WO2020031751A1 - 光導波路デバイスを透過する信号光の透過波長を調整する方法 - Google Patents

光導波路デバイスを透過する信号光の透過波長を調整する方法 Download PDF

Info

Publication number
WO2020031751A1
WO2020031751A1 PCT/JP2019/029416 JP2019029416W WO2020031751A1 WO 2020031751 A1 WO2020031751 A1 WO 2020031751A1 JP 2019029416 W JP2019029416 W JP 2019029416W WO 2020031751 A1 WO2020031751 A1 WO 2020031751A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
signal light
blue light
athermal
wavelength
Prior art date
Application number
PCT/JP2019/029416
Other languages
English (en)
French (fr)
Inventor
平林 克彦
信建 小勝負
里美 片寄
笠原 亮一
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/262,865 priority Critical patent/US11960152B2/en
Publication of WO2020031751A1 publication Critical patent/WO2020031751A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0126Opto-optical modulation, i.e. control of one light beam by another light beam, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/11Function characteristic involving infrared radiation

Definitions

  • the present invention relates to a method for adjusting a transmission wavelength of a signal light transmitted through an optical waveguide device, and specifically, a blue light having a wavelength of 375 nm to 455 nm is applied only to a resin passing through the optical waveguide in the optical waveguide device. To adjust the transmission wavelength of signal light that changes the refractive index of the resin.
  • a wavelength division multiplexing method in which a plurality of signals are superimposed on different wavelengths and transmitted in a single optical fiber in order to increase the information capacity.
  • a temperature-independent arrayed waveguide diffraction grating hereinafter, referred to as athermal AWG
  • the optical wavelength multiplexer / demultiplexer has a wavelength dependent light transmitted through the optical wavelength multiplexer / demultiplexer due to a temperature change due to a temperature dependency of a refractive index of quartz glass in the inside and a thermal expansion of the quartz glass itself.
  • the temperature of the quartz glass is kept constant by heating with a heater or the like, or a groove is provided on the inner surface of a slab waveguide made of quartz glass. Is filled with a resin such as a polymer in which the temperature dependency of the refractive index is different from that of quartz glass, that is, the temperature dependency of the refractive index is offset in the entire configuration of the optical wavelength multiplexer / demultiplexer.
  • the temperature of the optical wavelength multiplexer / demultiplexer is made independent so that the wavelength of the light transmitted through the optical wavelength multiplexer / demultiplexer does not change even when the temperature changes.
  • making the temperature independent is called athermal or athermalization.
  • the wavelength demultiplexed by AWG often deviates from the standard wavelength internationally standardized and recommended by the International Telecommunication Union (ITU) due to fluctuations in the production of optical circuits that occur in the production process.
  • ITU International Telecommunication Union
  • the deviation of the demultiplexing wavelength caused in the manufacturing process is achieved by irradiating the manufactured AWG with a high-power ultraviolet laser emitted from an excimer laser and monitoring the wavelength of the ultraviolet laser to constitute the AWG.
  • Patent Document 1 A method of changing a refractive index of an optical waveguide manufactured by AWG and trimming a demultiplexed wavelength by AWG has been used (Patent Document 1).
  • Patent Document 2 a method of irradiating a polymer filled in a triangular groove formed in an optical path with ultraviolet rays and changing the refractive index of the polymer to trim the demultiplexed wavelength by the athermal AWG has also been proposed.
  • Patent Document 2 a method of irradiating a polymer filled in a triangular groove formed in an optical path with ultraviolet rays and changing the refractive index of the polymer to trim the demultiplexed wavelength by the athermal AWG has also been proposed.
  • the spectrum shape of the transmitted light of the AWG is usually a Gaussian shape. Therefore, in order to improve the tolerance to the wavelength of the light source and to provide the tolerance to the temperature, an apparatus configuration has been proposed in which the tip of the spectral shape of the transmitted light of the AWG is flat. That is, an apparatus configuration has been proposed in which a Mach-Zehnder interferometer (hereinafter, referred to as MZI) is connected to a slab waveguide provided on the input side of the AWG.
  • MZI Mach-Zehnder interferometer
  • the MZI cannot make the tip of the spectrum shape of the transmitted light flat unless the phases are matched with an accuracy of approximately ⁇ 0.005 radians. Therefore, in order to adjust the phase of the MZI, it is necessary to irradiate the waveguide of the MZI with ultraviolet rays to change the refractive index of the waveguide and trim the phase (Patent Document 3). In other words, in order to combine the AWG with the MZI to make the entire structure athermal, an increase in the number of steps becomes a problem.
  • Patent Document 4 As a filling material for the grooves in the waveguide of the athermal AWG, two resins having the same basic skeleton structure and different types of side chains and having different refractive indexes are mixed and used, so that the transmitted light can be reduced. A method for optimally adjusting the wavelength has also been proposed (Patent Document 4). This adjustment method requires a resin mixing operation for adjusting the refractive index individually for each chip, and has a problem that the amount of operation is large and the operation becomes complicated.
  • an optical waveguide device such as AWG or MZI
  • a large-sized and high-power output ultraviolet light source such as an excimer laser
  • an ultraviolet lamp having a high power output is required, and there is a problem in terms of cost.
  • One embodiment of the present invention provides one or more optical waveguides through which signal light having a wavelength of 1520 nm to 1560 nm and blue light having a wavelength of 375 nm to 455 nm pass, a groove through which the optical waveguide passes, and a groove filled into the groove. This is a method for adjusting the transmission wavelength of signal light transmitted through an optical waveguide device having a resin.
  • one embodiment of the present invention includes a step of passing signal light and blue light through one or more optical waveguides that are the same or different from each other, and passing the same or different resins.
  • the passing step is a step of irradiating the resin with blue light to change the refractive index of the resin, and changing the transmission wavelength of the signal light transmitted through the resin according to the change in the refractive index of the resin.
  • An object of the present invention is to provide a method of adjusting a transmission wavelength of signal light transmitted through a device.
  • the present invention has been made in order to simplify the process of irradiating the entire optical waveguide device with ultraviolet light which occurs when trimming the transmission wavelength or waveform of an optical waveguide device such as an AWG, MZI, or ring resonator. .
  • an optical waveguide device such as an AWG, MZI, or ring resonator.
  • the diameter of the optical waveguide through which the signal light passes is as small as about 10 ⁇ m, the power density is high even for blue light with low power output. As a result, it is possible to efficiently adjust the refractive index of the resin portion without using a large-sized high-power output excimer laser or UV lamp.
  • an optical circuit having an optical waveguide device is packaged as a module with a fiber, or in this packaged state, light continuously passes through the optical waveguide device, and as a result of aging, transmitted light
  • the wavelength can be adjusted or readjusted even if the wavelength shifts.
  • the blue light and the signal light are simultaneously input to the optical waveguide device via the coupler, and the refractive index of the optical waveguide and / or the resin portion is adjusted while monitoring the wavelength of the transmitted light.
  • the wavelength of the transmitted light can be adjusted.
  • (A) is a schematic diagram showing a configuration of an athermal AWG, and (b) is a graph showing a transmission spectrum of a signal light transmitted through the athermal AWG.
  • (A) is a schematic diagram showing a configuration of an athermal MZI, and (b) is a graph showing a transmission spectrum of signal light transmitted through the athermal MZI.
  • (A) is a schematic diagram showing a configuration of an athermal ring resonator, and (b) is a graph showing a transmission spectrum of signal light transmitted through the athermal ring resonator. It is a schematic diagram which shows the structure of the athermal AWG provided with MZI on the input side.
  • FIG. 1 is a schematic diagram of an optical circuit configuration when signal light and blue light are simultaneously input to the athermal MZI to adjust the transmission wavelength of the signal light, and (c) is a spectrum of the transmitted light transmitted through the athermal MZI.
  • FIG. FIG. 2B is an enlarged view of a part of FIG. 6 is a graph showing a change with time of a transmission wavelength of signal light transmitted through the athermal MZI 50 shown in FIG. 5.
  • (A) is a schematic diagram of an optical circuit configuration in a case where signal light and blue light are simultaneously input to an athermal AWG to adjust the transmission wavelength of the signal light, and (b) is transmission of the signal light transmitted through the athermal MZI. It is a graph which shows a spectrum.
  • FIG. 8 is a graph illustrating a change with time of a transmission wavelength of signal light transmitted through the athermal AWG 70 illustrated in FIG. 7.
  • (A) is a schematic diagram of an optical circuit configuration in a case where signal light and blue light are simultaneously input to an athermal AWG 90 with an athermal MZI in which an athermal MZI is connected to an input side of an athermal AWG and a transmission wavelength of the signal light is adjusted.
  • FIG. 3B is a schematic diagram showing a transmission spectrum of signal light transmitted through the athermal AWG 90 with the athermal MZI.
  • FIG. 10 is a graph showing a change in the transmission wavelength shift amount of the signal light with respect to the signal light input time when a high power signal light is input from the short arm side input port 27a of the athermal MZI 20.
  • A is a schematic diagram of an optical circuit configuration in a case where signal light and blue light are simultaneously input to the athermal MZI20 and the transmission wavelength of the signal light shifted from the reference wavelength is readjusted
  • (b) is a schematic diagram of the athermal MZI20.
  • 5 is a graph showing a transmission spectrum of transmitted signal light.
  • optical waveguide device used in the embodiment of the present invention will be described in the following (1) to (4).
  • FIG. 1A is a schematic diagram illustrating a configuration of an athermal AWG
  • FIG. 1B is a graph illustrating a transmission spectrum of a signal light transmitted through the athermal AWG.
  • the horizontal axis of the graph in FIG. 1B represents wavelength
  • the vertical axis represents transmittance.
  • the solid line in the graph of FIG. 1B indicates the transmittance of the horizontal polarization component
  • the dotted line indicates the transmittance of the vertical polarization component.
  • the athermal AWG 10 has an input channel waveguide 12, an input side slab waveguide 13, a phase shift channel waveguide 14, an output side slab waveguide 16, an output channel waveguide 15, a groove 17, a resin on a quartz substrate 11. 18 are provided.
  • the configuration including these elements is a one-chip athermal AWG 10.
  • the input channel waveguide 12 is provided for inputting light to the athermal AWG 10, and is a single optical waveguide.
  • the phase shift channel waveguide 14 and the output channel waveguide 15 are composed of a plurality of waveguides.
  • the light input from the input channel waveguide 12 passes through the optically connected input side slab waveguide 13, phase shift channel waveguide 14, and output side slab waveguide 16 in this order, The split light is output from the output channel waveguide 15.
  • the athermal AWG 10 further includes a groove 17 on the input-side slab waveguide 13 for temperature independence, in addition to the above components of the normal AWG, and a resin 18 is filled in the groove 17.
  • the groove 17 is formed in the input side slab waveguide 13 in the configuration of the athermal AWG 10 shown in FIG. 1A, it may be formed on the output slab waveguide 16 or the phase shift channel waveguide. It may be formed on the wave path 14. Further, the shape of the groove 17 is a triangular groove or a crescent groove, and a plurality of grooves 17 are preferably provided.
  • the resin 18 is an optical resin, and may be a silicone resin or an acrylic resin. Further, the resin 18 is made of polyethylene, ethylene vinyl acetate copolymer, ethylene acrylate copolymer, polyisobutylene, ethylene propylene rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, polypropylene, polybutadiene rubber, styrene butadiene block rubber, styrene As long as it is a polyolefin rubber, a fluorine gel, a fluorine rubber, or another organic material whose refractive index changes when irradiated with light having a wavelength of 375 nm to 455 nm, it can be employed without any particular limitation.
  • the center transmission wavelength ⁇ C in the athermal AWG 10 is given by the following equation.
  • n c is the refractive index of the core
  • n Polymer is the refractive index of the resin
