WO2020031652A1 - 情報処理装置、車両制御方法、情報処理システム - Google Patents

情報処理装置、車両制御方法、情報処理システム Download PDF

Info

Publication number
WO2020031652A1
WO2020031652A1 PCT/JP2019/028314 JP2019028314W WO2020031652A1 WO 2020031652 A1 WO2020031652 A1 WO 2020031652A1 JP 2019028314 W JP2019028314 W JP 2019028314W WO 2020031652 A1 WO2020031652 A1 WO 2020031652A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information processing
value
information
unit
Prior art date
Application number
PCT/JP2019/028314
Other languages
English (en)
French (fr)
Inventor
亮仁 赤井
修之 一丸
隆介 平尾
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US17/267,391 priority Critical patent/US20210291607A1/en
Priority to CN201980050360.3A priority patent/CN112512845B/zh
Priority to DE112019003525.8T priority patent/DE112019003525B4/de
Publication of WO2020031652A1 publication Critical patent/WO2020031652A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • G01C21/3822Road feature data, e.g. slope data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0182Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3889Transmission of selected map data, e.g. depending on route
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/02Registering or indicating driving, working, idle, or waiting time only
    • G07C5/04Registering or indicating driving, working, idle, or waiting time only using counting means or digital clocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0521Roll rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0522Pitch rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/34Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/39Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • B60G2400/824Travel path sensing; Track monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/84Atmospheric conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/96Presence, absence or inactivity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/16GPS track data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/70Computer memory; Data storage, e.g. maps for adaptive control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09623Systems involving the acquisition of information from passive traffic signs by means mounted on the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09626Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages where the origin of the information is within the own vehicle, e.g. a local storage device, digital map

