WO2020031572A1 - スパッタリング装置 - Google Patents

スパッタリング装置 Download PDF

Info

Publication number
WO2020031572A1
WO2020031572A1 PCT/JP2019/026613 JP2019026613W WO2020031572A1 WO 2020031572 A1 WO2020031572 A1 WO 2020031572A1 JP 2019026613 W JP2019026613 W JP 2019026613W WO 2020031572 A1 WO2020031572 A1 WO 2020031572A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
substrate
rotation axis
opening
magnetic circuit
Prior art date
Application number
PCT/JP2019/026613
Other languages
English (en)
French (fr)
Inventor
小風 豊
照明 岩橋
佐々木 俊介
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201980033716.2A priority Critical patent/CN112154227A/zh
Priority to US15/734,889 priority patent/US20210222289A1/en
Priority to KR1020207033244A priority patent/KR102502558B1/ko
Priority to JP2020536386A priority patent/JP7044887B2/ja
Publication of WO2020031572A1 publication Critical patent/WO2020031572A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present invention relates to a sputtering apparatus, and more particularly to a technique suitable for use in film formation capable of reducing oblique components and achieving high coverage and high target use efficiency.
  • a sputtering apparatus and more particularly to a technique suitable for use in film formation capable of reducing oblique components and achieving high coverage and high target use efficiency.
  • the life of the target is shortened, so that the frequency of maintenance accompanying the replacement of the target increases, and the operation rate of the apparatus decreases.
  • the present invention has been made in view of the above circumstances, and aims to achieve the following objects. 1. To reduce the oblique component of sputtered particles to reduce asymmetry and improve coverage. 2. Improve target utilization.
  • the regulator covers at least half of the area of the substrate, and the shape of the opening has a substantially fan-shaped profile, and the opening substantially matches the magnetic circuit when viewed from the rotation axis direction of the target.
  • the rotation axis of the target and the rotation axis of the substrate are arranged substantially in parallel.
  • the center point of the substantially fan-shaped contour in the shape of the opening may be arranged so as to substantially coincide with the rotation axis of the target when viewed from the rotation axis of the target. Good.
  • the target may be arranged such that the rotation axis of the target substantially coincides with the rotation axis of the substrate when viewed from the rotation axis of the target.
  • the rotation axis of the substrate substantially coincides with a center position of an arc-shaped edge of the opening having a substantially fan-shaped profile when viewed from the rotation axis direction of the target. May be arranged.
  • the rotation axis of the substrate may substantially coincide with a center of any radius of the opening having a substantially fan-shaped profile when viewed from the rotation axis direction of the target.
  • the regulator has a fan-shaped profile whose central angle is obtuse so as not to cover the substrate at a radially outer position with respect to a center point of the opening having a substantially fan-shaped profile. May be formed.
  • the target and the substrate may have substantially the same diameter.
  • a distance between the target and the substrate may be set to be in a range of 1 to 3 times a diameter of the substrate.
  • the sputtering apparatus according to one aspect of the present invention may include a magnetic circuit moving unit that can move the magnetic circuit in a direction smaller than a radius of the target in an in-plane direction of the target.
  • the regulator covers at least half of the area of the substrate, and the shape of the opening has a substantially fan-shaped profile, and the opening substantially matches the magnetic circuit when viewed from the rotation axis direction of the target.
  • the rotation axis of the target and the rotation axis of the substrate are arranged substantially in parallel.
  • the magnetic circuit is made smaller than the target radius, and the region where the erosion is oblique to the film formation region of the substrate is reduced.
  • the regulator regulates the direction of sputter particles incident on the substrate from the target, thereby reducing sputter particles incident obliquely on the substrate from the target.
  • the asymmetry is reduced to improve coverage, and the target is rotated to prevent erosion from being concentrated.
  • the target life (the life of the target) can be increased, and a film can be formed on a rotating substrate with the target utilization efficiency improved.
  • the angle of incidence of the sputtered particles in the oblique direction from the target to the substrate is substantially equal to the arc tangent between the substrate radius and the distance between the target and the substrate with respect to the normal to the target and the substrate. Smaller state can be maintained.
  • the central point of the substantially fan-shaped contour in the shape of the opening is disposed so as to substantially coincide with the rotation axis of the target when viewed from the rotation axis of the target.
  • the area of the target where erosion occurs is temporally dispersed, thereby expanding the area of the target where erosion occurs. This makes it possible to increase the life of the target. Further, it is possible to form a film on a rotating substrate in a state where the utilization efficiency of the target is improved.
  • the angle of incidence of the sputtered particles in the oblique direction from the target to the substrate is substantially equal to the arc tangent between the substrate radius and the distance between the target and the substrate with respect to the normal to the target and the substrate. Smaller state can be maintained.
  • the target is arranged such that the rotation axis of the target substantially coincides with the rotation axis of the substrate when viewed from the rotation axis of the target.
  • coverage in sputtering is improved.
  • the erosion is prevented from being concentrated by rotating the target.
  • the area of the target where erosion occurs is temporally dispersed, thereby expanding the area of the target where erosion occurs. This makes it possible to increase the life of the target. Further, it is possible to form a film on a rotating substrate in a state where the utilization efficiency of the target is improved.
  • the angle of incidence of the sputtered particles in the oblique direction from the target to the substrate is substantially equal to the arc tangent between the substrate radius and the distance between the target and the substrate with respect to the normal to the target and the substrate. Smaller state can be maintained.
  • the rotation axis of the substrate substantially coincides with a center position of an arc-shaped edge of the opening having a substantially fan-shaped profile when viewed from the rotation axis direction of the target.
  • the magnetic circuit is made smaller than the target radius, and the region where the erosion is oblique to the film formation region of the substrate is reduced.
  • the regulator regulates the direction of sputter particles incident on the substrate from the target, thereby reducing sputter particles incident obliquely on the substrate from the target. The coverage is improved, and the erosion is prevented from being concentrated by rotating the target. An area where erosion occurs in the target is temporally dispersed and enlarged.
  • the target life can be increased, and a film can be formed on a rotating substrate with the target utilization efficiency improved.
  • the angle of incidence of the sputtered particles in the oblique direction from the target to the substrate should be at most equal to the arc tangent between the substrate radius and the distance between the target and the substrate with respect to the normal to the target and the substrate. Can be.
  • the target life can be increased, and a film can be formed on a rotating substrate with the target utilization efficiency improved.
  • the incident angle of the sputtered particles in the oblique direction from the target to the substrate is, at most, the arc tangent between the normal to the target and the substrate and the distance between the fan-shaped radial centers in the opening of the regulator. It can be set to a substantially equal state.
  • a sputtering device according to one embodiment of the present invention can solve the above problem.
  • the regulator has a fan-shaped profile whose central angle is obtuse so as not to cover the substrate at a radially outer position with respect to a center point of the opening having a substantially fan-shaped profile. It has the shape of This makes it possible to reduce the area of the regulator and downsize the sputtering apparatus.
  • a distance between the target and the substrate is set to be in a range of 1 to 3 times a diameter of the substrate. This makes it possible to reduce the number of sputter particles obliquely incident as in the case of long throw sputtering, improve coverage, and prevent a decrease in the film formation rate.
  • FIG. 1 is a schematic sectional view illustrating a sputtering device according to a first embodiment of the present invention.
  • FIG. 1 is a schematic plan view illustrating a sputtering device according to a first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a state of consumption of a target in the sputtering apparatus according to the first embodiment of the present invention. It is a schematic sectional view showing the sputtering device concerning a 2nd embodiment of the present invention. It is a schematic plan view showing a sputtering device according to a second embodiment of the present invention. It is a schematic plan view showing a sputtering device according to a third embodiment of the present invention. It is a schematic plan view showing a sputtering device according to a fourth embodiment of the present invention. 4 is a graph showing coverage in an embodiment of the sputtering apparatus according to the present invention.
  • the cathode unit 12 includes a target assembly 13 and a magnet unit 16 (magnetic circuit) disposed above the target assembly 13.
  • the target assembly 13 has a dimension corresponding to the contour dimension of the substrate W, and is formed of a Cu target 14 formed into a circular plate shape in a plan view by a known method, and a bonding material (such as indium) on the upper surface of the target 14. (Not shown).
  • the target assembly 13 can cool the target 14 by flowing a coolant (cooling water) inside the backing plate 15 during film formation by sputtering.
  • An output from a sputtering power supply 15a such as a DC power supply or a high-frequency power supply is connected to the target 14, and power having, for example, a negative potential is supplied to the target 14 during film formation.
  • a stage 17 is disposed at the bottom of the vacuum chamber 11 so as to face the sputtering surface 14a of the target 14.
  • the substrate W is positioned and held by the stage 17 so that the film formation surface of the substrate W faces upward.
  • the stage 17 is connected to the high-frequency power supply 17a, applies a bias potential to the stage 17 and the substrate W, and plays a role of drawing ions of sputtered particles into the substrate W.
  • the center of the stage 17 corresponds to a rotation axis (rotation axis) 17b extending in the vertical direction as a rotation center.
  • the stage 17 is provided below the vacuum chamber 11 so as to be rotatable together with the substrate W by the substrate rotating unit 17c.
  • the substrate W and the target 14 are arranged such that the rotation axis 17b of the substrate W and the rotation axis (rotation axis) 15b of the target 14 both extend in the vertical direction and are substantially parallel to each other. .
  • the rotation axis (rotation axis) 15b of the target 14 and the rotation axis 17b of the substrate W are arranged so as to substantially coincide with each other when viewed from a vertical direction parallel to the rotation axis (rotation axis) 15b of the target 14. ing.
  • the size of the target 14 and the substrate W is set as a circle having substantially the same diameter.
  • the substrate W can be a circular substrate having a diameter of about ⁇ 300 mm or ⁇ 450 mm, which is a standard for a silicon single crystal wafer.
  • the distance t / s between the target 14 and the substrate W can be set in a range from 400 to 900 mm. Accordingly, the distance t / s between the target 14 and the substrate W is in the range of 1 to 3 times, more preferably 1.5 to 2.5 times the diameter of the substrate W or the target 14. It can be set to be
  • a plate-shaped regulator 18 provided with an opening 19 allowing passage of sputtered particles is arranged between the substrate W and the target 14.
  • the regulator 18 covers an area other than the opening 19 and regulates the incident range of the sputtered particles to the substrate W only in a region corresponding to the opening 19.
  • the regulator 18 is fixed via a support member or the like to a deposition-proof plate or the like disposed inside the side wall of the vacuum chamber 11.
  • the size of the opening 19 corresponds to the size of the magnet unit 16.
  • the size and shape of the opening 19 of the regulator 18 are set so as to cover at least half of the area of the substrate W.
  • the diameter of the circular magnet unit 16 is set smaller than the radius of the substrate W and the radius of the target 14.
  • the regulator 18 covers the entire substrate W in plan view except for the opening 19, and is positioned so that the circular magnet unit 16 fits in the opening 19.
  • the rotation axis (rotation axis) 17b, which is the center of rotation of the substrate W, and the rotation axis (rotation axis) 15b, which is the center of rotation of the target 14, are arranged in the vertical direction and are positioned so as to coincide with each other.
  • a center point 19b which is a center of a sector-shaped arc 19a in a sector-shaped contour of the opening 19 provided in the regulator 18.
  • an erosion area is formed by the circular magnet unit 16 only in a region on one side of the rotation axis (rotation axis) 15b, and sputter particles are formed.
  • the target 14 jumps out of the erosion area toward the substrate W.
  • the maximum incident angle ⁇ max which is the largest incident angle of the sputtered particles reaching the substrate W, is, as shown in FIG. 1, the contour end located on the rotation axis (rotation axis) 15b of the circular magnet unit 16. This is indicated by the locus Smax of the sputtered particles flying from the position 14PC to the contour end position WPE located on the fan-shaped arc 19a in the opening 19 of the regulator 18 on the opposite side in the horizontal direction. That is, the angle between the locus Smax of the sputtered particles and the rotation axis (rotation axis) 15b or the rotation axis (rotation axis) 17b is the maximum incident angle ⁇ max.
  • the incident angle of the sputtered particles reaching the substrate W does not become larger than the maximum incident angle ⁇ max defined by the horizontal positional relationship between the rotation axis (rotation axis) 15 b and the contour of the opening 19. .
  • the maximum incident angle ⁇ max which is the largest incident angle in the sputtered particles reaching the substrate W, is from the contour end position 14PE on the outer edge side of the target 14 of the circular magnet unit 16 as shown in FIG.
  • the diameter of the magnet unit 16 is set to be smaller than the radius of the substrate W and the radius of the target 14, the incident angle ⁇ of the oblique sputtered particles incident on the substrate W from the target 14 is different from the target 14.
  • the state can be set to be smaller than the arc tangent of the radius of the substrate W and the distance t / s to the target 14 with respect to the rotation axis (rotation axis) 15b which is the normal to the substrate W.
  • FIG. 3 is a schematic cross-sectional view showing the state of consumption of the target of the sputtering apparatus in the present embodiment.
  • the target 14 since the target 14 is rotated about the rotation axis (rotation axis) 15b as a rotation center, an erosion area is formed only in a region on one side of the rotation axis (rotation axis) 15b. In this case, the magnet unit 16 is relatively rotating. For this reason, as shown in FIG. 3, the state where the erosion is rotating with respect to the target 14 is maintained, and the target 14 is not consumed locally and the life of the target 14 can be extended.
  • the substrate W and the target 14 have a circular shape having substantially the same diameter, a region of the target 14 where erosion does not occur, that is, a useless area not used for sputtering can be minimized.
  • the target 14 and the substrate W have substantially the same diameter, and the rotation axis (rotation axis) 15b of the target 14 matches the rotation axis (rotation axis) 17b of the substrate W.
  • the radially outer region where erosion does not occur in the rotating target 14 can be minimized, and the target use efficiency can be improved with the target life extended.
