WO2020029029A1 - 正极材料的制备方法、正极材料及锂离子电池 - Google Patents

正极材料的制备方法、正极材料及锂离子电池 Download PDF

Info

Publication number
WO2020029029A1
WO2020029029A1 PCT/CN2018/099021 CN2018099021W WO2020029029A1 WO 2020029029 A1 WO2020029029 A1 WO 2020029029A1 CN 2018099021 W CN2018099021 W CN 2018099021W WO 2020029029 A1 WO2020029029 A1 WO 2020029029A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
solution
aluminum
lithium
Prior art date
Application number
PCT/CN2018/099021
Other languages
English (en)
French (fr)
Inventor
战鹏
刘亮
黄勇
黄双
Original Assignee
中天新兴材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天新兴材料有限公司 filed Critical 中天新兴材料有限公司
Priority to PCT/CN2018/099021 priority Critical patent/WO2020029029A1/zh
Priority to CN201880001591.0A priority patent/CN111010887B/zh
Publication of WO2020029029A1 publication Critical patent/WO2020029029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium ion batteries, and in particular, to a method for preparing a positive electrode material, a positive electrode material, and a lithium ion battery.
  • Lithium battery positive material coating treatment is an effective measure to avoid side reactions such as electrode material dissolution.
  • the coating treatment can not only avoid adverse side reactions, but also have good conductivity when the coating layer (such as aluminum source) has good conductivity. It can also improve the conductivity of the electrode, which is beneficial to the rate performance of the lithium battery.
  • a plurality of raw materials of a precursor and a coating material are directly mechanically mixed, and then heat treated to obtain an oxide-coated positive electrode material.
  • the technical solution provided by the present invention is: a method for preparing a positive electrode material, including the following steps:
  • the lithium source and the coated positive electrode material precursor are mixed according to a preset lithium-to-metal ratio, and an alumina-coated positive electrode material is obtained by sintering.
  • the solvent is one of an aqueous solution or an ethanol solution, and during the dissolution process, the temperature of the aqueous solution or the ethanol solution is controlled to 25 ° C-80 ° C.
  • stirring is performed simultaneously during the dissolution process, and the stirring speed is 200 rpm to 500 rpm.
  • the solute of the aluminum source acidic titration solution includes one of aluminum nitrate, aluminum sulfate, and aluminum chloride
  • the solute of the aluminum source alkaline titration solution includes one of sodium metaaluminate and potassium metaaluminate.
  • the concentration of the titration solution is 0.01mol / L-0.5mol / L.
  • the alkaline solution is one or a combination of a sodium hydroxide solution or a sodium metaaluminate solution.
  • the pH value of the pretreatment solution is 8.5-10, and the pH value is stable to a preset value during the co-precipitation process.
  • the preset lithium-to-metal ratio of the lithium element in the lithium source and the coated positive electrode material precursor is 1.00-1.20
  • the heat treatment temperature during the sintering process is 550 ° C-1000 ° C
  • the heat treatment time is 3h-24h.
  • the invention also provides a positive electrode material, which is prepared by the following method steps:
  • the lithium source and the coated positive electrode material precursor are mixed according to a preset lithium-to-metal ratio, and an alumina-coated positive electrode material is obtained by sintering.
  • the solvent is one of an aqueous solution or an ethanol solution, and during the dissolution process, the temperature of the aqueous solution or the ethanol solution is controlled to 25 ° C-80 ° C.
  • stirring is performed simultaneously during the dissolution process, and the stirring speed is 200 rpm to 500 rpm.
  • the solute of the aluminum source acidic titration solution includes one of aluminum nitrate, aluminum sulfate, and aluminum chloride
  • the solute of the aluminum source alkaline titration solution includes one of sodium metaaluminate and potassium metaaluminate.
  • the concentration of the titration solution is 0.01mol / L-0.5mol / L.
  • the alkaline solution is one or a combination of a sodium hydroxide solution or a sodium metaaluminate solution.
  • the pH value of the pretreatment solution is 8.5-10, and the pH value is stable to a preset value during the co-precipitation process.
  • the preset lithium-to-metal ratio of the lithium source to the coated positive electrode material precursor is 1.00-1.20
  • the heat treatment temperature during the sintering process is 550 ° C-1000 ° C
  • the heat treatment time is 3h-24h.
  • the present invention further provides a lithium-ion battery, which includes a positive electrode sheet formed by pressing the positive electrode material.
  • the method for preparing a positive electrode material includes the following steps: dissolving a positive electrode material precursor in a solvent to obtain a mixed solution; and adding an alkaline solution dropwise to the mixed solution to obtain an alkaline pretreatment.
  • Treatment solution simultaneous addition of an aluminum source acidic titration solution and an aluminum source alkaline titration solution to the pretreatment solution for co-precipitation to obtain a coated positive electrode material precursor; pressing the lithium source and the coated positive electrode material precursor according to A preset lithium-to-metal ratio is mixed and sintered to obtain an alumina-coated cathode material.
  • the invention adopts simultaneous titration to form co-precipitated aluminum hydroxide for coating, and then sintering to finally obtain an aluminum oxide-coated positive electrode material.
  • the coating layer has the characteristics of good uniformity and strong binding force.
  • the positive electrode material coating layer is in direct contact with the electrolyte, which effectively inhibits the dissolution of the active material of the positive electrode material, and reduces the decomposition of the electrolyte, thereby improving the rate performance and cycle performance of the material.
  • the method has simple steps, easy control, short preparation time, energy saving and low cost.
  • FIG. 1 is a preparation flow chart of the cathode material of the present invention.
  • FIG. 2A is a SEM image of the positive electrode material obtained in the first and second embodiments of the present invention.
  • FIG. 2B is an energy spectrum of the positive electrode material obtained in the first embodiment of the present invention.
  • FIG 3 is a magnification diagram of a positive electrode material obtained in the first and second embodiments of the present invention.