Definitions

  • the present invention relates to an information processing device, a vehicle control method using the same, and an information processing system.
  • Vibration stimulus generated when a tire passes through unevenness of a road surface in a running vehicle is attenuated by a suspension of the vehicle and transmitted to an occupant via a chassis or a seat. Therefore, the damping characteristic of the suspension greatly affects the ride comfort felt by the occupant.
  • Patent Literature 1 discloses a storage unit 40 that stores a detected value of an operation amount of a suspension as tuning data in association with map information of a navigation system 319, a communication unit 50 that transmits tuning data to an external server 3, and an external server.
  • the arithmetic unit 70 determines the set value of the suspension based on the transmitted tuning data, receives the determined set value, and drives the actuator 20 based on the received set value to reduce the damping force of the suspension.
  • a suspension control system including a drive unit 11 for adjusting is disclosed.
  • An information processing apparatus is connected to a vehicle via a network, and stores, for each point on a road, a map database in which control parameters for controlling the behavior of the vehicle are recorded for each vehicle type.
  • a data reading unit that obtains vehicle information including at least vehicle type information and position information of the vehicle, and reads out the control parameters corresponding to a traveling point of the vehicle from the map database based on the vehicle information; and
  • a parameter setting unit that sets an applied control parameter to be applied in the control of the vehicle based on the control parameter read by the reading unit; and an observation value related to a behavior of the vehicle controlled based on the applied control parameter.
  • the vehicle control method is a method for controlling the behavior of the vehicle using an information processing device connected to the vehicle via a network, and controls the behavior of the vehicle for each point on a road.
  • Control parameters to be performed are recorded in advance in the map database of the information processing device for each vehicle type, and vehicle information including at least vehicle type information and position information of the vehicle is transmitted from the vehicle to the information processing device,
  • the control parameters corresponding to the traveling point of the vehicle are read from the map database, and based on the control parameters read from the map database.
  • An information processing device transmits the information to the vehicle, performs control on the vehicle based on the applied control parameters, and obtains, from the vehicle, an observation value related to a behavior of the vehicle controlled based on the applied control parameters from the vehicle.
  • the map database is updated based on the observation value transmitted to the device and received by the information processing device.
  • An information processing system includes an edge information processing device mounted on a vehicle, and a center information processing device connected to the edge information processing device via a network.
  • Apparatus for each point on the road, a map database in which control parameters for controlling the behavior of the vehicle are recorded for each vehicle type, and acquire vehicle information including at least vehicle type information and position information of the vehicle, A data reading unit that reads the control parameters corresponding to a traveling point of the vehicle from the map database based on the vehicle information, and applies the control parameters to the vehicle based on the control parameters read by the data reading unit.
  • a parameter setting unit for setting an application control parameter, and controlling based on the application control parameter A data update unit that acquires an observed value related to the behavior of the vehicle from the vehicle, and updates the map database based on the observed value, wherein the edge-side information processing device manages the vehicle information.
  • a vehicle information management unit an observation unit that acquires the observation value from the vehicle, transmits the vehicle information and the observation value to the center information processing device, and receives the applied control parameter from the center information processing device. And a transmission / reception unit that performs the transmission.
  • FIG. 2 is a block diagram illustrating a functional configuration of the information processing system according to the first embodiment. It is a figure showing an example of a road point used in road information and parameter management information of a map database. It is a figure showing an example of road information.
  • FIG. 7 is a diagram illustrating an example of parameter management information according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a vehicle type reference value table. It is a figure showing an example of a search value table.
  • 5 is a processing flow showing control contents in the information processing system according to the first embodiment.
  • FIG. 14 is a block diagram illustrating a functional configuration of an information processing system according to a second embodiment.
  • FIG. 14 is a diagram illustrating an example of parameter management information according to the second embodiment.
  • FIG. 9 is a processing flow showing control contents in the information processing system according to the second embodiment. It is a block diagram showing the functional composition of the information processing system concerning a 3rd embodiment.
  • FIG. 14 is a block diagram illustrating a functional configuration of an information processing system according to a fourth embodiment. It is a block diagram showing the functional composition of the information processing system concerning a 5th embodiment.
  • FIG. 1 is a block diagram showing a functional configuration of the information processing system according to the first embodiment.
  • the information processing system 1 shown in FIG. 1 is a system used to improve the ride comfort perceived by a vehicle occupant by adjusting the damping force of a suspension mounted on a vehicle such as an automobile.
  • the information processing system 1 includes functional blocks of a parameter management unit 100, a map database 120, a vehicle type reference value table 130, a search value table 140, a chassis 210, a mode selection unit 220, a vehicle information management unit 230, and an observation unit 240. Having.
  • the parameter management unit 100 includes a vehicle information transfer unit 101, a data reading unit 102, a reference value selection unit 103, a first determination unit 104, a search specification setting unit 105, a mode switching unit 106, a parameter setting unit 107, and a second determination unit 108. , And a data updating unit 109. The details of these functional blocks will be described later.
  • the chassis 210 is a component of a vehicle (hereinafter, referred to as “own vehicle”) to which the information processing system 1 adjusts the damping force of the suspension.
  • the chassis 210 corresponds to a suspension portion of the host vehicle, and includes, for example, a body frame, an engine, a transmission, a drive shaft, a steering gear, a suspension, and the like.
  • the chassis 210 has a suspension damping force variable mechanism 211 for controlling the damping force of the suspension of the vehicle.
  • the suspension damping force variable mechanism 211 includes, for example, a hydraulic variable damping damper capable of mechanically changing the flow path shape of hydraulic oil, or an electrorheological fluid (ERF) whose viscosity changes according to applied electrolysis (voltage).
  • the suspension damping force variable mechanism 211 is not limited to the above example, and may be in any form. In the present embodiment, among the components of the host vehicle, a description will be given focusing on the damping force of the suspension of the host vehicle to be controlled by the information processing system 1. Therefore, FIG. 1 shows only the suspension damping force variable mechanism 211 as the configuration of the chassis 210.
  • the mode selection unit 220 performs mode selection for determining the behavior of the own vehicle.
  • the mode selection unit 220 determines a search mode used by the parameter management unit 100 when the information processing system 1 determines an applied control parameter to be applied to the host vehicle to control the damping force of the suspension of the host vehicle.
  • a search mode setting unit 221 for setting is provided.
  • the search mode setting unit 221 can set the search mode based on operation information input by an occupant of the host vehicle via an instrument panel, a car navigation device, a mobile device, or the like. The details of the method of setting the search mode by the search mode setting unit 221 and the method of determining the applied control parameters according to the search mode by the parameter management unit 100 will be described later.
  • the vehicle information management unit 230 acquires and manages vehicle information on the own vehicle.
  • the vehicle information managed by the vehicle information management unit 230 includes, for example, a vehicle type code 231 indicating vehicle type information of the own vehicle, a vehicle position 232 indicating position information of the own vehicle, a vehicle speed 233 indicating a speed of the own vehicle, and a own vehicle. 234 representing the acceleration of the vehicle, a load 235 representing the total weight of the occupants of the vehicle and the load, and the like.
  • the vehicle position 232 is detected by, for example, a GPS (Global Positioning System) sensor, and the vehicle speed 233 is obtained, for example, by receiving information from a vehicle speed sensor installed in the own vehicle via a CAN (Controller Area Network). .
  • GPS Global Positioning System
  • the acceleration 234 and the load 235 are detected by the acceleration sensor and the load sensor, respectively.
  • the load sensor measures the weight of the occupant and the load, in addition to the weight of the vehicle itself. At this time, if the weight of the own vehicle itself known in advance is set as the offset amount, it is possible to measure only the weight of the occupant and the load.
  • the configuration of the vehicle information is not limited to the above, and may be an arbitrary configuration according to the control performed by the parameter management unit 100. For example, information such as a steering operation, an accelerator operation, and a brake operation performed by a driver of the host vehicle may be included in the vehicle information.
  • the vehicle information management unit 230 transmits the vehicle information to the parameter management unit 100 every time the vehicle runs, and inquires about the applied control parameters.
  • the observation unit 240 observes the behavior of the own vehicle, and obtains an observation value according to the observation result from the own vehicle.
  • the observation unit 240 includes, for example, a pitch rate sensor 241, a roll rate sensor 242, and a yaw rate sensor 243 that measure angular velocities around rotation axes set in the left-right direction, the front-rear direction, and the up-down direction of the own vehicle.
  • a floor acceleration sensor 244 for measuring relative acceleration in the up, down, front, rear, left, and right directions of the floor on which the seat to be mounted is installed.
  • the pitch rate sensor 241, the roll rate sensor 242, and the yaw rate sensor 243 are configured by a gyro sensor using, for example, a crystal as a vibrator, and the floor acceleration sensor 244 is configured by using, for example, a strain gauge.
  • the observation unit 240 acquires the observation value measured by each of these sensors every time the vehicle runs, and transmits the observation value to the parameter management unit 100.
  • the types of sensors constituting the observation unit 240 are not limited to those described above. For example, it may include a vehicle height sensor that measures the height of the host vehicle, an acceleration sensor that measures acceleration at a place other than the seat installation floor, and the like.
  • the information such as the pitch rate and the roll rate detected by the observation unit 240 may use not only a dedicated sensor but also an estimation result from a wheel speed or the like.
  • the map database 120 is a database including road information 121 and parameter management information 122, and is stored in a storage such as an HDD (hard disk drive) or an SSD (solid state drive).
  • the road information 121 is data representing a road on a map, and information such as the shape of the road and the number of lanes is added.
  • the parameter management information 122 is data for managing control parameters for controlling the suspension of the vehicle. Control parameters at each point on the road represented by the road information 121 are recorded for each vehicle type, and The observation value acquired from the observation unit 240 is recorded in association with the control parameter.
  • the control parameters and observation values recorded in the parameter management information 122 include those set or measured in vehicles other than the own vehicle. That is, in the parameter management information 122, control parameters and observation values at various points with respect to various vehicles including the own vehicle are classified and recorded for each vehicle type.
  • FIG. 2 is a diagram showing an example of road points used in the road information 121 and the parameter management information 122 of the map database 120.
  • road points A to F and a to c corresponding to respective points on the road are set for the road 301 and the road 302 connected thereto.
  • road information 121 includes the positions and connection relationships of these road points, the number of lanes corresponding to each road point, and other additional information.
  • the position of each road point in the road information 121 is represented by, for example, latitude and longitude.
  • the parameter management information 122 includes control parameters and observation values for each road point. Thereby, the road information 121 and the parameter management information 122 are associated with each other.
  • FIG. 3 is a diagram showing an example of the road information 121.
  • Altitude, number of lanes, speed limit, and traffic sign are added.
  • various information such as a road gradient, a change in the number of lanes, a branch / merge at an intersection or a T-junction, a speed limit, a traffic instruction at a place where a traffic sign exists, and the like are indicated for each road point.
  • the road information 121 shown in FIG. 3 is an example, and may have another data configuration.
  • a control parameter used for controlling the suspension and an observation value acquired in the past for the control parameter Are recorded in the map database 120 as parameter management information 122 for each vehicle type. Then, in response to an inquiry about the applied control parameter from the own vehicle, a road point corresponding to the traveling point of the own vehicle is searched in the map database 120, and the control parameter recorded in the parameter management information 122 for the road point is searched. And the observation values are read from the map database 120 to determine the applied control parameters of the own vehicle. As a result, an optimal applied control parameter is determined according to the situation of the host vehicle, and is used for controlling the suspension damping force variable mechanism 211 in the host vehicle.
  • FIG. 4 is a diagram showing an example of the parameter management information 122 according to the first embodiment.
  • FIG. 4 shows parameter management information 122 for one of the road points in the road information 121 of FIG. That is, in the parameter management information 122, information as shown in FIG. 4 is recorded for each road point.
  • the parameter management information 122 different for each vehicle type can be switched by tabs 401 to 403.
  • the parameter type a corresponding to the tab 401 an example of the parameter management information 122 recorded for each vehicle condition is shown. Is shown.
  • a unique condition number is assigned to each vehicle condition defined by a combination of vehicle information such as vehicle speed, acceleration, and load amount. And observations are combined and recorded. That is, in the map database 120, control parameters and observation values at each point are recorded as parameter management information 122 for each preset vehicle condition.
  • the control parameter is provided with a determination flag for indicating whether or not the control parameter is obtained as an optimal solution.
  • the observation value is composed of a roll rate, a pitch rate, and a yaw rate.
  • the control parameter is information used in controlling the suspension damping force variable mechanism 211, and includes, for example, a function value in a predetermined control operation, a physical quantity (voltage, current, etc.) for controlling the suspension damping force variable mechanism 211, and the like. Equivalent to. In FIG. 4, the control parameters are represented by hexadecimal numbers using 8-bit digital values, but the expression format of the control parameters recorded in the parameter management information 122 in the map database 120 is not limited to this.
  • a value of either “0” or “1” is set in the determination flag.
  • “1” is set as the determination flag indicating that the optimal value has been derived for the control parameter.
  • “0” is set as the determination flag indicating that the optimum value is being searched for in the control parameter.
  • the vehicle conditions are defined by a combination of vehicle information such as the vehicle speed, the acceleration, and the load amount.
  • vehicle information that defines the vehicle conditions in the parameter management information 122 is not limited to this.
  • vehicle conditions may be defined, including road inclination, weather, temperature, humidity, road surface conditions, and the like at the traveling point of the vehicle, or behavioral conditions of the vehicle, such as steering angle, accelerator operation state, brake operation state, and the like.
  • Vehicle conditions may be defined as well.
  • the vehicle type and the vehicle condition are managed separately, but the vehicle type may be included in the vehicle condition.
  • the vehicle conditions of the parameter management information 122 can be defined using arbitrary vehicle information.
  • the observed values are the roll rate, the pitch rate, and the yaw rate, but the observed values recorded in the parameter management information 122 are not limited to these.
  • the vertical acceleration, longitudinal acceleration, and lateral acceleration of the seat installation floor measured by the floor acceleration sensor 244, and measurement values related to other vehicle behaviors, such as vehicle height balance and wheel slip measured by a vehicle height sensor. May be included in the observation value and recorded in the parameter management information 122.
  • the biological information of the occupant of the vehicle for example, the amount of movement of the head position, the amount of movement of the center of gravity of the body, the pulse rate, the eye movement, and the like are measured by the observation unit 240, and the biological information is recorded as an observed value in the parameter management information 122. May be.
  • any observation value can be recorded in the parameter management information 122 according to information that can be measured by the observation unit 240.
  • parameter management information 122 is set by grouping a plurality of vehicle types having similar vehicle behavior characteristics, and parameter management information 122 is set by grouping a plurality of vehicle types for each vehicle class. The data size of the information 122 may be reduced.
  • the vehicle type reference value table 130 stores a reference value for determining whether the observation value recorded in the parameter management information 122 in the map database 120 satisfies a certain evaluation criterion.
  • the reason why the reference value is recorded for each vehicle type in the vehicle type reference value table 130 is as follows. For example, it is considered that even if optimal suspension control parameters are set for each of a small car and a large car, the actually achievable ride comfort is different. Therefore, if these are evaluated based on the same criteria, an appropriate evaluation result cannot be obtained.
  • the vehicle type reference value table 130 a reference value for evaluating the riding comfort is set for each vehicle type, and the observation value obtained from the own vehicle is used as a reference value corresponding to the vehicle type of the own vehicle. By using and evaluating, appropriate evaluation results can be obtained.
  • a difference in vehicle type is described as an example of a vehicle type, such as a small vehicle and a large vehicle, but the vehicle type used for the classification of the reference value in the vehicle type reference value table 130 is not limited to this.
  • the type of vehicle in the vehicle type reference value table 130 may be set in consideration of the characteristics of the riding comfort that differs for each car manufacturer, brand, and vehicle name, and the reference value may be managed for each vehicle type. That is, in the vehicle type reference value table 130, reference values classified based on at least one of the vehicle type and the vehicle classification can be managed.
  • FIG. 5 is a diagram showing an example of the vehicle type reference value table 130.
  • a reference value is set for each combination of a car maker and a vehicle type. That is, in the example of FIG. 5, the reference value set according to the riding comfort characterized for each vehicle type of each car maker is recorded in the vehicle type reference value table 130.
  • the classification method of the vehicle type in the vehicle type reference value table 130 and the reference value set for each vehicle type are not limited to the example of FIG.
  • the vehicle type reference value table 130 can have an arbitrary data structure as long as a reference value can be set for each vehicle type.
  • the occupants of a vehicle when continuously exposed to irregular and unpredictable accelerations and decelerations, stimulate the semicircular canals and vestibules, causing a sense of discomfort in the human somatic sensation, which causes It is said to cause sickness.
  • an occupant sitting in the driver's seat does not need to perform a driving operation, so that it is not necessary to constantly look ahead. Therefore, unlike the case where the accelerator and the brake are operated by manual driving, even the occupant sitting in the driver's seat is always exposed to unpredictable acceleration and deceleration during the automatic driving, so that it is easy to fall into a motion sickness. Can be considered.
  • the information processing system 1 may not include the vehicle type reference value table 130.
  • the search value table 140 is a data table used when setting a search set value used when searching for an optimal solution from the control parameters recorded in the parameter management information 122 in the map database 120, and is a data table such as an HDD or an SSD. Stored in storage.
  • different search maximum values are recorded for each difference value between a later-described first evaluation value calculated by the first determination unit 104 of the parameter management unit 100 and a reference value.
  • the search specification setting unit 105 of the parameter management unit 100 reads out the search maximum value recorded in the search value table 140 to set search setting values as described later.
  • FIG. 6 is a diagram showing an example of the search value table 140.
  • the search maximum value increases as the difference value between the first evaluation value calculated by the first determination unit 104 and the reference value increases, and conversely, as the difference value decreases, The search maximum value is set so that the search maximum value also becomes small.
  • the search maximum value is a hexadecimal number using an 8-bit digital value.
  • the expression form of the search maximum value in the search value table 140 is not limited to this. If there is a correlation with the difference value, the search maximum value can be recorded in the search value table 140 in an arbitrary expression format.
  • the vehicle information transfer unit 101 is a unit that functions as a window for inquiries about the applied control parameters from the vehicle information management unit 230.
  • the vehicle information transfer unit 101 transfers the received vehicle information to the data read unit 102.
  • the data reading unit 102 uses the vehicle information transferred from the vehicle information transfer unit 101 as a key to control parameters corresponding to the traveling point, the vehicle type, and the vehicle condition of the own vehicle, and an observation value associated with the control parameter. Is retrieved from the map database 120 and read out. At this time, the data reading unit 102 determines a traveling point, a vehicle type, and a vehicle of the vehicle based on various information of the vehicle included in the vehicle information, for example, the vehicle type code 231, the vehicle position 232, the vehicle speed 233, the acceleration 234, and the load amount 235. The conditions are determined, and control parameters, observation values, and determination flags recorded for the conditions are searched from the parameter management information 122 in the map database 120. Thereby, the observation value observed when the own vehicle or another vehicle of the same model as the own vehicle has traveled on the same road point in the past under the same vehicle condition, and the control parameter and the determination flag corresponding to the observation value, It can be read from the map database 120.