  • [Delta] L is the optical path length difference between adjacent waveguides in the waveguide phase
  • [Delta] L Polymer groove 17 resin 18 is filled
  • the optical path length difference between adjacent waveguides, and m represents the diffraction order.
  • the frequency characteristic of the signal light transmitted through the athermal AWG has one spectrum at a wavelength of 1520 nm to 1560 nm. .
  • m 34.
  • ⁇ L and ⁇ L polymer are slightly different for each chip due to design fluctuations occurring in the manufacturing process. Therefore, a wavelength shift of up to several hundred pm occurs with respect to the ITU grid.
  • the ITU grid is a wavelength interval conforming to the ITU-TG.691 recommendation.
  • the athermal AWG used for optical communication needs to accurately match the transmission wavelength with the ITU grid, and the accuracy of the matching is required to be at a level of 10 pm.
  • the athermal AWG 10 can adjust the transmission wavelength by changing the refractive index of the resin 18 through which the signal light passes.
  • FIG. 2A is a schematic diagram illustrating a configuration of the athermal MZI 20, and FIG. 2B is a graph (b) illustrating a transmission spectrum of signal light transmitted through the athermal MZI 20.
  • the horizontal axis of the graph in FIG. 2B represents the wavelength, and the vertical axis represents the transmittance.
  • a long arm side waveguide 22 and a short arm side waveguide 23 are arranged on a waveguide substrate 21.
  • the athermal MZI 20 further includes a groove 25 and a resin 26 filling the groove 25 on each of the short arm side and the long arm side.
  • the short-arm side waveguide 23 and the long-arm side waveguide 22 are arranged so as to pass through the resin 26, and are close to each other on the input port side and the output port side with the groove 25 filled with the resin 26 interposed therebetween.
  • a coupler portion 24 is formed.
  • a configuration including these elements is a one-chip athermal MZI20.
  • Light is input from the short arm side input port 27a and the long arm side input port 27b provided at one end of the athermal MZI 20.
  • the light input from the short arm side input port 27a passes through the short arm side waveguide 23, passes through the resin 26 filled in the short arm side groove 25, and is output from the short arm side output port 28a. Is done.
  • the light input from the long arm side input port 27b passes through the long arm side waveguide 22, passes through the resin 26 filled in the long arm side groove 25, and becomes the long arm side output port. 28b. At this time, the light passing through the short arm side waveguide 23 and the light passing through the long arm side waveguide 22 interfere in each of the two coupler sections 24.
  • the light output from the short arm side output port 28a and the long arm side output port 28b has a periodic transmission spectrum shape as shown in FIG. 2 (b).
  • the wavelength varies from chip to chip due to mask accuracy errors and variations in the refractive index of the glass or resin 26.
  • the athermal MZI used for optical communication like the athermal AWG, must have its transmission wavelength exactly matched to the ITU grid.
  • FIG. 3A is a schematic diagram showing a configuration of the athermal ring resonator
  • FIG. 3B is a transmission spectrum of signal light transmitted through the athermal ring resonator. It is a graph shown. The horizontal axis of the graph in FIG. 3B indicates the wavelength, and the vertical axis indicates the transmittance.
  • linear waveguides 32 and 33 and a ring waveguide 34 are arranged on a waveguide substrate 31.
  • the linear waveguides 32 and 33 and the ring waveguide 34 form a coupler section 37 that is a part that is close to each other.
  • the athermal ring resonator 30 further includes a groove 35 and a resin 36 filled in the groove 35 at a position where the ring waveguide 34 passes.
  • Light input to the input port 38a passes through the linear waveguide 32, and light input to the input port 38b passes through the linear waveguide 33, and is output from the output ports 39a and 39b, respectively.
  • the light is partially or wholly generated by the excitation due to the optical coupling phenomenon with the light passing through the ring waveguide 34 in the coupler section 37 while passing through the one straight waveguide 31 or 32. Moves to the other linear waveguide 32 or 33 and proceeds.
  • the light output from the output port 39a or 39b has a periodic transmission spectrum shape in which the transmittance decreases at the oscillation wavelength generated in the ring waveguide 34, as shown in FIG. Show.
  • the linear waveguides 32 and 33 and the ring waveguide 34 are made of quartz glass, and the temperature dependence dn / dT (n indicates a refractive index and T indicates a temperature) of the refractive index has a positive value.
  • the temperature dependency dn / dT of the refractive index of the resin 36 has a negative value.
  • the athermalization of the ring resonator can be achieved. Can be planned. As a result of this athermalization, it is possible to athermalize the transmission characteristics of light transmitted through the athermal ring resonator 30.
  • FIG. 4 is a schematic diagram showing a configuration of an athermal AWG having an MZI on the input side. This configuration is referred to herein as “athermal AWG with athermal MZI”.
  • the athermal MZI part is connected to the input of the input side slab waveguide 45 of the athermal AWG part.
  • the athermal AWG section includes an input side slab waveguide 45, a phase shift channel waveguide 43, an output channel waveguide 42, an output side slab waveguide 42, and a resin section 44. It has.
  • the resin portion 44 includes a groove and a resin filled in the groove, and is arranged inside the output-side slab waveguide 42.
  • the athermal MZI portion includes the long arm side waveguide 46, the resin parts 48 and 49, the short arm side waveguide 47, and the coupler 410.
  • the resin portion is configured to include the groove and the resin filling the groove on each of the short arm side and the long arm side.
  • the short arm side waveguide 47 and the long arm side waveguide 46 are arranged to pass through the resin portion 48 and the resin portion 49, respectively.
  • the athermal AWG 40 with athermal MZI can make the tip part of the transmission spectrum of the arrayed waveguide diffraction grating with MZI flat (flat top) by matching the wavelength of MZI with the wavelength of A-AWG.
  • the spectrum shape of the output light is not a Gaussian shape, but a rectangular shape with a flat (flat top) tip portion of the spectrum. For this reason, it is necessary to match the transmission wavelength from the athermal AWG unit to the ITU grid and adjust the transmission wavelength from the athermal MZI unit so that the tip of the spectrum of the light transmitted from the athermal MZI unit becomes flat. is there.
  • FIG. 5A is a schematic diagram of an optical circuit configuration in a case where signal light and blue light are simultaneously input to the athermal MZI 50 to adjust the transmission wavelength of the signal light
  • FIG. It is a graph which shows the spectrum of the transmitted light which transmitted.
  • FIG. 5B is an enlarged view of a part of FIG. The horizontal axis of the graph in FIG. 5C indicates the wavelength, and the vertical axis indicates the transmittance.
  • the configuration of the athermal MZI 50 is such that a blue light short arm side waveguide 54 and a blue light long arm side waveguide 55 are added to the configuration of the athermal MZI 20 shown in FIG.
  • a groove 25 is provided on the long arm side and the short arm side of the athermal MZI 50, and the groove 25 is filled with a silicone resin as a resin 26.
  • the width of the groove 25 is set so that the wavelength of the signal light transmitted through the athermal MZI 50 is independent of the temperature.
  • the light source of the light to be input to the athermal MZI 50 includes a laser light source with fiber (output wavelength: 405 nm) (hereinafter, referred to as 405 nm laser light source) 51 and an ASE white light source with fiber (output wavelength: 1550 nm) (hereinafter, referred to as 1550 nm laser light source) 52. It is.
  • the 1550 nm laser light source 52 is used as a signal light source
  • the 405 nm laser light source 51 is used as a blue light source for adjusting the refractive index.
  • the signal light and the blue light pass through the 3 dB coupler 53 for the communication wavelength band and are input to the athermal MZI 50.
  • the pure silica means quartz (SiO 2 ) that does not contain a rare earth element serving as an emission center. This is because, when a coupler having a germanium (Ge) -doped core is used as the core of the 3 dB coupler 53, the photodarkening phenomenon occurs due to the passage of blue light, and the intensity loss of signal light increases.
  • the core of the waveguide provided in the athermal MZI 50 is preferably a waveguide having a core of pure silica, and the core of the optical waveguide in the portion where the blue light and the signal light pass simultaneously is preferably used. It is particularly preferred to have a core of pure silica.
  • the blue light emitted from the 405 nm laser light source 51 and the signal light emitted from the 1550 nm laser light source 52 are respectively input to the 3 dB coupler 53 and multiplexed into one fiber.
  • the light multiplexed by the 3 dB coupler 53 is input to the short arm side input port 27a.
  • the blue light emitted from the 405 nm laser light source 51 is input to the 3 dB coupler 53, it passes through the 3 dB coupler 53 without branching in the multi-mode propagation mode and is input to the short arm side input port 27 a.
  • the signal light emitted from the 1550 nm laser light source 52 is split into two at a ratio of 5: 5, that is, with equal light intensity, and is input to the short arm input port 27a and the long arm input port 27b of the athermal MZI 50.
  • the blue light input to the athermal MZI 50 travels straight through the short arm waveguide of the athermal MZI and is output from the short arm output port 28b.
  • 1550 nm signal light input from the short arm side input port 27a and the long arm side input port 27b causes interference inside the athermal MZI 50, and is output from the short arm side output port 28a and the long arm side output port 28b.
  • the signal light output from the long arm side output port 28b is analyzed by a spectrum analyzer, the signal light has a periodic transmission spectrum shape as shown in FIG.
  • this transmission spectrum shifts to the short wave side. This is because when the blue light passes through the groove 25 filled with the resin 26, the resin 26 is irradiated with the blue light, and as a result, the refractive index of the resin 26 increases.
  • the port for inputting light to the athermal MZI 50 was switched from the short arm input port 27a to the long arm input port 27b, and blue light was input to the long arm.
  • the blue light emitted from the 405 nm laser light source 51 is input to the 3dB coupler 53, the blue light propagates through the 3dB coupler 53 in multi mode and is branched.
  • the signal is passed through without being input to the long arm side input port 27b.
  • the signal light emitted from the 1550 nm laser light source is split into two with the same light intensity and input to the short arm side input port 27a and the long arm side input port 27b of the athermal MZI 50.
  • the signal light output from the short arm side output port 28a is analyzed by a spectrum analyzer, the signal light has a periodic transmission spectrum shape as shown in FIG. This transmission spectrum shifts to the long wave side, contrary to the case where light is input from the short arm side input port 27a.
  • FIG. 6 is a graph showing the change over time of the transmission wavelength of the signal light transmitted through the athermal MZI 50 shown in FIG.
  • the horizontal axis indicates the irradiation time of the blue light to the resin 26, and the vertical axis indicates the shift amount of the transmission wavelength of the signal light.
  • a black circle plot shows a case where blue light is input to the long arm side input port 27b, and a white circle plot shows a case where blue light is input to the short arm side input port 27a.
  • the output of the 405 nm laser light source 51 is 1.8 mW.
  • the temperature of the optical waveguide constituting the athermal MZI 50 is 25 ° C.
  • the wavelength of the signal light could be shifted to the shorter side of 100 pm in several minutes. From the results shown in FIG. 6, when the output of the 405 nm laser light source 51 is 1.8 mW, it takes about 10 minutes to shift the transmission wavelength of the signal light to the shorter wavelength side of 100 pm.
  • the output of the 405 nm laser light source 51 was further increased to 100 mW, and in addition, the temperature of the optical waveguide constituting the athermal MZI 50 was previously set to 60 ° C. before inputting the signal light and the blue light to the athermal MZI 50. As a result of adjusting the wavelength, it was possible to shift the transmission wavelength to the long wave side of 400 pm in about 10 minutes. From the results shown in FIG. 6, when the output of the 405 nm laser light source 51 is 1.8 mW and the temperature of the optical waveguide constituting the athermal MZI 50 is 60 ° C., the transmission wavelength of the signal light is shifted to the longer wavelength side of 400 pm. Therefore, it takes about 30 minutes.
  • the time during which the transmission wavelength of the signal light shifts becomes shorter as the output of the blue light source increases, that is, the wavelength can be adjusted faster.
  • the shift time of the transmission wavelength of the signal light becomes shorter as the temperature of the optical waveguide constituting the athermal MZI 50 rises, that is, the wavelength can be adjusted more quickly.
