WO2020026823A1 - ミスト発生装置、並びにミスト成膜方法、及びミスト成膜装置 - Google Patents

ミスト発生装置、並びにミスト成膜方法、及びミスト成膜装置 Download PDF

Info

Publication number
WO2020026823A1
WO2020026823A1 PCT/JP2019/028198 JP2019028198W WO2020026823A1 WO 2020026823 A1 WO2020026823 A1 WO 2020026823A1 JP 2019028198 W JP2019028198 W JP 2019028198W WO 2020026823 A1 WO2020026823 A1 WO 2020026823A1
Authority
WO
WIPO (PCT)
Prior art keywords
mist
substrate
carrier gas
film forming
light
Prior art date
Application number
PCT/JP2019/028198
Other languages
English (en)
French (fr)
Inventor
西康孝
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2020533413A priority Critical patent/JP7006793B2/ja
Priority to KR1020217006201A priority patent/KR102527442B1/ko
Priority to CN201980063513.8A priority patent/CN112752616B/zh
Publication of WO2020026823A1 publication Critical patent/WO2020026823A1/ja
Priority to US17/162,609 priority patent/US11628468B2/en
Priority to JP2022000849A priority patent/JP7260006B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/228Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using electromagnetic radiation, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/10Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation being performed before the application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • the present invention provides a mist generator that generates mist containing fine material particles (nanoparticles) or material molecules, and sprays mist from the mist generator on a target to be processed, and forms fine particles on the surface of the target.
  • the present invention relates to a mist film forming method and a mist film forming apparatus for depositing a film of a material substance using molecules.
  • a film forming process for forming a thin film of various materials on a surface of a substrate (object to be processed) on which the electronic device is formed is performed.
  • film forming processes There are various types of film forming methods in the film forming process.
  • a mist generated from a solution containing molecules of material and fine particles (nanoparticles) is sprayed on the surface of the substrate, and the mist attached to the substrate (
  • a mist film formation method of forming a thin film of a material (metal material or the like) on the surface of a substrate by reacting or evaporating a solvent component contained in the solution) has attracted attention.
  • a mist of a solution containing zinc (Zn) as a material for forming a film is formed at 200 ° C. under non-vacuum (atmospheric pressure).
  • a metal oxide film (ZnO: zinc oxide film) is formed on the surface of the substrate by spraying onto the surface of the substrate heated to a certain degree, and ultraviolet light having a central wavelength of 254 nm or 365 nm is directed toward the metal oxide film for a predetermined time. It has been shown that by irradiating over a period of time, the resistance value of the metal oxide film (zinc oxide film) is reduced.
  • the ultraviolet light is continuously irradiated for a relatively long time (30 minutes or 60 minutes). It is desired to reduce the time of the resistance reduction process as a process after forming the film.
  • a flexible and long substrate resin sheet of plastic or the like, metal foil, ultra-thin glass plate, etc.
  • metal oxidation is continuously performed on the surface of the substrate by a mist film forming method.
  • a carrier gas containing a mist of a solution containing fine particles or molecules of the material is deposited on the surface of the object to deposit a layer of the material on the surface of the object.
  • a mist generator for spraying wherein a mist generator that atomizes the solution and sends out the carrier gas including the mist, and the carrier gas from the mist generator is sprayed on a surface of the workpiece.
  • an ultraviolet irradiator for irradiating the mist suspended by the carrier gas with ultraviolet light having a wavelength of 400 nm or less in the flow path to the mist.
  • the first mist having a wavelength of 400 nm or less is applied to the mist floating by the carrier gas in the flow path of the carrier gas from before the mist generating portion to the surface of the workpiece.
  • a mist film forming apparatus which sprays a mist of a solution containing fine particles of a material on a surface of a substrate to be processed, and forms a layer of the material on the surface of the substrate to be processed.
  • a mist generation unit that sends out a carrier gas containing mist generated by atomization of the solution; a mist ejection unit that ejects the carrier gas toward a surface of the substrate to be processed;
  • a moving mechanism for relatively moving the mist ejection part and the direction along the surface of the substrate to be processed, and a wall surrounding the mist ejection part to form a flow path of the carrier gas from the mist generation part to the mist ejection part.
  • a flow path forming portion having at least a part of the wall surface formed of a light transmitting member, and the carrier gas flowing inside the flow path forming portion through the light transmitting member of the flow path forming portion.
  • a first ultraviolet irradiation unit for irradiating the following ultraviolet rays long 400 nm, a.
  • a solution containing fine particles of a material is applied to a surface of a substrate to be processed so as to form a liquid film having a predetermined thickness, and the liquid film is dried to form a liquid film on the surface of the substrate to be processed.
  • a fine particle deposition apparatus for forming a layer of the fine particles, wherein a coating mechanism for coating a liquid film of the solution with a predetermined thickness on the surface of the substrate to be processed, and the processing target substrate with respect to the coating mechanism
  • a moving mechanism for transporting the liquid film at a predetermined speed in a direction along the surface of the substrate to be processed; and a moving mechanism for starting the formation of the liquid film by the coating mechanism and evaporating or volatilizing the solvent of the liquid film.
  • a vibration mechanism for microvibrating the substrate.
  • FIG. 1 is a diagram illustrating a schematic overall configuration of a mist film forming apparatus MDE equipped with a mist generating device according to a first embodiment.
  • FIG. 2 is a perspective view illustrating a specific appearance of a mist film forming unit of the mist film forming apparatus illustrated in FIG. 1.
  • FIG. 3 is a perspective view illustrating a specific configuration of a back side (a side facing a substrate P) of a wind guide member 31 in the mist film forming unit illustrated in FIG. 2.
  • FIG. 4 is a perspective view illustrating an arrangement state of the mist ejection unit 30 and the electrode holding members 51A and 51B illustrated in FIGS. 2 and 3.
  • FIG. 2 is a partial cross-sectional view showing a specific configuration of a flow path unit 20A and a UV light source unit 20B provided in a mist reforming unit 20 shown in FIG.
  • FIG. 3 is a diagram schematically illustrating a configuration of an experimental set for a preliminary experiment 1 in which a mist in a carrier gas CGS is irradiated with ultraviolet rays.
  • 7 is a graph showing measurement results of resistance values of ITO thin films formed by changing the irradiation time of ultraviolet light (UV light) to the mist according to the experimental set in FIG. 6.
  • 5 is a graph of an experimental result showing a tendency of a change in a resistance value when various energy is applied or irradiated to an ITO thin film formed on a sample substrate.
  • FIG. 3 is a diagram schematically illustrating a configuration of an experimental set for a preliminary experiment 1 in which a mist in a carrier gas CGS is irradiated with ultraviolet rays.
  • 7 is a graph showing
  • FIG. 4 is a diagram schematically illustrating a configuration of an experimental set for a preliminary experiment 2 in which a mist in a carrier gas CGS and a formed ITO film are irradiated with ultraviolet rays.
  • 10 is a graph showing the measurement results of the resistance value of the ITO thin film when the irradiation time of the ultraviolet light (UV light) is varied in Preliminary Experiment 2 using the experiment set of FIG. 9.
  • FIG. 9 is a partial cross-sectional view illustrating a configuration of a main part of a mist film forming apparatus MDE according to a second embodiment. It is a sectional view showing composition of modification 1 of mist reforming part 20 applied to a 1st embodiment or a 2nd embodiment.
  • FIG. 9 is a partial cross-sectional view illustrating a configuration of a main part of a mist film forming apparatus MDE according to a second embodiment. It is a sectional view showing composition of modification 1 of mist reforming part 20 applied to a 1
  • FIG. 13 is a cross-sectional view of the mist reforming unit 20 according to Modification Example 1 of FIG. It is a perspective view showing the composition of modification 2 of mist modification part 20 applied to a 1st embodiment or a 2nd embodiment.
  • FIG. 15 is a cross-sectional view of the mist reforming section 20 according to Modification 2 of FIG.
  • FIG. 11 is a front view showing a schematic configuration of a main part of a mist film forming apparatus MDE according to a third embodiment.
  • FIG. 17A is a top view showing the configuration of the support table 5D of the mist film forming apparatus MDE of FIG. 16, and FIG. 17B is a partial cross-sectional view of a part of the support table 5D.
  • FIG. 13 is a top view illustrating an arrangement state of a mist ejection unit 30 and a mist collection unit 32 of a mist film forming apparatus MDE according to Modification Example 3.
  • FIG. FIG. 13 is a perspective view schematically showing an appearance and an internal structure of a mist reforming unit 20 according to Modification 4.
  • FIG. 20 is a cross-sectional view of the mist reforming unit 20 of FIG. 19 cut along a plane including a center line Axo. It is a perspective view by Modification Example 5 showing a partial internal configuration of the quartz tube 250 in the mist reforming section 20 such as Modification Example 4.
  • FIG. 14 is a diagram illustrating a schematic configuration of an illumination optical system and a mist reforming unit 20 when a UV light beam BM from a deep ultraviolet laser light source LS according to a sixth modification is used.
  • 18 is a perspective view showing a schematic external shape of a mist ejection unit 30 of a mist film forming apparatus MDE according to Modification 7.
  • FIG. FIG. 24 is a cross-sectional view showing a part of a cross section in which the mist ejection part 30 of FIG. 23 is broken in the vicinity of the center in the longitudinal direction (Y direction).
  • 17 is a partial cross-sectional view illustrating a schematic configuration of a mist generation unit 14 of a mist film forming apparatus MDE according to Modification Example 8.
  • FIG. FIG. 13 is a front view illustrating a schematic configuration of a main part of a mist film forming apparatus MDE according to a fourth embodiment.
  • FIG. 1 is a diagram showing a schematic overall configuration of a mist film forming apparatus MDE equipped with a mist generator according to the first embodiment.
  • an XYZ orthogonal coordinate system in which the direction of gravity is set to the Z direction is set unless otherwise specified, and a flexible sheet substrate P as a substrate to be processed (also simply referred to as a substrate P) is set according to the arrow shown in FIG.
  • the transfer direction of the sheet substrate P may be X direction
  • the width direction of the sheet substrate P orthogonal to the transfer direction may be Y direction
  • the surface of the sheet substrate P at the time of mist deposition may be a horizontal plane parallel to the XY plane in the present embodiment.
  • the sheet substrate P has a thickness of several hundred ⁇ m to several tens ⁇ m made of a resin such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or polyimide which is long in the X direction.
  • a resin such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or polyimide which is long in the X direction.
  • Flexible sheet but other materials such as stainless steel, aluminum, brass, copper and other metal materials are thinly rolled, metal foil sheet, and ultra-thin glass sheet with a thickness of 100 ⁇ m or less to provide flexibility And a plastic sheet containing cellulose nanofibers.
  • the sheet substrate P does not necessarily need to be long, for example, a sheet substrate of a single sheet in which dimensions of long sides and short sides are standardized such as A4 size, A3 size, B4 size, and B3 size;
  • the substrate may be a non-standard irregular sheet substrate.
  • a mist film forming apparatus (coating mechanism) MDE generally includes a transport unit (transport mechanism) 5 that supports a sheet substrate P and transports the sheet substrate P in the X direction, A solution tank 10 for storing a solution containing nanoparticles to be formed, a mist generating section 14 for efficiently generating a mist having a particle size of several ⁇ m to about several tens ⁇ m from the solution, a chemical or physical state of the generated mist Mist reforming section 20 that reforms the mist with ultraviolet light (UV light), mist ejecting section 30 that sprays a gas (carrier gas) containing the modified mist supplied through pipe 24 toward sheet substrate P, A mist collecting section 32 for collecting a carrier gas containing a mist floating without adhering to the sheet substrate P, and a mist ejecting section for suppressing leakage of the carrier gas containing the mist to the outside air (outside the apparatus).
  • a transport unit (transport mechanism) 5 that supports a sheet substrate P and transports the
  • a mist collection unit 32 is configured by the solution tank 10, the mist generating unit 14, and the mist reforming unit 20. Therefore, the configuration of each unit will be described in detail below.
  • the solvent of the solution stored in the solution tank 10 is pure water that is easy to handle and highly safe.
  • the solvent (pure water) includes indium tin oxide (ITO) as an example of a material. Are mixed in the desired concentration.
  • the solution in the solution tank 10 is intermittently or continuously supplied to the mist generator 14 by the precision pump 12.
  • the mist generating section 14 provides an inner container (cup) 14A for storing the solution in a sealed outer container, and applies a vibration of about 20 KHz to the solution in the inner container 14A, to thereby produce nanoparticles (ITO) in the solution.
  • a pipe 16 having an opening arranged in the upper space of the inner container 14A and a flow rate adjusting valve 15 for adjusting a flow rate of a carrier gas (carrier gas) CGS passing through the pipe 16 are provided in the mist generating section 14.
  • the carrier gas CGS is supplied at a flow rate (or pressure).
  • each of the precision pump 12, the ultrasonic transducers 14B and 14C, and the flow control valve 15 is appropriately controlled by the mist generation control unit 18 which receives a command from a higher-level controller (such as a general control computer).
  • the drive is performed at a drive amount, timing, interval, and the like.
  • the generator 14 is disclosed in, for example, International Publication No. WO 2017/154937.
  • this kind of nanoparticles easily aggregates in pure water. Therefore, when a surfactant is mixed with pure water at an appropriate concentration to obtain a solution in which aggregation is suppressed, the first ultrasonic vibration The child 14B can be omitted. In this case, a step of heating the substrate P to a high temperature (100 ° C.
  • the first ultrasonic transducer 14B can be omitted.
  • the mist generated in the mist generating section 14 is sent to the mist reforming section 20 through the pipe 17 on the flow of the carrier gas CGS.
  • the carrier gas CGS clean air (clean air) from which dust (particles) is removed, clean nitrogen (N 2 ) gas, argon (Ar) gas, or the like can be used.
  • the carrier gas CGS is set to clean air or nitrogen gas, for example, as disclosed in International Publication No. WO 2016/133131.
  • the carrier gas CGS is made of argon gas. If it is necessary to set the temperature of the carrier gas CGS containing the mist sprayed from the mist ejection unit 30 higher (or lower) than the normal temperature, the temperature of the carrier gas CGS and the temperature of the mist generation unit 14 may be changed as necessary.
  • a temperature control mechanism (a heater, a cooler, or the like) that adjusts the temperature of the pipe 17 or the temperature inside the pipe 17 to a set value is provided.
  • the mist reforming section 20 which will be described in detail later, roughly flows a flow through a quartz tube or the like through which a carrier gas CGS (also referred to as mist gas CGS) containing mist supplied from the pipe 17 flows over a predetermined length.
  • a carrier gas CGS also referred to as mist gas CGS
  • the flow path unit 20A is configured by connecting a quartz tube having a diameter of about several centimeters in a continuous manner as an example, and the UV light source unit 20B is a long arc type arranged near the outer periphery of the quartz tube in parallel with the quartz tube.
  • the low-pressure mercury discharge lamp sets the mercury vapor pressure in the discharge tube to 1000 Pa (Pascal) or less and generates UV light Lb including a strong emission line spectrum at a wavelength of 200 nm or less.
  • the energy (light amount) of the UV light Lb applied to the mist also increases, and the time required for reforming the mist can be reduced.
  • the low-pressure mercury discharge lamp itself is located near the quartz tube as a considerably high-temperature heat source, the tube wall (particularly, the inner wall surface) of the quartz tube also rises in temperature. Therefore, the temperature of the mist itself rises along with the temperature of the carrier gas CGS passing through the quartz tube over the length of the flow path portion 20A, and the particle size of the mist is kept as nanoparticles (ITO nanoparticles) by evaporation of the mist. And become so small that they cannot float.
  • the temperature of the inner wall surface of the quartz tube is considerably higher than the temperature of the carrier gas CGS containing the mist supplied from the pipe 17, the mist evaporates as soon as the mist contacts the inner wall of the quartz tube having a higher temperature ( Mist), and the mist density (fog density) reaching the pipe 24 connected to the mist ejection part 30 may be extremely reduced. Therefore, in the present embodiment, the temperature (preferably, the temperature of the inner wall surface) of the flow path forming member such as a quartz tube constituting the flow path section 20A is controlled by the temperature control mechanism 20C to the temperature of the carrier gas CGS containing mist. Adjust the temperature so that it is about the same as the above. The specific configuration for that will be described later.
  • the carrier gas CGS containing the mist reformed through the flow path 20A of the mist reforming section 20 is supplied from above the mist blowing section 30 through the pipe 24 and faces the substrate P of the mist blowing section 30.
  • a predetermined flow rate (wind velocity) is sprayed onto the substrate P from a slit-shaped nozzle formed at the bottom.
  • the slit-shaped nozzle is formed with a length in the Y direction substantially equal to the width dimension of the substrate P (or a length in the Y direction shorter than the width dimension of the substrate P), and several mm in the X direction. It is formed with a width of about (1 to 6 mm).
  • the mist collection unit 32 is disposed downstream of the mist ejection unit 30 with respect to the transport direction of the substrate P.
  • the mist sprayed downward ( ⁇ Z direction) from the slit-shaped nozzle at the bottom of the mist ejection unit 30 is negative pressure (reduced pressure) formed at the collection port formed at the bottom of the mist collection unit 32 on the downstream side. , And adheres to the surface of the substrate P while flowing in the + X direction along the surface of the substrate P.
  • the recovery port portion at the bottom of the mist recovery portion 32 is formed in a shape extending in a slot shape in the Y direction, and a mist that has not adhered to the substrate P via a pipe 33 connected to an upper portion of the mist recovery portion 32.
  • the carrier gas CGS is recovered by a vacuum pump (not shown).
  • the carrier gas CGS containing mist is smoothly supplied from the slit-shaped nozzle of the mist ejection unit 30 to the collection port of the mist collection unit 32.
  • a wind guide member (also referred to as a skirt member or a rectifying member) 31 for flowing air to the air is provided.
  • the surface of the substrate P moves in the + X direction while being exposed to the laminar flow of the carrier gas CGS containing the mist sprayed from the mist ejection unit 30 and collected by the mist collection unit 32.
  • nanoparticles (ITO) deposited on the surface of the substrate P can change the thickness of the film.
  • the carrier gas CGS leaked from the space covered by the wind guide member 31 is reduced by setting the inside of the chamber 40 to a negative pressure through the pipe 41 connected to the vacuum decompression source. Can be prevented from flowing out.
  • the mist ejection unit 30, the air guide member 31, and the mist collection unit 32 constitute a mist film formation mechanism.
  • the total discharge flow rate of the carrier gas CGS including the mist ejected from the slit-shaped nozzle of the mist ejection section 30 is Qf
  • the total exhaust flow rate at the collection port section of the mist collection section 32 is Qv.
  • the relationship of Qf> Qv is intentionally set so that the excess carrier gas CGS leaks from the inside of the air guide member 31. May be set so that more mist can adhere to the surface of the mist.
  • the balance between the total discharge flow rate Qf and the total exhaust flow rate Qv can be easily set by adjusting the flow rate of the vacuum pressure reducing source connected to the pipe 33 and the flow rate adjusting valve 15 shown in FIG.
  • the surface of the substrate P immediately after the mist film formation in the chamber section 40 has a thin liquid film (water, for example, about several ⁇ m to several tens ⁇ m) due to mist adhesion.
  • a drying unit (heating mechanism) for evaporating and drying the liquid film is provided on the downstream side of the chamber section 40 because the liquid film is in a wet state covered with the film.
  • the drying unit includes an infrared lamp, an electric heater, and a blower (blower) for heating the substrate P at a temperature higher than room temperature (23 to 25 ° C.) and lower than 100 ° C., for example, at a low temperature of about 40 to 80 ° C. Have.
  • the liquid film on the surface of the substrate P is thin, the liquid film can be evaporated and dried in a short time even at a low temperature of about 40 to 80 ° C.
  • a thin film on which nanoparticles are densely deposited is formed on the surface of the substrate P after the drying process.
  • the resistivity ( ⁇ ⁇ m) of the ITO film is relatively high. Remains large.
  • the UV irradiation unit 60 that irradiates the surface of the substrate P after the mist film formation (wet state or after drying) with UV light La in the ultraviolet wavelength range is performed by the chamber unit 40 (or the drying unit). Unit) on the downstream side.
  • the mist film forming method of forming a deposited film (ITO film) of nanoparticles (ITO crystal) on the surface of the substrate P the mist itself before attaching to the substrate P
  • a first-stage ultraviolet irradiation process of irradiating light Lb to perform modification (ultraviolet cleaning) and a second-stage ultraviolet irradiation process of irradiating the ITO film layer deposited on the substrate P with UV light La are performed.
  • the resistivity of the ITO film layer formed on the surface of the substrate P can be significantly reduced in a short time by the two-step ultraviolet irradiation treatment. The details will be described later.
  • FIG. 2 is a perspective view illustrating a specific configuration of a film forming unit of the mist film forming apparatus MDE illustrated in FIG. 1
  • FIG. 3 is a diagram illustrating a configuration of a wind guide member 31 provided in the film forming unit illustrated in FIG.
  • FIG. 4 is a perspective view of the specific configuration on the back side (the side facing the substrate P) viewed from the ⁇ Z direction side, and the orthogonal coordinate system XYZ in FIGS. 2 and 3 is set in the same direction as FIG.
  • roller 1 includes a roller 5A that rotates around a central axis AXa parallel to the Y axis, and is disposed parallel to the central axis AXa at a predetermined distance from the central axis AXa in the X direction.
  • a roller 5B that rotates around a central axis AXb, an endless belt 5C that extends between the two rollers 5A and 5B, and that supports the sheet substrate P flat on the upper surface of the flat portion.
  • a support table 5D disposed on the back side of the flat portion supporting the sheet substrate P and supporting the belt 5C flat.
  • the width of the belt 5C in the Y direction is set to be slightly larger than the width (short dimension) of the substrate P in the Y direction, and the belt 5C vacuum-adsorbs the substrate P in a region corresponding to the upper surface of the support table 5D.
  • the sheet is transported and driven in a non-contact state (or a low friction state) with the upper surface of the support table 5D by a static pressure gas layer (air bearing) generated between the upper surface of the support table 5D and the rear surface of the belt 5C.
  • the transport unit 5 having such a configuration is disclosed in, for example, International Publication WO2013 / 150677, but the belt 5C is preferably made of metal such as stainless steel, which has high rigidity and can secure flatness.
  • the belt 5C and the support table 5D are preferably made of a non-conductive material (non-metal) having high insulation properties.
  • the sheet substrate P is held on the flat portion of the belt 5C, and is conveyed at a predetermined speed in the + X direction by the rotation of the rollers 5A and 5B.
  • a wind guide member having a width in the Y direction covering the short dimension of the substrate P as shown in FIG.
  • the mist ejection part 30 and the mist collection part 32 are provided at 31.
  • the mist ejection unit 30 is provided at an opening on the ⁇ X direction side (upstream side) of the air guide member 31, and the mist collection unit 32 is provided at an opening on the + X direction side (downstream side) of the air guide member 31.
  • the supply port 30Pa, 30Pb to which each of the pipes 24A, 24B obtained by dividing the pipe 24 shown in FIG. 1 into two branches is formed on the upper top plate of the mist ejection part 30.
  • the internal space of the mist ejection section 30 extends in the Y direction and is formed in a rectangular shape. Therefore, in order to make the mist concentration in the Y direction in the internal space as uniform as possible, two supply spaces are provided. Ports 30Pa and 30Pb are provided side by side in the Y direction.
  • a pair of plasma assist high voltages is applied to the mist (carrier gas CGS) sprayed from the nozzle.
  • the electrode rods 50A and 50B (50B is not shown in FIG. 2) are installed at a constant interval in the X direction.
  • the lower ends of the wind guide member 31, the mist ejection unit 30, and the mist collection unit 32 do not disturb the flow of the carrier gas CGS containing the mist. It is formed in a plane shape substantially parallel to the flat surface of the substrate P.
  • the plate-shaped air guide member 31 includes a bottom surface 31A parallel to the XY plane (the surface of the substrate P), and side plates 31B extending in the X direction by protruding by a predetermined amount in the ⁇ Z direction on both sides in the Y direction. 31C.
  • Each end (lower end surface) on the ⁇ Z direction side of each of the side plates 31B and 31C is disposed so as to face the surface of the flat portion of the belt 5C shown in FIG. 2 with a predetermined gap (gap). It is desirable that the gap is as small as possible so that the mist-containing carrier gas CGS flowing in the space between the bottom surface 31A of the wind guide member 31 and the surface of the substrate P does not leak from the gap as much as possible. .
  • side plates similar to the side plates 31B and 31C are not provided at both ends of the wind guide member 31 in the X direction (transport direction of the substrate P). If so, a side plate that protrudes toward the substrate P from the bottom surface 31A at both ends in the X direction of the wind guide member 31 may be provided.
  • a nozzle portion (slit opening) 30A extending in a slit shape in the Y direction for spraying the mist, and extending in parallel with the Y direction so as to sandwich the nozzle portion 30A in the X direction.
  • the nozzle 30A and the electrode holding members 51A, 51B are provided in a rectangular opening 31D formed in the plate-shaped air guiding member 31. Be placed.
  • each of the mist ejection part 30 and the air guide member 31 is made of an insulating material such as glass (quartz), ceramics, synthetic resin (acrylic or the like), and at least mist ejection is performed.
  • insulating material such as glass (quartz), ceramics, synthetic resin (acrylic or the like)
  • metal (conductive) bolts, screws, nuts and other components In the vicinity of the lower end of the part 30 (nozzle part 30A), it is preferable not to provide metal (conductive) bolts, screws, nuts and other components.
  • FIG. 4 is a perspective view showing an arrangement state of the mist ejection unit 30 and the electrode holding members 51A and 51B, and the orthogonal coordinate system XYZ is set in the same direction as each of FIGS.
  • the mist ejection part 30 is made of acrylic resin or the like so that the outer shape is a rectangular parallelepiped long in the Y direction, and its internal space is arranged parallel to the YZ plane and spaced apart in the X direction.
  • the vertical inner wall surfaces 30K1, 30J1 and the inner wall surfaces 30K2, 30J2, etc., which are inclined with respect to the YZ plane so as to continue from each of the inner wall surfaces 30K1, 30J1 toward the slit-shaped nozzle portion 30A at the bottom of the mist ejection portion 30, are provided. It is enclosed and temporarily stores the carrier gas CGS containing mist.
  • Supply ports 30Pa, 30Pb communicating with the internal space are formed on the upper ceiling inner wall surface (top plate inner wall surface) 30K0 (parallel to the XY plane) that defines the internal space of the mist ejection part 30, as shown in FIG. I have.
  • electrode holding members 51A, 51B arranged so as to sandwich the nozzle portion 30A in the Y direction are provided in parallel on the bottom surface portion 30B of the mist ejection portion 30.
  • the sides of the electrode holding members 51A and 51B opposed to each other with the nozzle portion 30A interposed therebetween are formed in a substantially semicircular cross section when viewed in the XZ plane, and have a semicircular center line (parallel to the Y axis).
  • Cylindrical electrode rods 50A and 50B both are also simply referred to as electrode rods 50 are embedded in parallel at the positions.
  • a bottom surface 32B is formed at the lower end of the mist collecting portion 32 so as to be substantially flush with the bottom surface 31A of the wind guide member 31, and a slot is formed on the bottom surface 32B in the Y direction.
  • a recovery port portion 32A extending in the shape of a circle is formed.
  • the collection port portion 32A is connected to the internal space of the mist collection portion 32, and the pressure in the internal space is reduced substantially uniformly via the pipe 33 shown in FIG.
  • the distribution of the exhaust flow rate can be made substantially uniform.
  • the dimension in the Y direction of the recovery port portion 32A extending in a slot shape is preferably as long as possible.
  • the dimension in the Y direction of the nozzle portion 30A at the lower end of the mist ejection portion 30 is longer. It is preferable that the length is set to be substantially the same as the distance in the Y direction between the side plates 31B and 31C provided to protrude from the bottom surface 31A of the wind guide member 31.
  • a rectifying plate (fin) or a punching plate may be provided in the internal space of the recovery port 32A. it can.
  • the bottom surface 31A of the air guide member 31, the bottom surface 32B of the mist collection unit 32, and the bottom surfaces of the electrode holding members 51A and 51B are as flat as possible in the Z direction in the present embodiment. It is set to be in the state (flash surface state). Further, the bottom surface 31A of the wind guide member 31, the bottom surface 32B of the mist collection section 32, the bottom surface of the electrode holding member 51, and the inner side surfaces of the side plates 31B and 31C are subjected to a liquid-repellent treatment for suppressing mist adhesion. Have been.
  • the liquid-repellent treatment is performed by applying a fluorine-based coating agent or sticking a liquid-repellent sheet material, and the contact angle when pure water, which is a main component of the mist, is collected to form droplets is 90 degrees. As described above, it is desirable to provide liquid repellency such that the angle is preferably 120 degrees or more.
  • the contact angle is the angle of the liquid surface from the substrate surface at the part where the droplet and the substrate surface are in contact with the substrate surface when the droplet is dropped on a flat substrate surface. is there.
  • the droplet when the contact angle is 90 degrees, the droplet has a shape in which one half of a sphere is cut in half on the substrate surface, and as the contact angle increases, the droplet becomes a flat sphere on the substrate surface It becomes easy to roll on the substrate surface when approaching.
  • FIG. 5 is a partial cross-sectional view showing an example of a specific configuration of the flow path unit 20A and the UV light source unit 20B provided in the mist reforming unit 20 of FIG.
  • three parallel cylindrical quartz tubes 201A for passing the mist-containing carrier gas CGS through a pipe 17 from a mist generator (mist generator) 14 are provided in this embodiment.