  • the data reading unit 102 After reading out the control parameters, observation values, and determination flags from the map database 120 as described above, the data reading unit 102 checks whether the value of the determination flag is “0” or “1”. As a result, if the value of the determination flag is “0” (NG), the read control parameters are transferred to the parameter setting unit 107 and the observed values are transferred to the first determination unit 104. On the other hand, if the value of the determination flag is “1” (OK), the read control parameter is transferred to the parameter setting unit 107, and the transfer of the observed value to the first determination unit 104 is not performed.
  • the parameter management information 122 in the map database 120 includes a default control parameter. Only the value is recorded, and the observation value and the judgment flag are not recorded. Therefore, in this case, both the observation value and the determination flag may be treated as 0.
  • the data reading unit 102 estimates the road surface state at the traveling point of the own vehicle, and controls the control parameters and observation parameters corresponding to the estimated road surface state.
  • the value and the determination flag are read from the parameter management information 122 in the map database 120.
  • the estimation of the road surface condition may be performed based on information such as weather, temperature, and humidity included in the vehicle information acquired from the own vehicle, or based on data collected from outside via a network. You may.
  • the data reading unit 102 estimates the behavior state of the own vehicle at the traveling point of the own vehicle, and estimates the behavior state of the own vehicle. Is preferably read from the parameter management information 122 in the map database 120.
  • the estimation of the behavior state of the own vehicle includes, for example, information on the steering angle, the accelerator operation state, the brake operation state, and the like included in the vehicle information acquired from the own vehicle, and the road at the travel point recorded in the road information 121. This can be performed based on the gradient, curvature, and the like.
  • the reference value selection unit 103 reads the reference value corresponding to the own vehicle from the vehicle type reference value table 130 and transfers the reference value to the first determination unit 104 and the second determination unit 108.
  • the reference value selection unit 103 determines, for example, the vehicle type and the vehicle type of the own vehicle from the vehicle type code 231 included in the vehicle information received by the vehicle information transfer unit 101, and stores the corresponding reference value in the vehicle type reference value table.
  • the data is retrieved from 130 and read. Accordingly, when the first determination unit 104 calculates a difference value between a first evaluation value described later and a reference value, and when the second determination unit 108 compares a second evaluation value described later and a reference value, In addition, the reference value can be changed based on the type and class of the own vehicle.
  • the reference value may be set to 0 regardless of the vehicle type.
  • the reference value selection unit 103 since the reference value selection unit 103 does not need to read the reference value from the vehicle type reference value table 130, the vehicle type reference value table 130 may not be provided.
  • the first determination unit 104 calculates a first evaluation value based on the observation value transferred from the data reading unit 102.
  • the first evaluation value is a value for evaluating the riding comfort of the vehicle when the observation value is measured, and for example, sums the absolute values of the pitch rate, roll rate, and yaw rate included in the observation value. Is calculated. Note that the method of calculating the first evaluation value is not limited to the above as long as the value can evaluate the riding comfort.
  • the vertical acceleration, longitudinal acceleration, and lateral acceleration of the seat installation floor measured by the floor acceleration sensor 244, the vehicle height balance measured by the vehicle height sensor, the amount of wheel slip, and the
  • the first determination unit 104 calculates a difference value between the calculated first evaluation value and the reference value transferred from the reference value selection unit 103. Then, the calculated difference value is transferred to the search specification setting unit 105.
  • the search specification setting unit 105 sets a search setting value used when the parameter setting unit 107 sets the application control parameter based on the difference value transferred from the first determination unit 104.
  • the search specification setting unit 105 searches the search value table 140 for a search maximum value corresponding to the difference value calculated by the first determination unit 104, reads out the search maximum value, and sets a search setting value based on the search maximum value. For example, a random number value is randomly generated between ⁇ 1 and +1, and a multiplication result obtained by multiplying the read search maximum value by the random number value is set as a search setting value. Other than this, it is possible to set the search setting value from the search maximum value by an arbitrary method.
  • the search specification setting unit 105 transfers the set search setting value to the mode switching unit 106.
  • optimization problems that seek the optimal solution by iterative search include a global optimal solution that is a real optimal solution and a local optimal solution that is not necessarily the optimal solution, and the global optimal solution cannot be easily reached.
  • As a method for solving this problem there is known a method in which a rough search for a wide area is first performed to predict a range in which a global optimum solution exists, and then a detailed search is locally performed. .
  • this method is used when the search specification setting unit 105 sets the search setting value. That is, the above coarse search corresponds to setting a search setting value by selecting a large search maximum value in the search specification setting unit 105 when the difference value calculated by the first determination unit 104 is large.
  • the detailed search corresponds to selecting a small search maximum value in the search specification setting unit 105 and setting a search setting value when the difference value calculated by the first determination unit 104 is small.
  • the search specification setting unit 105 may be provided with a mechanism that sets a search setting value in a mutation manner and escapes from the local optimum solution.
  • the search specification setting unit 105 sets the search setting value, it is preferable to match the expression format of the control parameter with the expression format of the search setting value. For example, if the control parameter is represented by an integer, the search setting value is rounded to the decimal point so that the search setting value is also represented by an integer.
  • the mode switching unit 106 adjusts the search setting value transferred from the search specification setting unit 105 according to the search mode set by the search mode setting unit 221 included in the mode selection unit 220. For example, the mode switching unit 106 multiplies the search setting value transferred from the search specification setting unit 105 by the adjustment coefficient (0 to 1) transmitted from the search mode setting unit 221 to thereby obtain the search setting value. Make adjustments. After adjusting the search setting value, the mode switching unit 106 transfers the adjusted search setting value to the parameter setting unit 107.
  • the search mode setting unit 221 can set the search mode based on the instruction from the occupant based on the operation information input by the occupant of the own vehicle, for example, as described above.
  • the search mode may be set as follows. That is, in the information processing system 1 of the present embodiment, the optimum value of the applied control parameter for the suspension damping force variable mechanism 211 is searched for while the vehicle actually travels, but in the process, the ride comfort is not necessarily improved. There is a danger that car sickness will be promoted instead of shifting. This is particularly noticeable when an occupant, such as an infant or a child, who tends to get sick is riding in the vehicle.
  • the search mode setting unit 221 enables selection of, for example, a sickness countermeasure priority mode and a ride comfort improvement priority mode based on the presence or absence of a passenger other than the driver, the attributes of the passenger, and the like.
  • the search mode setting unit 221 outputs, for example, “0.1” as the adjustment coefficient
  • the search mode setting unit 221 outputs the adjustment coefficient. Is output as "1.0".
  • the adjustment coefficient output from search mode setting section 221 is transmitted from mode selection section 220 to parameter management section 100 and transferred to mode switching section 106.
  • the mode switching unit 106 can set search setting values suitable for each of the motion sickness countermeasure priority mode and the ride comfort improvement priority mode. That is, in the motion sickness countermeasure priority mode, the mode switching unit 106 adjusts the search setting value transferred from the search specification setting unit 105 to 1/10 and transfers it to the parameter setting unit 107. As a result, the parameter setting unit 107 can set the applied control parameter with a value close to the control parameter read from the map database 120, that is, a control parameter having a past record of running the vehicle. As a result, the behavior of the host vehicle can be suppressed within a predictable range.
  • the mode switching unit 106 transfers the search setting value transferred from the search specification setting unit 105 to the parameter setting unit 107 without adjustment.
  • the parameter setting unit 107 can set a control parameter for which the vehicle has not actually run in the past as an applied control parameter.
  • the search setting value is adjusted according to the state of the own vehicle, and the application control parameter is set using the adjusted search setting value, so that the own vehicle side
  • the adjustment coefficient output from search mode setting section 221 is two values of “0.1” or “1.0” has been described, but other adjustment coefficients may be output. Good.
  • the adjustment coefficient may be two choices of “0” or “1”, or three choices of “0.1”, “0.5” or “1.0”. Further, the specification may be such that the adjustment coefficient can be selected from more options.
  • the search set value can be adjusted according to the state of the host vehicle.
  • the search mode setting unit 221 may set the search mode for other purposes.
  • the search mode setting unit 221 can set an arbitrary search mode if the mode switching unit 106 can appropriately adjust the search setting value according to the state of the host vehicle.
  • Parameter setting section 107 sets an applied control parameter for the own vehicle based on the control parameter transferred from data reading section 102. At this time, the parameter setting unit 107 switches the setting method of the applied control parameter according to the value of the determination flag read by the data reading unit 102 together with the control parameter. That is, when the value of the determination flag is “1” (OK), the control parameters transferred from the parameter setting unit 107 are directly set as applied control parameters. On the other hand, when the value of the determination flag is “0” (NG), the control parameter transferred from the parameter setting unit 107 is changed based on the adjusted search setting value transferred from the mode switching unit 106. To set the application control parameters.
  • the control parameter can be changed and the applied control parameter can be set.
  • the method of setting the applied control parameters based on the search set value is not limited to this, and the applied control parameters can be set by changing the control parameters according to the search set value by an arbitrary method.
  • the applied control parameters set by the parameter setting unit 107 are transmitted from the parameter management unit 100 to the host vehicle and transferred to the suspension damping force variable mechanism 211 included in the chassis 210 of the host vehicle. Accordingly, the suspension damping force variable mechanism 211 can perform control for adjusting the suspension damping force using the applied control parameters determined by the parameter management unit 100.
  • the second determination unit 108 calculates a second evaluation value based on the observation value.
  • the second evaluation value is a value for evaluating the riding comfort of the own vehicle when the observation value is measured, similarly to the first evaluation value calculated by the first determination unit 104 described above. It can be calculated in the same manner as one evaluation value.
  • the second determination unit 108 compares the reference value transferred from the reference value selection unit 103 with the calculated second evaluation value, and sets a determination flag based on the comparison result. .
  • the second determination unit 108 sets the value of the determination flag to “1” if the second evaluation value is smaller than the reference value, Conversely, if the second evaluation value is equal to or greater than the reference value, the value of the determination flag is set to “0”. After setting the value of the determination flag in this way, the second determination unit 108 transfers the observation value transmitted from the observation unit 240 and the determination flag set for the observation value to the data update unit 109.
  • the data updating unit 109 records the observation value and the determination flag transferred from the second determination unit 108 together with the application control parameters set by the parameter setting unit 107 in the parameter management information 122 in the map database 120. At this time, the data update unit 109 determines which vehicle condition the own vehicle corresponds to based on the vehicle information of the own vehicle transmitted from the vehicle information management unit 230, and responds to the vehicle condition of the parameter management information 122. In the fields to be performed, the observation values, the determination flags, and the applied control parameters are recorded. However, the applied control parameter is recorded in the parameter management information 122 as a new control parameter after the search in association with the observation value and the determination flag. Thereby, the data updating unit 109 updates the map database 120 based on the observation value acquired from the own vehicle.
  • the two data are compared and the more appropriate control parameter, that is, the evaluation value for the observation value is smaller. Things may be recorded. Alternatively, both data may be recorded together.
  • FIG. 7 is a processing flow showing control contents in the information processing system 1 according to the first embodiment.
  • initial values of control parameters are recorded in the parameter management information 122 of the map database 120.
  • a value at the time of product shipment is set for each preset vehicle condition as an initial value of the control parameter.
  • the initial values of the control parameters recorded here are updated in accordance with the subsequent processing by operating the information processing system 1 as the own vehicle travels.
  • the vehicle information management unit 230 acquires the traveling position of the vehicle using a GPS sensor or the like. In the following step 503, the vehicle information management unit 230 acquires information such as the vehicle type code 231, the vehicle position 232, the vehicle speed 233, the acceleration 234, the load 235, and transmits the information to the parameter management unit 100 as the vehicle information of the own vehicle. Then, the application control parameter is requested.
  • the vehicle information transfer unit 101 receives the vehicle information of the own vehicle transmitted from the vehicle information management unit 230 as a request for the application control parameter. . Then, the received vehicle information is transferred to data reading unit 102.
  • step 505 the data reading unit 102 reads control parameters corresponding to the traveling position of the host vehicle from the parameter management information 122 of the map database 120 based on the vehicle information transferred from the vehicle information management unit 230 in step 504.
  • step 506 the data reading unit 102 reads the observation value and the determination flag associated with the control parameter read in step 505 from the parameter management information 122 of the map database 120.
  • step 507 the data reading unit 102 determines whether the value of the determination flag read in step 506 is "1". If the value of the determination flag is “1” (OK), the control parameters read in step 505 are transferred to the parameter setting unit 107, and the process proceeds to step 511. On the other hand, when the value of the determination flag is not “1”, that is, when the value is “0” (NG), the control parameter read in step 505 is transferred to the parameter setting unit 107, and the observation value read in step 506 is read. Is transferred to the first determination unit 104, and the process proceeds to step 508.
  • the first determination unit 104 determines the first evaluation value based on the observation value transferred from the data reading unit 102 in step 507, that is, the observation value acquired in the past and recorded in the parameter management information 122. Derive. In the following step 509, the first determination unit 104 calculates a difference value between the first evaluation value derived in step 508 and the reference value.
  • the reference value selection unit 103 reads the reference value corresponding to the vehicle type and the vehicle class of the own vehicle from the vehicle type reference value table 130 and transfers the reference value to the first determination unit 104 as described above.
  • the first determination unit 104 calculates a difference value between the first evaluation value obtained in step 508 and the reference value from the reference value selection unit 103, and transfers the difference value to the search specification setting unit 105.
  • step 510 the search specification setting unit 105 reads the search maximum value from the search value table 140 based on the difference value between the first evaluation value and the reference value transferred from the first determination unit 104 in step 509, and Set the setting value. Then, the set search setting value is transferred to mode switching unit 106.
  • the parameter setting unit 107 determines, based on the control parameters transferred from the data reading unit 102 in step 507 and the search setting values transferred from the search specification setting unit 105 to the mode switching unit 106 in step 510. Generate application control parameters. At this time, the mode switching unit 106 adjusts the search set value according to the search mode set by the search mode setting unit 221 as described above, and transfers it to the parameter setting unit 107. The parameter setting unit 107 generates an applied control parameter by changing the control parameter using the adjusted search setting value transferred from the mode switching unit 106.
  • step 512 the parameter management unit 100 generates the control parameter (if the determination flag is “1”) transferred from the data reading unit 102 to the parameter setting unit 107 in step 507 or generates the control parameter in step 511.
  • the applied control parameter (when the determination flag is “0”) is transmitted to the host vehicle as an application control parameter for the host vehicle.
  • the suspension damping force variable mechanism 211 adjusts the suspension damping force using the applied control parameters. Thereafter, when the host vehicle actually travels with the suspension after the damping force adjustment in step 514, in step 515, the observation unit 240 observes the behavior when the host vehicle runs. Then, in the subsequent step 516, the observation unit 240 transmits the observation value obtained in step 515 to the parameter management unit 100. Thereafter, the own vehicle returns to step 502 and repeats the processing.
  • the parameter management unit 100 receives the observation value transmitted from the observation unit 240 in step 517. Then, the received observation value is transferred to the second determination unit 108.
  • the second determination unit 108 derives a second evaluation value based on the observation value received in step 517, that is, the latest observation value obtained in the own vehicle.
  • the reference value selection unit 103 reads a reference value corresponding to the vehicle type and vehicle class of the own vehicle from the vehicle type reference value table 130, and transfers the reference value to the second determination unit 108.
  • step 520 the second determination unit 108 compares the second evaluation value obtained in step 518 with the reference value transferred from the reference value selection unit 103 in step 519. As a result, if the second evaluation value is smaller than the reference value, the process proceeds to step 521, and if the second evaluation value is equal to or more than the reference value, the process proceeds to step 522.
  • step 521 the second determination unit 108 sets the value of the determination flag to “1”.
  • step 522 the second determination unit 108 sets the value of the determination flag to “0”.
  • the second determination unit 108 transfers the set determination flag and the observed value to the data updating unit 109, and proceeds to step 523.
  • step 523 the data updating unit 109 stores the determination flag and the observation value transferred from the second determination unit 108 in step 521 or 522 and the application control parameter set by the parameter setting unit 107 in step 511 in the map database 120. Is stored in the parameter management information 122. As a result, the map database 120 is updated.
  • the information processing system 1 ends the processing flow of FIG. 7, and waits until the next control starts.
  • the information processing system 1 of the present embodiment performs the above-described control repeatedly so that the value of the determination flag stored in the parameter management information 122 in the map database 120 becomes “1” (OK).
  • Search for control parameters for the own vehicle In this search, an application control parameter for the own vehicle is set, and a vehicle behavior when the own vehicle is actually driven by controlling the suspension damping force variable mechanism 211 using the applied control parameter is observed. Obtain observation values related to vehicle behavior from the host vehicle. Then, an evaluation value is derived based on the obtained observation value, and the appropriateness of the applied control parameter is determined using the evaluation value.
  • By repeatedly performing such a series of processing it is possible to realize a search for an optimal control parameter for the host vehicle. Furthermore, it is also possible to perform the search processing on a plurality of vehicles in parallel. In this way, it is possible to reduce the time required for the control parameters to reach the optimal solution.
  • FIG. 8 is a block diagram illustrating a functional configuration of the information processing system according to the second embodiment.
  • the information processing system 1A shown in FIG. 8 adjusts the damping force of a suspension mounted on the host vehicle, thereby adjusting the ride comfort felt by the occupant of the host vehicle, similarly to the information processing system 1 described in the first embodiment.
  • a system used to improve This information processing system 1A has the same functional configuration as the information processing system 1 shown in FIG. 1 except that the information processing system 1A has a parameter management unit 100A instead of the parameter management unit 100 in FIG.
  • the parameter management unit 100A includes the vehicle information transfer unit 101, the data reading unit 102, the reference value selection unit 103, the first determination unit 104, the search specification setting unit 105, the mode switching unit 106, and the parameter described in the first embodiment.
  • An evaluation value storage unit 110 is provided in addition to the setting unit 107, the second determination unit 108, and the data update unit 109.
  • the first determination unit 104 transfers the value to the evaluation value storage unit 110.
  • the evaluation value storage unit 110 temporarily stores and stores the first evaluation value transferred from the first determination unit 104.
  • the evaluation value storage unit 110 The stored first evaluation value is transferred to the second determination unit 108.
