WO2020032042A1 - 細胞塊を分割するためのデバイス、および、それを用いて細胞塊を分割する方法 - Google Patents

細胞塊を分割するためのデバイス、および、それを用いて細胞塊を分割する方法 Download PDF

Info

Publication number
WO2020032042A1
WO2020032042A1 PCT/JP2019/030940 JP2019030940W WO2020032042A1 WO 2020032042 A1 WO2020032042 A1 WO 2020032042A1 JP 2019030940 W JP2019030940 W JP 2019030940W WO 2020032042 A1 WO2020032042 A1 WO 2020032042A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell mass
cell
cells
medium
culture
Prior art date
Application number
PCT/JP2019/030940
Other languages
English (en)
French (fr)
Inventor
敬一朗 大塚
昌孝 南
林 寿人
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to EP19848554.2A priority Critical patent/EP3831927A4/en
Priority to US17/266,464 priority patent/US20210292699A1/en
Priority to CN201980065695.2A priority patent/CN112805365A/zh
Priority to JP2020535800A priority patent/JPWO2020032042A1/ja
Publication of WO2020032042A1 publication Critical patent/WO2020032042A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/14Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]

Definitions

  • the present invention relates to a device for dividing a cell mass, and a method for dividing a cell mass using the device.
  • Non-Patent Document 1 suggests that undifferentiation may be reduced in a large cell mass of 150 ⁇ m or more.
  • the pluripotent stem cells are subjected to suspension culture until a large cell mass having an average diameter of about 200 to about 300 ⁇ m is obtained, and the obtained large cell mass is obtained.
  • the cells are divided into smaller cell masses having an average diameter of about 80 to about 120 ⁇ m, and thereafter, further suspension culture is continued to maintain and expand the pluripotent stem cells.
  • a mesh made by weaving a nylon or metal wire rod is used, and the large cell mass is passed through the mesh, whereby the mesh of the mesh is meshed.
  • the cell is divided into small cell clusters corresponding to the eyes (square passage holes).
  • the present inventors have examined in detail the division of the cell mass using the mesh as described above, and due to the structure specific to the mesh, the cell mass passing through the mesh may not be preferably divided.
  • the mesh is a kind of sheet-like material, and when the sheet surface is viewed macroscopically, as shown in FIG. 10A, the warp and the weft appear to intersect linearly, Also, the mesh looks like a flat square.
  • the warp and the weft are three-dimensionally knitted so as to keep each other apart, so that the four sides surrounding one square mesh 100 are formed.
  • the four wires two warp yarns (101, 102) and two weft yarns (111, 112)
  • each have a large waving in the mesh thickness direction. I have.
  • each wire When the cell mass passes through the mesh surrounded by the four wavy wires, the cross-sectional shape of each wire is circular and the body surface of the wire is a curved surface. Or it may not be divided sharply. If a thinner wire is used to improve such a defect of the mesh, the strength of the mesh is reduced. If the strength of the wire is increased to improve this, the mesh becomes more expensive. In addition, when dividing the cell mass by the mesh formed by the wire, if the flow rate of the liquid medium is low, the cell mass cannot be cut, and only the cell mass is trapped in the mesh net. And the cell mass recovery rate is low. Therefore, a certain high flow rate is required.
  • the divided cell mass is subjected to shearing by the high-speed flow, and is further reduced. If the cell mass of the pluripotent stem cells is divided to an outer diameter of 40 ⁇ m or less, the cells are likely to undergo apoptosis and damage to the cells is undesirably large. As described above, in the conventional method of dividing a cell mass using a mesh, when the flow rate of the liquid medium is low, the cell recovery rate is low. This leads to a decrease in culture efficiency.
  • An object of the present invention is to provide a device that can solve the above-mentioned problems and can more preferably divide a cell mass, and a method of dividing the cell mass using the device.
  • the present inventors have studied diligently to solve the above problems, arranged a large number of through-holes on the film surface in a mesh pattern, and had sharp corners on the body surface as compared to the mesh wire. With a porous film having a beam portion, the inventors have found that the beam portion surrounding each through-hole does not undulate, and the cell mass can be more preferably cut, and the present invention has been completed.
  • a device for dividing a cell mass into smaller cell masses It has a film-shaped main body, A predetermined region of the film surface of the main body portion has a network structure in which a large number of through holes are arranged in the film surface, and the network structure has a plurality of holes penetrating the predetermined region in a film thickness direction. Having a beam portion that is a partition wall between the through holes, The through-hole has an opening shape large enough to allow the smaller cell mass to pass through, The beam portion is a remaining portion obtained by subtracting the through hole from the main body portion in the predetermined region, is a portion for cutting a cell mass to be divided, and is integrally connected to form a net. , The device.
  • the opening shape of the through hole is It has an opening area whose circular equivalent diameter is 40 ⁇ m to 90 ⁇ m, and A shape that accommodates a circle having a diameter of 35 ⁇ m to 85 ⁇ m.
  • the film surface is a first film surface, and the opposite film surface is a second film surface;
  • the first film surface is a surface used as an entrance side
  • the second film surface is a surface used as an exit side
  • the cross-sectional shape perpendicular to the longitudinal direction of the beam portion is a rectangle, or two corners on the entrance side of the rectangle are rounded shapes,
  • [8] The device according to any of [1] to [7], wherein the cell mass to be divided is a cell mass composed of pluripotent stem cells.
  • a backwashing step comprising: After the predetermined amount of cell mass is divided in the step of dividing the cell mass, a predetermined liquid is applied to the network structure in a direction opposite to the direction in which the cell mass has passed through the network structure of the device for division. Passing through, thereby washing the network.
  • the backwashing step comprises: After the predetermined amount of cell mass is divided in the step of dividing the cell mass, a predetermined liquid is applied to the network structure in a direction opposite to the direction in which the cell mass has passed through the network structure of the device for division. Passing through, thereby washing the network.
  • a large number of through-holes are arranged on the film surface, and a predetermined region (part or all region) of the film surface has a net-like structure.
  • This net-like structure is a kind of porous film composed of a through-hole functioning as a mesh of a mesh and a beam part functioning as a partition between adjacent through-holes.
  • the beam portion 20 is connected as a two-dimensional net as the remainder excluding the through holes from the film, and there is no waving like a wire of a mesh. .
  • the cell mass colliding with such a non-undulating beam portion can be more preferably divided than the above-mentioned wavy mesh wire.
  • the cross-sectional shape of the beam portion 20 is not a circle but a square or a rectangle (a rectangle having a longer side in the thickness direction, a thickness in the thickness direction). (Rectangular or square with short sides). Therefore, the cell mass can be sharply divided without any resistance by the edge of the beam portion 20 at the opening of each through-hole, so that the cell mass may be less damaged when cutting.
  • the flow velocity of the liquid (such as a liquid medium in which the cell mass to be divided is dispersed) passing through the mesh region is set lower than in the case of the division using the conventional mesh. And the disintegration of the cell mass into an excessively fine cell mass is also suppressed.
  • the opening shape of the through-hole is a shape closer to a circle (for example, a square or a regular hexagon), and the width of the beam portion is uniform.
  • a circle for example, a square or a regular hexagon
  • the width of the beam portion is uniform.
  • the device it is relatively easy to reduce the width of the beam portion in terms of processing, and if the opening shape is a regular hexagon, the strength of the entire mesh structure is high. Can be narrow. Therefore, the cell mass can be divided without further resistance, and the porosity (the ratio of the openings to the entire area of the network structure region) can be increased. Can be solved.
  • FIG. 1 is a diagram showing an example of a preferred embodiment of the network structure in the device according to the present invention.
  • FIG. 1A is a partially enlarged view showing a predetermined region of a film surface of a film-shaped main body portion
  • FIG. 1B is a cross-sectional view taken along line X1-X1 of FIG.
  • FIGS. 1C to 1E are diagrams exemplifying other modes of the cross section of the beam portion shown in FIG. 1B. 1B to 1E, the cross section of the beam portion is hatched.
  • FIG. 2 is a diagram illustrating a region where a network structure is provided on a film surface of a main body portion of a device according to the present invention.
  • FIG. 3 is a diagram showing another example of a preferred embodiment of the network structure in the device according to the present invention, and is a partially enlarged view showing a predetermined region of the film surface of the main body.
  • FIG. 4 is a sectional view showing an example of the structure of a device holder configured so that the device according to the present invention can be preferably used for dividing a cell mass.
  • FIG. 5 is a diagram schematically showing a method for dividing a cell mass according to the present invention. In the figure, the culture vessel is drawn small and the pipeline is drawn thick for the sake of explanation.
  • FIG. 6 is a diagram schematically showing another embodiment of the method for dividing a cell mass according to the present invention.
  • the culture vessel is drawn small and the pipeline is drawn thick for the sake of explanation.
  • the culture vessel is the size of a general culture bag, and the pipeline is a flexible piping tube.
  • FIG. 7 is a flowchart illustrating an example of a cell culture method using the method for dividing a cell mass according to the present invention.
  • FIG. 8 is a graph showing a test result of examining the effect of backwashing on the device according to the present invention.
  • FIG. 8A and 8B are graphs showing the survival rates of the cells contained in the divided cell mass when the cell mass is divided without backwashing
  • FIG. (D) is a graph showing the survival rate of the cells contained in the divided cell mass when dividing the cell mass while performing backwashing for each predetermined amount of division.
  • FIG. 9 is a graph showing test results obtained by examining the relationship between the cross-sectional shape of the beam portion having a mesh structure and the division performance in the present invention.
  • FIG. 10 is a diagram showing a structure of a conventional mesh used for dividing a cell mass.
  • FIG. 10A is a partially enlarged view showing a predetermined area of the mesh sheet surface
  • FIG. 10B is a cross-sectional view taken along line X10-X10 of FIG. 10A. In FIG. 10B, the cross section of the wire is hatched.
  • the device is a device for dividing a large-grown cell mass to be divided into smaller cell masses.
  • the device has a film-shaped body.
  • a frame or tab having high rigidity for improving handleability may be further provided, but in an embodiment described below, the entire device is in the form of a film. It is the main body part, and thus the whole is one film.
  • a predetermined region on the film surface of the main body of the device has a mesh structure 10 in which a large number of through holes 20 are arranged on the film surface, as shown in FIG.
  • the predetermined area on the film surface may be a part or all of the film surface.
  • the outer peripheral region 1b of the film-shaped main body portion 1 is a flat film without through holes, and the through holes are arranged in the central region 1a.
  • an outline for example, a boundary line of the outer periphery of the central region 1a
  • the opening of the through hole is a small opening only inside the outline.
  • the through-hole of the small opening may be provided as it is, or the through-hole of such a small opening may not be provided, or the opening of the original shape may exceed the outer shape line. May be provided with a through hole.
  • the network structure 10 includes a plurality of through holes 20 penetrating the predetermined region in the film thickness direction, and a beam portion 30 serving as a partition wall between the through holes. It is configured.
  • the through hole 20 has an opening shape large enough to allow the smaller cell mass (cell mass after division) to pass through.
  • the beam part 30 is the remaining part obtained by subtracting the through hole from the main body part in the predetermined area.
  • the beam portion functions as a portion for cutting the cell mass to be divided, and is integrally connected to form a net. With this configuration, the problem of the conventional mesh is suppressed, and the cell mass that has grown large can be preferably divided.
  • the equivalent circle diameter of the opening shape of the through hole varies depending on the type of cells constituting the cell mass to be divided. For example, if the cells are pluripotent stem cells or embryonic stem cells, the diameter is about 40 ⁇ m to 90 ⁇ m. It is more preferably 50 ⁇ m to 80 ⁇ m, and further preferably 60 ⁇ m to 70 ⁇ m.
  • preferred dimensions and the like of each part when the cells are pluripotent stem cells, embryonic stem cells, and the like will be exemplified. However, other cells may be appropriately changed in dimensions.
  • the opening shape is a shape capable of accommodating a circle having a diameter of 35 ⁇ m to 85 ⁇ m (hereinafter referred to as an accommodation circle).
  • the expression that the opening shape can accommodate the accommodation circle includes a case where the accommodation circle is inscribed in the opening shape and a case where the accommodation circle matches the opening shape.
  • a regular hexagon has a larger diameter of the accommodation circle than a square.
  • the length of one side of such a square is about 35.449 ⁇ m, and the diameter of the containing circle in that case is about 35.449 ⁇ m or less. is there. Therefore, in the present invention, 35 ⁇ m is a preferable lower limit of the diameter of the accommodation circle.
  • the distance between two opposing sides of such a regular hexagon is about 85.708 ⁇ m, and the diameter of the accommodation circle in that case is , About 85.708 ⁇ m or less.
  • 85 ⁇ m is a preferable upper limit of the diameter of the accommodation circle.
  • the diameter of the accommodation circle is more preferably 44 ⁇ m to 76 ⁇ m, and still more preferably 53 ⁇ m to 67 ⁇ m.
  • the diameter of the accommodation circle is equal to the circle equivalent diameter; otherwise, the diameter of the accommodation circle is smaller than the circle equivalent diameter.
  • the opening shape of a large number of through-holes provided in the network structure is not particularly limited, and may be a circle, an ellipse, a triangle, a square, a hexagon, other polygons or irregular shapes, and a triangle or other acute angle.
  • the aperture ratio (the ratio of the total area of the opening area to the area of the network structure) cannot be increased from the viewpoint of the strength of the film. there is a possibility.
  • the width of the beam portion is not constant, and the area of the portion where the beam portions are connected to each other is large, so that the cutability of the cell mass by the beam portion is not preferable.
  • a square or regular hexagon is preferable because the interior angle is not an acute angle and the area of the portion where the beam portions are connected to each other is small, so that the above-described problem is suppressed. Further, from the viewpoint of obtaining a uniform cell mass after cutting, it is preferable that all the opening shapes are congruent with each other. Further, it is preferable that the width of the beam portion (the separation distance between the through holes adjacent to each other) is uniform because the cutting property along the length of the beam portion is uniform. From these points, the opening shape of the through-hole is preferably a quadrangle or a hexagon, and more preferably a square or a regular hexagon whose sides (beam portions) around the opening are equal in length. At a point closer to a circle, a regular hexagon is preferred.
  • the arrangement pattern of the apertures on the film surface is preferably fine, and in this case, the beam portions are connected to each other in a honeycomb shape as shown in FIG. Be a body.
  • This embodiment is preferable because the width W2 of all the beam portions becomes uniform except for the portion where the ends of the three beam portions are joined to each other.
  • the arrangement pattern of the apertures on the film surface is preferably a square matrix, and in this case, the beam is formed in an orthogonal lattice as shown in FIG. Into a reticulated body.
  • This embodiment is also preferable because the width W2 of all the beam portions becomes uniform except for the portion where the ends of the four beam portions are joined.
  • an arrangement pattern or the like in which square openings are shifted in the horizontal direction for each row may be used. Since the portion is divided into two parts, the cutability is different from that of the orthogonal lattice as shown in FIG.
  • a distance W1 between two parallel sides facing each other out of the six sides of the regular hexagon is equal to the accommodation circle.
  • the diameter may be 38 ⁇ m to 85 ⁇ m, more preferably 48 ⁇ m to 76 ⁇ m, and even more preferably 57 ⁇ m to 67 ⁇ m.
  • the width W2 of the beam portion is preferably from 10 ⁇ m to 60 ⁇ m, and more preferably from 20 ⁇ m to 40 ⁇ m.
  • the distance W11 between two opposing parallel sides of the four sides of the square is equal to the accommodation distance.
  • the diameter of the circle may be 35 ⁇ m to 80 ⁇ m, preferably 44 ⁇ m to 71 ⁇ m, and more preferably 53 ⁇ m to 62 ⁇ m.
  • the width W21 of the beam portion is preferably from 10 ⁇ m to 60 ⁇ m, more preferably from 20 ⁇ m to 40 ⁇ m.
  • the thickness of the film-shaped main body is not particularly limited, but is preferably from 10 ⁇ m to 60 ⁇ m, and more preferably from 20 ⁇ m to 40 ⁇ m, from the viewpoint of making the beam portion into a thin linear shape.
  • one film surface of the film-shaped main body portion is referred to as a first film surface
  • the opposite film surface is referred to as a second film surface.
  • the first film surface is a surface used as an entrance side
  • the second film surface is a surface used as an exit side.
  • the cross-sectional shape of the beam portion depends on the relationship between the width W2 of the beam portion and the thickness t1 of the porous film, and FIG. 1B or FIG. ), It can be a rectangle (rectangular quadrilateral).
  • the first film surface may be used as the outlet side.
  • the two corners on the entrance side of the previous rectangle have a rounded shape, and the survival rate of the divided cell mass is higher. It may be higher and preferred. This reduces the damage to the cells, reduces the likelihood of the individual cells being cut, and reduces the likelihood of the cells from each other as compared to the case where the two corners on the entrance side are sharp right-angled edges. This is considered to be a result of the possibility that the cells are more likely to be separated from each other at the interface where they adhere to each other. In the mode shown in FIG.
  • the two corners on the entrance side of the rectangle have a locally rounded shape, and thus a plane remains on the entrance side surface of the beam.
  • the two corners on the entrance side of the rectangle are more rounded than the embodiment of FIG. 1D, and the entire cross-sectional shape is semicircular (more strictly, Shape having an arc and a chord). Therefore, the entire surface of the beam portion on the entrance side is a curved surface like a cylindrical body surface.
  • the radius of the corners is larger, and the embodiment of FIG. 1E is more preferable than the embodiment of FIG. .
  • the radius of the roundness varies depending on the width W2 of the beam portion and the thickness t1 of the film-shaped main body portion, and is, for example, about 1 ⁇ m to 100 ⁇ m. Further, the radius of the roundness may be uniform like an arc, or may be different depending on a place.