  • a U-shaped pipe 17B connecting the inlet of the quartz tube 201C and the outlet of the quartz tube 201C are connected to the pipe 24 to the mist ejection part 30.
  • the inlet of the quartz tube 201A and the pipe 17 are connected by a joint 200a, the outlet of the quartz tube 201A and the inlet of the pipe 17A are connected by a joint 200b, and the outlet of the pipe 17A and the inlet of the quartz tube 201B are connected by a joint 200c.
  • the outlet of the quartz tube 201B and the inlet of the pipe 17B are connected by a joint 200d, the outlet of the pipe 17B and the inlet of the quartz tube 201C are connected by a joint 200e, and the outlet of the quartz tube 201C and the pipe 24 are connected.
  • a joint 200f is connected by a joint 200f.
  • the carrier gas CGS including the mist supplied from the pipe 17 is formed in a zigzag manner in the order of the quartz tube 201A, the U-shaped tube 17A, the quartz tube 201B, the U-shaped tube 17B, and the quartz tube 201C. It flows and is sent to the pipe 24. Further, outer quartz tubes 202A, 202B, 202C having inner diameters several mm or more larger than the outer diameters of the quartz tubes 201A to 201C are provided substantially coaxially on the outer periphery of each of the quartz tubes 201A, 201B, 201C.
  • a gap between the outer peripheral surface of the quartz tube 201A and the inner peripheral surface of the outer quartz tube 202A, a gap between the outer peripheral surface of the quartz tube 201B and the inner peripheral surface of the outer quartz tube 202B, and quartz Pure water whose temperature has been adjusted as a cooling liquid (coolant liquid) CLq flows through each gap between the outer peripheral surface of the tube 201C and the inner peripheral surface of the outer quartz tube 202C. Therefore, at both ends of the quartz tube 201A and the outer quartz tube 202A, the quartz tube 201A and the outer quartz tube 202A are supported substantially coaxially, and sealing is performed so that the coolant (pure water) CLq flows through the gap. Sealing plugs 204A and 204B are provided, and a supply port (pipe) 205A for the coolant CLq is provided in the sealing plug 204A located on the pipe 17 side.
  • the quartz tube 201B and the outer quartz tube 202B are supported substantially coaxially, and sealing is performed so that the coolant (pure water) CLq flows through the gap.
  • Sealing plugs 204C and 204D are provided.
  • the quartz tube 201C and the outer quartz tube 202C are supported substantially coaxially on both ends of the quartz tube 201C and the outer quartz tube 202C, and a coolant (pure water) is provided in the gap.
  • Sealing plugs 204E and 204F are provided for sealing so that CLq flows.
  • Ports (pipes) 205B and 205C for passing the coolant CLq are provided between the sealing plug 204B and the sealing plug 204C and between the sealing plug 204D and the sealing plug 204E.
  • a discharge port (pipe) 205D for discharging the refrigerant CLq is provided in the sealing plug portion 204F located on the pipe 24 side.
  • UV light sources long arc type tubular low-pressure mercury discharge lamps (UV light sources) 210A, 210B, 210C, 210D are arranged in parallel.
  • four UV light sources 210A to 210D are used to irradiate strong ultraviolet light (UV light Lb) to the mist contained in the carrier gas CGS passing through each of the three quartz tubes 201A, 201B, and 201C.
  • UV light Lb strong ultraviolet light
  • the number may be three or less or five or more depending on the power of one UV light source.
  • the low-pressure mercury discharge lamp has a strong emission line spectrum in an ultraviolet wavelength range of 300 nm or less, and particularly has at least one of two spectral components having a center wavelength of 253.7 nm (about 254 nm) and a center wavelength of 184.9 nm (about 185 nm). Fine particles and molecules of organic substances, bacteria, and the like contained in the mist and attached to the surface of the nanoparticles are decomposed and washed. Further, the entire mist reforming section 20 shown in FIG.
  • the light Lb is housed in a light-shielding housing (dark box).
  • the mist in the carrier gas CGS passing through the inside of each of the quartz tubes 201A to 201C contains the UV light Lb in the strong ultraviolet wavelength range generated from each of the UV light sources 210A to 210D, and the outer quartz tube 202A to 202C.
  • the coolant (pure water) CLq filled in the gap between each tube wall of the outer tube 202C, the inner peripheral surfaces of the outer quartz tubes 202A to 202C, and the outer peripheral surfaces of the quartz tubes 201A to 201C, and the refrigerant tubes CL of the quartz tubes 201A to 201C. Irradiated through each tube wall.
  • the UV light sources 210A to 210D when the UV light sources 210A to 210D are arranged near each of the quartz tubes 201A to 201C, the UV light sources 210A to 210D themselves serve as heat sources to heat the respective tube walls of the quartz tubes 201A to 201C. Become.
  • the particle size of the mist (several ⁇ m to several tens ⁇ m) is rapidly reduced by evaporation, and eventually the film forming material is formed. Cannot be held, and the ITO nanoparticles are deposited on the inner wall surfaces of the quartz tubes 201A to 201C and the U-shaped pipes 17A and 17B of the flow path section 20A. Therefore, the mist contained in the carrier gas CGS almost disappears before reaching the pipe 24.
  • the temperature control mechanism 20C shown in FIG. The temperature of the tube walls (inner wall surfaces) of the tubes 201A to 201C is adjusted to the same level as the temperature of the carrier gas CGS. Pure water as the coolant CLq flows from the supply port 205A of FIG. 5 into the sealing plug 204A, fills a gap between the outer quartz tube 202A and the quartz tube 201A, and reaches the sealing plug 204B. The pure water in the sealing plug 204B flows into the sealing plug 204C through the port 205B, and fills a gap between the outer quartz tube 202B and the quartz tube 201B to reach the sealing plug 204D.
  • the pure water in the sealing plug 204D flows into the sealing plug 204E through the port 205C, fills the gap between the outer quartz tube 202C and the quartz tube 201C, reaches the sealing plug 204F, and discharges. It is discharged from 205D.
  • the irradiation / temperature control unit 22 shown in FIG. 1 controls the refrigerant CLq discharged from the discharge port 205D to a predetermined temperature and then circulates the refrigerant CLq to the supply port 205A.
  • the lighting of the UV light sources (low-pressure mercury discharge lamps) 210A to 210D is also controlled by the irradiation / temperature control unit 22 in FIG.
  • the temperature and flow rate of the refrigerant in the temperature control mechanism 20C are controlled based on the temperatures measured by the temperature sensors.
  • an illuminance monitor photoelectric detector
  • the emission intensity (illuminance) of the UV light Lb is provided near the UV light sources 210A to 210D, and the irradiation / temperature control shown in FIG.
  • the lighting power of the UV light sources 210A to 210D may be controlled by the control unit 22.
  • a double tube structure of a quartz tube 201A to 201C and an outer quartz tube 202A to 202C is connected for three stages, .
  • the coolant (pure water) CLq is filled and flowed, but the number of stages may be any number according to the flow rate of the carrier gas CGS including the mist.
  • the entirety of the quartz tubes 201A to 201C and the U-shaped pipes 17A and 17B are provided in a refrigerant (pure water) filled in a liquid tank surrounded by a quartz plate material, and a UV light source is provided from outside the liquid tank. Of ultraviolet rays (wavelength of 300 nm or less).
  • the liquid tank surrounded by the quartz plate material filled with the refrigerant functions as the temperature control mechanism 20C.
  • the inner wall surfaces of the quartz tubes 201A to 201C and the U-shaped pipes 17A and 17B are subjected to a liquid-repellent treatment to prevent mist from adhering. ).
  • a liquid-repellent coating agent of a fluorine compound in which fluorine and carbon atoms are bonded is used, it is possible to suppress deterioration due to ultraviolet rays (reduced liquid repellency).
  • the sheet substrate P as the object to be processed is transported at a constant speed in the + X direction by the transport unit 5 (belt 5C or the like), and at the same time, the mist jetting unit
  • the mist ejected from the nozzle portion 30A of the mist and riding on the carrier gas CGS flowing toward the collection port portion 32A of the mist collection portion 32 distant in the + X direction is generated between the bottom surface 31A of the wind guide member 31 and the substrate P. It is configured to adhere to the surface of the substrate P while flowing through the space.
  • Such a configuration is disclosed in, for example, WO 2013/176222, in which the transport speed of the substrate P is set to Vf (mm / sec), and the flow rate of the carrier gas CGS (mist) flowing over the substrate P is adjusted.
  • Vg (mm / sec) the transport speed Vf and the flow velocity Vg are set to have a relationship of Vf ⁇ Vg or a relationship of Vf ⁇ Vg.
  • the distance (mist contact flow path length) in the X direction from the nozzle portion (slit opening) 30A to the recovery port portion 32A is Lx (mm)
  • any one location on the surface of the substrate P is the carrier gas CGS.
  • tcc Lx / Vf (sec).
  • the flow velocity Vg of the carrier gas CGS or the concentration of the mist in the carrier gas CGS is adjusted so that the liquid film is formed by the above. If a variable mechanism of the mist contact flow path length that allows adjustment of the distance Lx (mm) in the X direction from the nozzle section 30A to the collection port section 32A is provided in the wind guide member 31 or the like, the substrate P is transported by the mechanism.
  • the contact time tcc can be adjusted without depending only on the adjustment of the speed Vf.
  • FIG. 6 is a diagram schematically illustrating a configuration of an experimental set for a preliminary experiment 1 in which mist in the carrier gas CGS is irradiated with ultraviolet rays.
  • a carrier gas CGS containing mist is sprayed downward at a predetermined flow rate ( ⁇ Z direction) from an inlet 91 a of a large quartz flask 91 via a pipe 90, and the inside of the flask 91 is mist. (Particles) Filled with Mst.
  • UV light Lb (including a spectrum having a wavelength of 254 nm and 185 nm) from a UV light source (low-pressure mercury discharge lamp) 92A is irradiated toward the mist Mst.
  • the carrier gas CGS containing the mist Mst irradiated with the UV light Lb for a predetermined time passes through a quartz tube 93 provided horizontally (parallel to the XY plane) on the side wall of the flask 91. Is sprayed onto a sample substrate SP (here, a glass plate or a semiconductor wafer substrate) arranged at an angle of 45 ° with respect to a horizontal plane.
  • a sample substrate SP here, a glass plate or a semiconductor wafer substrate
  • light shielding plates 94a and 94b that prevent the UV light Lb from the UV light source 92A from being irradiated into the quartz tube 93 are provided at a position near the outer wall of the flask 91 of the quartz tube 93 and below the quartz tube 93.
  • the irradiation time Ts (second) is defined as the time from when the carrier gas CGS (mist) starts to be ejected from the inlet 91 a of the flask 91 to when the carrier gas CGS flows into the quartz tube 93, and the irradiation time Ts is determined in several steps.
  • the experiment was performed by adjusting the flow rate (flow rate) of the carrier gas CGS supplied from the pipe 90 to the flask 91 so as to adjust the flow rate.
  • the thickness of the ITO thin film deposited on the surface of the sample substrate SP becomes approximately 50 nm.
  • the sample substrate SP immediately after the mist film formation in the experimental set of FIG. 6 was dried by heating for a certain period of time, and thereafter, the resistance value (resistivity) of the ITO thin film was measured by a two-terminal method.
  • the irradiation time Ts of the UV light Lb to the mist Mst was set to 0, 20, 40, 60, and 80 seconds so that each of the five sample substrates SP had a film thickness of 50 nm.
  • the particles were mist-formed.
  • An experiment using this experiment set was performed under a normal temperature environment.
  • FIG. 7 is a graph showing the measurement results of the resistance values of the ITO thin films formed on each of the five sample substrates SP with different irradiation times Ts of the UV light Lb, and the horizontal axis represents the irradiation times Ts (seconds). The vertical axis represents the resistance value (M ⁇ / m 2 ) of the ITO thin film.
  • UV light Lb ultraviolet rays
  • the resistance value of the ITO thin film having a film thickness of about 50 nm is reduced by irradiation.
  • the value shows a high value of about 20 M ⁇ / m 2, but when the irradiation time Ts is set to 60 seconds or more, the value is reduced to about half, about 10 M ⁇ / m 2 .
  • the UV light source (low-pressure mercury discharge lamp) 92A and the flask 91a were used so that the bottom 91b of the flask 91 did not rapidly rise in temperature due to the radiant heat from the UV light source (low-pressure mercury discharge lamp) 92A serving as a heat source.
  • the distance between the base 91 and the bottom 91b is widened. Therefore, the intensity (light amount) of the UV light Lb applied to the mist Mst in the flask 91 was slightly reduced.
  • the irradiation efficiency (the mist particles irradiated with the UV light Lb over a predetermined time or more) by being irradiated with the UV light Lb from the same vertical direction (Z direction) as the main flow direction of the mist Mst in the flask 91. Since the UV light Lb to the mist Mst in the carrier gas CGS is made more efficient, the resistance value can be reduced to about half as shown in FIG. It has been speculated that the irradiation time Ts (second) required for the above can be reduced. Therefore, in the first embodiment, as shown in FIG.
  • the UV light Lb from the UV light sources 210A to 210D disposed immediately outside the quartz tubes 201A to 201C is converted into a heat insulating layer by a coolant (pure water) CLq.
  • CLq coolant
  • the irradiation is performed from the direction (crossing direction) intersecting with the direction in which the carrier gas CGS (mist) in the quartz tubes 201A to 201C flows, so that the irradiation efficiency can be increased, and FIGS. It is possible to shorten the time Ts of the preliminary UV light irradiation as compared with the experimental result of the above.
  • the pre-UV light irradiation step by the mist modifying unit 20 as shown in FIG. 5 causes the mist to adhere to the surface of the mist particles in the carrier gas CGS or the surface of the nanoparticles in the mist. Since the mist is formed in a state where impurities (organic substances and the like) are efficiently decomposed / removed, the electric resistance of the thin film formed by depositing conductive nanoparticles such as ITO contained in the mist can be reduced. Further, similarly to the conventional WO 2013/118353, after the ITO thin film is formed on the substrate P by the mist film formation, the UV irradiation unit 60 shown in FIG.
  • the resistance value of the ITO thin film can be more efficiently reduced.
  • the substrate P can be heated to about 100 ° C.
  • the substrate P is heated from 80 ° C. to 100 ° C. while the UV irradiation unit 60
  • the resistance can be reduced to about several K ⁇ / m 2 to about several hundred ⁇ / m 2 in a relatively short time.
  • FIG. 8 is a graph of an experimental result showing a tendency of a change in a resistance value when various energy is applied or irradiated to the ITO thin film formed on the sample substrate SP, and the horizontal axis represents the energy applied or irradiated.
  • the vertical axis represents the relative value (%) of the resistance value based on the sheet resistance value when the processing time is zero (100%).
  • a characteristic CC1 in FIG. 8 indicates a relative change in the resistance value of the ITO thin film when the sample substrate SP is heated to about 80 ° C.
  • a characteristic CC2 in FIG. 8 represents a relative change in the resistance value of the ITO thin film when the sample substrate SP was heated to about 120 ° C. by an infrared lamp in an atmosphere of argon gas, and a characteristic CC3 in FIG.
  • UV light Lb ultraviolet light
  • the resistance of the ITO thin film can be significantly reduced (0.8 K ⁇ / m 2 ), but about 10 minutes. Heating is required.
  • the sample substrate SP ITO thin film
  • the resistance value of the ITO thin film is significantly reduced in about 5 minutes. (10 K ⁇ / m 2 ).
  • the resistance value of the ITO thin film stopped almost at 10 K ⁇ / m 2 , and no further lowering of the resistance was observed. This is because the mist particles adhering to the surface of the sample substrate SP at the time of mist film formation contain molecules of organic substances (carbon-based or amine-based) as impurities, and the ITO nanoparticles are deposited on the sample substrate SP at a predetermined level.
  • the impurities When deposited with a film thickness, the impurities remain in the film, and the decomposition / removal of the impurities by irradiation with UV light acts on the surface layer of the ITO thin film, but is effective up to the inside of the film (film bottom). It is presumed to be due to the inactivity.
  • FIG. 9 shows a configuration of an experimental set in which a UV light source 92B for irradiating the sample substrate SP with UV light Lc during mist film formation is added to the experimental set of FIG. 6 for the preliminary experiment 2.
  • the UV light source 92B is a bar-shaped low-pressure mercury discharge lamp, which is the same as the UV light source 92A.
  • the UV light source 92B is arranged so as to extend in the Y direction in FIG. 9 and oriented so that the flask 91 and the quartz tube 93 are not irradiated with the UV light Lc. Have been.
  • the time (that is, the irradiation time Ts) of the first stage of the ultraviolet irradiation treatment (irradiation of the UV light Lb to the mist Mst) by the UV light source 92A is the same as the preliminary experiment 1, and the flow rate (flow rate) of the carrier gas CGS In other words, 0 second, 20 seconds, 40 seconds, 60 seconds, and 80 seconds.
  • the carrier gas CGS (mist) starts to be ejected from the inlet 91 a of the flask 91 to the time when it flows into the quartz tube 93.
  • the processing time in the first phase of the second-stage ultraviolet irradiation processing by the UV light source 92B is set to be the same as the irradiation time Ts in the first-stage ultraviolet irradiation processing, and the specified irradiation time is set.
  • the distance in the X direction from the exit of the quartz tube 93 to the sample substrate SP was adjusted so that an ITO thin film having a thickness of about 50 nm was deposited on the sample substrate SP during Ts.
  • FIG. 10 is a graph showing the measurement results of the resistance values of the ITO thin films formed on each of the five sample substrates SP having different irradiation times Ts in the preliminary experiment 2, and the horizontal axis represents the irradiation times Ts (seconds). ), And the vertical axis represents the resistance value (M ⁇ / m 2 ) of the ITO thin film.
  • the characteristic EC1 indicates that an ITO thin film having a thickness of about 50 nm is formed on the sample substrate SP without performing the first-stage ultraviolet irradiation processing or the ultraviolet irradiation processing during mist formation (first phase).
  • the second phase of the second stage ultraviolet irradiation process of irradiating the UV light La from the UV irradiation unit 60 as shown in FIG. 1 for a specified time (0, 20, 40, 60, 80 seconds) It shows the change in the resistance value of the ITO thin film when the test is performed.
  • the characteristic EC2 in FIG. 10 indicates that the mist Mst irradiated with the UV light Lb is sprayed onto the sample substrate SP only by the first-stage ultraviolet irradiation treatment, and the ITO thin film formed to have a thickness of about 50 nm. , And its characteristics are the same as those in FIG.
  • the characteristic EC1 (only the second phase of the second-stage ultraviolet irradiation process is performed) requires about 30 seconds of irradiation time of the ultraviolet light (UV light La) until the resistance value starts to decrease.
  • the characteristic EC2 (only the first-stage ultraviolet irradiation processing is performed)
  • the characteristic EC3 (the first-stage ultraviolet irradiation processing and the first phase of the second-stage ultraviolet irradiation processing are performed in combination)
  • the resistance value gradually decreases from the start of irradiation of ultraviolet rays (UV light Lb or UV light Lc).
  • the characteristic EC2 When (UV light Lb, or UV light Lc) irradiation time is 80 seconds, the characteristic EC2, the initial resistance value as in FIG. 7 (about 20M ⁇ / m 2) is approximately half the value (10 M.OMEGA / m 2 decreased), the characteristic EC3, the initial resistance (about 20 M.OMEGA / m 2) is reduced to about 1/4 of the value (5 m [Omega / m 2). From the result of the preliminary experiment 2, the resistance value of the thin film formed of the ITO nanoparticles deposited on the substrate P by the mist film formation is efficiently reduced under the environment of normal temperature (or lower than 100 ° C.).
  • the first stage ultraviolet irradiation process and the second stage ultraviolet irradiation process are preferably performed in parallel.
  • the substrate P can be set at a high temperature (for example, 100 ° C. or higher)
  • the substrate P can be heated at the same time when the second phase of the second stage ultraviolet irradiation process is performed, as shown in FIG. From the result of the characteristic CC2, further reduction in the resistance of the ITO thin film can be expected.
  • the mist film forming apparatus is configured based on the results obtained in the preliminary experiments 1 and 2 described above, and in the configuration of FIG.
  • the first stage ultraviolet irradiation process is performed by the reforming unit 20, and the second phase of the second stage ultraviolet irradiation process is performed by the UV irradiation unit 60.
  • the surface of the substrate P located immediately below the baffle member 31 is set in a horizontal state parallel to the XY plane, and the substrate P is transported in the + X direction.
  • Unit 5 including the belt 5C, the support table 5D, etc., and the mist blowing unit 30, the baffle member 31, and the mist collecting unit 32, and the surface of the substrate P is 30 to 60 degrees with respect to the XY plane. May be pivotally arranged around the Y axis so as to incline in the range.
  • the advantage of forming the mist in a state where the substrate P is tilted in the transport direction (long direction) is disclosed in, for example, International Publication WO2015 / 159983.
  • a mist of a solution containing fine particles or molecules of the material is used.
  • a mist generator for spraying a carrier gas (CGS) containing (Mst) onto a surface of an object to be processed, wherein a mist generator (14) for atomizing a solution and sending a carrier gas containing mist, and a mist generator
  • the carrier gas (CGS) from (14) is provided corresponding to the flow path until it is sprayed toward the surface of the object to be treated, and the mist having a wavelength of 400 nm or less is suspended in the carrier gas (CGS) and flows.
  • An ultraviolet irradiator UV light source unit 20B in the mist reforming unit 20
  • UV light Lb ultraviolet light
  • Mist generating device for generating a net things molecules like efficiently decomposed / removed carrier gas mist deposition (CGS) is obtained.
  • a mist of a solution containing fine particles or molecules of a material is sprayed on the surface of the substrate (P) to form a layer of the material on the surface of the substrate (P).
  • CCS carrier gas
  • Mst mist
  • the mist ejection part (30) ejecting toward the surface of the target substrate (P) and the mist ejection part (30) are relatively moved in the direction along the surface of the target substrate (P).
  • the flow path forming section (20A) is formed via a flow path forming section (a flow path section 20A formed of quartz tubes 201A, 201B, and 201C) made of a material (quartz or the like) and a light transmitting member of the flow path forming section (20A).
  • a first light irradiator for irradiating ultraviolet light (UV light Lb) having a wavelength of 400 nm or less toward a carrier gas (CGS) flowing through the inside of the device.
  • a mist film forming apparatus capable of improving the characteristics of a layer (thin film) made of a material deposited on a processing object is obtained.
  • FIG. 11 is a partial cross-sectional view of the mist film forming unit according to the second embodiment, which follows the configuration of the mist film forming unit of the mist film forming apparatus MDE shown in FIGS.
  • the same components as those shown in FIGS. 1 to 5 are denoted by the same reference numerals.
  • the orthogonal coordinate system XYZ in FIG. 11 is set the same as in FIGS.
  • the UV irradiation unit 70 that irradiates ultraviolet rays toward the substrate P during the mist deposition (during the period in which the mist adheres to the substrate P) is further ejected by the mist It is provided above the wind guide member 31 between the part 30 and the mist collection part 32.
  • the first-stage ultraviolet irradiation treatment irradiation of the UV light Lb to the mist-containing carrier gas CGS is performed by the mist reforming unit 20 as in FIGS.
  • the first phase of the second stage ultraviolet irradiation process is performed by the irradiation process of the UV light Lc from the UV irradiation unit 70 in FIG. 11 (the UV light Lc by the UV light source 92B in FIG. 9). (Corresponding to the irradiation process of (1)).
  • the UV irradiation unit 70 is provided with a reflecting member 71 including a concave cylindrical reflecting surface having a generatrix extending in the Y direction, and a focal position or a focal position of the concave cylindrical reflecting surface.
  • two quartz plates 73 and 74 disposed above the substrate P with a gap therebetween, and pure water (coolant liquid) or gas for cooling (for temperature control) filled in the gap 75.
  • the lower surface of the quartz plate 74 (the wall surface defining the flow path of the carrier gas CGS including the mist) is provided so as to be flush with the bottom surface 31A of the wind guide member 31, and the mist (pure water) is formed similarly to the bottom surface 31A. It is surface-treated so as to be lyophobic. Also in the present embodiment, the gap 75 between the upper surface of the quartz plate 74 and the lower surface of the quartz plate 73 is filled with a coolant liquid (pure water) or a gas and flows at a predetermined flow rate, so that the temperature of the quartz plate 74 increases. Is suppressed from rising due to radiant heat from the UV light source 72.
  • side plates extending downward ( ⁇ Z direction) at both ends in the X direction (transfer direction of the substrate P) of the air guide member 31. 31E and 31F are provided.
  • the distance ⁇ Zg between the bottom surface 31A of the wind guide member 31 and the substrate P in the Z direction is relatively large (for example, 5 mm or more)
  • the substrate P after the mist film formation may be further irradiated with UV light La from the UV irradiation unit 60.
  • the resistance of the formed ITO thin film can be reduced in a short time.
  • FIGS. 12 and 13 show a modification of the mist reforming unit 20 shown in FIG. 5, the orthogonal coordinate system XYZ is set in the same manner as in the previous description, and the Z direction is the direction of gravity (vertical direction).
  • the XY plane is a horizontal plane.
  • FIG. 12 shows a cross section when the mist reforming section 20 is cut along a plane parallel to the XZ plane
  • FIG. 13 shows a cross sectional view taken along the line k1-k1 in FIG.
  • the mist reforming section 20 is configured to reduce the pressure loss caused by turning the flow path a plurality of times by the flow path forming section 20A (the quartz tubes 201A to 201C and the U-shaped pipes 17A and 17B) as shown in FIG.
  • the configuration is to be reduced.
  • the flow path forming portion in the present modification includes an inner quartz tube (inner wall tube) 240 having a large radius from the center line Axo, and an outer quartz tube (also referred to as an outer wall tube) 242 surrounding the inner quartz tube.
  • the inner wall tube 240 is a circular tube having an inner diameter of about 12 to 20 cm and a wall thickness of several mm or less, and the inner diameter of the outer wall tube 242 is set to be several mm or more larger than the outer diameter of the inner wall tube 240. Between the outer peripheral surface of the inner wall tube 240 and the inner peripheral surface of the outer wall tube 242, a gap of about 1 mm to several mm is uniformly formed in the radial direction.
  • the gap between the outer peripheral surface of the inner wall tube 240 and the inner peripheral surface of the outer wall tube 242 is filled with the temperature-controlled refrigerant (pure water) CLq as described with reference to FIG.
  • a supply port portion and a discharge port portion for flowing the coolant (pure water) CLq are provided in a part of the end sealing members 243A and 243B.
  • a pipe 17 for introducing the carrier gas CGS from the mist generating unit 14 in FIG. 1 is connected to a position away from the center line Axo of the end sealing member 243A upward in the Z direction
  • a pipe 24 for discharging the carrier gas CGS toward the mist ejection part 30 in FIG. 1 is connected to a position separated from the center line Axo of the end sealing member 243B downward in the Z direction.
  • a rectifying plate 245A attached to the end sealing member 243A side parallel to the center line Axo, and an end sealing member parallel to the center line Axo.
  • a current plate 245B attached to the 243B side is provided.
  • the flow straightening plates 245A and 245B form a flow path of the carrier gas CGS, and are arranged at intervals in the Z direction (a direction perpendicular to the center line Axo) as shown in FIG.
  • the carrier gas CGS containing the mist that has flowed into the inner wall tube 240 is discharged from the pipe 24 around the inner wall tube 240 while being turned back by the current plates 245A and 245B.
  • the degree of transmittance to ultraviolet light is not particularly limited, but a quartz plate is preferable.
  • the inner peripheral surface of the inner wall tube 240, the surfaces of the current plates 245A and 245B, and the inner surfaces of the end sealing members 243A and 243B have high liquid repellency (for example, when they adhere as droplets). (A contact angle of 90 degrees or more).
  • UV light sources low-pressure mercury discharge lamps
  • 210A, 210B, 210C, 210D, 210E, and 210F that are arranged substantially parallel to the center line Axo.
  • Six are provided at angular intervals of about 60 degrees about the center line Axo.
  • UV light Lb (including the spectrum of wavelengths 254 nm and 185 nm) generated from each of the six UV light sources 210A to 210F passes through the outer wall tube 242, the layer of the refrigerant (pure water) CLq, and the inner wall tube 240, The mist floating on the carrier gas CGS flowing in the inner wall tube 240 is simultaneously irradiated from multiple directions.
  • the first-stage ultraviolet irradiation treatment cleaning treatment of organic impurities other than the nanoparticles of the material contained in the mist
  • the first-stage ultraviolet irradiation treatment cleaning treatment of organic impurities other than the nanoparticles of the material contained in the mist
  • six UV light sources 210A to 210F are connected to the outer wall tube 242 in order to increase the amount of UV light Lb applied to the carrier gas CGS (mist).
  • the surroundings of the inner wall tube 240 for storing the carrier gas CGS are adjusted to a predetermined temperature range by the refrigerant (pure water) CLq, so that the radiation heat from the UV light sources 210A to 210F causes The temperature rise of the carrier gas CGS is prevented.
  • a concave cylindrical surface-like reflecting member 71 similar to that shown in FIG. 11 is provided on the side opposite to the outer wall tube 242 of each of the UV light sources 210A to 210F, the carrier gas CGS (mist) is irradiated. UV light Lb can be further increased.
  • the center line Axo is inclined at an angle ⁇ y in the range of 30 to 60 degrees with respect to the XY plane with the end sealing member 243A on the lower side.
