning sample group is 0.935, the specificity is 0.950, and the verification sample The sensitivity in the group was 0.927 and the specificity was 0.890. Further, the sensitivity of the discriminant created by combining the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 2, 3, 4, 5, and 8 in the learning sample group is 0.909, the specificity is 0.970, The sensitivity and the specificity in the verification sample group were 0.906 and 0.900, respectively.
  • the sensitivity of the discriminant prepared by combining the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 2, 3, 4, 5, and 6 in the learning sample group is 0.943, the specificity is 0.950, The sensitivity and the specificity in the verification sample group were 0.935 and 0.900, respectively.
  • the sensitivity in the learning sample group is 0.55
  • the specificity is 0.64
  • the sensitivity and the specificity in the verification sample group were 0.47 and 0.72, respectively.
  • FIG. 7 As shown in FIG. 7, 93% of T1c prostate cancer, 87% of T2 prostate cancer, and 92% of T3 or higher prostate cancer were discriminated. In other words, this discriminant was able to discriminate the prostate cancer with small cancer and early prostate cancer with the same high performance as that of advanced prostate cancer.

Abstract

本発明は、前立腺がんの検出用キット又はデバイス、並びに、検出方法を提供することを課題とする。 本発明によれば、被験体の検体中のmiRNA又はその相補鎖と特異的に結合可能な核酸を含む、前立腺がん検出用キット又はデバイス、並びに、該miRNAをin vitroで測定することを含む、前立腺がんを検出する方法が提供される。