  • the material of the film-shaped body portion is not particularly limited, but a metal material such as gold, silver, copper, iron, zinc, platinum, nickel, chromium, palladium, or an alloy made of a combination of any of these materials is used. Examples of preferred alloys include stainless steel and brass.
  • the method for manufacturing the device is not particularly limited, and an appropriate method such as resin molding, punching, and LIGA (Lithographie Galvanoformung Abformung) may be selected depending on the material.
  • LIGA Lithographie Galvanoformung Abformung
  • the opening shape and the width of the beam portion are minute. From a certain point, it is exemplified as a manufacturing method using LIGA.
  • a manufacturing method using LIGA for example, a metal mold for electroforming is formed by lithography, and a metal plating layer to be the device is formed on the surface of the metal mold by using an electrochemical reaction in an electroforming tank. The metal plating layer is peeled from the mold and used as the device.
  • the cross-sectional shape of the beam portion may be such that the two corners on the entrance side are rounded. It can be obtained by making it take a shape.
  • the method of using the device is basically the same as that of a conventionally known mesh, so that the cell mass to be divided passes through the network structure of the film-shaped main body in the thickness direction of the main body. And a method of flowing the cell mass together with a liquid such as a culture solution.
  • the device may be used by arranging two or more devices in series as needed. For example, two or more devices may be stacked in one holder, or two or more holders accommodating one device may be connected in series and used.
  • the specifications of the network structure of the device when two or more devices are used may be different from each other or may be the same.
  • the present invention proposes a holder for preferably using the device.
  • a divider that can be preferably inserted in the flow path (pipe) of the closed culture system is configured.
  • the holder not only allows the cell mass to be split to preferably pass through the device together with the liquid, but also continuously cultures the cell culture, splits the cell mass, and subcultures the divided cell mass in a closed system. To be able to do.
  • FIG. 4 is a sectional view showing an example of the structure of the holder.
  • the holder 40 includes a holder main body 41 having an arrangement surface 41s for disposing the device 1A, and the holder main body 41 covering the device 1A disposed on the arrangement surface 41s. And a cap part 42 detachably fixed to the part.
  • the device 22 is sandwiched between two gaskets (sheet-shaped sealing members) 43 and 44, whereby the liquid medium is sealed so as not to leak out of the holder.
  • the inner surface of the cap portion 42 is a pressing surface 42s for pressing the device 1A against the holder main body 41.
  • the holder main body 41 has a first through hole 41p opening on the arrangement surface 41s, and the cap portion 42 has a second through hole 42p opening on the pressing surface 42s.
  • the center of the opening of the first through hole 41p and the center of the opening of the second through hole 42p coincide with each other. Since the front and back surfaces of the device are flat unlike the conventional mesh, the device can be easily and preferably airtightly sandwiched so as not to leak the liquid medium in the lateral direction.
  • the outer shape of the gasket is preferably equal to or larger than the outer shape of the device.
  • the material of the gaskets 43 and 44 may be any material having a favorable sealing property, such as silicon, without affecting the living body.
  • a circular through hole having the same cross-sectional shape as the first through hole 41p and the second through hole 42p is provided at the center of each of the two gaskets.
  • the through holes have an inner diameter of about 1.6 mm and are aligned. Thereby, the flow of the liquid medium passes through the device in the cross-sectional shape of these through holes. If the flow changes when passing through the device, the divided cell mass may also receive shearing force due to the flow, and may be smaller. Therefore, it is preferable that the inner diameter of each of the first through hole 41p, the second through hole 42p, and the two gaskets is the same, but as long as the turbulent flow that adversely affects is not generated. May have different inner diameters.
  • the inner diameters of the conduits of the first through hole 41p and the second through hole 42p are constant, and the inner diameter (D1) of the conduit and the gasket that determines the effective diameter of the flow passing through the device
  • the ratio (D1 / d1) to the inner diameter (d1) of the through hole is preferably about 0.33 to 3, more preferably 0.5 to 2, and more preferably 1.
  • D1 / d1 1.
  • Appropriate allowable dimensions may be given to the inner diameter of each through hole, the outer diameter of the gasket, the diameter of the arrangement surface 41s, and the like in consideration of, for example, matching the center axis of the flow path.
  • a male screw 41 t is provided on the outer periphery of the body of the holder main body 41, and a female screw 42 t is provided on a side surface of the body of the cap part 42.
  • the device 1 ⁇ / b> A is screwed and fixed, and the device 1 ⁇ / b> A is sandwiched and pressed so as not to leak.
  • a knurling or hexagonal bolt head for applying a force for rotating them (or a holding force) may be provided on the outer periphery of each of the holder body 41 and the cap 42.
  • the attachment / detachment structure between the holder body and the cap is not limited to the above screw-in structure, but may be a one-touch coupling structure or a structure in which the cap is fastened to the holder body using a bolt and a female screw. Good.
  • the material of the holder is not particularly limited, but examples thereof include organic polymer materials such as polystyrene, polypropylene, polyethylene terephthalate, polycarbonate, acryl, silicon, and polyvinylidene fluoride, and metal materials such as stainless steel. From the viewpoint of inexpensive moldability and resistance to autoclaves and gamma rays, polypropylene, polycarbonate, and acrylic are exemplified as preferable materials.
  • each of the conduits 41p and 42p (the cross-sectional shape is circular) of the holder body 41 and the cap 42 is not particularly limited, and may be appropriately determined according to the scale and the flow rate of the manufacturing system. About 15 mm is general and useful. In the example of FIG. 4, the inner diameter of the conduit is 1.6 mm.
  • connecting pipes 41c and 42c protrude from the holder body and the cap, respectively.
  • the outer surface of the body of these pipes may be, for example, in the form of a hose nipple (also referred to as a “bamboo shoot joint”), or may be press-fitted into a soft tube or the like (or by press-fitting a soft tube or the like).
  • a structure having connectivity with a known connector such as a female side or a male side of a known one-touch joint (quick coupling), a push-in joint or a tightened joint for a resin tube, or the like may be used.
  • the outer shape of the holder is not particularly limited.
  • the entire outer shape (excluding the pipe portion) of the holder is cylindrical, and the diameter is 20 mm.
  • the total length is about 20 to 25 mm.
  • Cell mass to be divided The type of the cell constituting the cell mass to be divided by the device is not particularly limited as long as the cell forms a cell mass (also referred to as “spheroid”) by suspension culture. Good.
  • Cells constituting such a cell mass may be cells derived from animals or plants, and are particularly preferably derived from animal cells. Animal species from which such cells are derived include rat, mouse, rabbit, guinea pig, squirrel, hamster, vole, platypus, dolphin, whale, dog, cat, goat, cow, horse, sheep, pig, elephant, common marmoset, squirrel monkey Cells derived from mammals such as rhesus monkeys, chimpanzees and humans are more preferred.
  • the cells constituting the cell mass may be those established as cultured cells or primary cells obtained from biological tissues. Further, the cells constituting the cell mass may be pluripotent stem cells, including embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), mesenchymal stem cells, neural stem cells, and the like. Is included.
  • the cells constituting the cell mass may be differentiated cells, and may be, for example, hepatocytes, pancreatic islet cells, kidney cells, nerve cells, corneal endothelial cells, chondrocytes, cardiomyocytes, and the like.
  • the cells constituting the cell mass may be cells induced to differentiate from umbilical cord blood, bone marrow, fat, blood-derived tissue stem cells, or cells transformed into tumors, cells transformed by genetic engineering techniques. Or cells infected with a viral vector.
  • the cells constituting the cell mass are preferably human-derived pluripotent stem cells, and particularly preferably human iPS cells.
  • “suspension culture” refers to culturing a cell or a cell mass (that is, a mass of cells having a three-dimensional structure (such as a spherical or grape tuft) formed by assembling a large number of cells). Means culturing under conditions that do not adhere to the vessel.
  • the outer diameter of the cell mass before division to which the device is applied is not particularly limited, but is preferably 50 ⁇ m to 300 ⁇ m, more preferably 100 ⁇ m to 200 ⁇ m, if the cells are pluripotent stem cells or embryonic stem cells. 120 ⁇ m to 180 ⁇ m is more preferable.
  • the outer diameter of the cell mass the area of the cell mass image obtained by a microscope (including an electron microscope and an optical microscope) is measured, and the diameter of a circle having the same area as the area (circle equivalent diameter) can be adopted. it can.
  • the cell mass having the above outer diameter is divided by the device to have an outer diameter of about 40 ⁇ m to 120 ⁇ m, more preferably about 50 ⁇ m to 90 ⁇ m.
  • the outer diameter (equivalent circle diameter) of the divided cell mass does not always match the equivalent circle diameter of the opening shape of the through hole of the device, and may be larger or smaller than the equivalent circle diameter of the opening shape.
  • a cell mass cut into a long column by passing through a through-hole may have a circle equivalent diameter larger than the circle equivalent diameter of the opening shape depending on the observation angle.
  • a small cell mass that does not completely fill the inside of the through-hole and passes through while creating a gap with the inner wall of the through-hole may have an opening shape depending on an observation angle. It may have a circle equivalent diameter smaller than the circle equivalent diameter.
  • the method for dividing a cell mass according to the present invention (hereinafter, also referred to as the method) is a method of using a device according to the present invention to pass a cell mass to be divided through a network structure of the device to reduce the cell mass. There is a step of dividing into cell clumps. The divided cell mass is further continued (subculture), and the step of dividing the large grown cell mass again by the device is repeated, whereby the cell mass can be efficiently cultured in a large amount.
  • the flow rate of the liquid medium varies depending on the type of cells, the size of the cell mass, the viscosity of the liquid medium, and the like. / Sec to 500 mm / sec, preferably 50 mm / sec to 150 mm / sec.
  • the flow rate the flow rate at which the liquid (suspension) enters the divider (or the flow rate that exits the divider) can be adopted.
  • the flow rate can be obtained based on an operation of extruding or sucking a predetermined amount of the solution at a constant speed for a predetermined time using a liquid sending pump such as a syringe.
  • the flow velocity when the liquid passes through the mesh of the mesh structure can be calculated by dividing the flow rate by the liquid feed pump by the sum of the opening areas of the mesh.
  • FIG. 5 is a diagram schematically illustrating an example of a configuration of a closed culture system using the device.
  • the first culture container 50, the holder 40 holding the device 1A, and the second culture container 60 are connected in this order by pipes (piping tubes) P1 and P2. ing.
  • the device 1A held by the holder 40 is indicated by a thick dotted line.
  • a pump 70 for sending a fluid in which cell clumps are dispersed is attached to the piping tube P1.
  • the position of the pump may be on the piping tube P2.
  • the pump allows the fluid in the first culture vessel 50 to pass through the device 1A and move to the second culture vessel 60.
  • a large number of cell clumps grown to a predetermined size in suspension culture in the liquid culture medium in the first culture container 50 pass through the device 1A together with the liquid culture medium without being exposed to the outside air, and are divided. , To the second culture vessel 60.
  • the cell mass that has been divided and moved to the second culture vessel 60 is subjected to suspension culture so as to grow to a predetermined size in the second culture vessel 60, and is returned to the first culture vessel 50 via the conduit P3 at the time of division.
  • suspension culture may be performed so as to grow to a predetermined size in the container 50.
  • the cell mass that has grown to a predetermined size in the second culture vessel 60 is sent to the device 1A together with the liquid medium by reversing the feed direction of the pump 70, and the reverse of FIG.
  • the cell mass that has grown to a predetermined size in the second culture vessel 60 is separated by passing through another device (not shown) together with the liquid medium, and divided into third culture vessels (FIG. (Not shown).
  • the cell mass that has grown to a predetermined size is divided by the device, sent to the next culture vessel, culture is continued, and the device is divided again by the device.
  • the cell mass can be proliferated while keeping the culture environment hygienic, that is, while continuing the culture aseptically.
  • FIG. 6 is a diagram schematically illustrating another example of the configuration of a closed culture system using the device.
  • the first culture vessel 50 and the holder 40 holding the device 1A are connected by a pipe (piping tube) P1
  • the cell mass that has passed through the device 1A is A pipeline (piping tube) P4 is provided so as to return to the one culture vessel 50.
  • a pump 70 for sending a fluid in which cell clumps are dispersed is attached to the piping tube P1.
  • the position of the pump may be on the piping tube P4.
  • the fluid in the first culture vessel 50 passes through the device 1A and is returned into the first culture vessel 50.
  • the concentration (existence ratio) of the cell mass in the medium is reduced. It is possible to increase. When the cell mass increases to a specific concentration, some or all of the cell mass may be collected. By repeating the culture and the division automatically or semi-automatically in a closed system in this manner, it is possible to further reduce the difference in the recovery rate of the cell mass caused by the difference in the skill level of the operator's technique, The cell mass can be proliferated while keeping the culture environment hygienic, that is, while continuing the culture aseptically.
  • the configuration of the system shown in FIG. 5 has an advantage that the size of the cell mass can be easily managed because the cell mass in one culture container is similarly divided and all move to another culture container, It requires time and effort to transfer from culture vessel to culture vessel.
  • the configuration of the system shown in FIG. 6 the cell mass continues to circulate in the closed loop while being mixed in a large and small size, so that the size of the cell mass is not uniform. No need to relocate. Therefore, these systems may be used for applications in which the respective disadvantages do not matter.
  • FIG. 6 the system shown in FIG.
  • a small cell clump is passed through a mesh or a mesh filter such as the device, so that the cell clump has a predetermined size or more. It is possible to stop and collect only the cell mass of the cell by the filter.
  • the mesh filter used for the collection is preferably a mesh made of a thick wire or a mesh structure in which the beam portion of the device is made wider, such as a mesh structure in which the cell mass is difficult to be cut, and is also used in the case of division.
  • the flow rate is reduced so that cell clumps are more preferably trapped.
  • FIGS. 5 and 6 show examples in which the pipeline is circulated as a closed loop, and the cell mass to be divided and the liquid medium (ie, the liquid medium and the cell mass present in the liquid) are first supplied.
  • a configuration may be such that a cell mass and a liquid medium are supplied to the device from a supply source and received by the first container.
  • the supply source may be an external culture container containing a cell mass and a liquid medium, or a container containing a cell mass obtained by the system itself shown in FIGS. Is also good.
  • a plurality of closed systems as shown in FIGS. 5 and 6 are used, and the cell mass collected from the first-stage system and the container containing the liquid medium are used as a supply source, and the cell mass is extracted therefrom.
  • the required number of closed systems may be connected in multiple stages and hermetically connected such that the liquid medium and the liquid medium are sequentially supplied to the second and subsequent stages.
  • the cycle of dividing the cell mass and the suspension culture can be repeated as many times as necessary, and the cell mass can be collected at a required ratio for each cycle.
  • the culture vessels (50, 60) shown in the examples of FIGS. 5 and 6 are not particularly limited, and those capable of accommodating a liquid medium and cells / cell clumps without affecting cells can be used.
  • a relatively hard container, a culture bag using a flexible film, and the like are exemplified as preferable examples.
  • the culture bag does not require air or the like by changing the volume of the culture bag even when the liquid medium and the cells / cell mass are taken out to the outside or when the liquid medium and the cells / cell mass are put in from the outside. Therefore, the fluid can be preferably moved while maintaining the closed system.
  • the pumps that can be used in the systems shown in FIGS. 5 and 6 are not particularly limited, but are preferably peristaltic pumps represented by tube pumps (also called roller pumps) and syringe pumps.
  • a peristaltic pump is preferable because the piping can be easily configured.
  • the peristaltic pump is a pump that moves a liquid in a set tube by moving a position where a pumping tube having elasticity and flexibility is crushed in a feed direction. Even with a peristaltic pump, many cell clumps are preferably sent with the liquid medium without being crushed.
  • peristaltic pump For details of the feed structure of the peristaltic pump, reference can be made to the prior art.
  • the tube for piping has a portion that can be attached to the peristaltic pump as a pumping tube and has a shape and flexibility that can function and operate as a pumping tube.
  • the connector and coupling for piping are not particularly limited, but it is preferable to use a connector that can be connected aseptically, such as a sterile connector.
  • the liquid medium that can be used for the cell culture is not particularly limited, and is a medium suitable for cells to be cultured, and a medium that can form a cell mass as a result of culturing the cells in a suspended state. included.
  • a medium capable of sphere culturing and a medium containing a specific polysaccharide examples include a medium capable of sphere culturing and a medium containing a specific polysaccharide, and a medium containing a specific polysaccharide is more preferable from the viewpoint of cell culture efficiency and the like (details). See WO 2014/017513).
  • Examples of the polysaccharide contained in such a medium include deacylated gellan gum, diutan gum, carrageenan and xanthan gum, and salts thereof, and deacylated gellan gum is preferred.
  • a liquid medium that can be used for the above-described cell culture can be easily prepared.
  • Examples of the known medium that can be used include, for example, when the cells are animal-derived cells, for example, Dulbecco's Modified Eagle's Medium (DMEM), Ham's F12 medium (Ham's Nutrient Mixture F12), DMEM / F12 medium, McCoy's 5A medium (McCoy's 5A medium), Eagle's MEM medium (Eagle's Minimum Essential Medium; EMEM), ⁇ MEM medium (Alpha Medical Dimensions).
  • DMEM Dulbecco's Modified Eagle's Medium
  • Ham's F12 medium Ham's Nutrient Mixture F12
  • DMEM / F12 medium McCoy's 5A medium
  • McCoy's 5A medium McCoy's 5A medium