  • the entire mist reforming section 20 is disposed at an angle. This is because when the temperature of the inner peripheral surface of the inner wall tube 240 and the inner surfaces of the end sealing members 243A and 243B is slightly lower than the temperature of the carrier gas CGS flowing from the pipe 17, the mist is generated at that portion. This is for efficiently collecting the droplets when the droplets form droplets (milli-order size) due to condensation.
  • the mist when the mist is condensed and forms droplets, the mist adheres to any one of the inner peripheral surface of the inner wall tube 240, the inner side surfaces of the end sealing members 243A and 243B, and the surfaces of the rectifying plates 245A and 245B. As the diameter of the droplets increases, they flow along each surface toward the bottom in the direction of gravity.
  • the liquid droplets are collected at the same position as the inner peripheral surface of the inner wall tube 240 below the lowermost end sealing member 243A in the direction of gravity.
  • An opening 246A is provided for connecting a collecting pipe to the opening 246A.
  • the opening 246A may have a size that allows a droplet (a diameter of several mm) to pass through, and the inner peripheral surface (inner wall surface) of the opening 246A may be made lyophilic so that the contact angle is 20 degrees or less. good. Further, when the mist reforming section 20 is tilted by the angle ⁇ y as shown in FIG.
  • droplets also collect at a joint portion between the rectifying plate 245A and the end sealing member 243A, and a liquid pool is generated.
  • a notch 246B is partially or discretely formed in a part in the Y direction at a portion to be attached to the end sealing member 243A, and the droplet is transmitted through the inner surface of the end sealing member 243A to be opened. It flows to the part 246A.
  • the liquid obtained from the opening 246A via the collecting pipe may be returned to the solution tank 10 shown in FIG.
  • the entire mist reforming section 20 may be installed so as to be rotated by about 90 degrees around the center line Axo from the state in the figure.
  • the opening 246A is provided at a position rotated by about 90 degrees (the lowest part in the Z direction of the end sealing member 243A).
  • the current plates 245A and 245B are in a vertical state, a liquid pool may be generated at the joint between the current plate 245A and the end sealing member 243A and the joint between the current plate 245B and the end sealing member 243B. There is no need to provide the notch 246B.
  • the refrigerant CLq filled in the gap between the outer peripheral surface of the inner wall tube 240 and the inner peripheral surface of the outer wall tube 242 has transparency to UV light Lb (including a spectrum having a wavelength of 200 nm or less).
  • pure water is desirable, it may be a gas whose temperature is controlled. In that case, it is preferable to flow the gas whose temperature is controlled between the outer peripheral surface of the inner wall tube 240 and the inner peripheral surface of the outer wall tube 242 at a high flow rate.
  • FIGS. 14 and 15 show a modification of the mist reforming unit 20 shown in FIG. 5, the orthogonal coordinate system XYZ is set in the same manner as in the previous description, and the Z direction is the direction of gravity (vertical direction).
  • the XY plane is a horizontal plane.
  • FIG. 14 is a perspective view of the appearance of the mist reforming unit 20 according to Modification Example 2
  • FIG. 15 is a cross-sectional view taken along arrow k2-k2 in FIG.
  • the mist reforming unit 20 includes an inner quartz tube (inner wall tube) 240 having a large radius from the center line Axo and an outer quartz tube surrounding the same as in the first modification of FIGS. It is composed of a quartz tube (outer wall tube) 242 and end sealing members 243A and 243B that seal both ends of the inner wall tube 240 and the outer wall tube 242 in the direction in which the center line Axo extends.
  • the end sealing members 243A and 243B are configured not in a simple disk shape but in a cylindrical shape having a certain width in the direction of the center line Axo as shown in FIG.
  • the end sealing members 243A and 243B are made of a material (for example, stainless steel, ceramics, or the like) that has high resistance to ultraviolet light and is less corrosive by a liquid (mist).
  • the carrier gas CGS containing the mist supplied from the mist generating unit 14 shown in FIG. 1 is supplied to the inner peripheral surface of the cylindrical surface of the end sealing member 243A via the pipe 17 as shown in FIGS. Is spouted into the internal space of the inner wall tube 240 along the circumferential direction (tangential direction) of the inner peripheral surface 240A of the inner wall tube 240.
  • the carrier gas CGS ejected from the intake port Pin flows toward the opposite end sealing member 243B while gently circling the internal space of the inner wall tube 240 roughly in a spiral (tornado shape).
  • On the cylindrical outer peripheral surface of the end sealing member 243B for example, each of the two pipes 24A and 24B connected to the mist ejection part 30 shown in FIG.
  • An exhaust port (opening) Pout communicating with each of the pipes 24A and 24B is formed on the cylindrical inner peripheral surface of the end sealing member 243B, and the end sealing member 243B spirally rotates. Is supplied to the pipes 24A and 24B via the exhaust port Pout. Therefore, in the present modification, the flow of the carrier gas CGS is changed by the arrangement of the intake port Pin or the arrangement of the exhaust port Pout that sets the ejection direction of the carrier gas CGS supplied to the internal space of the simple tubular inner wall tube 240.
  • a flow path forming portion for forming a spiral flow (tornado flow or cyclone flow) is formed.
  • a certain gap is provided between the outer peripheral surface of the inner wall tube 240 and the inner peripheral surface of the outer wall tube 242, and the refrigerant (pure water or gas) is provided in the gap. ) CLq is satisfied.
  • the coolant CLq is supplied from a supply port 205A formed at the outer end of the end sealing member 243A to a gap between the inner wall tube 240 and the outer wall tube 242, and a discharge port formed at the outer end of the end sealing member 243B. It is discharged from 205D.
  • the inner peripheral surface 240A of the inner wall tube 240 has the same temperature as the temperature of the carrier gas CGS flowing from the intake port Pin or a temperature slightly higher than the temperature of the carrier gas CGS (for example, (1 ° C. to several ° C.). This is because if the temperature of the inner peripheral surface 240A of the inner wall tube 240 is constantly lower than the temperature of the carrier gas CGS, dew condensation easily occurs. In order to facilitate such temperature adjustment (temperature management), the same applies to the first modification of FIG. 12, but the thickness of the inner wall tube 240 is preferably thinner, and is preferably about 1 mm to several mm.
  • the thickness as disclosed in WO 2005/010596 or JP-A-2007-315922 is 1 mm or less.
  • an ultra-thin glass plate that can be bent by a method may be rounded into a cylindrical shape and molded.
  • the inner peripheral surface 240A of the inner wall tube 240 and the inner side surfaces of the end sealing members 243A and 243B have liquid repellency with a contact angle of 90 degrees or more (preferably 120 degrees or more) when a droplet adheres. The surface is processed to be.
  • a plurality of rod-shaped low-pressure mercury discharge lamps (UV light sources) 210A to 210D are arranged around the outer wall tube 242 similarly to the first modification.
  • the mist that floats on the carrier gas CGS flowing in a substantially spiral shape in the inside 240 is subjected to a first-stage ultraviolet irradiation treatment.
  • the flow path of the carrier gas CGS passing through the inner wall tube 240 is turned back using the current plates 245A and 245B, so that the time of the first-stage ultraviolet irradiation processing is extended.
  • the present modification by controlling the carrier gas CGS to flow in a substantially spiral manner in the inner wall tube 240, the time of the first-stage ultraviolet irradiation process can be lengthened.
  • the mist concentration of the carrier gas CGS discharged to the pipes 24A and 24B does not significantly decrease as compared with the mist concentration of the carrier gas CGS supplied from the pipe 17, and the first-stage ultraviolet irradiation It can be executed in an efficient state in which the reduction in concentration is suppressed.
  • the entire mist reforming unit 20 is inclined so that the center line Axo is inclined at an angle ⁇ y of 30 to 60 degrees with respect to the XY plane (horizontal plane). Then, an opening (equivalent to 246A in FIG. 12) that allows liquid droplets or liquid pools generated in the inner wall tube 240 to escape may be provided in the end sealing member 243A (or 243B). Further, the mist reforming section 20 of the present modification has a state in which the center line Axo is parallel to the Z axis or slightly inclined with respect to the Z axis (0 to 45 degrees in FIG. 14 or 15). May be installed vertically. In this case, the pipe 17 into which the carrier gas CGS flows in may be on the ⁇ Z direction side, and the pipes 24A and 24B from which the carrier gas CGS flows out may be on the + Z direction side, or the reverse arrangement.
  • FIG. 16 is a front view of a mist film forming section according to the third embodiment, which follows the configuration of the mist film forming section of the mist film forming apparatus MDE shown in FIG.
  • the same members as those shown in FIG. 5 or 11 are denoted by the same reference numerals.
  • the orthogonal coordinate system XYZ in FIG. 16 is set the same as in FIGS. 1 to 5 and FIG.
  • the linear transport path of the substrate P in the mist film forming unit of the mist film forming apparatus MDE is set to a horizontal plane. (XY plane) is inclined by an angle ⁇ p.
  • the angle ⁇ p is set in a range of 30 degrees to 60 degrees, and the entire mist film forming unit is inclined by the angle ⁇ p.
  • the substrate P is transported with a predetermined tension applied from the upstream side in the longitudinal direction while being sandwiched between the rollers 5E and 5F constituting the nip roller, and transported to the wind guide member 31 of the mist film forming unit. It passes between the support table 5D which is a part of the unit 5.
  • the substrate P that has left the mist film forming section is bent substantially horizontally by the roller 5G, and sent to the same UV irradiation unit 60 as in the first embodiment (FIG. 1). Since the substrate P is inclined at an angle ⁇ p in the transport direction, the position of the downstream roller 5G in the Z direction is set higher than the position of the upstream roller 5F in the Z direction.
  • the flow path of the carrier gas CGS from the nozzle portion 30A of the mist jetting portion 30 to the collecting port portion 32A of the mist collecting portion 32 similarly to the second embodiment (FIG. 11), the flow path of the carrier gas CGS from the nozzle portion 30A of the mist jetting portion 30 to the collecting port portion 32A of the mist collecting portion 32.
  • a wind guide member (flow path forming member) 31 for forming a (mist spray flow path) is provided, and a space between the mist ejection section 30 and the mist collection section 32 is directed toward the substrate P on which mist is being formed.
  • UV irradiation unit 70 for performing the step of irradiating UV light Lc (first phase of the second-stage ultraviolet irradiation processing).
  • the UV irradiation unit 70 in the present embodiment includes a plurality of rod-shaped UV light sources (low-pressure mercury discharge lamps) 72 arranged along the transport direction of the substrate P, and a carrier flowing between the air guide member 31 and the substrate P.
  • a heat insulating member 77 is provided to prevent the gas CGS and the substrate P from being heated by radiant heat from the UV light source 72.
  • the heat insulating member 77 is composed of two quartz plates 73 and 74 arranged in parallel and opposed to each other with a certain gap (gap 75), and the gap 75 is filled with a refrigerant (pure water or gas) CLq.
  • a refrigerant pure water or gas
  • CLq refrigerant
  • the substrate P is transported between the roller 5F and the roller 5G in a state where a predetermined tension is applied in the longitudinal direction, and the flat support surface 5Da of the support table 5D is The rear surface is configured to be directly supported via an air bearing (Bell-Nui) gas layer.
  • a liquid film (nanoparticle) embedded in a position close to the support surface 5Da of the support table 5D and applied to the surface of the substrate P by mist from the back side of the substrate P is chemically or A plurality of actuators 5S for providing thermal energy or kinetic energy for providing a physical action are provided.
  • the base material of the substrate P is a material that can withstand a relatively high temperature (for example, 200 ° C.
  • the actuator 5S may be a ceramic heater or the like, and the UV light from the UV irradiation unit 70 may be set while the substrate P is kept at a high temperature.
  • the light Lc can be applied to the liquid film on the surface of the substrate P.
  • the actuator 5S may be a plate-shaped or sheet-shaped vibrator, and a vibration wave may be applied from the rear surface side of the substrate P toward the substrate P.
  • the substrate P vibrates physically (mechanically) in the vertical direction on the order of microns, and kinetic energy is given to the nanoparticles in the applied liquid film. Can be dispersed in the liquid film.
  • FIGS. 17A and 17B show how an actuator 5S embedded in the support surface 5Da of the support table 5D in FIG. 16 is installed, and FIG. 17A is a plan view of a part of the support table 5D.
  • FIG. 17B is a cross-sectional view of a part of the support table 5D.
  • the actuators 5S are dispersed in each of a plurality of rectangular recesses 5Db formed to be depressed with respect to the flat support surface 5Da of the support table 5D. Placed.
  • the concave portions 5Db are two-dimensionally arranged at predetermined intervals along the support surface 5Da, and the flat support surface 5Da other than the concave portions 5Db is provided with a gas layer by an air bearing (Bell-Nui) method on the substrate P.
  • a large number of gas ejection holes 5Dg to be formed on the back side and a large number of gas suction holes 5Dh for sucking gas are formed.
  • Each of the multiple gas ejection holes 5Dg is connected to a pressurized gas flow path 5J formed in the support table 5D, and each of the multiple gas suction holes 5Dh is connected to a reduced pressure (vacuum) flow path formed in the support table 5D. 5K.
  • the transport direction of the substrate P moving along the support surface 5Da is the X direction in FIG.
  • the upper surface of the actuator 5S provided in each of the plurality of recesses 5Db is disposed to face the back surface of the substrate P with a predetermined gap (gap), and the back surface of the substrate P is Is prevented from being brought into frictional contact.
  • the actuator 5S is a ceramic heater, radiant heat from the actuator 5S serving as a heat source is directly applied to the substrate P.
  • the actuator 5S is a vibrator (vibration member, vibration mechanism)
  • sound waves generated by minute vertical vibrations on the upper surface of the actuator 5S pass through a gas layer (air) forming a gap (gap) on the back surface side of the substrate P.
  • the frequency of the vibration may be the same for all of the plurality of actuators 5S (vibrators), or may be driven at several different frequencies (for example, 2 to 4 types of frequencies).
  • the frequency of the vibration is set to a frequency band in which the nanoparticles in the liquid film move minutely.
  • the vibration amplitude of the substrate P is set within ⁇ several ⁇ m in consideration of the particle size of the nanoparticles, the thickness of the liquid film, and the viscosity of the liquid film.
  • FIG. 17A rectangular (square) concave portions 5Db are formed at a constant pitch in the XY directions in a plane, but a plurality of concave portions 5Db (actuators) are arranged in the transport direction (X direction) of the substrate P. 5S) is preferably arranged in the support surface 5Da so as to be inclined in the oblique direction with respect to the X axis and lined up in the X direction.
  • the plurality of recesses 5Db (actuators 5S) are arranged parallel to the X-axis as shown in FIG. 17A, the distance between the plurality of recesses 5Db (actuator 5S) arranged in the Y direction (support surface 5Da) is increased.
  • the entire transfer path of the substrate P and the entire mist film forming section of the mist film forming apparatus MDE are inclined at an angle ⁇ p (30 degrees to 60 degrees) in the transfer direction.
  • the actuator 5S is a vibrator
  • the actuator 5S is a vibrator
  • the size and shape of each vibrator may be different.
  • the UV irradiation unit 60 shown in FIG. 16 not only the UV light source that irradiates the substrate P with the UV light La, but also the substrate P is heated to a temperature lower than the glass transition temperature (for example, 80 degrees or less).
  • a temperature lower than the glass transition temperature for example, 80 degrees or less.
  • an infrared lamp, a ceramic heater, a hot air fan, or the like for efficiently evaporating the liquid film adhered to the surface of the substrate P may be provided.
  • the method of applying micro-vibration to the liquid film on the substrate P together with the substrate P by the actuator 5S before the liquid film is dried is not limited to the coating mechanism using the mist film forming method.
  • Film formation by a coating method for example, a well-known printing mechanism (slit coat printing, silk printing, gravure printing, offset printing, inkjet printing, etc.) for transferring an ink material containing nanoparticles such as silver, copper, and carbon to the substrate P
  • a well-known printing mechanism slit coat printing, silk printing, gravure printing, offset printing, inkjet printing, etc.
  • the volatile organic solvent should not be completely volatilized during the time when the minute vibration is applied to the ink liquid film on the substrate P. Is preferred.
  • FIG. 18 is a top view showing a modified example of the arrangement of the mist ejection unit 30 and the mist collection unit 32 in the mist film forming apparatus MDE.
  • the orthogonal coordinate system XYZ is the same as that in FIG. 1 to FIG. 5, FIG. 11, or FIG. Is set to In the present modified example, in order to cope with a case where the width dimension Wp in the Y direction (short direction of the substrate P) orthogonal to the transport direction (X direction) of the substrate P is increased, the mist ejection unit 30 and the mist collection unit 32 Are arranged in the Y direction (three in FIG. 18). As shown in FIGS.
  • the carrier gas CGS containing mist is ejected from the slit-shaped nozzle portion 30 ⁇ / b> A of the mist ejection portion 30.
  • the uniformity of the distribution is impaired, and the thickness distribution of the liquid film formed on the substrate P and the distribution of the nanoparticles are shortened (Y Direction).
  • the mist ejection unit 30-1 and the mist collection unit 32 correspond to each of the regions where the width dimension Wp of the substrate P is divided into three in the Y direction. -1, the mist ejection section 30-2 and the mist collection section 32-2, and the mist ejection section 30-3 and the mist collection section 32-3 are individually arranged.
  • Each of the mist jetting portions 30-1, 30-2, and 30-3 has a gap in the Y direction with each of the nozzle portions 30A1, 30A2, and 30A3 while avoiding spatial interference (physical contact) in arrangement.
  • each of the mist collection sections 32-1, 32-2, and 32-3 also has collection ports 32A1, 32A2, and 32A3 in the XY plane to avoid spatial interference (physical contact) in arrangement.
  • the position in the X direction of the center point of each of the nozzle portions 30A1, 30A2, and 30A3 arranged on the upstream side in the transport direction of the substrate P is XP1, and the collection port portions 32A1 and 32A2 arranged on the downstream side in the transport direction of the substrate P. , 32A3, assuming that the position in the X direction is XP2, the mist film is formed while the substrate P is moving at the speed Vp over the distance Lmf from the position XP1 to the position XP2.
  • the flow velocity distribution (mist concentration) in the Y direction becomes uniform over the width dimension Wp of the substrate P, and flows at the flow velocity Vm from the position XP1 to the position XP2.
  • the flow velocity Vm of the carrier gas CGS is controlled by the flow rate of the carrier gas CGS adjusted by the flow control valve 15 shown in FIG. Negative pressure).
  • Vm> Vp or Vm ⁇ Vp can be set according to the film degree. Further, the relationship between the flow velocity Vm and the velocity Vp can also be set depending on the thickness of the finally formed thin film of nanoparticles.
  • the mist floating on the carrier gas CGS is directly irradiated with the UV light Lb, so that the mist is transmitted to the UV light Lb (including a spectrum having a wavelength of 200 nm or less).
  • the carrier gas CGS is passed through a quartz tube or the like having a high efficiency. Therefore, the inner wall surface of the quartz tube is subjected to liquid-repellent surface processing (coating treatment with a fluorine-based or silicon-based liquid-repellent film).
  • the mist reforming unit 20 when used for a long time, the nanoparticles contained in the mist gradually adhere to the inner wall of the quartz tube, and the inner wall of the quartz tube foggs with time, and the UV light Lb Is reduced.
  • FIG. 19 is a perspective view schematically showing the appearance and the internal structure of the mist reforming section 20 according to the present modification, particularly the flow path forming section 20A.
  • the directions of the respective coordinate axes of the rectangular coordinate system XYZ are The settings are the same as in FIG. 1, FIG. 11, or FIG.
  • FIG. 20 shows a cross-sectional structure when the mist reforming section 20 of FIG. 19 is cut along a plane including the center line Axo. 19 and 20, members having the same functions as those described in the above embodiments and modifications are given the same reference numerals. 19 and 20, a UV light source unit (ultraviolet irradiation unit) 20B constituting a part of the mist reforming unit 20 is not shown.
  • a UV light source unit ultraviolet irradiation unit
  • a flow path of the carrier gas CGS containing mist is formed by the two cylindrical quartz tubes 240 and 250 having a transmittance with respect to the UV light Lb.
  • the quartz tube 250 is disposed inside the quartz tube 240, and the inner diameter (diameter of the inner peripheral surface) of the outer quartz tube 240 is ⁇ a, and the outer diameter (diameter of the outer peripheral surface) of the inner quartz tube 240 is ⁇ b.
  • the ratio ⁇ a / ⁇ b is set to about 1.5 to 3.5.
  • a disk-shaped upper sealing member 252 for sealing the inside of the quartz tube 240 is provided at an upper end (+ Z direction) of the outer quartz tube 240.
  • the upper end portion of the inner quartz tube 250 is set at a height position (position in the Z direction) so as to form a constant gap from the lower surface of the upper sealing member 252 so as to be opened in the outer quartz tube 240.
  • the material of the upper sealing member 252 may be a quartz plate, but may be a material (ceramic, metal, carbon composite, or the like) that is not easily deteriorated by UV light Lb or mist adhesion.
  • a cup-shaped lower sealing member 254 in which Pout is formed at the bottom parallel to the XY plane is provided.
  • the carrier gas CGS supplied from the lower end of the inner quartz tube 250 from the pipe 17 via the intake port Pin rises inside the quartz tube 250 to the upper end, and the lower surface of the upper sealing member 252 By changing the flow downward in the vicinity, it descends in the ⁇ Z direction in the space surrounded by the outer peripheral surface of the quartz tube 250 and the inner peripheral surface of the quartz tube 240, and exhausts at four places at the bottom of the lower sealing member 254. It is sent out to each of the pipes 24A, 24B, 24C, 24D via each of the ports Pout. Therefore, in this modification, a flow path forming portion is configured by the outer quartz tube 240 and the inner quartz tube 250, which are coaxially arranged, and the upper sealing member 252 and the lower sealing member 254.
  • a plurality of rod-shaped low-pressure mercury discharge lamps arranged in parallel with the center line Axo are provided around the outer quartz tube 240. Is provided as the UV light source unit 20B.
  • the UV light Lb from the low-pressure mercury discharge lamp passes through a heat insulating structure (having a transmittance of several tens% or more with respect to the UV light Lb) for preventing a temperature rise due to radiant heat of the quartz tube 240 and the quartz tube 250, and the quartz on the outer side.
  • the mist floating on the carrier gas CGS in the inner space of the tube 240 and the inner space of the inner quartz tube 250 is irradiated.
  • the heat insulating structure is provided with a third quartz tube that further surrounds the outer peripheral surface of the outer quartz tube 240, as in FIGS. A configuration in which pure water or gas of which temperature is controlled is filled as a coolant CLq in a gap between the inner peripheral surface of the pipe and the pipe.
  • the outer quartz tube 240, the inner quartz tube 250, the upper sealing member 252, and the lower sealing member 254 are connected so that they can be easily disassembled. . Therefore, when the mist reforming section 20 is used for a long time, the nanoparticles adhere to the inner peripheral surface of the quartz tube 240 and the inner peripheral surface of the quartz tube 250 to cause fogging, or the upper sealing member 252 and the lower sealing member 252 can be clouded. When nanoparticles accumulate on each inner wall surface or the like of the stop member 254, the operation of the mist reforming unit 20 can be interrupted, and each unit can be disassembled to perform cleaning (recovery of nanoparticles).
  • the upper sealing member 252 is separated in the + Z direction with respect to the outer quartz tube 240, and the outer quartz tube 240 is separated in the + Z direction with respect to the lower sealing member 254.
  • the tube 250 is separated from the lower sealing member 254 in the + Z direction.
  • the lower sealing member 254 can be taken out by removing the connected pipes 17, 24A, 24B, 24C, 24D.
  • a spare part of the quartz tube 240 or the quartz tube 250 should be prepared in case that the intensity of the UV light Lb irradiated to the mist is reduced due to the fogging of the quartz tube 240 or the quartz tube 250. It can be easily and quickly exchanged for spare parts.
  • the carrier gas CGS containing the mist it is possible to obtain the carrier gas CGS containing the mist at substantially the same flow rate from each of the four pipes 24A, 24B, 24C, 24D.
  • this modified example is suitable for a mist film forming apparatus provided with a plurality of mist ejection sections 30 to which the carrier gas CGS is individually supplied, for example, as in Modified Example 3 in FIG.
  • the configuration in which the mist reforming section 20 can be easily divided as in the present modification can be similarly employed in the mist reforming section 20 shown in FIGS. While cleaning the fogging due to the nanoparticles adhered to the wall surface (the inner peripheral surface of the quartz tube 240, the inner surfaces of the end sealing members 243A and 243B, and the rectifying plates 245A and 245B) defining the internal space of 20, the nanoparticles are removed. Can be recovered.
  • the quartz tubes 201A to 201A can be easily removed.
  • the cloudiness of 201C can be cleaned and the nanoparticles can be recovered.
  • droplets (drops) in which mist gathers and liquid pools in which droplets gather may occur on the bottom inner wall surface of the lower sealing member 254, as shown in FIG.
  • an opening 246A for discharging droplets and liquid pools is formed at the bottom of the lower sealing member 254, and the liquid containing nanoparticles is transferred through a collection pipe connected to the opening 246A. 1 may be returned to the solution tank 10 shown in FIG.
  • the mist reforming section 20 in FIG. 19 may be arranged so that the whole thereof is vertically inverted (Z direction), or may be arranged so that the center line Axo is inclined with respect to the Z axis. Alternatively, the center line Axo can be arranged horizontally in parallel with the XY plane.
  • FIG. 21 is a perspective view showing a partial internal configuration of a quartz tube 250 as a fifth modification applied to the fourth modification of FIGS.
  • the carrier gas CGS containing mist is supplied straight from the pipe 17 into the quartz tube 250, so that the carrier gas CGS is in a plane perpendicular to the center line Axo (a plane parallel to the XY plane).
  • the distribution of the mist concentration in the carrier gas CGS near the upper end of the quartz tube 250 may not be uniform. Therefore, as shown in FIG. 21, the inner diameter of the quartz tube 250 is set at an appropriate height position (Z-direction position) inside the quartz tube 250, preferably near the lower end of the quartz tube 250 (above the intake port Pin).
  • a thin plate (fin) 250S having substantially the same width is arranged in a twisted state around the center line Axo.
  • the carrier gas CGS spirals around the quartz tube 250.
  • the mist concentration in the carrier gas CGS ejected from the upper end of the quartz tube 250 is made uniform when viewed in the XY plane.
  • the thin plate (fin) 250S is preferably made of a material whose surface is processed to be lyophobic without being deteriorated by irradiation of UV light Lb or adhesion of mist (pure water), but is made of a material which can be deteriorated with time. In this case, a replaceable configuration (consumable parts) may be used.
  • the thin plate (fin) 250S as in this modification is also provided inside each of the quartz tubes 201A to 201C of the mist reforming section 20 in the first embodiment shown in FIG. It is possible to make the carrier gas CGS flowing in the inside of 201A to 201C into a spiral shape to make the mist concentration in the carrier gas CGS delivered to the pipe 24 uniform or to improve the straightness of the flow of the carrier gas CGS. Becomes In the case of this modification, the thin plate (fin) 250S functions as a member of the flow path forming portion.
  • UV irradiation unit 60 or UV irradiation unit 70 that irradiates UV light Lc toward substrate P on which nanoparticles are being deposited during mist film formation has a long arc type (rod shape) as a UV light source.
  • Low-pressure mercury discharge lamps 72, 210A to 210F were used, but other light sources that generate UV light (so-called vacuum ultraviolet light) having a strong spectrum at a wavelength of 200 nm or less can be used in the same manner. It can.
  • UV light so-called vacuum ultraviolet light
  • the interval between the discharge electrodes is narrow and the emission point of the UV light is almost point-like, so that the UV light spreading in all directions from the emission point is efficiently collected.
  • a concave spherical mirror, an elliptical mirror, and the like are provided.
  • the rod-shaped UV light source for example, a long tubular excimer discharge lamp as disclosed in JP-A-2006-269189 may be used.
  • An excimer discharge lamp has a discharge tube filled with a rare gas such as xenon gas, and efficiently emits UV light (vacuum ultraviolet light) having a bright line spectrum at a wavelength of 172 nm.
  • a sealing gas containing xenon gas is sealed in an arc tube at 3 atm, and is relatively strong over a vacuum ultraviolet wavelength region (100 nm to 200 nm).
  • a vacuum ultraviolet (Vacuum Ultra Violet) flash lamp that generates ultraviolet light having a spectral distribution may be used.
  • ArF ArF
  • Ar argon
  • F 2 fluorine
  • a relatively compact fiber amplifier laser light source may be used as the light source device.
  • a fiber amplifier / laser light source amplifies a seed light (seed light pulse) in an infrared wavelength range with a fiber amplifier, and then converts a plurality of wavelengths.
  • UV pulse light deep ultraviolet light
  • the UV pulse light is converted into UV light Lb, UV for the UV light source unit 20B by a beam splitter or a multi-mode fiber bundle.
  • UV light La for the irradiation unit 60 and UV light Lc for the UV irradiation unit 70 can be distributed at an appropriate intensity ratio.
  • FIG. 22 shows illumination optics in the case where the beam BM of the UV light from the deep ultraviolet laser light source LS such as the fiber amplifier and laser light source is used as each of the UV light La, Lb, and Lc in the sixth modification.
  • 1 shows a schematic configuration of a system and a mist reforming unit 20 using UV light Lb.
  • the beam BM emitted as a parallel light beam from the deep ultraviolet laser light source (laser light source) LS has a cross-sectional diameter of several mm or less (for example, about 1 mm), so that a beam expander system including two lenses G1 and G2 is used. Its diameter is enlarged to about several tens of mm.
  • the expanded beam BM is reflected by the plane mirror RM and is incident on four lens elements RL that are densely arranged within the expanded diameter of the beam BM.