  • FIG. 4 is a cycle characteristic curve diagram of a lithium ion battery using the cathode material shown in FIG. 3.
  • Lithium-ion batteries have the advantages of high specific capacity, good cycling performance, good thermal stability, and environmental friendliness. They have been widely used in the field of mobile electronic equipment, energy storage equipment, electric vehicles, and hybrid electric vehicles. Ternary materials have become a hot topic in battery cathode materials because they have the advantages of high specific capacity, good safety performance, and lower cost than ordinary lithium batteries.
  • the existing cathode materials are susceptible to corrosion due to side reactions with the electrolyte during the charge and discharge process. , Which causes its metal ions to dissolve and produce harmful substances, which seriously affects the performance of lithium-ion batteries and limits its applications.
  • the method of the present invention includes the following steps:
  • the solvent is one of an aqueous solution or an ethanol solution.
  • the temperature of the aqueous solution or the ethanol solution is controlled to 25 ° C to 80 ° C.
  • a fixed value within the temperature range is adopted and stabilized at this value ("stable" includes floating within an acceptable range, such as within ⁇ 1 ° C of the set value).
  • stirring is performed at the same time, and the stirring speed is 200 rpm-500 rpm.
  • the allowable error is also kept in practice.
  • the alkaline solution is one or a combination of a sodium hydroxide solution and a sodium metaaluminate solution.
  • the pH value of the pretreatment solution is 8.5-10, and the pH value is stable to a preset value during the co-precipitation process.
  • the solute of the aluminum source acidic titration solution includes one of three types: aluminum nitrate, aluminum sulfate, and aluminum chloride; the concentration is 0.01mol / L-0.5mol / L.
  • the solute of the aluminum source alkaline titration solution includes one of sodium metaaluminate and potassium metaaluminate with a concentration of 0.01mol / L-0.5mol / L.
  • the coated positive electrode material precursor and the lithium source are mixed at a preset ratio, and an alumina-coated positive electrode material is obtained by sintering.
  • the preset lithium-to-metal ratio of the lithium source to the coated cathode material precursor is 1.00-1.20, the temperature of the heat treatment during the sintering process is 300 ° C-1000 ° C, and the time of the heat treatment is 3h-24h.
  • the following method is used as an example to prepare the positive electrode material and the lithium battery, and characterize the performance of the product obtained in the specific embodiment.
  • an aluminum source acidic titration solution of 0.05 mol / L was prepared using aluminum nitrate as a raw material, that is, an Al source acidic coating precursor solution (referred to as an Al acid solution) for backup;
  • Al source alkaline titration solution that is, Al source alkaline coating precursor solution (Al alkaline solution for short) is reserved.
  • the Al acid solution was added dropwise to the pretreatment solution, wherein the amount of Al element was calculated based on 0.1% of the mass of the positive electrode material precursor, and the dropping speed was 8.5 ml / min; at the same time, the Al alkaline solution was added dropwise to the solution.
  • the pretreatment solution stabilizes its pH value close to 9, and the dropping rate is 12.5ml / min; co-precipitation reaction occurs after the addition of Al acid solution and Al alkaline solution, and Al ions from different sources settle together to form a nano-level uniform Aluminum hydroxide particles, which are uniformly adsorbed on the surface layer of the positive electrode material precursor particles.
  • an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain an aluminum hydroxide-coated positive electrode material precursor;
  • Lithium carbonate was mixed with the precursor of the coated positive electrode material at a lithium-to-metal ratio of 1: 1.05, heated to 700 ° C at 3 ° C / min, and maintained for 3h, and then heated to 940 ° C at 3 ° C / min, and held for 12h to obtain
  • the alumina-coated cathode material is the finished ternary material.
  • the Al acid solution was added dropwise to the pretreatment solution, wherein the amount of Al element was calculated based on 0.1% of the mass of the positive electrode material precursor, and the dropping speed was 8.5 ml / min; at the same time, the Al alkaline solution was added dropwise to the solution.
  • the pH value of the pretreatment solution is close to 10, and the dropping rate is 12.5 ml / min; co-precipitation reaction occurs after the addition of Al acid solution and Al alkaline solution, and Al ions from different sources settle together to form a nano-level uniform Aluminum hydroxide particles, which are uniformly adsorbed on the surface layer of the positive electrode material precursor particles.
  • an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain an aluminum hydroxide-coated positive electrode material precursor;
  • Lithium carbonate was mixed with the precursor of the coated positive electrode material at a lithium-to-metal ratio of 1: 1.05, heated to 700 ° C at 3 ° C / min, and maintained for 3h, and then heated to 940 ° C at 3 ° C / min, and held for 12h to obtain
  • the alumina-coated cathode material is the finished ternary material.
  • the Al acid solution was added dropwise to the pretreatment solution, wherein the amount of Al element was calculated based on 0.1% of the mass of the positive electrode material precursor, and the dropping speed was 8.5 ml / min; at the same time, the Al alkaline solution was added dropwise to the solution.
  • the pH value of the pretreatment solution is close to 10, and the dropping rate is 12.5 ml / min; co-precipitation reaction occurs after the addition of Al acid solution and Al alkaline solution, and Al ions from different sources settle together to form a nano-level uniform Aluminum hydroxide particles, which are uniformly adsorbed on the surface layer of the positive electrode material precursor particles.
  • an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain an aluminum hydroxide-coated positive electrode material precursor;
  • the lithium carbonate and the coated positive electrode material precursor are mixed according to a lithium-to-metal ratio of 1: 1.05, heated to 700 ° C at 3 ° C / min, and held for 3h, and then heated to 940 ° C at 3 ° C / min, and held for 12h.
  • a lithium-to-metal ratio of 1: 1.05, heated to 700 ° C at 3 ° C / min, and held for 3h, and then heated to 940 ° C at 3 ° C / min, and held for 12h.
