WO2012019492A1 - 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法 - Google Patents

锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法 Download PDF

Info

Publication number
WO2012019492A1
WO2012019492A1 PCT/CN2011/076415 CN2011076415W WO2012019492A1 WO 2012019492 A1 WO2012019492 A1 WO 2012019492A1 CN 2011076415 W CN2011076415 W CN 2011076415W WO 2012019492 A1 WO2012019492 A1 WO 2012019492A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide electrode
electrode material
lithium ion
ion battery
Prior art date
Application number
PCT/CN2011/076415
Other languages
English (en)
French (fr)
Inventor
孙江明
赵铁鹏
徐志刚
王燕兵
王刚
张铭
谢世荣
Original Assignee
上海中科深江电动车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海中科深江电动车辆有限公司 filed Critical 上海中科深江电动车辆有限公司
Priority to US13/816,710 priority Critical patent/US9985273B2/en
Publication of WO2012019492A1 publication Critical patent/WO2012019492A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of electrode materials, in particular to the technical field of electrode materials for lithium ion batteries, in particular to a three-dimensional nanoporous metal oxide electrode material for lithium ion batteries and a preparation method thereof.
  • Metal oxide electrode materials have become one of the hotspots in recent years because of their low cost, abundant raw materials, environmental pollution, and high theoretical capacity.
  • the structure, morphology and nanocrystallization of the material have an important influence on its electrochemical performance.
  • the special porous micro-morphology of the three-dimensional nanoporous material the larger specific surface area provides more active sites for lithium ions; the thin pore walls effectively reduce the diffusion path of lithium ions; the high porosity makes the electrolyte effective. Immersion, thereby improving the ionic conductivity of the material. Therefore, the preparation of three-dimensional nanoporous nano-oxide electrode materials with large specific surface area, high porosity and good electrochemical performance has important practical significance. Summary of the invention
  • the object of the present invention is to overcome the above disadvantages of the prior art, and provide a lithium ion battery three-dimensional nanoporous metal oxide electrode material and a preparation method thereof, the lithium ion battery three-dimensional nano porous metal oxide electrode material improves lithium ion
  • the ionic conductivity of the battery anode material shortens the diffusion path of lithium ions in the electrochemical reaction process, and greatly improves the rate discharge performance of the lithium ion battery.
  • the preparation method is unique in design, simple in operation, and suitable for large-scale popularization and application.
  • a method for preparing a three-dimensional nanoporous metal oxide electrode material for a lithium ion battery comprises the steps of:
  • the polymer colloidal microsphere template is prepared by the following method: preparing a polymer microsphere emulsion by a polymer emulsion polymerization method, and then obtaining the aligned polymer glue by coprecipitation or centrifugation. Crystal microsphere template.
  • the polymeric microsphere emulsion is a polystyrene microsphere emulsion.
  • microspheres of the polystyrene microsphere emulsion have a particle diameter of 275 ⁇ 10 nm.
  • the precursor solution is a Fe 3+ ethylene glycol/decanol mixed solution, a Fe 3+ mixed solution of Co 2+ ethylene glycol/sterol or an ethanol solution of SnCl 2 '2H 2 0.
  • the period of time is 5 to 10 hours.
  • the low heating rate is 1 ⁇ 5 °C / min.
  • the certain temperature is from 450 to 600 °C.
  • the incubation time is 10 hours.
  • a lithium ion battery three-dimensional nanoporous metal oxide electrode material is provided, characterized in that the lithium ion battery three-dimensional nanoporous metal oxide electrode material is prepared by the above preparation method.
  • the three-dimensional nanoporous metal oxide electrode material of the lithium ion battery of the invention has a three-dimensional nanoporous structure, and the nanoporous structure greatly improves the specific surface area and ion conductivity of the metal oxide electrode material; shortens the electrochemical reaction The diffusion path of lithium ions in the process; the electrode material can be completely reacted in the electrode reaction process, thereby further improving the specific capacity and rate performance of the metal oxide electrode material, and is suitable for large-scale popularization and application.
  • the method for preparing a three-dimensional nanoporous metal oxide electrode material for a lithium ion battery of the present invention comprises: dipping the dried polymer microsphere template with a metal salt solution as a precursor solution for a period of time, filtering and drying to obtain a precursor template The composite; the precursor composite is calcined and kept at a low heating rate, and then cooled to room temperature, the design is unique, the operation is simple and convenient, and is suitable for large-scale popularization and application.
  • FIG. 1 is a schematic view showing a specific embodiment of a method for producing a three-dimensional nanoporous metal oxide electrode material for a lithium ion battery of the present invention.
  • Figure 2 is a scanning electron micrograph of a closely packed polystyrene colloidal microsphere template obtained by the natural sedimentation method of the specific embodiment shown in Figure 1.
  • Fig. 3a is a scanning electron micrograph of a three-dimensional nanoporous metal oxide electrode material a-Fe 2 0 3 prepared by using the polystyrene gel microplate shown in Fig. 2.
  • Fig. 3b is a cycle performance diagram of the three-dimensional nanoporous metal oxide electrode material a-Fe 2 0 3 of the lithium ion battery shown in Fig. 3a.
  • 4 is a scanning electron micrograph of a closely packed polystyrene colloidal microsphere template obtained by centrifugation in the specific embodiment shown in FIG. 1.