  • Each of the incident beams BM of the lens element RL is converged as a beam waist, then diverges at a predetermined numerical aperture (NA), and is projected onto each of the entrance ends of the fiber bundles FB1, FB2, FB3, and FB4. Is done.
  • NA numerical aperture
  • the plane mirror RM is provided for convenience in drawing and is not always necessary.
  • the lenses G1 and G2 and the lens element RL are made of synthetic quartz in which quartz (SiO 2 ) is doped with fluorine so as to have a high transmittance (80% or more) for UV light (deep ultraviolet) having a wavelength of about 180 nm. Good to be.
  • Each of the fiber bundles FB1 to FB4 is formed by bundling a number of hollow optical fiber strands HOF having no great attenuation to UV light having a wavelength of about 180 nm and having good transmission characteristics.
  • the hollow optical fiber HOF for example, those disclosed in JP-A-2006-243306 and JP-A-2011-164318 can be used.
  • the beam BM distributed to the fiber bundle FB1 is used as the UV light Lb in the mist reforming unit 20.
  • the beam BM that is, the UV light Lb
  • the beam BM projected from each of the exit ends Ofb of the plurality of hollow optical fiber strands (hereinafter, simply referred to as fiber strands) HOF constituting the fiber bundle FB1 is quartz. Irradiate uniformly into a container 240 ′ as a flow path forming portion formed in a rectangular parallelepiped.
  • the emission ends Ofb of the fiber strands HOF are two-dimensionally arranged at a predetermined interval along one side wall of the container 240 '(a side wall that becomes a ceiling from the setting of the coordinate system XYZ in FIG. 22).
  • a holding plate 260 for holding each emission end Ofb of the fiber strand HOF is provided in the vicinity of the container 240 '.
  • the container 240 ′ is obtained by deforming the quartz tube 240 used in the mist reforming unit 20 in FIG. 12 into a rectangular parallelepiped. In FIG. 22, the height of the container 240 ′ in the Z direction is changed to the width in the Y direction. It is set to be about three times as large. Inside the container 240 ', two flow regulating plates (quartz plates) 245A and 245B as shown in FIG. 12 are provided, and the flow path forming portion is formed by the rectangular parallelepiped container 240' and the internal flow regulating plates 245A and 245B. Is configured.
  • the carrier gas CGS containing mist supplied from the pipe 17 flows through the inside of the container 240 ′ in the order of + X direction, ⁇ Z direction, ⁇ X direction, ⁇ Z direction, + X direction by the current plates 245 A and 245 B, and flows into the pipe 24. Is discharged.
  • the UV light Lb projected from the emission end Ofb and passing through the inside of the container 240 ′ is almost entirely provided on the outer wall surface of the side wall (bottom side) facing the side wall (the ceiling side) of the container 240 ′ on the holding plate 260 side. Is formed on the reflective layer MRa.
  • a similar reflective layer MRb is formed on almost the entire outer wall surface other than the side wall on the ceiling side of the container 240 '.
  • a similar reflection layer MRc is formed on the surface of the holding plate 260 facing the side wall on the ceiling side of the container 240 ′, except for the respective emission ends Ofb of the fiber strands HOF.
  • the reflection layers MRa, MRb, MRc are each formed of a dielectric multilayer film in which thin films made of materials having different refractive indexes are alternately and repeatedly laminated so as to have a high reflectance (80% or more) with respect to vacuum ultraviolet rays having a wavelength of about 180 nm. Is done.
  • the UV light Lb projected from each emission end Ofb has an angular characteristic (spread angle) corresponding to a numerical aperture (NA) determined by the focal length of the lens element RL.
  • the UV light Lb emitted from each emission end Ofb of the large number of fiber strands HOF and the UV light Lb reflected by each of the reflection layers MRa, MRb, MRc are mixed with the carrier gas by various angular characteristics.
  • the mist in CGS is irradiated.
  • the emission end Ofb fixed to one location on the holding plate 260 may be the emission end Ofb of one fiber strand HOF, but a plurality (for example, several to several tens) of fibers may be used.
  • the emission end Ofb may be formed by bundling the element wires HOF. Therefore, for example, when ten fiber strands HOF are bundled with respect to the emission end Ofb fixed at one place on the holding plate 260, and the emission ends Ofb are arranged at 20 discrete places on the holding plate 260, The total number of the hollow optical fiber strands HOF constituting the fiber bundle FB1 is 200.
  • the other fiber bundles FB2, FB3, and FB4 shown in FIG. 22 are configured similarly to the fiber bundle FB1.
  • the beam BM guided by the fiber bundle FB2 is the UV irradiation unit shown in FIGS.
  • the beam BM guided by the fiber bundle FB3 is used as the UV light La in the UV irradiation unit 70 shown in FIGS. 11 and 16.
  • the beam BM in the vacuum ultraviolet region from the deep ultraviolet laser light source LS is passed through the illumination optical system including the lenses G1 and G2, the lens element RL, and the fiber bundles FB1 to FB4, and the mist reforming unit 20,
  • the illumination optical system including the lenses G1 and G2, the lens element RL, and the fiber bundles FB1 to FB4, and the mist reforming unit 20,
  • the radiant heat of the light source does not directly act on the carrier gas CGS (mist) or the substrate P, a heat insulating layer, a heat insulating structure, and a heat insulating layer using temperature-controlled pure water or gas as a refrigerant.
  • the member 77 and the like need not be particularly provided.
  • the beam BM guided by the fiber bundle FB4 is used for cleaning the other structures in the mist film forming apparatus MDE with ultraviolet light and for preparing the surface of the substrate P before mist film formation. It can be used for washing (lyophilic).
  • the surface of the substrate P is preferably lyophilic to mist (pure water).
  • the liquid film coated on the surface of the substrate P by the sprayed mist collects in some places, and a thick portion and an extremely thin portion of the liquid film are formed. This causes unevenness in the thickness of the film layer due to the nanoparticles, and a portion where the nanoparticles are not deposited occurs in a spot-like manner.
  • the surface of the substrate P before mist film formation is irradiated with ultraviolet rays (UV light in a vacuum ultraviolet region) to modify the surface of the substrate P from lyophobic to lyophilic ( Substrate modification processing) is performed.
  • UV light ultraviolet light in a vacuum ultraviolet region
  • the carrier gas CGS (mist gas) containing mist is located above the substrate P (in the + Z direction) as shown in FIGS.
  • the liquid is sprayed from the slit-shaped nozzle portion (slit opening) 30A of the mist ejection portion 30 to be disposed toward the surface of the substrate P below (in the ⁇ Z direction). Therefore, when the mist film is formed for a long time, the droplet generated on the wall surface of the internal space of the mist ejection unit 30 flows along the wall surface to the edge of the nozzle unit 30A due to the influence of gravity, and the substrate from the edge unit. It may fall on the surface of P. Therefore, in this modification, as shown in FIGS. 23 and 24, a droplet (or liquid pool) generated on the inner wall surface of the mist ejection unit 30 and a droplet (drop) that can fall from the nozzle unit 30A are trapped (collected). ) Is provided.
  • FIG. 23 is a perspective view showing the appearance of the mist ejection part 30 according to the seventh modification, and the overall appearance is substantially the same as that of the mist ejection part 30 of the first embodiment shown in FIGS.
  • each coordinate axis of the orthogonal coordinate system XYZ is set in the same manner as in FIGS.
  • FIG. 24 is a cross-sectional view of the mist ejection section 30 of FIG. 23 cut in a plane perpendicular to the Y axis (parallel to the XZ plane) near the center in the Y direction. 23 and 24, members having the same functions as those in FIGS. 2 to 4 are denoted by the same reference numerals.
  • the UV light Lb is a collimated light beam collimated by a lens system and has a width in the X direction slightly smaller than the width of the window WDa. Shaped to width.
  • the UV light Lb incident in the + Y direction from the window WDa located on the upper side in the Z direction is configured to exit from the window WDb on the opposite side without directly irradiating the inner wall of the mist ejection unit 30.
  • a pair of windows WDc and WDd provided below the windows WDa and WDb in the Z direction can guide the UV light Lb shaped into a parallel light beam, but the UV light Lb is ⁇ Y It is configured to enter from the window WDd and exit from the window WDc in the direction.
  • the partition of the housing (container main body) that defines the internal space of the mist ejection unit 30 has a light shielding property with respect to the UV light Lb.
  • a material hardly deteriorated by the irradiation of the UV light Lb for example, a metal such as stainless steel or duralumin, or a ceramic is preferred.
  • the housing (container body) of the mist ejection part 30 itself is used.
  • the partition does not need to be made light-shielding.
  • the inner wall surfaces 30K2 and 30J2 connected to the edge defining the slit-shaped opening of the nozzle part 30A formed at the bottom of the mist ejection part 30 are connected to the nozzle part as shown in FIG. 4 (or FIG. 11).
  • the flat surface is inclined so that the 30A side becomes lower, the present modified example has a cylindrical curved surface curved on an arc as shown in FIG.
  • the droplets flowing down along the vertical inner wall surface parallel to the YZ plane (or the XZ plane) of the inner wall surface of the mist ejection unit 30 are temporarily held.
  • FIG. 24 is a view showing the position of the discharge tube DPa provided near the center of the mist ejection part 30 in the Y direction in FIG. 23, and the end face obtained by breaking the mist ejection part 30 in a plane parallel to the XZ plane from the + Y direction side
  • FIG. 4 is a cross-sectional view of the window, in which only a cross section from a half of the window WDd (WDc) in the Z direction to a lower portion is shown.
  • Each of the slit-shaped concave portions 30K3 and 30J3 is connected to a discharge tube DPc (same for DPb) via flow passages 30K4 and 30J4 formed therein, and the discharge tube DPc (DPb) is a decompression source for suction. (Such as a precision pump).
  • the suction operation via the discharge tube DPc (DPb) is performed for a predetermined time at a time interval in which the droplets DL are dropped into the concave portions 30K3 and 30J3 and a liquid pool is formed in the concave portions 30K3 and 30J3.
  • the slit-shaped concave portions 30K3 and 30J3 and the discharge tube DPc (DPb) form a dripping suppressing mechanism.
  • droplets DL flowing vertically down the nozzle portion 30A along the curved inner wall surfaces 30K2 and 30J2 form thin trap plates 30S provided on the bottom surface portion 30B of the mist ejection portion 30. It is sucked into the narrow gap Gp between the upper surface and the bottom surface portion 30B by capillary action.
  • the trap plate 30S has a slit-like opening having substantially the same shape and dimensions as the nozzle portion 30A when viewed in the XY plane, and is fixed to the bottom surface portion 30B such that the gap Gp is about 0.5 mm to 2 mm. ing.
  • the gap Gp is connected to the discharge tube DPa via each of the flow paths 30K5 and 30J5 formed therein.
  • the discharge tube DPa is connected to a suction pressure reducing source (a precision pump or the like), and the suction operation via the discharge tube DPa is performed for a predetermined time at a time interval in which the captured droplets accumulate in the gap Gp.
  • a suction pressure reducing source a precision pump or the like
  • the trap plate 30S and the discharge tube DPa also function as a dripping suppressing mechanism.
  • the electrode holding members 51A and 51B holding the electrode rods 50A and 50B shown in FIG. 4 may be provided directly below the trap plate 30S ( ⁇ Z direction).
  • the trap plate 30S is also made of a thin plate having high insulating properties (plastic, acrylic, glass, or the like).
  • the trap plate 30S may be made of a metal (stainless steel, duralumin, or the like) that is not easily corroded by the mist liquid.
  • the inner wall surfaces 30K1, 30K2, 30J1, 30J2 of the mist ejection part 30, the inner surfaces of the windows WDa, WDb, WDc, WDd, and the inner surfaces of the concave portions 30K3, 30J3 have liquid repellency. Is surface-treated so that is high (the contact angle is 90 degrees or more).
  • the flat lower surface of the bottom surface portion 30B of the mist ejection portion 30 and the flat upper surface of the trap plate 30S have a strong lyophilic property because the droplets are easily sucked into the gap Gp by capillary action. (For example, a contact angle of 10 degrees or less).
  • the flat lower surface (the surface facing the substrate P) of the trap plate 30S has strong liquid repellency (for example, a contact angle of 120 degrees or less) in order to suppress the adhesion of mist in the carrier gas CGS.
  • the surface is processed.
  • the slit-shaped concave portions 30K3, 30J3, the flow channels 30K4, 30J4, and the dripping suppressing mechanism using the discharge tubes DPc, DPb, and the trap plate 30S, the flow channels 30K5, 30J5, and the dripping suppressing mechanism using the discharging tube DPa At least one of them can be similarly provided in the mist ejection section 30 shown in each of FIGS. 1 to 3, FIG. 11, and FIG. 16, and further can be similarly provided in the mist collection section 32. .
  • droplets DL may be generated on the wall surface.
  • the droplet may flow down the wall surface, flow down to the slit-shaped opening edge of the collection port 32A (see FIG. 3), and drop on the substrate P.
  • a dripping suppression mechanism is also provided in the mist collection unit 32, dripping of the droplets onto the substrate P is suppressed.
  • the drip suppression mechanism provided around the nozzle 30A of the mist ejection unit 30 is not an active droplet suction mechanism using the trap plate 30S and the discharge tube DPa, but a trap.
  • a passive droplet suction mechanism in which a sheet material containing a water-absorbing polymer having high liquid absorbability is exchangeably installed on the bottom surface 30B of the mist ejection unit 30 may be used.
  • the mist ejection unit 30 is rotated (inclined) about the Y axis so that the entire mist ejection unit 30 is inclined by a predetermined angle with respect to the Z axis in the XZ plane. Configuration.
  • the droplets are kept inside the mist ejection part 30. It is set to fall somewhere on the wall. As shown in FIG. 24, the droplet dropped on the inner wall surface is transmitted to the inner wall surface and falls, and finally, a drip suppressing mechanism (trap) provided around the nozzle portion 30A of the mist ejection unit 30. The plate 30S is sucked.
  • a drip suppressing mechanism trap
  • the carrier gas CGS (mist gas) containing mist is irradiated with UV light having a vacuum ultraviolet wavelength (deep ultraviolet wavelength) having a wavelength of 200 nm or less and having an ultraviolet cleaning effect.
  • the solution in the internal container (cup) 14A in the mist generating section 14 shown in FIG. 1 is further irradiated with UV light having an ultraviolet cleaning effect.
  • FIG. 25 is a partial cross-sectional view illustrating a schematic configuration of the mist generating unit 14 according to the present modification, and members having the same functions as members in the mist generating unit 14 and members connected to the mist generating unit 14 in FIG. The same reference numerals are given.
  • a cylindrical outer container serving as a housing of the mist generating section 14 is filled with pure water ULq for submerging the inner container 14A at a predetermined depth, and a solution 10A in the inner container 14A is provided at the bottom of the outer container.
  • An ultrasonic vibrator 14C for generating a mist is provided.
  • the outer container and the inner container 14A are connected by flanges 14E and 14F via an elastic member (rubber or the like). From the precision pump 12 also shown in FIG. 1, a solution 10A containing nanoparticles dispersed therein is intermittently or continuously supplied into the internal container 14A through the pipe 12A.
  • the inside of the inner container 14A is sealed by a top plate member 14D, and mist generated from the surface of the solution 10A by the ultrasonic vibrator 14C is supplied through a pipe 16 attached to the top plate member 14D.
  • the gas is carried on the CGS and is discharged from the pipe 17 attached to the top plate member 14D.
  • the precision pump 12 uses the liquid surface of the solution 10A in the inner container 14A.
  • the solution 10A is supplied based on a detection signal from a liquid level sensor (not shown) so that the height is maintained substantially constant.
  • the duct 16A for guiding the carrier gas CGS from the pipe 16 to near the liquid surface of the solution 10A, and the carrier gas CGS sowed up containing the mist are efficiently collected and piped.
  • 17 is provided with a funnel 17 ⁇ / b> A.
  • one or more of the waterproof solid-state ultraviolet light sources 280 are provided so as to be submerged in the solution 10A in the inner container 14A.
  • the solid-state ultraviolet light source 280 is an LED light source that emits ultraviolet rays having a wavelength of 200 to 400 nm, and is a UV-LED with a waterproof function sold by LG Innotek for sterilizing bacteria, bacteria, and the like generated in the water purifier. Modules and the like can be used. In this way, by irradiating the solution 10A with ultraviolet rays, it becomes possible to decompose and wash impurities (organic substances) contained in the solution 10A at a stage before the solution becomes mist.
  • the solid ultraviolet light source 280 is arranged in pure water ULq outside the inner container 14A and filled in the outer container.
  • the solution 10A may be irradiated with ultraviolet light through the side wall surface of the substrate.
  • the surface of the substrate P as a film formation target by mist film formation be subjected to a surface treatment that has lyophilicity to mist.
  • a super-liquid-repellent film is formed on the surface of the region by selective patterning, or easily removed in a later step.
  • a possible cover layer may be formed.
  • a photosensitive silane coupling agent having a fluorine group having liquid repellency to nitrobenzyl is applied to the surface of the substrate P,
  • the sensitive layer made of the photosensitive silane coupling agent is applied to a pattern of an electronic device or the like using an exposure device using ultraviolet light (i-ray) having a wavelength of 365 nm
  • the surface of the substrate P has a liquid-repellent property corresponding to the pattern.
  • the mist film formation may be performed after the contrast is given.
  • the mist film is formed while the substrate P is transported in a long direction in a plane as a long sheet substrate.
  • the substrate P is transported in a long direction in a plane as a long sheet substrate.
  • it is disclosed in International Publication WO2016 / 133131.
  • the surface of the substrate P supported in a cylindrical shape by the outer peripheral surface of the rotary drum It is good also as composition which sprays the mist from mist ejection part 30 toward.
  • a plurality of the mist ejection units 30 may be arranged in the transport direction of the substrate P.
  • the carrier gas CGS that travels from the nozzle portion 30 A of the mist ejection unit 30 toward the substrate P is sprayed from a direction perpendicular to the surface of the substrate P.
  • the direction of the spray may be inclined around the Y axis within a predetermined angle range (for example, 10 degrees to 45 degrees) from a state perpendicular to the surface of the substrate P.
  • the mist film forming apparatus MDE shown in FIGS. 11 and 16 is configured to irradiate the UV light Lc while performing the mist film formation on the substrate P in the space covered by the wind guide member 31.
  • the lower surface of a quartz plate 74 (a window through which UV light Lc passes) serving as a heat insulating member 77 disposed between P and a UV irradiation unit (UV light source unit) 70 is constantly exposed to mist, and thus, with time, Over time, nanoparticles may attach or deposit.
  • the low-pressure mercury discharge lamps 210A to 210F and 72 used as a light source that emits UV light of a vacuum ultraviolet wavelength (deep ultraviolet wavelength) having a wavelength of 200 nm or less having an ultraviolet cleaning effect are not only rod-shaped but also U-tube type or surface-irradiated type. Can also be used.
  • the mist in the carrier gas CGS or the UV light irradiating the surface of the substrate P is a spectral component in a vacuum ultraviolet wavelength region having a wavelength of 200 nm or less to enhance the cleaning effect, but the material of the nanoparticles contained in the mist is increased.
  • the particle size and the particle size it may be changed to ultraviolet light having a spectral component between 200 and 400 nm, ultraviolet light having a spectral component in the vacuum ultraviolet wavelength range of 200 nm or less, and ultraviolet light having a spectral component between 200 and 400 nm.
  • the cleaning effect modification effect
  • Irradiation of the UV light in the vacuum ultraviolet wavelength region having a wavelength of 200 nm or less having an ultraviolet cleaning effect onto the mist gas CGS is performed on the mist immediately after it is generated in the mist generation unit 14 shown in FIG. 1 or FIG. May be.
  • the nanoparticles that can be formed by the mist film forming apparatus MDE can be nanoparticles of a variety of material substances (conductive substance, insulating substance, semiconductor substance) in addition to the ITO nanoparticles exemplified above.
  • the nanoparticles are generally smaller than 100 nm, but are smaller than the particle size of the mist (several ⁇ m to several tens of ⁇ m) in the mist film formation, and are trapped in the mist to form the carrier gas CGS. Any size can be used as long as it can float.
  • nanoparticles in the case of metal, gold nanoparticles, platinum nanoparticles, silver nanoparticles, copper nanoparticles, or carbon nanorods purified to a good conductor can be used, and in the case of oxides, iron oxide nanoparticles , Zinc oxide nanoparticles, silicon oxide (silica) nanoparticles, and the like, and in the case of nitride, silicon nitride nanoparticles, aluminum nitride nanoparticles, and the like.
  • carbon nanorods, silicon nanoparticles, and the like purified into a semiconductor can also be used.
  • silicon nanoparticles for example, as disclosed in International Publication No. WO 2016/185978, hydrocarbons that improve the efficiency by being formed (coated) on the surface of a semiconductor layer forming a pn junction solar cell are used. It may be terminated silicon nanoparticles.
  • the mist generating section 14 shown in FIG. 1 is of the ultrasonic atomization type using the ultrasonic oscillator 14C, but the temperature of the mist (carrier gas CGS) sprayed on the substrate P may be increased.
  • a heating atomization method may be used in which a solution containing fine particles (such as pure water) is heated by a heater to generate mist from the surface of the solution.
  • the dry ice crushed into particles is poured into the solution containing fine particles (pure water or the like) at appropriate time intervals, An atomization system that generates mist from the surface of the solution may be used.
  • FIG. 26 is a diagram showing a schematic configuration when the mist film forming apparatus MDE shown in FIG. 1 is applied to a roll method, and the orthogonal coordinate system XYZ is set in the same direction as in FIG. .
  • the sheet-like long substrate P is transported in the longitudinal direction by the cylindrical rotary drum DR having a diameter of 20 to 60 cm.
  • the substrate P has a predetermined length in the longitudinal direction. The sheet is conveyed while being tensioned and stretched flat.
  • wrinkles extending in the longitudinal direction may be generated on the substrate P at some places in the width direction intersecting with the longitudinal direction.
  • the thin film layer due to the fine particles formed by mist formation on the surface of the substrate P may have a thickness unevenness exceeding an allowable range.
  • the rotary drum DR when the rotary drum DR is used, a state in which the back surface of the substrate P is tightly supported on the outer peripheral surface of the rotary drum DR, that is, a state in which the surface of the substrate P is curved and supported in a stable cylindrical shape, is supported. By rotating the rotary drum DR, the substrate P can be transported in the longitudinal direction.
  • the rotary drum DR has a cylindrical surface curved at a constant radius from a central axis AXd set parallel to the Y axis, and has an outer peripheral surface DRa longer than the width of the substrate P in the Y direction.
  • Shafts Sft coaxial with the central axis AXd are provided at both ends in the Y direction of the rotary drum DR, and the shaft Sft is rotatably supported by the apparatus main body via a ball bearing or a hair bearing.
  • the radius of the rotary drum DR from the central axis AXd is preferably in the range of 10 to 30 cm when the width of the substrate P in the Y direction is 1 m or less.
  • a pair of nip rollers 7A and 7B which are set in parallel with the central axis AXd of the rotary drum DR and have a rotation center line, and one tension roller 7C are arranged on the + X direction side of the rotary drum DR.
  • a metal endless belt 5C as shown in FIG. 2 is provided so as to be wound around each of the rotating drum DR, the pair of nip rollers 7A and 7B, and the tension roller 7C.
  • the rotating drum DR, the pair of nip rollers 7A and 7B, and the belt 5C constitute a moving mechanism (transport mechanism) for moving the substrate P in the longitudinal direction.
  • the rotary drum DR rotates clockwise around the central axis AXd, and the belt 5C contacts the outer peripheral surface DRa from the entrance position CA1 in the circumferential direction of the outer peripheral surface DRa of the rotary drum DR, and moves about half a circle ahead.
  • the surface of the belt 5C from the separation position CA2 toward the nip roller 7A is set to be inclined by an angle - ⁇ p with respect to the XY plane.
  • the angle ⁇ p is set to approximately 30 degrees to 60 degrees.
  • the pair of nip rollers 7A and 7B are rotationally driven by a torque from a rotary motor such that the belt 5C is conveyed at a constant speed while holding the front and back surfaces of the belt 5C at a predetermined nip pressure.
  • the belt 5C that has passed through the nip rollers 7A and 7B comes into contact with the tension roller 7C and is then sent to the outer peripheral surface DRa of the rotating drum DR again.
  • the tension roller 7C applies a force to the belt 5C between the nip roller 7B and the entrance position CA1 of the rotary drum DR by the tension applying mechanism 7D so as to urge the belt 5C outside the endless track.
  • the rotary drum DR may be rotated by torque from the rotary motor.
  • the substrate P starts to come into contact with the surface of the belt 5C curved into a cylindrical surface at the entrance position CA3 on the downstream side in the rotation direction with respect to the entrance position CA1 of the belt 5C to the rotary drum DR, and adheres to the belt 5C. After being transported to the position of the nip roller 7A in this state, it is transported away from the belt 5C at the nip roller 7A.
  • the substrate P is transported in the longitudinal direction at a speed synchronized with the belt 5C by the substrate transport mechanism in a state where a predetermined tension is applied in the longitudinal direction (transport direction).
  • the wind guide member 31 shown in each of FIGS. 2, 11, and 16 is moved in the transport direction of the substrate P so as to match the outer diameter (radius) of the outer peripheral surface DRa of the rotary drum DR.
  • the rotating drum DR is formed so as to cover a part on the + Z direction side of the outer peripheral surface DRa of the rotating drum DR.
  • a mist ejection unit 30 is provided on the upstream side of the baffle member 31, and a mist collection unit 32 is provided on the downstream side of the baffle member 31.
  • the mist-containing carrier gas CGS is ejected from the nozzle portion 30A of the mist ejection portion 30 toward the substrate P, and the internal space surrounded by the wind guide member 31 and the substrate P is rotated by the rotating drum DR.
  • the mist flows in the same direction as the rotation direction, and is collected by the collection port portion 32A of the mist collection portion 32.
  • a pair of electrode rods 50A and 50B for plasma assist may be arranged near the nozzle part 30A of the mist ejection part 30, as in FIG.
  • a drive mechanism ZAU for moving a wind guide member 31 (mist film forming mechanism), to which a mist ejection unit 30 and a mist collection unit 32 are integrally attached, in the Z direction (up and down direction) for replacement work or the like is provided. .
  • the belt 5C and the substrate P are integrally transported in a flat state at an inclination angle - ⁇ p from the detached position CA2 on the outer peripheral surface DRa of the rotary drum DR to the position of the nip roller 7A.
  • a support table 5D similar to the configuration shown in FIG. 17 can be provided.
  • the flat upper surface (the support surface 5Da on which the gas layer of the hair bearing is formed) of the support table 5D is at an angle ⁇ with respect to the horizontal plane (XY plane) so as to face parallel to the back surface of the belt 5C. It is installed inclined by ⁇ p.
  • the tilt angle - ⁇ p of the support table 5D is adjusted by a plurality of actuators 6A and 6B using piezo elements or the like that expand and contract according to the voltage.
  • an actuator 5S similar to the configuration shown in FIG. 17 is provided on the support surface 5Da of the support table 5D to heat the substrate P together with the belt 5C or to apply minute vibration to the substrate P together with the belt 5C. You may.