  • the second evaluation unit 108 replaces the reference value transferred from the reference value selection unit 103 with the first evaluation value transferred from the evaluation value storage unit 110.
  • the determination flag is set using the value.
  • the second determination unit 108 can set the determination flag by calculating the pass / fail determination value using, for example, a technique called reinforcement learning. For example, if the smaller the value of the first evaluation value or the value of the second evaluation value is, the more comfortable the ride is, if the second evaluation value is smaller than the first evaluation value, the second determination unit 108 determines whether the pass / fail determination value is higher.
  • the pass / fail judgment value calculated in this way becomes equal to or more than a predetermined pass / fail reference value, it is judged that the optimum solution has been obtained in the control parameter, and the value of the judgment flag is changed from “0” to “1”. End the search.
  • the pass / fail reference value varies depending on the suspension characteristics of the subject vehicle to be controlled and the specifications of the values corresponding to the above-described rewards and penalties.
  • FIG. 9 is a diagram showing an example of the parameter management information 122 according to the second embodiment.
  • a pass / fail judgment value column is further added to the parameter management information 122 as compared with the first embodiment described with reference to FIG.
  • the pass / fail judgment value column indicates a current pass / fail judgment value calculated by repeatedly adding and subtracting values corresponding to rewards and penalties with respect to control parameter values set for each vehicle condition. .
  • FIG. 10 is a processing flow showing control contents in the information processing system 1A according to the second embodiment.
  • steps 501 to 518 the same processing as the processing flow of FIG. 7 described in the first embodiment is executed.
  • the first determination unit 104 transfers the first evaluation value to the evaluation value storage unit 110 and stores it.
  • the second determination unit 108 After deriving the second evaluation value in step 518, in step 531, the second determination unit 108 reads the first evaluation value stored in the evaluation value storage unit 110, and compares the second evaluation value obtained in step 518 with the second evaluation value. , And the read first evaluation value. As a result, if the second evaluation value is smaller than the first evaluation value, the process proceeds to step 532, and if the second evaluation value is equal to or greater than the first evaluation value, the process proceeds to step 533.
  • step 532 the second determination unit 108 sets the value of the improvement flag to “1” (improved), reads the pass / fail determination value recorded in the parameter management information 122, and Give a reward.
  • step 533 the second determination unit 108 sets the value of the improvement flag to “0” (no improvement), reads the pass / fail determination value recorded in the parameter management information 122, and Give penalties.
  • the second judgment unit 108 proceeds to the next step 534.
  • the improvement flag in which “1” or “0” is set in step 532 or 533 is a flag indicating whether or not the riding comfort has been improved by the applied control parameter transmitted to the own vehicle in step 512. 2 temporarily stored in the determination unit 108.
  • the second determination unit 108 determines that the riding comfort has been improved, sets the improvement flag to “1”, and sets the second flag to “2”. If the evaluation value is equal to or larger than the first evaluation value, it is determined that the riding comfort has not been improved, and the improvement flag is set to “0”.
  • step 534 the second determination unit 108 calculates a pass / fail determination value to which a reward or penalty has been given in step 532 or 533.
  • step 535 the second determination unit 108 reads a preset pass / fail reference value.
  • step 536 the second determination unit 108 compares the pass / fail determination value calculated in step 534 with the pass / fail reference value read in step 535. As a result, if the pass / fail judgment value is equal to or greater than the pass / fail reference value, the process proceeds to step 521. If the pass / fail judgment value is less than the pass / fail reference value, the process proceeds to step 522.
  • step 521 the second determination unit 108 sets the value of the determination flag to “1”, transfers the set determination flag and observation value to the data update unit 109, and proceeds to step 523.
  • step 522 the second determination unit 108 sets the value of the determination flag to “0”.
  • step 537 the second determination unit 108 determines whether or not the value of the improvement flag set in step 532 or 533 is "1". If the value of the improvement flag is “1”, the set determination flag and the observed value are transferred to the data updating unit 109, and the process proceeds to step 523.
  • step 523 the data update unit 109 stores the determination flag and the observation value transferred from the second determination unit 108 in step 521 or 537 and the application control parameter set by the parameter setting unit 107 in step 511 in the map database 120. Is stored in the parameter management information 122. As a result, the map database 120 is updated.
  • the information processing system 1A ends the processing flow of FIG. 10, and waits until the next control starts.
  • the value of the improvement flag is “0” in step 537
  • the information processing system 1A ends the processing flow of FIG. 10 without updating the map database 120, and waits until the next control starts.
  • the information processing system 1A of the present embodiment performs the above-described control, whereby the riding comfort of the vehicle is improved by the applied control parameters based on the magnitude relationship between the first evaluation value and the second evaluation value. Judgment is made and reward or penalty is given.
  • FIG. 11 is a block diagram illustrating a functional configuration of an information processing system according to the third embodiment.
  • the information processing system shown in FIG. 11 has the information processing system 1 described in the first embodiment mounted on a host vehicle as a server 10 which is an information processing device installed on the center side and an information processing device on the edge side.
  • the server 10 and the in-vehicle device 20 are connected to each other via a wireless communication network such as a mobile phone, and transmit and receive data to and from each other. Accordingly, the processing described in the first embodiment is performed in the parameter management unit 100 based on information from the host vehicle, and the control parameters for the suspension damping force of the host vehicle are optimized.
  • the in-vehicle device 20 and the server 10 include transmission / reception units 801 and 802, respectively.
  • the transmission / reception unit 801 operates as an interface on the edge side, and has a function of connecting the server 10 to a network such as a CAN in the own vehicle via a wireless communication network.
  • the transmission / reception unit 802 operates as an interface on the center side, and has a function of connecting a network in the server 10 to a plurality of own vehicles.
  • the present embodiment is characterized in that the map database 120 is provided in the server 10 on the center side, but various management methods are conceivable. For example, there may be one server for each country, or there may be a case where a country is divided into a plurality of areas and each area is handled by a different server, so that a plurality of servers are managed for each country. In the case of management by multiple servers, the area managed by each server may be partially overlapped in order to avoid failure of data transfer in the boundary area, and a central server that manages multiple servers May be set. In any case, it is important that the information stored in the map database 120 can be shared when the vehicle travels at each point. If this is feasible, the data management method on the center side may be any method.
  • the information processing system shares the map database 120 between a plurality of vehicles and sets the value of the determination flag stored in the parameter management information 122 in the map database 120 to “1”.
  • the control parameter is searched for "(OK).” Therefore, it is possible to construct an information processing system capable of searching for control parameters optimal for each of a plurality of vehicles.
  • FIG. 12 is a block diagram illustrating a functional configuration of an information processing system according to the fourth embodiment.
  • the information processing system shown in FIG. 12 differs from the information processing system 1 according to the first embodiment in that the information processing system 1 described in the first embodiment This is realized by the in-vehicle device 20 mounted on the own vehicle as the information processing device on the side.
  • the in-vehicle device 20 includes the functional blocks of the chassis 210, the mode selection unit 220, the vehicle information management unit 230, and the observation unit 240 described in the first embodiment, and the transmission / reception unit 801 described in the third embodiment.
  • a local map management unit 901, a road point table 902, and a car navigation device 903 are provided.
  • the on-board device 20 on the edge side also manages the map data for a narrow range near the traveling location of the vehicle.
  • the in-vehicle device 20 includes a road point table 902 that stores map data in a narrow range near the traveling location of the host vehicle, and a local map management unit 901 that manages the map data stored in the road point table 902. ing.
  • the local map management unit 901 acquires the position information of the own vehicle from the vehicle information management unit 230, and based on the acquired information, the road information 121 and the parameter management information stored in the map database 120 of the server 10 via the transmission / reception unit 801. Of the 122, information in a narrow range based on the position of the vehicle is acquired from the parameter management unit 100. At this time, the local map management unit 901 downloads the information acquired from the parameter management unit 100 from the server 10 by wireless communication performed via the transmission / reception units 801 and 802. Then, by storing the acquired information in the road point table 902, it is possible to acquire control parameters corresponding to the traveling point of the own vehicle without making an inquiry to the server 10.
  • the local map management unit 901 acquires control parameters with reference to the information stored in the road point table 902 and outputs the control parameters to the chassis 210.
  • the chassis 210 operates the suspension damping force variable mechanism 211 using the control parameters transmitted from the local map management unit 901 to adjust the suspension damping force of the host vehicle.
  • the road point table 902 is constructed using information acquired by the local map management unit 901 from the parameter management unit 100, that is, a part of the road information 121 and the parameter management information 122 recorded in the map database 120. Table data.
  • the road point table 902 has the same data configuration as the road information 121 and the parameter management information 122 shown in FIGS. 3 and 4 in the first embodiment. As described above, the information stored in the road point table 902 is limited to a certain narrow range based on the position of the host vehicle. Therefore, the local map management unit 901 transmits an update request for the road point table 902 to the server 10 before the vehicle reaches the outside of the map range in which the information is stored in the road point table 902, and sends a new request to the server 10. Information is acquired from the parameter management unit 100.
  • the road point table 902 includes a measure for avoiding such illegal information.
  • the storage device constituting the road point table 902 has a dual configuration, one of which stores information before update and the other stores new information. Then, when the storage of the new information ends normally, the local map management unit 901 switches the information referred to in the road point table 902 when setting the control parameters. In this way, even if the road point table 902 is being updated, the local map management unit 901 can acquire appropriate data without confusion.
  • the car navigation device 903 acquires the destination information of the own vehicle and outputs the acquired information to the local map management unit 901, thereby performing a link operation with the local map management unit 901.
  • the information stored in the road point table 902 is limited to a certain narrow range based on the position of the host vehicle. Therefore, by operating the car navigation device 903 in cooperation, the local map management unit 901 acquires the information from the parameter management unit 100 and stores the area range in the road point table 902 around the destination route of the own vehicle. Can be limited to As a result, the amount of information downloaded from the server 10 is limited to an appropriate range, and efficient data operation can be realized.
  • the route is searched again by the car navigation device 903, and the information is downloaded again from the server 10 for the range of the obtained route. do it.
  • the car navigation device 903 may not be operated in cooperation with the local map management unit 901.
  • the information may be downloaded from the server 10 in a range of a radius of 10 km based on the position of the host vehicle. In this case, for example, if the average speed of the own vehicle is 40 km, the frequency of requesting information update performed from the local map management unit 901 to the server 10 is about once every 15 minutes.
  • the information processing system can search for the optimal control parameters in the host vehicle without making an inquiry to the server 10 every time.
  • FIG. 13 is a block diagram illustrating a functional configuration of an information processing system according to the fifth embodiment.
  • the information processing system shown in FIG. 13 differs from the third and fourth embodiments in that the information processing system 1 described in the first embodiment is replaced by a server 10 which is an information processing apparatus installed on the center side. And the in-vehicle device 20 mounted on the own vehicle as the information processing device on the edge side.
  • the server 10 communicates with the function blocks of the parameter management unit 100, the map database 120, the vehicle type reference value table 130, and the search value table 140 described in the first embodiment, and the transmission and reception described in the third embodiment.
  • a simulation environment 1001 is provided in addition to the section 802.
  • the center side combines a real vehicle with a virtual environment to search for an optimal control parameter.
  • map information expressed for each road point map information expressed for each road point, road surface profile information in which the height and inclination of the road surface, the road surface shape and the like are reproduced, and a vehicle in which the vehicle behavior can be reproduced.
  • a virtual environment having a model is set in the simulation environment 1001.
  • the optimal control parameters are derived by repeating the running of the vehicle model and the observation of the vehicle behavior a plurality of times when the control parameters are set.
  • the simulation environment 1001 is a virtual environment in which the behavior of the vehicle when the vehicle actually travels can be reproduced, and has a road surface profile expressing the shape of the road surface in addition to the map information indicating the road configuration. ing.
  • the road surface profile is composed of, for example, vertical displacement for each XY coordinate, and is set based on, for example, a measured value at the time of designing a road or at the time of completing a road.
  • the vehicle model in the simulation environment 1001 is a model of a vehicle on which the in-vehicle device 20 is mounted. For example, if the vehicle has four wheels, a chassis based on four wheels is represented by a vehicle model. Ideally, a vehicle model reproduces a vibration transmission path from a road surface input via a tire via each component of the chassis to a seat on which an occupant sits. This vehicle model may reproduce a vibration transmission path to a steering wheel held by an occupant.
  • the simulation environment 1001 has a transmission / reception unit 1002 that functions as an interface with the parameter management unit 100.
  • the transmission / reception unit 1002 receives information necessary for the simulation in the simulation environment 1001 from the parameter management unit 100 via the transmission / reception unit 802, and transmits the simulation result in the simulation environment 1001 to the parameter management unit 100 via the transmission / reception unit 802. Send.
  • the connection between the transmission / reception unit 1002 and the parameter management unit 100 may be wired or wireless.
  • the information processing system can run the vehicle model under the simulation environment 1001 and search for an optimal control parameter. Therefore, unlike the real world, there is no need to consider the convenience of the occupant driving the vehicle, and the vehicle behavior at an arbitrary road point can be acquired and reflected in the search for control parameters. In addition, by performing the simulation calculation at a high speed, it is possible to obtain an optimal solution of the control parameters in a much shorter time than when the vehicle is actually driven.
  • the server 10 is connected to the own vehicle via a network.
  • the server 10 includes, for each point on the road, a map database 120 in which control parameters for controlling the behavior of the own vehicle are recorded for each vehicle type, a data reading unit 102, a parameter setting unit 107, and a data updating unit. 109.
  • the data reading unit 102 obtains vehicle information including at least the vehicle type information and the position information of the own vehicle from the vehicle information management unit 230, and, based on the vehicle information, obtains a control parameter corresponding to a traveling point of the own vehicle in the map database 120.
  • Read from The parameter setting unit 107 sets an applied control parameter to be applied in the control of the own vehicle based on the control parameter read by the data reading unit 102.
  • the data updating unit 109 obtains, from the host vehicle, an observation value regarding the behavior of the host vehicle controlled based on the applied control parameter, and updates the map database 120 based on the observation value. By doing so, it is possible to improve the riding comfort of the occupant in the vehicle.
  • the vehicle is equipped with a suspension capable of controlling the damping force.
  • the control parameter and the applied control parameter are parameters used in controlling the damping force of the suspension.
  • observation values acquired in the past are recorded in association with control parameters.
  • the data reading unit 102 reads, from the map database 120, control parameters and observation values corresponding to the traveling point of the vehicle.
  • the parameter setting unit 107 sets an applied control parameter based on the control parameter and the observation value read by the data reading unit 102.
  • the server 10 includes a first determination unit 104 and a search specification setting unit 105.
  • the first determination unit 104 calculates a first evaluation value based on the observation value read by the data reading unit 102, and calculates a difference value between the first evaluation value and a predetermined reference value.
  • the search specification setting unit 105 sets a search setting value based on the difference value calculated by the first determination unit 104.
  • the parameter setting unit 107 sets the applied control parameter by changing the control parameter read by the data reading unit 102 based on the search set value. With this configuration, it is possible to appropriately set the applied control parameters from the control parameters using the observation values acquired in the past.
  • the server 10 includes the second determination unit 108.
  • the second determination unit 108 calculates a second evaluation value based on the latest observation value obtained from the own vehicle, and sets a determination flag based on a comparison result between the first evaluation value and the second evaluation value.
  • the data updating unit 109 updates the map database 120 by recording the applied control parameters as new control parameters in the map database 120 and recording a determination flag in the map database 120 in association with the control parameters. With this configuration, the map database 120 can be appropriately updated based on the behavior of the host vehicle when the application control parameter is set.
  • the second determination unit 108 can also set the determination flag by repeatedly performing the reinforcement learning for providing a reward or a penalty based on the magnitude relationship between the first evaluation value and the second evaluation value. . In this way, an optimal solution of the control parameter can be obtained more reliably.
  • the server 10 When connected to a plurality of vehicles via a network, the server 10 can share control parameters among a plurality of vehicles of the same vehicle type. With this configuration, it is possible to obtain the optimal solution of the control parameter in a short time.
  • Control parameters are recorded in the map database 120 for each preset vehicle condition.
  • the data reading unit 102 reads, from the map database 120, control parameters corresponding to the traveling point of the host vehicle and the vehicle conditions. With this configuration, it is possible to set the control parameters to be applied to the host vehicle by using the optimum control parameters according to the situation of the host vehicle.
  • the vehicle conditions include at least one of a vehicle type, a vehicle speed, an acceleration, a load capacity, a road inclination, weather, temperature, humidity, a road surface state, a steering angle, an accelerator operation state, and a brake operation state.
  • the vehicle condition includes a road surface condition
  • the data reading unit 102 can also estimate a road surface condition at a traveling point of the own vehicle, and read a control parameter corresponding to the estimated road surface condition from the map database 120.
  • the vehicle condition includes a vehicle behavior state, and the data reading unit 102 estimates the behavior state of the own vehicle at the traveling point of the own vehicle, and outputs a control parameter corresponding to the estimated behavior state of the own vehicle from the map database 120. It can also be read. With this configuration, the control parameters recorded in the map database 120 can be appropriately classified using arbitrary vehicle conditions.
  • the observation value is at least one of a roll rate, a pitch rate, and a yaw rate of the own vehicle, a vertical acceleration, a longitudinal acceleration, a lateral acceleration, and a biological information of an occupant of the own vehicle.
  • a roll rate a pitch rate
  • a yaw rate of the own vehicle a vertical acceleration
  • a longitudinal acceleration a lateral acceleration
  • a biological information of an occupant of the own vehicle One can be included.
  • the first determination unit 104 changes a reference value used for calculating a difference value from the first evaluation value based on at least one of the vehicle type and the vehicle class of the own vehicle. With this configuration, an appropriate search setting value can be set from the calculated difference value.
  • the server 10 includes the mode switching unit 106 that adjusts the search setting value according to the state of the host vehicle.
  • the mode switching unit 106 provides an instruction from the occupant of the own vehicle, the presence or absence of a passenger other than the driver of the own vehicle, the attribute of the occupant, the presence or absence of an occupant when the own vehicle is automatically driving,
  • the search set value can be adjusted based on at least one of the occupant's biological information and the driver's driving experience. With this configuration, it is possible to appropriately set the search set value and use the set value to search for the optimal solution of the control parameter.
  • Information processing system 10 Server 20: In-vehicle device 100: Parameter management unit 101: Vehicle information transfer unit 102: Data read unit 103: Reference value selection unit 104: first determination unit 105: search specification setting unit 106: mode switching unit 107: parameter setting unit 108: second determination unit 109: data update unit 110: evaluation Value storage unit 120: Map database 121: Road information 122: Parameter management information 130: Vehicle type reference value table 140: Search value table 210: Chassis 211: Suspension damping force Variable mechanism 220: Mode selection unit 221: Search mode setting unit 230: Vehicle information management unit 240: Observation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Traffic Control Systems (AREA)