  • Eagle's MEM medium Eagle's Minimum Essential Medium
  • EMEM Eagle's MEM medium
  • ⁇ MEM medium Alpha Medical Dimensions
  • MEM medium Minimum Essential Medium
  • RPMI1640 medium Iscove's modified Dulbecco's medium
  • Isco ve's Modified Dulbecco's Medium IMDM
  • MCDB131 medium William medium E, IPL41 medium
  • Fisher's medium StemPro34 (manufactured by Invitrogen)
  • X-VIVO 10 manufactured by Kenbrex
  • X-VIVO 15 Kenbrex) HPGM (Kembrex)
  • StemSpan H3000 StemCell Technology
  • StemSpanSFEM StemCell Technology
  • Stemline II Sigma-Aldrich
  • QBSF-60 Quality Biological
  • StemProhESCSFM Invitrogen
  • Essential8 registered trademark
  • Gibco Essential8 (registered trademark) Flex medium
  • Flex medium sa -StemFlex medium (manufactured by Thermo Fisher)
  • mTeSR registered trademark
  • FIG. 7 is a flowchart illustrating an example of a process of cell culture, division, and recovery using the device according to the present invention.
  • the movement of the liquid medium (including the cell mass) between each step is performed without contacting the outside air with closed piping.
  • a cell mass (or a cell mass formed by suspension culture) obtained by detaching a colony grown by adhesion culture from a scaffold is passed through the device and divided.
  • seeding is performed on a new liquid medium, where suspension culture is performed to grow the cell mass.
  • the grown cell mass is collected, the medium is exchanged, the process returns to the dividing step, and the cell mass is divided by passing through the device.
  • a predetermined percentage of the cell clusters may be taken out as a harvest.
  • the present inventors have found that when the device is continuously used for dividing the cell mass, the beam portion in the network structure of the device includes solid components such as debris of the cell mass and fine structures contained in the medium. And the effective area of the network of the device (the sum of the areas of the openings through which liquid can pass) gradually decreases as a result of the deposition, so that the cell mass undergoes shearing due to high-speed flow, It was found that the cells became damaged and were divided into small cell clusters, and the viability was sometimes reduced. Therefore, it is preferable that the device is periodically replaced with a device in which debris of a cell mass is not accumulated.
  • the present inventors have determined that a predetermined amount of liquid (including a cell culture medium containing cell clumps or a washing medium described later) is used every time a predetermined amount of liquid containing cell clumps passes through the network structure of the device.
  • a predetermined amount of liquid including a cell culture medium containing cell clumps or a washing medium described later
  • backflow cleaning of the network structure a predetermined liquid backflow process performed to suppress a decrease in the effective area of the network structure.
  • a backwashing step for performing the backwashing of the mesh structure described above is further added.
  • the backwashing step after a predetermined amount of cell mass is divided in the step of dividing the cell mass, the cell mass is divided in a direction opposite to the direction in which the cell mass has passed through the network structure of the device for division. Passing the contained suspension or cleaning liquid through the network and thereby cleaning the network.
  • the “predetermined liquid” to be refluxed in the backwashing of the network structure is not particularly limited, and includes a liquid that can be continuously used in the network structure.
  • a liquid immediately after passing through the network structure That is, a liquid medium (suspension) containing the divided cell mass, a liquid medium similar to the liquid medium used at the time of dividing the cell mass (the cell mass was not included), and a liquid medium used at the time of dividing the cell mass were used.
  • the mode of backwashing of the network structure is not particularly limited, but the following are exemplified.
  • (I) A mode in which the liquid medium containing the cell mass to be split flows backward after passing through the device, whereby the liquid medium containing the divided cell mass passes through the device in the reverse direction.
  • (Ii) After the liquid medium containing the cell mass to be divided has passed through the device, the flow path is switched, and a liquid (cell medium or the like) containing no cell mass or the like is placed downstream (outlet side) of the device.
  • a mode in which the liquid is supplied and the flow is reversed, so that the liquid medium containing no cell mass or the like passes through the device in the reverse direction.
  • the frequency of the backwashing of the network is not particularly limited, and may be once for each division, or may be for every two or more divisions. According to the total number, and comprehensively consider (the advantage of suppressing the decrease in the survival rate of the cells contained in the divided cell mass, and the disadvantage of the trouble of backwashing the network structure and the addition of the system). Can be determined appropriately. Prior experiments can determine how many cell clumps pass through the unit area of the network, and how much the network's cleavability decreases.
  • the flow rate and the cleaning time of the predetermined liquid when performing the backwashing of the net-like structure can be appropriately determined according to the type of the liquid and the effect of the backwashing.
  • the flow rate is not particularly limited, but is, for example, about 10 mm / sec to 500 mm / sec, and particularly preferably about 50 mm / sec to 300 mm / sec.
  • a flow rate at which the liquid (suspension) enters the divider can be adopted.
  • the flow rate can be obtained based on an operation of extruding or sucking a predetermined amount of the solution at a constant speed for a predetermined time using a liquid sending pump such as a syringe.
  • the flow velocity when the liquid passes through the mesh of the mesh structure can be calculated by dividing the flow rate by the liquid feed pump by the sum of the opening areas of the mesh.
  • the washing time is not particularly limited, but when the flow rate of the liquid is in the above range, about 0.1 second to 5 seconds is exemplified, and in particular, 0.3 second About 2 seconds is a preferable range.
  • a reverse liquid sending function or a reverse liquid sending device for moving the predetermined liquid may be further provided.
  • the reverse direction liquid transfer function may be a function using a reverse flow function of a liquid transfer device provided in a cell culture system using the device, or a device in which the reverse flow function is further added to the liquid transfer device. May be.
  • the reverse flow function of the liquid sending device may be, for example, reverse rotation of a peristaltic pump, reverse operation of a syringe pump (suction for extrusion), pressing of a flexible container, and the like. Further, there is no particular limitation on the reverse liquid feeding device for performing the backwashing of the mesh structure and the piping configuration thereof.
  • the configuration of the culture system in FIG. 5 includes a configuration in which the flow of the liquid medium in the direction of the arrow is simply reversed.
  • a liquid medium supply source (not shown) is connected to the pipeline P2 via a switching valve (not shown), and the switching valve is switched so that the liquid medium from the liquid supply flows back through the device 1A. So that the liquid is supplied.
  • HiPS cells human pluripotent stem cells
  • HiPS cells were cultured in suspension to form cell clusters, and the cell clusters were formed using the device of the present invention and a conventional mesh.
  • a test was performed to confirm the division performance of the device of the present invention by dividing and observing the survival rate of the cell mass after each division.
  • hiPS cell line 253G1 (available from RIKEN) was cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) using a 15 mL tube, Medium 1 and Medium 2 (culture before splitting). ).
  • ⁇ ⁇ hiPS cell line 253G1 was seeded on medium 1 on day 0 of pre-division culture, medium 2 was added every 1 to 2 days, and this was continued for 5 to 6 days to form a cell mass. On the final day, the cell mass was sedimented by centrifugation (100 ⁇ G, 3 minutes), the supernatant was removed, and the cell mass was suspended in Medium 1 and passed through the device of the present invention to separate the cell mass. The cells were seeded on medium 1 (day 0 of culture after division).
  • the instruments used in the following cases were all sterilized.
  • a porous film of the type shown in FIG. 1 was produced.
  • the material of the film body is nickel.
  • the thickness of the film body is 20 ⁇ m or 40 ⁇ m.
  • the shape of the opening of each through-hole is a congruent regular hexagon, and the through-hole is arranged on the entire film surface of the film body.
  • the hole diameter of each through hole (the distance between two parallel sides facing each other out of the six sides of a regular hexagon that is the shape of the opening) is 60 ⁇ m or 70 ⁇ m as shown in Table 1 below.
  • the wire diameter (width of the beam portion) is 20 ⁇ m or 40 ⁇ m.
  • the outer peripheral shape of the film body is circular, and the size (diameter) of the circle is 13 mm.
  • FIG. 4 a holder for setting the device was prepared.
  • the inside diameter of the conduit (circular cross section) for flowing the liquid medium composition in which the cell mass is dispersed is 1.6 mm, and the effective diameter of the flow of the liquid medium composition passing through the device is 1.6 mm. is there.
  • a conventional mesh was used as a device for division.
  • a nylon mesh (a mesh made of a wire made of nylon) or a stainless steel mesh (a mesh made of a wire made of stainless steel) was placed over the discharge end (effective diameter of the discharge port of 1.6 mm) of the 5 mL syringe, and the band was fixed with a band.
  • the opening shape of the through hole of the nylon mesh is substantially square, and the length of one side is 70 ⁇ m.
  • the diameter of the wire is 50 ⁇ m for both the warp and the weft.
  • the opening shape of the through hole of the stainless steel mesh is substantially square, and the length of one side is 70 ⁇ m.
  • the diameter of the wire is 40 ⁇ m for both the warp and the weft.
  • Cell viability Two hours after the division, the culture tube was taken out of the incubator, and after dispersing the cell mass well, 0.25 mL of the culture solution was collected and 0.25 mL of ATP reagent (CellTiter-Glo (registered trademark) Luminescent Cell Viability Assay, Promega) was stirred at room temperature for 10 minutes, dispensed 100 ⁇ L each into a white 96-well plate, and measured the luminescence intensity (RLU value) with Enspire (Perkin Elmer). Then, the number of viable cells was measured by subtracting the luminescence value of the medium alone. The relative value when the RLU value (ATP measurement, luminescence intensity) of the suspension before the division was 100% was defined as the cell viability.
  • ATP reagent CellTiter-Glo (registered trademark) Luminescent Cell Viability Assay, Promega
  • Cell proliferation rate On the 5th day after the division, the culture tube was taken out of the incubator to disperse the cell mass well, then 0.5 mL of the culture solution was collected, and 0.5 mL of ATP reagent (CellTiter-Glo (registered trademark) Luminescent Cell Viability Assay) was collected. , Promega), stirred with a pipetteman, allowed to stand at room temperature for 10 minutes, dispensed 100 ⁇ L each into a white 96-well plate, and emitted light intensity (RLU value) using Enspire (Perkin Elmer). Was measured, and the number of viable cells was measured by subtracting the luminescence value of the medium alone. In consideration of the culture volume ratio, the relative value to the RLU value (ATP measurement, luminescence intensity) of the culture solution after 2 hours of division was defined as the cell proliferation rate.
  • ATP reagent CellTiter-Glo (registered trademark) Luminescent Cell Viability Assay
  • the example product of the device of the present invention can be divided into smaller cell clumps than the woven mesh of the comparative example. It was revealed that the number of cell clusters was large. Further, it was revealed that the device of the example can reduce the ratio of the cell mass of 120 ⁇ m or more than the mesh of the comparative example, and can divide the cell mass into a cell mass of a more uniform size.
  • the trapped amount was reduced by reducing the effective diameter of the opening of the through-hole of the device and the mesh for division in accordance with the processing amount, and In the examples, it was clarified that a higher cell viability (recovery rate) can be achieved by using a holder with less loss at the time of division.
  • the hiPS cell line 253G1 (purchased from RIKEN) was allowed to stand in a CO 2 incubator (37 ° C., 5% CO 2 ) using a 200 mL variable volume culture bag (manufactured by Nipro), Medium 1 and Medium 2. The cells were maintained and cultured. On day 0 of the culture, the cells were inoculated with the medium 1, the medium 2 was added every 1 to 3 days, and this was continued for 6 to 8 days to form a cell mass. On the last day, the cell mass was collected using MACS (registered trademark) SmartStrainers (70 ⁇ m, manufactured by MACS), suspended in Medium 1, passed through a device according to the device of the present invention, and divided into cell masses. The seeds were sown (day 0). This was repeated to maintain the cells.
  • MACS registered trademark
  • SmartStrainers 70 ⁇ m, manufactured by MACS
  • Electron beam sterilized instruments were used for each part used in this test.
  • a porous film of the type shown in FIG. 1 was produced.
  • the material of the porous film is nickel, the thickness of the porous film is 20 ⁇ m, and the width of the beam portion is 20 ⁇ m.
  • the hole diameter of each through hole (the distance between two opposing parallel sides of the six sides of the regular hexagon that is the shape of the opening) is 70 ⁇ m. Except for the matters specially specified, it is the same as the porous film used in Test Example 1.
  • the outer peripheral shape of the porous film is circular, and the diameter of the circle is 6 mm.
  • a holder for setting the mesh structure was prepared.
  • Setting the device in the holder provides a preferred divider.
  • the inside diameter of the conduit (circular cross section) for flowing the liquid medium composition in which the cell mass is dispersed is 2.6 mm, and the effective diameter of the flow of the liquid medium composition passing through the device is 2.6 mm. is there.
  • the device is passed through the device at a speed, and 10 mL of the suspension is dispensed into a 15 mL tube each time the device is passed, and the tube 5 containing the sample after dividing the suspension having a concentration of 3.0 ⁇ 10 5 cells / mL is used. After splitting the book and the 6.0 ⁇ 10 5 cells / mL suspension, five tubes containing the sample were obtained.
  • the intensity (RLU value) was measured, and the number of viable cells was measured by subtracting the luminescence value of the medium alone.
  • the relative value when the RLU value (ATP measurement, luminescence intensity) of the suspension before the division was 100% was defined as the cell viability.
  • the cell viability is shown in the graph of FIG.
  • the graphs of FIGS. 8A and 8B show the results of a test example in which the division was continued without performing the backwashing of the network structure of (i).
  • the graph in FIG. 8 (a) shows the results for a suspension with a cell concentration of 3.0 ⁇ 10 5 cells / mL
  • the graph in FIG. 8 (b) shows the results for a suspension with a cell concentration of 6.0 ⁇ 10 5 cells / mL.
  • the results for the suspension are shown.
  • the graphs of FIGS. 8C and 8D show the results of a test example in which the division was continued while performing the backwashing of the network structure of (ii).
  • FIG. 8 (c) shows the results for a suspension with a cell concentration of 3.0 ⁇ 10 5 cells / mL
  • the graph in FIG. 8 (d) shows the results for a suspension with a cell concentration of 6.0 ⁇ 10 5 cells / mL.
  • the results for the suspension are shown.
  • the cell viability decreases as the amount of the division treatment increases at both cell densities.
  • the graphs of FIGS. 8C and 8D when the backwashing of the mesh structure is performed, the cell viability is not sufficiently reduced at a cell density of 3 ⁇ 10 5 cells / mL.
  • Test on relationship between cross-sectional shape of beam portion and viability of cell mass A cell mass was formed by suspending and culturing human pluripotent stem cells (hiPS cells), and the cell mass was isolated from the beam portion. A test was performed to divide by the cross-sectional shape of the beam by observing the survival rate of the cell mass after each division for each volume by dividing by four kinds of the devices having different cross-sectional shapes.
  • Medium 2 A liquid medium prepared by injecting 0.016% (w / v) deacylated gellan gum into the mTeSR1 medium using the FCeM-series Preparation Kit according to the mixing method described in Patent Document 2. Composition.
  • the hiPS cell line 253G1 (purchased from RIKEN) was allowed to stand in a CO 2 incubator (37 ° C., 5% CO 2 ) using a 200 mL variable volume culture bag (manufactured by Nipro), Medium 1 and Medium 2. The cells were maintained and cultured.
  • the cells were seeded with Medium 1, Medium 2 was added every 1 to 3 days, and this was continued for 6 to 8 days to form a cell mass.
  • the cell mass was collected using MACS (registered trademark) SmartStrainers (70 ⁇ m, manufactured by MACS), suspended in Medium 1, passed through a device according to the device of the present invention, and divided into cell masses. The seeds were sown (day 0). This was repeated to maintain the cells.
  • the instruments used in the following cases were used after sterilization with disinfecting ethanol.
  • a porous film having the following shape was manufactured.
  • the shape of the opening is a regular hexagon shown in FIG. 1 (a), and the cross-sectional shape of the beam portion is a rectangle (rectangle) shown in FIG. 1 (c).
  • the shape of the opening is a square shown in FIG. 3A, and the cross-sectional shape of the beam portion is a rectangle (rectangle) shown in FIG. 1C.
  • the shape of the opening is a regular hexagon shown in FIG.
  • the cross-sectional shape of the beam part is a rounded shape (having an arc and a chord) as shown in FIG. 3 (e).
  • the shape of the opening is a square as shown in FIG. 3 (a), and the cross-sectional shape of the beam portion is a shape with a rounded corner on the entrance side (a shape having an arc and a chord shown in FIG. 3 (e)). ).
  • the material of the film body is nickel, the thickness of the film body (thickness t1 in FIGS. 1C and 1E) is 20 ⁇ m, and the wire diameter (width of the beam portion) is 50 ⁇ m.
  • the diameter of each through-hole (the distance between two parallel sides facing each other or the distance between two sides of a square which is the shape of an opening among the six sides of a regular hexagon having the shape of an opening) is 60 ⁇ m.
  • the outer peripheral shape of the film body is circular, and the size (diameter) of the circle is 6 mm.
  • the inner diameter of the conduit (circular cross section) for flowing the liquid medium composition in which the cell mass is dispersed is 3.0 mm, and the effective diameter of the flow of the liquid medium composition passing through the network is 3.0 mm. is there.
  • a division including a backwashing step was performed by returning the syringe by 1 mL for every 10 mL.
  • the dispensed 15 mL tube was left still in an incubator (37 ° C., 5% CO 2 ).
  • Cell viability Two hours after the division, the dispensed 15 mL tube was taken out of the incubator, and the cell mass was dispersed well by inversion mixing. Then, 0.75 mL of the culture solution was collected, and 0.75 mL of ATP reagent (CellTiter-Glo (registered trademark)) was collected. Luminescent Cell Viability Assay, Promega) was added, and the mixture was stirred well with a pipetman, allowed to stand at room temperature for 10 minutes, dispensed 100 ⁇ L each into a white 96-well plate, and emitted light with Enspire (Perkin Elmer).
  • CellTiter-Glo registered trademark
  • the intensity (RLU value) was measured, and the number of viable cells was measured by subtracting the luminescence value of the medium alone.
  • the relative value when the RLU value (ATP measurement, luminescence intensity) of the suspension before the division was 100% was defined as the cell viability.
  • the problems of the conventional mesh can be solved, the cell mass can be more preferably divided, and the culture and the division can be performed in a closed system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