  • the inclination angle ⁇ p shown in FIG. 26 or the inclination angle ⁇ p shown in FIG. I s set to a value that does not flow down on the surface of the substrate P. Therefore, for example, when the lyophilic property of the surface of the substrate P is high and the adhesion of the liquid film is strong, the absolute value of the tilt angle ⁇ p can be set to 60 degrees or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Nozzles (AREA)
  • Special Spraying Apparatus (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

ミスト発生装置は、被処理物(P)の表面に材料物質による層を堆積させる為に、材料物質の微粒子又は分子を含有する溶液のミスト(Mst)を含むキャリア気体(CGS)を被処理物(P)の表面に噴霧する。ミスト発生装置は、溶液を霧化してミスト(Mst)を含むキャリア気体(CGS)を送出するミスト発生部(14)と、ミスト発生部(14)からのキャリア気体(CGS)が被処理物(P)の表面に噴霧されるまでの流路中で、キャリア気体(CGS)によって浮遊するミスト(Mst)に波長400nm以下の紫外線光を照射する紫外線照射部(20B)と、を備える。

Description

ミスト発生装置、並びにミスト成膜方法、及びミスト成膜装置
 本発明は、微細な材料粒子(ナノ粒子)、或いは材料分子を含むミストを発生するミスト発生装置、及びミスト発生装置からのミストを被処理対象に噴霧し、被処理対象の表面に微細な粒子、或いは分子による材料物質の膜を堆積させるミスト成膜方法とミスト成膜装置に関する。
 電子デバイスの製造過程では、電子デバイスが形成される基板(被処理対象)の表面に各種の材料物質による薄膜を形成する成膜工程(成膜処理)が実施されている。成膜工程での成膜方法には各種の方式があり、近年、材料物質の分子や微粒子(ナノ粒子)を含む溶液から発生させたミストを基板の表面に噴霧し、基板に付着したミスト(溶液)に含まれる溶媒成分を反応又は蒸発させて、基板の表面に材料物質(金属材料等)による薄膜を形成するミスト成膜法が注目されている。
 国際公開第2013/118353号には、低い抵抗値の透明導電膜を得る為に、成膜の材料物質として亜鉛(Zn)を含む溶液のミストを、非真空(大気圧)下で、200℃程度に加熱された基板の表面に噴霧して、基板の表面に金属酸化膜(ZnO:亜鉛酸化膜)を形成した後、その金属酸化膜に向けて中心波長が254nm又は365nmの紫外線を所定時間に渡って照射することにより、金属酸化膜(亜鉛酸化膜)の抵抗値を低減させることが示されている。しかしながら、国際公開第2013/118353号では、金属酸化膜の抵抗率を低減させる為に、比較的に長い時間(30分や60分)に渡って紫外線を照射し続けており、金属酸化膜を成膜した後の処理工程としての低抵抗化処理の時間短縮が望まれる。一例として、フレキシブルな長尺な基板(プラスチック等の樹脂シート、金属箔、極薄ガラス板等)を長尺方向に連続搬送しつつ、その基板の表面にミスト成膜法で連続的に金属酸化膜等を形成する場合、成膜後の金属酸化膜に対する紫外線の照射時間が長いと、それだけ長い距離(搬送路長)に渡って紫外線の照射炉が必要となり、紫外線ランプ等の光源設備が大規模化し、電力使用量も増大するといった問題が生じる。
 本発明の第1の態様は、被処理物の表面に材料物質による層を堆積させる為に、前記材料物質の微粒子又は分子を含有する溶液のミストを含むキャリア気体を前記被処理物の表面に噴霧するミスト発生装置であって、前記溶液を霧化して前記ミストを含む前記キャリア気体を送出するミスト発生部と、前記ミスト発生部からの前記キャリア気体が前記被処理物の表面に噴霧されるまでの流路中で、前記キャリア気体によって浮遊する前記ミストに波長400nm以下の紫外線光を照射する紫外線照射部と、を備える。
 本発明の第2の態様は、材料物質による微粒子を含有した溶液のミストを含むキャリア気体を被処理物の表面に噴霧して、前記被処理物の表面に前記材料物質による層を形成するミスト成膜方法であって、前記ミストの発生部から前記被処理物の表面に至る前までの前記キャリア気体の流路内で、前記キャリア気体によって浮遊して流れる前記ミストに波長400nm以下の第1の紫外線光を照射する第1の光照射工程と、前記第1の紫外線光の照射を受けた前記ミストを前記被処理物の表面に付着させる噴霧工程と、前記ミストの付着により前記材料物質による前記微粒子が堆積した前記被処理物の表面領域に、波長400nm以下の第2の紫外線光を照射する第2の光照射工程と、を含む。
 本発明の第3の態様は、材料物質による微粒子を含有した溶液のミストを被処理基板の表面に噴霧して、前記被処理基板の表面に前記材料物質による層を形成するミスト成膜装置であって、前記溶液の霧化により発生するミストを含むキャリア気体を送出するミスト発生部と、前記キャリア気体を前記被処理基板の表面に向けて噴出するミスト噴出部と、前記被処理基板と前記ミスト噴出部とを前記被処理基板の表面に沿った方向に相対的に移動させる移動機構と、前記ミスト発生部から前記ミスト噴出部に至る前記キャリア気体の流路を形成するように囲む壁面を有し、該壁面の少なくとも一部を光透過部材で構成した流路形成部と、前記流路形成部の前記光透過部材を介して、前記流路形成部の内側を流れる前記キャリア気体に向けて波長400nm以下の紫外線光を照射する第1の紫外線照射部と、を備える。
 本発明の第4の態様は、材料物質による微粒子を含有した溶液を被処理基板の表面に所定の厚みの液膜となるように塗布し、前記液膜の乾燥によって前記被処理基板の表面に前記微粒子による層を形成する微粒子成膜装置であって、前記被処理基板の表面に前記溶液による液膜を所定の厚みで塗布する塗布機構と、前記被処理基板を前記塗布機構に対して前記被処理基板の表面に沿った方向に所定の速度で搬送する移動機構と、前記塗布機構によって前記液膜が形成され始めてから前記液膜の溶媒が蒸発又は揮発するまでの間に、前記被処理基板を微小振動させる振動機構と、を備える。
第1の実施の形態によるミスト発生装置を搭載したミスト成膜装置MDEの概略的な全体構成を示す図である。 図1に示したミスト成膜装置のミスト成膜部の具体的な外観を示す斜視図である。 図2に示したミスト成膜部における導風部材31の裏側(基板Pと対向する側)の具体的な構成を示す斜視図である。 図2、図3に示したミスト噴出部30と電極保持部材51A、51Bとの配置状態を示す斜視図である。 図1に示したミスト改質部20内に設けられる流路部20AとUV光源ユニット20Bとの具体的な構成を示す部分断面図である。 キャリアガスCGS中のミストに紫外線を照射する予備実験1の為の実験セットの構成を模式的に表した図である。 図6の実験セットによって、ミストへの紫外線(UV光)の照射時間を異ならせて成膜したITO薄膜の抵抗値の計測結果を示すグラフである。 試料基板上に成膜されたITO薄膜に各種のエネルギーを作用又は照射したときの抵抗値の変化の傾向を示す実験結果のグラフである。 キャリアガスCGS中のミストと成膜されたITO膜とに紫外線を照射する予備実験2の為の実験セットの構成を模式的に表した図である。 図9の実験セットによる予備実験2において、紫外線(UV光)の照射時間を異ならせた場合のITO薄膜の抵抗値の計測結果を示すグラフである。 第2の実施の形態によるミスト成膜装置MDEの主要部分の構成を示す部分断面図である。 第1の実施の形態、又は第2の実施の形態に適用されるミスト改質部20の変形例1の構成を示す断面図である。 図12の変形例1によるミスト改質部20のk1-k1矢視の断面図である。 第1の実施の形態、又は第2の実施の形態に適用されるミスト改質部20の変形例2の構成を示す斜視図である。 図14の変形例2によるミスト改質部20のk2-k2矢視の断面図である。 第3の実施の形態によるミスト成膜装置MDEの主要部分の概略的な構成を示す正面図である。 図17(A)は図16のミスト成膜装置MDEの支持テーブル5Dの構成を示す上面図であり、図17(B)は支持テーブル5Dの一部分を切断した部分断面図である。 変形例3によるミスト成膜装置MDEのミスト噴出部30とミスト回収部32との配置状態を示す上面図である。 変形例4によるミスト改質部20の外観とその内部構造とを概略的に示す斜視図である。 図19のミスト改質部20を、中心線Axoを含む面で切断した断面図である。 変形例4等のミスト改質部20中の石英管250の部分的な内部構成を示す変形例5による斜視図である。 変形例6による深紫外レーザ光源LSからのUV光のビームBMを用いる場合の照明光学系とミスト改質部20との概略的な構成を示す図である。 変形例7によるミスト成膜装置MDEのミスト噴出部30の概略的な外観形状を示す斜視図である。 図23のミスト噴出部30を、長手方向(Y方向)の中央付近で破断した断面の一部分を示す断面図である。 変形例8によるミスト成膜装置MDEのミスト発生部14の概略的な構成を示す部分断面図である。 第4の実施の形態によるミスト成膜装置MDEの主要部分の概略的な構成を示す正面図である。
 本発明の態様に係るミスト発生装置、及びミスト成膜装置について、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。なお、本発明の態様は、これらの実施の形態に限定されるものではなく、多様な変更または改良を加えたものも含まれる。つまり、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれ、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換または変更を行うことができる。
〔第1の実施の形態〕
 図1は、第1の実施の形態によるミスト発生装置を搭載したミスト成膜装置MDEの概略的な全体構成を示す図である。図1において、特に断わりのない限り重力方向をZ方向とするXYZ直交座標系を設定し、図1に示す矢印にしたがって、被処理基板としての可撓性のシート基板P(単に基板Pとも呼ぶ場合もある)の搬送方向をX方向、搬送方向と直交するシート基板Pの幅方向をY向とし、ミスト成膜時にシート基板Pの表面は、本実施の形態ではXY面と平行な水平面となるように設定されるものとする。シート基板Pは、本実施の形態では、X方向に長尺なPET(ポリエチレン・テレフタレート)、PEN(ポリエチレン・ナフタレート)、又はポリイミド等の樹脂を母材とした厚みが数百μm~数十μm程度のフレキシブルシートとするが、その他の材料、例えば、ステンレス、アルミ、真鍮、銅等の金属材料を薄く圧延した金属箔シート、厚みを100μm以下にして可撓性を持たせた極薄ガラスシート、セルロースナノファイバーを含有するプラスチックシートであっても良い。なお、シート基板Pは、必ずしも長尺である必要はなく、例えば、A4サイズ、A3サイズ、B4サイズ、B3サイズのように長辺や短辺の寸法が規格化された枚葉のシート基板、或いは規格外の不定型な枚葉のシート基板であっても良い。
 図1に示すように、本実施の形態によるミスト成膜装置(塗布機構)MDEは、概略、シート基板Pを支持してX方向に搬送する搬送ユニット(搬送機構)5、成膜の材料物質となるナノ粒子を含む溶液を貯留する溶液タンク10、溶液から数μm~十数μm程度の粒径のミストを効率的に発生するミスト発生部14、発生したミストの化学的又は物理的な状態を紫外線(UV光)によって改質するミスト改質部20、パイプ24を介して供給される改質されたミストを含む気体(キャリアガス)をシート基板Pに向けて噴霧するミスト噴出部30、シート基板Pに付着せずに浮遊したミストを含むキャリアガスを回収するミスト回収部32、及び、ミストを含むキャリアガスの外気(装置外部)への漏れ出しを抑制する為に、ミスト噴出部30、ミスト回収部32、搬送ユニット5を覆うように設けられたチャンバー部40とで構成される。本実施の形態では、溶液タンク10、ミスト発生部14、及びミスト改質部20によってミスト発生装置が構成される。そこで、以下に各部の構成について、詳しく説明する。
 溶液タンク10内に貯留される溶液の溶媒は、取扱いが簡便で安全性が高い純水とし、その溶媒(純水)には、材料物質の一例として、酸化インジウムスズ(ITO:Indium Tin Oxide)のナノ粒子が所望の濃度で混ぜられている。溶液タンク10内の溶液は、精密ポンプ12によって断続的又は連続的にミスト発生部14に供給される。ミスト発生部14は、密閉された外容器内に、溶液を溜める内部容器(カップ)14Aと、内部容器14A内の溶液に対して20KHz程度の振動を与えて、溶液内のナノ粒子(ITO)の凝集を抑制する第1の超音波振動子14Bと、2.4MHz程度の振動を内部容器14Aを介して溶液に与えて溶液の液面からミストを発生させる第2の超音波振動子14Cとを、密閉された外容器内に備えている。さらにミスト発生部14内には、内部容器14Aの上部空間に開口部が配置されたパイプ16と、パイプ16を通るキャリアガス(キャリア気体)CGSの流量を調整する流量調整弁15とによって、所定の流量(又は圧力)でキャリアガスCGSが供給される。以上の構成において、精密ポンプ12、超音波振動子14B、14C、及び流量調整弁15の各々は、上位制御コントローラ(統括制御用コンピュータ等)からの指令を受けるミスト生成制御部18によって、適宜の駆動量、タイミング、インターバル等で駆動される。
 本実施の形態のように、第1の超音波振動子14Bと第2の超音波振動子14Cとを設けて、ナノ粒子の凝集を抑えつつ効率的に溶液の液面からミストを発生させるミスト発生部14の一例は、例えば国際公開第2017/154937号に開示されている。なお、一般的に、この種のナノ粒子は純水中では凝集し易い為、界面活性剤を適宜の濃度で純水に混ぜて凝集を抑えた溶液とした場合は、第1の超音波振動子14Bを省略することができる。その場合、ミスト成膜後に基板Pを高い温度(100℃以上)に加熱して、成膜された材料物質の膜中に残存する界面活性剤の成分を分解、除去する工程が必要になることもある。なお、ナノ粒子自体の物性によっては、界面活性剤を含まない溶媒液(純水等)中でも長時間に渡って凝集することなく良好な分散状態が保たれる場合があり、その場合は分散用の第1の超音波振動子14Bを省略することができる。
 ミスト発生部14内で発生したミストは、キャリアガスCGSの流れに乗ってパイプ17を通ってミスト改質部20に送られる。キャリアガスCGSは、塵埃(パーティクル)を除去した清浄な大気(クリーンエア)、清浄な窒素(N2)ガス、或いはアルゴン(Ar)ガス等が利用できる。本実施の形態では、常温の大気圧の環境下で単純にミスト成膜を行う場合はキャリアガスCGSをクリーンエア又は窒素ガスとし、例えば、国際公開第2016/133131号に開示されているように、ミスト噴出部30から基板Pに噴霧されるミストに、非熱平衡状態の大気圧プラズマを照射する構成(プラズマアシスト・ミスト成膜法)とする場合は、キャリアガスCGSをアルゴンガスにする。なお、ミスト噴出部30から噴霧されるミストを含むキャリアガスCGSの温度を常温よりも高く(又は低く)設定する必要がある場合は、必要に応じてキャリアガスCGSの温度やミスト発生部14内の温度、又はパイプ17内の温度を設定値に調整する温調機構(ヒータ、クーラー等)が設けられる。
 ミスト改質部20は、詳しくは後述するが、概略して、パイプ17から供給されるミストを含むキャリアガスCGS(ミスト気体CGSとも呼ぶ)を所定の長さに渡って流す石英管等による流路部(流路形成部)20Aと、流路部20Aの石英管内を流れるミストに紫外波長域のUV光Lbを照射するUV光源ユニット(紫外線照射部)20Bと、流路部20A内の石英管等がUV光源ユニット20Bによって温度上昇するのを抑える温調機構20Cと、UV光源ユニット20BのUV光Lbの照射の制御や温調機構20Cの温度調整の制御を行う照射/温調制御部22とで構成される。流路部20Aは、一例として直径が数センチ程度の石英管をつづらおり状に接続して構成され、UV光源ユニット20Bは、石英管の外周付近に石英管と平行に配置されたロングアークタイプの棒状の低圧水銀放電ランプ(複数本が好ましい)で構成される。低圧水銀放電ランプは、放電管内の水銀蒸気圧を1000Pa(パスカル)以下にして、波長200nm以下に強い輝線スペクトルを含むUV光Lbを発生するが、石英管の外周面に近づけるほど、石英管内のミストに照射されるUV光Lbのエネルギー(光量)も増大し、ミストの改質に要する時間を短縮することができる。
 しかしながら、低圧水銀放電ランプ自体が相当に高温の熱源となって石英管の近傍に配置される為、石英管の管壁(特に内壁面)も温度上昇する。その為、流路部20Aの長さに渡って石英管内を通るキャリアガスCGSの温度と共にミスト自体の温度が上昇し、ミストの蒸発によりミストの粒径がナノ粒子(ITOナノ粒子)を保持して浮遊し得なくなるほどに小さくなってしまう。また、パイプ17から供給されたミストを含むキャリアガスCGSの温度に比べて、石英管の内壁面の温度が相当に高い場合、ミストは温度が高い石英管の内壁に接触した途端に蒸発(消滅)し、ミスト噴出部30に接続されるパイプ24に達するミスト濃度(霧の濃さ)が極端に低下してしまう場合がある。そこで本実施の形態では、温調機構20Cによって、流路部20Aを構成する石英管等の流路形成部材の温度(望ましくは、その内壁面の温度)を、ミストを含むキャリアガスCGSの温度と同程度になるように温度調整する。その為の具体的な構成については後述する。
 ミスト改質部20の流路部20Aを通って改質されたミストを含むキャリアガスCGSは、パイプ24を介してミスト噴出部30の上部から供給され、ミスト噴出部30の基板Pと対向する底部に形成されたスリット状のノズルから所定の流量(風速)となって基板Pに噴霧される。スリット状のノズルは、基板Pの幅方向寸法と同程度のY方向の長さ(或いは基板Pの幅方向寸法よりも短いY方向の長さでも良い)で形成され、X方向には数mm程度(1~6mm)の幅で形成される。基板Pの長尺方向の搬送(移動)方向を+X方向としたとき、ミスト回収部32は、基板Pの搬送方向に関してミスト噴出部30の下流側に配置される。ミスト噴出部30の底部のスリット状のノズルから下向き(-Z方向)に噴霧されたミストは、下流側のミスト回収部32の底部に形成された回収ポート部に形成される負圧(減圧)に向かって、基板Pの表面に沿って+X方向に流れつつ、基板Pの表面に付着する。ミスト回収部32の底部の回収ポート部は、Y方向にスロット状に延びた形状で形成され、ミスト回収部32の上部に接続されたパイプ33を介して、基板Pに付着しなかったミストとキャリアガスCGSとが不図示の真空ポンプ(減圧源)により回収される。
 ミスト噴出部30とミスト回収部32の各底部と基板Pの間には、ミスト噴出部30のスリット状のノズルからミスト回収部32の回収ポート部に向けて、ミストを含むキャリアガスCGSを滑らかに流す為の導風部材(スカート部材、整流部材とも呼ぶ)31が設けられている。図1の構成から明らかなように、基板Pの表面は、ミスト噴出部30から噴霧されてミスト回収部32で回収されるミストを含むキャリアガスCGSの層流に曝されながら+X方向に移動することができ、基板Pの搬送ユニット5による移動速度と、基板Pの表面に沿って流れるキャリアガスCGSの流速との関係を調整することにより、基板Pの表面に堆積されるナノ粒子(ITO)による膜の厚みを変えることができる。その際、真空減圧源に接続されたパイプ41を介してチャンバー部40内を負圧とすることにより、導風部材31で覆われた空間から漏れ出したキャリアガスCGSが、チャンバー部40の外部に流れ出ることを阻止することができる。本実施の形態では、ミスト噴出部30、導風部材31、ミスト回収部32によってミスト成膜機構が構成される。
 図1の構成において、ミスト噴出部30のスリット状のノズルから噴出されるミストを含むキャリアガスCGSの総排出流量をQfとし、ミスト回収部32の回収ポート部での総排気流量をQvとしたとき、Qf≒Qvの関係、又はQf<Qvの関係に設定するのが好ましい。但し、チャンバー部40内での排気性能の範囲内で、意図的にQf>Qvの関係に設定して、導風部材31の内側から過剰のキャリアガスCGSが漏れ出すような構成とし、基板Pの表面に、より多くのミストが付着し得るような設定にしても良い。総排出流量Qfと総排気流量Qvのバランスは、図1に示したパイプ33に接続される真空減圧源の流量調整と流量調整弁15とによって容易に設定可能である。
 なお、図1では図示を省略したが、チャンバー部40内でミスト成膜された直後の基板Pの表面は、ミストの付着によって、例えば数μm~数十μm程度の厚みの薄い液膜(水膜)で覆われて湿った状態である為、その液膜を蒸発させて乾燥する乾燥ユニット(加熱機構)がチャンバー部40の下流側に設けられる。乾燥ユニットは、常温(23~25℃)よりは高く100℃よりも低い温度、例えば40~80℃程度の低温で基板Pを加熱する為の赤外線ランプや電気ヒータと送風機構(ブロワー)等を備えている。この場合、基板Pの表面の液膜が薄い為、40~80℃程度の低温でも短時間のうちに液膜を蒸発させて乾燥させることができる。乾燥処理後の基板Pの表面には、ナノ粒子が密に堆積した薄膜、本実施の形態ではITO膜が形成されるが、この段階でのITO膜の抵抗率(Ω・m)は比較的に大きな値のままである。
 その為、図1に示すように、ミスト成膜後(濡れた状態、又は乾燥後)の基板Pの表面に紫外波長域のUV光Laを照射するUV照射ユニット60がチャンバー部40(或いは乾燥ユニット)の下流側に設けられる。すなわち、本実施の形態では、基板Pの表面にナノ粒子(ITOの結晶体)による堆積膜(ITO膜)を形成するミスト成膜法の際に、基板Pに付着する前のミスト自体にUV光Lbを照射して改質(紫外線洗浄)する第1段階の紫外線照射処理と、基板Pに堆積されたITO膜層にもUV光Laを照射する第2段階の紫外線照射処理とが施される。この2ステップの紫外線照射処理によって、基板Pの表面に形成されたITO膜層の抵抗率を短時間のうちに大きく下げられることが判った。その詳細については後述する。
 図2は、図1に示したミスト成膜装置MDEの成膜部の具体的な構成を示す斜視図であり、図3は、図2に示した成膜部に設けられる導風部材31の裏側(基板Pと対向する側)の具体的な構成を-Z方向側から見た斜視図であり、図2、図3の直交座標系XYZは図1と同じ向きに設定される。図2において、図1で示した搬送ユニット5は、Y軸と平行な中心軸AXaの回りに回転するローラ5Aと、中心軸AXaからX方向に所定距離だけ離れて中心軸AXaと平行に配置される中心軸AXbの回りに回転するローラ5Bと、2つのローラ5A、5Bの間に掛け渡され、平坦部分の上面でシート基板Pを平坦に支持する無端状のベルト5Cと、ベルト5Cのシート基板Pを支持する平坦部分の裏面側に配置されて、ベルト5Cを平坦に支持する支持テーブル5Dとを備える。ベルト5CのY方向の幅は基板PのY方向の幅(短尺寸法)よりも少し大きくなるように設定され、ベルト5Cは、支持テーブル5Dの上面に対応した領域で基板Pを真空吸着すると共に、支持テーブル5Dの上面とベルト5Cの裏面との間に生成される静圧気体層(エアベアリング)によって支持テーブル5Dの上面と非接触な状態(又は低摩擦な状態)で搬送駆動される。このような構成の搬送ユニット5は、例えば国際公開第2013/150677号に開示されているが、ベルト5Cは剛性が高く平坦性が確保できるステンレス等の金属製が好ましい。但し、プラズマアシストでミスト成膜を行う場合は、ベルト5Cや支持テーブル5Dを絶縁性が高く不導体の材料(非金属)で作るのが良い。
 図2のように、シート基板Pは、ベルト5Cの平坦部分に保持されて、ローラ5A、5Bの回転駆動によって+X方向に所定の速度で搬送される。支持テーブル5Dの上面(平坦面)と対向するような基板Pの上方空間には、図1で示したように、基板Pの短尺寸法をカバーするようなY方向の幅を有する導風部材31に、ミスト噴出部30とミスト回収部32とが設けられている。ミスト噴出部30は、導風部材31の-X方向側(上流側)の開口部に設けられ、ミスト回収部32は導風部材31の+X方向側(下流側)の開口部に設けられる。ミスト噴出部30の上部天板には、図1に示したパイプ24を2股に分けたパイプ24A、24Bの各々が接続される供給ポート30Pa、30Pbが形成されている。ミスト噴出部30の内部空間は、XY面内で見たときにY方向に延び長方形に作られることから、その内部空間でのY方向のミスト濃度をできるだけ一様にする為に、2つの供給ポート30Pa、30PbがY方向に並べて設けられる。また、ミスト噴出部30の下端部のスリット状のノズル部(スリット開口)30Aの近傍には、プラズマアシスト用の高電圧をノズルから噴霧されるミスト(キャリアガスCGS)に印加する為の一対の電極棒50A、50B(図2では50Bは不図示)がX方向に一定の間隔を保って設置される。
 導風部材31、ミスト噴出部30、ミスト回収部32の各々の下端部(基板Pと対向する側)は、図3に示すように、ミストを含むキャリアガスCGSの流れを乱さないように、基板Pの平坦な表面とほぼ平行な平面状に構成されている。板状の導風部材31は、XY面(基板Pの表面)と平行な底面31Aと、Y方向の両側の各々に-Z方向に所定量だけ突出してX方向に延設された側板31B、31Cとを備える。側板31B、31Cの各々の-Z方向側の端部(下端面)は、図2に示したベルト5Cの平坦部分の表面と所定の隙間(ギャップ)で対向するように配置される。その隙間(ギャップ)は、導風部材31の底面31Aと基板Pの表面との間の空間を流れるミスト含有のキャリアガスCGSが、その隙間から極力漏れ出さないように、できるだけ小さくする方が望ましい。また、図2、図3から明らかなように、導風部材31のX方向(基板Pの搬送方向)の両端側には、側板31B、31Cと同様の側板が設けられていないが、必要であれば、導風部材31のX方向の両端側の底面31Aから基板Pに向けて突出するような側板を設けても良い。
 ミスト噴出部30の下端部には、ミストを噴霧するY方向にスリット状に延設されたノズル部(スリット開口)30Aと、そのノズル部30AをX方向に挟むようにY方向に平行に延設されたプラズマアシスト用の一対の電極棒50A、50Bと、電極棒50A、50Bの各々を密閉して所定の間隔で安定して保持する絶縁性の電極保持部材51A、51B(化学的な作用を受け難くプラズマへの耐性がある石英やセラミックス等)とが設けられ、そのノズル部30Aと電極保持部材51A、51Bは、板状の導風部材31に形成された長方形の開口部31D内に配置される。電極棒50A、50Bと電極保持部材51A、51Bの配置条件や電極間に印加する高電圧パルスの条件(電圧、周波数等)は、例えば国際公開第2016/133131号に開示されている。なお、プラズマアシストによるミスト成膜の場合、ミスト噴出部30と導風部材31の各々は、ガラス(石英)、セラミックス、合成樹脂(アクリル等)等の絶縁性の材料で構成し、少なくともミスト噴出部30の下端部(ノズル部30A)の近くには、金属製(導電性)のボルトやネジ、ナット等の部品を設けないようにするのが良い。
 ここで、図4を参照して、ミスト噴出部30と、その下端部に配置される電極保持部材51A、51B(両方をまとめて単に電極保持部材51とも呼ぶ)との配置関係の一例を説明する。図4は、ミスト噴出部30と電極保持部材51A、51Bとの配置状態を示す斜視図であり、直交座標系XYZは先の図1~3の各々と同じ方向に設定してある。図4のように、ミスト噴出部30は外形がY方向に長い直方体となるように、アクリル樹脂等で構成され、その内部空間は、YZ面と平行でX方向に間隔を開けて配置される鉛直な内壁面30K1、30J1と、ミスト噴出部30の底部のスリット状のノズル部30Aに向けて内壁面30K1、30J1の各々から連なるようにYZ面に対して傾斜した内壁面30K2、30J2等で囲まれ、ミストを含むキャリアガスCGSを一時的に貯留する。ミスト噴出部30の内部空間を規定する上部の天井内壁面(天板内壁面)30K0(XY面と平行)には、図2のように内部空間に連通する供給ポート30Pa、30Pbが形成されている。なお、図4では符号を略したが、ミスト噴出部30の内部空間のY方向の両側にも鉛直な内壁面が形成されている。また、ミスト噴出部30の底面部30Bには、ノズル部30AをY方向に挟むように配置された電極保持部材51A、51Bが平行に設けられる。電極保持部材51A、51Bの各々のノズル部30Aを挟んで対向した側は、XZ面内で見たときにほぼ半円形の断面に形成され、その半円形の中心線(Y軸と平行)の位置に円柱状の電極棒50A、50B(両方をまとめて単に電極棒50とも呼ぶ)が平行に埋め込まれている。
 さらに図3に示すように、ミスト回収部32の下端部には、導風部材31の底面31Aとほぼ同じ平面となるように成型された底面32Bが設けられ、その底面32BにY方向にスロット状に延設された回収ポート部32Aが形成されている。この回収ポート部32Aはミスト回収部32の内部空間とつながっており、図2に示したパイプ33を介して、その内部空間をほぼ一様に減圧することにより、回収ポート部32AのY方向における排気流量の分布をほぼ一様にすることができる。スロット状に延設される回収ポート部32AのY方向の寸法は、できるだけ長い方が好ましく、本実施の形態では、ミスト噴出部30の下端部のノズル部30AのY方向の寸法よりも長く、導風部材31の底面31Aに突出して設けられた側板31B、31CのY方向の間隔と概ね同じ長さとなるように設定するのが好ましい。回収ポート部32Aにおける排気流量のY方向の分布を一様にする為に、回収ポート部32Aの内部空間内に整流板(フィン)やパンチングプレート(多数の開口孔を有する薄板)を設けることができる。