  • a cylindrical shield member provided at a position covering the periphery of the target 14 and extending downward to reach the regulator 18 can be arranged in the vacuum chamber 11. This may assist in discharging ions of sputtered particles to the substrate W.
  • the rotation axis (rotation axis) 15b of the target 14 and the rotation axis 17b of the substrate W both extend in the vertical direction and are arranged so as to be substantially parallel to each other.
  • the rotation axis (rotation axis) 15b of the target 14 is arranged at a position different from the rotation axis 17b of the substrate W in the horizontal direction.
  • the rotation axis (rotation axis) 15b of the target 14 is disposed so as to substantially coincide with the midpoint of the fan-shaped opening 19 on the arc 19a. .
  • the shape of the opening 19 has a substantially fan-shaped contour, and when viewed from the direction of the rotation axis 14b of the target 14 (in a plan view), the center of the fan-shaped arc 19a is formed.
  • the center point 19b is arranged so as to substantially coincide with the rotation axis (rotation axis) 17b of the substrate W.
  • the arc 19 a in the opening 19 is arranged so as to substantially coincide with the outer edge position of the substrate W.
  • the regulator 18, the substrate W, the target 14, and the magnet unit 16 are arranged at positions substantially parallel to each other, and the magnet unit 16, the target 14, the regulator 18, and the substrate W are arranged in this order from above.
  • the substrate W and the target 14 are formed in a circular shape having substantially the same shape in plan view, and have substantially the same diameter.
  • a rotation axis (rotation axis) 17b, which is the center of rotation of the substrate W, and a rotation axis (rotation axis) 15b, which is the center of rotation of the target 14, are arranged vertically and have a radius of the substrate W or the target 14. Are spaced apart from each other by a distance equal to
  • the rotation axis (rotation axis) 15b of the target 14 and the center point 19b, which is the center of the fan-shaped arc 19a in the fan-shaped contour of the opening 19 provided in the regulator 18, substantially match in plan view. are located.
  • the rotation axis (rotation axis) 17b of the substrate W and the center point 19b which is the center of the sectoral arc 19a in the sectoral outline of the opening 19 provided in the regulator 18 are separated by a distance equal to the radius of the substrate W or the target 14. They are located apart from each other.
  • the maximum incident angle ⁇ max which is the largest incident angle of the sputtered particles reaching the substrate W, is the contour end located on the rotation axis (rotation axis) 15b of the circular magnet unit 16. It is indicated by the locus Smax of the sputtered particles flying from the position 14PC to the contour end position WPC located on the center point 19b of the fan-shaped arc 19a in the opening 19 of the regulator 18 on the opposite side in the horizontal direction. . That is, the angle between the locus Smax of the sputtered particles and the rotation axis (rotation axis) 15b or the rotation axis (rotation axis) 17b is the maximum incident angle ⁇ max.
  • the incident angle of the sputtered particles reaching the substrate W does not become larger than the maximum incident angle ⁇ max defined by the horizontal positional relationship between the rotation axis (rotation axis) 15 b and the contour of the opening 19. .
  • the incident angle ⁇ of the sputtered particles reaching the substrate W may be larger than the maximum incident angle ⁇ max defined by the horizontal positional relationship between the rotation axis (rotation axis) 15 b and the contour of the opening 19. Absent.
  • the magnet unit 16 is made smaller than the radius of the target 14 to reduce the area where the erosion is oblique to the film formation area of the substrate W defined by the opening 19.
  • the regulator 18 regulates the direction of sputtered particles incident on the substrate W from the target 14, reduces sputtered particles incident obliquely from the target 14 on the substrate W, reduces asymmetry, and improves coverage. it can.
  • the erosion is prevented from being concentrated by rotating the target 14, and the area where the erosion occurs in the target 14 is temporally dispersed and enlarged. Accordingly, the target life can be increased, and it is possible to form a sputter film on the rotating substrate W while improving the target use efficiency.
  • a magnetic circuit moving unit 16c that allows the magnet unit 16 to move in the in-plane direction (horizontal direction), particularly, in the radial direction of the target 14 within a range smaller than the radius of the target 14 may be provided. it can.
  • the magnetic circuit moving section 16c can be movable in the horizontal direction so that the magnet unit 16 does not protrude from the area corresponding to the opening 19.
  • the magnetic circuit moving unit 16c can perform a driving method such as rotating the magnet unit 16 in a circular shape or swinging within the range of the above-described region as long as the magnet unit 16 is within the above-described region.
  • the area where the erosion occurs in the target 14 can be further dispersed and expanded in time, the target life can be increased, and the target use efficiency can be improved.
  • FIG. 6 is a schematic plan view showing a sputtering apparatus according to the present embodiment.
  • This embodiment is different from the above-described first and second embodiments in that the position of the rotation axis (rotation axis) 15b of the target 14 is related.
  • the other components corresponding to those of the above-described first and second embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the rotation axis (rotation axis) 15b of the target 14 and the rotation axis 17b of the substrate W both extend in the vertical direction and are arranged so as to be substantially parallel to each other.
  • the rotation axis (rotation axis) 15b of the target 14 is arranged at a position different from the rotation axis 17b of the substrate W in the horizontal direction.
  • the rotation axis (rotation axis) 15b of the target 14 is disposed so as to substantially coincide with the midpoint of the fan-shaped opening 19 on the radius 19c.
  • the size of the opening 19 corresponds to the size of the magnet unit 16.
  • the size and shape of the opening 19 of the regulator 18 are set so as to cover at least half of the area of the substrate W.
  • the shape of the opening 19 has a substantially fan-shaped contour, and when viewed from the direction of the rotation axis 14 b of the target 14 (in plan view), the center point which is the center of the fan-shaped arc 19 a 19b is arranged so as to substantially coincide with the rotation axis (rotation axis) 17b of the substrate W.
  • the arc 19 a in the opening 19 is arranged so as to substantially coincide with the outer edge position of the substrate W, or to be radially outside the outer edge position of the substrate W.
  • the opening 19 substantially matches the magnet unit 16 in a plan view in a direction coinciding with the rotation axis (rotation axis) 15 b of the target 14.
  • the opening 19 of the regulator 18, the substrate W, the target 14, and the outermost shape are such that the outline of the substantially circular magnet unit 16 is the largest when the outline is inside the outline of the fan-shaped opening 19.
  • the relationship between the size and shape of the magnet unit 16 is set.
  • the central angle of the arc 19a in the fan-shaped opening 19 is set such that the contour of the magnet unit 16 falls inside the contour of the fan-shaped opening 19.
  • the regulator 18, the substrate W, the target 14, and the magnet unit 16 are arranged at positions substantially parallel to each other, and the magnet unit 16, the target 14, the regulator 18, and the substrate W are arranged in this order from above.
  • the substrate W and the target 14 are formed in a circular shape having substantially the same shape in plan view, and have substantially the same diameter.
  • the diameter of the circular magnet unit 16 is set smaller than the radius of the substrate W and the radius of the target 14.
  • the regulator 18 covers the entire substrate W in plan view except for the opening 19, and is positioned so that the circular magnet unit 16 fits in the opening 19.
  • the rotation axis (rotation axis) 15b of the target 14 and the center point 19b which is the center of the fan-shaped arc 19a in the fan-shaped contour of the opening 19 provided in the regulator 18 are viewed in plan from the substrate W or the target 14. Are arranged so as to be separated from each other by a distance of about a half of the radius.
  • the rotation axis (rotation axis) 17b of the substrate W and the center point 19b which is the center of the fan-shaped arc 19a in the fan-shaped contour of the opening 19 provided in the regulator 18 are about half the radius of the substrate W or the target 14. They are positioned to be separated from each other by a distance.
  • an erosion area is formed by the circular magnet unit 16 only in a region on one side of the rotation axis (rotation axis) 15b, and sputter particles are formed.
  • the target 14 jumps out of the erosion area toward the substrate W.
  • the maximum incident angle ⁇ max which is the largest incident angle of the sputtered particles reaching the substrate W, is determined in the horizontal direction from the contour end position on the side closer to the rotation axis (rotation axis) 15b of the circular magnet unit 16. This is indicated by the trajectory Smax of the sputtered particles flying to the contour end position at the opening 19 of the regulator 18 far from the rotation axis (rotation axis) 15b of the circular magnet unit 16 on the opposite side. That is, the angle between the locus Smax of the sputtered particles and the rotation axis (rotation axis) 15b or the rotation axis (rotation axis) 17b is about the maximum incident angle ⁇ max.
  • the incident angle of the sputtered particles reaching the substrate W does not become larger than the maximum incident angle ⁇ max defined by the horizontal positional relationship between the rotation axis (rotation axis) 15 b and the contour of the opening 19. .
  • the maximum incident angle ⁇ max which is the largest incident angle of the sputtered particles reaching the substrate W, is at the opening 19 of the regulator 18 on the side closer to the rotation axis (rotation axis) 15 b of the target 14 of the circular magnet unit 16. This is indicated by the locus Smax of the sputtered particles flying to the contour end position. That is, the angle between the trajectory Smax of the sputtered particles and the normal line of the target 14 parallel to the rotation axis (rotation axis) 15b is about the maximum incident angle ⁇ max.
  • the incident angle ⁇ of the sputtered particles reaching the substrate W may be larger than the maximum incident angle ⁇ max defined by the horizontal positional relationship between the rotation axis (rotation axis) 15 b and the contour of the opening 19. Absent.
  • the incident angle ⁇ of the oblique sputtered particles incident on the substrate W from the target 14 is different from that of the target 14.
  • the state can be set to be smaller than the arc tangent of the radius of the substrate W and the distance t / s to the target 14 with respect to the rotation axis (rotation axis) 15b which is the normal to the substrate W.
  • the target 14 and the substrate W have substantially the same diameter, and the rotation axis (rotation axis) 15b of the target 14 and the rotation axis (rotation axis) 17b of the substrate W are separated by a distance equal to the radius of each other. You. As a result, the radially outer region where erosion does not occur in the rotating target 14 can be minimized, and the target utilization efficiency can be improved with the target life extended.
  • FIG. 7 is a schematic plan view illustrating the sputtering apparatus according to the present embodiment.
  • This embodiment is different from the above-described first to third embodiments in the point of the shape of the regulator 18.
  • the other components corresponding to those of the above-described first to third embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the rotation axis (rotation axis) 15b of the target 14 and the rotation axis 17b of the substrate W are arranged so as to substantially coincide with each other when viewed from a vertical direction parallel to the rotation axis (rotation axis) 15b of the target 14. ing.
  • the maximum incident angle ⁇ max which is the largest incident angle of the sputtered particles reaching the substrate W, is on the rotation axis (rotation axis) 15b of the circular magnet unit 16 as in the first embodiment shown in FIG.
  • the angle between the locus Smax of the sputtered particles and the rotation axis (rotation axis) 15b or the rotation axis (rotation axis) 17b is the maximum incident angle ⁇ max.
  • the incident angle of the sputtered particles reaching the substrate W does not become larger than the maximum incident angle ⁇ max defined by the horizontal positional relationship between the rotation axis (rotation axis) 15 b and the contour of the opening 19. .
  • the incident angle ⁇ of the sputtered particles reaching the substrate W becomes larger than the maximum incident angle ⁇ max defined by the horizontal positional relationship between the rotation axis (rotation axis) 15b and the outer edge contour of the substrate W. There is no.
  • the diameter of the magnet unit 16 is set smaller than the radius of the substrate W and the radius of the target 14. Therefore, the incident angle ⁇ of the obliquely sputtered particles incident on the substrate W from the target 14 is equal to the radius of the substrate W and the target 14 relative to the rotation axis (rotation axis) 15 b which is the normal line between the target 14 and the substrate W. Can be set to a state smaller than the arc tangent of the distance t / s to the distance.
  • a collimator having a plurality of through-holes that allow the passage of sputtered particles may be disposed between the substrate W and the target 14.
  • the incident angle of the sputtered particles on the substrate W can be restricted not only to the opening 19 of the regulator 18 but also to a predetermined angle range. Accordingly, it is possible to prevent the oblique incidence of sputtered particles from occurring on the edge of the substrate W.
  • the thickness of the collimator can be set, for example, in the range of 30 mm to 200 mm.
  • the collimator may be fixed via a support member to the inner surface of a deposition-proof plate disposed inside the side wall of the vacuum chamber 11. By grounding the shield plate, the collimator is held at the ground potential. Note that another deposition-preventing plate may be disposed below the collimator.
  • the collimator by disposing the collimator, oblique incidence of sputtered particles on the edge portion of the substrate W can be prevented, and the coverage can be further improved.
  • Target 14 dimensions substrate W dimensions; ⁇ 300mm Magnetic circuit 16 area (corresponding to the erosion area) Mg; ⁇ 700cm 2 ( ⁇ 300mm ) ⁇ 1250cm 2 ( ⁇ 400mm) Regulator 18 opening 19 central angle; 120 ° Distance t / s between target 14 and substrate W; 400 mm, 600 mm Target 14 material; Cu Ar flow rate: At the time of plasma ignition; 20 sccm, at the time of film formation; 0 sccm Cathode power; DC 20kW Stage Bias power; 300W Stage temperature: -20 ° C Target film thickness: 43 nm
  • the coverage B / C was measured.
  • the measurement of the coverage B / C was performed by a length measurement SEM. Also, The distance R from the center of the substrate W at the coverage B / C measurement position was set to 0 mm to 147 mm.
  • FIG. 8 shows the result. From this result, it can be seen that the coverage B / C is improved by reducing the magnetic circuit 16 area (corresponding to the erosion area) Mg. Thus, it can be seen that the coverage B / C is improved to the same extent even if t / s is set to be short, in which the longer the normal, the better the coverage B / C is.
  • Target 14 dimensions ⁇ 400mm
  • Substrate W size ⁇ 300mm Magnetic circuit 16 area Mg; 700cm 2 ( ⁇ 300mmm) Regulator 18 opening 19 central angle; 120 ° Distance t / s between target 14 and substrate W; 600 mm Distance between the rotation axis of the magnetic circuit 16 and the rotation axis of the substrate W; 75 mm (the rotation axis of the magnetic circuit 16 is located at the center of the opening 19 of the regulator 18)
  • Target 14 material Cu Ar flow rate: At the time of plasma ignition; 20 sccm, at the time of film formation; 0 sccm Cathode power; DC 20kW Stage Bias power; 300W Stage temperature: -20 ° C Target film thickness: 43 nm
  • the target life it can be seen that improved to about 1.8 times by the erosion area and ⁇ 1250cm 2 ⁇ 700cm 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本発明のスパッタリング装置は、ターゲットと基板との間に設けられて磁気回路に対応する開口を有して前記磁気回路に対応しない部分を覆う板状のレギュレータを有する。前記レギュレータは、少なくとも前記基板の面積の半分以上の面積を覆う。前記開口の形状が、略扇型輪郭を有する。前記開口が前記ターゲットの回転軸線方向から見て前記磁気回路と略一致するように配置されており、前記ターゲットの前記回転軸線と前記基板の回転軸線とが略平行に配置される。