  • Fig. 5a is a scanning electron micrograph of a three-dimensional nanoporous metal oxide electrode material CoFe 2 0 4 prepared by using the polystyrene gel microplate shown in Fig. 4.
  • Fig. 5b is a cycle performance diagram of the three-dimensional nanoporous metal oxide electrode material CoFe 2 0 4 of the lithium ion battery shown in Fig. 5a.
  • Fig. 6a is a scanning electron micrograph of a three-dimensional nanoporous metal oxide electrode material Sn0 2 of a lithium ion battery prepared by using the polystyrene gel microplate shown in Fig. 4.
  • Fig. 6b is a cycle performance diagram of the three-dimensional nanoporous metal oxide electrode material Sn0 2 of the lithium ion battery shown in Fig. 6a. detailed description
  • a 275 ⁇ 10 nm polystyrene microsphere emulsion was prepared by emulsion polymerization.
  • the microspheres were arranged into a polystyrene gelatin microsphere template by natural sedimentation method (as shown in Fig. 2). Scanning electron microscopy showed polystyrene gel.
  • the crystal microsphere template is multi-layered, ordered, and regularly arranged in a large area, with fewer defects and strong layering.
  • the dried polystyrene gel microsphere template was immersed in the precursor solution for 5 hours, and dried by filtration to obtain a precursor template complex;
  • the precursor composite was heated to 450 ° C at rC / min and held for 10 hours, and after cooling to room temperature, a three-dimensional nanoporous structure metal oxide electrode material was obtained.
  • the mixed solution of Fe 3+ ethylene glycol/sterol was used as the precursor solution to be poured into the gap of the above polystyrene gel microsphere template. After calcination, the crystal form was relatively complete.
  • the three-dimensional nanoporous a-Fe 2 0 3 It has a three-dimensional nanoporous network structure (as shown in Fig. 3a), and the single pore size is about 115 ⁇ 10 nm; the pore wall is composed of nano-a-Fe 2 0 3 crystal particles with a wall thickness of 20-30 nm.
  • a 275 ⁇ 10 nm polystyrene microsphere emulsion was prepared by emulsion polymerization.
  • the microspheres were arranged into a polystyrene gelatin microsphere template by centrifugation (as shown in Fig. 4). Scanning electron microscopy showed polystyrene gel.
  • the crystal microsphere template is multi-layered, ordered, and regularly arranged in a large area, with fewer defects and strong layering.
  • the dried PS colloidal template particles were prepared. Soaked in the precursor solution for 7 h, then vacuum-filtered to obtain a complex of the template and the precursor.
  • the precursor composite was heated to 550 ° C at 3 ° C / min and kept for 10 hours, after cooling to room temperature, three-dimensional Nanoporous structure metal oxide electrode material.
  • the crystal form obtained after calcination is relatively complete three-dimensional nanoporous CoFe 2 0 4 , which has a three-dimensional nanoporous network structure (as shown in Fig. 5a), and the single pore size is about 130 ⁇ 10 nm; It consists of nano-CoFe 2 0 4 crystal particles with a wall thickness of 20 30 nm.