 図3に示すように、導風部材31の底面31A、ミスト回収部32の底面32B、電極保持部材51A、51Bの各々の底面は、本実施の形態では、Z方向についてなるべく平坦な面一な状態(フラッシュ・サーフェス状態)になるように設定される。さらに導風部材31の底面31A、ミスト回収部32の底面32B、電極保持部材51の底面、及び側板31B、31Cの内側面の各々には、ミストの付着を抑制するような撥液処理が施されている。撥液処理は、フッ素系のコート剤の塗布や、撥液性のシート材の貼り付けで実施され、ミストの主成分である純水が集まって液滴となった場合の接触角が90度以上、好ましくは120度以上となるような撥液性を持たせるのが望ましい。接触角とは、液滴を平坦な基板表面に滴下したときに、液滴の外周液面のうちの液滴と基板表面とが接触している部分での液面の基板表面からの角度である。従って、接触角が90度の場合、液滴は球体を半分に輪切りした一方を基板表面に伏せたような形状となり、接触角が大きくなればなるほど、液滴は基板表面上で扁平した球体に近づき基板表面を転がりやすくなる。
 次に、図1に示したミスト改質部20の第1の実施の形態による構成を、図5を参照して説明する。図5は、図1のミスト改質部20内に設けられる流路部20AとUV光源ユニット20Bとの具体的な構成の一例を示す部分断面図である。流路部20Aは、本実施の形態では、ミスト発生部(ミスト発生器)14からのパイプ17を介して、ミストを含むキャリアガスCGSを通す為の3本の平行な円管状の石英管201A、201B、201Cと、石英管201Aの出口(ミストが流出する側)と石英管201Bの入口(ミストが流入する側)とをつなぐU字型の配管17Aと、石英管201Bの出口と石英管201Cの入口とをつなぐU字型の配管17Bとで構成され、石英管201Cの出口がミスト噴出部30へのパイプ24と接続されている。石英管201Aの入口とパイプ17はジョイント部200aで接続され、石英管201Aの出口と配管17Aの入口はジョイント部200bで接続され、配管17Aの出口と石英管201Bの入口とはジョイント部200cで接続され、石英管201Bの出口と配管17Bの入口はジョイント部200dで接続され、配管17Bの出口と石英管201Cの入口とはジョイント部200eで接続され、そして、石英管201Cの出口とパイプ24はジョイント部200fで接続される。
 これによって、パイプ17から供給されるミストを含むキャリアガスCGSは、石英管201A、U字型の配管17A、石英管201B、U字型の配管17B、及び石英管201Cの順番でつづらおり状に流れてパイプ24に送出される。さらに、石英管201A、201B、201Cの各々の外周には、石英管201A~201Cの外径よりも数mm以上大きい内径を有する外郭石英管202A、202B、202Cがほぼ同軸状に設けられる。本実施の形態では、石英管201Aの外周面と外郭石英管202Aの内周面との間の隙間、石英管201Bの外周面と外郭石英管202Bの内周面との間の隙間、及び石英管201Cの外周面と外郭石英管202Cの内周面との間の隙間の各々に、冷却用の冷媒(クーラント液)CLqとして温度調整された純水を流すように構成される。その為、石英管201Aと外郭石英管202Aの各々の両端側には、石英管201Aと外郭石英管202Aをほぼ同軸に支持すると共に、隙間に冷媒(純水)CLqを流すように封止する封止栓部204A、204Bが設けられ、パイプ17側に位置する封止栓部204Aには、冷媒CLqの供給ポート(パイプ)205Aが設けられる。
 同様に、石英管201Bと外郭石英管202Bの各々の両端側には、石英管201Bと外郭石英管202Bをほぼ同軸に支持すると共に、隙間に冷媒(純水)CLqを流すように封止する封止栓部204C、204Dが設けられ、石英管201Cと外郭石英管202Cの各々の両端側には、石英管201Cと外郭石英管202Cをほぼ同軸に支持すると共に、隙間に冷媒(純水)CLqを流すように封止する封止栓部204E、204Fが設けられる。そして、封止栓部204Bと封止栓部204Cの間と、封止栓部204Dと封止栓部204Eの間との各々には冷媒CLqを通す為のポート(パイプ)205B、205Cが設けられ、パイプ24側に位置する封止栓部204Fには冷媒CLqを排出する排出ポート(パイプ)205Dが設けられている。
 さらに、3本の外郭石英管202A~202Cの各々の両側には、ロングアーク型の管状の低圧水銀放電ランプ(UV光源)210A、210B、210C、210Dが平行に配置されている。本実施の形態では、3本の石英管201A、201B、201Cの各々を通るキャリアガスCGSに含まれるミストに強い紫外線(UV光Lb)を照射する為に、4本のUV光源210A~210Dを設けたが、その本数はUV光源1本のパワーによっては3本以下でも良いし、5本以上であっても良い。低圧水銀放電ランプは、波長300nm以下の紫外波長域に強い輝線スペクトルを有し、特に中心波長253.7nm(約254nm)と中心波長184.9nm(約185nm)の2つのスペクトル成分の少なくとも一方によって、ミスト中に含まれたり、ナノ粒子の表面に付着したりする有機物質の微粒子や分子、バクテリア等が分解され、洗浄される。また、図5に示した、石英管201A~201C、外郭石英管202A~202C、U字状の配管17A、17B、UV光源210A~210D等で構成されるミスト改質部20の全体は、UV光Lbの外部への放出を防止する為に、遮光性の筐体(暗箱)内に収容される。
 以上の構成により、石英管201A~201Cの各々の内側を通るキャリアガスCGS中のミストには、UV光源210A~210Dの各々から発生した強い紫外波長域のUV光Lbが、外郭石英管202A~202Cの各管壁と、外郭石英管202A~202Cの各内周面と石英管201A~201Cの各外周面との間の隙間に満たされる冷媒(純水)CLqと、石英管201A~201Cの各管壁とを介して照射される。この場合、隙間に満たされる冷媒CLqを純水とすることにより、中心波長185nm、254nmの紫外スペクトルの吸収を少なくして、高い透過率を確保できる。図5のように、石英管201A~201Cの各々の近くにUV光源210A~210Dを配置すると、UV光源210A~210D自体が発熱源となって石英管201A~201Cの各管壁を温めることになる。パイプ17から供給されるミストを含むキャリアガスCGSが、温まった石英管201A~201C内を通ると、ミストの粒径(数μm~数十μm)が蒸発によって急激に小さくなり、やがて成膜物質であるITOナノ粒子を保持し得なくなって、流路部20Aの石英管201A~201CやU字型の配管17A、17Bの内壁面にITOナノ粒子を堆積させてしまう。その為、パイプ24に到達するまでに、キャリアガスCGS中に含まれるミストがほとんど消滅してしまう。
 そこで本実施の形態では、図1に示した温調機構20Cとして、石英管201A~201Cと外郭石英管202A~202Cとによる2重管構造の隙間に冷媒CLqを満たして流す構成を設け、石英管201A~201Cの管壁(内壁面)の温度をキャリアガスCGSの温度と同じ程度に温調する。冷媒CLqとしての純水は、図5の供給ポート205Aから封止栓部204Aに流入し、外郭石英管202Aと石英管201Aの間の隙間を満たして封止栓部204Bに達する。封止栓部204B内の純水は、ポート205Bを通って封止栓部204Cに流入し、外郭石英管202Bと石英管201Bの間の隙間を満たして封止栓部204Dに達する。封止栓部204D内の純水は、ポート205Cを通って封止栓部204Eに流入し、外郭石英管202Cと石英管201Cの間の隙間を満たして封止栓部204Fに達し、排出ポート205Dから排出される。図1に示した照射/温調制御部22は、排出ポート205Dから排出された冷媒CLqを所定の温度に調整してから供給ポート205Aに循環させるように制御する。なお、UV光源(低圧水銀放電ランプ)210A~210Dの点灯も図1の照射/温調制御部22によって制御される。
 また、不図示ではあるが、図1のミスト改質部20内には、図5に示した供給ポート205Aに供給される冷媒CLqの温度、排出ポート205Dから排出される冷媒CLqの温度、パイプ17から送られてくるキャリアガスCGS(ミストを含む)の温度、パイプ24に送出されるキャリアガスCGSの温度の各々を計測する複数の温度センサーが設けられ、照射/温調制御部22は、それらの温度センサーによる計測温度に基づいて、温調機構20C内の冷媒の温度や流量を制御する。さらに、UV光源210A~210Dの近くにUV光Lbの発光強度(照度)を計測する照度モニター(光電検出器)を設け、所定の照度範囲に維持されるように、図1の照射/温調制御部22によってUV光源210A~210Dの点灯電力を制御しても良い。
 図1に示したミスト改質部20中の温調機構20Cとして、図5では、石英管201A~201Cと外郭石英管202A~202Cとの2重管構造を3段分接続し、2重管の隙間に冷媒(純水)CLqを満たして流す構成としたが、その段数は、ミストを含むキャリアガスCGSの流速に応じて何段であっても良い。また、石英管201A~201CとU字状の配管17A、17Bとの全体を、石英の板材で囲まれた液槽内に満たした冷媒(純水)中に設け、液槽の外側からUV光源の紫外線(波長300nm以下)を照射するようにしても良い。この場合、冷媒が満たされる石英の板材で囲まれた液槽が温調機構20Cとして機能する。さらに、石英管201A~201CとU字状の配管17A、17Bの各々の内壁面には、ミストの付着を避ける為の撥液処理が施されるが、紫外線の波長帯(185nm、254nmのスペクトルを含む)に対して耐性を持たせる必要がある。例えば、フッ素と炭素原子が結合したフッ素化合物による撥液コート剤を用いると、紫外線による劣化(撥液性の低下)を抑えることが可能である。
 本実施の形態では、図1、図2に示したように、被処理体としてのシート基板Pは搬送ユニット5(ベルト5C等)によって+X方向に一定の速度で搬送され、同時に、ミスト噴出部30のノズル部30Aから噴出して+X方向に離れたミスト回収部32の回収ポート部32Aに向けて流れるキャリアガスCGSに乗ったミストは、導風部材31の底面31Aと基板Pとの間の空間を流れる間に基板Pの表面に付着する構成とした。このような構成は、例えば国際公開第2013/176222号に開示されているが、基板Pの搬送速度をVf(mm/秒)とし、基板Pの上空を流れるキャリアガスCGS(ミスト)の流速をVg(mm/秒)としたとき、搬送速度Vfと流速Vgとは、Vf≒Vgの関係、或いはVf<Vgの関係に設定される。この場合、ノズル部(スリット開口)30Aから回収ポート部32AまでのX方向の距離(ミスト接触流路長)をLx(mm)とすると、基板Pの表面上の任意の1ヶ所がキャリアガスCGS(ミスト)と接触し得る接触時間tccは、tcc=Lx/Vf(秒)であり、その接触時間tccの間に、キャリアガスCGS中のミストの付着によって基板Pの表面に一様の厚さで液膜が形成されるように、キャリアガスCGSの流速Vg、或いはキャリアガスCGS中のミストの濃度が調整される。なお、ノズル部30Aから回収ポート部32AまでのX方向の距離Lx(mm)を調整可能とするミスト接触流路長の可変機構を導風部材31等に設けると、その機構によって基板Pの搬送速度Vfの調整のみに依存することなく接触時間tccを調整することができる。
〔実験セットによる予備実験1〕
 次に、キャリアガスCGS中のミストに対して紫外線(低圧水銀放電ランプからのUV光Lb)を照射した場合の作用、効果について説明する。図6は、キャリアガスCGS中のミストに紫外線を照射する予備実験1の為の実験セットの構成を模式的に表した図である。図6において、ミストを含むキャリアガスCGSは、パイプ90を介して、石英製の大きなフラスコ91の流入口91aから下方(-Z方向)に向けて所定の流量で噴霧され、フラスコ91内はミスト(粒子)Mstで満たされる。フラスコ91の底部(底面)91bからは、UV光源(低圧水銀放電ランプ)92AからのUV光Lb(波長254nm、185nmのスペクトルを含む)がミストMstに向けて照射される。フラスコ91内で、所定の時間に渡ってUV光Lbの照射を受けたミストMstを含むキャリアガスCGSは、フラスコ91の側壁に水平(XY面と平行)に設けられた石英管93を介して、水平面に対して斜め45°に配置された試料基板SP(ここではガラス板、又は半導体ウェハ基板)に噴霧される。なお、石英管93のフラスコ91の外壁に近い位置と、石英管93の下方側には、UV光源92AからのUV光Lbの石英管93内への照射を阻止する遮光板94a、94bが設けられる。
 図6の実験セットによって、キャリアガスCGS中のミストへのUV光Lbの照射時間(秒)と、試料基板SP上に成膜されるITOナノ粒子による薄膜の抵抗値(抵抗率)との関係を探ることができる。その為に、キャリアガスCGS(ミスト)がフラスコ91の流入口91aから噴出し始めた時刻から石英管93に流入するまでの時刻を照射時間Ts(秒)とし、その照射時間Tsを何段階かに調整するように、パイプ90からフラスコ91に供給されるキャリアガスCGSの流量(流速)を調整して実験した。その実験では、試料基板SPの表面に堆積されるITO薄膜の厚さがおおよそ50nmになるように、キャリアガスCGSの流量(流速)に応じて石英管93の出口と試料基板SPとのX方向の間隔を調整した。さらに、図6の実験セットでミスト成膜された直後の試料基板SPは一定の時間だけ加熱乾燥され、その後に2端子法によってITO薄膜の抵抗値(抵抗率)を計測した。実験では、ミストMstへのUV光Lbの照射時間Tsを、0秒、20秒、40秒、60秒、80秒とした5つの試料基板SPの各々に膜厚が50nmとなるようにITOナノ粒子をミスト成膜した。この実験セットを用いた実験は、常温環境の下で行った。
 図7は、UV光Lbの照射時間Tsを異ならせた5つの試料基板SPの各々に成膜されたITO薄膜の抵抗値の計測結果を示すグラフであり、横軸は照射時間Ts(秒)を表し、縦軸はITO薄膜の抵抗値(MΩ/m2)を表す。図7に示すように、ミスト成膜前のミストMst自体に紫外線(UV光Lb)を照射する処理(事前UV光照射工程)を行う場合、膜厚50nm程度のITO薄膜の抵抗値は、照射時間Tsが0秒(未照射)のときは20MΩ/m2程度と高い値を示すが、照射時間Tsを60秒以上にすると、約半分の10MΩ/m2程度まで低下することが判った。なお、図6の実験セットでは、熱源となるUV光源(低圧水銀放電ランプ)92Aからの輻射熱によってフラスコ91の底部91bが急速に温度上昇しないように、UV光源(低圧水銀放電ランプ)92Aとフラスコ91の底部91bとの間隔を広めにした。その為、フラスコ91内のミストMstに照射されるUV光Lbの強度(光量)が若干低下していた。
 さらに、フラスコ91内のミストMstの主な流れの方向と同じ縦方向(Z方向)からUV光Lbが照射されることによる照射効率(所定時間以上に渡ってUV光Lbが照射されるミスト粒子の個数の割合)の低下が考えられることから、キャリアガスCGS中のミストMstへのUV光Lbを効率的にすれば、図7に示したように、抵抗値を半分程度までに低下させるのに必要な照射時間Ts(秒)を短縮させることが可能であると推測された。そこで第1の実施の形態では、図5に示したように、石英管201A~201Cの外側の直近に配置したUV光源210A~210DからのUV光Lbを、冷媒(純水)CLqによる断熱層を介して、石英管201A~201C内のキャリアガスCGS(ミスト)が流れる方向と交差した方向(横切る方向)から照射する構成としたので、照射効率を高めることが可能となり、図6、図7の実験結果に比べて、事前UV光照射の時間Tsを短縮することが可能となる。
 本実施の形態では、図5に示したようなミスト改質部20による事前UV光照射の工程によって、キャリアガスCGS中のミスト粒子の表面やミスト中のナノ粒子の表面等に付着している不純物(有機物等)を効率的に分解/除去した状態でミスト成膜するので、ミストに含まれるITO等の導電性のナノ粒子の堆積で形成された薄膜の電気抵抗を低減できる。また、従来の国際公開第2013/118353号と同様に、ミスト成膜によって基板P上にITO薄膜が成膜された後に、そのITO薄膜に向けて、図1で示したUV照射ユニット60から、波長300nm以下のUV光Laを照射する工程(事後UV光照射の工程とも呼ぶ)を実施すると、ITO薄膜の抵抗値をさらに効率的に低減させることが可能となる。さらに、基板Pを100℃程度まで加熱することが可能な場合は、ITO薄膜が基板P上に形成された後、基板Pの温度を80℃~100℃に加熱しつつ、UV照射ユニット60からのUV光LaをITO薄膜に照射すると、比較的に短時間のうちに、数KΩ/m2程度~数百Ω/m2程度まで抵抗値を下げることが可能となる。
〔ITO薄膜の電気抵抗の低減処理〕
 ここで、ミスト成膜法によって堆積されたITOナノ粒子によるITO薄膜の電気抵抗を低減させる為の幾つかの手法を比較してみる。図8は、試料基板SP上に成膜されたITO薄膜に各種のエネルギーを作用又は照射したときの抵抗値の変化の傾向を示す実験結果のグラフであり、横軸はエネルギーを作用又は照射し続ける処理時間を表し、縦軸は処理時間が零のときのシート抵抗値を基準(100%)とした抵抗値の相対値(%)を表す。図8中の特性CC1は、試料基板SPを約80℃に加熱した状態で、2.45GHzのマイクロ波を大気雰囲気中で照射したときのITO薄膜の抵抗値の相対的な変化を表し、図8中の特性CC2は、試料基板SPをアルゴンガスの雰囲気中で赤外線ランプにより約120℃に加熱したときのITO薄膜の抵抗値の相対的な変化を表し、図8中の特性CC3は、常温(無加熱)状態の窒素ガスの雰囲気中で試料基板SPに低圧水銀放電ランプからの紫外線(UV光Lb)を照射したときのITO薄膜の抵抗値の相対的な変化を表す。なお、この実験では、ミスト成膜前のミストMstに対する事前UV光照射の処理は行っていない。
 図8の特性CC2のように、試料基板SPを高い温度に加熱できる場合は、ITO薄膜の抵抗値を大幅に低減(0.8KΩ/m2)させることが可能であるが、10分程度の加熱が必要となる。これに対して、特性CC3のように、常温環境下で試料基板SP(ITO薄膜)に低圧水銀放電ランプからのUV光を照射すると、約5分間程度で、ITO薄膜の抵抗値を大幅に低減(10KΩ/m2)させることができる。但し、特性CC3に示すように、UV光の照射時間を約5分以上にしても、ITO薄膜の抵抗値はほぼ10KΩ/m2で下げ止まりとなり、それ以上の低抵抗化は見られなかった。これは、ミスト成膜時の試料基板SPの表面に付着するミスト粒子に有機物質(炭素系やアミン系)の分子等が不純物として含まれてしまい、ITOナノ粒子が試料基板SP上に所定の膜厚で堆積した際に、その不純物が膜内に残存すること、UV光の照射による不純物の分解/除去が、ITO薄膜の表層には作用するものの、膜内(膜底部)までは有効に作用しなかったことに起因すると推測される。
〔実験セットによる予備実験2〕
 そこで、ミスト成膜後に試料基板SPにUV光を照射する事後UV光照射の処理(第2段階の紫外線照射処理)の前に、本実施の形態のように、ミスト成膜前のミスト粒子(Mst)に対してUV光Lbを照射する事前UV光照射の処理(第1段階の紫外線照射処理)を施した場合と施さなかった場合とで、ITO薄膜の抵抗値がどのように変わるかの予備実験2を行った。図9は、予備実験2の為に、図6の実験セットに対して、ミスト成膜中に試料基板SPに向けてUV光Lcを照射するUV光源92Bを追加した実験セットの構成を示す。UV光源92Bは、UV光源92Aと同じ棒状の低圧水銀放電ランプであり、図9中のY方向に延びるように配置されると共に、フラスコ91や石英管93にUV光Lcが照射されないように配向されている。
 予備実験2では、石英管93から噴出されるミストMstを含むキャリアガスCGSが、試料基板SPに噴霧されている間(ミスト成膜中)に、UV光源92Bによる第2段階の紫外線照射処理(試料基板SP上に堆積されるITO薄膜へのUV光Lcの照射)を行うものとする。従って、第2段階の紫外線照射処理には、試料基板SP(又は基板P)上にミストが付着し得る期間中(ミスト成膜中)に基板表面にUV光Lcを照射する第1フェーズと、ミスト成膜の期間が終わった後に基板表面に所定の厚みで堆積した薄膜に、図1で示したUV照射ユニット60からのUV光Laを照射する第2フェーズとがある。また、UV光源92Aによる第1段階の紫外線照射処理(ミストMstへのUV光Lbの照射)の時間(即ち照射時間Ts)は、予備実験1と同様に、キャリアガスCGSの流量(流速)を変えて0秒、20秒、40秒、60秒、80秒とし、図9において、キャリアガスCGS(ミスト)がフラスコ91の流入口91aから噴出し始めた時刻から石英管93に流入する時刻までの間の時間とする。さらに、予備実験2では、UV光源92Bによる第2段階の紫外線照射処理の第1フェーズの処理時間は、第1段階の紫外線照射処理での照射時間Tsと同じに設定され、指定された照射時間Tsの間に試料基板SP上に約50nmの厚みでITO薄膜が堆積されるように、石英管93の出口から試料基板SPまでのX方向の距離を調整した。
 図10は、予備実験2において、照射時間Tsを異ならせた5つの試料基板SPの各々に成膜されたITO薄膜の抵抗値の計測結果を示すグラフであり、横軸は照射時間Ts(秒)を表し、縦軸はITO薄膜の抵抗値(MΩ/m2)を表す。図10において、特性EC1は、第1段階の紫外線照射処理もミスト成膜中の紫外線照射処理(第1フェーズ)も行わずに、試料基板SP上に約50nmの膜厚でITO薄膜を成膜した後に、図1で示したようなUV照射ユニット60からのUV光Laを指定時間(0、20、40、60、80秒)だけ照射する第2段階の紫外線照射処理の第2フェーズのみを行ったときのITO薄膜の抵抗値の変化を表す。図10中の特性EC2は、第1段階の紫外線照射処理のみによって、UV光Lbの照射を受けたミストMstを試料基板SP上に噴霧して、約50nmの膜厚で成膜されたITO薄膜の抵抗値の変化を表し、その特性は先の図7と同じである。そして、図10中の特性EC3は、UV光源92Aによる第1段階の紫外線照射処理とUV光源92Bによる第2段階の紫外線照射処理の第1フェーズとを並行に実施して、試料基板SP上に約50nmの膜厚で成膜したITO薄膜の抵抗値の変化を表す。
 この予備実験2の結果から、特性EC1(第2段階の紫外線照射処理の第2フェーズのみ実施)では、抵抗値が減少し始めるまでの紫外線(UV光La)の照射時間が30秒程度必要であるのに対し、特性EC2(第1段階の紫外線照射処理のみ実施)と特性EC3(第1段階の紫外線照射処理と第2段階の紫外線照射処理の第1フェーズとの併用実施)とにおいては、紫外線(UV光Lb、又はUV光Lc)の照射開始から漸次に抵抗値が減少する傾向を示す。紫外線(UV光Lb、又はUV光Lc)の照射時間が80秒のとき、特性EC2では、図7と同様に初期の抵抗値(約20MΩ/m2)が約半分の値(10MΩ/m2)に減少し、特性EC3では、初期の抵抗値(約20MΩ/m2)が約1/4の値(5MΩ/m2)に減少した。このような予備実験2の結果から、基板P上にミスト成膜で堆積されるITOナノ粒子による薄膜の抵抗値を、常温(又は100℃よりも低い温度)の環境下で効率的に減少させるには、第1段階の紫外線照射処理と第2段階の紫外線照射処理(第1フェーズと第2フェーズの両方)とを並行して実施するのが良い。さらに、基板Pを高い温度(例えば100℃以上)に設定可能な場合は、第2段階の紫外線照射処理の第2フェーズの実施時に基板Pを同時に加熱しておくと、先の図8に示した特性CC2の結果から、ITO薄膜のさらなる低抵抗化が期待できる。
 図1~図5に示した本実施の形態におけるミスト成膜装置は、以上のような予備実験1、予備実験2で得られた結果に基づいて構成されており、図1の構成では、ミスト改質部20によって第1段階の紫外線照射処理が実施され、UV照射ユニット60によって第2段階の紫外線照射処理の第2フェーズが実施される。なお、図1、図2では、導風部材31の直下に位置する基板Pの表面をXY面と平行な水平状態にして、基板Pを+X方向に搬送する構成としたが、図2に示したベルト5Cや支持テーブル5D等を含む搬送ユニット5と、ミスト噴出部30、導風部材31、ミスト回収部32とを一体的に、基板Pの表面がXY面に対して30度~60度の範囲で傾くように、Y軸の回りに回動配置しても良い。そのように、基板Pを搬送方向(長尺方向)に傾けた状態でミスト成膜する利点については、例えば国際公開第2015/159983号に開示されている。
 以上、本実施の形態によれば、被処理物(基板P)の表面に材料物質(例えば、ITO)による層(薄膜)を堆積させる為に、材料物質の微粒子又は分子を含有する溶液のミスト(Mst)を含むキャリア気体(CGS)を被処理物の表面に噴霧するミスト発生装置であって、溶液を霧化してミストを含むキャリア気体を送出するミスト発生部(14)と、ミスト発生部(14)からのキャリア気体(CGS)が被処理物の表面に向けて噴霧されるまでの流路に対応して設けられ、キャリア気体(CGS)内で浮遊して流れるミストに波長400nm以下の紫外光(UV光Lb)を照射する紫外線照射部(ミスト改質部20内のUV光源ユニット20B)とを備え、ナノ粒子の表面に付着したり、ミスト粒子中に含まれたりする有機物質の不純物分子等を効率的に分解/除去したミスト成膜用のキャリア気体(CGS)を生成するミスト発生装置が得られる。
 さらに、本実施の形態によれば、材料物質による微粒子又は分子を含有した溶液のミストを被処理基板(P)の表面に噴霧して、被処理基板(P)の表面に材料物質による層を形成するミスト成膜装置であって、溶液の霧化により発生するミスト(Mst)を含むキャリア気体(CGS)を送出するミスト発生部(14)と、キャリア気体(CGS)を被処理基板(P)の表面に向けて噴出するミスト噴出部(30)と、被処理基板(P)とミスト噴出部(30)とを、被処理基板(P)の表面に沿った方向に相対的に移動させる移動機構(ベルト5Cを含む搬送ユニット5)と、ミスト発生部(14)からミスト噴出部(30)に至るキャリア気体(CGS)の流路を形成するように囲む壁面を有し、その壁面の少なくとも一部を光透過部材(石英等)で構成した流路形成部(石英管201A、201B、201Cによる流路部20A)と、流路形成部(20A)の光透過部材を介して、流路形成部(20A)の内側を流れるキャリア気体(CGS)に向けて波長400nm以下の紫外線光(UV光Lb)を照射する第1の光照射部(UV光源ユニット20B)と、を備え、それによってミスト成膜によって被処理物上に堆積される材料物質による層(薄膜)の特性を高めることができるミスト成膜装置が得られる。
〔第2の実施の形態〕
 図11は、先の図1~図5に示したミスト成膜装置MDEのミスト成膜部の構成を踏襲した第2の実施の形態によるミスト成膜部の部分断面図であり、図11において、図1~図5に示した各部材と同じものには同じ符号を附してある。また、図11の直交座標系XYZは図1~図5と同じに設定される。本実施の形態では、先の予備実験2に基づいて、さらにミスト成膜中(ミストが基板Pに付着する期間中)にも紫外線を基板Pに向けて照射するUV照射ユニット70を、ミスト噴出部30とミスト回収部32との間の導風部材31の上方に設ける。予備実験2(図10)に基づいて、第1段階の紫外線照射処理(ミストを含むキャリアガスCGSへのUV光Lbの照射)は、先の図1~図5と同じミスト改質部20によって行われ、第2段階の紫外線照射処理の第1フェーズは、本実施の形態では、図11中のUV照射ユニット70からのUV光Lcの照射処理(図9中のUV光源92BによるUV光Lcの照射処理に相当)によって実行される。
 図11において、UV照射ユニット70は、Y方向に延びた母線を有する凹円筒面状の反射面を含む反射部材71と、凹円筒面状の反射面の焦点位置又は焦点位置から意図的にずらした位置に、Y方向に延びて配置される棒状のロングアークタイプの低圧水銀放電ランプ(UV光源)72と、XY面と平行(基板Pと平行)であって、Z方向に所定のギャップ75を空けて基板Pの上方に配置される2枚の石英板73、74と、ギャップ75に満たされる冷却用(温調用)の純水(クーラント液)や気体とで構成される。石英板74の下面(ミストを含むキャリアガスCGSの流路を規定する壁面)は導風部材31の底面31Aと同一面となるように設けられると共に、底面31Aと同様に、ミスト(純水)に対して撥液性となるように表面処理されている。本実施の形態でも、石英板74の上面と石英板73の下面との間のギャップ75にクーラント液(純水)や気体を満たして、所定の流量でフローすることにより、石英板74の温度がUV光源72からの輻射熱で上昇することが抑制される。
 なお、本実施の形態では、図11に示すように、導風部材31のX方向(基板Pの搬送方向)の両端部の各々に、下方(-Z方向)に向けて延設された側板31E、31Fが設けられる。導風部材31の底面31Aと基板PとのZ方向の間隔ΔZgが比較的に大きくなる(例えば、5mm以上になる)場合に、側板31E、31Fの各々の下端部のエッジ(Y方向に延設されている)と基板Pの表面とのZ方向の間隔を狭くすることにより、基板Pと導風部材31(底面31A、側板31B、31C、31E、31F)とで囲まれるキャリアガスCGSの流路内を、外部に比べてわずかに負圧にする作用が高められ、キャリアガスCGSの外部への流出を抑制することができる。また、本実施の形態では、先の第1の実施の形態(図1)と同様に、ミスト成膜後の基板Pに対して、さらにUV照射ユニット60からのUV光Laを照射することができ、成膜されたITO薄膜の抵抗値を短時間で低下させることができる。