  • the blue light is also passed through the optical waveguide through which the signal light passes, but the intensity of the signal light is increased by the passage of the blue light in the optical waveguide, that is, the irradiation of the blue light to the core of the optical waveguide. Loss may increase.
  • the blue light short arm side waveguide 54 and the blue light long arm side waveguide 55 are optical waveguides for irradiating the resin 26 filled in the groove 25 with blue light.
  • blue light is supplied to the blue light short arm in a region closer to the input side than the groove 25 filled with the resin 26.
  • the signal light passes through the side waveguide 54 or the long arm waveguide 55 for blue light, and the signal light passes through the short arm waveguide 23 or the long arm waveguide 22.
  • the diameter of the core of the blue light short arm side waveguide 54 is smaller than the diameter of the core of the short arm side waveguide 23, and more specifically, one third of the diameter of the core of the short arm side waveguide 23. That's it.
  • the signal light cannot be input to the blue light short arm side waveguide 54, and cannot pass through the blue light short arm side waveguide 54. That is, when the blue light short arm side waveguide 54 is provided, the signal light passes through the short arm side waveguide 23 and the resin 26 filled in the groove 25 without being affected by the irradiation of the blue light. be able to.
  • the blue light is irradiated on the resin 26 filled in the groove 25 by changing the input port and passing through the blue light short arm side waveguide 54 provided before reaching the groove 25. Can be. At this time, the configuration of the optical waveguide after passing through the groove 25 is the same regardless of whether or not the blue light short arm side waveguide 54 is provided.
  • the athermal MZI 50 includes the blue light short arm side waveguide 54 and the blue light long arm side waveguide 55, the configuration of the optical waveguide after the groove 25 filled with the resin 26 is changed. Instead, it is possible to suppress an increase in the intensity loss of the signal light.
  • FIG. 7A shows light when the transmission wavelength of signal light is adjusted by simultaneously inputting signal light and blue light to athermal AWG 70.
  • FIG. 7B is a schematic diagram of a circuit configuration, and FIG. 7B is a graph showing a transmission spectrum of signal light transmitted through the athermal MZI.
  • the horizontal axis of the graph in FIG. 7B indicates the wavelength, and the vertical axis indicates the transmittance.
  • the solid line indicates the transmittance of the horizontal polarization component, and the dotted line indicates the transmittance of the vertical polarization component.
  • the configuration of the athermal AWG 70 is a configuration in which a blue light input side waveguide 71 is added to the configuration of the athermal AWG 10 shown in FIG.
  • the input waveguide 71 for blue light is separated from the channel waveguide 12 for input and is an optical waveguide for passing only blue light and irradiating the resin 18 filled in the groove 17 with blue light.
  • the resin 18 is a silicone resin.
  • the light source of the light to be input to the athermal AWG 70 is a 405 nm laser light source 73 and a 1550 nm laser light source 72.
  • the 1550 nm laser light source 72 is used as a signal light source
  • the 405 nm laser light source 73 is used as a blue light source for adjusting the refractive index.
  • the signal light emitted from the 1550 nm laser light source 72 is input to the input channel waveguide 12 via the fiber.
  • the blue light emitted from the 405 nm laser light source 73 is input to the blue light input side waveguide 71 via the fiber.
  • the blue light that has passed through the blue light input side waveguide 71 reaches the input slab waveguide 13, it spreads radially and irradiates the resin 18 filled in the groove 17, thereby changing the refractive index of the resin 18. . Therefore, the refractive index of the resin 18 filled in the groove 17 located at the portion where the signal light passes for each wavelength changes.
  • FIG. 8 is a graph showing the change with time of the transmission wavelength of the signal light transmitted through the athermal AWG 70 shown in FIG.
  • the horizontal axis indicates the irradiation time of the blue light to the resin 18, and the vertical axis indicates the shift amount of the transmission wavelength of the signal light.
  • the output of the 405 nm laser light source 73 is 18 mW.
  • the transmission wavelength of the signal light shifts to the short wave side or the long wave side is determined by the type of the resin 18 filled in the groove 25. Normally, when a silicone resin is used as the resin 18, when the silicone resin is irradiated with blue light, its refractive index increases, and the transmission wavelength of the signal light shifts to the longer wavelength side. When an acrylic resin is used as the resin 18, the refractive index decreases and the transmission wavelength of the signal light shifts to the shorter wavelength side.
  • the transmission wavelength of the signal light monotonously shifts to the longer wavelength side with respect to the irradiation time of the blue light to the resin 18.
  • the shift amount is smaller than the shift amount of the transmission wavelength from the athermal MZI 50 in the first embodiment because the blue light radially spreads in the input side slab waveguide 13 in the configuration of the athermal AWG 70, This is because the power density of the blue light applied to the filled resin 18 is weaker than the case of the configuration of the athermal MZI 50.
  • FIG. 9A shows an optical circuit configuration in a case where signal light and blue light are simultaneously input to an athermal AWG 90 with an athermal MZI in which an athermal MZI is connected to an input side of the athermal AWG to adjust the transmission wavelength of the signal light.
  • FIG. 9B is a schematic diagram showing a transmission spectrum of the signal light transmitted through the athermal AWG 90 with the athermal MZI.
  • a dotted line 96 is a transmission spectrum of signal light after irradiating the resin portion 44 in the output side slab waveguide 42 with blue light
  • a solid line 97 is the resin portion 48 in the athermal MZI portion. 49 shows the transmission spectrum of the signal light after irradiation with blue light.
  • the configuration of the athermal AWG 90 with the athermal MZI is configured by adding the input side waveguides 94 and 95 for blue light to the configuration of the athermal AWG 40 with the athermal MZI shown in FIG.
  • the blue light input side waveguides 94 and 95 are optical waveguides for passing only the blue light and irradiating the resin of the resin portions 44, 48 and 49 with the blue light.
  • the resin of the resin portions 44, 48, 49 is a silicone resin.
  • the input waveguide 94 for blue light is separated from the input waveguide 411 and is connected to the coupler 411 located on the input side of the athermal AWG 90 with the athermal MZI.
  • the input waveguide 95 for blue light is separated from the channel waveguide 41 for output, and is connected to the output slab waveguide 42 located on the output side of the athermal AWG 90 with athermal MZI.
  • Light sources of light to be input to the athermal AWG 90 with athermal MZI are 405 nm laser light sources 91 and 92 and a 1550 nm laser light source 93.
  • the 1550 nm laser light source 93 is used as a signal light source
  • the 405 nm laser light sources 91 and 92 are used as blue light light sources for adjusting the refractive index.
  • the blue light emitted from the 405 nm laser light source 91 is input to the blue light input side waveguide 94
  • the blue light emitted from the 405 nm laser light source 92 is input to the blue light input side waveguide 95.
  • the blue light emitted from the 405 nm laser light source 92 passes through the blue light input side waveguide 95 and enters the output side slab waveguide 42.
  • the resin of the resin portion 44 is irradiated with the input blue light, and the refractive index of the resin of the resin portion 44 changes accordingly.
  • the refractive index of the resin of the resin portion 44 is adjusted so that the center wavelength of the transmission spectrum of the signal light input from the signal light and output from the output channel waveguide 41 matches the ITU grid.
  • the shape of the transmission spectrum of the signal light is a Gaussian shape 96 as shown in FIG. 9B, and the center wavelength and the reference wavelength, that is, the ITU grid are matched.
  • the blue light emitted from the 405 nm laser light source 91 passes through the blue light input side waveguide 94 and is input to the resin parts 48 and 49.
  • the resin of the resin parts 48 and 49 is irradiated with the input blue light, and the refractive index of the resin of the resin parts 48 and 49 changes accordingly.
  • the refractive indices of the resins of the resin portions 48 and 49 are adjusted so that the shape of the transmission spectrum of the signal light input from the signal light and output from the output channel waveguide 41 is changed from the Gaussian shape 96 to the rectangular shape 97. I do.
  • the output of the 405 nm laser light source 91 is set lower than the output of the 405 nm laser light source 92, and specifically, is about 1/10 of the output of the 405 nm laser light source 92. Therefore, when adjusting the refractive index of the resin of the resin portions 48 and 49, the blue light emitted from the 405 nm laser light source 91 cannot reach the resin portion 44 in the output side slab waveguide 42, or Even when reaching the portion 44, the strength is lower than the strength sufficient to change the refractive index of the resin of the resin portion 44.
  • FIG. 6 is a graph showing a change in the transmission wavelength shift amount of the signal light with respect to the signal light input time when the power signal light is input.
  • the horizontal axis indicates the input time of the signal light to the athermal MZI 20, and the vertical axis indicates the shift amount of the transmission wavelength of the signal light.
  • the output of the signal light source is 200 mW.
  • the transmission wavelength of the signal light is instantaneously shifted to the short wave side by about 70 pm.
  • the shift amount of the transmission wavelength of the signal light to the short wave side gradually increases, and the shift amount of the transmission wavelength of the signal light to the short wave side becomes about 140 pm at the maximum. Reaches and saturates.
  • the ITU grid interval is set to 400 pm, the shift amount of the transmission wavelength of the signal light to the short wavelength side is large, which is not preferable.
  • FIG. 11A is a schematic diagram of an optical circuit configuration in the case where signal light and blue light are simultaneously input to the athermal MZI 20 and the transmission wavelength of the signal light shifted from the reference wavelength is readjusted.
  • () Is a graph showing a transmission spectrum of the signal light transmitted through the athermal MZI20.
  • the horizontal axis of the graph in FIG. 11B indicates the wavelength, and the vertical axis indicates the transmittance.
  • the light source of the light input to the athermal MZI 20 is a 405 nm laser light source 51 and a 1550 nm laser light source 111.
  • the 1550 nm laser light source 111 is used as a light source for signal light
  • the 405 nm laser light source 51 is used as a light source for blue light for adjusting the refractive index.
  • the light is emitted from the 405 nm laser light source 51 (output: several mW) to the long arm side input port 27 b. Input blue light.
  • ⁇ High-power signal light passes through an erbium-doped fiber amplifier (hereinafter, referred to as EDFA), is input to the athermal MZI 20, and is output from the short-arm output port 28a.
  • the signal light that has passed through the EDFA includes the wavelength of spontaneous emission light and / or stimulated emission light generated in the EDFA, in addition to the wavelength of the signal light emitted from the 1550 nm laser light source 111. Therefore, when the wavelength other than 1550 nm of the transmission wavelength of the signal light output from the long arm side output port 28b is measured by the spectrum analyzer, the transmission spectrum of the signal light transmitted through the athermal MZI 20 can be observed.
  • Blue light is input from the long arm side input port 27b, and the resin 26 filled in the groove 25 through which the long arm side waveguide 22 passes is irradiated with blue light to change the refractive index of the resin 26, thereby changing the long arm side. While monitoring that a wavelength other than 1550 nm of the transmission wavelength of the signal light output from the output port 28b shifts to the long wave side, the transmission wavelength of the signal light output from the long arm side output port 28b and the ITU When the grid matches, the input of blue light to the athermal MZI 20 is stopped.
  • the signal light is transmitted for a long time. Then, the transmission wavelength of the signal light shifts to the short wave side or the long wave side. For example, when the athermal MZI is used for 10 to 20 years, the transmission wavelength of the signal light may be shifted by several tens pm at the maximum.
  • the short-arm side of the athermal MZI in which the transmission wavelength of the signal light is largely shifted is not exchanged for a new athermal MZI in which the transmission wavelength of the signal light is greatly shifted.
  • the transmission wavelength of the signal light transmitted through the athermal MZI in which the transmission wavelength of the signal light is greatly shifted is restored to the original value. The transmission wavelength can be restored.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