  • the Al acid solution was added dropwise to the pretreatment solution, wherein the amount of Al element was calculated based on 0.1% of the mass of the positive electrode material precursor, and the dropping speed was 8.5 ml / min; at the same time, the Al alkaline solution was added dropwise to the solution.
  • the pH value of the pretreatment solution is close to 10, and the dropping rate is 12.5 ml / min; co-precipitation reaction occurs after the addition of Al acid solution and Al alkaline solution, and Al ions from different sources settle together to form a nano-level uniform Aluminum hydroxide particles, which are uniformly adsorbed on the surface layer of the positive electrode material precursor particles.
  • an equal amount of constant temperature water at 60 ° C. is added, stirred for half an hour, and centrifuged to obtain an aluminum hydroxide-coated positive electrode material precursor;
  • the lithium carbonate and the coated positive electrode material precursor are mixed according to a lithium-to-metal ratio of 1: 1.05, heated to 700 ° C at 3 ° C / min, and held for 3h, and then heated to 940 ° C at 3 ° C / min, and held for 12h.
  • a lithium-to-metal ratio of 1: 1.05, heated to 700 ° C at 3 ° C / min, and held for 3h, and then heated to 940 ° C at 3 ° C / min, and held for 12h.
  • the Al acid solution was added dropwise to the pretreatment solution, wherein the amount of Al element was calculated based on 0.1% of the mass of the positive electrode material precursor, and the dropping speed was 8.5 ml / min; at the same time, the Al alkaline solution was added dropwise to the solution.
  • the pH value of the pretreatment solution is close to 10, and the dropping rate is 12.5 ml / min; co-precipitation reaction occurs after the addition of Al acid solution and Al alkaline solution, and Al ions from different sources settle together to form a nano-level uniform Aluminum hydroxide particles, which are uniformly adsorbed on the surface layer of the positive electrode material precursor particles.
  • an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain an aluminum hydroxide-coated positive electrode material precursor;
  • the lithium carbonate and the precursor of the coated positive electrode material are mixed according to a lithium-to-metal ratio of 1: 1.1, heated to 700 ° C at 3 ° C / min, and maintained for 3h, and then heated to 940 ° C at 3 ° C / min, and maintained for 12h.
  • a lithium-to-metal ratio of 1: 1.1, heated to 700 ° C at 3 ° C / min, and maintained for 3h, and then heated to 940 ° C at 3 ° C / min, and maintained for 12h.
  • the Al acid solution was added dropwise to the pretreatment solution, wherein the amount of Al element was calculated based on 0.1% of the mass of the positive electrode material precursor, and the dropping speed was 8.5 ml / min; at the same time, the Al alkaline solution was added dropwise to the solution.
  • the pH value of the pretreatment solution is close to 10, and the dropping rate is 12.5 ml / min; co-precipitation reaction occurs after the addition of Al acid solution and Al alkaline solution, and Al ions from different sources settle together to form a nano-level uniform Aluminum hydroxide particles, which are uniformly adsorbed on the surface layer of the positive electrode material precursor particles.
  • an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain an aluminum hydroxide-coated positive electrode material precursor;
  • the lithium carbonate and the coated positive electrode material precursor were mixed according to a lithium-to-metal ratio of 1: 1.05, heated to 680 ° C at 3 ° C / min, and maintained for 3 hours, and then heated to 960 ° C at 3 ° C / min, and maintained for 15 hours.
  • alumina-coated positive electrode material that is, a finished ternary material.
  • the performance tests of the positive electrode materials obtained in the above-mentioned Examples 1 and 2 are performed below, including the tests of the micro morphology, rate performance, and cycle performance.
  • the size of the coated particles of the obtained positive electrode material is basically the same, and is coated on the surface of the large particles of the layered structure; as shown in the energy spectrum of FIG. 2B, the highlights It is an aluminum element or alumina, which is evenly and densely distributed on the surface of the particles. Therefore, alumina is uniformly and densely coated on the surface layer of the matrix particles.
  • FIG. 3 shows the specific capacities of the cathode materials in Examples 1 and 2 at different magnifications, and the change trends of the two are consistent.
  • the specific capacities of the positive electrode materials in Example 1 at the rates of 0.1C, 0.2C, 0.5C, 1C, 2C, and 5C were 173mAh / g, 170mAh / g, 163mAh / g, 158mAh / g, 151mAh / g, 139mAh
  • the specific capacities of the positive electrode materials in Example 2 at the rates of 0.1C, 0.2C, 0.5C, 1C, 2C, and 5C were 170mAh / g, 167.5mAh / g, 162.5mAh / g, and 157mAh / g, respectively. , 149mAh / g, 137mAh / g, of which the specific capacity at 5C is about 80% of the specific capacity at 0.1C.
  • FIG. 4 compares the cycle performance of the lithium battery made of the positive electrode material in Example 1 and Example 2 at a rate of 1C. It can be seen that the cycle characteristic curve changes in Example 1 and Example 2 are basically consistent.
  • the specific capacity of the battery in Example 1 after 100 cycles of charging and discharging is about 150.8mAh / g, which is equivalent to 96.4% of the initial specific capacity of 156.4mAh / g.
  • the specific capacity of the battery in Example 2 after 100 cycles of charging and discharging is about 148.6mAh / g , Equivalent to 95.2% of the initial specific capacity of 156.0mAh / g, in short, the cycle performance of the battery is better.
  • the method of the present invention can obtain a lithium battery cathode material with better rate performance and cycle performance.
  • the solute of the aluminum source acidic solution, the solute of the aluminum source alkaline solution, and the reaction conditions are not limited to this embodiment. .
  • the present invention forms two-component coated positive electrode materials of composite zirconia and alumina by co-precipitation of two coating precursors at the same time, and co-precipitation, drying, and sintering.
  • the dissolution of metal ions and the reduction of the electrolytic solution make the cycle performance of the fabricated lithium battery significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供的一种正极材料的制备方法,包括以下步骤:将正极材料前驱体溶解于溶剂中得到混合溶液;滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;同时将铝源酸性滴定液和铝源碱性滴定液滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;将锂源与所述包覆正极材料前驱体按预设锂比金属配比混合,烧结制得氧化铝包覆的正极材料。本发明采用同时滴定形成共沉淀氢氧化铝进行包覆,得到包覆均匀、牢固的氧化铝包覆正极材料,其电池充放电时包覆层与电解液直接接触,有效抑制正极材料基体中金属元素的溶解,且减少电解液的分解,从而改善材料的倍率性能和循环性能;而且方法简单,制备时间短,节约能源和成本。