Description

前立腺がんの検出のためのキット、デバイス及び方法
 本発明は、被験体において前立腺がんへの罹患の有無の検査のために使用される、特定のmiRNA又はその相補鎖と特異的に結合可能な核酸を含む前立腺がんの検出用キット又はデバイス、及び当該miRNAの発現量を測定することを含む前立腺がんの検出方法に関する。
 前立腺は男性の精液の一部を作る臓器で、膀胱の下、直腸の前に位置する。前立腺がんは、この前立腺の細胞が無秩序に増殖を繰り返す疾患である。国立研究開発法人国立がん研究センターがん対策情報センターが開示する2013年の日本国内における部位別のがんの統計によると、前立腺がんの罹患者数は74,861人、つまり日本人男性の11人に1人が罹患するとされ、男性における罹患数が第4位のがん部位である。前立腺がんによる死亡者数は11,803人にのぼり、男性における死亡者数が第7位のがん部位である。また米国がん協会によると、米国では7人に1人の割合で男性が前立腺がんを発症すると言われており、特に高齢者で多く、65歳以上では10人に6人の男性が前立腺がんと診断される。米国の2014年の推定前立腺がん罹患者数は233,000人にも上り、そのうち約29,480人が死亡するとされる。
 前立腺がんは、前立腺がんの前がん病変である前立腺肥大や前立腺炎などの良性疾患を経て一部ががんへ進行すると言われている。前立腺がんの進行度は「TNM Classification of Malignant Tumours 第7版」(Sobin、 L.ら、2010年、p.230~234)に定められており、腫瘍の広がり(T1a~c、T2a~c、T3a~b、T4)、リンパ節転移無し(N0)、リンパ節転移有り(N1)、遠隔転移無し(M0)、遠隔転位有り(M1)などによって、ステージI(T1~T2a/N0/M0)、ステージII(T2b~c/N0/M0)、ステージIII(T3/N0/M0)、ステージIV(T4/N0/M0及びN1及びcM1)に分類される。
 更に前立腺がんの悪性度を示す指標としてグリーソン分類が定められている。米国がん協会によると、グリーソン分類値は、前立腺がん組織の病変の悪性度を1~5の段階で評価し、前立腺がん組織の量的に最も多い病変と2番目に多い病変の評価値の合計である2~10をグリーソン分離値と設定している。グリーソン分類値6以下は低悪性度、グリーソン分類値7は中悪性度、グリーソン分類値8以上は高悪性度とみなされる。
 前立腺がんの多くは進行が比較的ゆっくりであることから、5年相対生存率はほぼ100%と最も予後が良いがんの一つである。しかしながら前立腺がんの中には比較的早く進行し、様々な障害や症状を引き起こすものもあり、ステージ4で遠隔転移が認められる前立腺がんは、5年相対生存率が28%と格段に低い。
 前立腺がんの診断には、1次検査として血中腫瘍マーカーであるPSA検査が広く用いられている。PSA測定値が高い場合に、直腸診や経直腸的前立腺超音波検査が実施され、さらに前立腺がんが疑われる場合に確定診断として生体組織検査が実施される。また、遠隔転移が疑われる場合には、CT検査、MRI検査、骨シンチグラフィ検査などの画像検査も行われる。
 前立腺特異的抗原であるPSAは、前立腺で生成され精液に含まれるが、血中にも僅かながら存在する。一般男性の通常血中PSA濃度は4ng/mL以下とされており、この基準値を超えた場合、前立腺がんが疑われる。血中PSA濃度は、無症状のうちの早期の前立腺がんでも上昇すること、がんの進行度にも相関すること、などから有用であるとされ広く普及している。また、米国がん協会は前立腺がんの早期検出を推奨し、前立腺がんのスクリーニングを望む被験者はPSA検査を受診すべき、と進言している。
 前立腺がんの治療は原則的には外科治療、放射線治療、内分泌療法(ホルモン療法)、更には特別な治療を実施せず、腫瘍マーカーであるPSAを監視しながら経過観察を続ける待機療法がある。特に、早期の前立腺がんの治療には幾つか選択肢があり、待機療法の他に、放射線外照射療法、内部放射線療法(小線源治療)、根治的前立腺摘除術、凍結手術などがある。
 このように、前立腺がんの腫瘍マーカー検査としてPSA検査が広く普及しているが、PSA検査は血中濃度基準値である4ng/mL以下の男性の15%でも生体組織検査で前立腺がん陽性と判定されることが知られており、また一方で、がんが無くとも良性の前立腺肥大や前立腺炎を患っている男性、及び一般男性高齢者であれば血中PSA濃度は上昇することから、偽陽性が高いことでも知られる。また、前立腺がん以外のがんを誤って検出してしまう場合も偽陽性につながる。このようなPSA検査における高い偽陽性は過剰診断、過剰治療へと繋がり、不要な前立腺がん治療による様々な後遺症が近年問題視されている。具体的なPSA検査の性能は、5000名以上の被験者をリクルートした大規模研究(Wolf、 AM.ら、2010年、A Cancer Journal for Clinicians、第60(2)巻、p.70-98)によると、前立腺がん全体で感度は20.5%と低く、悪性度が高い前立腺がんに限っても51%に留まっており、術前検査としての腫瘍マーカー測定の意義は乏しいとされている。
 一方、研究段階ではあるが、特許文献1~2及び非特許文献1~2に示されるように、血液をはじめとする生体サンプル中のマイクロRNA(miRNA)の発現量、又はmiRNAの発現量と他のマーカーの発現量とを組み合わせることによって、前立腺がんを検出するという報告がある。
 特許文献1には前立腺がん由来の血液中miR-1275を用いて前立腺がんを検出する方法が示されているが、対象症例数が2~9症例と極端に少なく信頼性が低い。
 特許文献2には血液中のmiR-6819-5pやmiR-1228-5pなどから1~4種類のmiRNAを組み合わせて、前立腺がんを健康人又は乳がん患者から判別する方法が示されている。しかしながら、前立腺がん診断における最重要課題の一つは前立腺がんと前立腺良性疾患を見分けることであるが、本法ではこの期待に応えておらず、臨床実用の価値を満たしていない。
 非特許文献1には、血清中のmiR-320a/-b/-cの発現量が、健康人、前立腺肥大、前立腺がんの判別に有用であることが記載されている。この文献では、miR-320a/-b/-cの発現量はいずれも健康人より前立腺肥大患者で有意に高く、更に前立腺がん患者では前立腺肥大患者より有意に低く一方で健康人よりは有意に高い、といった、発現量の順番として、健康人<前立腺がん<前立腺肥大、という関係が成り立っている。しかしながら、この関係において例えば健康人と前立腺がん患者の間に判別閾値を設けてしまうと、前立腺肥大患者もがん側に判定されてしまい、陽性群は前立腺がん又は前立腺肥大であることを示し、がんの有無を判定することはできない。前立腺肥大は、前立腺がんの前がん病変の一つと言われる状態であることから、本来であれば、健康人<前立腺肥大<前立腺がん(又は健康人>前立腺肥大>前立腺がん)という段階的な関係が成立することが必要である。本文献では、臨床現場で求められる、健康人と前立腺肥大を陰性群、前立腺がんを陽性群とした判別はできておらず、実用できない。
 非特許文献2では、手術時に得られた組織検体中のmiR-17-3pを含むmiR-17-92クラスターが前立腺がんと前立腺肥大の判別に有用である可能性が示されている。しかしながら、前立腺がんと肥大を含む前立腺良性疾患との判別は手術をすれば分かることであり、言い換えれば手術前に判別が可能になることで臨床有用性が存在する。本文献のように手術後に前立腺がんの有無が判明したとしても産業的価値は極めて低い。
特開2015-039365号公報 国際公開2015/190584号
Lieb, B.ら、2018年、Oncotarget、第9(12)巻、p.10402-10416 Feng,S.ら、2017年、Oncology Letters、第14(6)巻、p.6943-6949
 上記のとおり、研究段階ではあるが血液をはじめとする生体サンプル中のマイクロRNA(miRNA)の発現量を用いて前立腺がんを判別するという幾つかの報告があるが、いずれも実用化に至っていない。実際に、特許文献1の発明内容を検証したところ、後記比較例1に示すように、前立腺がん患者検体と前立腺良性疾患患者検体においてmiR-1275の発現量に差は無く、例えば発現量7.8を閾値とすると感度55%、特異度47%であり、この性能は前立腺がんの判別に充分であるとは言えず、検査として臨床で実用することはできない。
 従って、本発明は、臨床現場で求められる前立腺がんと肥大を含む前立腺良性疾患との判別が可能で、信頼性及び実用性の高い新規な前立腺がん腫瘍マーカーを見出し、当該マーカーに特異的に結合可能な核酸を用いて、非侵襲的かつ少ない検体量での前立腺がんの診断及び治療に有用な疾患診断用キット又はデバイス、及び前立腺がんの判定(又は検出)方法を提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意検討の結果、低侵襲に採取できる血液から、前立腺がん検出マーカーに使用可能な遺伝子を見出し、これを用いて前立腺がんを有意に検出できることを見いだし、本発明を完成するに至った。
<発明の概要>
 すなわち、本発明は、以下の態様を含む。
(1)前立腺がんマーカーである、miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、及びmiR-6076からなる群から選択される少なくとも1つのポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を含む、前立腺がんの検出用キット。
(2)前記核酸が、下記の(a)~(e)のいずれかに示すポリヌクレオチド:
(a)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(b)配列番号1~4のいずれかで表される塩基配列を含むポリヌクレオチド、
(c)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(d)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
(e)前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
からなる群から選択されるポリヌクレオチドである、(1)に記載のキット。
(3)前記キットが、別の前立腺がんマーカーである、miR-17-3p、miR-320b、miR-6819-5p、及びmiR-1228-5pからなる群から選択される少なくとも1つのポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸をさらに含む、(1)又は(2)に記載のキット。
(4)前記核酸が、下記の(f)~(j)のいずれかに示すポリヌクレオチド:
(f)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(g)配列番号5~8のいずれかで表される塩基配列を含むポリヌクレオチド、
(h)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(i)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
(j)前記(f)~(i)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
からなる群から選択されるポリヌクレオチドである、(3)に記載のキット。
(5)前立腺がんマーカーである、miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、及びmiR-6076からなる群から選択される少なくとも1つのポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を含む、前立腺がんの検出用デバイス。
(6)前記核酸が、下記の(a)~(e)のいずれかに示すポリヌクレオチド:
(a)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(b)配列番号1~4のいずれかで表される塩基配列を含むポリヌクレオチド、
(c)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(d)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
(e)前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
からなる群から選択されるポリヌクレオチドである、(5)に記載のデバイス。
(7)前記デバイスが、別の前立腺がんマーカーである、miR-17-3p、miR-320b、miR-6819-5p、及びmiR-1228-5pからなる群から選択される少なくとも1つのポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸をさらに含む、(5)又は(6)に記載のデバイス。
(8)前記核酸が、下記の(f)~(j)のいずれかに示すポリヌクレオチド:
(f)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(g)配列番号5~8のいずれかで表される塩基配列を含むポリヌクレオチド、
(h)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(i)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
(j)前記(f)~(i)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
からなる群から選択されるポリヌクレオチドである、(7)に記載のデバイス。
(9)前記デバイスが、ハイブリダイゼーション技術による測定のためのデバイスである、(5)~(8)のいずれかに記載のデバイス。
(10)前記ハイブリダイゼーション技術が、核酸アレイ技術である、(9)に記載のデバイス。
(11)被験体の検体において、前立腺がんマーカーである、miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、及びmiR-6076からなる群から選択される少なくとも1つのポリヌクレオチドの発現量を測定し、該測定された発現量を用いて被験体が前立腺がんに罹患しているか否かをin vitroで評価することを含む、前立腺がんの検出方法。
(12)前立腺がんを有することが既知である被験体由来の検体の遺伝子発現量と前立腺がんに罹患していない被験体由来の検体の遺伝子発現量を教師サンプルとして作成された、かつ前立腺がんの存在又は不存在を区別的に判別することが可能である判別式に、上記被験体由来の検体中の前記少なくとも1つのポリヌクレオチドの発現量を代入し、それによって、前立腺がんの存在又は不存在をin vitroで評価することを含む、(11)に記載の方法。
(13)前記ポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を用いて前記ポリヌクレオチドの発現量の測定を行い、前記核酸が、下記の(a)~(e)のいずれかに示すポリヌクレオチド:
(a)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(b)配列番号1~4のいずれかで表される塩基配列を含むポリヌクレオチド、
(c)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(d)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
(e)前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
からなる群から選択されるポリヌクレオチドである、(11)又は(12)に記載の方法。
(14)別の前立腺がんマーカーである、miR-17-3p、miR-320b、miR-6819-5p、及びmiR-1228-5pからなる群から選択される少なくとも1つのポリヌクレオチドの発現量を測定することをさらに含む、(11)~(13)のいずれかに記載の方法。
(15)前記ポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を用いて前記ポリヌクレオチドの発現量の測定を行い、前記核酸が、下記の(f)~(j)のいずれかに示すポリヌクレオチド:
(f)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(g)配列番号5~8のいずれかで表される塩基配列を含むポリヌクレオチド、
(h)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(i)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
(j)前記(f)~(i)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
からなる群から選択されるポリヌクレオチドである、(14)に記載の方法。
(16)前記ポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を含む、(1)~(4)のいずれかに記載のキット又は(5)~(10)のいずれかに記載のデバイスを用いて、被験体の検体における標的遺伝子の発現量を測定する、(11)~(15)のいずれかに記載の方法。
(17)前記被験体が、ヒトである、(11)~(16)のいずれかに記載の方法。
(18)前記検体が、血液、血清又は血漿である、(11)~(17)のいずれかに記載の方法。
(19)miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、及びmiR-6076からなる群から選択される少なくとも1つのポリヌクレオチドを含む、前立腺がん検出用マーカー。
(20)前記ポリヌクレオチドが、下記の(a)及び(b)のポリヌクレオチド:
(a)配列番号1~4のいずれかで表される塩基配列からなるポリヌクレオチド、
(b)配列番号1~4のいずれかで表される塩基配列を含むポリヌクレオチド、
からなる群から選択される少なくとも1つのポリヌクレオチドである、(19)に記載のマーカー。
(21)前記マーカーが、miR-17-3p、miR-320b、miR-6819-5p、及びmiR-1228-5pからなる群から選択される少なくとも1つのポリヌクレオチドをさらに含む、(19)または(20)に記載の前立腺がん検出用マーカー。
(22)前記ポリヌクレオチドが、下記の(f)及び(g)のポリヌクレオチド:
(f)配列番号5~8のいずれかで表される塩基配列からなるポリヌクレオチド、
(g)配列番号5~8のいずれかで表される塩基配列を含むポリヌクレオチド、
からなる群から選択される少なくとも1つのポリヌクレオチドである、(21)に記載のマーカー。
<用語の定義>
 本明細書中で使用する用語は、以下の定義を有する。
 ヌクレオチド、ポリヌクレオチド、DNA、RNAなどの略号による表示は、「塩基配列又はアミノ酸配列を含む明細書等の作成のためのガイドライン」(日本国特許庁編)及び当技術分野における慣用に従うものとする。
 本明細書において「ポリヌクレオチド」とは、RNA、DNA、及びRNA/DNA(キメラ)のいずれも包含する核酸に対して用いられる。なお、上記DNAには、cDNA、ゲノムDNA、及び合成DNAのいずれもが含まれる。また上記RNAには、total RNA、mRNA、rRNA、miRNA、siRNA、snoRNA、snRNA、non-coding RNA及び合成RNAのいずれもが含まれる。本明細書において「合成DNA」及び「合成RNA」は、所定の塩基配列(天然型配列又は非天然型配列のいずれでもよい。)に基づいて、例えば自動核酸合成機を用いて、人工的に作製されたDNA及びRNAをいう。本明細書において「非天然型配列」は、広義の意味に用いることを意図しており、天然型配列と異なる、例えば1以上のヌクレオチドの置換、欠失、挿入及び/又は付加を含む配列(すなわち、変異配列)、1以上の修飾ヌクレオチドを含む配列(すなわち、修飾配列)、などを包含する。また、本明細書では、ポリヌクレオチドは核酸と互換的に使用される。
 本明細書において「断片」とは、ポリヌクレオチドの連続した一部分の塩基配列を有するポリヌクレオチドであり、15塩基以上、好ましくは17塩基以上、より好ましくは19塩基以上の長さを有することが望ましい。
 本明細書において「遺伝子」とは、RNA、及び2本鎖DNAのみならず、それを構成する正鎖(又はセンス鎖)又は相補鎖(又はアンチセンス鎖)などの各1本鎖DNAを包含することを意図して用いられる。またその長さによって特に制限されるものではない。
 従って、本明細書において「遺伝子」は、特に言及しない限り、ヒトゲノムDNAを含む2本鎖DNA、1本鎖DNA(正鎖)、当該正鎖と相補的な配列を有する1本鎖DNA(相補鎖)、cDNA、マイクロRNA(miRNA)、及びこれらの断片、ヒトゲノム、及びそれらの転写産物のいずれも含む。また当該「遺伝子」は特定の塩基配列(又は配列番号)で表される「遺伝子」だけではなく、これらによってコードされるRNAと生物学的機能が同等であるRNA、例えば同族体(すなわち、ホモログもしくはオーソログ)、遺伝子多型などの変異体、及び誘導体をコードする「核酸」が包含される。かかる同族体、変異体又は誘導体をコードする「核酸」としては、具体的には、後に記載したストリンジェントな条件下で、配列番号1~33のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列の相補配列とハイブリダイズする塩基配列を有する「核酸」を挙げることができる。なお、「遺伝子」は、機能領域の別を問うものではなく、例えば発現制御領域、コード領域、エキソン又はイントロンを含むことができる。また、「遺伝子」は細胞に含まれていてもよく、細胞外に放出されて単独で存在していてもよく、またエキソソームと呼ばれる小胞に内包された状態にあってもよい。
 本明細書において「エキソソーム」(別称「エクソソーム」)とは、細胞から分泌される脂質二重膜に包まれた小胞である。エキソソームは多胞エンドソームに由来し、細胞外環境に放出される際にRNA、DNA等の「遺伝子」やタンパク質などの生体物質を内部に含むことがある。エキソソームは血液、血清、血漿、リンパ液等の体液に含まれることが知られている。
 本明細書において「転写産物」とは、遺伝子のDNA配列を鋳型にして合成されたRNAのことをいう。RNAポリメラーゼが遺伝子の上流にあるプロモーターと呼ばれる部位に結合し、DNAの塩基配列に相補的になるように3’末端にリボヌクレオチドを結合させていく形でRNAが合成される。このRNAには遺伝子そのもののみならず、発現制御領域、コード領域、エキソン又はイントロンをはじめとする転写開始点からポリA配列の末端にいたるまでの全配列が含まれる。
 また、本明細書において「マイクロRNA(miRNA)」は、特に言及しない限り、ヘアピン様構造のRNA前駆体として転写され、RNase III切断活性を有するdsRNA切断酵素により切断され、RISCと称するタンパク質複合体に取り込まれ、mRNAの翻訳抑制に関与する15~25塩基の非コーディングRNAを意図して用いられる。また本明細書で使用する「miRNA」は特定の塩基配列(又は配列番号)で表される「miRNA」だけではなく、当該「miRNA」の前駆体(pre-miRNA、pri-miRNA)を含有し、これらによってコードされるmiRNAと生物学的機能が同等であるmiRNA、例えば同族体(すなわち、ホモログもしくはオーソログ)、遺伝子多型などの変異体、及び誘導体をコードする「miRNA」も包含する。かかる前駆体、同族体、変異体又は誘導体をコードする「miRNA」としては、具体的には、miRBase release 21(http://www.mirbase.org/)により同定することができ、後に記載したストリンジェントな条件下で、配列番号1~33のいずれかで表されるいずれかの特定塩基配列の相補配列とハイブリダイズする塩基配列を有する「miRNA」を挙げることができる。さらにまた、本明細書で使用する「miRNA」は、miR遺伝子の遺伝子産物であってもよく、そのような遺伝子産物は、成熟型miRNA(例えば、上記のようなmRNAの翻訳抑制に関与する15~25塩基、又は19~25塩基、の非コーディングRNA)又はmiRNA前駆体(例えば、前記のようなpre-miRNA又はpri-miRNA)を包含する。
 本明細書において「プローブ」とは、遺伝子の発現によって生じたRNA又はそれに由来するポリヌクレオチドを特異的に検出するために使用されるポリヌクレオチド及び/又はそれに相補的なポリヌクレオチドを包含する。
 本明細書において「プライマー」とは、遺伝子の発現によって生じたRNA又はそれに由来するポリヌクレオチドを特異的に認識し、増幅する、連続するポリヌクレオチド及び/又はそれに相補的なポリヌクレオチドを包含する。
 ここで相補的なポリヌクレオチド(相補鎖、逆鎖)とは、配列番号1~33のいずれかによって定義される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチドの全長配列、又はその部分配列(ここでは便宜上、これを正鎖と呼ぶ)に対してA:T(U)、G:Cといった塩基対関係に基づいて、塩基的に相補的な関係にあるポリヌクレオチドを意味する。ただし、かかる相補鎖は、対象とする正鎖の塩基配列と完全に相補配列を形成する場合に限らず、対象とする正鎖とストリンジェントな条件でハイブリダイズできる程度の相補関係を有するものであってもよい。