当該デバイスは、フィルム状の本体部分1を有し、該本体部分のフィルム面の所定の領域は、多数の貫通孔20が配置された網状構造になっている。貫通孔は、前記のより小さい細胞塊が通過可能な大きさの開口形状を持っており、貫通孔の残部がビーム部30である。ビーム部は、分割すべき細胞塊を切断する部分であり、かつ、網状をなすように一体的につながっている。分割すべき細胞塊を液体と共に、当該デバイスの網状構造を通過させることによって、細胞塊を分割することができる。

Description

細胞塊を分割するためのデバイス、および、それを用いて細胞塊を分割する方法
 本発明は、細胞塊を分割するためのデバイス、および、該デバイスを用いて細胞塊を分割する方法に関する。
 近年、多能性幹細胞などの種々の細胞を液体培地中に浮遊させながら細胞塊へと3次元的に成長させる細胞培養方法(浮遊培養法とも呼ばれている)が開発されている(例えば、特許文献1など)。また、浮遊培養法を好ましく実施するための液体培地やその製造方法も開発されている(例えば、特許文献2など)。
 浮遊培養法では、細胞塊がより大きく成長するにつれて、多能性幹細胞の未分化性が低下する可能性がある。例えば、非特許文献1では、150μm以上の大きい細胞塊では未分化性が低下してしまう可能性が示唆されている。
 一方、特許文献1に記載された多能性幹細胞の培養方法では、多能性幹細胞を平均直径が約200~約300μmの大きい細胞塊となるまで浮遊培養し、得られた該大きい細胞塊を平均直径が約80~約120μm程度のより小さい細胞塊へと分割し、その後、さらなる浮遊培養を継続して、該多能性幹細胞を維持増幅させている。この培養方法では、大きい細胞塊を分割するための具体的な方法として、ナイロン製や金属製の線材を編み込んでなるメッシュを用い、大きい細胞塊を該メッシュに通過させることで、該メッシュの網の目(正方形の通過孔)に応じた大きさの小さい細胞塊へと分割している。
国際公開第2013/077423号 国際公開第2016/163444号
 しかしながら、本発明者らが、前記のようなメッシュを用いた細胞塊の分割を詳細に検討したところ、メッシュ特有の構造に起因して、該メッシュを通過する細胞塊が好ましく分割されない場合があることがわかった。即ち、メッシュは一種のシート状物であり、そのシート面を巨視的に正視した場合には、図10(a)に示すように、縦糸と横糸が直線的に交差しているように見え、かつ、網の目も、平面的な正方形に見える。しかし、個々の網の目を微視的に観察すると、縦糸と横糸は互いをよけるように3次元的に編まれているので、1つの正方形の網の目100を取り囲む4辺を構成する4本の線材(2本の縦糸(101、102)と、2本の横糸(111、112))は、図10(b)に示すように、それぞれにメッシュの厚さ方向に大きく波打っている。
 このような波打った4本の線材によって囲まれた網の目を細胞塊が通過する場合、各線材の断面形状は円形であり、線材の胴体表面は曲面であるから、細胞塊は適切にまたは鋭利に分割されない場合がある。このようなメッシュの欠点を改善するために、より細い線材を用いると、メッシュの強度が低下する。これを改善するために線材の強度をより高めると、メッシュがより高価になる。また、線材によって形成されたメッシュによって細胞塊を分割する場合、液体培地の流速が低いと細胞塊を切断することができず、メッシュの網にトラップされるだけであるため、分割と培養を繰り返すことができず、細胞塊の回収率が低くなる。よって、ある程度の高い流速が必要である。一方で、液体培地の流速を高くすると、分割した細胞塊が高速の流れによるせん断を受け、さらに小さくなってしまう。多能性幹細胞の細胞塊は、外径40μm以下に分割されると、細胞がアポトーシスを起こすなど、細胞へのダメージが大きく好ましくない。
 以上のように、従来のメッシュを用いた細胞塊の分割では、液体培地の流速が低いと、細胞の回収率が低くなり、液体培地の流速が高いと、細胞塊へのダメージが大きく、拡大培養効率の低下に繋がる。
 本発明の目的は、上記の問題を解消し得、細胞塊をより好ましく分割し得るデバイスと、それを用いて細胞塊を分割する方法を提供することにある。
 本発明者等は、上記の課題を解決すべく鋭意検討し、フィルム面に多数の貫通孔を網の目状に配置し、かつメッシュの線材に比べて鋭利な角部を胴体表面に持ったビーム部を有して成る多孔性フィルムであれば、個々の貫通孔を取り囲むビーム部が波打たず、細胞塊をより好ましく切断することができることを見出し、本発明を完成するに至った。
 本発明の主たる構成は、次のとおりである。
〔1〕細胞塊をより小さい細胞塊へと分割するためのデバイスであって、
 フィルム状の本体部分を有し、
 該本体部分のフィルム面の所定の領域は、該フィルム面に多数の貫通孔が配置された網状構造になっており、該網状構造は、前記所定の領域をフィルム厚さの方向に貫通する多数の貫通孔と、該貫通孔同士の間の隔壁であるビーム部とを有し、
 前記貫通孔は、前記のより小さい細胞塊が通過可能な大きさの開口形状を持っており、
 前記ビーム部は、前記所定の領域における前記本体部分から前記貫通孔を差し引いた残部であって、分割すべき細胞塊を切断する部分であり、かつ、網状をなすように一体的につながっている、
前記デバイス。
〔2〕前記貫通孔の開口形状は、
  その円相当直径が40μm~90μmである開口面積を有し、かつ、
  直径35μm~85μmの円を収容する形状である、
上記〔1〕に記載のデバイス。
〔3〕互いに隣り合った貫通孔同士の離間距離である、前記ビーム部の幅が、10μm~60μmである、上記〔1〕または〔2〕に記載のデバイス。
〔4〕前記多数の貫通孔の開口形状が、互いに合同な四角形であって、前記ビーム部が直交格子状に互いにつながっている、上記〔1〕~〔3〕のいずれかに記載のデバイス。
〔5〕前記多数の貫通孔の開口形状が、互いに合同な六角形であって、前記ビーム部がハニカム状に互いにつながっている、上記〔1〕~〔3〕のいずれかに記載のデバイス。
〔6〕前記六角形が正六角形であって、該正六角形の6辺のうち、互いに対向する平行な2辺の間の距離が、38μm~85μmである、上記〔5〕に記載のデバイス。
〔7〕前記フィルム面が第1フィルム面であり、その反対側のフィルム面が第2フィルム面であり、
 当該デバイスの使用時において、第1フィルム面は入口側として用いられる面であり、第2フィルム面は出口側として用いられる面であり、
 前記ビーム部の長手方向に垂直な断面の形状が、矩形であるか、該矩形の入口側の2つの角部が丸みを帯びた形状である、
上記〔1〕~〔6〕のいずれかに記載のデバイス。
〔8〕分割すべき細胞塊が、多能性幹細胞からなる細胞塊である、上記〔1〕~〔7〕のいずれかに記載のデバイス。
〔9〕上記〔1〕~〔8〕のいずれかに記載されたデバイスを用い、
 分割すべき細胞塊を液体と共に、前記デバイスの網状構造を通過させることによって、該細胞塊を分割する工程を有する、
細胞塊を分割する方法。
〔10〕分割すべき細胞塊を液体と共に、前記デバイスの網状の領域を通過させる際の、該液体の流速が、10mm/秒~500mm/秒である、上記〔9〕に記載の方法。
〔11〕逆流洗浄工程をさらに有し、該逆流洗浄工程は、
 前記細胞塊を分割する工程において所定量の細胞塊が分割された後に、該細胞塊が分割のために当該デバイスの網状構造を通過した方向とは逆方向に、所定の液体を該網状構造を通過させて、それにより、該網状構造の洗浄を行う工程である、
上記〔9〕または〔10〕に記載の方法。
 本発明のデバイス(以下、当該デバイスという)では、フィルム面に貫通孔が多数配置されて、該フィルム面の所定の領域(一部または全部の領域)が網状構造となっている。この網状構造は、網の目として機能する貫通孔と、隣り合った貫通孔同士の間の隔壁部として機能するビーム部とからなる、一種の多孔フィルムである。この網状構造の領域では、図1(a)に示すように、ビーム部20が、フィルムから貫通孔を除いた残部として2次元状に網としてつながっており、メッシュの線材のような波打ちがない。よって、このような波打ちのないビーム部に衝突した細胞塊は、上記した波打ったメッシュの線材よりも好ましく分割され得る。またさらに、該ビーム部20の断面形状は、図1(b)または図1(c)に示すように、円形ではなく、四角形や矩形(厚さ方向に長辺を持つ長方形、厚さ方向に短辺を持つ長方形、または、正方形)に近い。よって、各貫通孔の開口部におけるビーム部20のエッジによって、該細胞塊はより抵抗なく鋭利に分割され得るので、切断時に該細胞塊が受けるダメージはより小さくなる場合がある。
 よって、当該デバイスを用いた細胞塊の分割では、網状の領域を通過する液体(分割すべき細胞塊が分散した液体培地など)の流速を、従来のメッシュを用いた分割の場合より低くすることができ、細胞塊が過度に細かい細胞塊へと解砕されることも抑制される。
 当該デバイスの好ましい態様では、貫通孔の開口形状は、より円形に近い形状(例えば、正方形や正六角形)とされ、かつ、ビーム部の幅は均一とされる。これによって、切断時に該細胞塊が受けるダメージがより小さくなり、かつ、均一な大きさのスフェア状の好ましい細胞塊を得ることができる。
 また、当該デバイスでは、ビーム部の幅をより狭くすることは、加工上、比較的容易であり、正六角形の開口形状であれば、網状構造全体の強度が高いので、ビーム部の幅をより狭くすることができる。よって、細胞塊をさらに抵抗なく分断することができ、かつ、開孔率(網状構造の領域の全体の面積に占める開口の割合)を大きくすることができるので、前記のようなメッシュの問題が解決され得る。
図1は、本発明によるデバイスにおける網状構造の好ましい態様の一例を示す図である。図1(a)は、フィルム状の本体部分のフィルム面の所定の領域を示す部分拡大図であり、図1(b)は、図1(a)のX1-X1断面図である。図1(c)~(e)は、図1(b)に示すビーム部の断面の他の態様を例示する図である。図1(b)~(e)では、ビーム部の断面にハッチングを施している。 図2は、本発明によるデバイスの本体部分のフィルム面に網状構造が設けられる領域を例示する図である。同図では、貫通孔の開口の図示を省略し、網状構造が設けられる領域をハッチングで示している。 図3は、本発明によるデバイスにおける網状構造の好ましい態様の他の例を示す図であり、本体部分のフィルム面の所定の領域を示す部分拡大図である。 図4は、本発明によるデバイスを細胞塊の分割に好ましく使用し得るように構成されたデバイスホルダーの構造の一例を示す断面図である。 図5は、本発明による細胞塊を分割する方法を概略的に示す図である。図では、説明のために培養容器を小さく描き、管路を太く描いているが、実際には、培養容器は一般的な培養バッグの大きさであり、管路はフレキシブルな配管チューブである。 図6は、本発明による細胞塊を分割する方法の他の態様を概略的に示す図である。図では、説明のために培養容器を小さく描き、管路を太く描いているが、実際には、培養容器は一般的な培養バッグの大きさであり、管路はフレキシブルな配管チューブである。 図7は、本発明による細胞塊を分割する方法を用いた細胞培養方法の一例を示すフローチャートである。 図8は、本発明によるデバイスに対する逆流洗浄の効果を調べた試験結果を示すグラフである。図8(a)、(b)は、逆流洗浄を行わずに細胞塊の分割を継続した場合における、分割された細胞塊に含まれる細胞の生存率を示すグラフであり、図8(c)、(d)は、所定量の分割毎に逆流洗浄を行いながら細胞塊の分割を継続した場合における、分割された細胞塊に含まれる細胞の生存率を示すグラフである。 図9は、本発明において、網状構造のビーム部の断面形状と分割性能の関係を調べた試験結果を示すグラフである。 図10は、細胞塊の分割に用いられる従来のメッシュの構造を示す図である。図10(a)は、メッシュのシート面の所定の領域を示す部分拡大図であり、図10(b)は、図10(a)のX10-X10断面図である。図10(b)では、線材の断面にハッチングを施している。
 以下、本発明のデバイスの態様を、実施例を挙げながら詳細に説明する。
 当該デバイスは、大きく成長した分割すべき細胞塊をより小さい細胞塊へと分割するためのデバイスである。当該デバイスは、フィルム状の本体部分を有する。該本体部分の外周縁部などには、取り扱い性を向上させるための剛性の高いフレームやタブなどがさらに設けられていてもよいが、以下に説明として挙げる態様では、当該デバイス全体がフィルム状の本体部分であり、よって、全体が1枚のフィルムとなっている。
 当該デバイスの本体部分のフィルム面における所定の領域は、図1(a)に示すように、該フィルム面に多数の貫通孔20が配置された網状構造10になっている。フィルム面の所定の領域は、フィルム面の一部または全部の領域であってよい。例えば、図2(a)の例では、フィルム状の本体部分1の外周領域1bは、貫通孔のない平坦なフィルムとなっており、中央領域1aに貫通孔が配置されている。網状構造の外周を定める外形線(例えば、中央領域1aの外周の境界線)が貫通孔の開口を横切る場合、その貫通孔の開口は外形線の内側だけの小さい開口となってしまう。このような場合、小さい開口の貫通孔をそのまま設けてもよいし、または、そのような小さい開口の貫通孔は設けなくともよいし、または、本来の形状の開口が外形線を外側に超えるように貫通孔を設けてもよい。
(網状構造)
 網状構造10は、図1(a)に示すように、前記所定の領域をフィルム厚さの方向に貫通する多数の貫通孔20と、該貫通孔同士の間の隔壁であるビーム部30とによって構成されている。貫通孔20は、前記のより小さい細胞塊(分割後の細胞塊)が通過可能な大きさの開口形状を持っている。一方、ビーム部30は、前記所定の領域における本体部分から前記貫通孔を差し引いた残部である。該ビーム部は、分割すべき細胞塊を切断する部分として機能し、かつ、網状をなすように一体的につながっている。この構成によって、従来のメッシュの問題が抑制され、大きく成長した細胞塊を好ましく分割することができる。
(貫通孔の開口形状の寸法限定)
 貫通孔の開口形状の円相当直径は、分割すべき細胞塊を構成する細胞の種類によっても異なるが、例えば、細胞が多能性幹細胞や胚性幹細胞などであれば、40μm~90μm程度が挙げられ、より好ましくは50μm~80μmであり、さらに好ましくは60μm~70μmである。以下、細胞が多能性幹細胞や胚性幹細胞などの場合に対する、各部の好ましい寸法等を例示するが、それら以外の他の細胞についても、それぞれに適宜応じた寸法へと変更してよい。
 前記の円相当直径の規定だけでは、スリットのような細長い開口形状や迷路のように入り組んだ開口形状も含まれてしまう。そこで、本発明では、前記の円相当直径の限定に加えて、該開口形状が、直径35μm~85μmの円(以下、収容円と呼ぶ)を収容し得る形状であることをも限定条件に加える。ここで、開口形状が収容円を収容し得るとは、収容円が開口形状に内接する場合や、収容円が開口形状と一致する場合をも含む。
 同じ円相当直径を有する形状を比較する場合、正方形よりも正六角形の方が、収容円の直径が大きい。円相当直径の好ましい下限値である40μmに対応する正方形の場合、そのような正方形の一辺の長さは、約35.449μmであり、その場合の収容円の直径は、約35.449μm以下である。よって、本発明では、35μmを収容円の直径の好ましい下限とする。また、円相当直径の好ましい上限値である90μmに対応する正六角形の場合、そのような正六角形における対向する二辺間の距離は、約85.708μmであり、その場合の収容円の直径は、約85.708μm以下である。よって、本発明では、85μmを収容円の直径の好ましい上限とする。
 前記収容円の直径は、44μm~76μmがより好ましく、53μm~67μmがさらに好ましい。開口形状が円形である場合は、収容円の直径=円相当直径であり、それ以外の場合は、収容円の直径<円相当直径である。
(貫通孔の開口形状)
 網状構造に設けられる多数の貫通孔の開口形状は、特に限定はされず、円形、楕円形、三角形、四角形、六角形、その他の多角形や異形などであってもよいが、三角形など、鋭角の内角を持った形状である場合、フィルムの強度の観点から開口率(網状構造の面積に占める、開口面積の総和の割合)を高くすることができないため、回収率の低下などの問題が生じる可能性がある。また、円形は、ビーム部の幅が一定せず、かつ、ビーム部が互いに連結される部分の面積が大きいので、ビーム部による細胞塊の切断性が好ましくない。これに対して、正方形や正六角形であれば、内角が鋭角ではなく、かつ、ビーム部が互いに連結される部分の面積が小さいので、前記のような問題が抑制され、好ましい。
 また、切断後に均一な細胞塊を得る点から、全ての開口形状が互いに合同であることが好ましい。
 また、ビーム部の幅(互いに隣り合った貫通孔同士の離間距離)は、均一である方が、該ビーム部の長さに沿った切断性が均一であるため好ましい。
 これらの点から、貫通孔の開口形状は、四角形や六角形が好ましく、開口周囲の辺(ビーム部)の長さが互いに等しい正方形や正六角形がより好ましい。より円形に近い点では正六角形が好ましい形状として挙げられる。
(開口の配置パターン)
 全ての開口形状が合同な正六角形である場合、フィルム面への開口の配置パターンは細密状が好ましく、その場合、ビーム部は、図1(a)に示すようなハニカム状に互いにつながった網状体となる。この態様では、3つのビーム部の端部同士が結合する部分を除いては、全てのビーム部の幅W2が均一となるので好ましい。
 また、全ての開口形状が合同な正方形である場合、フィルム面への開口部の配置パターンは、正方行列状が好ましく、その場合、ビーム部は、図3(a)に示すような直交格子状に互いにつながった網状体となる。この態様でも、4つのビーム部の端部同士が結合する部分を除いては、全てのビーム部の幅W2が均一となるので好ましい。尚、図3(b)に示すように、正方形の開口部が一行ごとに横方向にずれた配置パターンなどであってもよいが、一点鎖線で囲んだA部のように、横方向のビーム部が2つに分かれるので、図3(a)に示すような直交格子とは切断性が異なる。