Description

正极材料的制备方法、正极材料及锂离子电池 技术领域
本发明涉及锂离子电池技术领域,特别是指一种正极材料的制备方法、正极材料及锂离子电池。
背景技术
本部分旨在为权利要求书中陈述的本发明的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
锂电池正级材料包覆处理是避免电极材料溶解等副反应的有效措施,实践过程中发现包覆处理不仅能避免不良副反应,而且当包覆层(比如铝源)具有较好的导电性能时,还能够提高电极的导电能力,对锂电池的倍率性能是有益的。但是,现有的包覆技术中通常是将前驱体和包覆材料的多种原材料直接机械混合,然后经过热处理,得到一种氧化物包覆的正极材料。其中多种原料(如稀硫酸和偏铝酸钠)中往往仅有一种物质供应包覆材料的源离子(如铝),造成材料的浪费,包覆效率低;且该包覆方式通常需在有机溶剂中进行,存在易燃易挥发的安全隐患。同时,工业化共沉淀法制备过程繁琐,需加入络合剂来稳定PH值,陈化时间长,引入较多杂质离子会导致材料电化学性能的降低,不适用于高性能电池正极材料的制备。
发明内容
鉴于以上内容,有必要提供一种改进的正极材料的制备方法,通过同时滴定含包覆源离子的酸性和碱性覆层前驱物溶液共沉淀原位生成包覆层,得到的正极材料的包覆层能够紧紧的依附在正极材料基体表面,均匀性好,制备方法简单,使用安全,制得的锂电池的电化学性能好。
本发明提供的技术方案为:一种正极材料的制备方法,包括以下 步骤:
将正极材料前驱体溶解于溶剂中得到混合溶液;
滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;
将铝源酸性滴定液和铝源碱性滴定液同步滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;
将锂源与所述包覆正极材料前驱体按预设锂比金属配比混合,烧结制得氧化铝包覆的正极材料。
进一步地,所述正极材料前驱体具有下列化学式表示其组成:Ni xCo yMn z(OH) 2(x+y+z=1,0≤x≤1,0≤y≤1,0≤z≤1)。
进一步地,所述溶剂为水溶液或乙醇溶液中的一种,且在溶解过程中,所述水溶液或所述乙醇溶液的温度控制为25℃-80℃。
进一步地,在溶解过程中同时进行搅拌,搅拌速度为200rpm-500rpm。
进一步地,铝源酸性滴定液的溶质包括硝酸铝、硫酸铝、氯化铝中的一种,铝源碱性滴定液的溶质包括偏铝酸钠、偏铝酸钾中的一种,所述滴定液的浓度为0.01mol/L-0.5mol/L。
进一步地,所述碱性溶液为氢氧化钠溶液或偏铝酸钠溶液中的一种或组合。
进一步地,所述预处理溶液的PH值为8.5-10,共沉淀过程中PH值稳定为预设值。
进一步地,所述锂源中的锂元素与所述包覆正极材料前驱体的预设锂比金属配比为1.00-1.20,烧结过程中热处理的温度为550℃-1000℃,热处理的时间为3h-24h。
本发明还提供一种正极材料,采用以下方法步骤制得:
将正极材料前驱体溶解于溶剂中得到混合溶液;
滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;
将铝源酸性滴定液和铝源碱性滴定液同步滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;
将锂源与所述包覆正极材料前驱体按预设锂比金属配比混合,烧结制得氧化铝包覆的正极材料。
进一步地,所述正极材料前驱体具有下列化学式表示其组成:Ni xCo yMn z(OH) 2(x+y+z=1,0≤x≤1,0≤y≤1,0≤z≤1)。
进一步地,所述溶剂为水溶液或乙醇溶液中的一种,且在溶解过程中,所述水溶液或所述乙醇溶液的温度控制为25℃-80℃。
进一步地,在溶解过程中同时进行搅拌,搅拌速度为200rpm-500rpm。
进一步地,铝源酸性滴定液的溶质包括硝酸铝、硫酸铝、氯化铝中的一种,铝源碱性滴定液的溶质包括偏铝酸钠、偏铝酸钾中的一种,所述滴定液的浓度为0.01mol/L-0.5mol/L。
进一步地,所述碱性溶液为氢氧化钠溶液或偏铝酸钠溶液中的一种或组合。
进一步地,所述预处理溶液的PH值为8.5-10,共沉淀过程中PH值稳定为预设值。
进一步地,所述锂源与所述包覆正极材料前驱体的预设锂比金属配比为1.00-1.20,烧结过程中热处理的温度为550℃-1000℃,热处理的时间为3h-24h。
本发明进一步提供一种锂离子电池,包括由上述正极材料压制成型的正极片。
与现有技术相比,本发明提供的正极材料的制备方法,包括以下步骤:将正极材料前驱体溶解于溶剂中得到混合溶液;滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;将铝源酸性滴定液和铝源碱性滴定液同步滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;将锂源与所述包覆正极材料前驱体按预设锂比金属配比混合,烧结制得氧化铝包覆的正极材料。本发明采用同时滴定形成共沉淀氢氧化铝进行包覆,再经烧结最终得到氧化铝包覆的正极材料,其包覆层具有均匀性好,结合力强等特点。制成的锂离子电池中正极 材料包覆层与电解液直接接触,有效抑制正极材料活性物质的溶解,且减少电解液的分解,从而改善材料的倍率性能和循环性能。而且该方法步骤简单,易于控制,制备时间短,节约能源,低成本。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明的正极材料的制备流程图。
图2A为本发明的第一、第二实施方式得到的正极材料的SEM图。
图2B为本发明的第一实施方式得到的正极材料的能谱图。
图3为本发明的第一、第二实施方式得到的正极材料的倍率图。
图4为采用图3中所示的正极材料制成的锂离子电池的循环特性曲线图。
附图标记说明:
无。
如下具体实施方式将结合上述附图进一步说明本发明实施例。
具体实施方式