Description

スパッタリング装置
 本発明は、スパッタリング装置に関し、特に、斜め成分を低減して高カバレッジとターゲットの高利用効率とが可能な成膜に用いて好適な技術に関する。
 本願は、2018年8月10日に日本に出願された特願2018-151527号に基づき優先権を主張し、その内容をここに援用する。
 従来より、半導体デバイスの製造工程として、所定のアスペクト比を有するビアホールやコンタクトホールの内面(内壁面及び底面)にCu膜からなるシード層を成膜する工程が知られている。このようなCu膜の成膜に用いる成膜装置として、スパッタリング装置が、例えば、特許文献1で知られている。この装置は、処理すべき基板とターゲットとが対向配置される真空チャンバを備え、真空チャンバ内にスパッタガスを導入し、ターゲットに電力投入して基板とターゲットとの間にプラズマを形成し、ターゲットをスパッタリングして飛散したスパッタ粒子(CuラジカルやCuイオン)を基板に付着、堆積することでCu膜を基板上に成膜する。
 上述した特許文献1に記載される技術では、基板とターゲットとの間に磁場を発生させることによってイオンの指向性を向上させ、これによって溝部内壁面に均一なカバレッジで成膜することができる。
日本国特開2013-80779号公報
 しかしながら、上述した特許文献1に記載の技術では、エロージョンを大きくすると被処理基板に斜めに入射するスパッタ粒子の数が多くなり、カバレッジが悪化する可能性があり、エロージョンを小さくすると所謂リデポと呼ばれる再付着膜の剥離によって異物が発生するという問題があった。
 また、エロージョンを小さくするためにターゲット寸法を小さくすると、ターゲット寿命が短くなるため、ターゲット交換に伴うメンテナンス頻度が増加し、装置の稼働率が低下するという問題があった。
 本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しようとするものである。
1.スパッタ粒子の斜め成分を低減して、非対称性を低減してカバレッジを向上すること。
2.ターゲットの利用効率を向上すること。
 本発明の一態様に係るスパッタリング装置は、カソードに取り付けられたターゲットに対して成膜すべき基板を対向させ、前記ターゲットの裏面に設けられた磁気回路を用いて前記ターゲットをスパッタリングして前記基板に成膜する。このスパッタリング装置においては、前記磁気回路の径寸法が前記ターゲットの半径より小さく設定されている。前記スパッタリング装置は、前記基板を、前記基板の回転軸線周りに回転する基板回転部と、前記ターゲットを、前記ターゲットの回転軸線周りに回転するターゲット回転部と、前記ターゲットと前記基板との間に設けられて前記磁気回路に対応する開口を有して前記磁気回路に対応しない部分を覆う板状のレギュレータとを有する。前記レギュレータが少なくとも前記基板の面積の半分以上の面積を覆い、前記開口の形状が、略扇型輪郭を有し、前記開口が前記ターゲットの前記回転軸線方向から見て前記磁気回路と略一致するように配置され、前記ターゲットの前記回転軸線と前記基板の前記回転軸線とが略平行に配置される。
 本発明の一態様に係るスパッタリング装置においては、前記開口の形状における略扇型輪郭の中心点が前記ターゲットの前記回転軸線から見て前記ターゲットの前記回転軸線と略一致するように配置されてもよい。
 本発明の一態様に係るスパッタリング装置においては、前記ターゲットの前記回転軸線と前記基板の前記回転軸線とが前記ターゲットの前記回転軸線から見て略一致するように配置されてもよい。
 本発明の一態様に係るスパッタリング装置においては、前記基板の前記回転軸線が、前記ターゲットの前記回転軸線方向から見て略扇型輪郭を有する前記開口の円弧状縁の中心位置と略一致するように配置されてもよい。
 本発明の一態様に係るスパッタリング装置においては、前記基板の前記回転軸線が、前記ターゲットの前記回転軸線方向から見て略扇型輪郭を有する前記開口におけるいずれかの半径の中心と略一致するように配置されてもよい。
 本発明の一態様に係るスパッタリング装置においては、前記レギュレータが、略扇型輪郭を有する前記開口の中心点に対する径方向外側位置では、前記基板を覆わないように中心角が鈍角となる扇型輪郭の形状を有してもよい。
 本発明の一態様に係るスパッタリング装置においては、前記ターゲットと前記基板とが、略等しい径寸法を有してもよい。
 本発明の一態様に係るスパッタリング装置においては、前記ターゲットと前記基板との距離が、前記基板の径寸法に対して1倍~3倍の範囲となるよう設定されてもよい。
 本発明の一態様に係るスパッタリング装置においては、前記磁気回路を前記ターゲットの半径より小さい範囲で前記ターゲットの面内方向に移動可能とする磁気回路移動部を有してもよい。
 本発明の一態様に係るスパッタリング装置は、カソードに取り付けられたターゲットに対して成膜すべき基板を対向させ、前記ターゲットの裏面に設けられた磁気回路を用いて前記ターゲットをスパッタリングして前記基板に成膜する。このスパッタリング装置においては、前記磁気回路の径寸法が前記ターゲットの半径より小さく設定されている。前記スパッタリング装置は、前記基板を、前記基板の回転軸線周りに回転する基板回転部と、前記ターゲットを、前記ターゲットの回転軸線周りに回転するターゲット回転部と、前記ターゲットと前記基板との間に設けられて前記磁気回路に対応する開口を有して前記磁気回路に対応しない部分を覆う板状のレギュレータとを有する。前記レギュレータが少なくとも前記基板の面積の半分以上の面積を覆い、前記開口の形状が、略扇型輪郭を有し、前記開口が前記ターゲットの前記回転軸線方向から見て前記磁気回路と略一致するように配置され、前記ターゲットの前記回転軸線と前記基板の前記回転軸線とが略平行に配置される。
 これにより、磁気回路をターゲット半径より小さくしてエロージョンが基板の成膜領域に対して斜め位置となる領域を減らす。レギュレータによってターゲットから基板に入射するスパッタ粒子の方向を規制して、ターゲットから基板に対して斜め方向に入射するスパッタ粒子を削減する。非対称性を低減してカバレッジを向上するとともに、ターゲットを回転させてエロージョンが集中することを防止する。ターゲットにおけるエロージョンの発生する領域が時間的に分散させて拡大する。これにより、ターゲットライフ(ターゲットの寿命)を増大することが可能となり、ターゲット利用効率を向上した状態で、回転する基板に成膜することを可能にできる。
 ここで、ターゲットから基板に入射する斜め方向のスパッタ粒子における入射角度が、ターゲットと基板との法線に対して、基板半径とターゲット基板間距離とのアークタンジェントにほぼ等しい角度であるか、これよりも小さい状態を維持することができる。
 本発明の一態様に係るスパッタリング装置においては、前記開口の形状における略扇型輪郭の中心点が前記ターゲットの前記回転軸線から見て前記ターゲットの前記回転軸線と略一致するように配置される。
 これにより、磁気回路をターゲット半径より小さくすることで、エロージョンが基板の成膜領域に対して斜め位置となる領域を減らす。同時に、レギュレータによってターゲットから基板に入射するスパッタ粒子の方向を規制して、ターゲットから基板に対して斜め方向に入射するスパッタ粒子を削減する。これにより、基板に入射するスパッタ粒子における非対称性を低減する。これにより、スパッタにおけるカバレッジを向上する。これと同時に、ターゲットを回転させてエロージョンが集中することを防止する。また、ターゲットにおけるエロージョンの発生する領域を時間的に分散させることで、ターゲットにおけるエロージョンの発生する領域を拡大する。これにより、ターゲットのライフを増大することが可能となる。また、ターゲットの利用効率を向上した状態で、回転する基板に成膜することを可能にできる。
 ここで、ターゲットから基板に入射する斜め方向のスパッタ粒子における入射角度が、ターゲットと基板との法線に対して、基板半径とターゲット基板間距離とのアークタンジェントにほぼ等しい角度であるか、これよりも小さい状態を維持することができる。
 本発明の一態様に係るスパッタリング装置においては、前記ターゲットの前記回転軸線と前記基板の前記回転軸線とが前記ターゲットの前記回転軸線から見て略一致するように配置される。
 これにより、スパッタにおけるカバレッジを向上する。これと同時に、ターゲットを回転させてエロージョンが集中することを防止する。また、ターゲットにおけるエロージョンの発生する領域を時間的に分散させることで、ターゲットにおけるエロージョンの発生する領域を拡大する。これにより、ターゲットのライフを増大することが可能となる。また、ターゲットの利用効率を向上した状態で、回転する基板に成膜することを可能にできる。
 ここで、ターゲットから基板に入射する斜め方向のスパッタ粒子における入射角度が、ターゲットと基板との法線に対して、基板半径とターゲット基板間距離とのアークタンジェントにほぼ等しい角度であるか、これよりも小さい状態を維持することができる。
 本発明の一態様に係るスパッタリング装置においては、前記基板の前記回転軸線が、前記ターゲットの前記回転軸線方向から見て略扇型輪郭を有する前記開口の円弧状縁の中心位置と略一致するように配置される。
 これにより、磁気回路をターゲット半径より小さくしてエロージョンが基板の成膜領域に対して斜め位置となる領域を減らす。レギュレータによってターゲットから基板に入射するスパッタ粒子の方向を規制して、ターゲットから基板に対して斜め方向に入射するスパッタ粒子を削減する。カバレッジを向上するとともに、ターゲットを回転させてエロージョンが集中することを防止する。ターゲットにおけるエロージョンの発生する領域が時間的に分散させて拡大する。ターゲットライフを増大することが可能となり、ターゲット利用効率を向上した状態で、回転する基板に成膜することを可能にできる。
 ここで、ターゲットから基板に入射する斜め方向のスパッタ粒子における入射角度が、最大でも、ターゲットと基板との法線に対して基板半径とターゲット基板間距離とのアークタンジェントにほぼ等しい状態とすることができる。
 本発明の一態様に係るスパッタリング装置においては、前記基板の前記回転軸線が、前記ターゲットの前記回転軸線方向から見て略扇型輪郭を有する前記開口におけるいずれかの半径の中心と略一致するように配置される。
 これにより、磁気回路をターゲット半径より小さくしてエロージョンが基板の成膜領域に対して斜め位置となる領域を減らす。レギュレータによってターゲットから基板に入射するスパッタ粒子の方向を規制して、ターゲットから基板に対して斜め方向に入射するスパッタ粒子を削減する。カバレッジを向上するとともに、ターゲットを回転させてエロージョンが集中することを防止する。ターゲットにおけるエロージョンの発生する領域が時間的に分散させて拡大する。これにより、ターゲットライフを増大することが可能となり、ターゲット利用効率を向上した状態で、回転する基板に成膜することを可能にできる。
 ここで、ターゲットから基板に入射する斜め方向のスパッタ粒子における入射角度が、最大でも、ターゲットと基板との法線に対して、レギュレータの開口における扇型の半径中心どうしの距離とのアークタンジェントにほぼ等しい状態とすることができる。本発明の一態様に係るスパッタリング装置は、上記課題を解決することができる。
 本発明の一態様に係るスパッタリング装置においては、前記レギュレータが、略扇型輪郭を有する前記開口の中心点に対する径方向外側位置では、前記基板を覆わないように中心角が鈍角となる扇型輪郭の形状を有する。
 これにより、レギュレータの面積を小さくして、スパッタリング装置を小型化することができる。
 本発明の一態様に係るスパッタリング装置においては、前記ターゲットと前記基板とが、略等しい径寸法を有する。
 これにより、回転するターゲットにおいてエロージョンの発生しない径方向外側の領域を最小化し、ターゲットライフを伸ばした状態で、ターゲットの利用効率を向上することができる。
 本発明の一態様に係るスパッタリング装置においては、前記ターゲットと前記基板との距離が、前記基板の径寸法に対して1倍~3倍の範囲となるよう設定される。
 これにより、ロングスロースパッタのように斜め入射するスパッタ粒子を削減してカバレッジを向上するとともに、成膜レートの減少を防止することが可能となる。
 本発明の一態様に係るスパッタリング装置においては、前記磁気回路を前記ターゲットの半径より小さい範囲で前記ターゲットの面内方向に移動可能とする磁気回路移動部を有する。
 これにより、エロージョンが発生する領域が集中することを防止して、ターゲットライフをより改善することができる。
 さらに、本発明の一態様に係るスパッタリング装置においては、前記磁気回路を、前記磁気回路の回転軸線周りに回転する磁気回路回転部が設けられ、前記磁気回路の回転軸線と前記ターゲットの回転軸線とが略平行に配置され、前記磁気回路の回転軸線が、前記ターゲットの回転軸線方向から見て前記開口の内部に位置するように配置されることができる。