 図1(a)に示すように、正六角形の開口が細密状に配置されている場合、該正六角形の6辺のうち、互いに対向する平行な2辺の間の距離W1は、前記収容円の直径であってよく、38μm~85μmが好ましく、48μm~76μmがより好ましく、57μm~67μmがさらに好ましい。この場合、ビーム部の幅W2は、10μm~60μmが好ましく、20μm~40μmがより好ましい。
 また、図3(a)に示すように、正方形の開口が正方行列状に配置されている場合、該正方形の4辺のうち、互いに対向する平行な2辺の間の距離W11は、前記収容円の直径であってよく、35μm~80μmが好ましく、44μm~71μmがより好ましく、53μm~62μmがさらに好ましい。この場合、ビーム部の幅W21は、10μm~60μmが好ましく、20μm~40μmがより好ましい。
(本体部分の厚さ)
 フィルム状の本体部分の厚さは、特に限定はされないが、ビーム部を細い線状にする点から、10μm~60μmが好ましく、20μm~40μmがより好ましい。
(ビーム部の断面形状)
 以下、構成を説明するために、フィルム状の本体部分の一方のフィルム面を第1フィルム面と呼び、その反対側のフィルム面を第2フィルム面を呼ぶ。当該デバイスの使用時において、第1フィルム面は入口側として用いられる面であり、第2フィルム面は出口側として用いられる面である。
 ビーム部の断面形状(ビーム部の長手方向に垂直な断面の形状)は、該ビーム部の幅W2と、多孔フィルムの厚さt1との関係によっては、図1(b)または図1(c)に示すように、矩形(直角四辺形)となり得る。このような場合には、第1フィルム面と第2フィルム面との間に差異はなく、第1フィルム面を出口側として用いてもよい。
 一方、前期の矩形の入口側の2つの角部が、図1(d)または図1(e)に示すように、丸みを帯びた形状である方が、分割された細胞塊の生存率がより高くなり、好ましい場合もある。これは、入口側の2つの角部が鋭い直角のエッジである場合に比べて、細胞が受けるダメージが減少し、個々の細胞自体が切断される可能性がより低くなり、かつ、細胞同士が互いに接着する境界面において該細胞同士が分離する可能性がより高くなった結果と考えられる。
 図1(d)の態様では、矩形の入口側の2つの角部だけが局所的に丸みを帯びた形状であり、よって、ビーム部の入口側の面には平面が残っている。一方、図1(e)の態様では、矩形の入口側の2つの角部が図1(d)の態様よりもさらに丸みを帯びており、断面形状全体が、半円形(より厳密には、円弧と弦とを有する形状)である。よって、ビーム部の入口側の面は、あたかも、円柱の胴体表面のように全体が曲面となっている。前記したように、細胞が受けるダメージの低減という観点からは、角部の丸みの半径はより大きい方が好ましく、図1(d)の態様よりも、図1(e)の態様の方が好ましい。該丸みの半径は、ビーム部の幅W2やフィルム状の本体部分の厚さt1によっても異なるが、1μm~100μm程度が例示される。また、該丸みの半径は、円弧のように一様であってもよく、場所によって異なっていてもよい。
(本体部分の材料)
 フィルム状の本体部分の材料は、特に限定はされないが、金、銀、銅、鉄、亜鉛、白金、ニッケル、クロム、パラジウムなどの金属材料、または、これらの任意の材料の組み合わせからなる合金が挙げられ、好ましい合金としては、ステンレス鋼や真鍮などが例示される。
(当該デバイスの製造方法)
 当該デバイスの製造方法は、特に限定はされず、樹脂成型、打ち抜き、LIGA(Lithographie Galvanoformung Abformung)など、材料に応じて適当な方法を選択すればよいが、開口形状およびビーム部の幅が微小である点からは、LIGAを用いた製造方法として例示される。LIGAを用いた製造方法では、例えば、リソグラフィーによって電鋳用の金型を作成し、電鋳槽内で電気化学反応を利用し、該金型の表面に当該デバイスとなる金属メッキ層を形成し、該金属メッキ層を、該金型から剥離して当該デバイスとして用いる。
 図1(d)、(e)に示すような、ビーム部の断面形状の入口側の2つの角部が丸みを帯びた形状も、例えば、前記の金型の凹部の形状を隅部が丸みを帯びた形状とすることで得ることができる。
 当該デバイスの使用方法は、基本的には、従来公知のメッシュと同様であって、分割すべき細胞塊が、フィルム状の本体部分の網状構造を該本体部分の厚さ方向に通過するように、該細胞塊を培養液などの液体と共に流す方法が挙げられる。
 当該デバイスは必要に応じて、2つ以上を直列的に配置して使用しても良い。例えば、1つのホルダー内に2つ以上の当該デバイスを重ねて配置してもよいし、1つの当該デバイスを収容したホルダーを2つ以上直列的に接続して使用しても良い。2つ以上用いる際の当該デバイスの網状構造の仕様は、互いに異なっていても良いし、同一でもよい。
(当該デバイスを好ましく使用するためのホルダー)
 本発明では、当該デバイスを好ましく使用するためのホルダーを提案する。該ホルダーに当該デバイスをセットすることによって、閉鎖系の培養システムの流路(管路)の途上に好ましく挿入し得る分割器が構成される。
 当該ホルダーは、分割すべき細胞塊が液体と共に当該デバイスを好ましく通過できるようにするだけでなく、細胞培養、細胞塊の分割、分割後の細胞塊の継代培養を、閉鎖系で連続的に行うことを可能にする。
 図4は、当該ホルダーの構造の一例を示す断面図である。同図に示すように、当該ホルダー40は、当該デバイス1Aを配置するための配置面41sをもったホルダー本体部41と、該配置面41sに配置される当該デバイス1Aを覆って、該ホルダー本体部に着脱可能に固定されるキャップ部42とを有して構成される。図4の例では、当該デバイス22が、2枚のガスケット(シート状のシール部材)43と44の間に挟まれており、これによって、液体培地がホルダー外に漏洩しないようにシールされている。キャップ部42の内側の面は、当該デバイス1Aをホルダー本体部41へと押さえ付けるための押さえ面42sとなっている。
 ホルダー本体部41は、配置面41sに開口する第1貫通孔41pを有しており、キャップ部42は、押さえ面42sに開口する第2貫通孔42pを有している。図4に示すように、キャップ部42がホルダー本体部41に固定された状態では、第1貫通孔41pの開口の中心と、第2貫通孔42pの開口の中心は互いに一致する。当該デバイスは、従来のメッシュとは異なり、表裏面がフラットであるから、液体培地を横方向に漏洩させることが無いように、容易にかつ好ましく気密に挟み込むことが可能である。
 ガスケットの外形は、当該デバイスの外形以上が好ましい。該ガスケット43、44の材料は、例えば、シリコンなど、生体に影響を与えることなく、好ましいシール性を有するものであればよい。
 図4の例では、2枚のガスケットのそれぞれの中央には、第1貫通孔41p、第2貫通孔42pと同じ断面形状である円形の貫通孔が設けられている。図の例では、これらの貫通孔の内径は約1.6mmであって、一線上に位置合わせされている。これにより、これらの貫通孔の断面形状にて、液体培地の流れが当該デバイスを通過する。当該デバイスを通過する際に、流れが変化すると、分割された細胞塊が流れによるせん断力をも受けてしまい、より小さくなってしまう可能性がある。よって、第1貫通孔41p、第2貫通孔42p、2枚のガスケットの各貫通孔の内径は、同一であることが好ましいが、悪影響を与えるような乱流を生じさせない範囲であれば、これらの貫通孔の内径は、互いに異なっていてもよい。
 図4の例では、第1貫通孔41p、第2貫通孔42pの管路の内径は一定であり、該管路の内径(D1)と、当該デバイスを通過する流れの有効径を決定するガスケットの貫通孔の内径(d1)との比(D1/d1)は、0.33~3程度が好ましく、0.5~2がより好ましく、より1に近い方が好ましい。好ましい態様では、D1/d1=1である。各貫通孔の内径、ガスケットの外径、配置面41sの径などには、流路の中心軸線を一致させることなどを考慮して、適宜の許容寸法を与えてもよい。
 図4の例では、ホルダー本体部41の胴体外周にはオネジ41tが設けられ、キャップ部42の胴体内側面にはメネジ42tが設けられ、これらのネジによってホルダー本体部41をキャップ部42の内部にねじ込んで固定し、当該デバイス1Aを漏洩なきように挟み込んで押さえ付けるようになっている。ホルダー本体部41およびキャップ部42のそれぞれの胴体外周には、これらを回す力(または、保持する力)を作用させるためのローレットや六角ボルトのヘッド部などが設けられてもよい。
 ホルダー本体部とキャップ部との着脱構造は、前記のねじ込む構造だけには限定されず、ワンタッチカップリングの構造や、ボルトとメネジを用いてキャップ部をホルダー本体部に締め付ける構造などであってもよい。
 ホルダーの材料は、特に限定はされないが、ポリスチレンやポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、アクリル、シリコン、ポリビニリデンフロライドなどの有機高分子材料や、ステンレスなどの金属材料が挙げられる。安価に成形可能であり、かつ、オートクレーブやガンマ線に対する耐性の観点からは、ポリプロピレンやポリカーボネート、アクリルが好ましい材料として例示される。
 ホルダー本体部41およびキャップ部42のそれぞれの管路41p、42p(断面形状は円形)の内径は、特に限定はされず、製造システムの規模や流量に応じて適宜決定してよく、0.5mm~15mm程度が汎用的でありかつ有用である。図4の例では、管路の内径は1.6mmである。
 また、これらの管路と外部の配管とを接続するため、ホルダー本体部およびキャップ部からは、それぞれ接続用のパイプ部41c、42cが突き出している。これらパイプ部の胴体外面は、例えば、ホースニップル(「タケノコ継手」とも呼ばれる)の形状となっていてもよく、また、軟質チューブ等内に圧入して(または、軟質チューブ等を圧入して)接続し得るようになっていてもよい。また、公知のワンタッチ継手(クイックカップリング)のメス側やオス側などの公知のコネクターとの接続性を持った構造体、樹脂チューブ用のプッシュイン継手や締込み継手などであってもよい。
 ホルダーの外形は特に限定はされない。図4の例では、ホルダーの全体的な外形(パイプ部を除く)は円柱状であって、直径は20mmである。また、全長は約20~25mm程度である。これらの数値は一例であって、管路の内径やコネクターの構造などに応じて適宜決定してよい。
 上記したようなホルダーを用いれば、当該デバイスに残存する(捕捉される)細胞のロスが無く、細胞塊が液体と共に当該デバイスを通過する際に乱流が発生し難く、層流に沿った移動によって細胞塊がより抵抗無く切断されるようになり、細胞へのダメージが減少し、分割後の細胞塊の生存率が改善され得る。
(分割すべき細胞塊)
 当該デバイスによって分割すべき細胞塊を構成する細胞の種類としては、浮遊培養によって細胞塊(「スフェロイド」とも称される)を形成する細胞であれば特に限定はされず、いかなる細胞であってもよい。かかる細胞塊を構成する細胞は、動物または植物由来細胞であり得、特に動物細胞由来であることが好ましい。かかる細胞が由来する動物種としては、ラット、マウス、ウサギ、モルモット、リス、ハムスター、ハタネズミ、カモノハシ、イルカ、クジラ、イヌ、ネコ、ヤギ、ウシ、ウマ、ヒツジ、ブタ、ゾウ、コモンマーモセット、リスザル、アカゲザル、チンパンジーおよびヒトなどの哺乳動物由来細胞がより好ましい。また、細胞塊を構成する細胞は、培養細胞として株化されたものや生物組織から得られた初代細胞であってもよい。さらに、細胞塊を構成する細胞は、多能性幹細胞であってもよく、これには、胚性幹細胞(ES細胞)、誘導多能性幹細胞(iPS細胞)、間葉系幹細胞、神経幹細胞等が含まれる。また、細胞塊を構成する細胞は、分化細胞であってもよく、例えば、肝細胞、膵島細胞、腎細胞、神経細胞、角膜内皮細胞、軟骨細胞、心筋細胞等であり得る。さらに、細胞塊を構成する細胞は、臍帯血、骨髄、脂肪、血液由来組織性幹細胞から分化誘導される細胞であってもよく、あるいは腫瘍化した細胞、遺伝子工学的手法により形質転換された細胞やウイルスベクターにより感染された細胞であってもよい。本発明の一態様において、細胞塊を構成する細胞は、ヒト由来の多能性幹細胞が好ましく、とりわけ、ヒトiPS細胞であることが好ましい。なお、本明細書において、「浮遊培養」とは、細胞又は細胞塊(すなわち細胞が多数集合して形成された3次元構造(球状やぶどうの房状等)を有する細胞の塊)を、培養器に接着させない条件で培養することを意味する。
(分割すべき細胞塊の大きさ)
 当該デバイスを適用すべき分割前の細胞塊の外径は、特に限定はされないが、細胞が多能性幹細胞や胚性幹細胞などであれば、50μm~300μmが好ましく、100μm~200μmがより好ましく、120μm~180μmがさらに好ましい。
 細胞塊の外径は、顕微鏡(電子顕微鏡、光学顕微鏡を含む)によって得られる細胞塊像の面積を測定し、その面積と同じ面積を持った円の直径(円相当直径)を採用することができる。
 前記の外径の細胞塊は、当該デバイスによって分割されて、40μm~120μm程度、より好ましくは50μm~90μm程度の外径となる。
 分割された細胞塊の外径(円相当直径)は、当該デバイスの貫通孔の開口形状の円相当直径には必ずしも一致せず、開口形状の円相当直径よりも大きい場合や小さい場合がある。例えば、貫通孔を通過することで長い柱状に分断成形された細胞塊は、観察する角度によっては、開口形状の円相当直径よりも大きい円相当直径を有する場合がある。また、細胞塊が貫通孔内を完全に充填せず、貫通孔の内壁(ビーム部の壁面)との間に隙間を生じさせながら通過した小さい細胞塊は、観察する角度によっては、開口形状の円相当直径よりも小さい円相当直径を有する場合がある。
(細胞塊を分割する方法)
 本発明による細胞塊を分割する方法(以下、当該方法ともいう)は、本発明によるデバイスを用い、分割すべき細胞塊を、当該デバイスの網状構造を通過させることによって、該細胞塊をより小さい細胞塊へと分割する工程を有する。分割された細胞塊をさらに継続し(継代培養)、大きく成長した細胞塊を、当該デバイスによって再度分割するという工程を繰り返すことによって、細胞塊を効率よく大量に培養することが可能になる。
 分割すべき細胞塊を液体培地と共に当該デバイスの網状構造を通過させる場合の、該液体培地の流速は、細胞の種類、細胞塊の大きさ、液体培地の粘性などによっても異なるが、概ね、10mm/秒~500mm/秒、好ましくは50mm/秒~150mm/秒である。前記の流速は、液体(懸濁液)が分割器に入る流速(または分割器から出る流速)を採用することができる。該流速は、シリンジなどの送液ポンプを用いて所定量の溶液を所定の時間で一定の速さで押し出すまたは吸引する操作に基づいて得ることができる。また、液体が網状構造の網目を通過するときの流速は、前記送液ポンプによる流量を網目の開口面積の総和で除することで算出することができる。
(閉鎖系にて細胞塊の培養と分割を繰り返す培養システム)
 前記のような細胞塊の培養と分割の繰り返しは、開放系で行ってもよいが、本発明では、当該デバイスを用いた閉鎖型の培養システムを構成し、細胞塊の培養と分割の繰り返しを外気との接触なしに行うことを提案する。
 図5は、当該デバイスを用いた閉鎖型の培養システムの構成の一例を概略的に示した図である。同図の培養システムでは、第1の培養容器50と、当該デバイス1Aを保持したホルダー40と、第2の培養容器60とが、これらの順に管路(配管用チューブ)P1、P2で接続されている。ホルダー40に保持された当該デバイス1Aは、太い点線で表している。配管用チューブP1には、細胞塊が分散した流体を送るためのポンプ70が装着されている。ポンプの位置は、配管用チューブP2上であってもよい。該ポンプにより、第1の培養容器50内の流体は、当該デバイス1Aを通過して、第2の培養容器60へと移動することができる。この構成によって、第1の培養容器50内の液体培地中で浮遊培養され所定の大きさまで成長した多数の細胞塊は、外気に触れることなしに、液体培地と共に当該デバイス1Aを通過して分割され、第2の培養容器60へと送られることができる。分割されて第2の培養容器60に移動した細胞塊は、第2の培養容器60で所定の大きさまで成長するよう浮遊培養されて、分割時に、管路P3を通じて第1の培養容器50に戻されてもよいし、全ての細胞塊が第1の培養容器50から第2の培養容器60へと移動した時点で、管路P3を通じて第1の培養容器50に戻されて、第1の培養容器50で所定の大きさまで成長するよう浮遊培養されてもよい。代替的には、第2の培養容器60内で所定の大きさまで成長した細胞塊は、ポンプ70の送り方向を逆転させることで、液体培地と共に当該デバイス1Aへと送られ、図5とは逆方向に該デバイス1Aを通過して分割され、第1の培養容器50へと戻されてもよい。また代替的には、第2の培養容器60内で所定の大きさまで成長した細胞塊は、液体培地と共に別の当該デバイス(図示せず)を通過して分割され、第3の培養容器(図示せず)へと送られてもよい。いずれの態様でも、所定の大きさまで成長した細胞塊は、当該デバイスで分割され、次の培養容器へと送られ、培養が継続され、再び当該デバイスで分割される。このように培養と分割とを自動的または半自動的に閉鎖系で繰り返すことによって、作業者の手技に関する熟練度の違いに起因する細胞塊の回収率の差異をより小さくすることができ、また、培養環境を衛生的に保ちながら、即ち、無菌的に培養を継続しながら、細胞塊を増殖させることができる。