为了能够更清楚地理解本发明实施例的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明实施例,所描述的实施方式仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明实施 例保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明实施例。
锂离子电池具有比容量高、循环性能好、热稳定性能好,对环境友好等优点,在移动电子设备领域、储能设备以及电动车、混合动力电动汽车领域得到了广泛的应用。三元材料因为具有比容量高,安全性能好,成本较普通锂电池低等优点,成为电池正极材料研究的热点,但现有的正极材料在充放电过程易与电解液产生副反应而被腐蚀,导致其金属离子溶解并产生有害物质,严重影响锂离子电池的性能,限制其应用。
下面结合图1对本发明提供的一种正极材料的制备方法进行详细阐述。
本发明的所述方法,包括以下步骤:
101:将正极材料前驱体溶解于溶剂中得到混合溶液;
其中,
所述正极材料前驱体具有下列化学式表示其组成:Ni xCo yMn z(OH) 2(x+y+z=1,0≤x≤1,0≤y≤1,0≤z≤1)。
所述溶剂为水溶液或乙醇溶液中的一种。
在溶解过程中,所述水溶液或所述乙醇溶液的温度控制为25℃-80℃。实际操作时采用温度区间内的一个固定值,并稳定在该数值(“稳定”包括可接受范围内浮动,如设定值的±1℃以内)。
溶解过程中同时进行搅拌,搅拌速度为200rpm-500rpm。实际操作时也同样保留允许误差。
102:滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;
其中,
所述碱性溶液为氢氧化钠溶液、偏铝酸钠溶液中的一种或组合。
所述预处理溶液的PH值为8.5-10,共沉淀过程中PH值稳定为预设值。该预设值为预设范围内一固定值,如PH=8.5、9、9.5、10等。
103:将铝源酸性滴定液和铝源碱性滴定液同步滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;
其中,
铝源酸性滴定液的溶质包括硝酸铝、硫酸铝、氯化铝三种中的一种;浓度为0.01mol/L-0.5mol/L。
铝源碱性滴定液的溶质包括偏铝酸钠、偏铝酸钾中的一种,浓度为0.01mol/L-0.5mol/L。
104:所述包覆正极材料前驱体与锂源按预设配比混合,烧结制得氧化铝包覆的正极材料。
其中,
所述锂源与所述包覆正极材料前驱体的预设锂比金属配比为1.00-1.20,烧结过程中热处理的温度为300℃-1000℃,热处理的时间为3h-24h。
下面举例应用上述方法制备正极材料和锂电池,并对具体实施方式的所得产物的性能进行表征。
首先,采用硝酸铝为原料配制0.05mol/L的Al源酸性滴定液,也即Al源酸性覆层前驱物溶液(简称Al酸性溶液)备用;采用偏铝酸钾为原料配制0.05mol/L的Al源碱性滴定液,也即Al源碱性覆层前驱物溶液(简称Al碱性溶液)备用。
实施例1
称取正极材料前驱体(Ni 5Co 2Mn 3(OH) 2),将其置于50℃恒温的水溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理溶液;
将Al酸性溶液滴加入所述预处理溶液中,其中Al元素的加入量按正极材料前驱体的质量的0.1%计算,滴加的速度为8.5ml/min;同时将Al碱性溶液滴加入所述预处理溶液中稳定其PH值接近9,滴加的速度为12.5ml/min;Al酸性溶液、Al碱性溶液滴加后发生共沉淀反应,不同来源的Al离子一起沉降形成纳米级均匀的氢氧化铝颗粒,该颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到氢氧化铝包覆正极材料前驱体;
将碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.05混料,以3℃/min升温至700℃,保温3h,再以3℃/min升温至940℃,保温12h,得到氧化铝包覆的正极材料,即成品三元材料。
实施例2
称取正极材料前驱体(Ni 5Co 2Mn 3(OH) 2),将其置于50℃恒温的水溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近10的预处理溶液;
将Al酸性溶液滴加入所述预处理溶液中,其中Al元素的加入量按正极材料前驱体的质量的0.1%计算,滴加的速度为8.5ml/min;同时将Al碱性溶液滴加入所述预处理溶液中稳定其PH值接近10,滴加的速度为12.5ml/min;Al酸性溶液、Al碱性溶液滴加后发生共沉淀反应,不同来源的Al离子一起沉降形成纳米级均匀的氢氧化铝颗粒,该颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到氢氧化铝包覆正极材料前驱体;
将碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.05混料,以3℃/min升温至700℃,保温3h,再以3℃/min升温至940℃,保温12h,得到氧化铝包覆的正极材料,即成品三元材料。
实施例3
称取正极材料前驱体Ni 5Co 2Mn 3(OH) 2,将其置于50℃恒温的水溶液中,并以500rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理溶液;