光導波路デバイスにおけるアサーマル化を実現する方法を、より簡便で低廉な方法とする。波長が1520nm乃至1560nmである信号光および波長が375nm乃至455nmである青色光が通過する1または複数の光導波路と、光導波路が通過する溝と、溝に充填された樹脂とを備える光導波路デバイスを透過する信号光の透過波長を調整する方法であって、信号光と青色光とを、同一または互いに異なる1または複数の光導波路を通過させ、同一または互いに異なる樹脂を通過させる工程を備え、樹脂を通過させる工程は、青色光を樹脂に照射することによって樹脂の屈折率を変化させ、樹脂の屈折率の変化に対応して樹脂を透過した信号光の透過波長を変化させる工程である、光導波路デバイスを透過する信号光の透過波長を調整する方法を提供する。

Description

光導波路デバイスを透過する信号光の透過波長を調整する方法
 本発明は、光導波路デバイスを透過した信号光の透過波長を調整する方法に関するものであって、具体的には、光導波路デバイス内の光導波路が通過する樹脂のみに波長375nm乃至455nmの青色光を照射して当該樹脂の屈折率を変化させる信号光の透過波長を調整する方法に関する。
 光通信の分野において、情報容量を増加させるために複数の信号をそれぞれ別々の波長に重畳させ、それらを単一の光ファイバ内を伝送させる波長分割多重方式が用いられている。この方式において、波長の異なる光を合分波する光波長合分波器として、温度無依存アレイ導波路回折格子(Athermal arrayed waveguide grating、以下、アサーマルAWGという)が重要な役割を果たしている。
 光波長合分波器は、その内部の石英ガラスの屈折率が温度依存性を有することや石英ガラス自体の熱膨張により、温度変化に伴って、光波長合分波器を透過した光の波長が大きく変動してしまうという問題を有している。従来、この問題に対して、ヒータによる加熱などによって石英ガラスの温度を一定に保持するようにして用いるか、または石英ガラスで構成されているスラブ導波路の内側面上に溝を設けてその溝の内部に屈折率の温度依存性が石英ガラスと異なる、すなわち光波長合分波器の構成全体で屈折率の温度依存性を相殺するような、ポリマーなどの樹脂を充填することが行われている。このように、温度が変化しても光波長合分波器を透過した光の波長が変動しないように光波長合分波器の温度無依存化が図られている。ここで、温度無依存化とすることをアサーマルまたはアサーマル化という。
 また、AWGによる分波波長は、製造工程において生じる光回路の製造のゆらぎにより、国際電気通信連合(International Telecommunication Union、ITU)により国際的に標準化され勧告されている標準波長としばしばずれが生じる。従来、製造工程において生じる分波波長のずれは、製造したAWGにエキシマレーザから出射するハイパワーの紫外域レーザを照射して、その紫外域レーザの波長をモニタしながらAWGを構成している石英製の光導波路の屈折率を変化させて、AWGによる分波波長をトリミングする方法が用いられている(特許文献1)。
 また、アサーマルAWGにおいて、光路内に形成された三角形状の溝に充填させたポリマーに紫外線を照射し、ポリマーの屈折率を変化させることにより、アサーマルAWGによる分波波長をトリミングする方法も提案されている(特許文献2)。
 また、AWGの透過光のスペクトル形状は、通常ガウシアン形状である。そこで、光源の波長に対するトレランスを向上させ、かつ温度に対するトレランスを与えるために、AWGの透過光のスペクトル形状の先端をフラットとする装置構成が提案されている。すなわち、AWGの入力側に設けられたスラブ導波路にマッハツェンダ干渉計(Mach-Zehnder interferometer、以下MZIという)を接続する装置構成が提案されている。このとき、MZI自体もAWGと同様にアサーマル化する必要があるため、MZIの短アーム側および長アーム側の導波路に溝が設けられ、その溝に屈折率を調整するための樹脂が充填されている(特許文献3)。
特開2001-154043号公報 特表2003-523528号公報 国際公開WO2010/079761号公報 特開2012-14151号公報
 上記の場合、MZIは、その位相をプラスマイナス0.005ラジアン程度の精度で合致させなければ、透過光のスペクトル形状の先端を平坦とすることができない。したがって、MZIの位相を調整するために、MZIの導波路にも紫外線を照射して導波路の屈折率を変化させ位相をトリミングする必要がある(特許文献3)。つまり、このAWGにMZIを組み合わせてその構成全体をアサーマル化するためには、工程数の増加が課題となる。
 また、アサーマルAWGの導波路中の溝への充填材料として、同じ基本骨格構造を有し側鎖の種類が異なっている、屈折率の異なる2つの樹脂を混合して用いることにより、透過光の波長を最適に調整する方法も提案されている(特許文献4)。この調整方法は、チップ毎に個別に屈折率の調整のための樹脂の混合作業が必要となり、作業量が多く煩雑化を招来する課題がある。
 またさらに、AWGやMZIなどの光導波路デバイスにおいて、光導波路である石英ガラスに紫外線を照射して屈折率を調整する場合には、エキシマレーザなどの大型且つ高パワー出力の紫外線光源が必要であり、同様に、光導波路中に設けられた溝の充填材料である樹脂に紫外線を照射してその屈折率を調整する場合にも、高パワー出力の紫外線ランプが必要となり、コスト面における課題がある。
 本発明は、上記の課題を解決するために成されたものである。本発明の一実施形態は、波長が1520nm乃至1560nmである信号光および波長が375nm乃至455nmである青色光が通過する1または複数の光導波路と、光導波路が通過する溝と、溝に充填された樹脂とを備える光導波路デバイスを透過する信号光の透過波長を調整する方法である。
 本発明の一実施形態は、より具体的には、信号光と青色光とを、同一または互いに異なる1または複数の光導波路を通過させ、同一または互いに異なる樹脂を通過させる工程を備え、樹脂を通過させる工程は、青色光を樹脂に照射することによって樹脂の屈折率を変化させ、樹脂の屈折率の変化に対応して樹脂を透過した信号光の透過波長を変化させる工程である、光導波路デバイスを透過する信号光の透過波長を調整する方法を提供するものである。
 本発明は、AWG、MZI、またはリング共振器等の光導波路デバイスの透過波長または波形をトリミングする際に生じる光導波路デバイス全体への紫外線照射工程を簡便なものとするためになされたものである。低パワー(1mW~数10mW)出力で半導体LDから出射される波長375nm乃至455nmの青色光を、光導波路を介して、通信用の信号光が通過する樹脂部のみを通過させることにより、樹脂部の屈折率を調整することを特徴とするものである。
 本発明に依れば、信号光が通過する光導波路の径は10um程度と小さな断面積のため、低パワー出力による青色光でもパワー密度が高くなる。その結果、大型で高パワー出力のエキシマレーザやUVランプを使用せずとも、効率的に樹脂部の屈折率を調整することができる。
 また、本発明に依れば、光導波路デバイスを備える光回路をファイバ付きモジュールとしてパッケージングした後や、このパッケージングした状態で光導波路デバイス内を連続通光して、経年劣化の結果透過光の波長にずれが生じた場合でも、波長を調整または再調整することができるという利点がある。
 またさらに、本発明に依れば、カプラを介して、青色光と信号光とを同時に光導波路デバイスに入力し、透過光の波長をモニタしながら光導波路かつ/または樹脂部の屈折率を調整して、透過光の波長を調整することができる。その結果、1pmレベルの高い精度で透過光の波長を調整することができる。
(a)はアサーマルAWGの構成を示す模式図であり、(b)はアサーマルAWGを透過した信号光の透過スペクトルを示すグラフである。 (a)はアサーマルMZIの構成を示す模式図であり、(b)はアサーマルMZIを透過した信号光の透過スペクトルを示すグラフである。 (a)はアサーマル・リング共振器の構成を示す模式図であり、(b)はアサーマル・リング共振器を透過した信号光の透過スペクトルを示すグラフである。 入力側にMZIを備えるアサーマルAWGの構成を示す模式図である。 (a)はアサーマルMZIに信号光と青色光とを同時に入力して信号光の透過波長を調整する場合の光回路構成の模式図であり、(c)はアサーマルMZIを透過した透過光のスペクトルを示すグラフである。(b)は、(a)の一部を拡大した図である。 図5に示すアサーマルMZI50を透過した信号光の透過波長の時間に対する変化を示すグラフである。 (a)はアサーマルAWGに信号光と青色光とを同時に入力して信号光の透過波長を調整する場合の光回路構成の模式図であり、(b)はアサーマルMZIを透過した信号光の透過スペクトルを示すグラフである。 図7に示すアサーマルAWG70を透過した信号光の透過波長の時間に対する変化を示すグラフである。 (a)はアサーマルAWGの入力側にアサーマルMZIを接続した、アサーマルMZI付きアサーマルAWG90に信号光と青色光とを同時に入力して信号光の透過波長を調整する場合の光回路構成の模式図であり、(b)はこのアサーマルMZI付きアサーマルAWG90を透過した信号光の透過スペクトルを示す模式図である。 アサーマルMZI20の短アーム側入力ポート27aから高パワーの信号光を入力した場合における信号光の透過波長シフト量の信号光入力時間に対する変化を示すグラフである。 (a)はアサーマルMZI20に信号光と青色光とを同時に入力して基準波長からシフトした信号光の透過波長を再調整する場合の光回路構成の模式図であり、(b)はアサーマルMZI20を透過した信号光の透過スペクトルを示すグラフである。
 以下、本発明の実施形態について詳細に説明する。また、本発明の実施形態は、本発明の要旨の範囲を逸脱しない限り、以下の例示に何ら限定されることはない。
 まず、本発明の実施形態で用いる光導波路デバイスについて、以下の(1)乃至(4)で説明する。
(1)アサーマルAWG
 図1(a)は、アサーマルAWGの構成を示す模式図であり、図1(b)は、アサーマルAWGを透過した信号光の透過スペクトルを示すグラフである。図1(b)のグラフの横軸は波長を、縦軸は透過率を示す。図1(b)のグラフ内の実線は水平偏波成分、点線は垂直偏波成分の透過率を示している。