 また、本発明の一態様に係るスパッタリング装置においては、前記ターゲットの回転軸線が、前記ターゲットの回転軸線方向視して前記開口の内部に位置するように配置されることができる。
 本発明によれば、スパッタ粒子の斜め成分を低減して、非対称性を低減してカバレッジを向上することができるとともに、ターゲットの利用効率を向上することができるという効果を奏することが可能となる。
本発明の第1実施形態に係るスパッタリング装置を示す模式断面図である。 本発明の第1実施形態に係るスパッタリング装置を示す模式平面図である。 本発明の第1実施形態に係るスパッタリング装置におけるターゲットの消耗状態を示す模式断面図である。 本発明の第2実施形態に係るスパッタリング装置を示す模式断面図である。 本発明の第2実施形態に係るスパッタリング装置を示す模式平面図である。 本発明の第3実施形態に係るスパッタリング装置を示す模式平面図である。 本発明の第4実施形態に係るスパッタリング装置を示す模式平面図である。 本発明に係るスパッタリング装置の実施例におけるカバレッジを示すグラフである。
 以下、本発明の第1実施形態に係るスパッタリング装置を、図面に基づいて説明する。
 図1は、本実施形態におけるスパッタリング装置を示す模式断面図である。図2は、本実施形態におけるスパッタリング装置を示す模式平面図である。図1において、符号10は、スパッタリング装置である。
 本実施形態に係るスパッタリング装置10によって処理される基板Wには、アスペクト比が高い微細なホールや段差等が形成されている。このホールの内面にCu膜を形成する場合などに、本実施形態に係るスパッタリング装置10は用いられてもよい。
 本実施形態に係るスパッタリング装置10は、マグネトロン方式のスパッタリング装置であり、図1、図2に示すように、処理室11aを画成する真空チャンバ11を備える。真空チャンバ11の天井部には、カソードユニット12が取付けられている。
 なお、本実施形態においては、図1において、真空チャンバ11の底部側から天井部側を向く方向を「上」或いは「上方向」とし、真空チャンバ11の天井部側から底部側を向く方向を「下」或いは「下方向」として説明するが、カソードユニット12の他の部材(スパッタリング装置10を構成する部材)配置状態は、この構成に限られない。
 カソードユニット12は、ターゲットアッセンブリ13と、ターゲットアッセンブリ13の上方に配置された磁石ユニット16(磁気回路)とから構成されている。
 ターゲットアッセンブリ13は、基板Wの輪郭寸法に対応する寸法を有し、公知の方法で平面視円形の板状に形成されたCu製のターゲット14と、ターゲット14の上面にインジウム等のボンディング材(図示省略)を介して接合されるバッキングプレート15とで構成されている。ターゲットアッセンブリ13は、スパッタによる成膜中、バッキングプレート15の内部に冷媒(冷却水)を流すことでターゲット14を冷却できるようになっている。ターゲット14には、DC電源や高周波電源等のスパッタ電源15aからの出力が接続され、成膜時、ターゲット14に、例えば、負の電位を持った電力が投入される。
 ターゲット14を装着した状態でバッキングプレート15の中心が、鉛直方向に延在する回転軸(回転軸線)15bを回転中心としてターゲット回転部15cによりターゲット14とともに回転可能として真空チャンバ11の上部に配置される。
 ターゲット14の下面は、スパッタ面14aである。磁石ユニット16は、スパッタ面14aの下方空間に磁場を発生させ、スパッタ時にスパッタ面14aの下方で電離した電子等を捕捉し、ターゲット14から飛散したスパッタ粒子を効率よくイオン化する構造を有する。
 平面視において、磁石ユニット16の外形輪郭は、略円形であり、磁石ユニット16の径寸法がターゲット14の半径より小さく設定される。なお、磁石ユニット16の外形輪郭の形状としては、略円形以外の形状を採用することもできるが、その場合、磁石ユニット16の径寸法とは、最大となる径寸法(水平方向寸法)を意味する。
 磁石ユニット16は、平面視において、複数、例えば、二重とされる円形に複数の磁石が並んだ構造を有する。この構造においては、それぞれの円形列の磁石先端部の極性が互いに隣接する磁石の間で異なるように、複数の磁石が配置されていることができる。
 真空チャンバ11の底部には、ターゲット14のスパッタ面14aに対向するようにステージ17が配置されている。基板Wは、基板Wの成膜面が上側を向くようにステージ17によって位置決め保持されている。ステージ17は、高周波電源17aに接続され、ステージ17及び基板Wにバイアス電位が印加され、スパッタ粒子のイオンを基板Wに引き込む役割を果たす。
 ステージ17の中心は、鉛直方向に延在する回転軸(回転軸線)17bを回転中心に相当する。ステージ17は、基板回転部17cにより、基板Wとともに回転可能となるように、真空チャンバ11の下部に設けられている。
 基板Wの回転軸線17bとターゲット14の回転軸(回転軸線)15bとは、いずれも、鉛直方向に延在して、互いに略平行となるように、基板W及びターゲット14は、配置されている。
 本実施形態においては、ターゲット14の回転軸(回転軸線)15bと基板Wの回転軸線17bとがターゲット14の回転軸(回転軸線)15bと平行な鉛直方向から見て略一致するように配置されている。
 ターゲット14と基板Wとの大きさは、互いに略等しい径寸法を有する円形として設定される。
 基板Wは、シリコン単結晶ウェーハとしての規格であるφ300mm程度あるいはφ450mm程度の径寸法を有する円形基板とされることが可能である。
 この場合、ターゲット14と基板Wとの間の距離t/sは、400~900mmの範囲に設定することができる。
 したがって、ターゲット14と基板Wとの距離t/sは、基板Wまたはターゲット14の径寸法に対して、1倍~3倍の範囲、より好ましくは、1.5倍~2.5倍の範囲となるよう設定されることができる。
 真空チャンバ11の底部には、ターボ分子ポンプやロータリーポンプなどからなる真空排気部P1に通じる排気管が接続されている。また、真空チャンバ11の側壁には、アルゴン等の希ガスたるスパッタガスを供給するスパッタガス供給部P2に通じるガス供給管が接続されおり、ガス管には、マスフローコントローラが設けられる。
 スパッタガス供給部P2は、真空チャンバ11の処理室11a内に導入されるスパッタガスの流量を制御する。後述する真空排気部P1により一定の排気速度で真空チャンバ11の処理室11aの内部が真空引きされ、処理室11a内に供給されたスパッタガスが排気される。これによって、処理室11aに対してスパッタガスが導入されながら、成膜中において、処理室の圧力(全圧)が略一定に保持される。
 また、基板Wとターゲット14との間には、スパッタ粒子の通過を許容する開口19が設けられた板状のレギュレータ18が配置されている。レギュレータ18は、開口19以外の部分を覆って、スパッタ粒子の基板Wへの入射範囲を開口19に対応する領域のみに規制している。
 レギュレータ18は、真空チャンバ11の側壁の内側に配置された防着板などに支持部材等を介して固定されている。
 レギュレータ18において、開口19の大きさは、磁石ユニット16の大きさに対応する。
 少なくとも基板Wの面積の半分以上を覆うように、レギュレータ18の開口19の大きさ・形状が設定される。
 開口19の形状は、図1、図2に示すように、略扇型輪郭とされており、ターゲット14の回転軸線14bの方向から見て(平面視において)、扇型の円弧19aにおける中心となる中心点19bが、ターゲット14の回転軸(回転軸線)15bおよび基板Wの回転軸(回転軸線)17bと略一致するように配置される。
 開口19における円弧19aは、基板Wの外縁位置と一致するか、基板Wの外縁位置よりも基板Wの径方向外側となるように配置されている。
 また、開口19は、ターゲット14の回転軸(回転軸線)15bの方向から見て(平面視において)、ターゲット14の回転軸(回転軸線)15bと一致する方向に平面視して、磁石ユニット16と略一致する。言い換えると、略円形とされる磁石ユニット16の輪郭が、扇型形状を有する開口19の輪郭の内側に収まった状態で最も大きくなるように、レギュレータ18の開口19、基板W、ターゲット14、及び磁石ユニット16の大きさ・形状の関係が設定されている。
 つまり、扇型形状を有する開口19における円弧19aの中心角は、磁石ユニット16の輪郭が、平面視して扇型形状を有する開口19の輪郭の内側にほぼ収まるように設定される。
 次に、本実施形態におけるレギュレータ18の開口19、基板W、ターゲット14、及び磁石ユニット16の配置、および、スパッタ粒子の軌跡について説明する。
 レギュレータ18、基板W、ターゲット14、及び磁石ユニット16は、互いに略平行な位置に配置され、上から、磁石ユニット16、ターゲット14、レギュレータ18、及び基板Wの順に配置されている。
 基板Wとターゲット14とは、平面視して略同一形状となる円形とされて、略同一の径寸法を有する。
 円形の磁石ユニット16の径寸法は、基板Wの半径およびターゲット14の半径よりも小さく設定されている。
 レギュレータ18は、開口19の部分を除いて、平面視して基板Wの全体を覆うとともに、開口19の部分に、円形の磁石ユニット16が収まるように位置されている。
 基板Wの回転中心である回転軸(回転軸線)17bと、ターゲット14の回転中心である回転軸(回転軸線)15bとは、鉛直方向に配置されて、互いに一致するように位置している。
 この基板Wの回転軸(回転軸線)17bおよびターゲット14の回転軸(回転軸線)15bと、レギュレータ18に設けられた開口19の扇型輪郭における扇型の円弧19aにおける中心となる中心点19bとは、平面視してほぼ一致するように配置されている。
 回転軸(回転軸線)15bを回転中心として回転するターゲット14では、その回転軸(回転軸線)15bよりも片側となる領域のみにおいて、円形の磁石ユニット16によって、エロージョン領域が形成され、スパッタ粒子がターゲット14のエロージョン領域から基板Wに向けて飛び出すことになる。
 このとき、ターゲット14における回転軸(回転軸線)15bのエロージョン領域から飛び出したスパッタ粒子は、レギュレータ18の開口19の部分を通ったスパッタ粒子のみが基板Wへと到達する。従って、基板Wへと到達するスパッタ粒子における最も大きい入射角度である最大入射角度θmaxは、図1に示すように、円形の磁石ユニット16の回転軸(回転軸線)15b上に位置する輪郭端部位置14PCから、水平方向における反対側となるレギュレータ18の開口19における扇型の円弧19a上に位置する輪郭端部位置WPEへと飛翔するスパッタ粒子の軌跡Smaxによって示されることになる。
 つまり、スパッタ粒子の軌跡Smaxと、回転軸(回転軸線)15bまたは回転軸(回転軸線)17bとの為す角が最大入射角度θmaxとなる。
 これにより、基板Wへと到達するスパッタ粒子における入射角度は、回転軸(回転軸線)15bと開口19の輪郭との水平方向における位置関係によって規定された最大入射角度θmaxよりも大きくなることはない。
 同時に、ターゲット14における外縁部側のエロージョン領域から飛び出したスパッタ粒子は、レギュレータ18の開口19の部分を通ったスパッタ粒子のみが基板Wへと到達する。従って、基板Wへと到達するスパッタ粒子における最も大きい入射角度である最大入射角度θmaxは、図1に示すように、円形の磁石ユニット16のターゲット14における外縁部側である輪郭端部位置14PEから、水平方向における反対側となるレギュレータ18の開口19の中心点19b上に位置する輪郭端部位置WPCへと飛翔するスパッタ粒子の軌跡Smaxによって示されることになる。
 つまり、スパッタ粒子の軌跡Smaxと、回転軸(回転軸線)15bに平行なターゲット14の法線との為す角が最大入射角度θmaxとなる。
 これにより、基板Wへと到達するスパッタ粒子における入射角度θは、回転軸(回転軸線)15bと開口19の輪郭との水平方向における位置関係によって規定された最大入射角度θmaxよりも大きくなることはない。
 したがって、磁石ユニット16の径寸法が基板Wの半径およびターゲット14の半径よりも小さく設定されているために、ターゲット14から基板Wに入射する斜め方向のスパッタ粒子における入射角度θが、ターゲット14と基板Wとの法線である回転軸(回転軸線)15bに対して基板Wの半径とターゲット14との距離t/sとのアークタンジェントよりも小さい状態とすることができる。
 図3は、本実施形態におけるスパッタリング装置のターゲットの消耗状態を示す模式断面図である。
 ここで、ターゲット14が、回転軸(回転軸線)15bを回転中心として回転していることで、回転軸(回転軸線)15bよりも片側となる領域のみにおいてエロージョン領域となるが、ターゲット14に対しては相対的に磁石ユニット16が回転している。このため、図3に示すように、ターゲット14にとってエロージョンが回転している状態を維持しており、局所的にターゲット14が消耗することがなく、ターゲット14の寿命を延ばすことができる。
 また、基板Wが、回転軸(回転軸線)17bを回転中心として回転していることで、基板W全面に均一に成膜をおこなうことが可能となる。