 図6は、当該デバイスを用いた閉鎖型の培養システムの構成の他の例を概略的に示した図である。同図の培養システムでは、第1の培養容器50と、当該デバイス1Aを保持したホルダー40とが、管路(配管用チューブ)P1で接続されており、当該デバイス1Aを通過した細胞塊が第1の培養容器50に戻されるように、管路(配管用チューブ)P4が配管されている。配管用チューブP1には、細胞塊が分散した流体を送るためのポンプ70が装着されている。ポンプの位置は、配管用チューブP4上であってもよい。該ポンプにより、第1の培養容器50内の流体は、当該デバイス1Aを通過して、第1の培養容器50内に戻される。この循環的な構成よって、第1の培養容器50内の液体培地中で浮遊培養され所定の大きさまで成長した多数の細胞塊は、外気に触れることなしに、液体培地と共に当該デバイス1Aを通過して分割され、第1の培養容器50へと送られ、分割前の細胞塊と混合される。これにより、分割前の細胞塊と、分割後の細胞塊とが共に当該デバイス1Aを通過することになるが、分割後の細胞塊は、流体の流れに沿って移動し、当該デバイス1Aのビーム部によって切断されることなしに、該デバイス1Aの貫通孔を通過する確率が高い。よって、第1の培養容器50内での浮遊培養を行いながら、その一部を当該デバイス1Aで分割し元に戻すという循環を継続することで、培地中の細胞塊の濃度(存在比率)を高めることが可能になる。特定の濃度まで細胞塊が増えた時点で、一部または全部の細胞塊を回収してよい。
 このように培養と分割とを自動的または半自動的に閉鎖系で繰り返すことによって、作業者の手技に関する熟練度の違いに起因する細胞塊の回収率の差異をより小さくすることができ、また、培養環境を衛生的に保ちながら、即ち、無菌的に培養を継続しながら、細胞塊を増殖させることができる。
 図5に示すシステムの構成では、1つの培養容器内の細胞塊が同様に分割されながら全てが他の培養容器へと移動するので、細胞塊の大きさを管理し易いという利点があるが、培養容器から培養容器へと移し替える手間を要する。これに対して、図6に示すシステムの構成では、閉鎖されたループ内を細胞塊が大小混在しながら循環し続けるので、細胞塊の大きさは均一ではなくなるが、培養容器から培養容器へと移し替える手間は不要である。よって、これらのシステムは、それぞれの欠点を問題にしないような用途に用いればよい。
 また、図6に示すシステムにおいて、不均一な大きさの細胞塊が混在していても、メッシュや当該デバイスのような網状のフィルターを通すことで、小さい細胞塊を通過させ、所定以上の大きさの細胞塊だけを該フィルターで止めて回収することが可能である。回収に用いる網状のフィルターは、太い線材からなるメッシュや、当該デバイスのビーム部の幅をより太くした網状構造など、細胞塊が切断され難いものを用いることが好ましく、また、分割の場合よりも流速を低くして、細胞塊がより好ましくトラップされるようにすることが好ましい。
 図5、図6は、管路を閉ループとして循環させた例であるが、分割すべき細胞塊と液体培地(即ち、液体培地とその液中に存在する細胞塊)を最初に供給するための供給源から、細胞塊と液体培地を当該デバイスに供給し、第1の容器で受ける構成としてもよい。該供給源は、細胞塊と液体培地とが収容された外部の培養容器であってもよいし、図5、図6に示したシステム自体によって得られた細胞塊を収容した容器などであってもよい。さらには、図5、図6に示したような閉鎖系のシステムを複数用い、第1段目のシステムから回収された細胞塊と液体培地が収容された容器を供給源として、そこから細胞塊と液体培地を、第2段目以降のシステムへと順に供給するというように、必要数の閉鎖系のシステムを多段にかつ気密的に接続した構成としてもよい。これにより、細胞塊の分割と浮遊培養のサイクルを、必要な回数だけ繰り返し続けることができ、各サイクル毎に、必要な割合だけ細胞塊を回収することができる。
(培養容器)
 図5、図6の例に示した培養容器(50、60)は、特に限定はされず、細胞に影響を与えることなく液体培地と細胞/細胞塊を収容し得るものが利用可能であり、比較的硬質の容器や、柔軟なフィルムを用いてなる培養バッグなどが好ましいものとして例示される。培養バッグは、外部へ液体培地と細胞/細胞塊を出す場合や、外部から液体培地と細胞/細胞塊を入れる場合にも、該培養バッグの体積を変化させることで空気などを入れる必要が無いので、閉鎖系を維持しながら流体を好ましく移動させることができる。
(ポンプ、配管)
 図5、図6のシステムに利用可能なポンプは、特に限定はされないが、チューブポンプ(ローラーポンプとも呼ばれる)に代表される蠕動ポンプや、シリンジポンプが好ましいものとして挙げられ、とりわけ、閉鎖系の配管を容易に構成し得る点からは、蠕動ポンプが好ましい。蠕動ポンプは、弾性および柔軟性を持ったポンピングチューブを押しつぶす位置を、送り方向に移動させることで、セットされたチューブ内の液体を移動させるポンプである。蠕動ポンプを用いても、多数の細胞塊は潰されることなく、液体培地と共に好ましく送られる。蠕動ポンプの送り構造の詳細については、従来技術を参照することができる。蠕動ポンプを用いる場合、配管用のチューブは、該蠕動ポンプに対してポンピングチューブとして装着され得、かつ、ポンピングチューブとして機能・作動し得る形状と柔軟性とを持った部分を有することが好ましい。
 配管用のコネクターやカップリングは、特に限定はされないが、無菌コネクターなど、無菌的に接続が可能なものコネクターを用いることが好ましい。
(液体培地)
 前記の細胞培養に利用可能な液体培地は、特に限定はされないが、培養する細胞に適した培地であり、且つ、該細胞が浮遊した状態で培養される結果、細胞塊を形成し得る培地が含まれる。このような培地としては、例えばスフェア培養可能な培地や、特定の多糖類を含有する培地が挙げられ、細胞培養の効率性等の点から、特定の多糖類を含有する培地がより好ましい(詳細は、WO2014/017513を参照)。かかる培地に含有される多糖類としては、例えば、脱アシル化ジェランガム、ダイユータンガム、カラギーナン及びキサンタンガム、又はこれらの塩等が挙げられるが、脱アシル化ジェランガムが好ましい。かかる多糖類を公知の培地に添加することで、前記の細胞培養に利用可能な液体培地を容易に調製することができる。なお、使用することができる公知の培地としては、例えば、細胞が動物由来細胞である場合は、例えばダルベッコ改変イーグル培地(Dulbecco’s Modified Eagles’s Medium;DMEM)、ハムF12培地(Ham’s Nutrient Mixture F12)、DMEM/F12培地、マッコイ5A培地(McCoy’s 5A medium)、イーグルMEM培地(Eagles’s Minimum Essential Medium;EMEM)、αMEM培地(alpha Modified Eagles’s Minimum Essential Medium;αMEM)、MEM培地(Minimum Essential Medium)、RPMI1640培地、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;IMDM)、MCDB131培地、ウィリアム培地E、IPL41培地、Fischer’s培地、StemPro34(インビトロジェン社製)、X-VIVO 10(ケンブレックス社製)、X-VIVO 15(ケンブレックス社製)、HPGM(ケンブレックス社製)、StemSpan H3000(ステムセルテクノロジー社製)、StemSpanSFEM(ステムセルテクノロジー社製)、StemlineII(シグマアルドリッチ社製)、QBSF-60(クオリティバイオロジカル社製)、StemProhESCSFM(インビトロジェン社製)、Essential8(登録商標)培地(ギブコ社製)、Essential8(登録商標)Flex培地(サーモフィッシャー社製)、StemFlex培地(サーモフィッシャー社製)、mTeSR(登録商標)1或いは2或いはPlus培地(ステムセルテクノロジー社製)、リプロFF或いはリプロFF2(リプロセル社製)、PSGro hESC/iPSC培地(システムバイオサイエンス社製)、NutriStem(登録商標)培地(バイオロジカルインダストリーズ社製)、CSTI-7培地(細胞科学研究所社製)、MesenPRO RS培地(ギブコ社製)、MF-Medium(登録商標)間葉系幹細胞増殖培地(東洋紡株式会社製)、Sf-900II(インビトロジェン社製)、Opti-Pro(インビトロジェン社製)、StemFit(登録商標)AK02N或いはBasic02或いはAK03N或いはBasic03或いはBasic04培地(味の素ヘルシーサプライ株式会社製)、STEMUP培地(日産化学株式会社製)などが挙げられる。FCeM(登録商標)培地(日産化学株式会社製)は、細胞凝集塊を均一分散できる多糖類が含有されているため、好適に使用できる。
(細胞培養、分割、回収)
 図7は、本発明によるデバイスを用いた、細胞培養と分割と回収のプロセスの一例を示すフローチャートである。各ステップ間における液体培地(細胞塊を含む)の移動は、いずれも閉鎖系の配管によって外気に触れることなく行われる。
 図7に示すように、先ず、接着培養によって成長させたコロニーを足場から剥離した細胞塊(または、浮遊培養によって形成された細胞塊)を、当該デバイスを通過させて分割する。
 次に、分割された細胞塊を用いて、新たな液体培地に播種を行い、そこで浮遊培養を行い、細胞塊を成長させる。
 次に、成長した細胞塊を回収し、培地を交換し、分割工程へと戻し、当該デバイスを通過させて分割する。このとき、全ての細胞塊を分割工程へと戻すのではなく、所定の割合の細胞塊を収穫分として取り出してもよい。
(当該方法の好ましい態様)
 本発明者らは、細胞塊の分割のために当該デバイスを継続して用いた場合、当該デバイスの網状構造におけるビーム部に細胞塊の破片や培地に含まれる微細な構造体等の固形成分等が堆積し、その堆積に伴って当該デバイスの網状構造の有効面積(液体が通過し得る開口の面積の総和)が次第に低下し、その結果、細胞塊は高速の流れによるせん断を受け、それによってダメージを受けたものとなり、また小さい細胞塊へと分割されたものとなり、生存率が低下する場合があることがわかった。
 よって、当該デバイスは、細胞塊の破片等が堆積していないものと定期的に交換することが好ましい。
 これに対して、本発明者らは、細胞塊を含んだ液体が所定の量だけ当該デバイスの網状構造を通過する毎に、所定の液体(後述の、細胞塊を含んだ液体培地や洗浄専用の液体など)を逆流させることによって、網状構造のビーム部にまとわりついた細胞塊の破片等が除去され、網状構造の有効面積の低下が抑制されることを見出した。即ち、網状構造に対して分割時とは逆方向に所定の液体を通過させることにより、網状構造の有効面積の低下を抑制し得、結果として、分割される細胞塊に含まれる細胞の生存率の低下を抑制できることが分かった。以下、このような網状構造の有効面積の低下の抑制のために行う、所定の液体の逆流プロセスを、「網状構造の逆流洗浄」と呼ぶ。
(網状構造の逆流洗浄を行うための逆流洗浄工程)
 よって、当該方法の好ましい態様では、上記した網状構造の逆流洗浄を実施するための逆流洗浄工程がさらに加えられる。該逆流洗浄工程は、細胞塊を分割する工程において所定量の細胞塊が分割された後に、該細胞塊が分割のために当該デバイスの網状構造を通過した方向とは逆方向に、細胞塊を含有する懸濁液又は洗浄用の液体を該網状構造へ通過させ、それによって、該網状構造を洗浄する工程である。
 網状構造の逆流洗浄を定期的に行うことによって、当該デバイスの交換回数が減少し、よって、閉鎖系を維持しながらも、細胞の生存率の低下を抑制することができる。
(網状構造の逆流洗浄において逆流させるべき所定の液体)
 網状構造の逆流洗浄において逆流させるべき「所定の液体」は、特に限定はされず、網状構造を継続して利用可能であるような液体が挙げられ、例えば、網状構造を通過した直後の液体(即ち、分割された細胞塊を含んだ液体培地(懸濁液))、細胞塊の分割時に用いた液体培地と同様の液体培地(細胞塊は含まれていない)、細胞塊の分割時に用いた液体培地から細胞塊および細胞を浮遊させるための微細な構造体を除去した液体、などが挙げられる。
(網状構造の逆流洗浄の態様例)
 網状構造の逆流洗浄の態様は、特に限定はされないが、次のものが例示される。
 (i)分割すべき細胞塊を含んだ液体培地が当該デバイスを通過した後に流れを逆流させ、それにより、分割された細胞塊を含んだ液体培地が当該デバイスを逆方向に通過する態様。
 (ii)分割すべき細胞塊を含んだ液体培地が当該デバイスを通過した後に、流路を切り替え、当該デバイスの下流側(出口側)に細胞塊等を含んでいない液体(液体培地など)を供給し、かつ、流れを逆流させ、それにより、細胞塊等を含んでいない液体培地が当該デバイスを逆方向に通過する態様。
 (iii)分割すべき細胞塊を含んだ液体培地が当該デバイスを通過した直後に、それに続けて、細胞塊等を含んでいない液体培地を同じ方向に流し、その液体培地が当該デバイスを通過した後で流れを逆流させ、それにより、細胞塊等を含んでいない液体培地が当該デバイスを逆方向に通過する態様。
 網状構造の逆流洗浄の頻度は、特に限定はされず、1回の分割ごとであってもよく、また、2以上の分割ごとであってもよく、網状構造の単位面積を通過した細胞塊の総数に応じて、また、(分割された細胞塊に含まれる細胞の生存率の低下抑制という利益と、網状構造の逆流洗浄の手間やシステムの増設による不利益)とを総合的に考慮して、適宜決定することができる。網状構造の単位面積をどれだけの数の細胞塊が通過すれば、網状構造の切断性がどれだけ低下するかは、事前の実験によって決定することができる。
 網状構造の逆流洗浄を行う場合の前記所定の液体の流速や洗浄時間は、該液体の種類、該逆流洗浄の効果に応じて適宜決定することができる。流速は、特に限定はされないが、例えば、10mm/秒~500mm/秒程度が例示され、なかでも、50mm/秒~300mm/秒程度が好ましい範囲として挙げられる。該流速としては、液体(懸濁液)が分割器に入る流速(または分割器から出る流速)を採用することができる。該流速は、シリンジなどの送液ポンプを用いて所定量の溶液を所定の時間で一定の速さで押し出すまたは吸引する操作に基づいて得ることができる。また、液体が網状構造の網目を通過するときの流速は、前記送液ポンプによる流量を網目の開口面積の総和で除することで算出することができる。また、洗浄時間(逆流の時間)も、特に限定はされないが、該液体の流速が前記の範囲である場合には、0.1秒~5秒程度が例示され、なかでも、0.3秒~2秒程度が好ましい範囲として挙げられる。
 網状構造の逆流洗浄を行うために、上記所定の液体を移動させるための逆方向送液機能または逆方向送液装置がさらに設けられてよい。前記の逆方向送液機能は、当該デバイスを用いた細胞培養システムに設けられる送液装置の逆流機能を利用したものであってもよく、また、該送液装置に逆流機能をさらに加えたものでもよい。該送液装置の逆流機能は、例えば、蠕動ポンプの逆回転、シリンジポンプの逆動作(押し出しに対する吸引)、柔軟な容器の押圧などであってよい。また、網状構造の逆流洗浄を実施するための逆方向送液装置とその配管構成は特に限定はされない。例えば、図5における培養システムの構成では、矢印方向の液体培地の流れを単純に逆流させる構成が挙げられる。また、液体培地供給源(図示せず)を切替弁(図示せず)を介して管路P2に接続し、該切替弁を切り替えて、液体供給源からの液体培地が当該デバイス1Aを逆流するように、該液体を供給する。これらの操作によって、細胞塊を含んだ懸濁液や新たな液体培地が当該デバイス1Aを逆方向に通過し、当該デバイスのビーム部に絡みついた細胞塊等を該ビーム部から除去する。
〔試験例1〕ヒト多能性幹細胞(hiPS細胞)の細胞塊の分割
 hiPS細胞を浮遊培養して細胞塊を形成し、該細胞塊を、本発明のデバイス、および、従来のメッシュを用いて分割し、それぞれの分割後の細胞塊の生存率を観察することで、本発明のデバイスによる分割性能を確認する試験を行った。
(分割前のhiPS細胞の三次元培養)
 培地1:
 10μM Y-27632(富士フイルム和光純薬社製)を含有するmTeSR-1培地(Stem Cell Technologies社製)に対して、特許文献2に記載された混合方法に従い、0.016%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三栄源エフ・エフ・アイ社製)を、FCeM-series Preparation Kit(日産化学株式会社製)を用いて注入し調製してなる、液状の培地組成物。
 培地2:
 mTeSR-1培地に対して、特許文献2に記載された混合方法に従い、0.016%(w/v)の脱アシル化ジェランガムを、FCeM-series Preparation Kitを用いて注入し、調製した、液状の培地組成物。
 hiPS細胞株253G1(理化学研究所より分譲)を、15mLチューブ、培地1及び培地2を用いて、COインキュベーター(37℃、5%CO)内にて静置状態で培養した(分割前培養)。
 分割前培養0日目に培地1にhiPS細胞株253G1を播種し、1~2日毎に培地2を添加して、5~6日間これを継続し細胞塊を形成した。最終日に、遠心(100×G、3分間)して細胞塊を沈降させ、上清を除去後、培地1で懸濁した後、本発明のデバイスを通過させ、細胞塊を分割したものを培地1に播種した(分割後培養0日目)。
(本発明のデバイスの仕様)
 以下の事例で用いた器具は、いずれも滅菌したものを使用した。
 本発明のデバイスの実施例品として、図1に示すタイプの多孔フィルムを製作した。
 フィルム本体の材料は、ニッケルである。
 下記表1のとおり、フィルム本体の厚さは、20μmまたは40μmである。
 各貫通孔の開口の形状は互いに合同な正六角形であり、フィルム本体のフィルム面の全体に該貫通孔が配置されている。各貫通孔の孔径(開口の形状である正六角形の6辺のうち、互いに対向する平行な2辺の間の距離)は、下記表1のとおり、60μmまたは70μmである。
 線径(ビーム部の幅)は、20μmまたは40μmである。