 アサーマルAWG10は、石英基板11の上に入力用チャネル導波路12、入力側スラブ導波路13、移相用チャネル導波路14、出力側スラブ導波路16、出力用チャネル導波路15、溝17、樹脂18を備えている。これらの要素を備えた構成が1チップのアサーマルAWG10である。
 入力用チャネル導波路12は、光をアサーマルAWG10に入力するために備えられており、1本の光導波路である。移相用チャネル導波路14および出力用チャネル導波路15は、複数本の導波路で構成されている。入力用チャネル導波路12から入力された光は、それぞれ光学的に接続されている入力側スラブ導波路13、移相用チャネル導波路14、および出力側スラブ導波路16をこの順に通過して、分波された光が出力用チャネル導波路15から出力される。
 アサーマルAWG10は、通常のAWGの上記構成要素に加えて、温度無依存化のために入力側スラブ導波路13上に溝17をさらに備え、溝17の内部には樹脂18が充填されている。図1(a)に示すアサーマルAWG10の構成において、溝17は入力側スラブ導波路13に形成されているが、出力用スラブ導波路16上に形成しても良いし、また移相用チャネル導波路14上に形成しても良い。また、溝17の形状は三角溝または三日月溝であって、複数備えられていることが好ましい。
 樹脂18は、光学樹脂であって、シリコーン樹脂、アクリル系樹脂を採用することができる。さらに、樹脂18は、ポリエチレン、エチレン酢酸ビニル共重合体、エチレンアクリレート共重合体、ポリイソブチレン、エチレンプロピレンゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、ポリプロピレン、ポリブタジエンゴム、スチレンブタジエンブロックゴム、スチレンポリオレフィンゴム、フッ素ゲル、フッ素ゴムその他の有機材料であって、波長375nm乃至455nmの光を照射してその屈折率が変化する材料である限り、特に制限無く採用できる。
 アサーマルAWG10における中心透過波長λCは、以下の式により与えられる。ここで、ncはコアの屈折率、npolymerは樹脂の屈折率、ΔLは移相用導波路における隣接する導波路間の光路長差、ΔLpolymerは樹脂18が充填されている溝17における隣接する導波路間の光路長差、およびmは回折次数を表す。
Figure JPOXMLDOC01-appb-M000001
 通常の光通信波長帯域におけるアサーマルAWGの構成において、入力する信号光の波長を1.55μmとした場合、アサーマルAWGを透過した信号光の周波数特性は、波長1520nm乃至1560nmに1本のスペクトルが現れる。このとき、m=34である。製造工程において生じる設計の揺らぎにより、チップ毎にΔLおよびΔLpolymerが若干異なっている。このためITUグリッドに対して、最大で数100pmの波長のずれが生じる。
 ここで、ITUグリッドとは、ITU-TG.691勧告に準拠している波長間隔のことである。
 光通信に用いるアサーマルAWGは、その透過波長をITUグリッドに対して正確に合致させる必要があり、その合致の精度は10pmのレベルが求められる。アサーマルAWG10は、信号光が通過する樹脂18の屈折率を変えることにより、透過波長を調整することができる。
(2)アサーマルMZI
 図2(a)は、アサーマルMZI20の構成を示す模式図であり、図2(b)は、アサーマルMZI20を透過した信号光の透過スペクトルを示すグラフ(b)である。図2(b)のグラフの横軸は波長を、縦軸は透過率を示す。
 アサーマルMZI20は、導波路基板21の上に長アーム側導波路22、短アーム側導波路23が配置されている。
 アサーマルMZI20は、短アーム側と長アーム側とのそれぞれに、溝25とその溝25に充填された樹脂26がさらに備えられている。短アーム側導波路23および長アーム側導波路22は、それぞれ樹脂26を通過するように配置され、樹脂26が充填されている溝25を挟んで入力ポート側と出力ポート側とに、互いに近接している部位であるカプラ部24が形成されている。これらの要素を備えた構成が1チップのアサーマルMZI20である。
 短アーム側に設けられた溝と長アーム側に設けられた溝25との光の進行方向の長さには差が設けられ、アサーマル条件を満たすように溝25の光の進行方向の長さが決められる。
 光は、アサーマルMZI20の一方の端に設けられている短アーム側入力ポート27aおよび長アーム側入力ポート27bから入力される。短アーム側入力ポート27aから入力された光は、短アーム側導波路23の中を通過し、短アーム側の溝25に充填された樹脂26を通過して、短アーム側出力ポート28aから出力される。同様に、長アーム側入力ポート27bから入力された光は、長アーム側導波路22の中を通過し、長アーム側の溝25に充填された樹脂26を通過して、長アーム側出力ポート28bから出力される。このとき2箇所のカプラ部24のそれぞれで、短アーム側導波路23を通過する光と長アーム側導波路22を通過する光とが干渉する。
 その結果、短アーム側出力ポート28aおよび長アーム側出力ポート28bから出力される光は、図2(b)に示すように、周期的な透過スペクトル形状を示す。マスクの精度誤差、ガラスや樹脂26の屈折率のばらつきにより、チップ毎に波長が異なる。光通信に用いるアサーマルMZIは、アサーマルAWGと同様に、その透過波長をITUグリッドに対して正確に合致させる必要がある。
(3)アサーマル・リング共振器
 図3(a)は、アサーマル・リング共振器の構成を示す模式図であり、図3(b)は、アサーマル・リング共振器を透過した信号光の透過スペクトルを示すグラフである。図3(b)のグラフの横軸は波長を、縦軸は透過率を示す。
 アサーマル・リング共振器30は、導波路基板31の上に直線導波路32,33、リング導波路34が配置されている。直線導波路32,33とリング導波路34とは、互いが近接している部位であるカプラ部37を形成している。
 アサーマル・リング共振器30は、リング導波路34が通過する位置に溝35、溝35に充填した樹脂36が更に備えられている。
 入力ポート38aに入力された光は直線導波路32の中を、また入力ポート38bに入力された光は直線導波路33の中を通過し、それぞれ出力ポート39a,39bにから出力される。光は、一方の直線導波路31または32の中を通過中にカプラ部37において、リング導波路34を通過している光と光学カップリング現象により励振を生じることにより、光の一部または全部が他方の直線導波路32または33移行して進行する。その結果、出力ポート39aまたは39bから出力される光は、図3(b)に示すように、リング導波路34内で発生している発振波長において透過率が低下する周期的な透過スペクトル形状を示す。
 直線導波路32,33およびリング導波路34は、石英ガラス製であって、その屈折率の温度依存性dn/dT(nは屈折率を、Tは温度を示す)は正の値を有する。一方、樹脂36の屈折率の温度依存性dn/dTは、負の値を有する。ここで、溝35の幅に対するリング導波路34の長さの比と、石英ガラス、樹脂36のそれぞれのdn/dTの比とが等しくなるように設定することによって、リング共振器のアサーマル化を図ることができる。このアサーマル化の結果、アサーマル・リング共振器30を透過する光の透過特性をアサーマル化することが可能である。
(4)アサーマルMZI付きアサーマルAWG
 図4は、入力側にMZIを備えるアサーマルAWGの構成を示す模式図である。この構成を本願明細書において「アサーマルMZI付きアサーマルAWG」という。
 アサーマルMZI付きアサーマルAWG40は、アサーマルAWG部の入力側スラブ導波路45の入力に、アサーマルMZI部が接続されている。ここで、アサーマルMZI付きアサーマルAWG40の構成の内、アサーマルAWG部は、入力側スラブ導波路45、移相用チャネル導波路43、出力用チャネル導波路42、出力側スラブ導波路42、樹脂部44を備えている。樹脂部44は、溝および当該溝に充填された樹脂を含んで構成されており、出力側スラブ導波路42の内部に配置されている。
 また、アサーマルMZI付きアサーマルAWG40の構成の内、アサーマルMZI部は、長アーム側導波路46、樹脂部48,49、短アーム側導波路47、およびカプラ410を備えている。ここで、樹脂部は、短アーム側と長アーム側とのそれぞれに、溝および当該溝を充填している樹脂を含んで構成されている。短アーム側導波路47は樹脂部48を、長アーム側導波路46は樹脂部49を、それぞれを通過するように配置されている。
 アサーマルMZI付きアサーマルAWG40は、MZIの波長とA-AWGの波長を合わせることにより、MZI付きアレイ導波路回折格子の透過スペクトルの先端部分を平坦(フラットトップ)形状にすることができる。
 アサーマルMZI付きアサーマルAWG40に、光を入力側導波路411から入力し出力用チャネル導波路41から出力する場合、アサーマルMZI部の透過波長とアサーマルAWG部の透過波長とが正確に合致するときに、出力した光のスペクトル形状はガウシアン形状でなく、スペクトルの先端部分が平坦(フラットトップ)な矩形形状となる。このため、アサーマルAWG部からの透過波長をITUグリッドに合致させ、さらに、アサーマルMZI部から透過した光のスペクトルの先端部分が平坦となるように、アサーマルMZI部からの透過波長を調整する必要がある。
(実施例1)青色光の照射によるアサーマルMZIからの透過波長の調整(長波側シフト、短波側シフトの調整)
 図5(a)は、アサーマルMZI50に信号光と青色光とを同時に入力して信号光の透過波長を調整する場合の光回路構成の模式図であり、図5(c)は、アサーマルMZIを透過した透過光のスペクトルを示すグラフである。図5(b)は、図5(a)の一部を拡大した図である。図5(c)のグラフの横軸は波長を、縦軸は透過率を示す。
 アサーマルMZI50の構成は、図2(a)に示すアサーマルMZI20の構成に、青色光用短アーム側導波路54と青色光用長アーム側導波路55とを加えた構成である。
 アサーマルMZI50の長アーム側および短アーム側には溝25が設けられ、当該溝25には、樹脂26としてシリコーン樹脂が充填されている。この溝25の幅は、アサーマルMZI50を透過した信号光の波長が温度無依存になるように設定されている。