 基板Wとターゲット14とが、略同一の径寸法を有する円形とされることで、ターゲット14におけるエロージョンの発生しない領域、つまり、スパッタリングに用いられない無駄な面積を最小にすることができる。
 本実施形態においては、磁石ユニット16をターゲット14半径より小さくして開口19で規定される基板Wの成膜領域に対してエロージョンが斜め位置となる領域を減らす。レギュレータ18によってターゲット14から基板Wに入射するスパッタ粒子の方向を規制して、ターゲット14から基板Wに対して斜め方向に入射するスパッタ粒子を削減する。非対称性を低減してカバレッジを向上するとともに、ターゲット14を回転させてエロージョンが集中することを防止する。ターゲット14におけるエロージョンが発生する領域を時間的に分散させて拡大する。これにより、ターゲットライフ(ターゲットの寿命)を増大することが可能となり、ターゲット利用効率を向上した状態で、回転する基板Wにスパッタ成膜することを可能にできる。
 同時に、ターゲット14と基板Wとが略等しい径寸法を有して、ターゲット14の回転軸(回転軸線)15bと基板Wの回転軸(回転軸線)17bとが一致する。これにより、回転するターゲット14においてエロージョンの発生しない径方向外側の領域を最小化し、ターゲットライフを伸ばした状態で、ターゲットの利用効率を向上することができる。
 なお、本実施形態において、真空チャンバ11内には、ターゲット14の周囲を覆う位置に設けれ、レギュレータ18まで達するように下方に延びる筒状のシールド部材を配置することができる。これにより、スパッタ粒子のイオンが基板Wへと放出されることをアシストしてもよい。
 以下、本発明の第2実施形態に係るスパッタリング装置を、図面に基づいて説明する。
 図4は、本実施形態におけるスパッタリング装置を示す模式断面図である。図5は、本実施形態におけるスパッタリング装置を示す模式平面図である。本実施形態は、ターゲット14の回転軸(回転軸線)15bの位置に関する点で、上述した第1実施形態とは異なる。これ以外の上述した第1実施形態と対応する構成には同一の符号を付してその説明を省略する。
 本実施形態においては、ターゲット14の回転軸(回転軸線)15bと基板Wの回転軸線17bとがいずれも鉛直方向に延在して、互いに略平行となるように配置されている。ターゲット14の回転軸(回転軸線)15bは、基板Wの回転軸線17bとは、水平方向に異なる位置に配置されている。
 具体的には、ターゲット14の回転軸(回転軸線)15bが、図4、図5に示すように、扇型形状を有する開口19の円弧19a上における中点と略一致するように配置される。
 レギュレータ18において、開口19の大きさは、磁石ユニット16の大きさに対応する。
 少なくとも基板Wの面積の半分以上を覆うように、レギュレータ18の開口19の大きさ・形状が設定される。
 開口19の形状は、図4、図5に示すように、略扇型輪郭とされており、ターゲット14の回転軸線14bの方向から見て(平面視において)、扇型の円弧19aにおける中心となる中心点19bが、基板Wの回転軸(回転軸線)17bと略一致するように配置される。
 開口19における円弧19aは、基板Wの外縁位置とほぼ一致するように配置されている。
 また、開口19は、ターゲット14の回転軸(回転軸線)15bと一致する方向に平面視して、磁石ユニット16と略一致する。言い換えると、略円形とされる磁石ユニット16の輪郭が、扇型形状を有する開口19の輪郭の内側に収まった状態で最も大きくなるように、レギュレータ18の開口19、基板W、ターゲット14、及び磁石ユニット16の大きさ・形状の関係が設定されている。
 つまり、扇型形状を有する開口19における円弧19aの中心角は、磁石ユニット16の輪郭が、扇型形状を有する開口19の輪郭の内側に収まるように設定される。
 次に、本実施形態におけるレギュレータ18の開口19、基板W、ターゲット14、及び磁石ユニット16の配置、および、スパッタ粒子の軌跡について説明する。
 レギュレータ18、基板W、ターゲット14、及び磁石ユニット16は、互いに略平行な位置に配置され、上から、磁石ユニット16、ターゲット14、レギュレータ18、及び基板Wの順に配置されている。
 基板Wとターゲット14とは、平面視して略同一形状となる円形とされて、略同一の径寸法を有する。
 円形の磁石ユニット16の径寸法は、基板Wの半径およびターゲット14の半径よりも小さく設定されている。
 レギュレータ18は、開口19の部分を除いて、平面視して基板Wの全体を覆うとともに、開口19の部分に、円形の磁石ユニット16が収まるように位置されている。
 基板Wの回転中心である回転軸(回転軸線)17bと、ターゲット14の回転中心である回転軸(回転軸線)15bとは、鉛直方向に配置されており、かつ、基板Wまたはターゲット14の半径に等しい距離だけ互いに離間するように位置されている。
 このターゲット14の回転軸(回転軸線)15bと、レギュレータ18に設けられた開口19の扇型輪郭における扇型の円弧19aにおける中心となる中心点19bとは、平面視してほぼ一致するように配置されている。基板Wの回転軸(回転軸線)17bとレギュレータ18に設けられた開口19の扇型輪郭における扇型の円弧19aにおける中心となる中心点19bとは、基板Wまたはターゲット14の半径に等しい距離だけ互いに離間するように位置されている。
 回転軸(回転軸線)15bを回転中心として回転するターゲット14では、その回転軸(回転軸線)15bよりも片側となる領域のみにおいて、円形の磁石ユニット16によって、エロージョン領域が形成され、スパッタ粒子がターゲット14のエロージョン領域から基板Wに向けて飛び出すことになる。
 このとき、ターゲット14における回転軸(回転軸線)15bのエロージョン領域から飛び出したスパッタ粒子は、レギュレータ18の開口19の部分を通ったスパッタ粒子のみが基板Wへと到達する。従って、基板Wへと到達するスパッタ粒子における最も大きい入射角度である最大入射角度θmaxは、図4に示すように、円形の磁石ユニット16の回転軸(回転軸線)15b上に位置する輪郭端部位置14PCから、水平方向における反対側となるレギュレータ18の開口19における扇型の円弧19aの中心点19b上に位置する輪郭端部位置WPCへと飛翔するスパッタ粒子の軌跡Smaxによって示されることになる。
 つまり、スパッタ粒子の軌跡Smaxと、回転軸(回転軸線)15bまたは回転軸(回転軸線)17bとの為す角が最大入射角度θmaxとなる。
 これにより、基板Wへと到達するスパッタ粒子における入射角度は、回転軸(回転軸線)15bと開口19の輪郭との水平方向における位置関係によって規定された最大入射角度θmaxよりも大きくなることはない。
 同時に、ターゲット14における外縁部側のエロージョン領域から飛び出したスパッタ粒子は、レギュレータ18の開口19の部分を通ったスパッタ粒子のみが基板Wへと到達する。従って、基板Wへと到達するスパッタ粒子における最も大きい入射角度である最大入射角度θmaxは、図4に示すように、円形の磁石ユニット16のターゲット14における外縁部側である輪郭端部位置14PEから、水平方向における反対側となるレギュレータ18の開口19の円弧19a上に位置する輪郭端部位置WPEへと飛翔するスパッタ粒子の軌跡Smaxによって示されることになる。
 つまり、スパッタ粒子の軌跡Smaxと、回転軸(回転軸線)15bに平行なターゲット14の法線との為す角が最大入射角度θmaxとなる。
 これにより、基板Wへと到達するスパッタ粒子における入射角度θは、回転軸(回転軸線)15bと開口19の輪郭との水平方向における位置関係によって規定された最大入射角度θmaxよりも大きくなることはない。
 したがって、磁石ユニット16の径寸法が基板Wの半径およびターゲット14の半径よりも小さく設定されているために、ターゲット14から基板Wに入射する斜め方向のスパッタ粒子における入射角度θが、ターゲット14と基板Wとの法線である回転軸(回転軸線)15bに対して基板Wの半径とターゲット14との距離t/sとのアークタンジェントよりも小さい状態とすることができる。
 本実施形態においては、磁石ユニット16をターゲット14半径より小さくして開口19で規定される基板Wの成膜領域に対してエロージョンが斜め位置となる領域を減らす。レギュレータ18によってターゲット14から基板Wに入射するスパッタ粒子の方向を規制し、ターゲット14から基板Wに対して斜め方向に入射するスパッタ粒子を削減し、非対称性を低減してカバレッジを向上することができる。
 同時に、ターゲット14を回転させてエロージョンが集中することを防止するとともに、ターゲット14におけるエロージョンの発生する領域を時間的に分散させて拡大する。これにより、ターゲットライフを増大することが可能となり、ターゲット利用効率を向上した状態で、回転する基板Wにスパッタ成膜することを可能にできる。
 さらに、ターゲット14と基板Wとが略等しい径寸法を有して、ターゲット14の回転軸(回転軸線)15bと基板Wの回転軸(回転軸線)17bとが互いの半径に等しい距離だけ離間される。これにより、回転するターゲット14においてエロージョンの発生しない径方向外側の領域を最小化し、ターゲットライフを伸ばした状態で、ターゲットの利用効率を向上することができる。
 なお、本実施形態においては、磁石ユニット16をターゲット14の半径より小さい範囲で、ターゲット14の面内方向(水平方向)、特に、径方向に移動可能とする磁気回路移動部16cを有することもできる。
 この場合、磁気回路移動部16cは、磁石ユニット16を開口19に対応する領域からはみ出さないように水平方向に移動可能とすることができる。また、磁気回路移動部16cは、磁石ユニット16を上記領域の範囲であれば、円形に回動する、あるいは、上記領域の範囲内で揺動する、などの駆動方法が可能である。
 これにより、さらに、ターゲット14におけるエロージョンの発生する領域を時間的に分散させて拡大して、ターゲットライフを増大することが可能となり、ターゲット利用効率を向上することができる。
 以下、本発明の第3実施形態に係るスパッタリング装置を、図面に基づいて説明する。
 図6は、本実施形態におけるスパッタリング装置を示す模式平面図である。本実施形態は、ターゲット14の回転軸(回転軸線)15bの位置に関する点で、上述した第1および第2実施形態と異なる。これ以外の上述した第1および第2実施形態と対応する構成には同一の符号を付してその説明を省略する。
 本実施形態においては、ターゲット14の回転軸(回転軸線)15bと基板Wの回転軸線17bとがいずれも鉛直方向に延在して、互いに略平行となるように配置されている。ターゲット14の回転軸(回転軸線)15bは、基板Wの回転軸線17bとは、水平方向に異なる位置に配置されている。
 具体的には、ターゲット14の回転軸(回転軸線)15bが、図6に示すように、扇型形状を有する開口19の半径19c上における中点と略一致するように配置される。
 レギュレータ18において、開口19の大きさは、磁石ユニット16の大きさに対応する。
 少なくとも基板Wの面積の半分以上を覆うように、レギュレータ18の開口19の大きさ・形状が設定される。
 開口19の形状は、図6に示すように、略扇型輪郭とされており、ターゲット14の回転軸線14bの方向から見て(平面視において)、扇型の円弧19aにおける中心となる中心点19bが、基板Wの回転軸(回転軸線)17bと略一致するように配置される。
 開口19における円弧19aは、基板Wの外縁位置とほぼ一致するか、基板Wの外縁位置よりも基板Wの径方向外側となるように配置されている。
 また、開口19は、ターゲット14の回転軸(回転軸線)15bと一致する方向に平面視して、磁石ユニット16と略一致する。言い換えると、略円形とされる磁石ユニット16の輪郭が、扇型形状を有する開口19の輪郭の内側に収まった状態で最も大きくなるように、レギュレータ18の開口19、基板W、ターゲット14、及び磁石ユニット16の大きさ・形状の関係が設定されている。
 つまり、扇型形状を有する開口19における円弧19aの中心角は、磁石ユニット16の輪郭が、扇型形状を有する開口19の輪郭の内側に収まるように設定される。
 次に、本実施形態におけるレギュレータ18の開口19、基板W、ターゲット14、及び磁石ユニット16の配置、および、スパッタ粒子の軌跡について説明する。
 レギュレータ18、基板W、ターゲット14、及び磁石ユニット16は、互いに略平行な位置に配置され、上から、磁石ユニット16、ターゲット14、レギュレータ18、及び基板Wの順に配置されている。
 基板Wとターゲット14とは、平面視して略同一形状となる円形とされて、略同一の径寸法を有する。
 円形の磁石ユニット16の径寸法は、基板Wの半径およびターゲット14の半径よりも小さく設定されている。
 レギュレータ18は、開口19の部分を除いて、平面視して基板Wの全体を覆うとともに、開口19の部分に、円形の磁石ユニット16が収まるように位置されている。