Abstract

情報処理装置は、道路上の各地点について、車両の挙動に関する制御を行うための制御パラメータが車種ごとに記録される地図データベースと、前記車両の車種情報および位置情報を少なくとも含む車両情報を取得し、前記車両情報に基づいて、前記車両の走行地点に対応する前記制御パラメータを前記地図データベースから読み出すデータ読出部と、前記データ読出部が読み出した前記制御パラメータに基づいて、前記車両の制御において適用させる適用制御パラメータを設定するパラメータ設定部と、前記適用制御パラメータに基づいて制御された前記車両の挙動に関する観測値を前記車両から取得し、前記観測値に基づいて前記地図データベースを更新するデータ更新部と、を備える。

Description

情報処理装置、車両制御方法、情報処理システム
 本発明は、情報処理装置と、これを用いた車両制御方法および情報処理システムとに関する。
 走行中の車両においてタイヤが路面の凹凸等を通過することで発生する振動刺激は、車両のサスペンションによって減衰され、シャシやシートを介して乗員に伝達される。そのため、サスペンションの減衰特性は乗員が感じる乗り心地を大きく左右する。
 従来、減衰力を調節可能なサスペンションを自動車等の車両に搭載し、その減衰力を適切に制御することで乗員の乗り心地を向上させる技術が知られている。特許文献1には、ナビゲーションシステム319の地図情報と関連付けて、サスペンションの作動量の検出値をチューニングデータとして記憶する記憶部40と、チューニングデータを外部サーバ3へ送信する通信部50と、外部サーバ3において、送信されたチューニングデータに基づいてサスペンションの設定値を決定する演算部70と、決定された設定値を受信し、受信した設定値に基づいてアクチュエータ20を駆動させてサスペンションの減衰力を調整する駆動部11と、を備えるサスペンション制御システムが開示されている。
日本国特開2013-173490号公報
 特許文献1に記載の従来技術では、車両から外部サーバに送信されたチューニングデータに基づいてサスペンションの設定値を決定する際に、必ずしも最適な設定値を決定できるとは限らない。そのため、車両に搭乗している乗員の乗り心地に関してさらなる改善の余地がある。
 本発明による情報処理装置は、車両とネットワークを介して接続されるものであって、道路上の各地点について、前記車両の挙動に関する制御を行うための制御パラメータが車種ごとに記録される地図データベースと、前記車両の車種情報および位置情報を少なくとも含む車両情報を取得し、前記車両情報に基づいて、前記車両の走行地点に対応する前記制御パラメータを前記地図データベースから読み出すデータ読出部と、前記データ読出部が読み出した前記制御パラメータに基づいて、前記車両の制御において適用させる適用制御パラメータを設定するパラメータ設定部と、前記適用制御パラメータに基づいて制御された前記車両の挙動に関する観測値を前記車両から取得し、前記観測値に基づいて前記地図データベースを更新するデータ更新部と、を備える。
 本発明による車両制御方法は、車両とネットワークを介して接続される情報処理装置を用いて前記車両の挙動に関する制御を行う方法であって、道路上の各地点について、前記車両の挙動に関する制御を行うための制御パラメータを、前記情報処理装置が有する地図データベースに予め車種ごとに記録しておき、前記車両の車種情報および位置情報を少なくとも含む車両情報を前記車両から前記情報処理装置に送信し、前記情報処理装置が受信する前記車両情報に基づいて、前記車両の走行地点に対応する前記制御パラメータを前記地図データベースから読み出し、前記地図データベースから読み出した前記制御パラメータに基づいて、前記車両の制御において適用させる適用制御パラメータを設定し、設定した前記適用制御パラメータを前記情報処理装置から前記車両に送信し、前記適用制御パラメータに基づく制御を前記車両に対して実施し、前記適用制御パラメータに基づいて制御された前記車両の挙動に関する観測値を前記車両から前記情報処理装置に送信し、前記情報処理装置が受信する前記観測値に基づいて前記地図データベースを更新する。
 本発明による情報処理システムは、車両に搭載されるエッジ側情報処理装置と、前記エッジ側情報処理装置とネットワークを介して接続されるセンタ側情報処理装置と、を有し、前記センタ側情報処理装置は、道路上の各地点について、前記車両の挙動に関する制御を行うための制御パラメータが車種ごとに記録される地図データベースと、前記車両の車種情報および位置情報を少なくとも含む車両情報を取得し、前記車両情報に基づいて、前記車両の走行地点に対応する前記制御パラメータを前記地図データベースから読み出すデータ読出部と、前記データ読出部が読み出した前記制御パラメータに基づいて、前記車両の制御において適用させる適用制御パラメータを設定するパラメータ設定部と、前記適用制御パラメータに基づいて制御された前記車両の挙動に関する観測値を前記車両から取得し、前記観測値に基づいて前記地図データベースを更新するデータ更新部と、を備え、前記エッジ側情報処理装置は、前記車両情報を管理する車両情報管理部と、前記車両から前記観測値を取得する観測部と、前記車両情報および前記観測値を前記センタ側情報処理装置に送信し、前記適用制御パラメータを前記センタ側情報処理装置から受信する送受信部と、を備える。
 本発明によれば、車両に搭乗している乗員の乗り心地を向上させることができる。
第1の実施の形態に係る情報処理システムの機能構成を示すブロック図である。 地図データベースの道路情報およびパラメータ管理情報において用いられる道路ポイントの一例を示す図である。 道路情報の一例を示す図である。 第1の実施の形態に係るパラメータ管理情報の一例を示す図である。 車種別基準値テーブルの一例を示す図である。 探索値テーブルの一例を示す図である。 第1の実施の形態に係る情報処理システムにおける制御内容を示した処理フローである。 第2の実施の形態に係る情報処理システムの機能構成を示すブロック図である。 第2の実施の形態に係るパラメータ管理情報の一例を示す図である。 第2の実施の形態に係る情報処理システムにおける制御内容を示した処理フローである。 第3の実施の形態に係る情報処理システムの機能構成を示すブロック図である。 第4の実施の形態に係る情報処理システムの機能構成を示すブロック図である。 第5の実施の形態に係る情報処理システムの機能構成を示すブロック図である。
(第1の実施の形態)
 本発明の第1の実施の形態について、図1~図7を使用して以下に説明する。
 図1は、第1の実施の形態に係る情報処理システムの機能構成を示すブロック図である。図1に示す情報処理システム1は、自動車等の車両に搭載されるサスペンションの減衰力を調節することで車両の乗員が感じる乗り心地を向上させるために使用されるシステムである。この情報処理システム1は、パラメータ管理部100、地図データベース120、車種別基準値テーブル130、探索値テーブル140、シャシ210、モード選択部220、車両情報管理部230、および観測部240の各機能ブロックを有する。
 パラメータ管理部100は、車両情報転送部101、データ読出部102、基準値選択部103、第1判定部104、探索仕様設定部105、モード切替部106、パラメータ設定部107、第2判定部108、およびデータ更新部109を備える。なお、これらの各機能ブロックの詳細については後述する。
 シャシ210は、情報処理システム1がサスペンションの減衰力の調節を行う対象とする車両(以下、「自車両」と称する)の構成要素である。シャシ210は、自車両の足回り部分に相当し、例えば車体フレーム、エンジン、トランスミッション、ドライブシャフト、ステアリングギア、サスペンション等を含んで構成される。シャシ210は、自車両のサスペンションの減衰力を制御するためのサスペンション減衰力可変機構211を有する。サスペンション減衰力可変機構211は、例えば、作動油の流路形状を機械的に変化可能な油圧式の可変減衰ダンパーや、印加される電解(電圧)に応じて粘性が変化する電気粘性流体(ERF:Electro Rheological Fluid)等を用いて構成される。ただし、サスペンション減衰力可変機構211は上記の例に限らず、任意の形態とすることができる。なお、本実施形態では、自車両の構成要素のうち、情報処理システム1が制御対象とする自車両のサスペンションの減衰力に特化して説明を行う。そのため図1では、シャシ210の構成としてサスペンション減衰力可変機構211のみを記載している。
 モード選択部220は、自車両の挙動を決定するためのモード選択を実施する。モード選択部220は、情報処理システム1が自車両のサスペンションの減衰力を制御するために自車両に対して適用する適用制御パラメータを決定する際に、パラメータ管理部100において使用される探索モードの設定を行う探索モード設定部221を有する。探索モード設定部221は、例えば自車両の乗員がインストルメントパネルやカーナビゲーション装置、モバイル機器等を介して入力した操作情報に基づいて、探索モードを設定することができる。なお、探索モード設定部221による探索モードの設定方法や、パラメータ管理部100による探索モードに応じた適用制御パラメータの決定方法の詳細については後述する。
 車両情報管理部230は、自車両に関する車両情報の取得や管理を行う。車両情報管理部230が管理対象とする車両情報には、例えば、自車両の車種情報を表す車種コード231、自車両の位置情報を表す車両位置232、自車両の速度を表す車速233、自車両の加速度を表す加速度234、自車両の乗員や積載荷物の総重量を表す積載量235等が含まれる。車両位置232は、例えばGPS(Grobal Positioning System)センサにより検出され、車速233は、例えば自車両に設置された車速センサからの情報をCAN(Controller Area Network)を介して受信することにより取得される。また、加速度234、積載量235は、加速度センサ、積載量センサによりそれぞれ検出される。なお、積載量センサでは、自車両自体の重量に加えて、乗員や積載荷物の重量を測定する。このとき、予め判っている自車両自体の重量をオフセット量に設定しておけば、乗員や積載荷物の重量のみを測定することが可能である。ただし、車両情報の構成は上記に限らず、パラメータ管理部100が行う制御内容に応じて任意の構成とすることができる。例えば、自車両の運転者が行うステアリング操作、アクセル操作、ブレーキ操作等の情報を車両情報に含めてもよい。車両情報管理部230は、自車両が走行する度に、これらの車両情報をパラメータ管理部100に送信し、適用制御パラメータの問い合わせを行う。
 観測部240は、自車両の挙動を観測し、その観測結果に応じた観測値を自車両から取得する。観測部240は、例えば自車両の左右方向、前後方向、上下方向に設定される回転軸周りの角速度をそれぞれ計測するピッチレイトセンサ241、ロールレイトセンサ242およびヨーレイトセンサ243と、自車両の乗員が搭乗するシートが設置されているフロアの上下、前後、左右の各方向の相対加速度を計測するフロア加速度センサ244とを含む。なお、ピッチレイトセンサ241、ロールレイトセンサ242およびヨーレイトセンサ243は、例えば水晶等を振動子に用いたジャイロセンサにより構成され、フロア加速度センサ244は、例えば歪ゲージを用いて構成される。観測部240は、自車両が走行する度に、これらの各センサが測定した観測値を取得し、パラメータ管理部100に送信する。なお、観測部240を構成するセンサの種類は、上記のものに限られない。例えば、自車両の車高を計測する車高センサや、シート設置フロア以外の場所における加速度を計測する加速度センサなどを含んでも構わない。また、観測部240で検出するピッチレイト、ロールレイトなどの情報は専用センサだけでなく、車輪速などからの推定結果を用いても良い。
 地図データベース120は、道路情報121およびパラメータ管理情報122を含んで構成されるデータベースであり、HDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)等のストレージに格納される。道路情報121は、地図上の道路を表すデータであり、道路の形状や車線数といった情報が付加されている。パラメータ管理情報122は、自車両のサスペンションに対する制御を行うための制御パラメータを管理するデータであり、道路情報121が表す道路上の各地点での制御パラメータが車種ごとに記録されているとともに、過去に観測部240から取得した観測値が制御パラメータと対応付けて記録されている。なお、パラメータ管理情報122において記録される制御パラメータや観測値は、自車両以外の車両において設定または計測されたものを含んでいる。すなわち、パラメータ管理情報122には、自車両を含む様々な車両に対する各地点での制御パラメータや観測値が、車種ごとに分類して記録されている。
 図2は、地図データベース120の道路情報121およびパラメータ管理情報122において用いられる道路ポイントの一例を示す図である。図2に示す例では、道路301とこれに接続する道路302について、道路上の各地点に対応する道路ポイントA~F、a~cが設定されている。地図データベース120では、これらの各道路ポイントの位置および接続関係と、各道路ポイントに対応する車線数や他の付加情報とを含んで、道路情報121が構成される。なお、道路情報121において各道路ポイントの位置は、例えば緯度と経度等で表現されるものとする。また、各道路ポイントに対する制御パラメータと観測値とを含んで、パラメータ管理情報122が構成される。これにより、道路情報121とパラメータ管理情報122とが互いに対応付けられる。
 図3は、道路情報121の一例を示す図である。図3に示す例では、図2の道路ポイントA~F、a~cのそれぞれに対して、緯度および経度で表現される位置情報と、各道路ポイントの接続関係を示す接続先とに加えて、標高、車線数、制限速度、交通標識の各情報が付加されている。これにより、道路の勾配、車線数の変化、交差点やT字路等の分岐/合流、制限速度、交通標識が存在する場所での交通指示等の様々な情報が、道路ポイントごとに示されている。なお、図3に示す道路情報121は一例であり、他のデータ構成としてもよい。
 本実施形態の情報処理システム1では、図3に示したような道路情報121における道路ポイントごとに、サスペンションの制御に用いられる制御パラメータと、当該制御パラメータに対して過去に取得された観測値とが、車種ごとにパラメータ管理情報122として地図データベース120に記録されている。そして、自車両からの適用制御パラメータの問い合わせに応じて、自車両の走行地点に対応する道路ポイントを地図データベース120において検索し、その道路ポイントに対してパラメータ管理情報122に記録されている制御パラメータと観測値を地図データベース120から読み出して、自車両の適用制御パラメータを決定する。これにより、自車両の状況に応じて最適な適用制御パラメータを決定し、自車両におけるサスペンション減衰力可変機構211の制御に利用する。
 図4は、第1の実施の形態に係るパラメータ管理情報122の一例を示す図である。図4では、図3の道路情報121における道路ポイントの一つ、例えば道路ポイントAに対するパラメータ管理情報122を例として示している。すなわち、パラメータ管理情報122では、図4に示すような情報が道路ポイントごとに記録されている。なお、図4の例では車種ごとに異なるパラメータ管理情報122をタブ401~403で切り替え可能としており、そのうちタブ401に対応する車種aについて、車両条件ごとに記録されたパラメータ管理情報122の例を示している。
 図4に示すように、パラメータ管理情報122では、車速、加速度および積載量の各車両情報の組み合わせによって規定される車両条件ごとに固有の条件番号が付されており、この条件番号ごとに制御パラメータと観測値が組み合わされて記録されている。すなわち、地図データベース120には、パラメータ管理情報122として、予め設定された車両条件ごとに、各地点での制御パラメータと観測値が記録されている。制御パラメータには、当該制御パラメータが最適解として得られたものであるか否かを示すための判定フラグが付されている。観測値は、ロールレイト、ピッチレイトおよびヨーレイトで構成されている。
 制御パラメータは、サスペンション減衰力可変機構211の制御において用いられる情報であり、例えば所定の制御演算における関数の引値や、サスペンション減衰力可変機構211を制御するための物理量(電圧、電流等)などに相当する。なお、図4では制御パラメータを8ビットのデジタル値による16進数で表現しているが、地図データベース120において、パラメータ管理情報122に記録する制御パラメータの表現形式はこれに限定されない。
 判定フラグには、“0”または“1”のいずれかの値が設定される。パラメータ管理情報122において記録されている制御パラメータが最適解として得られたものである場合、当該制御パラメータには、最適値が導出済みであることを表す判定フラグとして“1”が設定される。一方、パラメータ管理情報122において記録されている制御パラメータが最適解として得られたものではない場合、当該制御パラメータには、最適値を探索中であることを表す判定フラグとして“0”が設定される。
 なお、図4に示した例では、車速、加速度および積載量の各車両情報の組み合わせによって車両条件を規定しているが、パラメータ管理情報122において車両条件を規定する車両情報はこれに限定されない。例えば、車両の走行地点における道路傾斜、天候、温度、湿度、路面状態等を含めて車両条件を規定してもよいし、車両の挙動状態、例えば操舵角、アクセル操作状態、ブレーキ操作状態等を含めて車両条件を規定してもよい。また、図4の例では車種と車両条件を別々に管理しているが、車種を車両条件に含めてもよい。これ以外にも、任意の車両情報を用いてパラメータ管理情報122の車両条件を規定することができる。
 また、図4に示した例では、観測値をロールレイト、ピッチレイト、ヨーレイトとしたが、パラメータ管理情報122に記録される観測値はこれに限定されない。例えば、フロア加速度センサ244によって計測されるシート設置フロアの上下加速度、前後加速度および左右加速度や、他の車両挙動に関連する測定値、例えば車高センサにより計測される車高バランスや車輪のすべり量等を観測値に含めて、パラメータ管理情報122に記録してもよい。さらに、車両の乗員の生体情報、例えば頭位の移動量、体の重心の移動量、脈拍数、眼球運動等を観測部240において計測し、その生体情報を観測値としてパラメータ管理情報122に記録してもよい。これ以外にも、観測部240が計測可能な情報に応じて、任意の観測値をパラメータ管理情報122において記録することができる。
 なお、パラメータ管理情報122において車両条件に含まれる車両情報に対して得られるデータの分解能によっては、車両条件の数が爆発的に増加する可能性がある。そのため、各車両情報の値の差が小さく、制御パラメータの値も近い場合には、同一の車両条件に集約するなどして車両条件の数を減らしても構わない。さらに、車両挙動特性が似ている複数の車種をまとめてパラメータ管理情報122を設定したり、複数の車種を車格ごとにまとめてパラメータ管理情報122を設定したりするなどの方法で、パラメータ管理情報122のデータサイズを削減してもよい。
 図1の説明に戻ると、車種別基準値テーブル130は、地図データベース120においてパラメータ管理情報122に記録されている観測値が一定の評価基準を満たすか否かを判断するための基準値を車種ごとに管理するデータテーブルであり、HDDやSSD等のストレージに格納される。ここで、車種別基準値テーブル130において基準値が車種ごとに記録されている理由は、次のとおりである。例えば、小型自動車と大型自動車とでは、それぞれに最適なサスペンションの制御パラメータを設定しても、実際に達成可能な乗り心地が異なると考えられる。そのため、これらを同様な基準で評価すると、適正な評価結果が得られないことになる。そこで、本実施形態では車種別基準値テーブル130において、乗り心地を評価するための基準値を車種ごとに設定しておき、自車両から取得した観測値を自車両の車種に対応する基準値を用いて評価することで、適切な評価結果を得られるようにしている。なお、上記では小型自動車と大型自動車のように、車格の違いを車種の例として説明したが、車種別基準値テーブル130において基準値の区分に用いられる車種はこれに限定されない。例えば、カーメーカーやブランド、車名ごとに異なる乗り心地の特徴を考慮して、車種別基準値テーブル130における車種を設定し、その車種ごとに基準値を管理してもよい。すなわち、車種別基準値テーブル130では、車種および車格の少なくとも一方に基づいて分類された基準値を管理することができる。
 図5は、車種別基準値テーブル130の一例を示す図である。図5に示した車種別基準値テーブル130の例では、カーメーカーと車種の組み合わせごとに基準値が設定されている。すなわち、図5の例では、各カーメーカーの車種ごとに特徴付けられた乗り心地に応じて設定された基準値が、車種別基準値テーブル130に記録されている。なお、車種別基準値テーブル130における車種の区分方法や、各車種に対して設定される基準値は、図5の例に限定されるものではない。車種ごとに基準値を設定できるものであれば、車種別基準値テーブル130を任意のデータ構造とすることが可能である。
 一般的に、車両に搭乗している乗員は、不規則で予測できない加減速に連続して晒されると、三半規管や前庭が刺激されることでヒト体性感覚が違和感を想起させ、これによって乗り物酔いを発症すると言われている。例えば、自動運転中の車両においては、運転席に座っている乗員は運転操作を行う必要がないため、前方を常時注視する必要が無くなる。そのため、手動運転でアクセルとブレーキ操作を実施する場合とは異なり、運転席に座っている乗員であっても自動運転中には常に予測できない加減速に晒されるため、乗り物酔いに陥り易くなることが考えられる。このような状況下においては、乗員が受ける加速度刺激を0G、つまり加減速そのものを乗員に感じさせないようにすれば、乗り物酔いは軽減可能と考えられる。したがって、こうした場合には車種に関わらず、基準値を全て0に設定するのも一案である。その場合、情報処理システム1は車種別基準値テーブル130を備えなくてもよい。
 探索値テーブル140は、地図データベース120においてパラメータ管理情報122に記録されている制御パラメータから最適解を探索する際に用いられる探索設定値の設定時に利用されるデータテーブルであり、HDDやSSD等のストレージに格納される。探索値テーブル140には、パラメータ管理部100の第1判定部104において算出される後述の第1評価値と基準値との差分値ごとに、異なる探索最大値が記録されている。パラメータ管理部100の探索仕様設定部105は、この探索値テーブル140に記録されている探索最大値を読み出すことにより、後述するように探索設定値の設定を行う。
 図6は、探索値テーブル140の一例を示す図である。図6に示した探索値テーブル140の例では、第1判定部104において算出される第1評価値と基準値との差分値が大きいほど探索最大値も大きくなり、反対に差分値が小さいほど探索最大値も小さくなるように、探索最大値が設定されている。なお、図6の例では差分値が0.01、0.05、0.10、0.20、0.50、1.00の各場合について、探索最大値を8ビットのデジタル値による16進数で表現しているが、探索値テーブル140における探索最大値の表現形式はこれに限定されない。差分値との相関があれば、探索値テーブル140において任意の表現形式で探索最大値を記録しておくことができる。
 次に、パラメータ管理部100の各機能ブロックの詳細について説明する。
 車両情報転送部101は、車両情報管理部230からの適用制御パラメータの問い合わせに対する窓口の役割を果たす部分である。車両情報管理部230から車両情報が送信されることにより適用制御パラメータの問い合わせが行われると、車両情報転送部101は、受信した車両情報をデータ読出部102へ転送する。