〔変形例1〕
 次に、第1の実施の形態、又は第2の実施の形態に適用される変形例1を、図12、図13に基づいて説明する。図12、図13は、図5で示したミスト改質部20の変形例を示し、直交座標系XYZは、従前の説明と同様に設定され、Z方向が重力方向(鉛直方向)であり、XY面が水平面である。そして図12は、ミスト改質部20をXZ面と平行な面で切断したときの断面を表し、図13は図12中のk1-k1矢視断面図を表す。本変形例によるミスト改質部20は、図5のような流路形成部20A(石英管201A~201C、とU字型の配管17A、17B)によって流路を複数回折り返すことで生じる圧損を低減する構成とする。その為に、本変形例での流路形成部は、中心線Axoからの半径が大きい内側の石英管(内壁管)240と、それを取り囲む外側の外郭石英管(外壁管とも呼ぶ)242と、内壁管240と外壁管242の中心線Axoが延びる方向の両端部を密閉する円盤状の端部封止部材243A、243Bと、内壁管240の内部に設けられた整流板245A、245Bとで構成される。内壁管240は、内径が12~20cm程度で、肉厚が数mm以下の円管であり、外壁管242の内径は、内壁管240の外径よりも数mm以上大きくなるように設定され、内壁管240の外周面と外壁管242の内周面との間には、径方向に1mm~数mm程度の隙間が均等に形成される。内壁管240の外周面と外壁管242の内周面との間の隙間には、図5で説明したような温度調整された冷媒(純水)CLqが満たされる。図13では図示を省略したが、端部封止部材243A、243Bの一部には、冷媒(純水)CLqを流す為の供給ポート部と排出ポート部とが設けられている。
 さらに、本変形例では、端部封止部材243Aの中心線AxoからZ方向の上方に離れた位置に、図1中のミスト発生部14からのキャリアガスCGSを導入するパイプ17が接続され、端部封止部材243Bの中心線AxoからZ方向の下方に離れた位置に、図1中のミスト噴出部30に向けてキャリアガスCGSを排出するパイプ24が接続される。また、Y方向から見たとき、内壁管240の内部には、中心線Axoと平行に端部封止部材243A側に取付けられた整流板245Aと、中心線Axoと平行に端部封止部材243B側に取付けられた整流板245Bとが設けられる。整流板245A、245BはキャリアガスCGSの流路を形成するもので、図13にも示すように、Z方向(中心線Axoと垂直な方向)に間隔を持って配置され、パイプ17を介して内壁管240内に流入したミストを含むキャリアガスCGSは、整流板245A、245Bによって折り返されながら内壁管240内を巡ってパイプ24から排出される。整流板245A、245Bは、紫外線に対する耐性が高く、耐水性の高い材質であれば、紫外線に対する透過率の程度は特に問わないが、好ましくは石英板が良い。さらに、内壁管240の内周面、整流板245A、245Bの表面、端部封止部材243A、243Bの内側面の各々は、撥液性が高い状態(例えば、液滴となって付着した場合の接触角が90度以上の状態)となるように表面加工されている。
 図12、図13に示すように、外壁管242の周囲には、中心線Axoとほぼ平行に配置される棒状のUV光源(低圧水銀放電ランプ)210A、210B、210C、210D、210E、210Fの6本が、中心線Axoを中心として約60度の角度間隔で設けられる。6本のUV光源210A~210Fの各々から発生するUV光Lb(波長254nm、185nmのスペクトルを含む)は、外壁管242と冷媒(純水)CLqの層と内壁管240とを透過して、内壁管240内を流れるキャリアガスCGSに乗って浮遊するミストに多方向から同時に照射される。その為、第1段階の紫外線照射処理(ミストに含まれる材料物質のナノ粒子以外の有機系の不純物等の洗浄処理)が効率的に短時間のうちに完了する。図5のミスト改質部20と同様に、本変形例でも、キャリアガスCGS(ミスト)に照射されるUV光Lbの光量を増大させるべく、6本のUV光源210A~210Fを外壁管242の外周面にできるだけ接近させても、キャリアガスCGSを貯留する内壁管240の周囲を、冷媒(純水)CLqによって所定の温度範囲内に調整しているので、UV光源210A~210Fからの輻射熱によるキャリアガスCGSの温度上昇が防止される。なお、UV光源210A~210Fの各々の外壁管242とは反対側に、図11で示したのと同様の凹円筒面状の反射部材71を設ければ、キャリアガスCGS(ミスト)に照射されるUV光Lbの光量を更に増大させることができる。
 また、図12に示すように、本変形例では、端部封止部材243Aを下側にして、中心線AxoがXY面に対して30度~60度の範囲の角度θyで傾くように、ミスト改質部20の全体を傾斜して配置する。これは、内壁管240の内周面や端部封止部材243A、243Bの内側面等の温度が、パイプ17から流入されるキャリアガスCGSの温度よりも僅かに低い場合に、その部分でミストが結露して液滴(ミリオーダの大きさ)となった場合に、その液滴を効率的に回収する為である。本変形例では、ミストが結露して液滴となって、内壁管240の内周面、端部封止部材243A、243Bの内側面、整流板245A、245Bの表面のいずれかに付着した場合、それらの液滴は径が大きくなると、各表面に沿って重力方向の最も下側に向かって流れる。
 そこで、本変形例では、図12に示すように、重力方向の最も下側となる端部封止部材243Aの下側で、内壁管240の内周面と同じ位置に、液滴を回収する為の開口部246Aを設け、この開口部246Aに回収用パイプを接続できるようにする。開口部246Aは、液滴(数mm径)が通る程度の大きさで良く、開口部246Aの内周面(内壁面)は接触角が20度以下となるような親液性にしておくと良い。さらに、図12のようにミスト改質部20を角度θyだけ傾けた場合、整流板245Aと端部封止部材243Aとの接合部分にも液滴が集まって液溜りが生じるので、整流板245Aの端部封止部材243Aとの取付け部分には、Y方向の一部に部分的又は離散的に切欠き部246Bを形成し、液滴が端部封止部材243Aの内側面を伝わって開口部246Aに流れるようにする。開口部246Aから回収用パイプを介して得られる液体は、先の図1に示した溶液タンク10に戻すと良い。
 なお、図12、図13において、ミスト改質部20の全体を図中の状態から中心線Axoの回りに約90度回転した状態で設置しても良い。その場合、開口部246Aは約90度回転した位置(端部封止部材243AのZ方向の最下部)に設けられる。一方、整流板245A、245Bは鉛直な状態となる為、整流板245Aと端部封止部材243Aとの接合部分や整流板245Bと端部封止部材243Bとの接合部分に液溜りが生じることが無いので、切欠き部246Bは設けなくても良い。また、内壁管240の外周面と外壁管242の内周面との間の隙間に満たされる冷媒CLqは、UV光Lb(波長200nm以下のスペクトルを含む)に対して透過性を有することから、純水が望ましいが、温度制御された気体であっても良い。その場合、温度制御された気体を内壁管240の外周面と外壁管242の内周面との間に早い流速で流すのが良い。
〔変形例2〕
 次に、第1の実施の形態、又は第2の実施の形態に適用される変形例2を、図14、図15に基づいて説明する。図14、図15は、図5で示したミスト改質部20の変形例を示し、直交座標系XYZは、従前の説明と同様に設定され、Z方向が重力方向(鉛直方向)であり、XY面が水平面である。そして図14は、変形例2によるミスト改質部20の外観の斜視図であり、図15は図14中のk2-k2矢視の断面図である。本変形例によるミスト改質部20は、先の図12、図13の変形例1と同様に、中心線Axoからの半径が大きい内側の石英管(内壁管)240と、それを取り囲む外側の石英管(外壁管)242と、内壁管240と外壁管242の中心線Axoが延びる方向の両端部を密閉する端部封止部材243A、243Bとで構成される。但し、本変形例では、端部封止部材243A、243Bは、単なる円盤状ではなく、図15に示すように、中心線Axoの方向に一定の幅を有する円筒状に構成されている。端部封止部材243A、243Bは、紫外線に対する耐性が高く、液体(ミスト)による腐食性が少ない材料(例えば、ステンレス、セラミックス等)で構成される。
 図1に示したミスト発生部14から供給されるミストを含むキャリアガスCGSは、図14、図15のように、パイプ17を介して、端部封止部材243Aの円筒面状の内周面に形成された吸気ポート(開口)Pinから、内壁管240の内周面240Aの周方向(接線方向)に沿うように内壁管240の内部空間内に噴出される。吸気ポートPinから噴出したキャリアガスCGSは、内壁管240の内部空間を緩やかにおおよそ螺旋状(竜巻状)に周回しつつ、反対側の端部封止部材243Bに向かって流れる。端部封止部材243Bの円筒状の外周面には、例えば、図2に示したミスト噴出部30に接続される2本のパイプ24A、24Bの各々が、中心線Axoの回りに約180度離れた間隔で結合されている。端部封止部材243Bの円筒面状の内周面には、パイプ24A、24Bの各々と連通した排気ポート(開口)Poutが形成されており、螺旋状に周回しながら端部封止部材243Bに達したキャリアガスCGSは、排気ポートPoutを介してパイプ24A、24Bに供給される。従って、本変形例では、単なる円管状の内壁管240の内部空間に供給されるキャリアガスCGSの噴出方向を設定する吸気ポートPinの配置、或いは排気ポートPoutの配置によって、キャリアガスCGSの流れを螺旋状の流れ(トルネード流、又はサイクロン流)にする流路形成部が形成される。
 さらに、本変形例でも、図15に示すように、内壁管240の外周面と外壁管242の内周面との間には、一定の隙間が設けられ、その隙間に冷媒(純水又は気体)CLqが満たされる。冷媒CLqは、端部封止部材243Aの外側端に形成された供給ポート205Aから内壁管240と外壁管242との隙間に供給され、端部封止部材243Bの外側端に形成された排出ポート205Dから排出される。内壁管240の内周面240Aは、冷媒(純水)CLqによって、吸気ポートPinから流入してくるキャリアガスCGSの温度と同じ温度、又はキャリアガスCGSの温度に対して僅かに高い温度(例えば、1℃~数℃)になるように設定される。これは、内壁管240の内周面240Aの温度が恒常的にキャリアガスCGSの温度よりも低くなると、結露が発生し易くなるからである。そのような温度調整(温度管理)を容易にする為に、図12の変形例1でも同様であるが、内壁管240の厚みは薄い方が好ましく、1mm~数mm程度が良い。さらに、内壁管240をそのような厚みの石英で形成することが難しい場合は、例えば、国際公開第2005/010596号や特開2007-315922号公報に開示されているような厚さが1mm以下で湾曲可能な極薄ガラス板を円筒状に丸めて成型しても良い。なお、内壁管240の内周面240Aと端部封止部材243A、243Bの内側面とは、液滴が付着した際の接触角が90度以上(望ましくは120度以上)の撥液性となるように表面加工されている。
 さらに、図14、図15では不図示であるが、外壁管242の周囲には、変形例1と同様に、複数の棒状の低圧水銀放電ランプ(UV光源)210A~210Dが配置され、内壁管240内を概ね螺旋状に流れるキャリアガスCGSに乗って浮遊するミストに対して、第1段階の紫外線照射処理が施される。先の変形例1(図12)では、整流板245A、245Bを用いて内壁管240内を通るキャリアガスCGSの流路を折り返して、第1段階の紫外線照射処理の時間を長くするようにしたが、本変形例では、キャリアガスCGSが内壁管240内で概ね螺旋状に流れるように制御することで、第1段階の紫外線照射処理の時間を長くすることができる。
 さらに本変形例では、内壁管240内に整流板245A、245Bのような障壁部材が存在しないので、ミストが集まって液滴が生じたり、更には液滴が集まって液溜りが生じたりする確率が低減される。その為、パイプ24A、24Bに排出されるキャリアガスCGSのミスト濃度は、パイプ17から供給されるキャリアガスCGSのミスト濃度に比べて大きく低下することが無く、第1段階の紫外線照射処理をミスト濃度の低減が抑えられた効率的な状態で実行できる。また、本変形例でも、先の変形例1と同様に、中心線AxoがXY面(水平面)に対して30~60度の角度θyで傾くように、ミスト改質部20の全体を傾斜配置して、内壁管240内に生じた液滴や液溜りを逃がすような開口部(図12中の246A相当)を端部封止部材243A(又は243B)に設けると良い。また、本変形例のミスト改質部20は、図14又は図15中において、中心線AxoがZ軸に対して平行な状態、或いはZ軸に対して少し傾いた状態(0度~45度の範囲)の縦置きに設置しても良い。その場合、キャリアガスCGSが流入するパイプ17を-Z方向側にし、キャリアガスCGSが流出するパイプ24A、24Bを+Z方向側にしても良いし、その逆の配置にしても良い。
〔第3の実施の形態〕
 図16は、先の図11に示したミスト成膜装置MDEのミスト成膜部の構成を踏襲した第3の実施の形態によるミスト成膜部の正面図であり、図16において、図1~図5又は図11に示した各部材と同じものには同じ符号を附してある。また、図16の直交座標系XYZは図1~図5、図11と同じに設定される。本実施の形態では、国際公開第2016/133131号、国際公開第2017/154937号に開示されているように、ミスト成膜装置MDEのミスト成膜部における基板Pの直線的な搬送路を水平面(XY面)に対して角度θpだけ傾けるものとする。角度θpは30度~60度の範囲に設定され、ミスト成膜部の全体が角度θpだけ傾けられる。基板Pは、ニップローラを構成するローラ5Eとローラ5Fに挟まれた状態で長尺方向に上流側から所定のテンションを付与された状態で搬送されて、ミスト成膜部の導風部材31と搬送ユニット5の一部である支持テーブル5Dとの間に通される。ミスト成膜部を退出した基板Pは、ローラ5Gでほぼ水平に折り曲げられ、第1の実施の形態(図1)と同じUV照射ユニット60に送られる。基板Pを搬送方向に角度θpに傾ける為、下流側のローラ5GのZ方向の位置は上流側のローラ5FのZ方向の位置に対して高く設定される。
 また、本実施の形態では、先の第2の実施の形態(図11)と同様に、ミスト噴出部30のノズル部30Aからミスト回収部32の回収ポート部32AまでのキャリアガスCGSの流路(ミスト噴霧流路)を形成する為の導風部材(流路形成部材)31が設けられると共に、ミスト噴出部30とミスト回収部32との間には、ミスト成膜中の基板Pに向けてUV光Lcを照射する工程(第2段階の紫外線照射処理の第1フェーズ)を実施する為のUV照射ユニット70が設けられる。本実施の形態におけるUV照射ユニット70は、基板Pの搬送方向に沿って並べられた複数の棒状のUV光源(低圧水銀放電ランプ)72と、導風部材31と基板Pとの間を流れるキャリアガスCGSや基板Pを、UV光源72からの輻射熱で温めないようにする為の断熱部材77とを備える。
 断熱部材77は、図11と同様に、一定の隙間(ギャップ75)で平行に対向配置した2枚の石英板73、74と、そのギャップ75に冷媒(純水や気体)CLqを満たした構成とするが、ミスト成膜中のキャリアガスCGSの流路と接する部材や部分(導風部材31の内壁面や基板P等)の温度を必要以上に温めないように断熱する構成であれば、冷媒(純水や気体)CLqを用いない構成であっても良い。冷媒CLqを用いない構成の断熱機構を利用できることは、図11の第2の実施の形態でも同様である。なお、本実施の形態でも、ミスト噴出部30、導風部材31、ミスト回収部32によってミスト成膜機構が構成される。
 本実施の形態では、基板Pがローラ5Fとローラ5Gとの間を長尺方向に所定のテンションを付与された状態で搬送されると共に、支持テーブル5Dの平坦な支持面5Daは、基板Pの裏面をエアベアリング(ベル・ヌイ)方式による気体層を介して直接支持するように構成される。さらに本実施の形態では、支持テーブル5Dの支持面5Daと近接した位置に埋設されて、基板Pの裏面側から基板Pの表面にミストによって塗布された液膜(ナノ粒子)に、化学的又は物理的な作用を付与する為の熱エネルギー又は運動エネルギーを与える複数のアクチュエータ5Sが設けられる。基板Pの母材が比較的に高い温度(例えば、200℃以上)に耐えられる材質である場合、アクチュエータ5Sをセラミックヒータ等にして、基板Pを高い温度にしつつ、UV照射ユニット70からのUV光Lcを基板Pの表面の液膜に照射することができる。この場合、液膜(純水)の蒸発乾燥も同時に行われる。また、アクチュエータ5Sを板状又はシート状の振動子とし、基板Pの裏面側から基板Pに向けて振動波を与えるようにしても良い。この場合、基板Pがミクロンオーダで上下方向に物理的(機械的)に振動し、塗布された液膜中のナノ粒子に運動エネルギーが与えられるので、基板P上で部分的に密集したナノ粒子を液膜中で分散させることができる。
 図17(A)及び図17(B)は、図16中の支持テーブル5Dの支持面5Daに埋設されるアクチュエータ5Sの設置の様子を示し、図17(A)は支持テーブル5Dの一部分の平面図であり、図17(B)は支持テーブル5Dの一部分の断面図である。図17(A)、図17(B)に示すように、アクチュエータ5Sは、支持テーブル5Dの平坦な支持面5Daに対して窪んで形成された複数の矩形状の凹部5Db内の各々に分散して配置される。凹部5Dbは、支持面5Daに沿って所定の間隔を空けて2次元的に配列され、凹部5Db以外の平坦な支持面5Daには、エアベアリング(ベル・ヌイ)方式による気体層を基板Pの裏面側に形成する為の多数の気体噴出孔5Dgと、気体を吸引する多数の気体吸引孔5Dhとが形成されている。多数の気体噴出孔5Dgの各々は支持テーブル5D内に形成された加圧気体流路5Jに接続され、多数の気体吸引孔5Dhの各々は支持テーブル5D内に形成された減圧(真空)流路5Kに接続される。支持面5Daに倣って移動する基板Pの搬送方向は、図17(A)中のX方向である。
 図17(B)に示すように、複数の凹部5Dbの各々に設けられるアクチュエータ5Sの上面は、基板Pの裏面と所定の隙間(ギャップ)を持って対向配置され、基板Pの裏面がアクチュエータ5Sと摩擦接触することが防止される。アクチュエータ5Sをセラミックヒータとした場合、熱源となるアクチュエータ5Sからの放射熱は、基板Pに直接与えられる。アクチュエータ5Sを振動子(振動部材、振動機構)とした場合、アクチュエータ5Sの上面の上下方向の微小振動による音波が、基板Pの裏面側の隙間(ギャップ)を形成する気体層(空気)を介して基板Pの裏面に伝搬し、基板Pを微小振動させる。その振動の周波数は、複数のアクチュエータ5S(振動子)の全てで同じであっても良いが、それぞれ幾つかの異なる周波数(例えば、2~4種の周波数)で駆動させても良い。振動の周波数は、液膜中のナノ粒子が微小移動するような周波数帯に設定される。また、基板Pの振動振幅は、ナノ粒子の粒径、液膜の厚み、液膜の粘性を考慮すると、±数μm以内に設定される。
 なお、図17(A)では、平面内で矩形(正方形)状の凹部5DbがXY方向に一定ピッチで形成されているが、基板Pの搬送方向(X方向)に並ぶ複数の凹部5Db(アクチュエータ5S)は、支持面5Da内でX軸に対して斜め方向に傾いてX方向に並ぶように配置するのが良い。これは、図17(A)のように、複数の凹部5Db(アクチュエータ5S)がX軸と平行に配列されると、Y方向に並ぶ複数の凹部5Db(アクチュエータ5S)間(支持面5Da)の部分では、基板Pの裏面に付与される熱エネルギーや運動エネルギーがX方向に沿って連続的に低下してしまう為である。また、本実施の形態では、図16のように基板Pの搬送経路とミスト成膜装置MDEのミスト成膜部の全体を搬送方向に角度θp(30度~60度)で傾けるようにしたが、アクチュエータ5Sを振動子とする場合は、第1の実施の形態や第2の実施の形態のように、基板Pを水平に搬送する形態(角度θp=0)としても良い。また、アクチュエータ5Sを振動子とした場合、各振動子の大きさや形状は異ならせても良い。
 さらに、図16に示したUV照射ユニット60内には、UV光Laを基板Pに照射するUV光源だけでなく、基板Pをガラス転移温度よりも低い温度(例えば80度以下)に加熱して、基板Pの表面に付着している液膜を効率的に蒸発させる赤外線ランプ、セラミックヒータ、温風ファン等を併設しても良い。なお、本実施の形態のように、液膜の乾燥前に、基板Pと共に基板P上の液膜にアクチュエータ5Sによって微小振動を与える手法は、ミスト成膜法による塗布機構に限られず、他の塗布方式、例えば、銀、銅、カーボン等のナノ粒子を含有するインク材料を基板Pに転写する周知の印刷機構(スリットコート印刷、シルク印刷、グラビア印刷、オフセット印刷、インクジェット印刷等)で成膜される基板Pに対しても同様に適用できる。その際、インク材料の溶媒として揮発性の有機溶剤が使われる場合は、基板P上のインク液膜に微小振動を付与する時間の間には揮発が完了しないような弱揮発性の有機溶剤にするのが好ましい。
〔変形例3〕
 図18は、ミスト成膜装置MDEにおけるミスト噴出部30とミスト回収部32の配置の変形例を示す上面図であり、直交座標系XYZは図1~図5、図11、又は図16と同じに設定される。本変形例では、基板Pの搬送方向(X方向)と直交するY方向(基板Pの短尺方向)の幅寸法Wpが大きくなった場合に対応する為に、ミスト噴出部30とミスト回収部32の組を、Y方向に複数(図18では3組)配置する。先の図3、図4に示したように、ミストを含むキャリアガスCGSは、ミスト噴出部30のスリット状のノズル部30Aから噴出される。その際、ノズル部30Aの長手方向(基板Pの短尺方向)に関するキャリアガスCGSの流速やミスト濃度は、できるだけ一様な分布になっていることが望ましい。しかしながら、ノズル部30Aの長手方向の寸法を大きくしていくと、その分布の一様性が損なわれ、基板P上に成膜された液膜の厚み分布やナノ粒子の分布が短尺方向(Y方向)にムラになる場合がある。
 そこで、本変形例では、一例として、図18のように、基板Pの幅寸法WpをY方向に3分割するような領域の各々に対応して、ミスト噴出部30-1とミスト回収部32-1の組と、ミスト噴出部30-2とミスト回収部32-2の組と、ミスト噴出部30-3とミスト回収部32-3の組とを個別に配置する。ミスト噴出部30-1、30-2、30-3の各々は、配置上の空間的な干渉(物理的な接触)を避けつつ、各ノズル部30A1、30A2、30A3の各々がY方向に関して隙間なく連なるようにする為に、XY面内でノズル部30A1、30A2、30A3の各々の長手方向の中心線がY軸に対してΔθαだけ傾くように配置される。ミスト回収部32-1、32-2、32-3の各々も、同様に、配置上の空間的な干渉(物理的な接触)を避けるため、XY面内で回収ポート部32A1、32A2、32A3の各々の長手方向の中心線がY軸に対してΔθαだけ傾くように配置される。基板Pの搬送方向における上流側に配置される各ノズル部30A1、30A2、30A3の中心点のX方向の位置をXP1、基板Pの搬送方向における下流側に配置される各回収ポート部32A1、32A2、32A3の中心点のX方向の位置をXP2とすると、基板Pが位置XP1から位置XP2までの距離Lmfに渡って速度Vpで移動している間にミスト成膜が行われる。
 位置XP1から位置XP2の間では、図2、図3、又は図16に示したような導風部材31によって基板Pの上方空間や側方が囲まれている為、ミストを含むキャリアガスCGSは、基板Pの幅寸法Wpに渡ってY方向に関する流速分布(ミスト濃度)が一様な状態となって位置XP1から位置XP2に向けて流速Vmで流れる。キャリアガスCGSの流速Vmは、図1に示した流量調整弁15によって調整されるキャリアガスCGSの流量と、ミスト回収部32の回収ポート部32Aで回収されるキャリアガスCGSの流量(排気圧、負圧)とのバランスによって設定される。基板Pの表面に沿って流れるキャリアガスCGSの流速Vmと基板Pの速度Vpとは、同方向(+X方向)に同じ(Vm=Vp)に設定するのが良いが、ミスト成膜時の成膜度合いに応じて、Vm>Vp又はVm<Vpに設定することができる。また、流速Vmと速度Vpの関係は、最終的に成膜されるナノ粒子の薄膜の厚さによっても設定され得る。なお、距離Lmfが十分に長い場合、図18のように3分割された回収ポート部32A1、32A2、32A3とせずに、基板Pの幅寸法Wpに渡ってY方向に直線的に伸びる1つの回収ポート部としても良い。
〔変形例4〕
 以上の各実施の形態や変形例におけるミスト改質部20では、キャリアガスCGSに乗って浮遊するミストに直接UV光Lbを照射する為、UV光Lb(波長200nm以下のスペクトルを含む)に対する透過率が高い石英管等の内部にキャリアガスCGSを通す構成とした。その為、石英管の内壁面は撥液性の表面加工(フッ素系やシリコン系の撥液膜の被覆処理)が施される。それでも、長時間に渡ってミスト改質部20を使用すると、石英管の内壁にはミストに含まれているナノ粒子が徐々に付着し、時間と共に石英管の内壁に曇りが生じ、UV光Lbの透過率が低下してくる。
 そこで本変形例では、ミスト改質部20を図19、図20に示すような構成にし、付着したナノ粒子による曇り等を簡単に清掃できるようにする。図19は、本変形例によるミスト改質部20の特に流路形成部20Aの外観とその内部構造とを概略的に示す斜視図であり、直交座標系XYZの各座標軸の方向は、先の図1、図11、或いは図16と同じに設定される。図20は、図19のミスト改質部20を、中心線Axoを含む面で切断した場合の断面構造を示す。図19、20において、先の各実施の形態や変形例で説明した部材と同じ機能の部材には同じ符号を付してある。なお、図19、図20において、ミスト改質部20の一部を構成するUV光源ユニット(紫外線照射部)20Bは図示を省略してある。
 本変形例では、図19、図20に示すように、Z軸と平行な中心線Axoとほぼ同軸になるように縦姿勢で配置され、不図示のUV光源ユニット(低圧水銀放電ランプ)からのUV光Lbに対して透過性を有する2つの円筒状の石英管240、250によって、ミストを含むキャリアガスCGSの流路が形成される。石英管250は石英管240の内部に配置され、外側の石英管240の内径(内周面の直径)をφaとし、内側の石英管250の外径(外周面の直径)をφbとしたとき、その比φa/φbは1.5~3.5程度に設定される。外側の石英管240の上部(+Z方向)の端部には、石英管240の内部を密封するための円盤状の上部封止部材252が設けられる。内側の石英管250の上端部は、外側の石英管240内で開放されるように、上部封止部材252の下面から一定の隙間を形成するように高さ位置(Z方向の位置)が設定されている。上部封止部材252の材料は石英板で良いが、UV光Lbやミスト付着によって容易に劣化しない材料(セラミックス、金属、カーボン複合材等)にしても良い。
 外側の石英管240の-Z方向の下端部には、石英管240の内部を密封すると共に、キャリアガスCGSをパイプ24A、24B、及びパイプ24C、24Dの各々に排出する複数の排気ポート(開口部)PoutがXY面と平行な底部に形成されたカップ状の下部封止部材254が設けられている。以上の構成で、キャリアガスCGS(ミスト)と接触する石英管240の内周面、石英管250の内外周面、上部封止部材252の下方の内壁面、下部封止部材254の内壁面の各々には、ミストの付着を抑制したり、液滴となった場合に-Z方向(重力方向)に流れ易くしたりする為の撥液性の表面加工が施されている。
 下部封止部材254の円形状の底部をXY面内で見ると、4つの円形状の排気ポートPoutが中心線Axoの回りに約90度の角度間隔で底部の周辺に沿って配置される。さらに下部封止部材254の底部の中央には、内側の石英管250の下側の端部が取り付けられると共に、パイプ17から供給されるキャリアガスCGSを内側の石英管250の内部に通すための吸気ポート(開口)Pinが設けられている。本変形例では、パイプ17から吸気ポートPinを介して内側の石英管250の下端部から供給されたキャリアガスCGSは、石英管250の内部を上端部まで上昇し、上部封止部材252の下面付近で下向きに流れを変えて、石英管250の外周面と石英管240の内周面とで囲まれた空間内を-Z方向に降下し、下部封止部材254の底部の4ヶ所の排気ポートPoutの各々を介して、それぞれパイプ24A、24B、24C、24Dに送出される。従って、本変形例では、同軸に配置された外側の石英管240と内側の石英管250、及び上部封止部材252と下部封止部材254によって流路形成部が構成される。
 先の図12、図13に示した構成と同様に、本変形例でも外側の石英管240の周辺には、中心線Axoと平行となるように配置された棒状の低圧水銀放電ランプの複数本が、UV光源ユニット20Bとして設けられる。低圧水銀放電ランプからのUV光Lbは、石英管240や石英管250の輻射熱による温度上昇を防ぐ断熱構造体(UV光Lbに対して数十%以上の透過率を有する)を通して、外側の石英管240の内部空間、及び内側の石英管250の内部空間でキャリアガスCGSに乗って浮遊するミストに照射される。これによって、ミストに含まれるナノ粒子の表面やミスト自体の表面に付着した有機系の不純物の成分が洗浄される。なお、断熱構造体は、先の図12~図15と同様に、外側の石英管240の外周面を更に囲むような第3の石英管を設け、石英管240の外周面と第3の石英管の内周面との間の隙間に、温度制御された純水又は気体を冷媒CLqとして満たす構成とすることができる。