将Al酸性溶液滴加入所述预处理溶液中,其中Al元素的加入量按正极材料前驱体的质量的0.1%计算,滴加的速度为8.5ml/min;同时将Al碱性溶液滴加入所述预处理溶液中稳定其PH值接近10,滴加的速度为12.5ml/min;Al酸性溶液、Al碱性溶液滴加后发生共沉淀反应,不同来源的Al离子一起沉降形成纳米级均匀的氢氧化铝颗粒,该颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到氢氧化铝包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.05混料,以3℃/min升温至700℃,保温3h,再以3℃/min升温至940℃,保温12h,得到氧化铝包覆的正极材料,即成品三元材料。
实施例4
称取正极材料前驱体Ni 5Co 2Mn 3(OH) 2,将其置于60℃恒温的水溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理溶液;
将Al酸性溶液滴加入所述预处理溶液中,其中Al元素的加入量按正极材料前驱体的质量的0.1%计算,滴加的速度为8.5ml/min;同时将Al碱性溶液滴加入所述预处理溶液中稳定其PH值接近10,滴加的速度为12.5ml/min;Al酸性溶液、Al碱性溶液滴加后发生共沉淀反应,不同来源的Al离子一起沉降形成纳米级均匀的氢氧化铝颗 粒,该颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量60℃恒温水,搅拌半小时,离心干燥得到氢氧化铝包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.05混料,以3℃/min升温至700℃,保温3h,再以3℃/min升温至940℃,保温12h,得到氧化铝包覆的正极材料,即成品三元材料。
实施例5
称取正极材料前驱体Ni 5Co 2Mn 3(OH) 2,将其置于50℃恒温的水溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理溶液;
将Al酸性溶液滴加入所述预处理溶液中,其中Al元素的加入量按正极材料前驱体的质量的0.1%计算,滴加的速度为8.5ml/min;同时将Al碱性溶液滴加入所述预处理溶液中稳定其PH值接近10,滴加的速度为12.5ml/min;Al酸性溶液、Al碱性溶液滴加后发生共沉淀反应,不同来源的Al离子一起沉降形成纳米级均匀的氢氧化铝颗粒,该颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到氢氧化铝包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.1混料,以3℃/min升温至700℃,保温3h,再以3℃/min升温至940℃,保温12h,得到氧化铝包覆的正极材料,即成品三元材料。
实施例6
称取正极材料前驱体Ni 5Co 2Mn 3(OH) 2,将其置于50℃恒温的水溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理 溶液;
将Al酸性溶液滴加入所述预处理溶液中,其中Al元素的加入量按正极材料前驱体的质量的0.1%计算,滴加的速度为8.5ml/min;同时将Al碱性溶液滴加入所述预处理溶液中稳定其PH值接近10,滴加的速度为12.5ml/min;Al酸性溶液、Al碱性溶液滴加后发生共沉淀反应,不同来源的Al离子一起沉降形成纳米级均匀的氢氧化铝颗粒,该颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到氢氧化铝包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.05混料,以3℃/min升温至680℃,保温3h,再以3℃/min升温至960℃,保温15h,得到氧化铝包覆的正极材料,即成品三元材料。
下面将上述实施例1和实施例2获得正极材料进行性能测试,包括微观形貌、倍率性能及循环性能的测试。首先,结合图2A的显微照片,可以看出得到的正极材料的包覆颗粒的大小基本一致,包覆在层状结构的基体大颗粒的表面;如图2B的能谱图所示,亮点为铝元素或称氧化铝,其均匀密集地分布在颗粒表面,所以说氧化铝均匀且密实地包覆在基体颗粒的表层。为表征上述正极材料的电性能,进一步测试了倍率性能(如图3所示)和循环性能曲线(如图4所示)。图3显示实施例1和实施例2中的正极材料在不同倍率下的比容量,其两者的变化趋势一致。实施例1中正极材料在0.1C、0.2C、0.5C、1C、2C、5C的倍率下的比容量分别是173mAh/g、170mAh/g、163mAh/g、158mAh/g、151mAh/g、139mAh/g;而实施例2中正极材料在0.1C、0.2C、0.5C、1C、2C、5C的倍率下的比容量分别是170mAh/g、167.5mAh/g、162.5mAh/g、157mAh/g、149mAh/g、137mAh/g,其中两者的在5C下的比容量约为0.1C下的比容量的80%。图4对比了实施例1和实施例2中的正极材料制成的锂电池在1C倍率下的循环性能,可以看出,实施例1与实施例2的循环特性 曲线变化趋势基本一致,实施例1中电池循环充放电100次后比容量约为150.8mAh/g,相当于初始比容量156.4mAh/g的96.4%;实施例2中电池循环充放电100次后比容量约为148.6mAh/g,相当于初始比容量156.0mAh/g的95.2%,总之电池的循环性能较好。进一步验证实施例3至实施例6所得材料的结构和性能,基本与实施例1和实施例2接近,所以采用本发明的方法能够得到倍率性能和循环性能较佳的锂电池正极材料。在其他实施方式中,所述铝源酸性溶液的溶质、所述铝源碱性溶液的溶质、反应条件(温度、时间、溶剂、锂比金属配比、搅拌速度等)不限定为本实施方式。
综上,本发明通过同时滴定两种覆层前驱体,经共沉淀、干燥、烧结等形成复合氧化锆、氧化铝的双组分包覆的正极材料,其中复合包覆层共同作用抑制基体中金属离子的溶解、减少电解液的分解,使得制成的锂电池的循环性能得到明显改善。
以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。