 データ読出部102は、車両情報転送部101から転送された車両情報をキーにして、自車両の走行地点、車種および車両条件に対応する制御パラメータと、その制御パラメータに対応付けられた観測値とを、地図データベース120から検索して読み出す。このときデータ読出部102は、車両情報に含まれる自車両の各種情報、例えば車種コード231、車両位置232、車速233、加速度234および積載量235に基づいて、自車両の走行地点や車種、車両条件を判断し、これらに対して記録されている制御パラメータ、観測値および判定フラグを、地図データベース120においてパラメータ管理情報122から検索する。これにより、自車両または自車両と同一車種の他車両が過去に同じ道路ポイントを同じ車両条件で走行したときに観測された観測値と、その観測値に対応する制御パラメータおよび判定フラグとを、地図データベース120から読み出すことができる。
 上記のようにして制御パラメータ、観測値および判定フラグを地図データベース120から読み出したら、データ読出部102は、判定フラグの値が“0”と“1”のいずれであるかを確認する。その結果、判定フラグの値が“0”(NG)であれば、読み出した制御パラメータをパラメータ設定部107へ転送すると共に、観測値を第1判定部104へ転送する。一方、判定フラグの値が“1”(OK)であれば、読み出した制御パラメータをパラメータ設定部107へ転送し、第1判定部104への観測値の転送は行わない。なお、自車両の走行地点に対して、自車両または自車両と同一の車種および車両条件に該当する車両の走行実績が無い場合は、地図データベース120においてパラメータ管理情報122には、制御パラメータのデフォルト値のみが記録されており、観測値と判定フラグは記録されていない。したがってこの場合には、観測値と判定フラグをいずれも0として扱えばよい。
 なお、前述のように車両の走行地点における路面状態を車両条件として用いた場合、データ読出部102は、自車両の走行地点における路面状態を推定し、推定した路面状態に対応する制御パラメータ、観測値および判定フラグを、地図データベース120においてパラメータ管理情報122から読み出すことが好ましい。この場合、路面状態の推定は、例えば自車両から取得した車両情報に含まれる天候、温度、湿度等の情報に基づいて行ってもよいし、ネットワークを介して外部から収集したデータに基づいて行ってもよい。
 また、前述のように車両の走行地点における車両挙動状態を車両条件として用いた場合、データ読出部102は、自車両の走行地点における自車両の挙動状態を推定し、推定した自車両の挙動状態に対応する制御パラメータ、観測値および判定フラグを、地図データベース120においてパラメータ管理情報122から読み出すことが好ましい。この場合、自車両の挙動状態の推定は、例えば自車両から取得した車両情報に含まれる操舵角、アクセル操作状態、ブレーキ操作状態等の情報や、道路情報121に記録されている走行地点の道路勾配、曲率等に基づいて行うことができる。
 基準値選択部103は、自車両に対応する基準値を車種別基準値テーブル130から読み出し、第1判定部104および第2判定部108へ転送する。基準値選択部103は、例えば、車両情報転送部101において受信した車両情報に含まれる車種コード231から、自車両の車種や車格を判別し、これに対応する基準値を車種別基準値テーブル130から検索して読み出す。これにより、第1判定部104において後述する第1評価値と基準値との差分値を算出する際や、第2判定部108において後述する第2評価値と基準値との比較を行う際に、自車両の車種や車格に基づいて基準値を変化させることができる。なお、前述のように自動運転を想定する場合には、車種に関わらず基準値を0に設定してもよい。その場合、基準値選択部103が車種別基準値テーブル130から基準値を読み出す必要がないため、車種別基準値テーブル130が設けられていなくても構わない。
 第1判定部104は、データ読出部102から転送された観測値に基づく第1評価値を算出する。この第1評価値は、当該観測値が計測されたときの車両の乗り心地を評価するための値であり、例えば、当該観測値に含まれるピッチレイト、ロールレイトおよびヨーレイトの各絶対値を合計することで算出される。なお、乗り心地を評価できる値であれば、第1評価値の算出方法は上記に限定されない。例えば、前述のようにフロア加速度センサ244によって計測されるシート設置フロアの上下加速度、前後加速度および左右加速度や、車高センサにより計測される車高バランスや、車輪のすべり量や、車両の乗員の生体情報などをパラメータ管理情報122に記録される観測値に含めた場合は、これらの観測値を用いて第1評価値を算出することが好ましい。
 第1評価値を算出したら、第1判定部104は、算出した第1評価値と、基準値選択部103から転送された基準値との差分値を算出する。そして、算出した差分値を探索仕様設定部105へ転送する。
 探索仕様設定部105は、第1判定部104から転送された差分値に基づいて、パラメータ設定部107が適用制御パラメータを設定する際に用いられる探索設定値を設定する。探索仕様設定部105は、第1判定部104が算出した差分値に対応する探索最大値を探索値テーブル140から検索して読み出し、この探索最大値に基づいて探索設定値を設定する。例えば、-1から+1の間でランダムに乱数値を発生し、読み出した探索最大値にこの乱数値を乗算して得られた乗算結果を探索設定値に設定する。これ以外にも、任意の方法で探索最大値から探索設定値を設定することが可能である。探索設定値を設定できたら、探索仕様設定部105は、設定した探索設定値をモード切替部106へ転送する。
 一般的に、探索を繰り返して最適解を求める最適化問題には、本当の最適解である大局最適解と、必ずしも最適解ではない局所最適解が存在し、容易には大局最適解に到達できないという課題がある。この課題を解決する方法として、まずは大局最適解が存在する範囲を予測するために広範囲を対象とした粗い探索を実施し、その後に局地的に詳細の探索を実施する方法が知られている。本実施形態では、探索仕様設定部105において探索設定値を設定する際に、この方法を利用している。すなわち、上記の粗い探索は、第1判定部104が算出した差分値が大きい場合に、探索仕様設定部105において大きな探索最大値を選択して探索設定値を設定することに相当する。また、詳細の探索は、第1判定部104が算出した差分値が小さい場合に、探索仕様設定部105において小さな探索最大値を選択して探索設定値を設定することに相当する。なお、大局最適解を得るために、突然変異的に探索設定値を大きく設定して、局所最適解から脱出するような仕掛けを探索仕様設定部105が備えてもよい。
 なお、探索仕様設定部105が探索設定値を設定する際には、制御パラメータの表現形式と探索設定値の表現形式を合わせることが好ましい。例えば、制御パラメータが整数で表現されるものであれば、探索設定値の小数点以下を丸めることで、探索設定値も整数で表現されるようにする。
 モード切替部106は、モード選択部220に含まれる探索モード設定部221が設定した探索モードに応じて、探索仕様設定部105から転送された探索設定値を調整する。例えば、モード切替部106は、探索仕様設定部105から転送された探索設定値に対して、探索モード設定部221から送信された調整係数(0~1)を乗算することにより、探索設定値の調整を行う。こうして探索設定値を調整したら、モード切替部106は、調整後の探索設定値をパラメータ設定部107へ転送する。
 モード選択部220において、探索モード設定部221は、例えば前述のように、自車両の乗員が入力した操作情報により、乗員からの指示に基づく探索モードの設定を行うことができる。あるいは、以下のようにして探索モードを設定してもよい。すなわち、本実施形態の情報処理システム1では、自車両が実際に走行しながらサスペンション減衰力可変機構211に対する適用制御パラメータの最適値が探索されるが、その過程において、必ずしも乗り心地が改善方向に移行せず、かえって車酔いを促進してしまう恐れがある。これは、幼児や児童などの車酔いしやすい乗員が自車両に搭乗している場合は、特に顕著となる。そこで、探索モード設定部221は、運転者以外の同乗者の有無や、同乗者の属性などに基づいて、例えば車酔い対策優先モードと、乗り心地改善優先モードとを選択できるようにする。車酔い対策優先モードを選択した場合は、探索モード設定部221は、調整係数として例えば“0.1”を出力し、乗り心地改善優先モードを選択した場合は、探索モード設定部221は調整係数として“1.0”を出力するようにする。探索モード設定部221から出力された調整係数は、モード選択部220からパラメータ管理部100に送信され、モード切替部106に転送される。
 モード切替部106は、探索モード設定部221から送信された調整係数を用いることで、車酔い対策優先モードと乗り心地改善優先モードとのそれぞれに適した探索設定値とすることができる。すなわち、車酔い対策優先モードでは、モード切替部106は、探索仕様設定部105から転送された探索設定値を1/10に調整してパラメータ設定部107に転送する。これにより、パラメータ設定部107では、地図データベース120から読み出された制御パラメータ、すなわち過去に車両の走行実績がある制御パラメータに近い値で、適用制御パラメータを設定することが可能となる。その結果、自車両の挙動を予測可能な範囲内に抑えることができる。一方、乗り心地改善優先モードでは、モード切替部106は、探索仕様設定部105から転送された探索設定値をそのまま調整せずにパラメータ設定部107に転送する。これにより、パラメータ設定部107では、必ずしも過去に車両の走行実績が無い制御パラメータを適用制御パラメータとして設定することが可能となる。その結果、本来の最適値である大局最適値を探索することが可能となる。
 以上説明したように、本実施形態では、自車両の状態に応じて探索設定値を調整し、その調整後の探索設定値を用いて適用制御パラメータの設定を行うことにより、自車両側での様々な事情を加味して制御パラメータの最適値を探索できることが特徴の一つに挙げられる。なお、上記の例では探索モード設定部221から出力される調整係数が“0.1”または“1.0”の2つの値である場合を説明したが、他の調整係数を出力してもよい。例えば、調整係数を“0”または“1”の2択としてもよいし、“0.1”、“0.5”または“1.0”の3択としてもよい。さらに、それ以上の選択肢から調整係数を選択可能な仕様としても構わない。あるいは、自車両が自動運転中である場合の乗員の有無や、前述のような乗員の生体情報(頭位の移動量、体の重心の移動量、脈拍数、眼球運動等)、運転者の運転経験などを取得し、これらに基づいて調整係数を変化させてもよい。いずれの場合でも、自車両の状態に応じて探索設定値を調節可能なことが重要である。
 また、上記の例では車酔い対策を目的とした探索モードの設定例を説明したが、探索モード設定部221は、他の目的で探索モードの設定を行ってもよい。モード切替部106において自車両の状態に応じて探索設定値を適切に調節可能であれば、探索モード設定部221は任意の探索モードを設定することができる。
 パラメータ設定部107は、データ読出部102から転送された制御パラメータに基づいて、自車両に対する適用制御パラメータを設定する。このときパラメータ設定部107は、データ読出部102が制御パラメータとともに読み出した判定フラグの値に応じて、適用制御パラメータの設定方法を切り替える。すなわち、判定フラグの値が“1”(OK)である場合は、パラメータ設定部107から転送された制御パラメータをそのまま適用制御パラメータとして設定する。一方、判定フラグの値が“0”(NG)である場合は、パラメータ設定部107から転送された制御パラメータを、モード切替部106から転送された調整後の探索設定値に基づいて変化させることにより、適用制御パラメータを設定する。例えば、制御パラメータに探索設定値を加算または減算することで、制御パラメータを変化させて適用制御パラメータの設定が可能である。なお、探索設定値に基づく適用制御パラメータの設定方法はこれに限定されず、任意の方法で制御パラメータを探索設定値に応じて変化させることで、適用制御パラメータの設定を行うことができる。
 パラメータ設定部107により設定された適用制御パラメータは、パラメータ管理部100から自車両へと送信され、自車両のシャシ210に含まれるサスペンション減衰力可変機構211へ転送される。これにより、サスペンション減衰力可変機構211では、パラメータ管理部100において決定された適用制御パラメータを用いて、サスペンションの減衰力を調節するための制御を行うことができる。
 自車両から取得された最新の観測値が観測部240からパラメータ管理部100に送信されると、第2判定部108は、その観測値に基づく第2評価値を算出する。この第2評価値は、前述の第1判定部104で算出される第1評価値と同様に、当該観測値が計測されたときの自車両の乗り心地を評価するための値であり、第1評価値と同様の方法で算出することができる。第2評価値を算出したら、第2判定部108は、基準値選択部103から転送された基準値と、算出した第2評価値とを比較し、その比較結果に基づいて判定フラグを設定する。例えば、第2評価値の値が小さいほど乗り心地が良いことを表す場合、第2判定部108は、第2評価値が基準値よりも小さければ判定フラグの値を“1”に設定し、反対に第2評価値が基準値以上であれば判定フラグの値を“0”に設定する。こうして判定フラグの値を設定したら、第2判定部108は、観測部240から送信された観測値と、その観測値に対して設定された判定フラグとを、データ更新部109へ転送する。
 データ更新部109は、第2判定部108から転送された観測値および判定フラグを、パラメータ設定部107が設定した適用制御パラメータとともに、地図データベース120においてパラメータ管理情報122に記録する。このときデータ更新部109は、車両情報管理部230から送信された自車両の車両情報に基づいて、自車両がどの車両条件に該当するかを判断し、パラメータ管理情報122の当該車両条件に対応する欄に、観測値、判定フラグおよび適用制御パラメータを記録する。ただし、適用制御パラメータは、探索後の新たな制御パラメータとして、観測値および判定フラグと対応付けてパラメータ管理情報122に記録する。これにより、データ更新部109は、自車両から取得した観測値に基づいて、地図データベース120を更新する。なお、既に同一の車両条件に該当する観測値や制御パラメータのデータがパラメータ管理情報122において記録されている場合は、両データを比較し、より適切な制御パラメータ、すなわち観測値に対する評価値が小さいものを記録してもよい。あるいは、両データを併存して記録してもよい。
 次に、情報処理システム1が自車両のサスペンションの減衰力を調節して乗り心地を向上させる際の制御内容について説明する。図7は、第1の実施の形態に係る情報処理システム1における制御内容を示した処理フローである。
 まず、ステップ501において、地図データベース120のパラメータ管理情報122に制御パラメータの初期値を記録しておく。ここでは制御パラメータの初期値として、予め設定された車両条件ごとに、例えば製品出荷時の値を設定しておく。なお、ここで記録された制御パラメータの初期値は、自車両の走行に伴って情報処理システム1が運用されることで、以降の処理に従って更新される。
 自車両が走行を開始すると、ステップ502において、車両情報管理部230は、GPSセンサ等を用いて自車両の走行位置を取得する。続くステップ503において、車両情報管理部230は、車種コード231、車両位置232、車速233、加速度234、積載量235等の情報を取得し、自車両の車両情報としてパラメータ管理部100へ送信することで、適用制御パラメータの請求を行う。
 車両情報管理部230から適用制御パラメータの請求が行われると、ステップ504において、車両情報転送部101は、車両情報管理部230から送信された自車両の車両情報を適用制御パラメータの請求として受信する。そして、受信した車両情報をデータ読出部102へ転送する。
 ステップ505において、データ読出部102は、ステップ504で車両情報管理部230から転送された車両情報に基づいて、自車両の走行位置に対応する制御パラメータを地図データベース120のパラメータ管理情報122から読み出す。続くステップ506において、データ読出部102は、ステップ505で読み出した制御パラメータに対応付けられた観測値および判定フラグを、地図データベース120のパラメータ管理情報122から読み出す。
 ステップ507において、データ読出部102は、ステップ506で読み出した判定フラグの値が“1”であるか否かを判定する。判定フラグの値が“1”(OK)である場合は、ステップ505で読み出した制御パラメータをパラメータ設定部107へ転送し、ステップ511に進む。一方、判定フラグの値が“1”ではない場合、すなわち“0”(NG)である場合は、ステップ505で読み出した制御パラメータをパラメータ設定部107へ転送するとともに、ステップ506で読み出した観測値を第1判定部104へ転送し、ステップ508に進む。
 ステップ508において、第1判定部104は、ステップ507でデータ読出部102から転送された観測値、すなわち過去に取得されてパラメータ管理情報122に記録された観測値に基づいて、第1評価値を導出する。続くステップ509において、第1判定部104は、ステップ508で導出した第1評価値と基準値との差分値を算出する。このとき基準値選択部103は、前述のように自車両の車種や車格に対応する基準値を車種別基準値テーブル130から読み出して第1判定部104へ転送する。第1判定部104は、ステップ508で求めた第1評価値と基準値選択部103からの基準値との差分値を求めて探索仕様設定部105へ転送する。
 ステップ510において、探索仕様設定部105は、ステップ509で第1判定部104から転送された第1評価値と基準値との差分値に基づいて、探索値テーブル140から探索最大値を読み出し、探索設定値を設定する。そして、設定した探索設定値をモード切替部106へ転送する。
 ステップ511において、パラメータ設定部107は、ステップ507でデータ読出部102から転送された制御パラメータと、ステップ510で探索仕様設定部105からモード切替部106へ転送された探索設定値とに基づいて、適用制御パラメータを生成する。このときモード切替部106は、前述のように探索モード設定部221が設定した探索モードに応じて探索設定値を調整し、パラメータ設定部107へ転送する。パラメータ設定部107は、モード切替部106から転送された調整後の探索設定値を用いて制御パラメータを変化させることで、適用制御パラメータを生成する。
 ステップ512において、パラメータ管理部100は、ステップ507でデータ読出部102からパラメータ設定部107に転送された制御パラメータ(判定フラグが“1”の場合)、または、ステップ511でパラメータ設定部107が生成した適用制御パラメータ(判定フラグが“0”の場合)を、自車両に対する適用制御パラメータとして自車両に送信する。
 ステップ512でパラメータ管理部100から送信された適用制御パラメータが、ステップ513で自車両により受信されると、サスペンション減衰力可変機構211は、その適用制御パラメータを用いてサスペンションの減衰力を調節する。その後、ステップ514で自車両が減衰力調節後のサスペンションにより実際に走行を行うと、ステップ515において、観測部240は、自車両が走行したときの挙動を観測する。そして、続くステップ516において、観測部240は、ステップ515で得られた観測値をパラメータ管理部100に送信する。その後自車両では、ステップ502に戻って処理を繰り返す。
 観測部240から観測値が送信されると、ステップ517において、パラメータ管理部100は、観測部240から送信された観測値を受信する。そして、受信した観測値を第2判定部108へ転送する。
 ステップ518において、第2判定部108は、ステップ517で受信した観測値、すなわち自車両において取得された最新の観測値に基づいて、第2評価値を導出する。ステップ519において、基準値選択部103は、自車両の車種や車格に対応する基準値を車種別基準値テーブル130から読み出して第2判定部108へ転送する。
 ステップ520において、第2判定部108は、ステップ518で求めた第2評価値と、ステップ519で基準値選択部103から転送された基準値とを比較する。その結果、第2評価値が基準値よりも小さければステップ521に進み、第2評価値が基準値以上であればステップ522に進む。
 ステップ521において、第2判定部108は、判定フラグの値を“1”に設定する。ステップ522において、第2判定部108は、判定フラグの値を“0”に設定する。ステップ521または522で判定フラグを設定したら、第2判定部108は、設定した判定フラグと観測値をデータ更新部109へ転送し、ステップ523に進む。
 ステップ523において、データ更新部109は、ステップ521または522で第2判定部108から転送された判定フラグおよび観測値と、ステップ511でパラメータ設定部107が設定した適用制御パラメータとを、地図データベース120のパラメータ管理情報122に格納する。これにより、地図データベース120を更新する。ステップ523の処理を実施したら、情報処理システム1は図7の処理フローを終了し、次の制御開始まで待機する。
 本実施形態の情報処理システム1は、以上説明したような制御を繰り返し行うことで、地図データベース120においてパラメータ管理情報122に格納されている判定フラグの値が“1”(OK)となるように、自車両に対する制御パラメータを探索する。この探索では、自車両に対する適用制御パラメータを設定し、この適用制御パラメータを用いてサスペンション減衰力可変機構211の制御が行われた自車両を実際に走行させたときの車両挙動を観測して、車両挙動に関する観測値を自車両から取得する。そして、取得した観測値に基づいて評価値を導出し、この評価値を用いて適用制御パラメータの適否を判断する。こうした一連の処理を繰り返し行うことで、自車両にとって最適な制御パラメータの探索を実現することができる。さらに、複数の車両に対して探索処理を並行して実施することも可能である。このようにすれば、制御パラメータが最適解に到達するまでの時間を短縮化することができる。
(第2の実施の形態)
 本発明の第2の実施の形態について、図8~図10を使用して以下に説明する。本実施形態では、制御パラメータが最適解であるか否かの判定を、第1の実施の形態とは異なる方法で行う例を説明する。
 図8は、第2の実施の形態に係る情報処理システムの機能構成を示すブロック図である。図8に示す情報処理システム1Aは、第1の実施の形態で説明した情報処理システム1と同様に、自車両に搭載されるサスペンションの減衰力を調節することで自車両の乗員が感じる乗り心地を向上させるために使用されるシステムである。この情報処理システム1Aは、図1のパラメータ管理部100に替えてパラメータ管理部100Aを有する点以外は、図1に示した情報処理システム1と同様の機能構成を有している。
 パラメータ管理部100Aは、第1の実施の形態で説明した車両情報転送部101、データ読出部102、基準値選択部103、第1判定部104、探索仕様設定部105、モード切替部106、パラメータ設定部107、第2判定部108、およびデータ更新部109に加えて、さらに評価値格納部110を備える。パラメータ管理部100Aにおいて、第1判定部104は、前述の第1評価値を算出したら、その値を評価値格納部110へ転送する。
 評価値格納部110は、第1判定部104から転送された第1評価値を一時的に格納して記憶しておく。自車両において適用制御パラメータに基づくサスペンション減衰力可変機構211の制御が実施され、それに応じて観測部240から送信された観測値がパラメータ管理部100Aにおいて受信されると、評価値格納部110は、格納していた第1評価値を第2判定部108へ転送する。
 パラメータ管理部100Aにおいて、第2判定部108は、前述の第2評価値を算出したら、基準値選択部103から転送される基準値に替えて、評価値格納部110から転送される第1評価値を用いて、判定フラグの設定を行う。このとき第2判定部108は、例えば強化学習と呼ばれる手法を用いて合否判定値を計算することで、判定フラグの設定を行うことができる。例えば、第1評価値や第2評価値の値が小さいほど乗り心地が良いことを表す場合、第2判定部108は、第2評価値が第1評価値よりも小さければ合否判定値に対して報酬に相当する値を加算し、反対に第2評価値が第1評価値以上であれば合否判定値に対して罰則に相当する値を減算する。こうして計算される合否判定値が所定の合否基準値以上になった時に、制御パラメータにおいて最適解が得られたと判断して判定フラグの値を“0”から“1”に変化させ、最適解の探索を終了する。なお、上記の合否基準値は、制御対象とする自車両のサスペンション特性や、前述の報酬や罰則に相当する値の仕様などによって異なるため、調整可能とすることが好ましい。