 本明細書において「ストリンジェントな条件」とは、核酸プローブが他の配列に対するよりも、検出可能により大きな程度(例えばバックグラウンド測定値の平均+バックグラウンド測定値の標準誤差×2以上の測定値)で、その標的配列に対してハイブリダイズする条件をいう。ストリンジェントな条件は配列依存性であり、ハイブリダイゼーションが行われる環境によって異なる。ハイブリダイゼーション及び/又は洗浄条件のストリンジェンシーを制御することにより、核酸プローブに対して100%相補的である標的配列が同定され得る。「ストリンジェントな条件」の具体例は、後述する。
 本明細書において「Tm値」とは、ポリヌクレオチドの二本鎖部分が一本鎖へと変性し、二本鎖と一本鎖が1:1の比で存在する温度を意味する。
 本明細書において「変異体」とは、核酸の場合、多型性、突然変異などに起因した天然の変異体、あるいは配列番号1~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列又はその部分配列において1、2もしくは3又はそれ以上(例えば1~数個)の塩基の欠失、置換、付加又は挿入を含む変異体、あるいは配列番号1~8のいずれかの配列の前駆体RNA(premature miRNA)の塩基配列もしくは当該塩基配列においてuがtである塩基配列又はその部分配列において1又は2以上の塩基の欠失、置換、付加又は挿入を含む変異体、あるいは当該塩基配列の各々又はその部分配列と約90%以上、約95%以上、約97%以上、約98%以上、約99%以上の%同一性を示す変異体、あるいは当該塩基配列又はその部分配列を含むポリヌクレオチド又はオリゴヌクレオチドと上記定義のストリンジェントな条件でハイブリダイズする核酸を意味する。
 本明細書において「数個」とは、約10、9、8、7、6、5、4、3又は2個の整数を意味する。
 本明細書において、変異体は、部位特異的突然変異誘発法、PCR法を利用した突然変異導入法などの周知の技術を用いて作製可能である。
 本明細書において「%同一性」は、BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)やFASTA(http://www.genome.jp/tools/fasta/)によるタンパク質又は遺伝子の検索システムを用いて、ギャップを導入して、又はギャップを導入しないで、決定することができる(Zheng Zhangら、2000年、J.Comput.Biol.、7巻、p203-214;Altschul、S.F.ら、1990年、Journal of Molecular Biology、第215巻、p403-410;Pearson、W.R.ら、1988年、Proc.Natl.Acad.Sci.U.S.A.、第85巻、p2444-2448)。
 本明細書において「誘導体」とは、修飾核酸、非限定的に例えば、蛍光団などによるラベル化誘導体、修飾ヌクレオチド(例えばハロゲン、メチルなどのアルキル、メトキシなどのアルコキシ、チオ、カルボキシメチルなどの基を含むヌクレオチド及び塩基の再構成、二重結合の飽和、脱アミノ化、酸素分子の硫黄分子への置換などを受けたヌクレオチドなど)を含む誘導体、PNA(peptide nucleic acid;Nielsen、P.E.ら、1991年、Science、254巻、p1497-500)、LNA(locked nucleic acid;Obika、S.ら、1998年、Tetrahedron Lett.、39巻、p5401-5404)などを含むことを意味する。
 本明細書において上記の前立腺がんマーカーであるmiRNAから選択されるポリヌクレオチド又は該ポリヌクレオチドの相補鎖と特異的に結合可能な「核酸」は、合成又は調製された核酸であり、具体的には「核酸プローブ」又は「プライマー」を含み、被験体中の前立腺がんの存在の有無を検出するために、又は前立腺がんの罹患の有無、罹患の程度、前立腺がんの改善の有無や改善の程度、前立腺がんの治療に対する感受性を診断するために、あるいは前立腺がんの予防、改善又は治療に有用な候補物質をスクリーニングするために、直接又は間接的に利用される。これらには前立腺がんの罹患に関連して生体内、特に血液、尿等の体液等の検体において配列番号1~33のいずれかで表される転写産物又はそのcDNA合成核酸、又はこれらの相補鎖を特異的に認識し結合することのできるヌクレオチド、オリゴヌクレオチド及びポリヌクレオチドを包含する。これらのヌクレオチド、オリゴヌクレオチド及びポリヌクレオチドは、上記性質に基づいて生体内、組織や細胞内などで発現した上記遺伝子を検出するためのプローブとして、また生体内で発現した上記遺伝子を増幅するためのプライマーとして有効に利用することができる。
 本明細書で使用する「検出」という用語は、検査、測定、検出又は判定支援という用語で置換しうる。また、本明細書において「評価」という用語は、検査結果又は測定結果に基づいて診断又は評価を支援することを含む意味で使用される。
 本明細書で使用される「被験体」は、ヒト、チンパンジーを含む霊長類、イヌ、ネコなどのペット動物、ウシ、ウマ、ヒツジ、ヤギなどの家畜動物、マウス、ラットなどの齧歯類、動物園で飼育される動物などの哺乳動物を意味する。好ましい被験体は、ヒトである。また、「健常者」もまた、このような哺乳動物であって、検出しようとするがんに罹患していない動物を意味する。好ましい健常者は、ヒトである。
 本明細書で使用される「前立腺がん」は、前立腺に発生する悪性腫瘍であり、腎盂、尿管を含む尿路上皮がんも含まれる。
 本明細書で使用される「前立腺良性疾患」とは、前立腺肥大、前立腺炎、または尿失禁や感染症、血中PSAの高濃度などのその他の臨床所見の総合判断により前立腺疾患であると診断された疾患のうち非悪性腫瘍(良性)であると診断された疾患を意味する。本疾患が良性であることは、生検などによる病理検査の結果、がん陰性であると確定診断されることで証明される。
 本明細書で使用される「P」又は「P値」とは、統計学的検定において、帰無仮説の下で実際にデータから計算された統計量よりも極端な統計量が観測される確率を示す。したがって「P」又は「P値」が小さいほど、比較対象間に有意差があるとみなせる。
 本明細書において、「感度」は、(真陽性の数)/(真陽性の数+偽陰性の数)の値を意味する。感度が高ければ前立腺がんを早期に発見することが可能となり、完全ながん部の切除や再発率の低下につながる。
 本明細書において、「特異度」は、(真陰性の数)/(真陰性の数+偽陽性の数)を意味する。特異度が高ければ健常者を前立腺がん患者と誤判別することによる無駄な追加検査の実施を防ぎ、患者の負担の軽減や医療費の削減につながる。
 本明細書において、「精度」は(真陽性の数+真陰性の数)/(全症例数)の値を意味する。精度は全検体に対しての判別結果が正しかった割合を示しており、検出性能を評価する第一の指標となる。
 本明細書において、AUC(Area under the curve)とは、ある判別結果において、縦軸を感度、横軸を偽陽性率または[1-特異度]として判別閾値を媒介変数として大から小へと変化させた時に得られるROC(Receiver Operatorating Characteristic、受信者動作特性)曲線の下部面積を示す。AUCは0.5から1の値を取り、1に近いほど判別能が高いことを示す。
 本明細書において判定、検出又は診断の対象となる「検体」とは、前立腺がんの発生、前立腺がんの進行、及び前立腺がんに対する治療効果の発揮にともない本発明の遺伝子が発現変化する組織及び生体材料を指す。具体的には前立腺組織及び腎盂、尿管、リンパ節及びその周辺臓器、また転移が疑われる臓器、皮膚、及び血液、尿、唾液、汗、組織浸出液などの体液、血液から調製された血清、血漿、その他、便、毛髪などを指す。さらにこれらから抽出された生体試料、具体的にはRNAやmiRNAなどの遺伝子を指す。
 本明細書で使用される「hsa-miR-1185-2-3p遺伝子」又は「hsa-miR-1185-2-3p」という用語は、配列番号1に記載のhsa-miR-1185-2-3p遺伝子(miRBaseAccessionNo.MIMAT0022713)やその他生物種ホモログもしくはオーソログなどが包含される。hsa-miR-1185-2-3p遺伝子は、BerezikovEら、2006年、GenomeRes、16巻、p1289-1298に記載される方法によって得ることができる。また、「hsa-miR-1185-2-3p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-1185-2」(miRBaseAccessionNo.MI0003821、配列番号9)が知られている。
 本明細書で使用される「hsa-miR-1185-1-3p遺伝子」又は「hsa-miR-1185-1-3p」という用語は、配列番号2に記載のhsa-miR-1185-1-3p遺伝子(miRBaseAccessionNo.MIMAT0022838)やその他生物種ホモログもしくはオーソログなどが包含される。hsa-miR-1185-1-3p遺伝子は、BerezikovEら、2006年、GenomeRes、16巻、p1289-1298に記載される方法によって得ることができる。また、「hsa-miR-1185-1-3p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-1185-1」(miRBaseAccessionNo.MI0003844、配列番号10)が知られている。
 本明細書で使用される「hsa-miR-197-5p遺伝子」又は「hsa-miR-197-5p」という用語は、配列番号3に記載のhsa-miR-197-5p遺伝子(miRBaseAccessionNo.MIMAT0022691)やその他生物種ホモログもしくはオーソログなどが包含される。hsa-miR-197-5p遺伝子は、Lagos-QuintanaMら、2003年、RNA、9巻、p175-179に記載される方法によって得ることができる。また、「hsa-miR-197-5p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-197」(miRBaseAccessionNo.MI0000239、配列番号11)が知られている。
 本明細書で使用される「hsa-miR-6076遺伝子」又は「hsa-miR-6076」という用語は、配列番号4に記載のhsa-miR-6076遺伝子(miRBaseAccessionNo.MIMAT0023701)やその他生物種ホモログもしくはオーソログなどが包含される。hsa-miR-6076遺伝子は、VoellenkleCら、2012年、RNA、18巻、p472-484に記載される方法によって得ることができる。また、「hsa-miR-6076」は、その前駆体としてヘアピン様構造をとる「hsa-mir-6076」(miRBaseAccessionNo.MI0020353、配列番号12)が知られている。
 本明細書で使用される「hsa-miR-17-3p遺伝子」又は「hsa-miR-17-3p」という用語は、配列番号5に記載のhsa-miR-17-3p遺伝子(miRBaseAccessionNo.MIMAT0000071)やその他生物種ホモログもしくはオーソログなどが包含される。hsa-miR-17-3p遺伝子は、Lagos-QuintanaMら、2001年、Science.、294巻、p853-858に記載される方法によって得ることができる。また、「hsa-miR-17-3p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-17」(miRBaseAccessionNo.MI0000071、配列番号13)が知られている。
 本明細書で使用される「hsa-miR-320b遺伝子」又は「hsa-miR-320b」という用語は、配列番号6に記載のhsa-miR-320b遺伝子(miRBaseAccessionNo.MIMAT0005792)やその他生物種ホモログもしくはオーソログなどが包含される。hsa-miR-320b遺伝子は、BerezikovEら、2006年、GenomeRes、16巻、p1289-1298に記載される方法によって得ることができる。また、「hsa-miR-320b」は、その前駆体としてヘアピン様構造をとる「hsa-mir-320b-1、hsa-mir-320b-2」(miRBaseAccessionNo.MI0003776、MI0003839、配列番号14、15)が知られている。
 本明細書で使用される「hsa-miR-6819-5p遺伝子」又は「hsa-miR-6819-5p」という用語は、配列番号7に記載のhsa-miR-6819-5p遺伝子(miRBaseAccessionNo.MIMAT0027538)やその他生物種ホモログもしくはオーソログなどが包含される。hsa-miR-6819-5p遺伝子は、LadewigEら、2012年、GenomeRes、22巻、p1634-1645に記載される方法によって得ることができる。また、「hsa-miR-6819-5p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-6819」(miRBaseAccessionNo.MI0022664、配列番号16)が知られている。
 本明細書で使用される「hsa-miR-1228-5p遺伝子」又は「hsa-miR-1228-5p」という用語は、配列番号8に記載のhsa-miR-1228-5p遺伝子(miRBaseAccessionNo.MIMAT0005582)やその他生物種ホモログもしくはオーソログなどが包含される。hsa-miR-1228-5p遺伝子は、BerezikovEら、2007年、MolCell、28巻、p328-336に記載される方法によって得ることができる。また、「hsa-miR-1228-5p」は、その前駆体としてヘアピン様構造をとる「hsa-mir-1228」(miRBaseAccessionNo.MI0006318、配列番号17)が知られている。
 また、成熟型のmiRNAは、ヘアピン様構造をとるRNA前駆体から成熟型miRNAとして切出されるときに、配列の前後1~数塩基が短く、又は長く切出されることや、塩基の置換が生じて変異体となることがあり、isomiRと称される(Morin RD.ら、2008年、Genome Res.、第18巻、p.610-621)。miRBase Release21では、配列番号1~8のいずれかで表される塩基配列のほかに、数々のisomiRと呼ばれる配列番号18~33のいずれかで表される塩基配列の変異体及び断片も示されている。これらの変異体もまた、配列番号1~8のいずれかで表される塩基配列のmiRNAとして得ることができる。すなわち、本発明の配列番号1~8で表される塩基配列もしくは該塩基配列においてuがtである塩基配列からなるポリヌクレオチドの変異体のうち、例えばmiRBase Release 21に登録されている最も長い変異体として、それぞれ配列番号18、20、22、24、26、28、30、32で表されるポリヌクレオチドが挙げられる。また、本発明の配列番号1~8で表される塩基配列もしくは該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、の変異体のうち、例えばmiRBase Release 21に登録されている最も短い変異体として、それぞれ配列番号19、21、23、25、27、29、31、33で表される配列のポリヌクレオチドが挙げられる。また、これらの変異体及び断片以外にも、miRBaseに登録された、配列番号1~8の数々のisomiRであるポリヌクレオチドが挙げられる。さらに、配列番号1~8のいずれかで表される塩基配列を含むポリヌクレオチドの例としては、それぞれ前駆体である配列番号9~17のいずれかで表されるポリヌクレオチドが挙げられる。
 配列番号1~33で表される遺伝子の名称とmiRBase Accession No.(登録番号)を表1に記載した。
 本明細書において「特異的に結合可能な」とは、本発明で使用する核酸プローブ又はプライマーが、特定の標的核酸と結合し、他の核酸と実質的に結合できないことを意味する。
Figure JPOXMLDOC01-appb-T000001
 本願は、2018年8月10日に出願された日本国特許出願2018-151952号の優先権を主張するものであり、該特許出願の明細書に記載される内容を包含する。
 本発明により、前立腺がんを容易にかつ高い精度で検出することが可能となる。例えば、低侵襲的に採取できる患者の血液、血清及び又は血漿中の1個乃至数個のmiRNAの発現量の測定値を指標とし、容易に患者が前立腺がんであるか否かを検出することができる。 
図1は、前駆体である配列番号9で表されるhsa-mir-1185-2から生成される配列番号1で表されるhsa-miR-1185-2-3pの塩基配列の関係を示す。 図2は、ヒトの血中マイクロRNA全2,588種から前立腺がんマーカー候補を選定した工程スキームを示す。 図3は、学習検体群及び検証検体群の各々において、miR-1185-2-3pを用いて前立腺がんを判別した場合のROC曲線(Receiver Operatorating Characteristic curve、受信者動作特性曲線)と、ROC曲線下の面積(Area under the curve,AUC)が最高時の感度、特異度をそれぞれ示す。 図4は、学習検体群及び検証検体群の各々において、PSAを用いて前立腺がんを判別した場合のROC曲線(Receiver Operatorating Characteristic curve、受信者動作特性曲線)と、ROC曲線下の面積(Area under the curve,AUC)が最高時の感度、特異度をそれぞれ示す。 図5は、学習検体群及び検証検体群の各々において、miR-17-3pとmiR-1185-2-3pを組み合わせて用いて前立腺がんの判別をした場合のROC曲線(Receiver Operatorating Characteristic curve、受信者動作特性曲線)と、ROC曲線下の面積(Area under the curve,AUC)が最高時の感度、特異度をそれぞれ示す。 図6は、miR-17-3pとmiR-1185-2-3pを組み合わせて作成した判別式を用いて前立腺がんを判別した際の、前立腺がんの悪性度を評価する指標の一つであるグリーソン分類で分けられた前立腺がん症例毎の判別得点分布を示す。判別得点が正の値であれば前立腺がん陽性、負の値であれば前立腺がん陰性の判定を示す。各分類毎の数字%は、本判別式で判別できた割合(感度)を示す。また、判別得点は、悪性度の低い症例(グリーソン分類6)から悪性度のより高い症例(グリーソン分類7,≧8)において有意に向上することを示す。箱ひげ図は、中央の太い線が中央値、箱の下部が第1四分位点、箱の上部が第3四分位点、ひげ線(エラーバー)は外れ値を除いた最小値、最大値の範囲を示す。 図7は、miR-17-3pとmiR-1185-2-3pを組み合わせて作成した判別式を用いて前立腺がんを判別した際の、前立腺がんの大きさを評価する指標の一つであるT分類で分けられた前立腺がん症例毎の判別得点分布を示す。判別得点が正の値であれば前立腺がん陽性、負の値であれば前立腺がん陰性の判定を示す。各分類毎の数字%は、本判別式で判別できた割合(感度)を示す。箱ひげ図は、中央の太い線が中央値、箱の下部が第1四分位点、箱の上部が第3四分位点、ひげ線(エラーバー)は外れ値を除いた最小値、最大値の範囲を示す。 図8は、miR-17-3pとmiR-1185-2-3pを組み合わせて作成した判別式を用いて前立腺がんを判別した際の、前立腺がんのリンパ節転移の状態を評価する指標の一つであるN分類で分けられた前立腺がん症例毎の判別得点分布を示す。判別得点が正の値であれば前立腺がん陽性、負の値であれば前立腺がん陰性の判定を示す。各分類毎の数字%は、本判別式で判別できた割合(感度)を示す。箱ひげ図は、中央の太い線が中央値、箱の下部が第1四分位点、箱の上部が第3四分位点、ひげ線(エラーバー)は外れ値を除いた最小値、最大値の範囲を示す。 図9は、miR-17-3pとmiR-1185-2-3pを組み合わせて作成した判別式を用いて前立腺がんを判別した際の、前立腺がんの遠隔転移の状態を評価する指標の一つであるM分類で分けられた前立腺がん症例毎の判別得点分布を示す。判別得点が正の値であれば前立腺がん陽性、負の値であれば前立腺がん陰性の判定を示す。各分類毎の数字%は、本判別式で判別できた割合(感度)を示す。箱ひげ図は、中央の太い線が中央値、箱の下部が第1四分位点、箱の上部が第3四分位点、ひげ線(エラーバー)は外れ値を除いた最小値、最大値の範囲を示す。 図10は、前立腺がん(陽性)検体と前立腺がん疑い(陰性)検体のmiR-1275の発現量の散布図を示す。横軸にmiR-1275の発現量をlogスケールに変換した値を示す。
 以下に本発明をさらに具体的に説明する。
1.前立腺がんの標的核酸
 本発明の上記定義の前立腺がん検出用の核酸プローブ又はプライマーを使用して、前立腺がん又は前立腺がん細胞の存在及び/又は不存在を検出するための、前立腺がんマーカーとしての主要な標的核酸には、miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、miR-6076、miR-17-3p、miR-320b、miR-6819-5p、及びmiR-1228-5pからなる群から選択される少なくとも1つのmiRNAも標的核酸として好ましく用いることができる。
 上記のmiRNAには、例えば、配列番号1~8のいずれかで表される塩基配列を含むヒト遺伝子(すなわち、それぞれ、hsa-miR-1185-2-3p、hsa-miR-1185-1-3p、hsa-miR-197-5p、hsa-miR-6076、hsa-miR-17-3p、hsa-miR-320b、hsa-miR-6819-5p、hsa-miR-1228-5p)、その同族体、その転写産物、及びその変異体又は誘導体が含まれる。ここで、遺伝子、同族体、転写産物、変異体及び誘導体は、上記定義のとおりである。
 好ましい標的核酸は、配列番号1~8のいずれかで表される塩基配列を含むヒト遺伝子、その転写産物、より好ましくは当該転写産物、すなわちmiRNA、その前駆体RNAであるpri-miRNA又はpre-miRNAである。
 第1の標的遺伝子は、hsa-miR-1185-2-3p遺伝子、それらの同族体、それらの転写産物、あるいはそれらの変異体又は誘導体である。これまでに遺伝子又はその転写産物の発現の変化が前立腺がんのマーカーになりうるという報告は知られていない。
 第2の標的遺伝子は、hsa-miR-1185-1-3p遺伝子、それらの同族体、それらの転写産物、あるいはそれらの変異体又は誘導体である。これまでに遺伝子又はその転写産物の発現の変化が前立腺がんのマーカーになりうるという報告は知られていない。
 第3の標的遺伝は、hsa-miR-197-5p遺伝子、それらの同族体、それらの転写産物、あるいはそれらの変異体又は誘導体である。これまでに遺伝子又はその転写産物の発現の変化が前立腺がんのマーカーになりうるという報告は知られていない。
 第4の標的遺伝子は、hsa-miR-6076遺伝子、それらの同族体、それらの転写産物、あるいはそれらの変異体又は誘導体である。これまでに遺伝子又はその転写産物の発現の変化が前立腺がんのマーカーになりうるという報告は知られていない。
 第5の標的遺伝子は、hsa-miR-17-3p遺伝子、それらの同族体、それらの転写産物、あるいはそれらの変異体又は誘導体である。これまでに遺伝子又はその転写産物の発現の変化が前立腺がんのマーカーになりうるという報告は知られている(非特許文献2)。
 第6の標的遺伝子は、hsa-miR-320b遺伝子それらの同族体、それらの転写産物、あるいはそれらの変異体又は誘導体である。これまでに遺伝子又はその転写産物の発現の変化が前立腺がんのマーカーになりうるという報告は知られている(非特許文献1)。
 第7の標的遺伝子は、hsa-miR-6819-5p遺伝子それらの同族体、それらの転写産物、あるいはそれらの変異体又は誘導体である。これまでに遺伝子又はその転写産物の発現の変化が前立腺がんのマーカーになりうるという報告は知られている(特許文献2)。
 第8の標的遺伝子は、hsa-miR-1228-5p遺伝子それらの同族体、それらの転写産物、あるいはそれらの変異体又は誘導体である。これまでに遺伝子又はその転写産物の発現の変化が前立腺がんのマーカーになりうるという報告は知られている(特許文献2)。
 一態様において、本発明は、上記標的核酸の少なくとも1つを含む、前立腺がんを検出するための、又は前立腺がんを診断するためのマーカーに関する。
 一態様において、本発明は、前立腺がんを検出するための、又は前立腺がんを診断するための上記標的核酸の少なくとも1つの使用に関する。
2.前立腺がんの検出用の核酸プローブ又はプライマー
 本発明において、前立腺がんを検出するための、あるいは前立腺がんを診断するために使用可能な核酸プローブ又はプライマーは、前立腺がんの標的核酸としての、ヒト由来のmiR-1185-2-3p、miR-1185-1-3p、miR-197-5p、miR-6076、miR-17-3p、miR-320b、miR-6819-5p、miR-1228-5pあるいはそれらの組み合わせ、それらの同族体、それらの転写産物、あるいはそれらの変異体又は誘導体の存在、発現量又は存在量を定性的及び/又は定量的に測定することを可能にする。
 上記の標的核酸は、健常者、良性疾患患者及び前立腺がん以外のがんに罹患した被験体と比べ前立腺がんに罹患した被験体において、該標的核酸の種類に応じてそれらの発現量が増加するものもあれば、又は低下するものもある(以下、「増加/低下」と称する。)。それゆえ、本発明のキット又はデバイスは、前立腺がんの罹患が疑われる被験体(例えばヒト)由来の体液と健常者、良性疾患患者及び前立腺がん以外のがん患者由来の体液について上記標的核酸の発現量を測定し、それらを比較して、前立腺がんを検出するために有効に使用することができる。