 基板Wの回転中心である回転軸(回転軸線)17bと、ターゲット14の回転中心である回転軸(回転軸線)15bとは、鉛直方向に配置されており、かつ、基板Wまたはターゲット14の半径の半分程度、または、基板Wまたはターゲット14の半径の半分よりもやや大きい程度の距離だけ互いに離間するように位置されている。
 このターゲット14の回転軸(回転軸線)15bと、レギュレータ18に設けられた開口19の扇型輪郭における扇型の円弧19aにおける中心となる中心点19bとは、平面視して基板Wまたはターゲット14の半径の半分程度の距離だけ互いに離間するように配置されている。基板Wの回転軸(回転軸線)17bとレギュレータ18に設けられた開口19の扇型輪郭における扇型の円弧19aにおける中心となる中心点19bとは、基板Wまたはターゲット14の半径の半分程度の距離だけ互いに離間するように位置されている。
 回転軸(回転軸線)15bを回転中心として回転するターゲット14では、その回転軸(回転軸線)15bよりも片側となる領域のみにおいて、円形の磁石ユニット16によって、エロージョン領域が形成され、スパッタ粒子がターゲット14のエロージョン領域から基板Wに向けて飛び出すことになる。
 このとき、ターゲット14における回転軸(回転軸線)15bに近いエロージョン領域から飛び出したスパッタ粒子は、レギュレータ18の開口19の部分を通ったスパッタ粒子のみが基板Wへと到達する。従って、基板Wへと到達するスパッタ粒子における最も大きい入射角度である最大入射角度θmaxは、円形の磁石ユニット16の回転軸(回転軸線)15bに近い側である輪郭端部位置から、水平方向における反対側となる円形の磁石ユニット16の回転軸(回転軸線)15bから遠い側であるレギュレータ18の開口19における輪郭端部位置へと飛翔するスパッタ粒子の軌跡Smaxによって示されることになる。
 つまり、スパッタ粒子の軌跡Smaxと、回転軸(回転軸線)15bまたは回転軸(回転軸線)17bとの為す角が最大入射角度θmax程度となる。
 これにより、基板Wへと到達するスパッタ粒子における入射角度は、回転軸(回転軸線)15bと開口19の輪郭との水平方向における位置関係によって規定された最大入射角度θmaxよりも大きくなることはない。
 同時に、ターゲット14における外縁部側のエロージョン領域から飛び出したスパッタ粒子は、レギュレータ18の開口19の部分を通ったスパッタ粒子のみが基板Wへと到達する。従って、基板Wへと到達するスパッタ粒子における最も大きい入射角度である最大入射角度θmaxは、円形の磁石ユニット16のターゲット14における回転軸(回転軸線)15bに近い側であるレギュレータ18の開口19における輪郭端部位置へと飛翔するスパッタ粒子の軌跡Smaxによって示されることになる。
 つまり、スパッタ粒子の軌跡Smaxと、回転軸(回転軸線)15bに平行なターゲット14の法線との為す角が最大入射角度θmax程度となる。
 これにより、基板Wへと到達するスパッタ粒子における入射角度θは、回転軸(回転軸線)15bと開口19の輪郭との水平方向における位置関係によって規定された最大入射角度θmaxよりも大きくなることはない。
 したがって、磁石ユニット16の径寸法が基板Wの半径およびターゲット14の半径よりも小さく設定されているために、ターゲット14から基板Wに入射する斜め方向のスパッタ粒子における入射角度θが、ターゲット14と基板Wとの法線である回転軸(回転軸線)15bに対して基板Wの半径とターゲット14との距離t/sとのアークタンジェントよりも小さい状態とすることができる。
 本実施形態においては、磁石ユニット16をターゲット14半径より小さくして開口19で規定される基板Wの成膜領域に対してエロージョンが斜め位置となる領域を減らす。レギュレータ18によってターゲット14から基板Wに入射するスパッタ粒子の方向を規制し、ターゲット14から基板Wに対して斜め方向に入射するスパッタ粒子を削減し、非対称性を低減してカバレッジを向上することができる。
 同時に、ターゲット14を回転させてエロージョンが集中することを防止するとともに、ターゲット14におけるエロージョンの発生する領域を時間的に分散させて拡大する。これにより、ターゲットライフを増大することが可能となり、ターゲット利用効率を向上した状態で、回転する基板Wにスパッタ成膜することを可能にできる。
 さらに、ターゲット14と基板Wとが略等しい径寸法を有して、ターゲット14の回転軸(回転軸線)15bと基板Wの回転軸(回転軸線)17bとが互いの半径に等しい距離だけ離間される。これにより、回転するターゲット14においてエロージョンの発生しない径方向外側の領域を最小化し、ターゲットライフを伸ばした状態で、ターゲットの利用効率を向上することができる。
 以下、本発明の第4実施形態に係るスパッタリング装置を、図面に基づいて説明する。
 図7は、本実施形態におけるスパッタリング装置を示す模式平面図である。本実施形態は、レギュレータ18の形状に関する点で、上述した第1から第3実施形態と異なる。これ以外の上述した第1から第3実施形態と対応する構成には同一の符号を付してその説明を省略する。
 本実施形態においては、レギュレータ18が、略扇型輪郭を有する開口19の中心点19bに対する径方向外側位置では、基板Wを覆わないように形成され、レギュレータ18の輪郭が、中心角が鈍角となる扇型輪郭形状とされている。
 本実施形態においても、ターゲット14の回転軸(回転軸線)15bと基板Wの回転軸線17bとがターゲット14の回転軸(回転軸線)15bと平行な鉛直方向から見て略一致するように配置されている。
 このとき、ターゲット14における回転軸(回転軸線)15b側のエロージョン領域から飛び出したスパッタ粒子は、レギュレータ18の開口19の部分を通ったスパッタ粒子のみが基板Wへと到達する。従って、基板Wへと到達するスパッタ粒子における最も大きい入射角度である最大入射角度θmaxは、図1に示した第1実施形態と同様に、円形の磁石ユニット16の回転軸(回転軸線)15b上に位置する輪郭端部位置14PCから、水平方向における反対側となる基板Wの外縁部側となる輪郭端部位置WPEへと飛翔するスパッタ粒子の軌跡Smaxによって示されることになる。
 つまり、スパッタ粒子の軌跡Smaxと、回転軸(回転軸線)15bまたは回転軸(回転軸線)17bとの為す角が最大入射角度θmaxとなる。
 これにより、基板Wへと到達するスパッタ粒子における入射角度は、回転軸(回転軸線)15bと開口19の輪郭との水平方向における位置関係によって規定された最大入射角度θmaxよりも大きくなることはない。
 同時に、ターゲット14における外縁部側のエロージョン領域から飛び出したスパッタ粒子は、レギュレータ18の開口19の部分を通ったスパッタ粒子のみが基板Wへと到達する。従って、基板Wへと到達するスパッタ粒子における最も大きい入射角度である最大入射角度θmaxは、図1に示した第1実施形態と同様に、円形の磁石ユニット16のターゲット14における外縁部側である輪郭端部位置14PEから、水平方向における反対側となる基板Wの回転軸(回転軸線)15bの位置へと飛翔するスパッタ粒子の軌跡Smaxによって示されることになる。
 つまり、スパッタ粒子の軌跡Smaxと、回転軸(回転軸線)15bに平行なターゲット14の法線との為す角が最大入射角度θmaxとなる。
 これにより、基板Wへと到達するスパッタ粒子における入射角度θは、回転軸(回転軸線)15bと基板Wの外縁輪郭との水平方向における位置関係によって規定された最大入射角度θmaxよりも大きくなることはない。
 したがって、磁石ユニット16の径寸法が基板Wの半径およびターゲット14の半径よりも小さく設定されている。このため、ターゲット14から基板Wに入射する斜め方向のスパッタ粒子における入射角度θが、ターゲット14と基板Wとの法線である回転軸(回転軸線)15bに対して基板Wの半径とターゲット14との距離t/sとのアークタンジェントよりも小さい状態とすることができる。
 なお、上記の各実施形態において、基板Wとターゲット14との間には、スパッタ粒子の通過を許容する透孔が複数開設されたコリメータが配置されてもよい。この場合、スパッタ粒子の基板Wへの入射角度が、レギュレータ18の開口19のみならず、さらに、所定の角度範囲に規制することができる。これにより、基板Wの縁部へスパッタ粒子の斜め入射が発生することを防止することもできる。
 コリメータの板厚は、例えば、30mm~200mmの範囲に設定することができる。コリメータは、真空チャンバ11の側壁の内側に配置された防着板の内面に支持部材を介して固定されていてもよい。防着板を接地することにより、コリメータは、接地電位に保持される。なお、コリメータの下方には、他の防着板が配置されていることもできる。
 ここで、コリメータを配置することで基板Wのエッジ部へのスパッタ粒子の斜入射を防止して、さらにカバレッジを改善することができる。
 さらに、上記の各実施形態において、それぞれの構成を互いに組み合わせた構成とすることもできる。
 以下、本発明にかかる実施例を説明する。
<実験例1>
 本発明における具体例として、図1、図2に示すように、ターゲット14の回転軸(回転軸線)15bと基板Wの回転軸(回転軸線)17bと開口19の中心点19bとがターゲット14の回転軸(回転軸線)15bと平行な鉛直方向から見て略一致するように配置されたスパッタリング装置10を用いた。ターゲット14と基板W間の距離t/s、および、磁気回路16面積Mgを変化させて、スパッタリング成膜をおこなった。
 このときの処理における諸元を示す。
 ターゲット14寸法、基板W寸法;φ300mm
 磁気回路16面積(エロージョン面積に対応)Mg;~700cm2(φ300mm)~1250cm2(φ400mm)
 レギュレータ18開口19中心角;120°
 ターゲット14と基板W間の距離t/s;400mm、600mm
 ターゲット14材質;Cu
 Ar流量;プラズマ着火時;20sccm、成膜時;0sccm
 カソードパワー;DC 20kW
 ステージBiasパワー;300W
 ステージ温度;-20℃
 狙い成膜膜厚;43nm
 これらの成膜後、カバレッジB/Cを測定した。
 カバレッジB/Cの測定は、測長SEMでおこなった。
 また、
 カバレッジB/C測定位置の基板W中心からの距離R;0mm~147mmとした。
 その結果を図8に示す。
 この結果から、磁気回路16面積(エロージョン面積に対応)Mgを小さくすることで、カバレッジB/Cが改善していることがわかる。
 これにより、通常、長い方がカバレッジB/Cのよい状態となるt/sを短く設定しても同程度にカバレッジB/Cが改善していることがわかる。
<実験例2>
 次に、実験例1においてターゲット14寸法を大きくしたスパッタリング装置10を用いて、スパッタリング成膜をおこなった。また、比較のため、ターゲット14の回転軸(回転軸線)15bが基板Wの回転軸(回転軸線)17bに対して開口19の円弧19a側にずれるとともに、ターゲット14を回転させないとともに、このターゲット14の回転軸(回転軸線)15bに対応する中心軸と、磁気回路16の回転軸とが一致するように配置されたスパッタリング装置10を用いて、スパッタリング成膜をおこなった。
 このときの処理における諸元を示す。
 ターゲット14寸法;φ400mm
 基板W寸法;φ300mm
 磁気回路16面積Mg;700cm2(φ300mmm)
 レギュレータ18開口19中心角;120°
 ターゲット14と基板W間の距離t/s;600mm
 磁気回路16回転心軸と基板W回転軸との距離;75mm(レギュレータ18開口19の中央に磁気回路16の回転軸が位置する)
 ターゲット14材質;Cu
 Ar流量;プラズマ着火時;20sccm、成膜時;0sccm
 カソードパワー;DC 20kW
 ステージBiasパワー;300W
 ステージ温度;-20℃
 狙い成膜膜厚;43nm
 この結果、磁気回路16が小さくても、ターゲット14が回転せずターゲット14の中心軸と磁気回路16の回転軸とが一致すると、エロージョンの発生する領域の面積は、磁気回路16の面積と等しくなり、700cm2(φ300mmm)であった。
 これに対して、ターゲット14を回転させて、ターゲット14の回転軸(回転軸線)15bと磁気回路16の回転軸とを図1のようにずらした配置とすると、エロージョンの発生する領域の領域をターゲット14の全面とすることができ、エロージョン面積は、1256cm2(φ400mmm)となった。
 これにより、ターゲットライフは、エロージョン面積を~1250cm2→700cm2としたことで約1.8倍に改善したことがわかる。
10…スパッタリング装置
11…真空チャンバ
11a…処理室
12…カソードユニット
13…ターゲットアッセンブリ
14…ターゲット
14a…スパッタ面
15…バッキングプレート
15a…スパッタ電源
15b…回転軸(回転軸線)
15c…ターゲット回転部
16…磁石ユニット(磁気回路)
16c…磁気回路移動部
17…ステージ
17a…高周波電源
17b…回転軸(回転軸線)
17c…基板回転部
18…レギュレータ
19…開口
19a…円弧
19b…中心点
19c…半径
W…基板