 フィルム本体の外周形状は、円形であり、円の寸法(直径)は13mmである。
(本発明のデバイスを保持するホルダー)
 図4に示すように、当該デバイスをセットするためのホルダーを作製した。細胞塊が分散した液状の培地組成物を流すための管路(断面円形)の内径は、1.6mmであり、当該デバイスを通過する液状の培地組成物の流れの有効径も1.6mmである。
(比較例:メッシュを用いた分割)
 比較例では、分割用のデバイスとして従来のメッシュを用いた。
 5mLシリンジの先端吐出部(吐出口の有効径1.6mm)にナイロンメッシュ(ナイロン製の線材からなるメッシュ)またはステンレスメッシュ(ステンレス鋼製の線材からなるメッシュ)を被せ、バンドで固定した。
 ナイロンメッシュの貫通孔の開口形状は、略正方形であり、1辺の長さは70μmである。線材の径は、縦糸、横糸ともに、50μmである。
 ステンレスメッシュの貫通孔の開口形状は、略正方形であり、1辺の長さは70μmである。線材の径は、縦糸、横糸ともに、40μmである。
(hiPS細胞の細胞塊の分割)
 5~6日間の分割前浮遊培養後、遠心(100×G、3分間)して細胞塊を沈降させ、上清を除去後、培地1で2.0×10cells/mLとなるように懸濁した。5mLシリンジ(テルモ社製)に懸濁液を4mL移し、所定の通過速度で懸濁液を、本発明のデバイスの実施例品、および、比較例のメッシュに通過させた。
(分割後の培養)
 実施例品および比較例のメッシュを通過させた後の懸濁液を、15mLチューブに播種し、COインキュベーター(37℃、5%CO)内にて静置状態で培養した(分割後培養)。なお、15mLチューブのキャップは半開状態とした。分割後培養2日目に予め37℃に温めた培地2を2.5mLずつ添加した。分割後培養4日目に予め37℃に温めた培地2を3.5mLずつ添加した。
(細胞生存率)
 分割の2時間後に、培養チューブをインキュベーターから取出し、細胞塊をよく分散させた後、培養液0.25mLを採取し、ATP試薬0.25mL(CellTiter-Glo(登録商標)Luminescent Cell Viability Assay, Promega社製)を添加し、ピペットマンで撹拌し、10分間室温にて静置した後、白色96ウェルプレートに100μLずつ分注し、Enspire(Perkin Elmer社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
 分割前の懸濁液のRLU値(ATP測定、発光強度)を100%としたときの相対値を細胞生存率とした。
(細胞増殖率)
 分割後培養5日目に、培養チューブをインキュベーターから取出し、細胞塊をよく分散させた後、培養液0.5mLを採取し、ATP試薬0.5mL(CellTiter-Glo(登録商標)Luminescent Cell Viability Assay, Promega社製)を添加し、ピペットマンで撹拌し、10分間室温にて静置した後、白色96ウェルプレートに100μLずつ分注し、Enspire(Perkin Elmer社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。培養体積比を考慮した上で、分割2時間後の培養液のRLU値(ATP測定、発光強度)との相対値を細胞増殖率とした。
(分割後の細胞塊の大きさ及び個数)
 分割2時間後に、培養チューブをインキュベーターから取出し、細胞塊をよく分散させた後、培養液1mLを6ウェルプレートに移し、CelliMager(SCREENホールディングス社製)にて細胞塊の大きさ、個数を計測した。なお、計測に用いた培養液はチューブには戻さなかった。計測結果から細胞塊の円相当直径、個数、円相当直径が120μm以上の細胞塊の割合を算出した。
 以上の試験結果を、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1からも明らかなとおり、15cm/sec以下の処理速度領域において、比較例の編み込んだメッシュよりも、本発明のデバイスの実施例品の方がより小さい細胞塊に分割でき、分割後の細胞塊の個数が多いことが明らかになった。
 また、比較例のメッシュよりも実施例のデバイスの方が120μm以上の細胞塊の割合を下げることができ、より均一な大きさの細胞塊に分割できることが明らかになった。
 上記の試験においては、比較例及び実施例のどちらにおいても、分割用のデバイスおよびメッシュの貫通孔の開口部の有効径を処理量に合わせて小さくすることでトラップされる量を少なくし、また、実施例では、分割時にロスの少ないホルダーを用いたことで、従来よりも高い細胞生存率(回収率)を達成できることが明らかとなった。
〔試験例2〕網状構造の逆流洗浄の効果の確認
 本試験例では、次の(i)~(iii)の操作を繰り返すことによって、網状構造に対する逆流洗浄の効果を調べた。
 (i)所定の密度の細胞塊を含んだ試料液を用い、かつ、所定の流速にて、当該デバイスの網状構造による細胞塊の分割を行う。
 (ii)所定量の細胞塊が通過する度に、通過した細胞塊の生存率を測定する。
 (iii)前記(ii)における所定量の細胞塊の通過の度に、網状構造に対する逆流洗浄を行う。
 試験に用いた細胞塊は、ヒト多能性幹細胞(hiPS細胞)からなる細胞塊である。
(分割前のhiPS細胞の三次元培養)
 培地1:
 10μM Y-27632(富士フイルム和光純薬社製)を含有するmTeSR-1培地(Stem Cell Technologies社製)に対して、特許文献2に記載された混合方法に従い、0.016%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三栄源エフ・エフ・アイ社製)を、FCeM-series Preparation Kit(日産化学株式会社製)を用いて注入し調製してなる、液状の培地組成物。
 培地2:
 mTeSR1培地に対して、特許文献2に記載された混合方法に従い、0.016%(w/v)の脱アシル化ジェランガムを、FCeM-series Preparation Kitを用いて注入し、調製した、液状の培地組成物。
 hiPS細胞株253G1(理化学研究所より分譲)を、容量可変200mL培養バック(ニプロ社製)、培地1及び培地2を用いて、COインキュベーター(37℃、5%CO)内にて静置状態で維持培養した。
 培養0日目に培地1で播種し、1~3日毎に培地2を添加して、6~8日間これを継続し細胞塊を形成した。
 最終日に、MACS(登録商標)SmartStrainers(70μm、MACS社製)を用いて細胞塊を回収し、培地1で懸濁した後、本発明のデバイスに準じたものを通過させ、細胞塊を分割したものを播種した(0日目)。
 これを繰り返して、細胞の維持培養を行った。
(当該デバイスの仕様)
 本試験で用いた各部の器具には、電子線滅菌したものを使用した。
 当該デバイスの実施例品として、図1に示すタイプの多孔フィルムを製作した。
 該多孔フィルムの材料はニッケルであり、多孔フィルムの厚さは20μmであり、ビーム部の幅は20μmである。各貫通孔の孔径(開口の形状である正六角形の6辺のうち、互いに対向する平行な2辺の間の距離)は70μmである。
特記した事項以外については、試験例1で用いた多孔フィルムと同様である。
 多孔フィルムの外周形状は円形であり、円の直径は6mmである。
(網状構造を保持するホルダー)
 図4に示すように、網状構造をセットするためのホルダーを作製した。該ホルダーに当該デバイスをセットすることにより好ましい分割器となる。細胞塊が分散した液状の培地組成物を流すための管路(断面円形)の内径は、2.6mmであり、当該デバイスを通過する液状の培地組成物の流れの有効径も2.6mmである。
(hiPS細胞の細胞塊の分割)
 7日間の浮遊培養後、MACS(登録商標)SmartStrainers(70μm、MACS社製)を用いて細胞塊を回収し、培地1に混合して懸濁し、濃度の異なる2種類の懸濁液(3.0×10cells/mL、および、6.0×10cells/mL)を作製した。
 (i)網状構造の逆流洗浄を行わずに分割を継続した試験例
 2つの50mLシリンジ(ニプロ社製)に前記2種類の懸濁液をそれぞれ50mL移し、各懸濁液を、10cm/secの速度で当該デバイスを通過させ、10mLの懸濁液が当該デバイスを通過する毎に15mLチューブに分配し、濃度3.0×10cells/mLの懸濁液の分割後試料を収容したチューブ5本と、6.0×10cells/mLの懸濁液の分割後試料を収容したチューブ5本を得た。
 (ii)定期的な網状構造の逆流洗浄を行いながら、分割を継続した試験例
 2つの50mLシリンジ(ニプロ社製)に前記2種類の懸濁液をそれぞれ50mL移し、各懸濁液を、10cm/secの速度で当該デバイスを通過させ、10mLの懸濁液が当該デバイスを通過する毎に、15mLチューブに分配し、かつ、チューブへの分配後にシリンジを操作して、該懸濁液を1mLだけ逆流させて網状構造の逆流洗浄を行い、その後、10mLの懸濁液を再度流して分割し、別の15mLチューブに分配するという操作を繰り返した。これにより、前記(i)と同様に、濃度3.0×10cells/mLの懸濁液の分割後試料を収容したチューブ5本と、6.0×10cells/mLの懸濁液の分割後試料を収容したチューブ5本を得た。
 分配後の15mLチューブ(4種類、計20本)を、インキュベーター(37℃、5%CO)にて2時間静置した。
(細胞生存率の測定)
 2時間の静置後に、前記の15mLチューブをインキュベーターから取出し、転倒混和により細胞塊をよく分散させた後、培養液0.75mLを採取し、ATP試薬0.75mL(CellTiter-Glo(登録商標)Luminescent Cell Viability Assay, Promega社製)を添加し、ピペットマンでよく撹拌し、10分間室温にて静置した後、白色96ウェルプレートに100μLずつ分注し、Enspire(Perkin Elmer社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
 分割前の懸濁液のRLU値(ATP測定、発光強度)を100%としたときの相対値を細胞生存率とした。該細胞生存率を、図8のグラフに示す。
(網状構造の逆流洗浄の効果の評価)
 図8(a)、(b)のグラフは、上記(i)の網状構造の逆流洗浄を行わずに分割を継続した試験例の結果を示している。図8(a)のグラフは、細胞濃度3.0×10cells/mLの懸濁液に関する結果を示し、図8(b)のグラフは、細胞濃度6.0×10cells/mLの懸濁液に関する結果を示している。
 図8(c)、(d)のグラフは、上記(ii)の網状構造の逆流洗浄を行いながら分割を継続した試験例の結果を示している。図8(c)のグラフは、細胞濃度3.0×10cells/mLの懸濁液に関する結果を示し、図8(d)のグラフは、細胞濃度6.0×10cells/mLの懸濁液に関する結果を示している。
 図8(a)、(b)のグラフに示すように、網状構造の逆流洗浄を行なわない場合、どちらの細胞密度においても分割処理の量が多くなるにつれて細胞生存率が低下している。これに対して、図8(c)、(d)のグラフに示すように、網状構造の逆流洗浄を行なった場合、3×10cells/mLの細胞密度では、細胞生存率の低下が十分に抑制されており、また、6×10cells/mLの細胞密度でも、図8(b)のグラフに示す結果に比べて、細胞生存率の低下が抑制されている。
 以上より、網状構造を用いた細胞塊の分割において、該網状構造の定期的な逆流洗浄を行うと、分割後の細胞塊の生存率の低下の抑制に非常に有効であることが明らかとなった。また、細胞密度がより高い場合には、より多くの細胞塊が網状構造を通過するので、網状構造の逆流洗浄の頻度をより高くすることで(即ち、所定数の細胞塊が網状構造の単位面積を通過した時点で)、細胞生存率の低下を抑制できるものと考えられる。
〔試験例3〕ビーム部の断面形状と細胞塊の生存率との関係についての試験
 ヒト多能性幹細胞(hiPS細胞)を浮遊培養して細胞塊を形成し、該細胞塊を、ビーム部の断面形状が異なる4種類の当該デバイスによって分割し、容量毎のそれぞれの分割後の細胞塊の生存率を観察することで、ビーム部の断面形状による分割性能を確認する試験を行った。
(分割前のhiPS細胞の三次元培養)
 培地1:
 10μM Y-27632(富士フイルム和光純薬社製)を含有するmTeSR1培地(Stem Cell Technologies社製)に対して、特許文献2に記載された混合方法に従い、0.016%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三栄源エフ・エフ・アイ社製)を、FCeM-series Preparation Kit(日産化学株式会社製)を用いて注入し調製してなる、液状の培地組成物。
 培地2:
 mTeSR1培地に対して、特許文献2に記載された混合方法に従い、0.016%(w/v)の脱アシル化ジェランガムを、FCeM-series Preparation Kitを用いて注入し、調製した、液状の培地組成物。
 hiPS細胞株253G1(理化学研究所より分譲)を、容量可変200mL培養バック(ニプロ社製)、培地1及び培地2を用いて、COインキュベーター(37℃、5%CO)内にて静置状態で維持培養した。
 培養0日目に培地1で播種し、1~3日毎に培地2を添加して、6~8日間これを継続し細胞塊を形成した。最終日に、MACS(登録商標)SmartStrainers(70μm、MACS社製)を用いて細胞塊を回収し、培地1で懸濁した後、本発明のデバイスに準じたものを通過させ、細胞塊を分割したものを播種した(0日目)。これを繰り返して、細胞の維持培養を行った。
(当該デバイスの網状構造の仕様)
 以下の事例で用いた器具は、消毒用エタノールで滅菌したものを使用した。
 当該デバイスの実施例品として、次に示す形状を持った多孔フィルムを製作した。
 (a)開口の形状が図1(a)に示す正六角形であり、ビーム部の断面形状が図1(c)に示す矩形(長方形)である。
 (b)開口の形状が図3(a)に示す正方形であり、ビーム部の断面形状が図1(c)に示す矩形(長方形)である。
 (c)開口の形状が図1(a)に示す正六角形であり、ビーム部の断面形状が図3(e)に示す、入口側の角部が丸くなった形状(円弧と弦とを有する形状)である。
 (d)開口の形状が図3(a)に示す正方形であり、ビーム部の断面形状が図3(e)に示す、入口側の角部が丸くなった形状(円弧と弦とを有する形状)である。
 フィルム本体の材料はニッケルであり、フィルム本体の厚さ(図1(c)、(e)の厚さt1)は20μmであり、線径(ビーム部の幅)は50μmである。各貫通孔の孔径(開口の形状である正六角形の6辺のうち、互いに対向する平行な2辺の間の距離、または開口の形状である正方形の2辺の間の距離)は60μmである。
 フィルム本体の外周形状は円形であり、円の寸法(直径)は6mmである。
(本発明のデバイスを保持するホルダー)
 図4に示すように、網状構造をセットするためのホルダーを作製した。細胞塊が分散した液状の培地組成物を流すための管路(断面円形)の内径は、3.0mmであり、網状構造を通過する液状の培地組成物の流れの有効径も3.0mmである。
(hiPS細胞の細胞塊の分割)
 7日間の浮遊培養後、MACS(登録商標)SmartStrainers(70μm、MACS社製)を用いて細胞塊を回収し、培地1で3.0×10cells/mLの細胞密度となるように懸濁した。50mLシリンジ(ニプロ社製)にそれぞれの懸濁液を45mL移し、懸濁液を本発明のデバイスの実施例品に10cm/secの処理速度で通過させ、15mL毎に15mLチューブに分注した。
 また、10mL毎にシリンジを1mL戻すことで逆洗工程を含む分割も行った。
 分注後の15mLチューブは、インキュベーター(37℃、5%CO)にて静置した。
(細胞生存率)
 分割の2時間後に、分注した15mLチューブをインキュベーターから取出し、転倒混和により細胞塊をよく分散させた後、培養液0.75mLを採取し、ATP試薬0.75mL(CellTiter-Glo(登録商標)Luminescent Cell Viability Assay, Promega社製)を添加し、ピペットマンでよく撹拌し、10分間室温にて静置した後、白色96ウェルプレートに100μLずつ分注し、Enspire(Perkin Elmer社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
 分割前の懸濁液のRLU値(ATP測定、発光強度)を100%としたときの相対値を細胞生存率とした。
 以上の試験結果を、図9のグラフ図に示す。
 図9のグラフに示した結果からも明らかなように、すべての条件で容量依存的に細胞生存率は下がることが分かった。さらに、開口の形状が正六角形より正方形の方が細胞生存率が高く、かつビーム部の断面形状が矩形よりも入口側の角部にまるみがついた形状の方が細胞生存率が高くなることが分かった。
 本試験における開口の形状についての結果は、単純に開口形状の影響のみではなく、正六角形の開口面積が3118μm、正方形の開口面積が3600μmであることから、より大きい開口面積をもつ正方形の方が細胞生存率が高くなったことも考察される。
 以上よりスケールアップした際の分割において、ビーム部の断面形状が矩形の入口側の角部にまるみがついた形状とすることが非常に有効であることが明らかとなった。
 本発明のデバイスおよび方法によれば、従来のメッシュの問題点を解消し、細胞塊をより好ましく分割することができ、また、閉鎖系での培養と分割を可能にする。
 本出願は、日本で出願された特願2018-148033(出願日:2018年8月6日)を基礎としており、その内容は本明細書に全て包含されるものである。
 1  フィルム状の本体部分1
 10 網状構造
 20 貫通孔
 30 ビーム部