 本発明で使用可能な核酸プローブ又はプライマーは、配列番号1~4の少なくとも1つで表される塩基配列からなるポリヌクレオチド又は該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸プローブ、あるいは、配列番号1~4の少なくとも1つで表される塩基配列からなるポリヌクレオチドを増幅するためのプライマーである。
 本発明で使用可能な核酸プローブ又はプライマーはさらに、配列番号5~8の少なくとも1つで表される塩基配列からなるポリヌクレオチド又は該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸プローブ、あるいは、配列番号5~8の少なくとも1つで表される塩基配列からなるポリヌクレオチドを増幅するためのプライマーを含むことができる。
 本発明の方法の好ましい実施形態において、上記の核酸プローブ又はプライマーは、配列番号1~33のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列を含むポリヌクレオチド群及びその相補的ポリヌクレオチド群、当該塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件(後述)でそれぞれハイブリダイズするポリヌクレオチド群及びその相補的ポリヌクレオチド群、並びにそれらのポリヌクレオチド群の塩基配列において15以上、好ましくは17以上の連続した塩基を含むポリヌクレオチド群から選ばれた1又は複数のポリヌクレオチドの組み合わせを含む。
 また、これらのポリヌクレオチドの塩基配列の長さの上限に特に制限は無いが、標的核酸が成熟型miRNAである場合は、例えば、30塩基以下、28塩基以下、25塩基以下であり、標的核酸がmiRNA前駆体である場合は、例えば200塩基以下、150塩基以下、120塩基以下であり、標的核酸がisomiRである場合は、例えば、40塩基以下、35塩基以下、30塩基以下である。
 これらのポリヌクレオチドは、標的核酸である上記前立腺がんマーカーを検出するための核酸プローブ及びプライマーとして使用できる。
 さらに具体的には、本発明で使用可能な核酸プローブ又はプライマーの例は、以下のポリヌクレオチド(a)~(e)のいずれかからなる群から選択される1又は複数のポリヌクレオチドである。
 (a)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
 (b)配列番号1~4のいずれかで表される塩基配列を含むポリヌクレオチド、
 (c)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
 (d)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、並びに、
 (e)前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド。
 本発明で使用可能な核酸プローブ又はプライマーはさらに、上記のポリヌクレオチド(a)~(e)のいずれかから選択される少なくとも1つのポリヌクレオチドの他に、下記の(f)~(j)のいずれかに示すポリヌクレオチドを含むことができる。
 (f)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
 (g)配列番号5~8のいずれかで表される塩基配列を含むポリヌクレオチド、
 (h)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
 (i)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、並びに、
 (j)前記(f)~(i)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド。
 本発明で使用される上記ポリヌクレオチド類又はその断片類はいずれもDNAでもよいしRNAでもよい。
 本発明で使用可能な上記のポリヌクレオチドは、DNA組換え技術、PCR法、DNA/RNA自動合成機による方法などの一般的な技術を用いて作製することができる。
 DNA組換え技術及びPCR法は、例えばAusubelら、Current Protocols in Molecular Biology、John Willey&Sons、US(1993);Sambrookら、Molecular Cloning A Laboratory Manual、Cold Spring Harbor Laboratory Press、US(1989)などに記載される技術を使用することができる。
 配列番号1~8で表されるヒト由来のmiR-1185-2-3p、miR-1185-1-3p、miR-197-5p、miR-6076、miR-17-3p、miR-320b、miR-6819-5p、miR-1228-5pは公知であり、前述のようにその取得方法も知られている。このため、この遺伝子をクローニングすることによって、本発明で使用可能な核酸プローブ又はプライマーとしてのポリヌクレオチドを作製することができる。
 そのような核酸プローブ又はプライマーは、DNA自動合成装置を用いて化学的に合成することができる。この合成には一般にホスホアミダイト法が使用され、この方法によって約100塩基までの一本鎖DNAを自動合成することができる。DNA自動合成装置は、例えばPolygen社、ABI社、Applied BioSystems社などから市販されている。
 あるいは、本発明のポリヌクレオチドは、cDNAクローニング法によって作製することもできる。cDNAクローニング技術は、例えばmicroRNA Cloning Kit Wakoなどを利用できる。
 ここで、配列番号1~8のいずれかで表される塩基配列からなるポリヌクレオチドを検出するための核酸プローブ及びプライマーの配列は、miRNA又はその前駆体としては生体内に存在していない。例えば、配列番号1で表される塩基配列は、配列番号9で表される前駆体から生成されるが、この前駆体は図1に示すようなヘアピン様構造を有しているが、配列番号1で表される塩基配列部分ではミスマッチ配列を有している。このため、配列番号1で表される塩基配列に対する、完全に相補的な塩基配列が生体内で自然に生成されることはない。このため、配列番号1~8のいずれかで表される塩基配列を検出するための核酸プローブ及びプライマーは生体内に存在しない人工的な塩基配列を有し得る。
3.前立腺がん検出用キット又はデバイス
 本発明はまた、前立腺がんマーカーである標的核酸を測定するための、本発明において核酸プローブ又はプライマーとして使用可能なポリヌクレオチド(これには、変異体、断片、又は誘導体を含みうる。)の1つ又は複数を含む前立腺がん検出用キット又はデバイスを提供する。
 本発明における前立腺がんマーカーである標的核酸は、好ましくは、以下の群Aから選択される。
群A:
miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、miR-6076。
 場合により測定に使用しうる追加の標的核酸は、好ましくは、以下の群Bから選択される。
群B:
miR-17-3p、miR-320b、miR-6819-5p、miR-1228-5p。
 本発明のキット又はデバイスは、上記の前立腺がんマーカーである標的核酸と特異的に結合可能な核酸、好ましくは、上記2に記載したポリヌクレオチド類から選択される1又は複数のポリヌクレオチド又はその変異体を含む。
 具体的には、本発明のキット又はデバイスは、配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列を含む(もしくは、からなる)ポリヌクレオチド、その相補的配列を含む(もしくは、からなる)ポリヌクレオチド、それらのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、又はそれらのポリヌクレオチド配列の15以上の連続した塩基を含む変異体又は断片を少なくとも1つ含むことができる。
 本発明のキット又はデバイスはさらに、配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列を含む(もしくは、からなる)ポリヌクレオチド、その相補的配列を含む(もしくは、からなる)ポリヌクレオチド、それらのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、又はそれらのポリヌクレオチド配列の15以上の連続した塩基を含む変異体又は断片を1つ以上含むことができる。
 本発明のキット又はデバイスに含むことができる断片は、例えば下記の(1)及び(2)からなる群より選択される1つ以上、好ましくは2つ以上のポリヌクレオチドである:
(1)配列番号1~4のいずれかで表される塩基配列においてuがtである塩基配列又はその相補的配列において、15以上の連続した塩基を含むポリヌクレオチド。
(2)配列番号5~8のいずれかで表される塩基配列においてuがtである塩基配列又はその相補的配列において、15以上の連続した塩基を含むポリヌクレオチド。
 好ましい実施形態では、前記ポリヌクレオチドが、配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その相補的配列からなるポリヌクレオチド、それらのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、又はそれらの15以上、好ましくは17以上、より好ましくは19以上の連続した塩基を含む変異体である。
 また、好ましい実施形態では、前記ポリヌクレオチドが、配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その相補的配列からなるポリヌクレオチド、それらのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、又はそれらの15以上、好ましくは17以上、より好ましくは19以上の連続した塩基を含む変異体である。
 好ましい実施形態では、前記断片は、15以上、好ましくは17以上、より好ましくは19以上の連続した塩基を含むポリヌクレオチドであることができる。
 本発明において、ポリヌクレオチドの断片のサイズは、各ポリヌクレオチドの塩基配列において、例えば、連続する15から配列の全塩基数未満、17から配列の全塩基数未満、19から配列の全塩基数未満などの範囲の塩基数である。
 また、これらのポリヌクレオチドの塩基配列の長さの上限に特に制限は無いが、標的核酸が成熟型miRNAである場合は、例えば、30塩基以下、28塩基以下、25塩基以下であり、標的核酸がmiRNA前駆体である場合は、例えば200塩基以下、150塩基以下、120塩基以下であり、標的核酸がisomiRである場合は、例えば、40塩基以下、35塩基以下、30塩基以下である。
 本発明のキット又はデバイスにおける標的核酸としての上記ポリヌクレオチドは、具体的には前記表1に示される配列番号1~33に表される塩基配列からなる上記のポリヌクレオチド1個、又は2個、3個、4個、5個、6個、7個、8個、9個、10個又はそれ以上の個数を組み合わせたものを挙げることができるが、それらはあくまでも例示であり、他の種々の可能な組み合わせのすべてが本発明に包含されるものとする。
 例えば、本発明において前立腺がん患者を健常者、良性骨軟部腫及び乳良性疾患患者、前立腺がん以外のがん患者などの前立腺がんに罹患していない被験者と判別するためのキット又はデバイスにおける標的核酸の組合せとしては、表1に示される配列番号に表される塩基配列からなる上記のポリヌクレオチド2個以上の組み合わせが挙げられる。具体的には、配列番号1~8に表される塩基配列からなる上記のポリヌクレオチドのいずれか2個以上を組み合わせればよい。このうち、新規に見出された配列番号1~4で表される塩基配列からなるポリヌクレオチドを少なくとも1つ選択することが好ましい。このうち特に、配列番号1からなるポリヌクレオチドを含む組み合わせ、さらに望ましくは配列番号1及び5からなるポリヌクレオチドを含む組み合わせ、さらに望ましくは配列番号1、3及び5からなるポリヌクレオチドを含む組み合わせ、または配列番号2、5及び7からなるポリヌクレオチドを含む組み合わせ、さらに望ましくは配列番号2、3、4及び5からなるポリヌクレオチドを含む組み合わせ、さらに望ましくは配列番号2、3、4、5及び8からなるポリヌクレオチドを含む組み合わせ、または配列番号2、3、4、5及び6からなるポリヌクレオチドを含む組み合わせがより好ましい。
 本発明のキット又はデバイスには、上で説明した本発明におけるポリヌクレオチド(これには、変異体、断片又は誘導体を包含しうる。)に加えて、前立腺がん検出を可能とする既知のポリヌクレオチド又は将来見出されるであろうポリヌクレオチドも包含させることができる。
 本発明のキット又はデバイスには、上で説明した本発明におけるポリヌクレオチドに加えて、PSA検査などの公知の前立腺がん検査用マーカーを測定するための抗体も含めることができる。
 本発明のキットに含まれるポリヌクレオチド、及びその変異体又はその断片は、個別に又は任意に組み合わせて異なる容器に包装されうる。
 本発明のキットには、体液、細胞又は組織から核酸(例えばtotal RNA)を抽出するためのキット、標識用蛍光物質、核酸増幅用酵素及び培地、使用説明書などを含めることができる。
 本発明のデバイスは、上で説明した本発明におけるポリヌクレオチド、その変異体、その誘導体、又はその断片などの核酸が、例えば、固相に結合もしくは付着されたがんマーカー測定のためのデバイスである。固相の材質の例は、プラスチック、紙、ガラスシリコンなどであり、加工のしやすさから、好ましい固相の材質はプラスチックである。固相の形状は、任意であり、例えば方形、丸形、短冊形、フィルム形などである。本発明のデバイスは、例えば、ハイブリダイゼーション技術による測定のためのデバイスが含まれ、具体的にはブロッティングデバイス、核酸アレイ(例えばマイクロアレイ、DNAチップ、RNAチップなど)などが例示される。
 核酸アレイ技術は、必要に応じてLリジンコートやアミノ基、カルボキシル基などの官能基導入などの表面処理が施された固相の表面に、スポッター又はアレイヤーと呼ばれる高密度分注機を用いて核酸をスポットする方法、ノズルより微少な液滴を圧電素子などにより噴射するインクジェットを用いて核酸を固相に吹き付ける方法、固相上で順次ヌクレオチド合成を行う方法などの方法を用いて、上記の核酸を1つずつ結合もしくは付着させることによりチップなどのアレイを作製し、このアレイを用いてハイブリダイゼーションを利用して標的核酸を測定する技術である。
 本発明のキット又はデバイスは、上記の群Aの前立腺がんマーカーであるmiRNAの少なくとも1つ、好ましくは少なくとも2つ、さらに好ましくは少なくとも3つ、最も好ましくは全部のポリヌクレオチド又は該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドのそれぞれと特異的に結合可能な核酸を含む。本発明のキット又はデバイスはさらに、場合により、上記の群Bの前立腺がんマーカーであるmiRNAの少なくとも1つ、好ましくは少なくとも2つ、さらに好ましくは少なくとも3つ、最も好ましくは全部のポリヌクレオチド又は該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドのそれぞれと特異的に結合可能な核酸を含むことができる。
 本発明のキット又はデバイスは、下記4の前立腺がんの検出のために使用することができる。
4.前立腺がんの検出方法
 本発明はさらに、検体中のmiR-1185-2-3p、miR-1185-1-3p、miR-197-5p、miR-6076で表される前立腺がん由来の遺伝子の発現量、並びに場合により、miR-17-3p、miR-320b、miR-6819-5p、miR-1228-5pで表される前立腺がん由来の遺伝子の発現量の1つ以上(例えば発現プロフィール)をin vitroで測定し、該測定された発現量(及び任意に同様に測定された健常者の対照発現量)を用いて被験体が前立腺がんに罹患しているか否かをin vitroで評価することを含む、前立腺がんの検出方法に関する。本方法において、例えば、前立腺がんの罹患が疑われる被験体と、前立腺がんに罹患していない被験者とから採取した血液、血清、血漿等の検体について、検体中の上記遺伝子の発現量と、前立腺がんに罹患していない被験者の対照発現量とを用いて、(例えば両発現量を比較して)、当該検体中の標的核酸の発現量に差がある場合、被験体が、前立腺がんに罹患していると評価することができる。
 本発明の上記方法は、低侵襲的に、感度及び特異度の高い、前立腺がんの早期診断を可能とし、これにより、早期の治療及び予後の改善をもたらし、さらに、疾病憎悪のモニターや外科的、放射線療法的、及び化学療法的な治療の有効性のモニターを可能にする。
 本発明の血液、血清、血漿等の検体から前立腺がん由来の遺伝子を抽出する方法としては、3D-Gene(登録商標)RNA extraction reagent from liquid sample kit(東レ株式会社)中のRNA抽出用試薬を加えて調整するのが特に好ましいが、一般的な酸性フェノール法(Acid Guanidinium-Phenol-Chloroform(AGPC)法)を用いてもよいし、Trizol(登録商標)(Life Technologies社)用いてもよいし、Trizol(life technologies社)やIsogen(ニッポンジーン社)などの酸性フェノールを含むRNA抽出用試薬を加えて調製してもよい。さらに、miRNeasy(登録商標)Mini Kit(Qiagen社)などのキットを利用できるが、これらの方法に限定されない。
 本発明はまた、被験体由来の検体中の前立腺がん由来のmiRNA遺伝子の発現産物のin vitroでの検出のための使用を提供する。
 本発明の方法を実施する方法は限定されないが、例えば上記3.で説明した本発明のキット又はデバイス(本発明で使用可能な上記の核酸を含む。)を用いて行うことができる。この方法において、上記キット又はデバイスは、上で説明したような、本発明で使用可能なポリヌクレオチドを単一であるいはあらゆる可能な組み合わせで含むものが使用される。
 本発明の前立腺がんの検出又は(遺伝子)診断において、本発明のキット又はデバイスに含まれるポリヌクレオチドは、プローブ又はプライマーとして用いることができる。プライマーとして用いる場合には、Life Technologies社のTaqMan(登録商標)MicroRNA Assays、Qiagen社のmiScript PCR Systemなどを利用できるが、これらの方法に限定されない。
 本発明の方法において、遺伝子発現量の測定は、ノーザンブロット法、サザンブロット法、in situ ハイブリダイゼーション法、ノーザンハイブリダイゼーション法、サザンハイブリダイゼーション法などのハイブリダイゼーション技術、定量RT-PCR法などの定量増幅技術、及び次世代シークエンサーによる方法などの、特定遺伝子を特異的に検出する公知の方法において、定法に従って行うことができる。測定対象検体としては、使用する検出方法の種類に応じて、被験体の血液、血清、血漿、尿等の体液を採取する。あるいは、そのような体液から上記の方法によって調製したtotal RNAを用いてもよいし、さらに当該RNAをもとにして調製される、cDNAを含む各種のポリヌクレオチドを用いてもよい。
 本発明の方法は、前立腺がんの診断又は罹患の有無の検出のために有用である。具体的には、本発明の前立腺がんの検出は、前立腺がんの罹患が疑われる被験体から、血液、血清、血漿、尿等の検体を用いて、例えば本発明のキット又はデバイスに含まれる核酸プローブ又はプライマーで検出される遺伝子の発現量をin vitroで検出することによって行うことができる。前立腺がんの罹患が疑われる被験体の血液、血清、血漿、尿等の検体中の、配列番号1~4の少なくとも1つで表される塩基配列、並びに場合により配列番号5~8の1つ以上で表される塩基配列からなるポリヌクレオチドの発現量が、前立腺がんに罹患していない被験者の血液、血清、又は血漿、尿等の検体中のそれらの発現量と比べて統計学的に有意に高い場合、当該被験体は前立腺がんに罹患していると評価することができる。
 本発明の方法において、被験体由来の検体について前立腺がんが含まれないこと、或いは前立腺がんが含まれることの検出方法は、被験体の血液、血清、血漿、尿等の体液を採取して、そこに含まれる標的遺伝子(もしくは、標的核酸)の発現量を、本発明のポリヌクレオチド群から選ばれた単数又は複数のポリヌクレオチド(変異体、断片又は誘導体を包含する。)を用いて測定することにより、前立腺がんの有無を評価する又は前立腺がんを検出することを含む。
 また本発明の前立腺がんの検出方法は、例えば前立腺がん患者において、該疾患のより精密な診断を目的として、別の前立腺がん関連検査、例えば、直腸診や経直腸的前立腺超音波検査、生体組織検査、CT検査、MRI検査、骨シンチグラフィ検査などの画像検査と組み合わせて用いることができる。更に、これらの前立腺がん関連検査の実施の必要性を判断するために、これらの検査の実施前に本発明の方法を利用することもできる。
 また本発明の前立腺がんの検出方法は、例えば前立腺がん患者において、該疾患の治療又は改善を目的として、既知の又は開発段階の前立腺がん関連治療法(非限定的な例として、放射線療法では、X線、陽子線及び重量子線療法や放射線療法のうち高線量率組織内照射、永久挿入密封小線源療法。ホルモン療法では、ゴセレリン酢酸塩やリュープロレリン酢酸塩などのLH-RH(黄体形成ホルモン放出ホルモン)アゴニストや、クロルマジノン酢酸エステル、フルタミド、ビカルタミド、エンザルタミド、アビラテロン酢酸エステルなどの抗アンドロゲン薬、デガレリクス酢酸塩などのLH-RHアンタゴニスト 、エチニルエストラジオールなどのエストロゲン。更に化学製剤としては、ドセタキセル水和物、カバジタキセル、エストラムスチンリン酸エステルナトリウム水和物など。更にこれらの併用などを含む。)を処方した場合における当該疾患の改善の有無又は改善の程度を評価又は診断するために使用することもできる。
 よって、本発明の別の側面によれば、前立腺がんの治療方法も提供される。本発明の前立腺がんの治療方法は、具体的には、上記の検出方法を行った結果、前立腺がんに罹患していると評価された被験体に対し、前立腺がんに対して行われる上記の治療(放射線療法、ホルモン療法、化学製剤投与、これらの併用)を施すステップを含む。
 本発明の方法は、例えば以下の(a)、(b)及び(c)のステップ:
(a)被験体由来の検体を、in vitroで、本発明のキット又はデバイスのポリヌクレオチドと接触させるステップ、
(b)検体中の標的核酸の発現量を、上記ポリヌクレオチドを核酸プローブ又はプライマーとして用いて測定するステップ、
(c)(b)の結果をもとに、当該被験体中の前立腺がん(細胞)の存在又は不存在を評価するステップ、
を含むことができる。
 一実施形態において、本発明は、miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、及びmiR-6076からなる群から選択される少なくとも1つ、好ましくは少なくとも2つのポリヌクレオチド又は該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を用いて、被験体の検体における標的核酸の発現量を測定し、該測定された発現量と、同様に測定された前立腺がんに罹患していない被験者の対照発現量とを用いて被験体が前立腺がんに罹患しているか否かをin vitroで評価することを含む、前立腺がんの検出方法を提供する。
 本明細書において「評価」するとは、医師による判定ではないin vitroでの検査による結果に基づいた評価支援である。
 上記のとおり、本発明の方法において、具体的には、miR-1185-2-3pがhsa-miR-1185-2-3pであり、miR-1185-1-3pがhsa-miR-1185-1-3pであり、miR-197-5pがhsa-miR-197-5pであり、miR-6076がhsa-miR-6076である。
 また、一実施形態において、本発明の方法における核酸(具体的には、プローブ又はプライマー)は、下記の(a)~(e)のいずれかに示すポリヌクレオチド:
(a)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(b)配列番号1~4のいずれかで表される塩基配列を含むポリヌクレオチド、
(c)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(d)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
(e)前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
からなる群から選択される。
 本発明の方法において、さらに、miR-17-3p、miR-320b、miR-6819-5p、及びmiR-1228-5pからなる群から選択される少なくとも1つのポリヌクレオチドの発現量を測定することができる。
 具体的には、miR-17-3pがhsa-miR-17-3pであり、miR-320bがhsa-miR-320bであり、miR-6819-5pがhsa-miR-6819-5pであり、miR-1228-5pがhsa-miR-1228-5pである。
 さらに、一実施形態において、前記ポリヌクレオチド又は該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を用いて前記ポリヌクレオチドの発現量の測定を行い、核酸は、下記の(f)~(j)のいずれかに示すポリヌクレオチド:
(f)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(g)配列番号5~8のいずれかで表される塩基配列を含むポリヌクレオチド、
(h)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
(i)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
(j)前記(f)~(i)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
からなる群から選択される。
 また、これらのポリヌクレオチドの塩基配列の長さの上限に特に制限は無いが、標的核酸が成熟型miRNAである場合は、例えば、30塩基以下、28塩基以下、25塩基以下であり、標的核酸がmiRNA前駆体である場合は、例えば200塩基以下、150塩基以下、120塩基以下であり、標的核酸がisomiRである場合は、例えば、40塩基以下、35塩基以下、30塩基以下である。
 本発明の方法で用いられる検体は、被験体の生体組織(好ましくは、前立腺組織又は腎盂、尿管組織)、血液、血清、血漿、尿等の体液などから調製される検体を挙げることができる。具体的には、当該組織から調製されるRNA含有検体、それからさらに調製されるポリヌクレオチドを含む検体、血液、血清、血漿、尿等の体液、被験体の生体組織の一部又は全部をバイオプシーなどで採取するか、手術によって摘出した生体組織などであり、これらから、測定のための検体を調製することができる。
 本明細書で被験体とは、哺乳動物、例えば非限定的にヒト、サル、マウス、ラットなどを指し、好ましくはヒトである。
 本発明の方法は、測定対象として用いる検体の種類に応じてステップを変更することができる。
 測定対象物としてRNAを利用する場合、前立腺がん(細胞)の検出方法は、例えば下記のステップ(a)、(b)及び(c):
(a)被験体の検体から調製されたRNA(ここで、ステップ(b)の定量RT-PCRのために、例えばRNAの3’末端はポリアデニル化されていてもよい、又はいずれか若しくは両方の末端に任意の配列がライゲーション法などで付加されていてもよい)又はそれから転写された相補的ポリヌクレオチド(cDNA)を、本発明のキットのポリヌクレオチドと結合させるステップ、
(b)当該ポリヌクレオチドに結合した検体由来のRNA又は当該RNAから合成されたcDNAを、上記ポリヌクレオチドを核酸プローブとして用いるハイブリダイゼーションによって、あるいは、上記ポリヌクレオチドをプライマーとして用いる定量RT-PCRによって測定するステップ、
(c)上記(b)の測定結果に基づいて、前立腺がん(又は前立腺がん由来の遺伝子)の存在又は不存在を評価するステップ、
を含むことができる。
 本発明によって標的遺伝子の発現量を測定するために、例えば種々のハイブリダイゼーション法を使用することができる。このようなハイブリダイゼーション法には、例えばノーザンブロット法、サザンブロット法、DNAチップ解析法、in situハイブリダイゼーション法、ノーザンハイブリダイゼーション法、サザンハイブリダイゼーション法などを使用することができる。また、ハイブリダイゼーション法と組み合わせて、又はその代替法として、定量RT-PCRなどのPCR法、又は次世代シークエンス法を使用することができる。
 ノーザンブロット法を利用する場合は、例えば本発明で使用可能な上記核酸プローブを用いることによって、RNA中の各遺伝子発現の有無やその発現量を検出、測定することができる。具体的には、核酸プローブ(相補鎖)を放射性同位元素(32P、33P、35Sなど)や蛍光物質などで標識し、それを常法にしたがってナイロンメンブレンなどにトランスファーした被検者の生体組織由来のRNAとハイブリダイズさせたのち、形成されたDNA/RNA二重鎖の標識物(放射性同位元素又は蛍光物質)に由来するシグナルを放射線検出器(BAS-1800II(富士フィルム株式会社)、などを例示できる)又は蛍光検出器(STORM 865(GEヘルスケア社)、などを例示できる)で検出、測定する方法を例示することができる。
 定量RT-PCR法を利用する場合には、例えば本発明で使用可能な上記プライマーを用いることによって、RNA中の遺伝子発現の有無やその発現量を検出、測定することができる。例えば、被験体の生体組織由来のRNAを回収し、3’末端をポリアデニル化し、ポリアデニル化RNAから常法にしたがってcDNAを調製して、これを鋳型として標的の各遺伝子マーカーの領域が増幅できるように、本発明の検出用キット又はデバイスに含まれ得る1対のプライマー(上記cDNAに結合する正鎖と逆鎖からなる)をcDNAとハイブリダイズさせて常法によりPCR法を行い、得られた一本鎖もしくは二本鎖DNAを検出する方法を例示することができる。なお、一本鎖もしくは二本鎖DNAの検出法としては、上記PCRをあらかじめ放射性同位元素や蛍光物質で標識しておいたプライマーを用いて行う方法、PCR産物をアガロースゲルで電気泳動し、エチジウムブロマイドなどで二本鎖DNAを染色して検出する方法、産生された一本鎖もしくは二本鎖DNAを常法にしたがってナイロンメンブレンなどにトランスファーさせ、標識した核酸プローブとハイブリダイズさせて検出する方法を含むことができる。
 また、定量RT-PCR法を用いる場合には、TaqMan(登録商標)MicroRNA Assays(Life Technologies社):LNA(登録商標)-based MicroRNA PCR(Exiqon社):Ncode(登録商標)miRNA qRT-PCT キット(invitrogen社)などの、miRNAを定量的に測定するために特別に工夫された市販の測定用キットを用いてもよい。
 核酸アレイ解析を利用する場合は、例えば本発明の上記検出用キット又はデバイスを核酸プローブ(一本鎖又は二本鎖)として基板(固相)に貼り付けたRNAチップ又はDNAチップを用いる。核酸プローブを貼り付けた領域をプローブスポット、核酸プローブを貼り付けていない領域をブランクスポットと称する。遺伝子群を基板に固相化したものには、一般に核酸チップ、核酸アレイ、マイクロアレイなどという名称があり、DNAもしくはRNAアレイにはDNAもしくはRNAマクロアレイとDNAもしくはRNAマイクロアレイが包含されるが、本明細書ではチップといった場合、当該アレイを含むものとする。DNAチップとしては3D-Gene(登録商標)Human miRNA Oligo chip(東レ株式会社)を用いることができるが、これに限られない。
 DNAチップの測定は、限定されないが、例えば検出用キット又はデバイスの標識物に由来するシグナルを画像検出器(Typhoon 9410(GEヘルスケア社)、3D-Gene(登録商標)スキャナー(東レ株式会社)などを例示できる)で検出、測定する方法を例示することができる。
 本明細書中で使用する「ストリンジェントな条件」とは、上述のように核酸プローブが他の配列に対するよりも、検出可能により大きな程度(例えばバックグラウンド測定値の平均+バックグラウンド測定値の標準誤差×2以上の測定値)で、その標的配列に対してハイブリダイズする条件である。
 ストリンジェントな条件はハイブリダイゼーションとその後の洗浄によって、規定される。そのハイブリダイゼーションの条件は、限定されないが、例えば30℃~60℃で、SSC、界面活性剤、ホルムアミド、デキストラン硫酸塩、ブロッキング剤などを含む溶液中で1~24時間の条件とする。ここで、1×SSCは、150mM塩化ナトリウム及び15mMクエン酸ナトリウムを含む水溶液(pH7.0)であり、界面活性剤はSDS(ドデシル硫酸ナトリウム)、Triton、もしくはTweenなどを含む。ハイブリダイゼーション条件としては、より好ましくは3~10×SSC、0.1~1%SDSを含む。ストリンジェントな条件を規定するもうひとつの条件である、ハイブリダイゼーション後の洗浄条件としては、例えば、30℃の0.5×SSCと0.1%SDSを含む溶液、及び30℃の0.2×SSCと0.1%SDSを含む溶液、及び30℃の0.05×SSC溶液による連続した洗浄などの条件を挙げることができる。相補鎖はかかる条件で洗浄しても対象とする正鎖とハイブリダイズ状態を維持するものであることが望ましい。具体的にはこのような相補鎖として、対象の正鎖の塩基配列と完全に相補的な関係にある塩基配列からなる鎖、並びに当該鎖と少なくとも80%、好ましくは少なくとも85%、より好ましくは少なくとも90%又は少なくとも95%の相同性(同一性)を有する塩基配列からなる鎖を例示することができる。
 これらのハイブリダイゼーションにおける「ストリンジェントな条件」の他の例については、例えばSambrook、J.&Russel、D.著、Molecular Cloning、A LABORATORY MANUAL、Cold Spring Harbor Laboratory Press、2001年1月15日発行、の第1巻7.42~7.45、第2巻8.9~8.17などに記載されており、本発明において利用できる。
 本発明のキットのポリヌクレオチド断片をプライマーとしてPCRを実施する際の条件の例としては、例えば10mM Tris-HCL(pH8.3)、50mM KCL、1~2mM MgClなどの組成のPCRバッファーを用い、当該プライマーの配列から計算されたTm値+5~10℃において15秒から1分程度処理することなどが挙げられる。かかるTm値の計算方法としてTm値=2×(アデニン残基数+チミン残基数)+4×(グアニン残基数+シトシン残基数)などが挙げられる。
 本発明の方法において、標的遺伝子の発現量の測定は、上記ハイブリダイゼーション法に加えて、シークエンサーを用いて行ってもよい。シークエンサーを用いる場合には、サンガー法に基づいた第1世代とするDNAシークエンサー、リードサイズの短い第2世代、リードサイズの長い第3世代のいずれも利用することができる(第2世代及び第3世代のシークエンサーを含めて、本明細書では「次世代シークエンサー」とも称する)。例えばMiseq・Hiseq・NexSeq(イルミナ社)、Ion Proton・Ion PGM・Ion S5/S5 XL(サーモフィッシャーサイエンティフィック社)、PacBio RS II・Sequel(Pacific Bioscience社)、ナノポアシークエンサーを用いる場合には、例えばMinION(Oxford Nanopore Technologies社)などを利用して、miRNAを測定するために特別に工夫された市販の測定用キットを用いてもよい。
 次世代シークエンスとは、次世代シークエンサーを用いた配列情報の取得法であり、Sanger法に比べて膨大な数のシークエンス反応を同時並行して実行できることを特徴とする(例えば、Rick Kamps et al.,Int.J.Mol.Sci.,2017,18(2),p.308及びInt.Neurourol.J.,2016,20(Suppl.2),S76-83を参照されたい)。限定するものではないが、miRNAに対する次世代シークエンスの工程例としては、まず、所定の塩基配列を有するアダプター配列を付加し、配列付加の前又は後に、全RNAをcDNAに逆転写する。逆転写後、シークエンス工程の前に、標的miRNAを解析するために、特定の標的miRNA由来のcDNAをPCR等により、又はプローブ等を用いて増幅又は濃縮してもよい。続いて行われるシークエンス工程の詳細は、次世代シークエンサーの種類により異なるが、典型的にはアダプター配列を介して基板に連結させ、またアダプター配列をプライミング部位としてシークエンス反応が行われる。シークエンス反応の詳細については、例えばRick Kamps et al.(上掲)を参照されたい。最後に、データ出力が行われる。この工程では、シークエンス反応により得られた配列情報(リード)を集めたものが得られる。例えば、次世代シークエンスでは、配列情報に基づいて標的miRNAを特定し、標的miRNAの配列を有するリードの数に基づいてその発現量を測定することができる。
 遺伝子発現量の算出としては、限定されないが、例えばStatistical analysis of gene expression microarray data(Speed T.著、Chapman and Hall/CRC)、及びA beginner’s guide Microarray gene expression data analysis(Causton H.C.ら著、Blackwell publishing)などに記載された統計学的処理を、本発明において利用できる。例えばDNAチップ上のブランクスポットの測定値の平均値に、ブランクスポットの測定値の標準偏差の2倍、好ましくは3倍、より好ましくは6倍を加算し、その値以上のシグナル値を有するプローブスポットを検出スポットとみなすことができる。さらに、ブランクスポットの測定値の平均値をバックグラウンドとみなし、プローブスポットの測定値から減算し、遺伝子発現量とすることができる。遺伝子発現量の欠損値については、解析対象から除外するか、好ましくは各DNAチップにおける遺伝子発現量の最小値で置換するか、より好ましくは遺伝子発現量の最小値の対数値から0.1を減算した値で置換することができる。さらに、低シグナルの遺伝子を除去するために、測定サンプル数の20%以上、好ましくは50%以上、より好ましくは80%以上において2の6乗、好ましくは2の8乗、より好ましくは2の10乗以上の遺伝子発現量を有する遺伝子のみを解析対象として選択することができる。遺伝子発現量の正規化(ノーマライゼーション)としては、限定されないが、例えばglobal normalizationやquantile normalization(Bolstad、B.M.ら、2003年、Bioinformatics、19巻、p185-193)などが挙げられる。また発現量がサンプルに依存せず恒久的な値を示す内因性遺伝子をコントロールとして特定し正規化に用いる方法や、外部から特定の核酸を一定量追加しその量を正規化に用いる方法などが挙げられる。
 本発明はまた、被験体由来の検体中の標的遺伝子の発現量を測定し、前立腺がんを有することが既知である被験体(もしくは、患者)由来の検体と前立腺がんに罹患していない被験者由来の検体の遺伝子発現量を教師サンプルとして作成された、かつ前立腺がんの存在又は不存在を区別的に判別することが可能である判別式(判別関数)に、上記被験体由来の検体中の標的遺伝子の発現量を代入し、それによって、前立腺がんの存在又は不存在を評価することを含む、被験体における前立腺がんを検出する(又は、検出を補助する)方法を提供する。
 すなわち、本発明はさらに、被験体が前立腺がんを含むこと、及び/又は、前立腺がんを含まないことが既知の複数の検体中の標的遺伝子の発現量をin vitroで測定する第1のステップ、前記第1のステップで得られた当該標的遺伝子の発現量の測定値を教師サンプルとした判別式を作成する第2のステップ、被験体由来の検体中の当該標的遺伝子の発現量を第1のステップと同様にin vitroで測定する第3のステップ、前記第2のステップで得られた判別式に第3のステップで得られた当該標的遺伝子の発現量の測定値を代入し、当該判別式から得られた結果に基づいて、被験体が前立腺がんを含むこと、或いは、前立腺がんを含まないことを決定又は評価する第4のステップを含む、前記方法が提供される。ここで、当該標的遺伝子は、当該ポリヌクレオチド、キット又はチップに含まれるポリヌクレオチド、及びその変異体又はその断片によって検出可能なものであってもよい。
 本明細書中、判別式は、前立腺がんの存在又は不存在を区別的に判別する判別式を作成することができる任意の判別分析法、例えばフィッシャーの判別分析、マハラノビス距離による非線形判別分析、ニューラルネットワーク、Support Vector Machine(SVM)、ロジスティック回帰分析(特に、LASSO(Least AbsoluteShrinkage and Selection Operator)法を用いたロジスティック回帰分析)、k-近傍法、決定木などを用いて判別式を作成できるが、これらの具体例に限定されない。
 線形判別分析は群分けの境界が直線あるいは超平面である場合、式1を判別式として用いて群の所属を判別する方法である。ここで、xは説明変数、wは説明変数の係数、w0は定数項とする。
Figure JPOXMLDOC01-appb-M000002
 判別式で得られた値を判別得点と呼び、新たに与えられたデータセットの測定値を説明変数として当該判別式に代入し、判別得点の符号で群分けを判別することができる。
 線形判別分析の一種であるフィッシャーの判別分析はクラス判別を行うのに適した次元を選択するための次元削減法であり、合成変数の分散(variance)に着目して、同じラベルを持つデータの分散を最小化することで識別力の高い合成変数を構成する(Venables、W.N.ら著 Modern Applied Statistics with S.Fourth edition.Springer.、2002年)。フィッシャーの判別分析では式2を最大にするような射影方向wを求める。ここで、μは入力の平均、ngはクラスgに属するデータ数、μgはクラスgに属するデータの入力の平均とする。分子・分母はそれぞれデータをベクトルwの方向に射影したときのクラス間分散、クラス内分散となっており、この比を最大化することで判別式係数wiを求める(金森敬文ら著、「パターン認識」、共立出版(東京、日本)(2009年)、Richard O.ら著、Pattern Classification Second Edition.、Wiley-Interscience、2000年)。
Figure JPOXMLDOC01-appb-M000003
 マハラノビス距離はデータの相関を考慮した式3で算出され、各群からのマハラノビス距離の近い群を所属群として判別する非線形判別分析として用いることができる。ここで、μは各群の中心ベクトル、S-1はその群の分散共分散行列の逆行列である。中心ベクトルは説明変数xから算出され、平均ベクトルや中央値ベクトルなどを用いることができる。
Figure JPOXMLDOC01-appb-M000004
 SVMとはV.Vapnikが考案した判別分析法である(The Nature of Statistical Leaning Theory、Springer、1995年)。分類すべき群分けが既知のデータセットの特定のデータ項目を説明変数、分類すべき群分けを目的変数として、当該データセットを既知の群分けに正しく分類するための超平面と呼ばれる境界面を決定し、当該境界面を用いてデータを分類する判別式を決定する。そして当該判別式は、新たに与えられるデータセットの測定値を説明変数として当該判別式に代入することにより、群分けを判別することができる。また、このときの判別結果は分類すべき群でも良く、分類すべき群に分類されうる確率でも良く、超平面からの距離でも良い。SVMでは非線形な問題に対応するための方法として、特徴ベクトルを高次元へ非線形変換し、その空間で線形の識別を行う方法が知られている。非線形に写像した空間での二つの要素の内積がそれぞれのもとの空間での入力のみで表現されるような式のことをカーネルと呼び、カーネルの一例としてリニアカーネル、RBF(Radial Basis Function)カーネル、ガウシアンカーネルを挙げることができる。カーネルによって高次元に写像しながら、実際には写像された空間での特徴の計算を避けてカーネルの計算のみで最適な判別式、すなわち判別式を構成することができる(例えば、麻生英樹ら著、統計科学のフロンテイア6「パターン認識と学習の統計学 新しい概念と手法」、岩波書店(東京、日本)(2004年)、Nello Cristianiniら著、SVM入門、共立出版(東京、日本)(2008年))。
 SVM法の一種であるC-support vector classification(C-SVC)は、2群の説明変数で学習を行って超平面を作成し、未知のデータセットがどちらの群に分類されるかを判別する(C.Cortesら、1995年、Machine Learning、20巻、p273-297)。
 本発明の方法で使用可能なC-SVCの判別式の算出例を以下に示す。まず全被験体を前立腺がん患者と前立腺がんに罹患していない被験者の2群に群分けする。被験体が前立腺がん患者に罹患している、もしくは前立腺がんに罹患していないと判断する基準としては、例えば前立腺組織検査を用いることができる。
 次に、分けられた2群の血清由来の検体の網羅的遺伝子発現量からなるデータセット(以下、学習検体群)を用意し、当該2群の間で遺伝子発現量に明確な差が見られる遺伝子を説明変数、当該群分けを目的変数(例えば-1と+1)としたC-SVCによる判別式を決定する。式4は最適化する目的関数であり、ここで、eは全ての入力ベクトル、yは目的変数、aはLagrange未定乗数ベクトル、Qは正定値行列、Cは制約条件を調整するパラメータを表す。
Figure JPOXMLDOC01-appb-M000005
 式5は最終的に得られた判別式であり、判別式によって得られた値の符号で所属する群を決定できる。ここで、xはサポートベクトル、yは群の所属を示すラベル、aは対応する係数、bは定数項、Kはカーネル関数である。
Figure JPOXMLDOC01-appb-M000006
 カーネル関数としては例えば式6で定義されるRBFカーネルを用いることができる。ここで、xはサポートベクトル、γは超平面の複雑さを調整するカーネルパラメータを表す。
Figure JPOXMLDOC01-appb-M000007
 ロジスティック回帰は、一つのカテゴリ変数(二値変数)を目的変数として、その発生確率を複数の説明変数を用いて予測する多変量解析法であり、下記の式7で表される。
Figure JPOXMLDOC01-appb-M000008
 LASSO(Least AbsoluteShrinkage and Selection Operator)法とは、観測された変数が多数存在する場合の変数選択及び調整の手法の1つで、Tibshiraniにより提案された(Tibshirani R.、1996年、J R Stat Soc Ser B、58巻、p267-88)。LASSO法は回帰係数の推定の際に罰則項を導入することで,モデルへの過剰適合を抑制し、いくつかの回帰係数を0に推定するという特徴がある。LASSO法を用いたロジスティック回帰では、式8で表される対数尤度関数を最大化するように回帰係数の推定を行う。
Figure JPOXMLDOC01-appb-M000009
 LASSO法による解析で得られた判別式の値yを、下記の式9で表されるロジスティック関数に代入して得られた値で所属する群を決定できる。
Figure JPOXMLDOC01-appb-M000010
 本発明の方法は、例えば下記のステップ(a)、(b)及び(c):
(a)前立腺がん患者由来であること及び前立腺がんを含まない被験体であることが既に知られている検体中の標的遺伝子の発現量を、本発明による検出用ポリヌクレオチド、キット又はDNAチップを用いて測定するステップ、
(b)(a)で測定された発現量の測定値から、上記の式1~3、5、6及び9の判別式を作成するステップ、
(c)被験体由来の検体中の当該標的遺伝子の発現量を、本発明による診断(検出)用ポリヌクレオチド、キット又はデバイス(例えばDNAチップ)を用いて測定し、(b)で作成した判別式に測定値を代入して、得られた結果に基づいて被験体が前立腺がんを含むこと又は前立腺がんを含まないことを決定又は評価する、或いは前立腺がん患者由来発現量を前立腺がんに罹患していない被験者由来の対照と比較し評価する、ステップ、
を含むことができる。ここで、式1~3、5、6及び9の式中のxは説明変数であり、上記2節に記載したポリヌクレオチド類から選択されるポリヌクレオチド又はその断片を測定することによって得られる値を含み、具体的には本発明の前立腺がん患者と前立腺がんに罹患していない被験者を判別するための説明変数は、例えば下記の(1)又は(2)より選択される遺伝子発現量である:
(1)配列番号1~4のいずれかで表される塩基配列又はその相補的配列において、15以上の連続した塩基を含むDNAのいずれかによって測定される前立腺がん患者及び前立腺がんに罹患していない被験者の血清における遺伝子発現量;又は
(2)配列番号5~8のいずれかで表される塩基配列又はその相補的配列において、15以上の連続した塩基を含むDNAのいずれかによって測定される前立腺がん患者及び前立腺がんに罹患していない被験者の血清における遺伝子発現量。
 以上に示すように、被験体由来の検体について、該被験体が前立腺がんを有するか否かを決定又は評価する方法として、1つ以上の遺伝子発現量を説明変数として用いた判別式が必要である。特に、1つの遺伝子発現量のみを用いた判別式の判別精度を上げるためには、前立腺がん患者群と前立腺がんに罹患していない被験者からなる2群間の発現量に明確な差がある遺伝子を判別式に用いることが必要である。
 すなわち、判別式の説明変数に用いる遺伝子の決定は、次のように行うことが好ましい。まず、学習群とする前立腺がん患者群の網羅的遺伝子発現量と前立腺がんに罹患していない被験者群の網羅的遺伝子発現量をデータセットとし、パラメトリック解析であるt検定のP値、ノンパラメトリック解析であるMann-WhitneyのU検定のP値、又はWilcoxon検定のP値などを利用して、当該2群間における各遺伝子の発現量の差の大きさを求める。
 検定によって得られたP値の危険率(有意水準)が例えば5%、1%又は0.01%より小さい場合に統計学的に有意とみなすことができる。
 検定を繰り返し行うことに起因する第一種の過誤の確率の増大を補正するために公知の方法、例えばボンフェローニ、ホルムなどの方法によって補正することができる(例えば、永田靖ら著、「統計的多重比較法の基礎」、サイエンティスト社(東京、日本)(2007年))。ボンフェローニ補正を例示すると、例えば検定によって得られたP値を検定の繰り返し回数、即ち、解析に用いる遺伝子数で乗じ、所望の有意水準と比較することにより検定全体での第一種の過誤を生じる確率を抑制できる。