Claims (9)

  1.  カソードに取り付けられたターゲットに対して成膜すべき基板を対向させ、前記ターゲットの裏面に設けられた磁気回路を用いて前記ターゲットをスパッタリングして前記基板に成膜するスパッタリング装置であって、
     前記磁気回路の径寸法が前記ターゲットの半径より小さく設定され、
     前記スパッタリング装置は、
     前記基板を、前記基板の回転軸線周りに回転する基板回転部と、
     前記ターゲットを、前記ターゲットの回転軸線周りに回転するターゲット回転部と、
     前記ターゲットと前記基板との間に設けられて前記磁気回路に対応する開口を有して前記磁気回路に対応しない部分を覆う板状のレギュレータと、
     を有し、
     前記レギュレータが少なくとも前記基板の面積の半分以上の面積を覆い、
     前記開口の形状が、略扇型輪郭を有し、
     前記開口が前記ターゲットの前記回転軸線方向から見て前記磁気回路と略一致するように配置され、
     前記ターゲットの前記回転軸線と前記基板の前記回転軸線とが略平行に配置される、
     スパッタリング装置。
  2.  前記開口の形状における略扇型輪郭の中心点が前記ターゲットの前記回転軸線から見て前記ターゲットの前記回転軸線と略一致するように配置される、
     請求項1に記載のスパッタリング装置。
  3.  前記ターゲットの前記回転軸線と前記基板の前記回転軸線とが前記ターゲットの前記回転軸線から見て略一致するように配置される、
     請求項1又は請求項2に記載のスパッタリング装置。
  4.  前記基板の前記回転軸線が、前記ターゲットの前記回転軸線方向から見て略扇型輪郭を有する前記開口の円弧状縁の中心位置と略一致するように配置される、
     請求項1又は請求項2に記載のスパッタリング装置。
  5.  前記基板の前記回転軸線が、前記ターゲットの前記回転軸線方向から見て略扇型輪郭を有する前記開口におけるいずれかの半径の中心と略一致するように配置される、
     請求項1又は請求項2に記載のスパッタリング装置。
  6.  前記レギュレータが、略扇型輪郭を有する前記開口の中心点に対する径方向外側位置では、前記基板を覆わないように中心角が鈍角となる扇型輪郭の形状を有する、
     請求項3に記載のスパッタリング装置。
  7.  前記ターゲットと前記基板とが、略等しい径寸法を有する、
     請求項1から請求項6のいずれか一項に記載のスパッタリング装置。
  8.  前記ターゲットと前記基板との距離が、前記基板の径寸法に対して1倍~3倍の範囲となるよう設定される、
     請求項1から請求項7のいずれか一項に記載のスパッタリング装置。
  9.  前記磁気回路を前記ターゲットの半径より小さい範囲で前記ターゲットの面内方向に移動可能とする磁気回路移動部を有する、
     請求項1から請求項8のいずれか一項に記載のスパッタリング装置。
PCT/JP2019/026613 2018-08-10 2019-07-04 スパッタリング装置 WO2020031572A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980033716.2A CN112154227A (zh) 2018-08-10 2019-07-04 溅射装置
US15/734,889 US20210222289A1 (en) 2018-08-10 2019-07-04 Sputtering apparatus
KR1020207033244A KR102502558B1 (ko) 2018-08-10 2019-07-04 스패터링 장치
JP2020536386A JP7044887B2 (ja) 2018-08-10 2019-07-04 スパッタリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-151527 2018-08-10
JP2018151527 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031572A1 true WO2020031572A1 (ja) 2020-02-13