  • a 275 ⁇ 10 nm polystyrene microsphere emulsion was prepared by emulsion polymerization.
  • the microspheres were arranged into a polystyrene gelatin microsphere template by centrifugation (as shown in Fig. 4). Scanning electron microscopy showed polystyrene gel.
  • the crystal microsphere template is multi-layered, ordered, and regularly arranged in a large area, with fewer defects and strong layering.
  • An ethanol solution of SnCl 2 .2H 2 0 having a total metal ion concentration of 0.5 mol/L was prepared as a precursor solution.
  • the dried PS colloidal template particles were immersed in the precursor solution for 10 h, and then vacuum-filtered to obtain a complex of the template and the precursor.
  • Predecessor The bulk composite was heated to 600 C at 5 ° C/min and held for 10 hours. After cooling to room temperature, a three-dimensional nanoporous metal oxide electrode material was obtained.
  • Electrochemical tests showed that the first discharge charge capacity reached 1704 and 769 mAli-g" 1 respectively . After 20 cycles, the reversible capacity was still as high as 41 SmAh.g- 1 , and the coulombic efficiency remained above 90%, much higher than the theoretical capacity of graphite ( As shown in FIG. 6b, the three-dimensional nanoporous metal oxide electrode material of the lithium ion battery is prepared by the template method, and the polymer microsphere emulsion is prepared by a polymer emulsion polymerization method, and then obtained by coprecipitation or centrifugation.
  • the method removes the template to obtain a three-dimensional nanoporous metal oxide electrode material with regular structure.
  • the prepared electrode material has good electrochemical performance. This method can also be used for preparing three-dimensional nanoporous metal oxide electrode materials of other components in other fields. It has a relatively uniform three-dimensional nanoporous structure and has a wide range of applications. .
  • the invention has the high specific capacity of the metal oxide electrode material; the preparation of the nanoporous structure greatly improves the specific surface area and the ionic conductivity of the metal oxide electrode material; shortens the diffusion of lithium ions during the electrochemical reaction process Path; The electrode material can be completely reacted during the electrode reaction, thereby further improving the specific capacity and rate performance of the oxide electrode material.
  • the invention improves the ion conductivity and reactivity of the material in the electrochemical reaction process by changing the microscopic morphology of the electrode material of the lithium ion battery, thereby improving the utilization ratio of the material and the rate performance and specific capacity of the material. characteristic.