 また、検定ではなく前立腺がん患者群の遺伝子発現量と前立腺がんに罹患していない被験者群の遺伝子発現量の間で、各々の遺伝子発現量の中央値の発現比の絶対値(Fold change)を算出し、判別式の説明変数に用いる遺伝子を選択してもよい。また、前立腺がん患者群と前立腺がんに罹患していない被験者群の遺伝子発現量を用いてROC曲線を作成し、AUROC値を基準にして判別式の説明変数に用いる遺伝子を選択してもよい。
 次に、ここで求めた遺伝子発現量の差が大きい任意の数の遺伝子を用いて、上記の種々の方法で算出することができる判別式を作成する。最大の判別精度を得る判別式を構築する方法として、例えばP値の有意水準を満たした遺伝子のあらゆる組み合わせで判別式を構築する方法や、判別式を作成するために使用する遺伝子を、遺伝子発現量の差の大きい順に一つずつ増やしながら繰り返して評価する方法などがある(Furey TS.ら、2000年、Bioinformatics.、16巻、p906-14)。この判別式に対し、別の独立の前立腺がん患者もしくは前立腺がんに罹患していない被験者の遺伝子発現量を説明変数に代入して、この独立の前立腺がん患者もしくは前立腺がんに罹患していない被験者について所属する群の判別結果を算出する。すなわち、見出した診断用遺伝子セット及び診断用遺伝子セットを用いて構築した判別式を、独立の検体群で評価することにより、より不偏的な前立腺がんを検出することができる診断用遺伝子セット及び前立腺がんを判別する方法を見出すことができる。
 また、複数の遺伝子発現量を説明変数として用いる判別式を作成する際には、上記のように前立腺がん患者群及び前立腺がんに罹患していない被験者群の間で発現量に明確な差がある遺伝子を選択する必要はない。すなわち、単独の遺伝子発現量に明確な差がなくとも、複数の遺伝子発現量を組み合わせることで、判別性能が高い判別式を得られる場合がある。そのため、判別式に用いる遺伝子の選択を事前に行わずに、判別性能が高い判別式の探索を直接行う方法も活用できる。
 また、当該判別式の判別性能(汎化性)の評価には、Split-sample法を用いることが好ましい。すなわち、データセットを学習検体群と検証検体群に分割し、学習検体群で統計学的検定による遺伝子の選択と判別式作成を行い、該判別式で検証検体群を判別した結果と検証検体群が所属する真の群を用いて精度、感度、及び特異度を算出し、判別性能を評価する。一方、データセットを分割せずに、全検体を用いて統計学的検定による遺伝子の選択と判別式作成を行い、新規に用意した検体を該判別式で判別して精度、感度、及び特異度を算出し、判別性能を評価することもできる。
 本発明は、前立腺がんの診断及び治療に有用な検出用又は疾患診断用ポリヌクレオチド、当該ポリヌクレオチドを用いた前立腺がんの検出方法、並びに当該ポリヌクレオチドを含む前立腺がんの検出キット及びデバイスを提供する。特に、現行の診断では非前立腺がん患者を前立腺がん患者と誤判別することによる無駄な追加検査の実施や、前立腺がん患者を見落とすことによる治療機会の逸失がおこる可能性がある。これに対し、本発明は、非侵襲的かつ少ない検体量でステージ、浸潤度、組織学的異型度、初発/再発によらず前立腺がんを正しく判別できる、すなわちaccuracy精度の高い前立腺がんマーカーから前立腺がんの診断及び治療に有用な疾患診断用キット又はデバイス、前立腺がんの判定(又は検出)方法を提供する。
 例えば、上に記載したような配列番号1~4のいずれかで表される塩基配列若しくはその相補的配列に基づく1又は2以上の上記ポリヌクレオチド、並びに場合により、配列番号5~8のいずれかで表される塩基配列若しくはその相補的配列に基づく1又は2以上の上記ポリヌクレオチド、からの任意の組み合わせを診断用遺伝子セットとする。さらに、組織診断の結果前立腺がんと判断された患者由来の検体と、前立腺がんに罹患していない被験者由来の検体における該診断用遺伝子セットの発現量を用いて判別式を構築する。その結果、未知の検体の該診断用遺伝子セットの発現量を測定することにより、未知の検体の由来する被験体が前立腺がんを含むこと又は前立腺がんを含まないことを最高で96%の精度で見分けることができる。
 本発明のキット及び方法等によれば、前立腺がんを感度よく検出できるので、前立腺がんを早期に発見することが可能となる。その結果、早期の治療が可能となり、生存率の大幅な向上に繋がり得る。また、尿細胞診の観察者間で見られる高い変動性や、前立腺内視鏡検査の術者の主観による結果の違いにより、前立腺がん患者を見落とすことによる治療機会の逸失や、非前立腺がん患者を前立腺がん患者と誤判別することによる無駄な追加検査の実施を避けることが可能となる。
 本発明を以下の実施例によってさらに具体的に説明する。しかし、本発明の範囲は、この実施例によって制限されないものとする。
[参考例]
<検体の採取>
 前立腺組織針生検により陽性と確認された前立腺がん患者1,044人、前立腺がんが疑われたが前立腺組織針生検では陰性と確認された前立腺良性疾患患者241人、及びがんの既往歴が無く且つ3カ月以内の入院歴がない健康な男性41人からインフォームドコンセントを得て、ベノジェクトII真空採血管VP-AS109K63(テルモ株式会社(日本))を用いてそれぞれ血清を採取した。このうち、41人は臨床情報の不足により、3人は他のがん種の併発により、181人は採血前の治療の影響により、また13人は下記する遺伝子発現量測定における品質基準未達により、解析対象から除外した。従って、計809人の前立腺がん患者、241人の前立腺良性疾患患者、41人の健康人の血清サンプルを使用した。
 これらの症例における年齢分布は、前立腺がんで平均67歳(最小62歳~最高73歳)、前立腺良性で平均66歳(最小61歳~最高70歳)、健康人で平均70歳(最小48歳最高77歳)であった。
 前立腺がん症例におけるがんの悪性度を示すグリーソン分類値の分布は、分類値6が86例、分類値3+4が244例、分類値4+3は159例、分類値8以上は320例であった。
 前立腺がん症例におけるがんの大きさを示すT分類の分布は、T1cが256例、T2a~T2cが354例、T3a~T3bが183例、T4が16例であった。
 前立腺がん症例におけるリンパ節転移の有無を示すN分類の分布は、N1が54例、N0が755例であった。
 前立腺がん症例における遠隔転移の有無を示すM分類の分布は、M1が64例、M0が745例であった。以上の症例情報をまとめて表2に示す。
Figure JPOXMLDOC01-appb-T000011
<totalRNAの抽出>
 検体として上記の合計1,091人からそれぞれ得られた血清300μLから、3D-Gene(登録商標)RNA extraction reagent from liquid sample kit(東レ株式会社(日本))中のRNA抽出用試薬を用いて、同社の定めるプロトコールに従ってtotal RNAを得た。
<遺伝子発現量の測定>
 検体として上記の合計1,091人の血清から得たtotal RNAに対して、3D-Gene(登録商標)miRNA Labeling kit(東レ株式会社)を用いて同社が定めるプロトコールに基づいてmiRNAを蛍光標識した。オリゴDNAチップとして、miRBase release 21に登録されているmiRNAの中で、2,588種のmiRNAと相補的な配列を有するプローブを搭載した3D-Gene(登録商標)Human miRNA Oligo chip(東レ株式会社)を用い、同社が定めるプロトコールに基づいてストリンジェントな条件でハイブリダイゼーション及びハイブリダイゼーション後の洗浄を行った。DNAチップを3D-Gene(登録商標)スキャナー(東レ株式会社)を用いてスキャンし、画像を取得して3D-Gene(登録商標)Extraction(東レ株式会社)にて蛍光強度を数値化した。
 数値化された蛍光強度を用いて以下のように検出された遺伝子の発現量を計算した。まず、複数あるネガティブコントロールスポットのシグナル強度の最大順位と最小順位各々5%を除き、その[平均値+2×標準偏差]を計算し、この値より大きいシグナル強度を示した遺伝子は検出されたとみなした。検出された遺伝子のシグナル強度からは、最大順位と最小順位各々5%を除いたネガティブコントロールスポットのシグナル強度の平均値を減算後、底が2の対数値に変換して遺伝子発現量とした。データの正規化は、内因性コントロールとして報告がある3種類のmiRNA:miR-149-3p、miR-2861、miR-4463(下村、ら、Cancer Science、2016年、第107巻、ページ326-34)の平均値を用いて異なる検体のデータを正規化した。上記において検出されなかった遺伝子については、正規化後のデータにおいて底が2の対数値00.1に置換した。このようにして、上記の1,091人の血清に対する、網羅的なmiRNAの遺伝子発現量のシグナル値を得た。
 前立腺がんを判別する方法を構築するには以下のような段階的手順を踏んだ。すなわち、まず症例を探索検体群、学習検体群、検証検体群に3分割し、探索検体群でマーカー候補の抽出、学習検体群で判別式の構築、検証検体群で判別式の検証を実施した。症例の分け方は、探索検体群に前立腺がん、前立腺良性疾患、健康人を41症例ずつの計123症例、学習検体群と検証検体群は残りの症例を半分ずつ、すなわち前立腺がん384症例と前立腺良性疾患100症例の計484症例に分割した。これらの症例分割においては、年齢、グリーソン分類、T分類、N分類、M分類が均等に割り付けられるよう分割した。
 数値化されたmiRNAの遺伝子発現量を用いた計算及び統計解析は、R言語3.3.1(R Core Team(2016).R:A language and environment for statistical computing.R Foundation for Statistical Computing、Vienna、Austria.URL https://www.R-project.org/.)及びMASSパッケージ7.3.45(Venables、W.N.&Ripley、B.D.(2002)Modern Applied Statistics with S.Fourth Edition.Springer、New York.ISBN 0-387-95457-0)を用いて実施した。
[実施例1]
<1種のmiRNAを用いた判別式による前立腺がん判別分析>
 本実施例では、探索検体群でマーカー候補として抽出したmiRNAの各1種を用いて学習検体群で判別式を作成し、検証検体群で作成した判別式の性能を検証した。
 具体的には、まず探索検体群において、ヒトに存在する全2,588種のmiRNA(測定対象)からより信頼性の高い診断マーカーを獲得するため、図2に示すスキームに従いマーカー候補を絞り込んだ。始めに、陽性検体群(前立腺がん患者)又は陰性検体群(前立腺良性疾患患者及び健康人)のいずれかにおいて、50%以上の検体数で2の6乗以上の遺伝子発現量を有しない2,180種のmiRNAはシグナル強度が低く信頼性が無いとして除外し、残り408種のmiRNAを次の工程対象とした。次に、交差検証を実施して精度が0.7に満たなかった370種を除外し、最後に残った38種のmiRNAについて、平均発現量が、健康人<前立腺良性疾患患者<前立腺がん患者、の順番、または、前立腺がん患者<前立腺良性疾患患者<健康人、の順番にならない20種類のmiRNAはがん特異性が低いとして除外し、最後に残った18種類のmiRNAをマーカー候補として特定した。
 次に学習検体群において、得られた18種類のmiRNA発現量の各々についてフィッシャーの線形判別分析を行い、交差検証も実施しつつ、前立腺がんの存在の有無を判別する判別式を構築した。
 その結果、配列番号1~8で表される塩基配列からなる8種類のポリヌクレオチドは、学習検体群で得られた判別能が検証検体群でも検証された。例えば、配列番号1で表される塩基配列からなるポリヌクレオチドのAUCは、学習検体群において0.921であり、検証検体群において0.917であった(図3)。同様に、配列番号2~8で表される塩基配列からなるポリヌクレオチドのAUCは、学習検体群においてそれぞれ0.921、0.568、0.936、0.971、0.836、0.843、0.707であり、検証検体群においてそれぞれ0.913、0.607、0.940、0.913、0.815、0.822、0.733であった(表3)。
Figure JPOXMLDOC01-appb-T000012
 一方、同じ検体群から測定された既存の前立腺がんマーカーであるPSAのAUCは、学習検体群で0.63、検証検体群では0.60であった(図4)。
 すなわち、配列番号1、2、4、5、6、7、8で表される塩基配列からなる7種類のポリヌクレオチドは、単独でPSAを上回る判別能で前立腺がんを判別できた。
 更に、具体的な判別閾値を設けて判別式を特定し、感度、特異度を評価基準としてこれらのマーカーを評価した。例えば、配列番号1で表される塩基配列からなるポリヌクレオチドの発現量を用いて作成した判別式(0.903*[hsa-miR-1185-2-3p]-6.870)の値が正の値であれば前立腺がん陽性判定、負の値であれば前立腺がん陰性判定、との結果が得られる。このようにして配列番号1~8で表される塩基配列からなるポリヌクレオチドの発現量を用いて作成した判別式により得られた感度と特異度を表4に示す。
Figure JPOXMLDOC01-appb-T000013
 例えば、配列番号1を用いた判別式では学習検体群における感度は0.891、特異度は0.810、検証検体群における感度は0.857、特異度は0.790であった。配列番号2を用いた判別式では学習検体群における感度は0.807、特異度は0.880、検証検体群における感度は0.763、特異度は0.910であった。配列番号3を用いた判別式では学習検体群における感度は0.497、特異度は0.680、検証検体群における感度は0.523、特異度は0.660であった。配列番号4を用いた判別式では学習検体群における感度は0.839、特異度は0.930、検証検体群における感度は0.844、特異度は0.900であった。配列番号5を用いた判別式では学習検体群における感度は0.883、特異度は0.930、検証検体群における感度は0.870、特異度は0.830であった。配列番号6を用いた判別式では学習検体群における感度は0.711、特異度は0.820、検証検体群における感度は0.688、特異度は0.770であった。配列番号7を用いた判別式では学習検体群における感度は0.708、特異度は0.830、検証検体群における感度は0.721、特異度は0.800であった。配列番号8を用いた判別式では学習検体群における感度は0.552、特異度は0.810、検証検体群における感度は0.537、特異度は0.840であった。
 一方、同じ検体群から測定された既存の前立腺がんマーカーであるPSAについて一般的な閾値である4ng/mLを用いた時には、学習検体群における感度は0.55、特異度は0.64、検証検体群における感度は0.47、特異度は0.72であった。
 すなわち、配列番号1、2、4、5、6、7、8で表される塩基配列からなる7種類のポリヌクレオチドは、単独でPSAを上回る感度及び特異度で前立腺がん疑いのある良性疾患患者から前立腺がんを判別できた。
[実施例2]
<2種以上のmiRNAを用いた判別式による前立腺がん判別分析>
 本実施例では、探索検体群でマーカー候補として抽出した18種類のmiRNAを複数組み合わせて学習検体群で判別式を作成し、検証検体群で作成した判別式の性能を検証した。具体的には、学習検体群において、得られた18種類のmiRNA発現量の各々についてフィッシャーの線形判別分析を行い、交差検証も実施しつつ、前立腺がんの存在の有無を判別する判別式を構築した。
 その結果、配列番号1~8で表される塩基配列からなる8種類のポリヌクレオチドを組み合わせた判別式の学習検体群における判別能は、実施例1で示した単独の塩基配列からなるポリヌクレオチドによる判別よりも向上し、その高性能は検証検体群でも検証された。
 例えば、実施例1より、配列番号1で表される塩基配列からなるポリヌクレオチドのAUCは、学習検体群において0.921であり、検証検体群において0.917であった(図3)が、配列番号1と5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式のAUCは、学習検体群において0.986であり、検証検体群において0.953であった(図5)。更に、例えば配列番号1、3、5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式のAUCは、学習検体群において0.986であり、検証検体群において0.953であった。同様に、例えば配列番号2、5、7で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式のAUCは、学習検体群において0.985であり、検証検体群において0.954であった。更に、例えば配列番号2、3、4、5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式のAUCは、学習検体群において0.989であり、検証検体群において0.974であった。更に、例えば配列番号2、3、4、5、8で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式のAUCは、学習検体群において0.990であり、検証検体群において0.975であった。同様に、例えば配列番号2、3、4、5、6で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式のAUCは、学習検体群において0.990であり、検証検体群において0.976であった。
 これらの結果をまとめて表5に示す。これらの性能は検証検体群においても検証された。
Figure JPOXMLDOC01-appb-T000014
 一方、同じ検体群から測定された既存の前立腺がんマーカーであるPSAのAUCは、学習検体群で0.63、検証検体群では0.60であった(図4)。
 以上のとおり、配列番号1~8で表される塩基配列からなる8種類のポリヌクレオチドを複数の組み合わせ全ての判別式は、PSAを上回る判別能で前立腺がんを判別できた。
 更に、具体的な判別閾値を設けて判別式を特定し、感度、特異度を評価基準としてこれらのマーカーを評価した。その結果、配列番号1~8で表される塩基配列からなる8種類のポリヌクレオチドを組み合わせた判別式の学習検体群における感度及び特異度は、実施例1で示した単独の塩基配列からなるポリヌクレオチドによる判別の感度及び特異度よりも向上し、その高性能は検証検体群でも検証された。
 例えば、実施例1より配列番号1で表される塩基配列からなるポリヌクレオチドを用いた判別式では学習検体群における感度は0.891、特異度は0.810、検証検体群における感度は0.857、特異度は0.790であったが(図3)、配列番号1と5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式の学習検体群における感度は0.909、特異度は0.970、検証検体群における感度は0.901、特異度は0.900であった。更に、配列番号1、3、5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式の学習検体群における感度は0.909、特異度は0.970であり、検証検体群における感度は0.888、特異度は0.900であった。同様に、配列番号2、5、7で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式の学習検体群における感度は0.945、特異度は0.920であり、検証検体群における感度は0.956、特異度は0.850であった。更に、配列番号2、3、4、5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式の学習検体群における感度は0.935、特異度は0.950であり、検証検体群における感度は0.927、特異度は0.890であった。更に、配列番号2、3、4、5、8で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式の学習検体群における感度は0.909、特異度は0.970であり、検証検体群における感度は0.906、特異度は0.900であった。更に、配列番号2、3、4、5、6で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式の学習検体群における感度は0.943、特異度は0.950であり、検証検体群における感度は0.935、特異度は0.900であった。
 これらの結果をまとめて表6に示す。これらの性能は検証検体群においても検証された。
Figure JPOXMLDOC01-appb-T000015
 一方、同じ検体群から測定された既存の前立腺がんマーカーであるPSAについて一般的な閾値である4ng/mLを用いた時には、学習検体群における感度は0.55、特異度は0.64、検証検体群における感度は0.47、特異度は0.72であった。
 以上のことから、配列番号1~8で表される塩基配列からなる8種類のポリヌクレオチドを複数組み合わせた全ての判別式は、PSAを上回る感度及び特異度で前立腺がん疑いのある良性疾患患者から前立腺がんを判別できた。
[実施例3]
<miRNAを用いた判別式による病態分類別の前立腺がんの判別>
 本実施例では、実施例1及び2で作成及び検証されたmiRNAの判別式を用いて前立腺がんの病態別特徴に焦点を当てて判別性能を評価した。具体的には、前立腺がんの悪性度を示すグリーソン分類、がんの大きさを示すT分類、がんのリンパ節転移の状態を示すN分類、及び遠隔転移の状態を示すM分類の違いにより、miRNAを用いた判別式の判別性能が変化するかを検証検体群を用いて検討した。
 その結果、例えば、配列番号1と5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式は、図6に示すとおり、グリーソン分類値3+3(=6)の前立腺がんを89%判別、グリーソン分類値3+4(=7)の前立腺がんを91%判別、グリーソン分類値4+3(=7)の前立腺がんを92%判別、グリーソン分類値8以上の前立腺がんを89%判別した。また、グリーソン分類値6の判別得点と比較すると、グリーソン分類値7以上の判別得点は有意に増加しており(ANOVA判定)、前立腺がんの悪性度を反映していた。すなわち、本判別式は、悪性度の低い、早期の前立腺がんも進行した前立腺がんと同等に高い性能で判別することができた。
 また、例えば、配列番号1と5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式の判別性能を、がんの大きさの指標であるT分類の観点から評価した場合、図7に示すとおり、T1cの前立腺がんを93%判別、T2の前立腺がんを87%判別、T3以上の前立腺がんを92%判別できた。すなわち、本判別式は、がんが小さい、早期の前立腺がんも進行した前立腺がんと同等に高い性能で判別することができた。
 また、例えば、配列番号1と5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式の判別性能を、がんのリンパ節転移の状態を示すN分類の観点から評価した場合、図8に示すとおり、リンパ節転移の無いN0の前立腺がんを90%判別、リンパ節転移の有るN1の前立腺がんを89%判別できた。すなわち、本判別式は、リンパ節転移が無い、早期の前立腺がんも進行した前立腺がんと同等に高い性能で判別することができた。
 また、例えば、配列番号1と5で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式の判別性能を、がんの遠隔転移の状態を示すM分類の観点から評価した場合、図9に示すとおり、遠隔転移の無いM0の前立腺がんを91%判別、遠隔転移のあるM1の前立腺がんを85%判別できた。すなわち、本判別式は、遠隔転移が無い、比較的早期の前立腺がんも進行した前立腺がんと同等に高い性能で判別することができた。
 同様に、前記表6に示す、配列番号1~8で表される塩基配列からなるポリヌクレオチドを組み合わせて作成した判別式においても同様に、グリーソン分類、T分類、N分類、M分類に依存せず前立腺がんを高性能で判別することができた。
[比較例1]
<miR-1275による前立腺がんの判別>
 特許文献1を参考に、miR-1275による前立腺がんの判別を試みた。すなわち本発明で用いた検体であって参考例に記載した計809人の前立腺がん患者、241人の前立腺良性疾患患者の血清中miR-1275の発現量をもとに、前立腺がんの有無を判定できるか検討した。
 その結果、両検体群のmiR-1275の発現量の分布は大部分で重なっており(図10)、例えば発現量7.3を閾値とすると、感度89%、特異度10%であり、発現量7.5を閾値とすると感度81%、特異度23%であり、発現量7.8を閾値とすると感度55%、特異度47%であった。これらの性能は前立腺がんの判別に充分であるとは言えず、検査として臨床で実用することはできない結果であった。
 本発明により、簡易かつ安価な方法で、様々な進行度、悪性度の前立腺がんを効果的に検出することができるため、前立腺がんの早期発見、診断及び治療が可能になる。また、本発明の方法により、患者血液を用いて前立腺がんを低侵襲的に検出できるため、前立腺がんを簡便かつ迅速に検出することが可能になる。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (18)