Family

ID=69413814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026613 WO2020031572A1 (ja) 2018-08-10 2019-07-04 スパッタリング装置

Country Status (5)

Country Link
US (1) US20210222289A1 (ja)
JP (1) JP7044887B2 (ja)
KR (1) KR102502558B1 (ja)
CN (1) CN112154227A (ja)
WO (1) WO2020031572A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297576A (ja) * 1991-03-26 1992-10-21 Ube Ind Ltd マグネトロンスパッタリング方法およびその装置
JPH09213634A (ja) * 1996-02-02 1997-08-15 Sony Corp 薄膜成膜方法、半導体装置の製造方法及び薄膜成膜装置
JP2006307304A (ja) * 2005-05-02 2006-11-09 Ulvac Japan Ltd 成膜装置
JP2010138423A (ja) * 2008-12-09 2010-06-24 Shibaura Mechatronics Corp マグネトロンスパッタ装置及びマグネトロンスパッタ方法
WO2019049472A1 (ja) * 2017-09-07 2019-03-14 株式会社アルバック スパッタリング装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209512A (ja) * 1997-01-21 1998-08-07 Matsushita Electric Ind Co Ltd 誘電体薄膜及び金属薄膜の形成方法と形成装置
US6251242B1 (en) * 2000-01-21 2001-06-26 Applied Materials, Inc. Magnetron and target producing an extended plasma region in a sputter reactor
TWI242602B (en) * 2001-11-02 2005-11-01 Ulvac Inc Thin film forming apparatus and method
JP4128770B2 (ja) * 2001-11-26 2008-07-30 キヤノンアネルバ株式会社 スパッタ装置
US6623610B1 (en) * 2002-03-02 2003-09-23 Shinzo Onishi Magnetron sputtering target for magnetic materials
JP2008214709A (ja) * 2007-03-06 2008-09-18 Toshiba Corp マグネトロンスパッタ装置
US9771647B1 (en) * 2008-12-08 2017-09-26 Michael A. Scobey Cathode assemblies and sputtering systems
JP5415979B2 (ja) * 2009-02-16 2014-02-12 キヤノンアネルバ株式会社 スパッタリング装置及び二重回転シャッタユニット並びにスパッタリング方法
JP5558020B2 (ja) * 2009-04-06 2014-07-23 株式会社アルバック 成膜方法
KR101344085B1 (ko) * 2009-05-20 2013-12-24 가부시키가이샤 아루박 성막 방법 및 성막 장치
US20120111722A1 (en) * 2009-07-17 2012-05-10 Ulvac, Inc. Film-forming apparatus
JP2013080779A (ja) 2011-10-03 2013-05-02 Ulvac Japan Ltd 半導体装置の製造方法、半導体装置
WO2013179544A1 (ja) * 2012-05-31 2013-12-05 東京エレクトロン株式会社 マグネトロンスパッタ装置
JP6423290B2 (ja) 2015-03-06 2018-11-14 東京エレクトロン株式会社 成膜装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297576A (ja) * 1991-03-26 1992-10-21 Ube Ind Ltd マグネトロンスパッタリング方法およびその装置
JPH09213634A (ja) * 1996-02-02 1997-08-15 Sony Corp 薄膜成膜方法、半導体装置の製造方法及び薄膜成膜装置
JP2006307304A (ja) * 2005-05-02 2006-11-09 Ulvac Japan Ltd 成膜装置
JP2010138423A (ja) * 2008-12-09 2010-06-24 Shibaura Mechatronics Corp マグネトロンスパッタ装置及びマグネトロンスパッタ方法
WO2019049472A1 (ja) * 2017-09-07 2019-03-14 株式会社アルバック スパッタリング装置

Also Published As

Publication number Publication date
US20210222289A1 (en) 2021-07-22
JPWO2020031572A1 (ja) 2021-03-18
JP7044887B2 (ja) 2022-03-30
KR20210002565A (ko) 2021-01-08
CN112154227A (zh) 2020-12-29
KR102502558B1 (ko) 2023-02-23

Similar Documents

Publication Publication Date Title
TWI669752B (zh) 用於pvd濺射腔室的可偏壓通量優化器/準直器
TWI625407B (zh) 具有背側冷卻溝槽的濺射靶材
JP2000144399A (ja) スパッタリング装置
TWI780173B (zh) 濺鍍裝置
WO2011002058A1 (ja) 薄膜の成膜方法
JP2007131883A (ja) 成膜装置
US20180155821A1 (en) Magnetron Sputtering Apparatus
JP7326036B2 (ja) マグネトロンスパッタリング装置用のカソードユニット
WO2020031572A1 (ja) スパッタリング装置
JP6456010B1 (ja) スパッタリング装置
JP6641472B2 (ja) 成膜方法及びスパッタリング装置
JP7128024B2 (ja) スパッタリング装置及びコリメータ
JPH11340165A (ja) スパッタリング装置及びマグネトロンユニット
TWI770421B (zh) 濺鍍裝置及濺鍍方法
JP2003147522A (ja) マグネトロンスパッタ装置
JP2009203495A (ja) カルーセル式マグネトロンカソード及びスパッタ装置
JP2003293129A (ja) スパッタリング装置
TWI839710B (zh) 用於pvd濺射腔室的可偏壓通量優化器/準直器
JP4583868B2 (ja) スパッタ装置
JP2019014924A (ja) スパッタリング装置及びスパッタリング方法
TW202202645A (zh) 用於物理氣相沉積(pvd)的多半徑磁控管及其使用方法
JP2020128587A (ja) スパッタリング装置
JPH10130832A (ja) 低圧遠隔スパッタ装置
JPH042771A (ja) スパッタリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536386

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207033244

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847202

Country of ref document: EP

Kind code of ref document: A1