  • the precursor solution may be a metal salt solution or a salt solution of a plurality of metals (for example, Example 2). If a salt solution of a plurality of metals is used as the precursor solution, the obtained lithium is obtained.
  • the three-dimensional nanoporous metal oxide electrode material of the ion battery is substantially a three-dimensional nanoporous mixed metal oxide electrode material of a ionic battery.
  • the three-dimensional nanoporous metal oxide electrode material of the lithium ion battery of the invention improves the ion conductivity of the lithium ion battery anode material, shortens the diffusion path of lithium ions in the electrochemical reaction process, and greatly improves the lithium ion battery.
  • the rate discharge performance, the preparation method is unique in design, simple in operation, and suitable for large-scale popularization and application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法 技术领域
本发明涉及电极材料技术领域, 特别涉及裡离子电池电极材料技术领域, 具体是一种锂 离子电池三维纳米多孔金属氧化物电极材料及其制备方法。 背景技术
通过对锂离子电池发展现状分析可知, 未来几年内锂离子电池市场和应用领域会持续快 速扩大。 在锂离子电池负极材料方面, 石墨类碳材料由于其良好的循环稳定性, 理想的充放 电平台和目前较高的性价比, 仍是未来一段时间内锂离子电池主要使用的负极材料。 但是碳 材料的充放电比容量较低, 体积比容量更是没有优势, 难以满足电动车及混合电动车对电池 高容量化的要求。 因此开发具有高比容量、 高充放电效率、 长循环寿命的新型锂离子电池负 极材料极具迫切性。
金属氧化物电极材料具有廉价、 原料丰富、 对环境无公害、 高理论容量等特点成为近年 来研究的热点之一。 而材料的结构、 形貌和纳米化对其电化学性能又有重要的影响。 三维纳 米多孔材料特殊的多孔微观形貌, 较大的比表面积为锂离子提供了更多的活性位; 薄的孔壁 有效的减小锂离子的扩散路径; 高孔隙率使电解液能有效的浸入, 从而提高了材料的离子导 电性能。 因此, 制备比表面积大、 孔隙率高、 电化学性能好的三维纳米多孔纳米氧化物电极 材料具有重要的现实意义。 发明内容
本发明的目的是克服了上述现有技术中的缺点, 提供一种锂离子电池三维纳米多孔金属 氧化物电极材料及其制备方法, 该锂离子电池三维纳米多孔金属氧化物电极材料提高了锂离 子电池负极材料的离子导电性能, 并缩短了电化学反应过程中锂离子的扩散途径, 大大提高 了锂离子电池的倍率放电性能, 其制备方法设计独特、 操作简单方便, 适于大规模推广应用。
为了实现上述目的, 在本发明的第一方面, 提供了一种锂离子电池三维纳米多孔金属氧 化物电极材料的制备方法, 其特点是, 包括以下步骤:
( 1 ) 以金属的盐溶液为前驱体溶液, 将干燥过的高分子胶晶微球模板浸泡在所述前驱 体溶液中一段时间, 过滤干燥后得到前驱体模板复合物;
( 2 ) 将所述前驱体复合物在低升温速率下加热到一定温度后保温, 待冷却至室温后得 到所述锂离子电池三维纳米多孔金属氧化物电极材料。 较佳地, 所述高分子胶晶微球模板通过以下方法制备: 通过高分子乳液聚合方法制备出 高分子微球乳液,然后通过共沉淀或离心的方法得到所述的排列规则的高分子胶晶微球模板。
更佳地, 所述高分子微球乳液是聚苯乙烯微球乳液。
更进一步地, 所述聚苯乙烯微球乳液的微球粒径为 275士10 nm。
较佳地, 所述前驱体溶液是 Fe3+的乙二醇 /曱醇混合溶液、 Fe3+与 Co2+的乙二醇 /曱醇混合 溶液或 SnCl2'2H20的乙醇溶液。
较佳地, 所述一段时间为 5 ~ 10小时。
较佳地, 所述低升温速率为 1 ~ 5 °C/min。
较佳地, 所述一定温度为 450 - 600 °C。
较佳地, 所述保温的时间为 10小时。
在本发明的第二方面, 提供了一种锂离子电池三维纳米多孔金属氧化物电极材料, 其特 点是, 所述锂离子电池三维纳米多孔金属氧化物电极材料由上述的制备方法制备而成。
本发明的有益效果在于:
( 1 ) 本发明的锂离子电池三维纳米多孔金属氧化物电极材料具有三维纳米多孔状结 构,这种纳米多孔结构大大提高了金属氧化物电极材料的比表面积和离子导电性 能; 缩短了电化学反应过程中锂离子的扩散路径; 使电极材料在电极反应过程中 能得到完全的反应, 从而进一步提高了金属氧化物电极材料的比容量和倍率性 能, 适于大规模推广应用。
( 2 ) 本发明的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法以金属的盐 溶液为前驱体溶液浸泡干燥过的高分子胶晶微球模板一段时间,过滤干燥后得到 前驱体模板复合物; 将前驱体复合物在低升温速率下进行煅烧保温, 然后冷却至 室温即可, 设计独特、 操作简单方便, 适于大规模推广应用。 附图说明 图 1是本发明的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法的一具体实施 例的示意图。
图 2是图 1所示的具体实施例具体采用自然沉降法得到的紧密排列的聚苯乙烯胶晶微球 模板的扫描电镜图。
图 3a是采用图 2所示的聚苯乙烯胶晶微 ί 莫板制备的锂离子电池三维纳米多孔金属氧化 物电极材料 a-Fe203的扫描电镜图。 图 3b是图 3a所示的锂离子电池三维纳米多孔金属氧化物电极材料 a-Fe203的循环性能图。 图 4是图 1所示的具体实施例具体采用离心法得到的紧密排列的聚苯乙烯胶晶微球模板 的扫描电镜图。
图 5a是采用图 4所示的聚苯乙烯胶晶微 ί 莫板制备的锂离子电池三维纳米多孔金属氧化 物电极材料 CoFe204的扫描电镜图。
图 5b是图 5a所示的锂离子电池三维纳米多孔金属氧化物电极材料 CoFe204的循环性能 图。
图 6a是采用图 4所示的聚苯乙烯胶晶微 ί 莫板制备的锂离子电池三维纳米多孔金属氧化 物电极材料 Sn02的扫描电镜图。