 アサーマルMZI50に入力する光の光源は、ファイバ付きレーザ光源(出力波長:405nm)(以下、405nmレーザ光源という)51およびファイバ付きASE白色光源(出力波長:1550nm)(以下、1550nmレーザ光源という)52である。本実施例において、1550nmレーザ光源52は信号光の光源として、405nmレーザ光源51は屈折率調整用の青色光の光源として用いられている。
 さらに、本実施例において、信号光および青色光は、通信波長帯用の3dBカプラ53を通過させてアサーマルMZI50に入力する。この3dBカプラ53のコアの材料として、ピュアシリカを用いることが望ましい。ここで、ピュアシリカとは、発光中心となる希土類元素を含まない石英(SiO2)を意味する。3dBカプラ53のコアとしてゲルマニウム(Ge)ドープのコアを有するカプラを用いた場合、青色光の通過によりフォトダークニング現象が生じ、信号光の強度ロスが増大するためである。3dBカプラ53のコアと同様に、アサーマルMZI50に備えられる導波路のコアがピュアシリカのコアを有する導波路であることが好ましく、青色光と信号光とが同時に通過する部分の光導波路のコアがピュアシリカのコアを有することが特に好ましい。
 まず、405nmレーザ光源51から射出された青色光と1550nmレーザ光源52から射出された信号光とは、3dBカプラ53にそれぞれ入力され、1つのファイバに合波される。3dBカプラ53で合波された光は、短アーム側入力ポート27aに入力される。405nmレーザ光源51から射出された青色光は、3dBカプラ53に入力されると3dBカプラ53をマルチモードの伝搬モードで分岐することなくスルーして短アーム側入力ポート27aに入力される。一方、1550nmレーザ光源52から射出された信号光は、5:5、すなわち等しい光強度で2つに分岐されてアサーマルMZI50の短アーム側入力ポート27aおよび長アーム側入力ポート27bに入力される。
 アサーマルMZI50に入力された青色光は、アサーマルMZIの短アーム側導波路を直進して短アーム側出力ポート28bから出力される。一方、短アーム側入力ポート27aおよび長アーム側入力ポート27bから入力された1550nmの信号光は、アサーマルMZI50の内部で干渉を生じ、短アーム側出力ポート28aおよび長アーム側出力ポート28bから出力される。ここで、長アーム側出力ポート28bから出力された信号光をスペクトルアナライザにより解析すると、図5(c)に示すように周期的な透過スペクトル形状を有する。
 さらに、この透過スペクトルが短波側へとシフトすることが観測される。これは、青色光が樹脂26が充填されている溝25を通過する時に、樹脂26が青色光に照射され、その結果、樹脂26の屈折率が増大することに依るものである。
 次に、アサーマルMZI50に光を入力するポートを短アーム側入力ポート27aから長アーム側入力ポート27bへと切り替えて、長アーム側へと青色光を入力した。短アーム側入力ポート27aへと光を入力した場合と同様に、405nmレーザ光源51から射出された青色光は、3dBカプラ53に入力されると3dBカプラ53をマルチモードで伝搬して、分岐することなくスルーし長アーム側入力ポート27bに入力される。一方、1550nmレーザ光源から射出された信号光は、等しい光強度で2つに分岐されてアサーマルMZI50の短アーム側入力ポート27aおよび長アーム側入力ポート27bに入力される。
 短アーム側出力ポート28aから出力された信号光をスペクトルアナライザにより解析すると、図5(c)に示すように周期的な透過スペクトル形状を有している。この透過スペクトルは、短アーム側入力ポート27aから光を入力した場合とは反対に、長波側へとシフトする。
 図6は、図5に示すアサーマルMZI50を透過した信号光の透過波長の時間に対する変化を示すグラフである。横軸は樹脂26に対する青色光の照射時間を、縦軸は信号光の透過波長のシフト量を示す。黒丸のプロットは青色光を長アーム側入力ポート27bへ入力した場合であり、白丸のプロットは短アーム側入力ポート27aへ入力した場合の値を示す。このときの405nmレーザ光源51の出力は、1.8mWである。アサーマルMZI50を構成する光導波路の温度は25℃である。
 図6に示すように、青色光を短アーム側に入力すると信号光の透過波長を短波側に、長アーム側に入力すると信号光の透過波長を長波側にシフトさせることができることが分かる。すなわち、アサーマルMZI50において、青色光を短アーム側または長アーム側へと入力することにより、信号光の透過波長を短波側または長波側へとシフトさせる波長調整が可能となる。
 ここで、405nmレーザ光源51の出力を50mWへ増大させると信号光の波長を数分で100pm短波側へとシフトさせることができた。図6に示す結果より、405nmレーザ光源51の出力が1.8mWの場合には、信号光の透過波長を100pm短波側へとシフトさせるために約10分程度の時間を要する。
 また、405nmレーザ光源51の出力をさらに増大させて100mWとし、それに加えて、アサーマルMZI50に信号光および青色光を入力する前に予めアサーマルMZI50を構成する光導波路の温度を60℃に設定して、波長調整した結果、10分程度で400pmの長波側へと透過波長をシフトさせることが可能であった。図6に示す結果より、405nmレーザ光源51の出力を1.8mWとし、アサーマルMZI50を構成する光導波路の温度を60℃とした場合には、信号光の透過波長を400pm長波側へとシフトさせるために、おおよそ30分程度の時間を要する。
 つまり、本実施例に依れば、青色光の光源の出力の増大に従って信号光の透過波長がシフトする時間が短くなり、すなわち、より高速に波長調整をすることが可能である。また、同様に、アサーマルMZI50を構成する光導波路の温度の上昇に従って信号光の透過波長がシフトする時間が短くなり、すなわち、より高速に波長調整をすることが可能である。
 また、上記の例では、信号光が通過する光導波路に青色光も同時に通過させているが、光導波路内の青色光の通過、つまり光導波路のコアへの青色光の照射によって信号光の強度ロスが増大する場合がある。この場合には、アサーマルMZIに青色光のみを入力する光導波路を別途設けることが好ましい。
 アサーマルMZI50において、青色光用短アーム側導波路54および青色光用長アーム側導波路55は、青色光を溝25に充填されている樹脂26に照射するための光導波路である。この青色光用短アーム側導波路54および青色光用長アーム側導波路55を備えることにより、樹脂26が充填された溝25よりも入力側に近い領域において、青色光は青色光用短アーム側導波路54または青色光用長アーム側導波路55を通過し、信号光は短アーム側導波路23または長アーム側導波路22を通過する構成となる。
 図5(b)は、図5(a)の一点鎖線で囲んだ部分の拡大図を示している。青色光用短アーム側導波路54のコアの径は、短アーム側導波路23のコアの径よりも小さく、具体的には、短アーム側導波路23のコアの径の1/3の大きさである。信号光は、この青色光用短アーム側導波路54へ入力することが出来ず、青色光用短アーム側導波路54の中を通過することもできない。つまり、この青色光用短アーム側導波路54を設けた場合、信号光は、青色光の照射の影響を受けずに、短アーム側導波路23および溝25に充填された樹脂26を通過することができる。一方、青色光は、入力ポートの変更および溝25に到達する前に設けられた青色光用短アーム側導波路54内の通過をさせることで、溝25に充填された樹脂26を照射することができる。このとき、溝25を通過した後の光導波路の構成は、青色光用短アーム側導波路54の設置有無に依らず同じである。
 すなわち、アサーマルMZI50は、青色光用短アーム側導波路54および青色光用長アーム側導波路55を備えることにより、樹脂26が充填されている溝25より後の光導波路の構成の変更を伴わずに、信号光の強度ロスの増大を抑制することが可能である。
(実施例2)青色光の照射によるアサーマルAWGからの透過波長の調整
 図7(a)は、アサーマルAWG70に信号光と青色光とを同時に入力して信号光の透過波長を調整する場合の光回路構成の模式図であり、図7(b)は、アサーマルMZIを透過した信号光の透過スペクトルを示すグラフである。図7(b)のグラフの横軸は波長を、縦軸は透過率を示す。また、図7(b)において、実線は水平偏波成分、点線は垂直偏波成分の透過率を示している。
 アサーマルAWG70の構成は、図1(a)に示すアサーマルAWG10の構成に、青色光用入力側導波路71を加えた構成である。この青色光用入力側導波路71は、入力用チャネル導波路12と分離されており、青色光のみを通過させ溝17に充填されている樹脂18に青色光を照射するための光導波路である。本実施例において、樹脂18はシリコーン樹脂である。
 アサーマルAWG70に入力する光の光源は、405nmレーザ光源73および1550nmレーザ光源72である。本実施例において、1550nmレーザ光源72は信号光の光源として、405nmレーザ光源73は屈折率調整用の青色光の光源として用いられている。
 まず、1550nmレーザ光源72から射出された信号光を、ファイバを介して入力用チャネル導波路12に入力する。同様に、405nmレーザ光源73から射出された青色光を、ファイバを介して青色光用入力側導波路71に入力する。青色光用入力側導波路71の中を通過した青色光は、入力用スラブ導波路13に達すると放射状に広がり溝17に充填された樹脂18を照射して、樹脂18の屈折率を変化させる。したがって、信号光がその波長毎に通過する部分に位置する溝17に充填された樹脂18の屈折率が変化する。
 図8は、図7に示すアサーマルAWG70を透過した信号光の透過波長の時間に対する変化を示すグラフである。横軸は樹脂18に対する青色光の照射時間を、縦軸は信号光の透過波長のシフト量を示す。このときの405nmレーザ光源73の出力は、18mWである。
 信号光の透過波長が短波側または長波側のいずれにシフトをするかは、溝25に充填された樹脂18の種類によって決定される。通常、樹脂18としてシリコーン樹脂を採用した場合、シリコーン樹脂に青色光を照射すると、その屈折率は増大し、それに伴って信号光の透過波長は長波側にシフトする。また、樹脂18としてアクリル系の樹脂を採用した場合、屈折率は減少し、信号光の透過波長は短波側にシフトする。
 図8に示すように、樹脂18に対する青色光の照射時間に対して、信号光の透過波長は単調に長波側にシフトする。