Claims (10)

  1. 一种正极材料的制备方法,其特征在于:包括以下步骤:
    将正极材料前驱体溶解于溶剂中得到混合溶液;
    滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;
    将铝源酸性滴定液和铝源碱性滴定液同步滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;
    将锂源与所述包覆正极材料前驱体按预设锂比金属配比混合,烧结制得氧化铝包覆的正极材料。
  2. 根据权利要求1所述的正极材料的制备方法,其特征在于:所述正极材料前驱体具有下列化学式表示其组成:Ni xCo yMn z(OH) 2(x+y+z=1,0≤x≤1,0≤y≤1,0≤z≤1)。
  3. 根据权利要求1所述的正极材料的制备方法,其特征在于:所述溶剂为水溶液或乙醇溶液中的一种,且在溶解过程中,所述水溶液或所述乙醇溶液的温度控制为25℃-80℃。
  4. 根据权利要求3所述的正极材料的制备方法,其特征在于:在溶解过程中同时进行搅拌,搅拌速度为200rpm-500rpm。
  5. 根据权利要求1所述的正极材料的制备方法,其特征在于:铝源酸性滴定液的溶质包括硝酸铝、硫酸铝、氯化铝中的一种,铝源碱性滴定液的溶质包括偏铝酸钠、偏铝酸钾两种中的一种,所述滴定液的浓度为0.01mol/L-0.5mol/L。
  6. 根据权利要求1所述的正极材料的制备方法,其特征在于:所述碱性溶液为氢氧化钠溶液、偏铝酸钠溶液中的一种或组合。
  7. 根据权利要求1所述的正极材料的制备方法,其特征在于:所述预处理溶液的PH值为8.5-10,共沉淀过程中PH值稳定为预设值。
  8. 根据权利要求1所述的正极材料的制备方法,其特征在于:所述锂源与所述包覆正极材料前驱体的预设锂比金属配比为1.00-1.20,烧结过程中热处理的温度为300℃-1000℃,热处理的时间为3h-24h。
  9. 一种正极材料,其特征在于:采用如权利要求1至8中任一项 所述的方法得到。
  10. 一种锂离子电池,其特征在于:包括由如权利要求9所述的材料压制成型的正极片。
PCT/CN2018/099021 2018-08-06 2018-08-06 正极材料的制备方法、正极材料及锂离子电池 WO2020029029A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/099021 WO2020029029A1 (zh) 2018-08-06 2018-08-06 正极材料的制备方法、正极材料及锂离子电池
CN201880001591.0A CN111010887B (zh) 2018-08-06 2018-08-06 正极材料的制备方法、正极材料及锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099021 WO2020029029A1 (zh) 2018-08-06 2018-08-06 正极材料的制备方法、正极材料及锂离子电池