图 6b是图 6a所示的锂离子电池三维纳米多孔金属氧化物电极材料 Sn02的循环性能图。 具体实施方式
为了能够更清楚地理解本发明的技术内容, 特举以下实施例详细说明, 其目的仅在于更 好理解本发明的内容而非限制本发明的保护范围。
实施例 1
锂离子电池三维纳米多孔金属氧化物电极材料 a-Fe203的制备和性能测试
( 1 ) 聚苯乙烯胶晶微球模板的制备
采用乳液聚合的方法制备了 275士10 nm聚苯乙烯微球乳液,通过自然沉降方法将微球排列 成聚苯乙烯胶晶微球模板(如图 2所示), 扫描电镜表明聚苯乙烯胶晶微球模板在大面积范围 内呈多层、 有序、 规则紧密排列, 缺陷较少, 层次感较强。
( 2 )锂离子电池三维纳米多孔金属氧化物电极材料 ot-Fe203的获得
以 Fe3+的乙二醇 /曱醇混合溶液为前驱体溶液, 将干燥过的聚苯乙烯胶晶微球模板浸泡在 前驱体溶液中 5小时, 过滤干燥后得到前驱体模板复合物; 将前驱体复合物在 rC/min加热到 450°C并保温 10小时, 待冷却至室温后得到三维纳米多孔结构金属氧化物电极材料。
以 Fe3+的乙二醇 /曱醇混合溶液为前驱体溶液灌入上述聚苯乙烯胶晶微球模板缝隙中, 经 煅烧后制得的晶型较为完整三维纳米多孔 a-Fe203 , 其具有三维纳米多孔网络结构 (如图 3a所 示), 单孔径大小约为 115士 10 nm; 孔壁由纳米 a-Fe203晶体颗粒组成, 壁厚为 20~30 nm。
( 3 )锂离子电池三维纳米多孔金属氧化物电极材料 a-Fe203的性能测试
电化学测试表明首次放电充电容量分别达到 1880和 1130 mAli-g"1 , 20次循环后可逆容量依 然高达 631 mAli-g"1 , 库仑效率保持在 90%以上, 表现出较高的比容量和良好的循环性能(如 图 3b所示) 。 实施例 2
锂离子电池三维纳米多孔金属氧化物电极材料 CoFe204的制备和性能测试
( 1 ) 聚苯乙烯胶晶微球模板的制备
采用乳液聚合的方法制备了 275士10 nm聚苯乙烯微球乳液,通过离心的方法将微球排列成 聚苯乙烯胶晶微球模板(如图 4所示), 扫描电镜表明聚苯乙烯胶晶微球模板在大面积范围内 呈多层、 有序、 规则紧密排列, 缺陷较少, 层次感较强。
( 2 )锂离子电池三维纳米多孔金属氧化物电极材料 CoFe204的获得
配制总金属离子浓度为 1.5 mol-L-l (摩尔比, Fe3+: Co2+=2: 1 ) 的乙二醇 /曱醇(混合溶 液作为前驱体溶液。 将干燥过的 PS胶晶模板颗粒浸泡在前驱物溶液中 7 h, 然后真空抽滤得到 模板与前驱体的复合物。 将前驱体复合物在 3 °C/min加热到 550°C并保温 10小时, 待冷却至室 温后得到三维纳米多孔结构金属氧化物电极材料。
以总金属离子浓度为 1.5 mol-L"1 (摩尔比, Fe3+ : Co2+=2: 1 ) 的乙二醇 /曱醇混合溶液为 前驱体溶液灌入上述聚苯乙烯胶晶微球模板缝隙中, 经煅烧后制得的晶型较为完整三维纳米 多孔 CoFe204, 其具有三维纳米多孔网络结构(如图 5a所示), 单孔径大小约为 130士 10 nm; 孔 壁由纳米 CoFe204晶体颗粒组成, 壁厚为 20 30 nm。
( 3 )锂离子电池三维纳米多孔金属氧化物电极材料 CoFe204的性能测试
电化学测试表明首次放电充电容量分别达到 1782和 1147 mAli-g"1 , 20次循环后可逆容量依 然高达 610 mAli-g"1 , 库仑效率保持在 80%以上, 表现出较高的比容量和良好的循环性能(如 图 5b所示) 。 实施例 3
锂离子电池三维纳米多孔金属氧化物电极材料 Sn02.的制备和性能测试
( 1 ) 聚苯乙烯胶晶微球模板的制备
采用乳液聚合的方法制备了 275士10 nm聚苯乙烯微球乳液,通过离心的方法将微球排列成 聚苯乙烯胶晶微球模板(如图 4所示), 扫描电镜表明聚苯乙烯胶晶微球模板在大面积范围内 呈多层、 有序、 规则紧密排列, 缺陷较少, 层次感较强。
( 2 )锂离子电池三维纳米多孔金属氧化物电极材料 Sn02的获得
配制总金属离子浓度为 0.5 mol/L的 SnCl2.2H20的乙醇溶液为前驱体溶液。 将干燥过的 PS 胶晶模板颗粒浸泡在前驱物溶液中 10 h, 然后真空抽滤得到模板与前驱体的复合物。 将前驱 体复合物在 5 °C/min加热到 600 C并保温 10小时, 待冷却至室温后得到三维纳米多孔结构金属 氧化物电极材料。
以 0.5 mol/L的 SnCl2.2H20的乙醇溶液为前驱体溶液灌入上述聚苯乙烯胶晶微球模板缝隙 中, 经煅烧后制得的晶型较为完整三维纳米多孔 Sn02, 其具有三维纳米多孔网络结构 (如图 6a所示), 单孔径大小约为 215士 10 nm; 孔壁由纳米 Sn02晶体颗粒组成, 壁厚为 20~30 nm。 ( 3 )锂离子电池三维纳米多孔金属氧化物电极材料 Sn02的性能测试
电化学测试表明首次放电充电容量分别达到 1704和 769 mAli-g"1 , 20次循环后可逆容量依 然高达 41 SmAh.g-1 , 库仑效率保持在 90%以上, 远高于石墨的理论容量(如图 6b所示) 。 本发明通过模板法制备了锂离子电池三维纳米多孔金属氧化物电极材料, 首先通过高分 子乳液聚合方法制备出高分子微球乳液, 然后通过共沉淀或离心的方法得到排列规则的高分 子胶晶微球模板, 再将金属盐溶液作为前驱体溶液灌入微球之间的空隙中, 并在模板去除之 前转变为金属络合物或固态金属化合物; 然后通过低速率煅烧方法去除模板得到结构规则的 三维纳米多孔金属氧化物电极材料。 所制备的电极材料具有良好的电化学性能。 此种方法也 可用于制备其它领域的其它元件的三维纳米多孔金属氧化物电极材料, 其具有较为均勾的三 维纳米多孔结构, 具有较为广泛的应用领域。
本发明在金属氧化物电极材料具有高比容量的基础上; 通过纳米多孔结构的制备, 大大 提高了金属氧化物电极材料的比表面积和离子导电性能; 缩短了电化学反应过程中锂离子的 扩散路径; 使电极材料在电极反应过程中能得到完全的反应, 从而进一步提高了氧化物电极 材料的比容量和倍率性能。
也就是说, 本发明通过改变锂离子电池电极材料的微观形貌来提高其在电化学反应过程 中材料的离子导电性能和反应活性, 从而提高了材料的利用率以及材料的倍率性能和比容量 特性。
需要说明的是, 前驱体溶液可以是一种金属的盐溶液, 也可以是多种金属的盐溶液(例 如实施例 2 ), 如果是多种金属的盐溶液作为前驱体溶液, 则得到的锂离子电池三维纳米多孔 金属氧化物电极材料实质上是裡离子电池三维纳米多孔混合金属氧化物电极材料。
综上, 本发明的锂离子电池三维纳米多孔金属氧化物电极材料提高了锂离子电池负极材 料的离子导电性能, 并缩短了电化学反应过程中锂离子的扩散途径, 大大提高了锂离子电池 的倍率放电性能, 其制备方法设计独特、 操作简单方便, 适于大规模推广应用。
在此说明书中, 本发明已参照其特定的实施例作了描述。 但是, 很显然仍可以做出各种 修改和变换而不背离本发明的精神和范围。 因此, 说明书和附图应被认为是说明性的而非限 制性的。