 図9は、第2の実施の形態に係るパラメータ管理情報122の一例を示す図である。本実施形態では、図4で説明した第1の実施の形態のものと比べて、図9に示すように、パラメータ管理情報122において合否判定値の欄がさらに追加されている。この合否判定値の欄には、車両条件ごとに設定されている制御パラメータの値に対して、報酬や罰則に相当する値の加減算を繰り返すことで計算された現在の合否判定値を表している。
 図10は、第2の実施の形態に係る情報処理システム1Aにおける制御内容を示した処理フローである。図10の処理フローでは、ステップ501~518において、第1の実施の形態で説明した図7の処理フローと同様の処理をそれぞれ実行する。ただし、ステップ508では第1評価値を導出した後、第1判定部104は、その第1評価値を評価値格納部110に転送して格納させる。
 ステップ518で第2評価値を導出したら、ステップ531において、第2判定部108は、評価値格納部110に格納されている第1評価値を読み出して、ステップ518で求めた第2評価値と、読み出した第1評価値とを比較する。その結果、第2評価値が第1評価値よりも小さければステップ532に進み、第2評価値が第1評価値以上であればステップ533に進む。
 ステップ532において、第2判定部108は、改善フラグの値を“1”(改善あり)に設定するとともに、パラメータ管理情報122に記録されている合否判定値を読み出し、その合否判定値に対して報酬を付与する。ステップ533において、第2判定部108は、改善フラグの値を“0”(改善なし)に設定するとともに、パラメータ管理情報122に記録されている合否判定値を読み出し、その合否判定値に対して罰則を付与する。ステップ532または533で改善フラグの設定と合否判定値に対する報酬または罰則の付与を実施したら、第2判定部108は次のステップ534に進む。なお、ステップ532または533で“1”または“0”が設定される改善フラグとは、ステップ512で自車両に送信した適用制御パラメータによって乗り心地が改善されたか否かを示すフラグであり、第2判定部108において一時的に記憶される。第2判定部108は、ステップ531~533の処理において、第2評価値が第1評価値よりも小さければ、乗り心地が改善されたと判断して改善フラグに“1”を設定し、第2評価値が第1評価値以上であれば、乗り心地が改善されなかったと判断して改善フラグに“0”を設定する。
 ステップ534において、第2判定部108は、ステップ532または533で報酬または罰則を付与した合否判定値を計算する。ステップ535において、第2判定部108は、予め設定された合否基準値を読み出する。ステップ536において、第2判定部108は、ステップ534で計算した合否判定値と、ステップ535で読み出した合否基準値とを比較する。その結果、合否判定値が合否基準値以上であればステップ521に進み、合否判定値が合否基準値未満であればステップ522に進む。
 ステップ521において、第2判定部108は、判定フラグの値を“1”に設定し、設定した判定フラグと観測値をデータ更新部109へ転送してステップ523に進む。ステップ522において、第2判定部108は、判定フラグの値を“0”に設定する。続くステップ537において、第2判定部108は、ステップ532または533で設定した改善フラグの値が“1”であるか否かを判定する。改善フラグの値が“1”であれば、設定した判定フラグと観測値をデータ更新部109へ転送してステップ523に進む。
 ステップ523において、データ更新部109は、ステップ521または537で第2判定部108から転送された判定フラグおよび観測値と、ステップ511でパラメータ設定部107が設定した適用制御パラメータとを、地図データベース120のパラメータ管理情報122に格納する。これにより、地図データベース120を更新する。ステップ523の処理を実施したら、情報処理システム1Aは図10の処理フローを終了し、次の制御開始まで待機する。一方、ステップ537で改善フラグの値が“0”であった場合、情報処理システム1Aは地図データベース120を更新せずに図10の処理フローを終了し、次の制御開始まで待機する。
 本実施形態の情報処理システム1Aは、以上説明したような制御を行うことで、第1評価値と第2評価値との大小関係に基づいて、適用制御パラメータによって自車両の乗り心地が改善されたか否かを判断し、報酬または罰則を付与する。こうした一連の処理による強化学習を繰り返し実施して合否判定値を求め、この合否判定値に基づいて判定フラグの設定を行うことにより、自車両にとって最適な制御パラメータの探索を実現することができる。
(第3の実施の形態)
 本発明の第3の実施の形態について、図11を使用して以下に説明する。本実施形態では、第1の実施の形態で説明したシステム構成を実現するハードウェア構成の具体例を説明する。
 図11は、第3の実施の形態に係る情報処理システムの機能構成を示すブロック図である。図11に示す情報処理システムは、第1の実施の形態で説明した情報処理システム1を、センタ側に設置された情報処理装置であるサーバ10と、エッジ側の情報処理装置として自車両に搭載された車載装置20とにより実現している。サーバ10と車載装置20の間は、携帯電話等の無線通信ネットワークを介して互いに接続されており、互いにデータの送受信を行う。これにより、自車両からの情報に基づいて第1の実施形態で説明したような処理がパラメータ管理部100において実施され、自車両のサスペンション減衰力に対する制御パラメータの最適化が行われる。
 車載装置20とサーバ10は、送受信部801、802をそれぞれ備える。送受信部801はエッジ側のインタフェースとして動作し、無線通信ネットワークを介して自車両内のCAN等のネットワークとサーバ10とを接続する機能を果たす。送受信部802はセンタ側のインタフェースとして動作し、サーバ10内のネットワークと複数の自車両とを接続する機能を果たす。
 本実施の形態では、センタ側のサーバ10に地図データベース120が設けられていることが特徴であるが、その管理方法には様々なものが考えられる。例えば、国単位で1つのサーバを有する場合もあるし、国を複数のエリアに分割して、各エリアを別々のサーバが担当することにより、国単位では複数のサーバで管理する場合もある。また、複数のサーバで管理する場合は、境界領域でのデータ引継ぎの失敗を回避するために、各サーバが管理するエリアを一部重複させることも考えられるし、複数のサーバを統括する統括サーバを設定することも考えられる。いずれにしても、自車両が各地点を走行する際に地図データベース120に格納された情報を共有することができることが重要である。これが実現可能であれば、センタ側のデータ管理方法は、どのようなものであっても構わない。
 本実施形態の情報処理システムは、以上説明したような構成により、複数の車両間で地図データベース120を共有しながら、地図データベース120においてパラメータ管理情報122に格納されている判定フラグの値が“1”(OK)となるように制御パラメータを探索する。そのため、複数の車両にとってそれぞれに最適な制御パラメータを探索可能な情報処理システムを構築することができる。
(第4の実施の形態)
 本発明の第4の実施の形態について、図12を使用して以下に説明する。本実施形態では、第1の実施の形態で説明したシステム構成を実現するハードウェア構成の別の具体例を説明する。
 図12は、第4の実施の形態に係る情報処理システムの機能構成を示すブロック図である。図12に示す情報処理システムは、第3の実施の形態と同様に、第1の実施の形態で説明した情報処理システム1を、センタ側に設置された情報処理装置であるサーバ10と、エッジ側の情報処理装置として自車両に搭載された車載装置20とにより実現している。車載装置20は、第1の実施の形態で説明したシャシ210、モード選択部220、車両情報管理部230、および観測部240の各機能ブロックと、第3の実施の形態で説明した送受信部801に加えて、ローカル地図管理部901、道路ポイントテーブル902、およびカーナビゲーション機器903を有している。
 本実施形態では、センタ側の地図データベース120により広い範囲の地図データを管理しつつ、エッジ側の車載装置20でも、自車両の走行場所付近の狭い範囲について地図データの管理を行うようにしている。そのため、車載装置20は、自車両の走行場所付近の狭い範囲における地図データを格納する道路ポイントテーブル902と、この道路ポイントテーブル902に格納される地図データを管理するローカル地図管理部901とを備えている。
 ローカル地図管理部901は、車両情報管理部230から自車両の位置情報を取得し、それに基づいて送受信部801を介して、サーバ10の地図データベース120に格納されている道路情報121およびパラメータ管理情報122のうち、自車両の位置を基準とした狭い範囲の情報をパラメータ管理部100から取得する。このときローカル地図管理部901は、送受信部801、802を介して行われる無線通信により、パラメータ管理部100から取得した情報をサーバ10からダウンロードする。そして、取得したこれらの情報を道路ポイントテーブル902に格納することで、サーバ10への問い合わせを行うことなく、自車両の走行地点に応じた制御パラメータを取得できるようにする。
 自車両が走行して位置が変化すると、ローカル地図管理部901は、道路ポイントテーブル902に格納された情報を参照して制御パラメータを取得し、これをシャシ210へ出力する。シャシ210では、ローカル地図管理部901から送信された制御パラメータを用いてサスペンション減衰力可変機構211を動作させ、自車両のサスペンション減衰力を調節する。
 道路ポイントテーブル902は、ローカル地図管理部901がパラメータ管理部100から取得した情報、すなわち地図データベース120に記録されている道路情報121およびパラメータ管理情報122のうち一部の情報を用いて構築されたテーブルデータである。この道路ポイントテーブル902は、第1の実施の形態で図3、図4にそれぞれ示した道路情報121、パラメータ管理情報122と同様のデータ構成を有している。なお、前述したように、道路ポイントテーブル902に格納される情報は、自車両の位置を基準とした一定の狭い範囲に限定される。そのため、ローカル地図管理部901は、道路ポイントテーブル902に情報が格納されている地図範囲の外に自車両が到達する前に、道路ポイントテーブル902の更新要求をサーバ10に送信して、新規の情報をパラメータ管理部100から取得する。
 また、情報更新時のトラブル等により、一部の情報が欠落したり、新旧の情報が混在して格納されたりすることで、道路ポイントテーブル902に不正な情報が格納されてしまう可能性がある。そのため、道路ポイントテーブル902は、こうした不正な情報を回避する施策も具備することが好ましい。具体的には、道路ポイントテーブル902を構成するストレージ装置を二重構成とし、一方には更新前の情報が格納され、もう一方には新規の情報が格納されるように設定する。そして、新規の情報の格納が正常に終了した時点で、ローカル地図管理部901は、制御パラメータの設定時に道路ポイントテーブル902において参照する情報を切り替えるようにする。このようにすれば、道路ポイントテーブル902が更新中であっても、ローカル地図管理部901は混乱することなく、適正なデータを取得することができる。
 カーナビゲーション機器903は、自車両の行き先情報を取得してローカル地図管理部901に出力することで、ローカル地図管理部901との連係動作を行う。前述したように、道路ポイントテーブル902に格納される情報は、自車両の位置を基準とした一定の狭い範囲に限定される。そのため、カーナビゲーション機器903を連携して動作させることで、ローカル地図管理部901は、パラメータ管理部100から情報を取得して道路ポイントテーブル902に格納する地域範囲を、自車両の行き先経路の周辺に限定することができる。これにより、サーバ10からダウンロードする情報量を適切な範囲に制限し、効率的なデータ運用を実現できる。なお、カーナビゲーション機器903で設定した経路を外れて自車両が走行した場合は、カーナビゲーション機器903において経路の再検索を行い、求められた経路の範囲を対象として、サーバ10から再度情報をダウンロードすればよい。
 あるいは、自車両の行き先経路を考慮しない場合には、カーナビゲーション機器903をローカル地図管理部901と連携して動作させなくてもよい。例えば、自車両の位置を基準に半径10kmの範囲を対象に、サーバ10から情報をダウンロードすることとしても構わない。この場合、例えば自車両の平均時速が40kmであれば、ローカル地図管理部901からサーバ10に対して行われる情報更新の要求頻度は、15分に1回程度となる。
 本実施形態の情報処理システムは、以上説明したような構成により、サーバ10への問い合わせを毎回行うことなく、自車両において最適な制御パラメータの探索を行うことができる。
(第5の実施の形態)
 本発明の第5の実施の形態について、図13を使用して以下に説明する。本実施形態では、第1の実施の形態で説明したシステム構成を実現するハードウェア構成のさらに別の具体例を説明する。
 図13は、第5の実施の形態に係る情報処理システムの機能構成を示すブロック図である。図13に示す情報処理システムは、第3、第4の実施の形態と同様に、第1の実施の形態で説明した情報処理システム1を、センタ側に設置された情報処理装置であるサーバ10と、エッジ側の情報処理装置として自車両に搭載された車載装置20とにより実現している。サーバ10は、第1の実施の形態で説明したパラメータ管理部100、地図データベース120、車種別基準値テーブル130、および探索値テーブル140の各機能ブロックと、第3の実施の形態で説明した送受信部802に加えて、シミュレーション環境1001を有している。
 本実施形態では、センタ側において実際の車両に仮想環境を組み合わせて、最適な制御パラメータの探索を行うようにしている。具体的には、センタ側のサーバ10において、道路ポイントごとに表された地図情報と、路面の高低や傾斜、道路の表面形状等が再現された路面プロファイル情報と、車両挙動が再現可能な車両モデルとを有する仮想環境を、シミュレーション環境1001において設定する。そして、このシミュレーション環境1001の下で、制御パラメータを設定したときの車両モデルの走行と車両挙動の観測を複数回繰り返すことで、最適な制御パラメータを導出する。
 シミュレーション環境1001は、前述したように、実際に車両が走行した際の車両挙動が再現できる仮想環境であり、道路構成を示す地図情報に加えて、道路表面の形状を表現する路面プロファイルを有している。なお、路面プロファイルは、例えばXY座標毎の鉛直方向の変位で構成されており、例えば道路設計時や道路完成時の測定値に基づいて設定される。
 シミュレーション環境1001における車両モデルは、車載装置20が搭載される車両をモデル化したものである。例えば車両が4輪であれば、4輪を前提としたシャシが車両モデルにより表現されている。理想的には、タイヤを介して入力される路面からの振動をシャシの各部品を経由して、乗員が座るシートまでの振動伝達経路を、車両モデルにより再現する。この車両モデルは、乗員が把持するステアリングまでの振動伝達経路を再現するものであっても構わない。
 シミュレーション環境1001は、パラメータ管理部100との間でインタフェースとして機能する送受信部1002を有している。送受信部1002は、シミュレーション環境1001でのシミュレーションに必要な情報を送受信部802を介してパラメータ管理部100から受信するとともに、シミュレーション環境1001でのシミュレーション結果を送受信部802を介してパラメータ管理部100へ送信する。なお、送受信部1002とパラメータ管理部100との接続は、有線、無線のいずれであってもよい。
 本実施形態の情報処理システムは、以上説明したような構成により、シミュレーション環境1001の下で車両モデルを走行させ、最適な制御パラメータの探索を行うことができる。そのため、実世界と異なって車両を運転する乗員の都合を考慮する必要が無く、任意の道路ポイントでの車両挙動を取得し、制御パラメータの探索に反映させることが可能となる。また、シミュレーション計算を高速に行うことで、実際に車両を走行させるよりも大幅に短い時間で制御パラメータの最適解を得ることができる。
 なお、以上説明した第3~第5の各実施の形態では、第1の実施の形態に係るシステム構成を実現するハードウェア構成の例をそれぞれ示したが、第2の実施の形態に係るシステム構成を実現するものとしてもよい。すなわち、図11~図13でそれぞれ示したのと同様のハードウェア構成により、第2の実施の形態に係るシステム構成を実現することが可能である。
 以上説明した本発明の実施の形態によれば、以下の作用効果を奏する。
(1)サーバ10は、自車両とネットワークを介して接続される。サーバ10は、道路上の各地点について、自車両の挙動に関する制御を行うための制御パラメータが車種ごとに記録される地図データベース120と、データ読出部102と、パラメータ設定部107と、データ更新部109とを備える。データ読出部102は、自車両の車種情報および位置情報を少なくとも含む車両情報を車両情報管理部230から取得し、この車両情報に基づいて、自車両の走行地点に対応する制御パラメータを地図データベース120から読み出す。パラメータ設定部107は、データ読出部102が読み出した制御パラメータに基づいて、自車両の制御において適用させる適用制御パラメータを設定する。データ更新部109は、適用制御パラメータに基づいて制御された自車両の挙動に関する観測値を自車両から取得し、この観測値に基づいて地図データベース120を更新する。このようにしたので、車両に搭乗している乗員の乗り心地を向上させることができる。
(2)自車両には、減衰力を制御可能なサスペンションが搭載されている。上記制御パラメータおよび適用制御パラメータは、サスペンションの減衰力の制御において用いられるパラメータである。このようにしたので、車両においてサスペンションの減衰力を適切に制御し、乗員の乗り心地を向上させることができる。
(3)地図データベース120には、過去に取得した観測値が制御パラメータと対応付けて記録されている。データ読出部102は、自車両の走行地点に対応する制御パラメータおよび観測値を地図データベース120から読み出す。パラメータ設定部107は、データ読出部102が読み出した制御パラメータおよび観測値に基づいて、適用制御パラメータを設定する。具体的には、サーバ10は、第1判定部104と、探索仕様設定部105とを備える。第1判定部104は、データ読出部102が読み出した観測値に基づく第1評価値を算出し、第1評価値と所定の基準値との差分値を算出する。探索仕様設定部105は、第1判定部104が算出した差分値に基づいて探索設定値を設定する。パラメータ設定部107は、データ読出部102が読み出した制御パラメータを探索設定値に基づいて変化させることにより、適用制御パラメータを設定する。このようにしたので、過去に取得した観測値を用いて、制御パラメータから適用制御パラメータを適切に設定することができる。
(4)サーバ10は、第2判定部108を備える。第2判定部108は、自車両から取得した最新の観測値に基づく第2評価値を算出し、第1評価値と第2評価値との比較結果に基づいて判定フラグを設定する。データ更新部109は、適用制御パラメータを新たな制御パラメータとして地図データベース120に記録するとともに、当該制御パラメータと対応付けて判定フラグを地図データベース120に記録することにより、地図データベース120を更新する。このようにしたので、適用制御パラメータを設定したときの自車両の挙動から、地図データベース120を適切に更新することができる。
(5)第2判定部108は、第1評価値と第2評価値との大小関係に基づいて報酬または罰則を付与する強化学習を繰り返し実施することで、判定フラグの設定を行うこともできる。このようにすれば、制御パラメータの最適解をより一層確実に得ることができる。
(6)サーバ10は、複数の車両とネットワークを介して接続されるときに、車種が同一である複数の車両間では制御パラメータを共有することができる。このようにしたので、制御パラメータの最適解を短期間で得ることができる。
(7)地図データベース120には、予め設定された車両条件ごとに制御パラメータが記録されている。データ読出部102は、自車両の走行地点と車両条件に対応する制御パラメータを地図データベース120から読み出す。このようにしたので、自車両の状況に応じた最適な制御パラメータを用いて、自車両への適用制御パラメータを設定することができる。
(8)上記の車両条件は、車種、車速、加速度、積載量、道路傾斜、天候、温度、湿度、路面状態、操舵角、アクセル操作状態、およびブレーキ操作状態の少なくともいずれか1つを含むことができる。また、車両条件は、路面状態を含み、データ読出部102は、自車両の走行地点における路面状態を推定し、推定した路面状態に対応する制御パラメータを地図データベース120から読み出すこともできる。さらに、車両条件は、車両挙動状態を含み、データ読出部102は、自車両の走行地点における自車両の挙動状態を推定し、推定した自車両の挙動状態に対応する制御パラメータを地図データベース120から読み出すこともできる。このようにしたので、任意の車両条件を用いて、地図データベース120に記録される制御パラメータを適切に分類することができる。
(9)観測値は、自車両のロールレイト、ピッチレイトおよびヨーレイトと、自車両のシート設置フロアの上下加速度、前後加速度および左右加速度と、自車両の乗員の生体情報と、の少なくともいずれか1つを含むことができる。このようにしたので、車両の挙動状態に応じて任意の観測値を取得し、適用制御パラメータの設定や地図データベース120の更新を行うことができる。
(10)第1判定部104は、自車両の車種および車格の少なくとも一方に基づいて、第1評価値との差分値の計算に用いる基準値を変化させる。このようにしたので、計算された差分値から適切な探索設定値を設定することができる。
(11)サーバ10は、自車両の状態に応じて探索設定値を調節するモード切替部106を備える。具体的には、モード切替部106は、自車両の乗員からの指示、自車両の運転者以外の同乗者の有無、同乗者の属性、自車両が自動運転中である場合の乗員の有無、乗員の生体情報、および運転者の運転経験の少なくともいずれか1つに基づいて、探索設定値を調節することができる。このようにしたので、探索設定値を適切に設定し、これを用いて制御パラメータの最適解の探索を行うことができる。
 なお、以上説明した各実施の形態では、サスペンションの減衰力を制御するための制御パラメータに対して最適解を探索する例を説明したが、本発明はこれに限定されない。車両の挙動に関する制御を行うための制御パラメータを対象として最適解を探索するものであれば、本発明を適用可能である。
 以上説明した各実施の形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2018-151282(2018年8月10日出願)
1,1A・・・情報処理システム
  10・・・サーバ
  20・・・車載装置
 100・・・パラメータ管理部
 101・・・車両情報転送部
 102・・・データ読出部
 103・・・基準値選択部
 104・・・第1判定部
 105・・・探索仕様設定部
 106・・・モード切替部
 107・・・パラメータ設定部
 108・・・第2判定部
 109・・・データ更新部
 110・・・評価値格納部
 120・・・地図データベース
 121・・・道路情報
 122・・・パラメータ管理情報
 130・・・車種別基準値テーブル
 140・・・探索値テーブル
 210・・・シャシ
 211・・・サスペンション減衰力可変機構
 220・・・モード選択部
 221・・・探索モード設定部
 230・・・車両情報管理部
 240・・・観測部