  1.  前立腺がんマーカーである、miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、及びmiR-6076からなる群から選択される少なくとも1つのポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を含む、前立腺がんの検出用キット。
  2.  前記核酸が、下記の(a)~(e)のいずれかに示すポリヌクレオチド:
    (a)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (b)配列番号1~4のいずれかで表される塩基配列を含むポリヌクレオチド、
    (c)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (d)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
    (e)前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
    からなる群から選択されるポリヌクレオチドである、請求項1に記載のキット。
  3.  前記キットが、別の前立腺がんマーカーである、miR-17-3p、miR-320b、miR-6819-5p、及びmiR-1228-5pからなる群から選択される少なくとも1つのポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸をさらに含む、請求項1又は2に記載のキット。
  4.  前記核酸が、下記の(f)~(j)のいずれかに示すポリヌクレオチド:
    (f)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (g)配列番号5~8のいずれかで表される塩基配列を含むポリヌクレオチド、
    (h)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (i)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
    (j)前記(f)~(i)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
    からなる群から選択されるポリヌクレオチドである、請求項3に記載のキット。
  5.  前立腺がんマーカーである、miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、及びmiR-6076からなる群から選択される少なくとも1つのポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を含む、前立腺がんの検出用デバイス。
  6.  前記核酸が、下記の(a)~(e)のいずれかに示すポリヌクレオチド:
    (a)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (b)配列番号1~4のいずれかで表される塩基配列を含むポリヌクレオチド、
    (c)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (d)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
    (e)前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
    からなる群から選択されるポリヌクレオチドである、請求項5に記載のデバイス。
  7.  前記デバイスが、別の前立腺がんマーカーである、miR-17-3p、miR-320b、miR-6819-5p、及びmiR-1228-5pからなる群から選択される少なくとも1つのポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸をさらに含む、請求項5又は6に記載のデバイス。
  8.  前記核酸が、下記の(f)~(j)のいずれかに示すポリヌクレオチド:
    (f)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (g)配列番号5~8のいずれかで表される塩基配列を含むポリヌクレオチド、
    (h)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (i)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
    (j)前記(f)~(i)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
    からなる群から選択されるポリヌクレオチドである、請求項7に記載のデバイス。
  9.  前記デバイスが、ハイブリダイゼーション技術による測定のためのデバイスである、請求項5~8のいずれか1項に記載のデバイス。
  10.  前記ハイブリダイゼーション技術が、核酸アレイ技術である、請求項9に記載のデバイス。
  11.  被験体の検体において、前立腺がんマーカーである、miR-1185-2-3p、miR-1185-1-3p、miR-197-5p、及びmiR-6076からなる群から選択される少なくとも1つのポリヌクレオチドの発現量を測定し、該測定された発現量を用いて被験体が前立腺がんに罹患しているか否かをin vitroで評価することを含む、前立腺がんの検出方法。
  12.  前立腺がんを有することが既知である被験体由来の検体の遺伝子発現量と前立腺がんに罹患していない被験体由来の検体の遺伝子発現量を教師サンプルとして作成された、かつ前立腺がんの存在又は不存在を区別的に判別することが可能である判別式に、上記被験体由来の検体中の前記少なくとも1つのポリヌクレオチドの発現量を代入し、それによって、前立腺がんの存在又は不存在をin vitroで評価することを含む、請求項11に記載の方法。
  13.  前記ポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を用いて前記ポリヌクレオチドの発現量の測定を行い、前記核酸が、下記の(a)~(e)のいずれかに示すポリヌクレオチド:
    (a)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (b)配列番号1~4のいずれかで表される塩基配列を含むポリヌクレオチド、
    (c)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (d)配列番号1~4のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
    (e)前記(a)~(d)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
    からなる群から選択されるポリヌクレオチドである、請求項11又は12に記載の方法。
  14.  別の前立腺がんマーカーである、miR-17-3p、miR-320b、miR-6819-5p、及びmiR-1228-5pからなる群から選択される少なくとも1つのポリヌクレオチドの発現量を測定することをさらに含む、請求項11~13のいずれか1項に記載の方法。
  15.  前記ポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を用いて前記ポリヌクレオチドの発現量の測定を行い、前記核酸が、下記の(f)~(j)のいずれかに示すポリヌクレオチド:
    (f)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (g)配列番号5~8のいずれかで表される塩基配列を含むポリヌクレオチド、
    (h)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列からなるポリヌクレオチド、その変異体、その誘導体、又は15以上の連続した塩基を含むその断片、
    (i)配列番号5~8のいずれかで表される塩基配列もしくは当該塩基配列においてuがtである塩基配列に相補的な塩基配列を含むポリヌクレオチド、及び
    (j)前記(f)~(i)のいずれかのポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド、
    からなる群から選択されるポリヌクレオチドである、請求項14に記載の方法。
  16.  前記ポリヌクレオチド又は当該ポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドと特異的に結合可能な核酸を含む、請求項1~4のいずれか1項に記載のキット又は請求項5~10のいずれか1項に記載のデバイスを用いて、被験体の検体における標的遺伝子の発現量を測定する、請求項11~15のいずれか1項に記載の方法。
  17.  前記被験体が、ヒトである、請求項11~16のいずれか1項に記載の方法。
  18.  前記検体が、血液、血清又は血漿である、請求項11~17のいずれか1項に記載の方法。
PCT/JP2019/031550 2018-08-10 2019-08-09 前立腺がんの検出のためのキット、デバイス及び方法 WO2020032228A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19847308.4A EP3835434A4 (en) 2018-08-10 2019-08-09 PROSTATE CANCER DETECTION KIT, DEVICE AND METHOD
US17/265,060 US11535899B2 (en) 2018-08-10 2019-08-09 Kit, device and method for detecting prostate cancer
JP2020535900A JP7378739B2 (ja) 2018-08-10 2019-08-09 前立腺がんの検出のためのキット、デバイス及び方法
US17/988,959 US11905565B2 (en) 2018-08-10 2022-11-17 Kit, device and method for detecting prostate cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151952 2018-08-10
JP2018-151952 2018-08-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/265,060 A-371-Of-International US11535899B2 (en) 2018-08-10 2019-08-09 Kit, device and method for detecting prostate cancer
US17/988,959 Division US11905565B2 (en) 2018-08-10 2022-11-17 Kit, device and method for detecting prostate cancer