Claims

权利要求 、 一种锂离子电池三维纳米多孔金属氧化物电极材料的制备方法, 其特征在于, 包括以下步 骤:
( 1 ) 以金属的盐溶液为前驱体溶液,将干燥过的高分子胶晶微球模板浸泡在所述前驱 体溶液中一段时间, 过滤干燥后得到前驱体模板复合物;
( 2 ) 将所述前驱体复合物在低升温速率加热到一定温度后保温,待冷却至室温后得到 所述锂离子电池三维大孔金属氧化物电极材料。
、 根据权利要求 1所述的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法, 其特征 在于, 所述高分子胶晶微球模板通过以下方法制备: 通过高分子乳液聚合方法制备出高分 子微球乳液, 然后通过共沉淀或离心的方法得到所述的高分子胶晶微球模板。
、 根据权利要求 2所述的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法, 其特征 在于, 所述高分子微球乳液是聚苯乙烯微球乳液。
、 根据权利要求 3所述的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法, 其特征 在于, 所述聚苯乙烯微球乳液的微球粒径为 275±10 nm。
、 根据权利要求 1所述的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法, 其特征 在于, 所述前驱体溶液是 Fe3+的乙二醇 /曱醇混合溶液、 Fe3+与 Co2+的乙二醇 /曱醇混合溶液 或 SnCl2'2H20的乙醇溶液。
、 根据权利要求 1所述的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法, 其特征 在于, 所述一段时间为 5 ~ 10小时。
、 根据权利要求 1所述的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法, 其特征 在于, 所述低升温速率为 1 ~ 5 °C/min。
、 根据权利要求 1所述的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法, 其特征 在于, 所述一定温度为 450 - 600 °C。
、 根据权利要求 1所述的锂离子电池三维纳米多孔金属氧化物电极材料的制备方法, 其特征 在于, 所述保温的时间为 10小时。
0、 一种锂离子电池三维纳米多孔金属氧化物电极材料, 其特征在于, 所述锂离子电池三 维纳米多孔金属氧化物电极材料由根据权利要求 1-9任一所述的制备方法制备而成。
PCT/CN2011/076415 2010-08-13 2011-06-27 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法 WO2012019492A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/816,710 US9985273B2 (en) 2010-08-13 2011-06-27 Three-dimensional nanosized porous metal oxide electrode material of lithium ion battery and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102530841A CN101937989A (zh) 2010-08-13 2010-08-13 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法
CN201010253084.1 2010-08-13

Publications (1)

Publication Number Publication Date
WO2012019492A1 true WO2012019492A1 (zh) 2012-02-16

Family

ID=43391197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076415 WO2012019492A1 (zh) 2010-08-13 2011-06-27 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法

Country Status (3)

Country Link
US (1) US9985273B2 (zh)
CN (1) CN101937989A (zh)
WO (1) WO2012019492A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937989A (zh) 2010-08-13 2011-01-05 上海中科深江电动车辆有限公司 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法
CN104134788B (zh) * 2014-07-22 2017-08-25 南方科技大学 一种三维梯度金属氢氧化物/氧化物电极材料及其制备方法和应用
DE102014223608A1 (de) 2014-11-19 2016-05-19 Robert Bosch Gmbh Kathodische Elektrode eines auf Lithium basierenden Akkumulators
JP6363550B2 (ja) 2014-12-16 2018-07-25 日本ケミコン株式会社 金属化合物粒子群の製造方法、金属化合物粒子群及び金属化合物粒子群を含む蓄電デバイス用電極
US10018681B2 (en) 2015-02-09 2018-07-10 Tesla, Inc. Cell manufacturing using liquid-based thermal system
CN106531967B (zh) * 2016-12-16 2017-12-12 黑龙江大学 一种四氧二铁酸钴‑碳布的锂电负极材料的制备方法
KR101815479B1 (ko) * 2017-07-20 2018-01-08 한국지질자원연구원 구겨진 그래핀 및 코발트-철 산화물을 포함하는 복합체 제조방법, 이에 따라 제조된 복합체 및 복합체를 포함하는 슈퍼커패시터
CN107317024B (zh) * 2017-07-28 2020-10-30 长安大学 酒糟辅助合成的富锂锰基层状锂离子电池正极材料及其制备方法
CN110610668B (zh) * 2018-06-15 2022-05-06 深圳富泰宏精密工业有限公司 智能眼镜
CN109553162B (zh) * 2018-11-27 2021-08-20 昆明理工大学 一种以有序多孔ZnO为模板的不锈钢基纳米阵列β-PbO2电极的制备方法
BR112021017233A2 (pt) * 2019-03-12 2021-11-09 Basf Se Uso de microesferas porosas de óxido de metal, artigo de polímero artificial modelado, e, composição de polímero extrusada, fundida, fiada, moldada ou calandrada
CN111785961B (zh) * 2020-06-02 2021-07-23 杭州电子科技大学 一种多孔四氧化三铁薄膜/多层石墨烯复合材料及制备方法
CN111769263B (zh) * 2020-06-18 2022-06-07 合肥国轩高科动力能源有限公司 一种三维C/Fe3O4锂离子电池负极材料及其制备方法
CN111696792B (zh) * 2020-06-30 2021-07-20 苏州大学 一种基于插层式赝电容的有机纳米负极及其制备方法和应用
CN112079343A (zh) * 2020-08-14 2020-12-15 广州大学 一种三维多孔碳的制备方法及其制成的电池负极和电池
CN114824183B (zh) * 2021-01-22 2024-03-22 上海昱瓴新能源科技有限公司 硅烷合成三维多孔硅粉末的方法及其应用
CN115172710A (zh) * 2022-07-26 2022-10-11 晖阳(贵州)新能源材料有限公司 一种锂离子电池所用氧化铁石墨复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901256A (zh) * 2006-07-13 2007-01-24 昆明理工大学 一种锂离子电池负极及其制备方法
WO2008151163A2 (en) * 2007-05-31 2008-12-11 A123 Systems, Inc. Separator including electroactive material for overcharge protection
CN101567440A (zh) * 2009-06-04 2009-10-28 复旦大学 锂离子电池孔状LiMn2O4正极材料及其制备方法
CN101937989A (zh) * 2010-08-13 2011-01-05 上海中科深江电动车辆有限公司 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680013B1 (en) * 1999-04-15 2004-01-20 Regents Of The University Of Minnesota Synthesis of macroporous structures
US6656526B2 (en) * 2001-09-20 2003-12-02 Hewlett-Packard Development Company, L.P. Porously coated open-structure substrate and method of manufacture thereof
CN100463860C (zh) * 2007-02-01 2009-02-25 郑州大学 二氧化锡空心球的制备方法
CN101062473A (zh) * 2007-04-10 2007-10-31 湘潭大学 三维有序大孔锰氧“锂离子筛”的制备方法
JP4546574B1 (ja) * 2008-10-27 2010-09-15 花王株式会社 リチウム複合酸化物焼結体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901256A (zh) * 2006-07-13 2007-01-24 昆明理工大学 一种锂离子电池负极及其制备方法
WO2008151163A2 (en) * 2007-05-31 2008-12-11 A123 Systems, Inc. Separator including electroactive material for overcharge protection
CN101567440A (zh) * 2009-06-04 2009-10-28 复旦大学 锂离子电池孔状LiMn2O4正极材料及其制备方法
CN101937989A (zh) * 2010-08-13 2011-01-05 上海中科深江电动车辆有限公司 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法