Claims (17)

  1.  車両とネットワークを介して接続される情報処理装置であって、
     道路上の各地点について、前記車両の挙動に関する制御を行うための制御パラメータが車種ごとに記録される地図データベースと、
     前記車両の車種情報および位置情報を少なくとも含む車両情報を取得し、前記車両情報に基づいて、前記車両の走行地点に対応する前記制御パラメータを前記地図データベースから読み出すデータ読出部と、
     前記データ読出部が読み出した前記制御パラメータに基づいて、前記車両の制御において適用させる適用制御パラメータを設定するパラメータ設定部と、
     前記適用制御パラメータに基づいて制御された前記車両の挙動に関する観測値を前記車両から取得し、前記観測値に基づいて前記地図データベースを更新するデータ更新部と、を備える情報処理装置。
  2.  請求項1に記載の情報処理装置において、
     前記車両には、減衰力を制御可能なサスペンションが搭載されており、
     前記制御パラメータおよび前記適用制御パラメータは、前記サスペンションの減衰力の制御において用いられるパラメータである情報処理装置。
  3.  請求項1または2に記載の情報処理装置において、
     前記地図データベースには、過去に取得した前記観測値が前記制御パラメータと対応付けて記録されており、
     前記データ読出部は、前記車両の走行地点に対応する前記制御パラメータおよび前記観測値を前記地図データベースから読み出し、
     前記パラメータ設定部は、前記データ読出部が読み出した前記制御パラメータおよび前記観測値に基づいて、前記適用制御パラメータを設定する情報処理装置。
  4.  請求項3に記載の情報処理装置において、
     前記データ読出部が読み出した前記観測値に基づく第1評価値を算出し、前記第1評価値と所定の基準値との差分値を算出する第1判定部と、
     前記第1判定部が算出した前記差分値に基づいて探索設定値を設定する探索仕様設定部と、を備え、
     前記パラメータ設定部は、前記データ読出部が読み出した前記制御パラメータを前記探索設定値に基づいて変化させることにより、前記適用制御パラメータを設定する情報処理装置。
  5.  請求項4に記載の情報処理装置において、
     前記車両から取得した最新の前記観測値に基づく第2評価値を算出し、前記第1評価値と前記第2評価値との比較結果に基づいて判定フラグを設定する第2判定部を備え、
     前記データ更新部は、前記適用制御パラメータを新たな前記制御パラメータとして前記地図データベースに記録するとともに、当該制御パラメータと対応付けて前記判定フラグを前記地図データベースに記録することにより、前記地図データベースを更新する情報処理装置。
  6.  請求項5に記載の情報処理装置において、
     前記第2判定部は、前記第1評価値と前記第2評価値との大小関係に基づいて報酬または罰則を付与する強化学習を繰り返し実施することで、前記判定フラグの設定を行う情報処理装置。
  7.  請求項1から請求項6のいずれか一項に記載の情報処理装置において、
     複数の前記車両と前記ネットワークを介して接続されるときに、車種が同一である複数の前記車両間では前記制御パラメータを共有する情報処理装置。
  8.  請求項1から請求項7のいずれか一項に記載の情報処理装置において、
     前記地図データベースには、予め設定された車両条件ごとに前記制御パラメータが記録されており、
     前記データ読出部は、前記車両の走行地点と車両条件に対応する前記制御パラメータを前記地図データベースから読み出す情報処理装置。
  9.  請求項8に記載の情報処理装置において、
     前記車両条件は、車種、車速、加速度、積載量、道路傾斜、天候、温度、湿度、路面状態、操舵角、アクセル操作状態、およびブレーキ操作状態の少なくともいずれか1つを含む情報処理装置。
  10.  請求項8に記載の情報処理装置において、
     前記車両条件は、路面状態を含み、
     前記データ読出部は、前記車両の走行地点における路面状態を推定し、推定した前記路面状態に対応する前記制御パラメータを前記地図データベースから読み出す情報処理装置。
  11.  請求項8に記載の情報処理装置において、
     前記車両条件は、車両挙動状態を含み、
     前記データ読出部は、前記車両の走行地点における前記車両の挙動状態を推定し、推定した前記車両の挙動状態に対応する前記制御パラメータを前記地図データベースから読み出す情報処理装置。
  12.  請求項1から請求項11のいずれか一項に記載の情報処理装置において、
     前記観測値は、前記車両のロールレイト、ピッチレイトおよびヨーレイトと、前記車両のシート設置フロアの上下加速度、前後加速度および左右加速度と、前記車両の乗員の生体情報と、の少なくともいずれか1つを含む情報処理装置。
  13.  請求項4から請求項6のいずれか一項に記載の情報処理装置において、
     前記第1判定部は、前記車両の車種および車格の少なくとも一方に基づいて前記基準値を変化させる情報処理装置。
  14.  請求項4から請求項6のいずれか一項に記載の情報処理装置において、
     前記車両の状態に応じて前記探索設定値を調節するモード切替部を備える情報処理装置。
  15.  請求項14に記載の情報処理装置において、
     前記モード切替部は、前記車両の乗員からの指示、前記車両の運転者以外の同乗者の有無、前記同乗者の属性、前記車両が自動運転中である場合の乗員の有無、前記乗員の生体情報、および前記運転者の運転経験の少なくともいずれか1つに基づいて、前記探索設定値を調節する情報処理装置。
  16.  車両とネットワークを介して接続される情報処理装置を用いて前記車両の挙動に関する制御を行う車両制御方法であって、
     道路上の各地点について、前記車両の挙動に関する制御を行うための制御パラメータを、前記情報処理装置が有する地図データベースに予め車種ごとに記録しておき、
     前記車両の車種情報および位置情報を少なくとも含む車両情報を前記車両から前記情報処理装置に送信し、
     前記情報処理装置が受信する前記車両情報に基づいて、前記車両の走行地点に対応する前記制御パラメータを前記地図データベースから読み出し、
     前記地図データベースから読み出した前記制御パラメータに基づいて、前記車両の制御において適用させる適用制御パラメータを設定し、
     設定した前記適用制御パラメータを前記情報処理装置から前記車両に送信し、
     前記適用制御パラメータに基づく制御を前記車両に対して実施し、
     前記適用制御パラメータに基づいて制御された前記車両の挙動に関する観測値を前記車両から前記情報処理装置に送信し、
     前記情報処理装置が受信する前記観測値に基づいて前記地図データベースを更新する車両制御方法。
  17.  車両に搭載されるエッジ側情報処理装置と、
     前記エッジ側情報処理装置とネットワークを介して接続されるセンタ側情報処理装置と、を有し、
     前記センタ側情報処理装置は、
     道路上の各地点について、前記車両の挙動に関する制御を行うための制御パラメータが車種ごとに記録される地図データベースと、
     前記車両の車種情報および位置情報を少なくとも含む車両情報を取得し、前記車両情報に基づいて、前記車両の走行地点に対応する前記制御パラメータを前記地図データベースから読み出すデータ読出部と、
     前記データ読出部が読み出した前記制御パラメータに基づいて、前記車両の制御において適用させる適用制御パラメータを設定するパラメータ設定部と、
     前記適用制御パラメータに基づいて制御された前記車両の挙動に関する観測値を前記車両から取得し、前記観測値に基づいて前記地図データベースを更新するデータ更新部と、を備え、
     前記エッジ側情報処理装置は、
     前記車両情報を管理する車両情報管理部と、
     前記車両から前記観測値を取得する観測部と、
     前記車両情報および前記観測値を前記センタ側情報処理装置に送信し、前記適用制御パラメータを前記センタ側情報処理装置から受信する送受信部と、を備える情報処理システム。
PCT/JP2019/028314 2018-08-10 2019-07-18 情報処理装置、車両制御方法、情報処理システム WO2020031652A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/267,391 US20210291607A1 (en) 2018-08-10 2019-07-18 Information Processing Device, Vehicle Control Method, and Information Processing System
CN201980050360.3A CN112512845B (zh) 2018-08-10 2019-07-18 信息处理装置、车辆控制方法、信息处理系统
DE112019003525.8T DE112019003525B4 (de) 2018-08-10 2019-07-18 Informationsverarbeitungsvorrichtung, Fahrzeugsteuerverfahren und Informationsverarbeitungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-151282 2018-08-10
JP2018151282A JP7011553B2 (ja) 2018-08-10 2018-08-10 情報処理装置、車両制御方法、情報処理システム

Publications (1)

Publication Number Publication Date
WO2020031652A1 true WO2020031652A1 (ja) 2020-02-13

Family

ID=69414931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028314 WO2020031652A1 (ja) 2018-08-10 2019-07-18 情報処理装置、車両制御方法、情報処理システム

Country Status (5)

Country Link
US (1) US20210291607A1 (ja)
JP (1) JP7011553B2 (ja)
CN (1) CN112512845B (ja)
DE (1) DE112019003525B4 (ja)
WO (1) WO2020031652A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172286A (ja) * 2020-04-28 2021-11-01 トヨタ自動車株式会社 車両の制振制御装置、制振制御システム、制振制御方法及びデータ提供装置。
CN113671971A (zh) * 2020-05-15 2021-11-19 百度(美国)有限责任公司 用于自动驾驶车辆的动态参数服务器
CN114594747A (zh) * 2022-01-30 2022-06-07 江苏华东特种车辆有限公司 车辆控制参数的标定系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328626B2 (ja) * 2020-10-30 2023-08-17 トヨタ自動車株式会社 車両の制振制御システム
WO2023091104A1 (en) * 2021-11-19 2023-05-25 Oyak Renault Otomobi̇l Fabri̇kalari Anoni̇m Şi̇rketi̇ A method for energy efficient control of active and semi-active suspension systems
JP2024095207A (ja) * 2022-12-28 2024-07-10 株式会社アイシン 車両制御装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09198108A (ja) * 1996-01-16 1997-07-31 Toyota Motor Corp アクチュエータ制御装置
JPH10181482A (ja) * 1996-12-26 1998-07-07 Aqueous Res:Kk 車両制御装置
JP2004161259A (ja) * 2002-09-25 2004-06-10 Aisin Aw Co Ltd 車両のサスペンション制御装置
JP2009006946A (ja) * 2007-06-29 2009-01-15 Aisin Aw Co Ltd 車両挙動学習装置及び車両挙動学習プログラム
JP2010055303A (ja) * 2008-08-27 2010-03-11 Denso It Laboratory Inc 学習データ管理装置、学習データ管理方法及び車両用空調装置ならびに機器の制御装置
JP2013173490A (ja) * 2012-02-27 2013-09-05 Honda Motor Co Ltd 車両用サスペンション制御システム
JP2013205351A (ja) * 2012-03-29 2013-10-07 Denso Corp ナビゲートシステムおよび車載ナビゲート装置
WO2017061260A1 (ja) * 2015-10-07 2017-04-13 株式会社デンソー イベント情報記憶装置、イベント情報読出装置、運転支援システム、及びイベント情報記憶方法
WO2017169203A1 (ja) * 2016-03-29 2017-10-05 ソニー株式会社 制振制御装置及び制振制御方法、並びに移動体

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049702A (ja) 2001-08-07 2003-02-21 Mazda Motor Corp 車載の自動車用制御ゲイン変更装置、自動車の制御ゲイン変更方法、及び、自動車の制御ゲイン変更用プログラム
JP2006218950A (ja) * 2005-02-09 2006-08-24 Aisin Aw Co Ltd コーナ学習システム
JP2006240401A (ja) * 2005-03-01 2006-09-14 Nissan Motor Co Ltd 車両用サスペンション制御装置
JP4376833B2 (ja) * 2005-07-04 2009-12-02 トヨタ自動車株式会社 車両制御装置および車両制振方法
JP4796357B2 (ja) * 2005-08-29 2011-10-19 アイシン・エィ・ダブリュ株式会社 コーナ学習システム
JP2007106364A (ja) * 2005-10-17 2007-04-26 Aisin Aw Co Ltd 走行支援装置及び走行支援方法
JP4415949B2 (ja) * 2006-01-25 2010-02-17 株式会社日立製作所 走行制御システム及び走行制御方法
US20090018717A1 (en) * 2007-07-11 2009-01-15 Keith Reed Vehicle auto-guidance memory
DE102009054460A1 (de) 2009-12-10 2011-06-16 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Fahrwerksystems eines Kraftfahrzeuges
US9390062B1 (en) * 2012-02-01 2016-07-12 XL Hybrids Managing vehicle information
DE102013210553A1 (de) 2013-06-06 2014-12-11 Bayerische Motoren Werke Aktiengesellschaft Vorausschauendes Fahrwerkregelsystem
US9807172B2 (en) * 2013-10-18 2017-10-31 At&T Intellectual Property I, L.P. Mobile device intermediary for vehicle adaptation
CN104309435B (zh) * 2014-10-27 2016-08-24 江苏大学 一种路面不平度在线辨识方法
DE102015203062A1 (de) 2015-02-20 2016-08-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung des Straßenzustands für ein Fahrzeug
DE102015205210A1 (de) 2015-03-23 2016-09-29 Deere & Company System zur prädiktiven Fahrwerkssteuerung für ein geländegängiges Nutzfahrzeug
US9550495B2 (en) * 2015-03-27 2017-01-24 Intel Corporation Technologies for assisting vehicles with changing road conditions
WO2017184950A1 (en) * 2016-04-22 2017-10-26 ClearMotion, Inc. Method and apparatus for on-center steering and a fast response vehicle
US20170305437A1 (en) * 2016-04-26 2017-10-26 Google Inc. Crowd-sourced vehicle setting recommendations
US9849883B2 (en) * 2016-05-04 2017-12-26 Ford Global Technologies, Llc Off-road autonomous driving
CN106155055B (zh) * 2016-07-13 2019-05-24 百度在线网络技术(北京)有限公司 用于无人驾驶车辆的预警方法和装置
CN106020203B (zh) * 2016-07-15 2020-09-29 百度在线网络技术(北京)有限公司 用于控制无人驾驶车辆的方法及装置
US10445950B1 (en) * 2017-03-27 2019-10-15 Uber Technologies, Inc. Vehicle monitoring system
JP6384564B2 (ja) * 2017-04-12 2018-09-05 カシオ計算機株式会社 画像処理装置、画像処理方法及びプログラム
US10486485B1 (en) * 2017-04-19 2019-11-26 Zoox, Inc. Perception based suspension control
US10474157B2 (en) * 2017-06-06 2019-11-12 Baidu Usa Llc Data-based control error detection and parameter compensation system
US10838423B2 (en) * 2018-08-07 2020-11-17 GM Global Technology Operations LLC Intelligent vehicle navigation systems, methods, and control logic for deriving road segment speed limits

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09198108A (ja) * 1996-01-16 1997-07-31 Toyota Motor Corp アクチュエータ制御装置
JPH10181482A (ja) * 1996-12-26 1998-07-07 Aqueous Res:Kk 車両制御装置
JP2004161259A (ja) * 2002-09-25 2004-06-10 Aisin Aw Co Ltd 車両のサスペンション制御装置
JP2009006946A (ja) * 2007-06-29 2009-01-15 Aisin Aw Co Ltd 車両挙動学習装置及び車両挙動学習プログラム
JP2010055303A (ja) * 2008-08-27 2010-03-11 Denso It Laboratory Inc 学習データ管理装置、学習データ管理方法及び車両用空調装置ならびに機器の制御装置
JP2013173490A (ja) * 2012-02-27 2013-09-05 Honda Motor Co Ltd 車両用サスペンション制御システム
JP2013205351A (ja) * 2012-03-29 2013-10-07 Denso Corp ナビゲートシステムおよび車載ナビゲート装置
WO2017061260A1 (ja) * 2015-10-07 2017-04-13 株式会社デンソー イベント情報記憶装置、イベント情報読出装置、運転支援システム、及びイベント情報記憶方法
WO2017169203A1 (ja) * 2016-03-29 2017-10-05 ソニー株式会社 制振制御装置及び制振制御方法、並びに移動体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172286A (ja) * 2020-04-28 2021-11-01 トヨタ自動車株式会社 車両の制振制御装置、制振制御システム、制振制御方法及びデータ提供装置。
EP3904134A3 (en) * 2020-04-28 2022-03-02 Toyota Jidosha Kabushiki Kaisha Damping control device for vehicle, damping control system, damping control method, and data providing device
JP7354916B2 (ja) 2020-04-28 2023-10-03 トヨタ自動車株式会社 車両の制振制御装置、制振制御システム、制振制御方法及びデータ提供装置。
US11932074B2 (en) 2020-04-28 2024-03-19 Toyota Jidosha Kabushiki Kaisha Damping control device for vehicle, damping control system, damping control method, and data providing device
CN113671971A (zh) * 2020-05-15 2021-11-19 百度(美国)有限责任公司 用于自动驾驶车辆的动态参数服务器
CN113671971B (zh) * 2020-05-15 2024-09-27 百度(美国)有限责任公司 用于自动驾驶车辆的动态参数服务器
US12130142B2 (en) 2020-05-15 2024-10-29 Baidu Usa Llc Dynamic parameter server for autonomous driving vehicles
CN114594747A (zh) * 2022-01-30 2022-06-07 江苏华东特种车辆有限公司 车辆控制参数的标定系统
CN114594747B (zh) * 2022-01-30 2022-11-29 江苏华东特种车辆有限公司 车辆控制参数的标定系统

Also Published As

Publication number Publication date
JP2020026184A (ja) 2020-02-20
CN112512845B (zh) 2024-03-29
JP7011553B2 (ja) 2022-02-10
DE112019003525B4 (de) 2023-03-16
US20210291607A1 (en) 2021-09-23
CN112512845A (zh) 2021-03-16
DE112019003525T5 (de) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2020031652A1 (ja) 情報処理装置、車両制御方法、情報処理システム
JP7197621B2 (ja) 車体運動および乗員体験を制御するための方法およびシステム
EP3139131B1 (en) Methods and systems for driver assistance
JP4796400B2 (ja) 車両速度制御装置および同装置における目標速度設定方法ならびにプログラム
US20150094948A1 (en) Roadway-induced ride quality reconnaissance and route planning
WO2020203026A1 (ja) 官能評価システム、サスペンション装置、サスペンション制御システム
ITTO20080168A1 (it) Sistema di controllo della dinamica di un veicolo, con caratteristiche di regolazione dei parametri di controllo tarabili dall'utilizzatore.
KR20220110319A (ko) 차량 제어 장치, 차량 제어 방법 및 차량 제어 시스템
JP2018205794A (ja) 情報処理システム、運転支援システム、情報処理方法、及びコンピュータプログラム
CN113813597B (zh) 信息处理装置、信息处理系统、程序以及车辆
CN114953884A (zh) 根据路面的地形特征对车辆的控制
Jurisch et al. Vertical Trajectory Planning for Autonomous Vehicles
SE542263C2 (en) A method and a system for controlling acceleration of a cab of a vehicle in z-direction during a gear shift
CN117533347A (zh) 指令生成方法、装置以及车辆
WO2024061446A1 (en) Managing a fleet of vehicles
CN116653525A (zh) 一种车辆减震器的优化控制方法、装置、车载终端及车辆
JP2021195066A (ja) 車両運動制御装置、および、車両運動制御方法
JP2022112971A (ja) 車両制御装置、車両制御方法および車両制御プログラム
JP2022112970A (ja) 車両制御装置、車両制御方法および車両制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846759

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19846759

Country of ref document: EP

Kind code of ref document: A1