Publications (1)

Publication Number Publication Date
WO2020032228A1 true WO2020032228A1 (ja) 2020-02-13

Family

ID=69414816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031550 WO2020032228A1 (ja) 2018-08-10 2019-08-09 前立腺がんの検出のためのキット、デバイス及び方法

Country Status (4)

Country Link
US (2) US11535899B2 (ja)
EP (1) EP3835434A4 (ja)
JP (1) JP7378739B2 (ja)
WO (1) WO2020032228A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013568A1 (ja) * 2021-08-02 2023-02-09 株式会社メディカル・アーク イヌの癌の診断方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063894A1 (ja) * 2010-11-12 2012-05-18 国立大学法人愛媛大学 マイクロrnaのアンチセンスオリゴヌクレオチドを含む組成物
JP2015039365A (ja) 2013-08-23 2015-03-02 東レ株式会社 前立腺がんの検出用キットおよび検出方法
WO2015190584A1 (ja) 2014-06-12 2015-12-17 東レ株式会社 前立腺がんの検出キット又はデバイス及び検出方法
WO2015194627A1 (ja) * 2014-06-18 2015-12-23 東レ株式会社 食道がんの検出キット又はデバイス及び検出方法
WO2015194615A1 (ja) * 2014-06-18 2015-12-23 東レ株式会社 肝臓がんの検出キット又はデバイス及び検出方法
JP2017521051A (ja) * 2014-05-13 2017-08-03 ロゼッタ ゲノミックス エルティーディー. 甲状腺腫瘍の分類におけるmiRNA発現シグネチャー
JP2018151952A (ja) 2017-03-14 2018-09-27 オムロン株式会社 リーダ装置、無線タグ、情報提示システム
WO2018199275A1 (ja) * 2017-04-28 2018-11-01 東レ株式会社 卵巣腫瘍の検出のためのキット、デバイス及び方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487253B1 (en) 2006-01-05 2015-06-24 The Ohio State University Research Foundation MicroRNA-based methods and compositions for the diagnosis and treatment of solid cancers
EP2260109A4 (en) 2008-02-28 2011-06-08 Univ Ohio State Res Found METHODS AND COMPOSITIONS BASED ON MICRO-RNA FOR DIAGNOSING, PROGNOSING AND TREATING PROSTATE-RELATED DISORDERS
JP2012507300A (ja) 2008-10-30 2012-03-29 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Rnaパターンを評価する方法
WO2010054386A2 (en) 2008-11-10 2010-05-14 Battelle Memorial Institute Methods, compositions, and devices utilizing microrna to determine physiological conditions
CA2762986C (en) * 2009-05-22 2018-03-06 Asuragen, Inc. Mirna biomarkers of prostate disease
EP2341145A1 (en) 2009-12-30 2011-07-06 febit holding GmbH miRNA fingerprint in the diagnosis of diseases
EP3372684B1 (en) 2010-08-24 2020-10-07 Sirna Therapeutics, Inc. Single-stranded rnai agents containing an internal, non-nucleic acid spacer
JP2014522993A (ja) 2011-08-08 2014-09-08 カリス ライフ サイエンシズ ルクセンブルク ホールディングス エス.アー.エール.エル. バイオマーカー組成物および方法
WO2014071205A1 (en) 2012-11-02 2014-05-08 Dana-Farber Cancer Institute, Inc. Compositions and methods for diagnosis, prognosis and treatment of hematological malignancies
WO2014071226A1 (en) 2012-11-02 2014-05-08 The Regents Of The University Of California Methods and systems for determining a likelihood of adverse prostate cancer pathology
WO2014100252A1 (en) * 2012-12-18 2014-06-26 University Of Washington Through Its Center For Commercialization Methods and compositions to modulate rna processing
AU2015349638A1 (en) 2014-11-21 2017-06-15 Caris Science, Inc. Oligonucleotide probes and uses thereof
BR112017018318A2 (pt) 2015-02-25 2018-07-10 Bioneer Corporation composição farmacêutica para tratar câncer compreendendo microrna como ingrediente ativo

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063894A1 (ja) * 2010-11-12 2012-05-18 国立大学法人愛媛大学 マイクロrnaのアンチセンスオリゴヌクレオチドを含む組成物
JP2015039365A (ja) 2013-08-23 2015-03-02 東レ株式会社 前立腺がんの検出用キットおよび検出方法
JP2017521051A (ja) * 2014-05-13 2017-08-03 ロゼッタ ゲノミックス エルティーディー. 甲状腺腫瘍の分類におけるmiRNA発現シグネチャー
WO2015190584A1 (ja) 2014-06-12 2015-12-17 東レ株式会社 前立腺がんの検出キット又はデバイス及び検出方法
WO2015194627A1 (ja) * 2014-06-18 2015-12-23 東レ株式会社 食道がんの検出キット又はデバイス及び検出方法
WO2015194615A1 (ja) * 2014-06-18 2015-12-23 東レ株式会社 肝臓がんの検出キット又はデバイス及び検出方法
JP2018151952A (ja) 2017-03-14 2018-09-27 オムロン株式会社 リーダ装置、無線タグ、情報提示システム
WO2018199275A1 (ja) * 2017-04-28 2018-11-01 東レ株式会社 卵巣腫瘍の検出のためのキット、デバイス及び方法

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
ALTSCHUL, S.F. ET AL., JOURNAL OF MOLECULAR BIOLOGY, vol. 215, 1990, pages 403 - 410
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1993, JOHN WILLEY & SONS
BEREZIKOV E ET AL., GENOME RES., vol. 16, 2006, pages 1289 - 1298
BEREZIKOV E ET AL., MOL. CELL, vol. 28, 2007, pages 328 - 336
BOLSTAD, B.M. ET AL., BIOINFORMATICS, vol. 19, 2003, pages 185 - 193
BUDD, W. T. ET AL.: "Abstract B54: miR-125b and miR-17-3p: Newly identified tumor suppressors for prostate cancer", CANCER RESEARCH, vol. 72, no. 4, 6 February 2012 (2012-02-06), XP055684105, DOI: 10.1158/1538-7445.PRCA2012-B54 *
C. CORTES ET AL., MACHINE LEARNING, vol. 20, 1995, pages 273 - 297
FENG, S. ET AL., ONCOLOGY LETTERS, vol. 14, no. 6, 2017, pages 6943 - 6949
FUREY TS. ET AL., BIOINFORMATICS., vol. 16, 2000, pages 906 - 14
HIDEKI ASO ET AL.: "Frontier of Statistical Science", vol. 6, 2004, IWANAMI SHOTEN, PUBLISHERS, article "Statistics of pattern recognition and learning - New concepts and approaches"
INT. NEUROUROL. J., vol. 20, 2016, pages 76 - 83
LADEWIG E ET AL., GENOME RES., vol. 22, 2012, pages 1634 - 1645
LAGOS-QUINTANA M ET AL., RNA, vol. 9, 2003, pages 175 - 179
LAGOS-QUINTANA M ET AL., SCIENCE, vol. 294, 2001, pages 853 - 858
LIEB, B. ET AL., ONCOTARGET, vol. 9, no. 12, 2018, pages 10402 - 10416
LIEB, V. ET AL.: "Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients.", ONCOTARGET, vol. 9, no. 12, 13 February 2018 (2018-02-13), pages 10402 - 10416, XP055684107 *
MORIN RD ET AL., GENOME RES., vol. 18, 2008, pages 610 - 621
NELLO CRISTIANINI ET AL.: "Introduction to SVM", 2008, KYORITSU SHUPPAN CO., LTD.
NIELSEN, P.E. ET AL., SCIENCE, vol. 254, 1991, pages 1497 - 500
OBIKA, S ET AL., TETRAHEDRON LETT., vol. 39, 1998, pages 5401 - 5404
PEARSON, W.R. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, pages 2444 - 2448
RICK KAMPS ET AL., INT. J. MOL. SCI., vol. 18, no. 2, 2017, pages 308
SAMBROOK ET AL.: "Molecular Cloning A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK, J.RUSSEL, D.: "Molecular Cloning, A LABORATORY MANUAL", vol. 1, 2, 15 January 2001, COLD SPRING HARBOR LABORATORY PRESS
SHIMOMURA ET AL., CANCER SCIENCE, vol. 107, 2016, pages 326 - 34
SOBIN, L. ET AL., TNM CLASSIFICATION OF MALIGNANT TUMORS, vol. 7, 2010, pages 230 - 234
TAKAFUMI KANAMORI ET AL.: "Pattern Recognition", 2009, KYORITSU SHUPPAN CO., LTD.
TIBSHIRANI R., J. R. STAT. SOC. SER. B, vol. 58, 1996, pages 267 - 88
URABE, FUMIHIKO ET AL.: "Large-scale circulating microRNA profiling for the liquid biopsy of prostate cancer.", CLINICAL CANCER RESEARCH, vol. 25, no. 10, 15 May 2019 (2019-05-15), pages 3016 - 3025, XP055684095 *
VENABLES, W.N.RIPLEY, B.D.: "Modern Applied Statistics", 2002, SPRINGER.
VOELLENKLE C ET AL., RNA, vol. 18, 2012, pages 472 - 484
WOLF, AM ET AL., A CANCER JOURNAL FOR CLINICIANS, vol. 60, no. 2, 2010, pages 70 - 98
YASUSHI NAGATA ET AL.: "Basics of statistical multiple comparison methods", 2007, SCIENTIST PRESS CO., LTD.
ZHENG ZHANG ET AL., J. COMPUT. BIOL., vol. 7, 2000, pages 203 - 214

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013568A1 (ja) * 2021-08-02 2023-02-09 株式会社メディカル・アーク イヌの癌の診断方法

Also Published As

Publication number Publication date
US20210310077A1 (en) 2021-10-07
US11905565B2 (en) 2024-02-20
EP3835434A4 (en) 2022-06-08
US20230212687A1 (en) 2023-07-06
EP3835434A1 (en) 2021-06-16
JPWO2020032228A1 (ja) 2021-08-26
JP7378739B2 (ja) 2023-11-14
US11535899B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP7082380B2 (ja) 膵臓がんの検出キット又はデバイス及び検出方法
JP7448144B2 (ja) 前立腺がんの検出キット又はデバイス及び検出方法
CN106414774B (zh) 胆道癌的检测试剂盒或装置以及检测方法
CN106661619B (zh) 大肠癌的检测试剂盒或装置以及检测方法
CN106471132B (zh) 肺癌的检测试剂盒或装置以及检测方法
JP6925125B2 (ja) 胃がんの検出キット又はデバイス及び検出方法
CN110546263A (zh) 用于检测卵巢肿瘤的试剂盒、装置和方法
EP3438266A1 (en) Kit or device for detecting malignant brain tumor and method for detecting same
CN112020566B (zh) 用于膀胱癌的检测的试剂盒、器件和方法
JP6611411B2 (ja) 膵臓がんの検出キット及び検出方法
US11905565B2 (en) Kit, device and method for detecting prostate cancer
JP6383541B2 (ja) 胆管がんの検出キット及び検出方法
WO2020179895A1 (ja) 子宮平滑筋肉腫の検出のためのキット、デバイス及び方法
JP5897823B2 (ja) 膀胱ガン診断用組成物及び方法
US20240141439A1 (en) Kit, device and method for detecting prostate cancer
WO2023068318A1 (ja) 卵巣がんと卵巣良性腫瘍とを判別するためのキット、デバイス及び方法
JP2018074938A (ja) 悪性骨軟部腫瘍の検出用キット又はデバイス及び検出方法
JP2020080773A (ja) ニボルマブ薬効予測のためのキット及び方法
JP2023076054A (ja) がん患者の緩和ケア病棟入院の要否を予測するためのキット、デバイス及び方法
CN117987555A (zh) 用于检测卵巢肿瘤的试剂盒、装置和方法
CN117965741A (zh) 胰腺癌的检测试剂盒或装置以及检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019847308

Country of ref document: EP

Effective date: 20210310