 なお、実施例1におけるアサーマルMZI50からの透過波長のシフト量よりもシフト量が小さいのは、アサーマルAWG70の構成において、入力側スラブ導波路13の中で青色光が放射状に広がるため、溝17に充填された樹脂18に照射される青色光のパワー密度がアサーマルMZI50の構成による場合よりも弱くなったためである。
(実施例3)青色光の照射によるアサーマル・リング共振器からの透過波長の調整
 実施例2と同様の条件で、アサーマルAWG70に代えてアサーマル・リング共振器30を用いて実施した場合にも、実施例2と同様に信号光の透過波長を調整することができた。
(実施例4)アサーマルMZI付きアサーマルAWG
 図9(a)は、アサーマルAWGの入力側にアサーマルMZIを接続した、アサーマルMZI付きアサーマルAWG90に信号光と青色光とを同時に入力して信号光の透過波長を調整する場合の光回路構成の模式図であり、図9(b)は、このアサーマルMZI付きアサーマルAWG90を透過した信号光の透過スペクトルを示す模式図(b)である。図9(b)において、点線96は出力側スラブ導波路42内の樹脂部44に青色光を照射した後の信号光の透過スペクトルであり、実線97はそれに次いでアサーマルMZI部内の樹脂部48,49に青色光を照射した後の信号光の透過スペクトルを示す。
 アサーマルMZI付きアサーマルAWG90の構成は、図4に示すアサーマルMZI付きアサーマルAWG40の構成に、青色光用入力側導波路94,95を加えた構成である。青色光用入力側導波路94,95は、青色光のみを通過させ樹脂部44,48,49の樹脂に青色光を照射するための光導波路である。本実施例において、樹脂部44,48,49の樹脂はシリコーン樹脂である。
 青色光用入力側導波路94は、入力側導波路411と分離しており、アサーマルMZI付きアサーマルAWG90の入力側に位置するカプラ411に接続されている。青色光用入力側導波路95は、出力用チャネル導波路41と分離しており、アサーマルMZI付きアサーマルAWG90の出力側に位置する出力側スラブ導波路42に接続されている。
 アサーマルMZI付きアサーマルAWG90に入力する光の光源は、405nmレーザ光源91,92および1550nmレーザ光源93である。本実施例において、1550nmレーザ光源93は信号光の光源として、405nmレーザ光源91,92は屈折率調整用の青色光の光源として用いられている。405nmレーザ光源91から射出された青色光は青色光用入力側導波路94に入力され、405nmレーザ光源92から射出された青色光は青色光用入力側導波路95に入力される。
 まず、405nmレーザ光源92から射出された青色光を青色光用入力側導波路95の中を通過させ出力側スラブ導波路42に入力する。このとき、出力側スラブ導波路42において樹脂部44の樹脂が入力された青色光によって照射され、それに伴い樹脂部44の樹脂の屈折率が変化する。ここで、信号光を入力し出力用チャネル導波路41から出力される信号光の透過スペクトルの中心波長をITUグリッドに合致させるように、樹脂部44の樹脂の屈折率を調整する。このとき、信号光の透過スペクトルの形状は、図9(b)に示すように、ガウシアン形状96でありその中心波長と基準波長、すなわちITUグリッドとを一致させる。
 次に、405nmレーザ光源91から射出された青色光を青色光用入力側導波路94の中を通過させ樹脂部48,49に入力する。このとき、樹脂部48,49の樹脂が入力された青色光によって照射され、それに伴い樹脂部48,49の樹脂の屈折率が変化する。ここで、信号光を入力し出力用チャネル導波路41から出力される信号光の透過スペクトルの形状をガウシアン形状96から矩形形状97となるように、樹脂部48,49の樹脂の屈折率を調整する。
 本実施例において、405nmレーザ光源91の出力は、405nmレーザ光源92の出力に比べて低く設定され、具体的には405nmレーザ光源92の出力の1/10程度の出力値である。したがって、樹脂部48,49の樹脂の屈折率を調整する際に、405nmレーザ光源91から射出された青色光は、出力側スラブ導波路42の中の樹脂部44まで到達し得ず、または樹脂部44まで到達しても樹脂部44の樹脂の屈折率を変化させるのに足る強度よりも強度が低い。つまり、一旦、405nmレーザ光源92から射出された青色光が照射されて屈折率を調整された樹脂部44の樹脂の屈折率は、405nmレーザ光源91から射出された青色光がアサーマルMZI付きアサーマルAWG90に入力されても変化しない。すなわち、上記の順序に従って405nmレーザ光源91,92から射出された青色光をアサーマルMZI付きアサーマルAWG90に入力することにより、樹脂部44の樹脂の屈折率を再度調整する必要がない。
(実施例5)光導波路デバイスへの高パワーの信号光入力により信号光の透過波長が短波側へシフトした場合における透過波長の回復方法
 図10は、アサーマルMZI20の短アーム側入力ポート27aから高パワーの信号光を入力した場合における信号光の透過波長シフト量の信号光入力時間に対する変化を示すグラフである。横軸はアサーマルMZI20への信号光の入力時間を、縦軸は信号光の透過波長のシフト量を示す。信号光の光源の出力は、200mWである。
 アサーマルMZI20の短アーム側入力ポート27aから光源の出力が200mWの信号光を入力すると、信号光の透過波長は瞬時に70pm程度短波側にシフトする。アサーマルMZI20への信号光の入力時間の増加に従って、信号光の透過波長の短波側へのシフト量が徐々に大きくなり、信号光の透過波長の短波側へのシフト量は、最大で140pm程度に達して飽和する。ITUグリッド間隔は400pmとされているのに対して、この信号光の透過波長の短波側へのシフト量は大きく、好ましくないものである。
 本実施例では、この短波側にシフトした信号光の透過波長をアサーマルMZI20に青色光を入力することによって元の透過波長へと回復する方法について説明する。
 図11(a)は、アサーマルMZI20に信号光と青色光とを同時に入力して基準波長からシフトした信号光の透過波長を再調整する場合の光回路構成の模式図であり、図11(b)は、アサーマルMZI20を透過した信号光の透過スペクトルを示すグラフである。図11(b)のグラフの横軸は波長を、縦軸は透過率を示す。
 アサーマルMZI20に入力する光の光源は、405nmレーザ光源51および1550nmレーザ光源111である。本実施例において、1550nmレーザ光源111は信号光の光源として、405nmレーザ光源51は屈折率調整用の青色光の光源として用いられている。
 まず、アサーマルMZI20の短アーム側入力ポート27aに高パワーな1550nmレーザ光源111から射出された信号光を入力した状態で、長アーム側入力ポート27bに405nmレーザ光源51(出力:数mW)から射出された青色光を入力する。
 高パワーの信号光は、エルビウム添加ファイバ増幅器(Erbium Doped optical Fiber Amplifier、以下EDFAという)を通過してアサーマルMZI20に入力され、短アーム側出力ポート28aから出力される。このとき、EDFAを通過した信号光は、1550nmレーザ光源111から射出された信号光の波長以外にEDFA内で発生する自然放出光かつ/または誘導放出光の波長を含んでいる。そこで、長アーム側出力ポート28bから出力される信号光の透過波長の内、1550nm以外の波長についてスペクトルアナライザにより測定すると、アサーマルMZI20を透過した信号光の透過スペクトルを観測できる。
 長アーム側入力ポート27bから青色光を入力し、長アーム側導波路22が通過する溝25に充填されている樹脂26に青色光を照射し、樹脂26の屈折率を変化させ、長アーム側出力ポート28bから出力される信号光の透過波長の内1550nm以外の波長が長波側へとシフトしていくのをモニタしながら、長アーム側出力ポート28bから出力される信号光の透過波長とITUグリッドとが一致したときに、アサーマルMZI20への青色光の入力を停止する。
 また、上記のように高パワーの光源から射出された信号光を入力するだけでなく、通常のパワーである10mW以下の光源から射出された信号光を入力した場合においても、それを長期継続的に行うと、信号光の透過波長が短波側または長波側へとシフトする。たとえば、アサーマルMZIを、10年乃至20年間使用した場合、信号光の透過波長が最大で数10pmシフトする場合もある。
 本発明の実施形態に依れば、このように信号光の透過波長が大きくシフトしたアサーマルMZIを新規なものに交換することなく、その信号光の透過波長が大きくシフトしたアサーマルMZIの短アーム側または長アーム側に青色光を入力して、溝に充填された樹脂の屈折率を調整することのみにより、信号光の透過波長が大きくシフトしたアサーマルMZIを透過した信号光の透過波長を元の透過波長に回復させることができる。
10、70    アサーマルAWG
11       石英基板
12       入力用チャネル導波路
13、45    入力側スラブ導波路
14、43    移相用チャネル導波路
15、41    出力用チャネル導波路
16、42    出力側スラブ導波路
17、25、35 溝
18、26、36 樹脂
20、50    アサーマルMZI
21、31    導波路基板
22、46    長アーム側導波路
23、47    短アーム側導波路
24、37    カプラ部
27a      短アーム側入力ポート
27b      長アーム側入力ポート
28a      短アーム側出力ポート
28b      長アーム側出力ポート
30       アサーマル・リング共振器
32、33    直線導波路
34       リング導波路
38a、38b  入力ポート
39a、39b  出力ポート
40、90    アサーマルMZI付きアサーマルAWG
44、48、49 樹脂部
410      カプラ
411      入力側導波路
51、73、91、92  405nmレーザ光源
52、72、93 ASE白色光源
53       3dBカプラ
54       青色光用短アーム側導波路
55       青色光用長アーム側導波路
57a      青色光用短アーム側入力ポート
57b      青色光用長アーム側入力ポート
71、94、95 青色光用入力側導波路
96       ガウシアン形状スペクトル
97       矩形形状スペクトル
111      1550nmレーザ光源
112      EDFA
113      スペクトルアナライザ