Claims (11)

  1.  細胞塊をより小さい細胞塊へと分割するためのデバイスであって、
     フィルム状の本体部分を有し、
     該本体部分のフィルム面の所定の領域は、該フィルム面に多数の貫通孔が配置された網状構造になっており、該網状構造は、前記所定の領域をフィルム厚さの方向に貫通する多数の貫通孔と、該貫通孔同士の間の隔壁であるビーム部とを有し、
     前記貫通孔は、前記のより小さい細胞塊が通過可能な大きさの開口形状を持っており、
     前記ビーム部は、前記所定の領域における前記本体部分から前記貫通孔を差し引いた残部であって、分割すべき細胞塊を切断する部分であり、かつ、網状をなすように一体的につながっている、
    前記デバイス。
  2.  前記貫通孔の開口形状は、
      その円相当直径が40μm~90μmである開口面積を有し、かつ、
      直径35μm~85μmの円を収容する形状である、
    請求項1に記載のデバイス。
  3.  互いに隣り合った貫通孔同士の離間距離である、前記ビーム部の幅が、10μm~60μmである、請求項1または2に記載のデバイス。
  4.  前記多数の貫通孔の開口形状が、互いに合同な四角形であって、前記ビーム部が直交格子状に互いにつながっている、請求項1~3のいずれか1項に記載のデバイス。
  5.  前記多数の貫通孔の開口形状が、互いに合同な六角形であって、前記ビーム部がハニカム状に互いにつながっている、請求項1~3のいずれか1項に記載のデバイス。
  6.  前記六角形が正六角形であって、該正六角形の6辺のうち、互いに対向する平行な2辺の間の距離が、38μm~85μmである、請求項5に記載のデバイス。
  7.  前記フィルム面が第1フィルム面であり、その反対側のフィルム面が第2フィルム面であり、
     当該デバイスの使用時において、第1フィルム面は入口側として用いられる面であり、第2フィルム面は出口側として用いられる面であり、
     前記ビーム部の長手方向に垂直な断面の形状が、矩形であるか、該矩形の入口側の2つの角部が丸みを帯びた形状である、
    請求項1~6のいずれか1項に記載のデバイス。
  8.  分割すべき細胞塊が、多能性幹細胞からなる細胞塊である、請求項1~7のいずれか1項に記載のデバイス。
  9.  請求項1~8のいずれか1項に記載されたデバイスを用い、
     分割すべき細胞塊を液体と共に、前記デバイスの網状構造を通過させることによって、該細胞塊を分割する工程を有する、
    細胞塊を分割する方法。
  10.  分割すべき細胞塊を液体と共に、前記デバイスの網状の領域を通過させる際の、該液体の流速が、10mm/秒~500mm/秒である、請求項9に記載の方法。
  11.  逆流洗浄工程をさらに有し、該逆流洗浄工程は、
     前記細胞塊を分割する工程において所定量の細胞塊が分割された後に、該細胞塊が分割のために当該デバイスの網状構造を通過した方向とは逆方向に、所定の液体を該網状構造を通過させて、それにより、該網状構造の洗浄を行う工程である、
    請求項9または10に記載の方法。
PCT/JP2019/030940 2018-08-06 2019-08-06 細胞塊を分割するためのデバイス、および、それを用いて細胞塊を分割する方法 WO2020032042A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19848554.2A EP3831927A4 (en) 2018-08-06 2019-08-06 CELL MASS DIVISION DEVICE AND CELL MASS DIVISION METHOD USING IT
US17/266,464 US20210292699A1 (en) 2018-08-06 2019-08-06 Device for dividing cell mass, and method for dividing cell mass using same
CN201980065695.2A CN112805365A (zh) 2018-08-06 2019-08-06 用于分割细胞块的器件、及使用其分割细胞块的方法
JP2020535800A JPWO2020032042A1 (ja) 2018-08-06 2019-08-06 細胞塊を分割するためのデバイス、および、それを用いて細胞塊を分割する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-148033 2018-08-06
JP2018148033 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020032042A1 true WO2020032042A1 (ja) 2020-02-13

Family

ID=69413518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030940 WO2020032042A1 (ja) 2018-08-06 2019-08-06 細胞塊を分割するためのデバイス、および、それを用いて細胞塊を分割する方法

Country Status (6)

Country Link
US (1) US20210292699A1 (ja)
EP (1) EP3831927A4 (ja)
JP (1) JPWO2020032042A1 (ja)
CN (1) CN112805365A (ja)
TW (1) TW202020137A (ja)
WO (1) WO2020032042A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526530A (ja) * 2007-05-04 2010-08-05 スンドストローム,エリック スライシングデバイス
WO2013077423A1 (ja) 2011-11-25 2013-05-30 国立大学法人京都大学 多能性幹細胞の培養方法
WO2014017513A1 (ja) 2012-07-24 2014-01-30 日産化学工業株式会社 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
WO2014136581A1 (ja) * 2013-03-06 2014-09-12 国立大学法人京都大学 多能性幹細胞の培養システム及び多能性幹細胞の継代方法
WO2016163444A1 (ja) 2015-04-07 2016-10-13 日産化学工業株式会社 液状の培地組成物の製造方法、およびそのための製造装置とキット
JP2017012109A (ja) * 2015-07-02 2017-01-19 富士フイルム株式会社 細胞培養容器、細胞培養装置および細胞培養方法
WO2017183570A1 (ja) * 2016-04-18 2017-10-26 東洋製罐グループホールディングス株式会社 細胞培養用容器、及びその使用方法
WO2017191775A1 (ja) * 2016-05-06 2017-11-09 富士フイルム株式会社 多能性幹細胞の継代方法
JP2018148033A (ja) 2017-03-06 2018-09-20 アルパイン株式会社 プリント基板及び電子/電気機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046938A1 (ja) * 2014-09-25 2016-03-31 株式会社サイフューズ 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
PL3233289T3 (pl) * 2014-12-15 2020-09-07 Human Brain Wave S.R.L. Urządzenie do dezagregacji materiału biologicznego i odpowiadający sposób wytwarzania, i sposób przygotowywania zawiesin komórkowych i mikroprzeszczepów tkankowych
US9944894B2 (en) * 2015-01-16 2018-04-17 General Electric Company Pluripotent stem cell expansion and passage using a rocking platform bioreactor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526530A (ja) * 2007-05-04 2010-08-05 スンドストローム,エリック スライシングデバイス
WO2013077423A1 (ja) 2011-11-25 2013-05-30 国立大学法人京都大学 多能性幹細胞の培養方法
WO2014017513A1 (ja) 2012-07-24 2014-01-30 日産化学工業株式会社 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
WO2014136581A1 (ja) * 2013-03-06 2014-09-12 国立大学法人京都大学 多能性幹細胞の培養システム及び多能性幹細胞の継代方法
WO2016163444A1 (ja) 2015-04-07 2016-10-13 日産化学工業株式会社 液状の培地組成物の製造方法、およびそのための製造装置とキット
JP2017012109A (ja) * 2015-07-02 2017-01-19 富士フイルム株式会社 細胞培養容器、細胞培養装置および細胞培養方法
WO2017183570A1 (ja) * 2016-04-18 2017-10-26 東洋製罐グループホールディングス株式会社 細胞培養用容器、及びその使用方法
WO2017191775A1 (ja) * 2016-05-06 2017-11-09 富士フイルム株式会社 多能性幹細胞の継代方法
JP2018148033A (ja) 2017-03-06 2018-09-20 アルパイン株式会社 プリント基板及び電子/電気機器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREAS ELANZEW ET AL.: "A reproducible and versatile system for the dynamic expansion of human pluripotent stem cells in suspension", BIOTECHNOLOGY JOURNAL, vol. 10, 2015, pages 1589 - 1599
See also references of EP3831927A4 *

Also Published As

Publication number Publication date
JPWO2020032042A1 (ja) 2021-08-10
TW202020137A (zh) 2020-06-01
EP3831927A1 (en) 2021-06-09
CN112805365A (zh) 2021-05-14
US20210292699A1 (en) 2021-09-23
EP3831927A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2020032041A1 (ja) 細胞培養システム、および、それを用いた細胞塊の製造方法
US11396016B2 (en) System and method for a biomimetic fluid processing
JP6312348B2 (ja) 血小板産生方法及び血小板産生装置
US20200255781A1 (en) Systems and Methods for Biomimetic Fluid Processing
US10087408B2 (en) System and method for microfluidic cell culture
US20210071132A1 (en) Metallic porous membrane, classifying method using the same, and classifying device
JPWO2016021498A1 (ja) 繊維状タンパク質材料の作製方法、および細胞培養方法
JP2016202180A (ja) 細胞培養器、及び、細胞培養システム
JP2018023291A (ja) 細胞培養容器、これを用いた細胞培養システム、および細胞培養方法
JP6942448B2 (ja) 細胞培養容器、これを用いた細胞培養システム、および細胞培養方法
JP2018537073A (ja) 中空繊維バイオリアクターを用いた細胞の製造方法
JP6958350B2 (ja) 幹細胞培養上清の製造方法
WO2004039939A2 (en) Textiles for use in bioreactors
JP2017158488A (ja) 細胞回収方法
WO2020032042A1 (ja) 細胞塊を分割するためのデバイス、および、それを用いて細胞塊を分割する方法
JP2014060991A (ja) 多孔質中空糸の内腔を用いる幹細胞の培養方法
JP6930068B2 (ja) 中空糸モジュールを用いる細胞培養方法
JP7009957B2 (ja) 細胞培養容器及び細胞培養装置
JPWO2006057444A1 (ja) 細胞の分化度自動診断方法
JP2019097478A (ja) 細胞回収方法
JP2018014947A (ja) 中空糸膜モジュールを用いる細胞培養方法
KR20230050392A (ko) 금속성 나노입자 제조를 위한 미생물을 이용하는 관류 시스템
JP2019135954A (ja) 網目状シートを含む細胞培養容器
JP2011062216A (ja) 細胞培養用中空糸モジュールおよび細胞培養方法
JP2018064486A (ja) 歯髄幹細胞の培養方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848554

Country of ref document: EP

Effective date: 20210301