Publications (1)

Publication Number Publication Date
WO2020029029A1 true WO2020029029A1 (zh) 2020-02-13

Family

ID=69413492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099021 WO2020029029A1 (zh) 2018-08-06 2018-08-06 正极材料的制备方法、正极材料及锂离子电池

Country Status (2)

Country Link
CN (1) CN111010887B (zh)
WO (1) WO2020029029A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259242A (zh) * 2022-08-19 2022-11-01 浙江帕瓦新能源股份有限公司 碳基前驱体材料、正极材料、以及制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571694B (zh) * 2021-07-30 2023-03-24 浙江帕瓦新能源股份有限公司 一种多离子修饰三元材料前驱体及正极材料制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103418A (ja) * 2014-11-28 2016-06-02 パナソニックIpマネジメント株式会社 全固体リチウム二次電池用正極活物質及び全固体リチウム二次電池の製造方法
CN106058188A (zh) * 2016-07-14 2016-10-26 中南大学 一种具有核壳结构的锂离子电池复合正极材料LiNi1‑x‑yMxAlyO2及其制备方法
CN106129348A (zh) * 2016-06-23 2016-11-16 四川省有色冶金研究院有限公司 一种Al2O3包覆改性的镍锰酸锂正极材料及其制备方法
CN106784837A (zh) * 2016-11-15 2017-05-31 中南大学 一种氧化铝包覆锂离子电池正极材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109399B1 (ja) * 2016-03-31 2017-04-05 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103418A (ja) * 2014-11-28 2016-06-02 パナソニックIpマネジメント株式会社 全固体リチウム二次電池用正極活物質及び全固体リチウム二次電池の製造方法
CN106129348A (zh) * 2016-06-23 2016-11-16 四川省有色冶金研究院有限公司 一种Al2O3包覆改性的镍锰酸锂正极材料及其制备方法
CN106058188A (zh) * 2016-07-14 2016-10-26 中南大学 一种具有核壳结构的锂离子电池复合正极材料LiNi1‑x‑yMxAlyO2及其制备方法
CN106784837A (zh) * 2016-11-15 2017-05-31 中南大学 一种氧化铝包覆锂离子电池正极材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259242A (zh) * 2022-08-19 2022-11-01 浙江帕瓦新能源股份有限公司 碳基前驱体材料、正极材料、以及制备方法
CN115259242B (zh) * 2022-08-19 2023-05-16 浙江帕瓦新能源股份有限公司 碳基前驱体材料、正极材料、以及制备方法

Also Published As

Publication number Publication date
CN111010887A (zh) 2020-04-14
CN111010887B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
JP7236631B2 (ja) ニッケル三元正極材料の表面改質方法
US9991504B2 (en) Method of preparing cathode for secondary battery
CN111082026A (zh) 一种包覆钨酸锂的三元正极材料及其制备方法
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
WO2012019492A1 (zh) 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法
CN109888252B (zh) 一种共包覆镍钴锰三元正极材料及制备方法
CN111095619B (zh) 正极材料的制备方法、正极材料及锂离子电池
CN110098387B (zh) 一种磷酸锂配合导电碳材料包覆的三元正极材料及其制备方法和应用
CN109950496B (zh) 一种双包覆镍钴铝酸锂三元正极材料及制备方法
CN106058241A (zh) Ce1‑xZrxO2纳米固溶体均质修饰锂离子电池正极材料及其制备方法
JP2023517376A (ja) 二次電池のための、カソードおよびカソードスラリー
CN114824214A (zh) 一种多层包覆高镍三元材料的制备方法
WO2020029029A1 (zh) 正极材料的制备方法、正极材料及锂离子电池
CN111900469A (zh) 一种基于化学交联金属-有机框架材料的柔性固态膜、柔性固态电解质膜及其制备方法
CN113363414B (zh) 一种使用多层包覆三元正极材料的锂离子电池正极片及其制备方法
CN113363477B (zh) 一种多层包覆三元正极材料的制备方法
CN113540438A (zh) 一种高镍三元复合正极材料及其制备方法
Xue et al. Synthesis and performance of hollow LiNi 0.5 Mn 1.5 O 4 with different particle sizes for lithium-ion batteries
CN111029535A (zh) 一种锂离子电池复合正极材料及其制备方法
CN113224378B (zh) 一种锂电池、固态电解质及其制备方法和应用
CN111029536A (zh) 一种锂离子电池正极材料及其制备方法
CN109950484B (zh) 制备富锂复合正极材料的方法、正极、电池
CN114005984A (zh) 一种铌酸锂包覆与铌掺杂耦合改性的高镍三元正极材料及其制备方法与应用
CN109037607B (zh) 一种包覆锰酸锂复合材料的制备方法
CN111816873A (zh) 一种碳包覆磷酸钛锰锂复合材料及其制备方法和在锂离子电池中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929600

Country of ref document: EP

Kind code of ref document: A1