Claims (8)

  1.  波長が1520nm乃至1560nmである信号光および波長が375nm乃至455nmである青色光が通過する1または複数の光導波路と、前記光導波路が通過する溝と、前記溝に充填された樹脂とを備える光導波路デバイスを透過する前記信号光の透過波長を調整する方法であって、
     前記信号光と前記青色光とを、同一または互いに異なる前記1または複数の光導波路を介して、同一または互いに異なる前記樹脂に入射させる工程であって、前記青色光を前記樹脂に照射することによって前記樹脂の屈折率を変化させ、前記樹脂の屈折率の変化に対応して前記樹脂を透過する前記信号光の透過波長を変化させる工程を備える、
     光導波路デバイスを透過する信号光の透過波長を調整する方法。
  2.  前記光導波路デバイスは、アレイ導波路回折格子、マッハツェンダ干渉計、リング共振器、またはそれらの組み合わせである、請求項1に記載の光導波路デバイスを透過する信号光の透過波長を調整する方法。
  3.  前記1または複数の光導波路は石英のみからなり、
     前記樹脂を通過させる工程において、前記信号光と前記青色光とが同一の前記1または複数の光導波路を介して、同一または互いに異なる前記樹脂に入射させる、
     請求項1または2に記載の光導波路デバイスを透過する信号光の透過波長を調整する方法。
  4.  前記樹脂は、光学樹脂であって、シリコーン樹脂、アクリル系樹脂、ポリエチレン、エチレン酢酸ビニル共重合体、エチレンアクリレート共重合体、ポリイソブチレン、エチレンプロピレンゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、ポリプロピレン、ポリブタジエンゴム、スチレンブタジエンブロックゴム、スチレンポリオレフィンゴム、フッ素ゲル、フッ素ゴム、またはこれらの組み合わせその他の有機材料である、
     請求項1乃至3のいずれか一項に記載の光導波路デバイスを透過する信号光の透過波長を調整する方法。
  5.  前記青色光を発生させる青色光用光源の出力を調整することにより、前記樹脂の屈折率の変化に対応させて前記樹脂を透過する前記信号光の透過波長が変化する速度を調整する工程をさらに備える、請求項1乃至4のいずれか一項に記載の光導波路デバイスを透過する信号光の透過波長を調整する方法。
  6.  前記信号光と前記青色光とを、同一または互いに異なる前記1または複数の光導波路を介して、同一または互いに異なる前記樹脂に入射させる工程の前に、前記1または複数の光導波路の温度を調整する工程をさらに備える、請求項1乃至5のいずれか一項に記載の光導波路デバイスを透過する信号光の透過波長を調整する方法。
  7.  前記樹脂を透過した前記信号光の前記透過波長の変化をモニタしながら、前記樹脂の屈折率を変化させ、前記透過波長が所定の基準値に合致した場合に、前記光導波路デバイスに前記青色光を入力することを停止する工程をさらに備える、
     請求項1乃至6のいずれか一項に記載の光導波路デバイスを透過する信号光の透過波長を調整する方法。
  8.  前記樹脂は、前記光導波路デバイスの中の2つの箇所に配置された第1の樹脂および第2の樹脂を含み、
     最初に、前記青色光を前記第1の樹脂に照射して、前記第1の樹脂の屈折率を変化させ、
     次いで、前記青色光を前記第2の樹脂に照射して、前記第2の樹脂の屈折率を変化させる工程をさらに備え、
     前記第2の樹脂に照射する前記青色光のパワーは、前記第1の樹脂に照射する前記青色光のパワーよりも低い、
     請求項1乃至7のいずれか一項に記載の光導波路デバイスを透過する信号光の透過波長を調整する方法。
PCT/JP2019/029416 2018-08-09 2019-07-26 光導波路デバイスを透過する信号光の透過波長を調整する方法 WO2020031751A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/262,865 US11960152B2 (en) 2018-08-09 2019-07-26 Method for adjusting transmitted wavelength of signal light transmitted through optical waveguide device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018150460A JP7070226B2 (ja) 2018-08-09 2018-08-09 光導波路デバイスを透過する信号光の透過波長を調整する方法
JP2018-150460 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020031751A1 true WO2020031751A1 (ja) 2020-02-13

Family

ID=69415207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029416 WO2020031751A1 (ja) 2018-08-09 2019-07-26 光導波路デバイスを透過する信号光の透過波長を調整する方法

Country Status (3)

Country Link
US (1) US11960152B2 (ja)
JP (1) JP7070226B2 (ja)
WO (1) WO2020031751A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828689B2 (en) 2020-10-29 2023-11-28 Hand Held Products, Inc. Apparatuses, systems, and methods for sample capture and extraction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184568A1 (ja) 2019-03-14 2020-09-17 日油株式会社 潤滑油用添加剤、潤滑油用添加剤組成物およびこれらを含有する潤滑油組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223258A (ja) * 2008-03-19 2009-10-01 Toyota Central R&D Labs Inc 自己形成光導波路の製造方法および光導波路
US20110229080A1 (en) * 2010-03-19 2011-09-22 Gemfire Corporation Optical device with athermal slots for temperature dependence curvature reduction
JP2013152496A (ja) * 2009-09-24 2013-08-08 Nippon Telegr & Teleph Corp <Ntt> アレイ導波路回折格子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324367A (ja) * 1993-02-16 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> 光導波路素子およびその制御方法
JPH07156547A (ja) * 1993-12-10 1995-06-20 Osaka Gas Co Ltd 光メモリ、情報記録方法およびその装置、情報再生方法およびその装置、情報記録および再生方法ならびにその装置
JPH0943440A (ja) * 1995-07-28 1997-02-14 Toshiba Corp 集積化光合分波器
JPH09145942A (ja) * 1995-11-22 1997-06-06 Nippon Telegr & Teleph Corp <Ntt> 屈折率調整方法、屈折率調整可能な光導波路および該光導波路を用いた屈折率調整光導波路の製造方法
JPH10186151A (ja) * 1996-12-20 1998-07-14 Nippon Telegr & Teleph Corp <Ntt> 光導波路型素子および光導波路型素子の位相調整方法
US6370169B1 (en) * 1998-04-22 2002-04-09 Nippon Telegraph & Telephone Corporation Method and apparatus for controlling optical wavelength based on optical frequency pulling
JP2001154043A (ja) 1999-11-30 2001-06-08 Hitachi Cable Ltd 光波長合分波器及びその製造方法
EP1118886A1 (en) 2000-01-11 2001-07-25 Corning Incorporated Tuning of optical waveguide devices containing an organic material
US7397986B2 (en) * 2005-03-04 2008-07-08 Gemfire Corporation Optical device with reduced temperature dependence
US8013506B2 (en) * 2006-12-12 2011-09-06 Prysm, Inc. Organic compounds for adjusting phosphor chromaticity
CN102272643B (zh) 2009-01-09 2013-10-09 日本电信电话株式会社 光合分波电路以及使用光合分波电路的光模块和光通信系统
WO2011074215A1 (ja) * 2009-12-14 2011-06-23 パナソニック株式会社 波長変換レーザ光源、光学素子及び画像表示装置
JP5612533B2 (ja) 2010-06-04 2014-10-22 日本電信電話株式会社 石英導波路溝内の充填用材料および光波長合分波回路の屈折率調整方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223258A (ja) * 2008-03-19 2009-10-01 Toyota Central R&D Labs Inc 自己形成光導波路の製造方法および光導波路
JP2013152496A (ja) * 2009-09-24 2013-08-08 Nippon Telegr & Teleph Corp <Ntt> アレイ導波路回折格子
US20110229080A1 (en) * 2010-03-19 2011-09-22 Gemfire Corporation Optical device with athermal slots for temperature dependence curvature reduction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828689B2 (en) 2020-10-29 2023-11-28 Hand Held Products, Inc. Apparatuses, systems, and methods for sample capture and extraction
US11846574B2 (en) 2020-10-29 2023-12-19 Hand Held Products, Inc. Apparatuses, systems, and methods for sample capture and extraction
US11852568B2 (en) 2020-10-29 2023-12-26 Hand Held Products, Inc. Apparatuses, systems, and methods for sample capture and extraction
US11852567B2 (en) 2020-10-29 2023-12-26 Hand Held Products, Inc. Apparatuses, systems, and methods for sample capture and extraction

Also Published As

Publication number Publication date
US20210240015A1 (en) 2021-08-05
US11960152B2 (en) 2024-04-16
JP7070226B2 (ja) 2022-05-18
JP2020027128A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
US11520106B2 (en) Integrated broadband optical couplers with robustness to manufacturing variation
WO2013114578A1 (ja) 光送信器および光送信器の制御方法
US20130301989A1 (en) Method of using an optical device for wavelength locking
EP3703202B1 (en) Tunable laser device and laser transmitter
JP4100797B2 (ja) 光増幅装置
CN105655869B (zh) 多通道可调激光器
US6459829B1 (en) Multiple wavelength excitation optical multiplexing device, multiple wavelength excitation light source incorporating aforementioned device, and optical amplifier
WO2020031751A1 (ja) 光導波路デバイスを透過する信号光の透過波長を調整する方法
JP2016212265A (ja) レーザ光源
Bucci et al. Realization of a 980-nm/1550-nm pump-signal (de) multiplexer made by ion-exchange on glass using a segmented asymmetric y-junction
US6870967B2 (en) Pretrimming of tunable finite response (FIR) filter
JP2001074950A (ja) 光合分波器の特性調整方法
JP2010250238A (ja) 光波長合分波回路およびその偏波依存性調整方法
Akiyama et al. Crosstalk-free 32-ch DWDM demultiplexer on standard Si PIC platform enabled by fully-integrated cascaded AMZ triplet
JP2010175646A (ja) 光波長合分波回路およびその透過波形調整方法
KR20050099204A (ko) 광결합기형 필터 및 이를 이용한 광원의 파장 안정화 장치
US6735365B2 (en) Fused fiber interleaver
JP2002090557A (ja) 光導波路型回折格子素子、光導波路型回折格子素子製造方法、合分波モジュールおよび光伝送システム
Keiser et al. Wavelength division multiplexing (WDM)
JP3698913B2 (ja) 波長合分波光回路及びその製造方法
JP3880222B2 (ja) 温度補償型平面光導波路部品用温度補償材料およびこれを用いた温度補償型平面光導波路部品
JP3247819B2 (ja) アレイ格子型光合分波器
JP3238890B2 (ja) アレイ導波路型波長合分波器
JP2001267684A (ja) 平面光波回路型外部共振器レーザ
WO2023119530A1 (ja) 光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846159

Country of ref document: EP

Kind code of ref document: A1