Also Published As

Publication number Publication date
US9985273B2 (en) 2018-05-29
CN101937989A (zh) 2011-01-05
US20130143115A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2012019492A1 (zh) 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法
AU2017364749A1 (en) Method of preparing anode slurry for secondary battery
CN110600695B (zh) 蛋黄-蛋壳结构锡@空心介孔碳球材料及其制备方法
CN105680013A (zh) 一种锂离子电池硅/石墨/碳复合负极材料的制备方法
CN108493458B (zh) 一种高性能海胆状氧化镍/钴酸镍微球锂氧气电池正极催化材料及其制备方法
CN108682833B (zh) 一种磷酸铁锂基改性正极材料制备方法
CN108448088A (zh) 一种改性三元正极材料及其制备方法、锂离子电池
CN111342031B (zh) 一种多元梯度复合高首效锂电池负极材料及其制备方法
CN105186033A (zh) 一种多级孔结构凝胶聚合物电解质膜及其制备方法
CN114597581B (zh) 一种改性隔膜、制备方法及在锂离子电池中的应用
CN113698183A (zh) 一种碳包覆氧化铝陶瓷材料及其制备方法和应用
CN110085823B (zh) 一种纳米复合负极材料及其制备方法与应用
CN113937261B (zh) 锂硫电池正极材料及其制备方法及锂硫电池正极片
CN114447321A (zh) 一种正极材料及包括该材料的正极片和电池
CN113066966B (zh) 一种多层核壳结构二元钴镍金属氧化物包裹聚苯胺纳米复合材料及其制备方法和应用
CN108807904B (zh) 一种锂电池用改性磷酸铁锂正极材料的制备方法
CN112928246A (zh) 一种复合材料、其制备方法及应用
CN112751008B (zh) 多酚改性锌铁基异质结氧化物碳纳米锂离子电池负极复合材料及其制备方法
CN102544507B (zh) 一种锂离子动力电池正极片及锂离子动力电池
CN113571681A (zh) 一种空心二氧化钛/镍/碳复合材料及其制备方法和应用
CN116072854B (zh) 一种电池
Fan et al. Hierarchical porous CoOx/carbon nanocomposite for enhanced lithium storage
Yang et al. Binder-free layered ZnO@ Ni microspheres as advanced anode materials for lithium-ion batteries
CN102938457A (zh) 一种naf包覆富锂锰基层状正极材料的制备方法
Lang et al. Influence of Sulfur‐Modified Vanadium Pentoxide by Solid Phase Sintering Method on Electrochemical Performance of Cathode Materials for Lithium‐Ion Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13816710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816051

Country of ref document: EP

Kind code of ref document: A1