 以上の図19、図20のような構成において、外側の石英管240、内側の石英管250、上部封止部材252、下部封止部材254の各々は、簡単に分解できるように結合されている。従って、ミスト改質部20を長時間使用して、石英管240の内周面や石英管250の内外周面にナノ粒子が付着して曇りが発生したり、上部封止部材252と下部封止部材254の各内壁面等にナノ粒子が堆積したりした場合、ミスト改質部20の稼動を中断して、各部を分解して清掃(ナノ粒子の回収)作業を行うことができる。具体的には、上部封止部材252を外側の石英管240に対して+Z方向に分離し、外側の石英管240を下部封止部材254に対して+Z方向に分離し、その後、内側の石英管250を、下部封止部材254に対して+Z方向に分離する。下部封止部材254は、接続されているパイプ17、24A、24B、24C、24Dを外すことで、取り出すことができる。
 分離された各部材は、専用の洗浄工具や薬液(酸性のエッチング液等)を用いて清掃されると共に、付着したナノ粒子の回収も行われる。さらに本変形例では、石英管240や石英管250の曇りによってミストに照射されるUV光Lbの強度が低下する場合に備えて、石英管240や石英管250の予備品を用意しておけば、簡単に且つ短時間に予備品と交換することができる。本変形例によるミスト改質部20では、4つのパイプ24A、24B、24C、24Dの各々から、ほぼ同じ流量でミストを含むキャリアガスCGSを得ることが可能である。その為、本変形例は、例えば先の図18の変形例3のように、個々にキャリアガスCGSが供給される複数のミスト噴出部30を設けるミスト成膜装置に適している。本変形例のように、ミスト改質部20を容易に分割可能とする構成は、先の図12や図14に示したミスト改質部20でも同様に採用することができ、ミスト改質部20の内部空間を規定する壁面(石英管240の内周面、端部封止部材243A、243Bの内側面、整流板245A、245B)に付着したナノ粒子による曇りを清掃しつつ、ナノ粒子を回収することができる。なお、先の図5に示したミスト改質部20の構成でも、ストレートな石英管201A~201CとU字状の配管17A、17Bとを容易に取外し可能な構成にすれば、石英管201A~201Cの曇りを清掃し、ナノ粒子を回収することができる。
 なお、本変形例の構成においても、下部封止部材254の底部内壁面には、ミストが集まった液滴(雫)や液滴が集まった液溜りが生じ得るので、図12に示したように、液滴や液溜りを排出する開口部246Aを下部封止部材254の底部に形成し、その開口部246Aに接続される回収用パイプを介して、ナノ粒子を含有する液体を先の図1に示した溶液タンク10に戻すようにしても良い。さらに、図19のミスト改質部20は、全体を上下方向(Z方向)が逆になるように配置しても良いし、中心線AxoがZ軸に対して傾くような傾斜配置にしたり、或いは中心線AxoがXY面と平行な水平配置にしたりすることができる。
〔変形例5〕
 図21は、図19、図20の変形例4に適用される変形例5としての石英管250の部分的な内部構成を示す斜視図である。図20に示したように、石英管250内には、パイプ17からミストを含むキャリアガスCGSがストレートに供給されてくる為、中心線Axoと直交する面(XY面と平行な面)内で見たとき、石英管250の上端部付近におけるキャリアガスCGS中のミスト濃度の分布は一様でない場合がある。そこで、図21に示すように、石英管250内の適当な高さ位置(Z方向位置)、好ましくは石英管250の下端部付近(吸気ポートPinの上方位置)に、石英管250の内径とほぼ同じ幅を有する薄板(フィン)250Sを中心線Axoの回りにねじった状態で配置する。薄板(フィン)250Sの中心線Axoの方向(Z方向)の長さに渡って、薄板(フィン)250Sを適当な度合いでねじることによって、キャリアガスCGSは石英管250内を螺旋状に周回して進み、石英管250の上端部から噴出されるキャリアガスCGS中のミスト濃度は、XY面内で見たときに一様化される。薄板(フィン)250Sは、UV光Lbの照射やミスト(純水)の付着によって劣化せず、撥液性に表面加工された材料とすることが好ましいが、経時的に劣化し得る材料で作る場合は交換可能な構成(消耗部品)にしておけば良い。
 また、本変形例のような薄板(フィン)250Sは、図5に示した第1の実施の形態におけるミスト改質部20の石英管201A~201Cの各々の内部にも設けられるので、石英管201A~201C内を流れるキャリアガスCGSを渦巻き状にして、パイプ24に送出されるキャリアガスCGS中のミスト濃度を一様化したり、キャリアガスCGSの流れの直進性を良くしたりすることが可能となる。本変形例の場合、薄板(フィン)250Sは流路形成部の一部材として機能する。
〔変形例6〕
 ミスト改質部20に設けられて、ミスト(キャリアガスCGS)にUV光Lbを照射するUV光源ユニット(UV照射ユニット)20B、ミスト成膜後の基板Pの表面に向けてUV光Laを照射するUV照射ユニット60、或いは、ミスト成膜時にナノ粒子が堆積されている最中の基板Pに向けてUV光Lcを照射するUV照射ユニット70の各々では、UV光源としてロングアークタイプ(棒状)の低圧水銀放電ランプ(72、210A~210F)を用いたが、その他、波長200nm以下に強いスペクトルを含むUV光(所謂、真空紫外光)を発生する光源であれば、同様に使用することができる。例えば、低圧水銀放電ランプのショートアークタイプを用いる場合は、放電電極の間隔が狭くUV光の発光点がほぼ点状となる為、発光点から四方八方に拡がるUV光を効率的に集光する凹球面鏡や楕円面鏡等が設けられる。また、棒状のUV光源として、例えば、特開2006-269189号公報に開示されているような長尺の管状エキシマ放電ランプを用いても良い。エキシマ放電ランプは、放電管中にキセノンガス等の稀ガスを封入したもので、波長172nmに輝線スペクトルを有するUV光(真空紫外光)を効率よく放射する。その他、特開2016-024904号公報に開示されているような、発光管内にキセノンガスを含む封入ガスを3気圧で封入して、真空紫外波長域(100nm~200nm)に渡って比較的に強いスペクトル分布を持つ紫外線光を発生する真空紫外(Vacuum Ultra Violet)フラッシュランプとしても良い。エキシマ放電ランプや真空紫外フラッシュランプを用いる場合も、流路形成部内を通るキャリアガスCGS(及びミスト)の温度上昇を抑える為の断熱機構(冷媒CLq)や断熱部材77等が必要となる。
 その他、光源装置としては大型化するものの、レーザ媒体として希ガスとしてのアルゴン(Ar)とハロゲンとしてのフッ素(F2)との混合ガスを用いて波長193nmのUVパルス光を発生するArF(アルゴン・フロライド)エキシマレーザ光源、或いは、レーザ媒体としてフッ素分子ガスを用いて波長157nmのUVパルス光を発生するF2エキシマレーザ光源を利用しても良い。また、光源装置として、比較的にコンパクトなファイバ・アンプ・レーザ光源を用いても良い。ファイバ・アンプ・レーザ光源は、一例として、国際公開第2013/133279号に開示されているように、赤外波長域のシード光(種光パルス)をファイバ増幅器で増幅した後、複数の波長変換光学素子(高調波発生器)に通すことによって、波長195.9nmのUVパルス光(深紫外光)を高出力で発生する。ArFエキシマレーザ光源やファイバ・アンプ・レーザ光源からのUVパルス光を用いる場合は、そのUVパルス光を、ビーム分割器やマルチモードのファイバーバンドル等によって、UV光源ユニット20B用のUV光Lb、UV照射ユニット60用のUV光La、及びUV照射ユニット70用のUV光Lcの各々に適当な強度比率で分配することができる。
 図22は、本変形例6において、上記のファイバ・アンプ・レーザ光源等の深紫外レーザ光源LSからのUV光のビームBMを先のUV光La、Lb、Lcの各々として用いる場合の照明光学系と、UV光Lbを用いるミスト改質部20との概略的な構成を示す。深紫外レーザ光源(レーザ光源)LSから平行光束として射出されるビームBMの断面内の直径は数mm以下(例えば、1mm程度)であるので、2つのレンズG1、G2によるビームエクスパンダー系によって、その直径が数十mm程度に拡大される。拡大されたビームBMは、平面ミラーRMで反射されて、ビームBMの拡大された直径内に密に配置される4つのレンズ素子RLに入射する。レンズ素子RLの各々の入射したビームBMは、ビームウェストとして集光した後に所定の開口数(NA)で発散して、ファイバーバンドル(束)FB1、FB2、FB3、FB4の各々の入射端に投射される。なお、平面ミラーRMは、作図上の都合で設けたものであり、必ずしも必要ではない。また、レンズG1、G2、レンズ素子RLは、波長180nm程度のUV光(深紫外)に対して高い透過率(80%以上)を有するように、石英(SiO2)にフッ素をドープした合成石英とするのが良い。
 ファイバーバンドルFB1~FB4の各々は、波長180nm程度のUV光に対して大きな減衰がなく、良好な伝送特性を有する中空光ファイバ素線HOFを多数本束ねたものである。中空光ファイバ素線HOFとしては、例えば特開2006-243306号公報、特開2011-164318号公報に開示されているものが利用できる。ここで、ファイバーバンドルFB1に分配されたビームBMは、ミスト改質部20でのUV光Lbとして使われる。本変形例では、ファイバーバンドルFB1を構成する多数本の中空光ファイバ素線(以下、単にファイバ素線と呼ぶ)HOFの各々の射出端Ofbから投射されるビームBM、即ちUV光Lbを、石英で直方体状に作られた流路形成部としての容器240’内に一様に照射する。その為に、ファイバ素線HOFの各々の射出端Ofbが容器240’の1つの側壁(図22中の座標系XYZの設定から天井となる側壁)に沿って所定の間隔で2次元的に配列されるように、ファイバ素線HOFの各々の射出端Ofbを保持する保持板260が容器240’に近接して設けられる。
 容器240’は、先の図12のミスト改質部20で用いた石英管240を直方体に変形したもので、図22において、容器240’のZ方向の高さ寸法はY方向の幅寸法に対して3倍程度に設定される。容器240’の内部には図12に示したような2枚の整流板(石英板)245A、245Bが設けられ、直方体の容器240’と内部の整流板245A、245Bとによって、流路形成部が構成される。パイプ17から供給されたミストを含むキャリアガスCGSは、整流板245A、245Bによって、容器240’内を+X方向、-Z方向、-X方向、-Z方向、+X方向の順に流れてパイプ24に排出される。また、容器240’の保持板260側の側壁(天井側)と対向する側壁(底面側)の外壁面のほぼ全面には、射出端Ofbから投射されて容器240’内を通ったUV光Lbを反射させる反射層MRaが形成されている。同様に、容器240’の天井側の側壁以外の他の外壁面にも、同様の反射層MRbがほぼ全面に形成されている。さらに、容器240’の天井側の側壁と対面する側の保持板260の表面にも、ファイバ素線HOFの各々の射出端Ofbの部分を除いて、同様の反射層MRcが形成されている。反射層MRa、MRb、MRcは、波長180nm程度の真空紫外線に対して高い反射率(80%以上)となるように、屈折率が異なる材料による薄膜を交互に繰り返し積層した誘電体多層膜で構成される。
 この図22のような構成において、個々の射出端Ofbから投射されるUV光Lbは、レンズ素子RLの焦点距離で決まる開口数(NA)に応じた角度特性(広がり角)を持つので、容器240’内では、多数のファイバ素線HOFの各々の射出端Ofbから射出されたUV光Lbと各反射層MRa、MRb、MRcで反射されたUV光Lbとが、様々な角度特性でキャリアガスCGS中のミストに照射される。なお、保持板260上の1ヶ所に固定される射出端Ofbは、1本のファイバ素線HOFの射出端Ofbであっても良いが、複数本(例えば、数本~数十本)のファイバ素線HOFを束ねて形成される射出端Ofbとしても良い。従って、例えば、保持板260上の1ヶ所に固定される射出端Ofbに関して10本のファイバ素線HOFを束ねるものとし、保持板260上の離散的な20ヶ所に射出端Ofbを配列する場合、ファイバーバンドルFB1を構成する中空光ファイバ素線HOFの全本数は200本となる。
 図22に示した他のファイバーバンドルFB2、FB3、FB4も、ファイバーバンドルFB1と同様に構成され、例えば、ファイバーバンドルFB2で導光されるビームBMは、図1や図16に示したUV照射ユニット60でのUV光Laとして利用され、ファイバーバンドルFB3で導光されるビームBMは、図11や図16に示したUV照射ユニット70でのUV光Lcとして利用される。本変形例のように、深紫外レーザ光源LSからの真空紫外域のビームBMを、レンズG1、G2、レンズ素子RL、ファイバーバンドルFB1~FB4による照明光学系を介して、ミスト改質部20、UV照射ユニット60、70に供給する場合、光源の輻射熱がキャリアガスCGS(ミスト)や基板Pに直接作用しない為、温度制御された純水や気体を冷媒として用いる断熱層、断熱構造体、断熱部材77等を特に設けなくても良い。
 以上、図22の変形例6の構成において、ファイバーバンドルFB4で導光されるビームBMは、ミスト成膜装置MDE内の他の構造部分の紫外線洗浄やミスト成膜前の基板Pの表面の予備洗浄(親液化)等の為に利用できる。基板Pの表面に一様な膜厚でナノ粒子による膜を形成する場合、基板Pの表面はミスト(純水)に対して親液性であることが好ましい。基板Pの表面が液滴に対して接触角が大きい撥液状態の場合、噴霧されたミストによって基板Pの表面に被覆される液膜が所々で集まって液膜の厚い部分と極めて薄い部分とが生じ、ナノ粒子による膜層に厚みムラが生じたり、ナノ粒子が未堆積な部分が斑点状に生じたりする。そのようなことを避ける為、ミスト成膜前の基板Pの表面に紫外線(真空紫外域のUV光)を照射して、基板Pの表面を撥液性から親液性に改質する処理(基板改質処理)が施される。本変形例では、その際に使われる紫外線をファイバーバンドルFB4で導光されるビームBMとすることができる。
〔変形例7〕
 以上の各実施の形態や各変形例では、図1~図4、図11、図16に示したように、ミストを含むキャリアガスCGS(ミスト気体)は、基板Pの上方(+Z方向)に配置されるミスト噴出部30のスリット状のノズル部(スリット開口)30Aから、下方(-Z方向)の基板Pの表面に向けて噴霧される。その為、長時間、ミスト成膜を行うと、ミスト噴出部30の内部空間の壁面に生じた液滴が重力の影響により、壁面を伝わってノズル部30Aのエッジ部に流れ、エッジ部から基板Pの表面に落下する可能性がある。そこで本変形例では、図23、図24に示すように、ミスト噴出部30の内壁面に生じた液滴(又は液溜り)やノズル部30Aから落下し得る液滴(雫)をトラップ(回収)する機構を設ける。
 図23は、本変形例7によるミスト噴出部30の外観を示す斜視図であり、全体的な外観形状は図2~図4の第1の実施の形態のミスト噴出部30と概ね同じであると共に、直交座標系XYZの各座標軸も図2~図4と同じに設定される。図24は、図23のミスト噴出部30をY方向の中央付近で、Y軸と垂直な面(XZ面と平行)で破断した断面図である。図23、図24において、図2~図4の部材と同じ機能の部材には同じ符号を付してある。また、本変形例のミスト噴出部30の-Y方向側の壁面には、例えば、変形例6の図22で説明したファイバーバンドルFB4による照明光学系を介して、ミスト改質(洗浄)用のUV光Lbが入射可能な石英板による窓(窓部)WDa、WDcが設けられ、ミスト噴出部30の+Y方向側の壁面には、同様にUV光Lbが入射可能な石英板による窓(窓部)WDb、WDdが設けられている。
 本変形例のように、ミスト噴出部30内にUV光Lbを導入する場合、UV光Lbは、レンズ系によってコリメートされた平行光束で、X方向の幅が窓WDaの幅よりも若干小さいビーム幅に整形される。Z方向の上側に位置する窓WDaから+Y方向に入射するUV光Lbは、ミスト噴出部30の内壁に直接照射されることなく、反対側の窓WDbから射出するように構成される。窓WDa、WDbに対してZ方向の下側に設けた一対の窓WDc、WDdに関しても、同様に平行光束に整形されたUV光Lbが導光可能であるが、UV光Lbは、-Y方向に向かうように窓WDdから入射して窓WDcから射出するように構成される。このように、ミスト噴出部30内にUV光Lbを導入する場合は、ミスト噴出部30の内部空間を規定する筐体(容器本体)の隔壁は、UV光Lbに対して遮光性を有すると共に、UV光Lbの照射により劣化し難い材料、例えば、ステンレスやジュラルミン等の金属やセラミックス等が好ましい。但し、ミスト噴出部30の周囲を、UV光Lbの波長域の光を遮光性する遮光板(遮光体、遮光性塗料)で覆う場合は、ミスト噴出部30自体の筐体(容器本体)の隔壁を遮光性にしなくても良い。
 先の図4では、ミスト噴出部30の底部に形成されるノズル部30Aのスリット状開口を規定するエッジ部に連なる内壁面30K2、30J2を、図4(又は図11)のように、ノズル部30A側が低くなるように傾いた平面状の斜面としたが、本変形例では、図23に示すように円弧上に湾曲した円筒状の曲面とした。そして、詳しくは図24を参照して説明するが、ミスト噴出部30の内壁面のうちのYZ面(又はXZ面)と平行な垂直な内壁面に沿って流れ落ちる液滴を一時的に保持する為に、YZ面と垂直な内壁面と湾曲した内壁面30K2、30J2の各々との間には、Y方向にスリット状に延設された凹部30K3、30J3が形成される。凹部30K3、30J3の各々に滴下した液滴が集まった液体は、排出用チューブDPb、DPcを介して回収(又は廃棄)される。さらに本変形例では、湾曲した内壁面30K2、30J2を伝わってノズル部30Aに流れ落ちる液滴を毛細管現象によって捕捉する薄いトラップ板30Sが、ミスト噴出部30の底面部30Bに設けられている。トラップ板30Sで捕捉された液滴(液体)は排出用チューブDPaを介して回収(又は廃棄)される。
 図24は、図23中のミスト噴出部30のY方向の中央付近に設けられた排出用チューブDPaの位置で、ミスト噴出部30をXZ面と平行な面で破断した端面を+Y方向側から見た断面図であり、ここでは、窓WDd(WDc)のZ方向の半分から下方部分の断面のみ示す。ミスト噴出部30の鉛直な内壁面30K1、30J1に沿って液滴DLが流れ落ちる場合、その液滴DLはスリット状の凹部30K3、30J3内に溜められる。スリット状の凹部30K3、30J3の各々は、内部に形成された流路30K4、30J4を介して排出用チューブDPc(DPbも同じ)に接続され、排出用チューブDPc(DPb)は吸引用の減圧源(精密ポンプ等)に接続されている。液滴DLが凹部30K3、30J3内に滴下して凹部30K3、30J3内にまとまった液溜りが生じる時間インターバルで、排出用チューブDPc(DPb)を介した吸引動作が所定時間だけ行われる。このように、スリット状の凹部30K3、30J3と排出用チューブDPc(DPb)によって、滴下抑制機構が構成される。
 図24に示すように、湾曲した内壁面30K2、30J2を伝わってノズル部30Aに向かって垂直に流れ落ちていく液滴DLは、ミスト噴出部30の底面部30Bに設けられた薄いトラップ板30Sの上面と底面部30Bとの間の狭い隙間Gpに毛細管現象によって吸い込まれる。トラップ板30Sは、XY面内で見たとき、ノズル部30Aとほぼ同じ形状及び寸法のスリット状の開口を有し、隙間Gpが0.5mm~2mm程度になるように底面部30Bに固定されている。隙間Gpは、内部に形成された流路30K5、30J5の各々を介して排出用チューブDPaに接続されている。排出用チューブDPaは吸引用の減圧源(精密ポンプ等)に接続され、捕捉された液滴が隙間Gp内に溜まってくる時間インターバルで、排出用チューブDPaを介した吸引動作が所定時間だけ行われる。このように、トラップ板30Sと排出用チューブDPaも滴下抑制機構として機能する。なお、プラズマアシストを行う場合は、図4に示した電極棒50A、50Bが保持される電極保持部材51A、51Bをトラップ板30Sの直下(-Z方向)に設ければ良い。その場合、トラップ板30Sも絶縁性が高い薄い板(プラスチック、アクリル、ガラス等)にする。プラズマアシストを行わない場合、トラップ板30Sはミストの液体によって腐食され難い金属(ステンレス、ジュラルミン等)としても良い。
 以上、本変形例の構成において、ミスト噴出部30の各内壁面30K1、30K2、30J1、30J2、及び窓WDa、WDb、WDc、WDdの内側面、並びに凹部30K3、30J3の内面は、撥液性が高い状態(接触角が90度以上)になるように表面加工されている。一方、ミスト噴出部30の底面部30Bの平坦な下表面と、トラップ板30Sの平坦な上表面とは、液滴が隙間(ギャップ)Gpに毛細管現象で吸い込まれ易くする為、強い親液性(例えば、接触角が10度以下)を呈するように表面加工されている。また、トラップ板30Sの平坦な下表面(基板Pと対向する面)は、キャリアガスCGS中のミストの付着を抑制する為、強い撥液性(例えば、接触角が120度以下)を呈するように表面加工されている。また、スリット状の凹部30K3、30J3、流路30K4、30J4、及び排出用チューブDPc、DPbによる滴下抑制機構と、トラップ板30S、流路30K5、30J5、及び排出用チューブDPaによる滴下抑制機構との少なくとも一方は、先の図1~図3、図11、図16の各々に示したミスト噴出部30にも同様に設けることができ、更には、ミスト回収部32にも同様に設けることができる。
 ミスト回収部32も、内部空間を規定する壁面に沿ってミストを含むキャリアガスCGSが流れる為、その壁面に液滴DLが生じ得る。その液滴は、壁面を伝わって回収ポート部32A(図3参照)のスリット状の開口エッジに流れ落ち、基板P上に滴下する可能性がある。図23、図24のように、ミスト回収部32内にも滴下抑制機構を設ければ、液滴の基板Pへの滴下が抑制される。さらに、ミスト噴出部30のノズル部30A(又はミスト回収部32の回収ポート部32A)の周囲に設ける滴下抑制機構は、トラップ板30Sと排出用チューブDPaによるアクティブな液滴吸引機構ではなく、トラップ板30Sの代りに、ミスト噴出部30の底面部30Bに、液体吸収性が高い吸水性ポリマー等を含むシート材を交換可能に設置したパッシブな液滴吸引機構でも良い。
 さらに、本変形例(図23、図24)や先の図4、図11のように、ミスト噴出部30のノズル部30Aを下側(-Z方向)に向ける場合、ミスト噴出部30の天井内壁面30K0や供給ポート30Pa、30Pbの開口付近にミストが集まった液滴が付着し、その液滴がノズル部30A内を通過して直接基板Pに落下する可能性もある。そこで、先の図16でも説明したように、ミスト噴出部30の全体がXZ面内でZ軸に対して所定角度だけ傾くように、ミスト噴出部30をY軸の回りに回転(傾斜)させた構成にしておく。これにより、ミスト噴出部30の天井内壁面30K0や供給ポート30Pa、30Pbの開口付近に付着した液滴が-Z方向(鉛直方向)に落下しても、その液滴がミスト噴出部30の内壁面の何処かに落下するように設定される。内壁面の何処かに滴下した液滴は、図24に示したように、内壁面に伝わって落下して、最終的にミスト噴出部30のノズル部30Aの周囲に設けた滴下抑制機構(トラップ板30S等)で吸引される。
〔変形例8〕
 以上の各実施の形態や各変形例では、ミストを含むキャリアガスCGS(ミスト気体)に対して、紫外線洗浄効果を有する波長200nm以下の真空紫外波長(深紫外波長)を含むUV光を照射した。本変形例では、さらに、図1に示したミスト発生部14中の内部容器(カップ)14A内の溶液に向けて紫外線洗浄効果を有するUV光を照射するようにする。図25は、本変形例によるミスト発生部14の概略構成を示す部分断面を表し、図1中のミスト発生部14内の部材やミスト発生部14に接続される部材と同じ機能の部材には同じ符号を付してある。
 ミスト発生部14の筐体である円筒状の外容器内には、内部容器14Aを所定の深さで水没させる純水ULqが満たされ、外容器の底部には、内部容器14A内の溶液10Aからミストを発生させる為の超音波振動子14Cが設けられている。外容器と内部容器14Aとは、弾性部材(ゴム等)を介してフランジ部14E、14Fで結合されている。図1にも示した精密ポンプ12からは、ナノ粒子が分散して含有される溶液10Aが、パイプ12Aを通って、断続的又は連続的に内部容器14A内に供給される。内部容器14A内は天板部材14Dによって密閉状態にされ、超音波振動子14Cによって溶液10Aの液表面から発生したミストは、天板部材14Dに取付けられたパイプ16を通して供給されるキャリアガス(キャリア気体)CGSに乗って、天板部材14Dに取付けられたパイプ17から排出される。
 内部容器14A内の溶液10Aの液表面と天板部材14DとのZ方向の間隔(空間距離)をほぼ一定にする為に、精密ポンプ12は、内部容器14A内での溶液10Aの液表面の高さがほぼ一定に維持されるように、不図示の液面センサーからの検出信号に基づいて溶液10Aを供給する。天板部材14Dの下面には、パイプ16からのキャリアガスCGSを、溶液10Aの液表面の近くまで導くダクト部16Aと、ミストを含んで舞い上げられたキャリアガスCGSを効率的に集めてパイプ17に送り出すロート部17Aが設けられている。
 そして、本変形例では、防水型の固体紫外光源280の1つ又は複数個が内部容器14A内の溶液10A中に水没するように設けられる。固体紫外光源280は、波長200~400nmの紫外線を発生するLED光源であり、浄水器内に発生する細菌、バクテリア等の殺菌の為に、LGイノテック社から販売されている防水機能付きUV-LEDモジュール等を利用することができる。このように、溶液10Aに対して紫外線を照射することにより、ミストになる前の段階で溶液10A中に含まれる不純物(有機物質)を分解、洗浄することが可能となる。なお、内部容器14Aを紫外線に対する透過率が高い石英等で構成した場合、内部容器14Aの外側であって外容器内に満たされる純水ULq中に固体紫外光源280を配置して、内部容器14Aの側壁面を通して溶液10Aに紫外線を照射するようにしても良い。
〔その他の変形例〕
 以上、各実施の形態や各変形例において、ミスト成膜による被成膜対象物としての基板Pの表面は、ミストに対して親液性を持つような表面処理が成されていることが好ましい。しかしながら、基板Pの表面のうち、意図的にミスト成膜を行わない領域を設定する場合は、その領域の表面に選択的なパターニングによって超撥液膜を形成したり、後工程で容易に除去可能なカバー層を形成したりすればよい。その一例として、例えば、国際公開第2013/176222号に開示されているように、ニトロベンジルに撥液性を有するフッ素基を持った感光性シランカップリング剤を基板Pの表面に塗工し、その感光性シランカップリング剤による感応層に、波長365nmの紫外線(i線)による露光装置を使って電子デバイス等のパターンを露光することで、基板Pの表面にパターンに応じた親撥液性のコントラストを付与してから、ミスト成膜を行っても良い。
 各実施の形態や各変形例では、基板Pを長尺のシート基板として長尺方向に平面的に搬送しながらミスト成膜を行うようにしたが、例えば、国際公開第2016/133131号に開示されているように、長尺の基板Pを回転ドラムの円筒状の外周面に巻き付けた状態で長尺方向に搬送しつつ、回転ドラムの外周面で円筒面状に支持された基板Pの表面に向けて、ミスト噴出部30からのミストを噴霧する構成としても良い。さらに、ミスト噴出部30は、基板Pの搬送方向に沿って複数並べても良い。
 また、図1~図4、図11、図16の各々の構成では、ミスト噴出部30のノズル部30Aから基板Pに向かうキャリアガスCGSを、基板Pの表面に対して垂直な方向から噴霧しているが、その噴霧の方向は、基板Pの表面と垂直な状態から所定の角度範囲内(例えば、10度~45度)でY軸回りに傾けても良い。
 図12、図14、図19に示したミスト改質部20の流路部20Aを構成する石英管240、250の内周面や外周面には、長時間に渡ってミスト成膜を行う間に、先に説明したようにナノ粒子が付着又は堆積する。そこで、付着したナノ粒子を定期的に拭き取るワイパー部材を石英管240や石英管250の内部で可動させる機構を設けても良い。
 図11、図16に示したミスト成膜装置MDEでは、導風部材31で覆われた空間内で基板Pに対してミスト成膜を行いつつ、UV光Lcを照射する構成としたが、基板PとUV照射ユニット(UV光源ユニット)70の間に配置される断熱部材77としての石英板74(UV光Lcを通す窓)の下面は常にミストに曝されているので、時間経過に伴って徐々にナノ粒子が付着又は堆積し得る。そこで、断熱部材77の全体、或いは石英板74を容易に交換可能とする構成を設けたり、断熱部材77としての石英板74に付着したナノ粒子を除去(払拭)するワイパー部材や清掃機構を設けたりすることができる。
 また、紫外線洗浄効果を有する波長200nm以下の真空紫外波長(深紫外波長)のUV光を発する光源として用いた低圧水銀放電ランプ210A~210F、72は、棒状以外にU字管タイプや面照射タイプのものも使える。さらに、キャリアガスCGS中のミストや基板Pの表面を照射するUV光は、波長200nm以下の真空紫外波長域のスペクトル成分とすることで洗浄効果が高まるが、ミストに含まれるナノ粒子の材料物資や粒径によっては、波長200~400nmの間のスペクトル成分の紫外線に変更したり、波長200nm以下の真空紫外波長域のスペクトル成分の紫外線光と、波長200~400nmの間のスペクトル成分の紫外線光とを併せて照射したりすることで、洗浄効果(改質効果)がより高められることもある。また、紫外線洗浄効果を有する波長200nm以下の真空紫外波長域のUV光のミスト気体CGSへの照射は、図1又は図25に示したミスト発生部14内で発生した直後のミストに対して行っても良い。
 ミスト成膜装置MDEで成膜可能なナノ粒子は、先に例示したITOナノ粒子以外に、多用な材料物質(導電物質、絶縁物質、半導体物質)のナノ粒子とすることができる。ナノ粒子は、一般的には100nmよりも小さい粒子とされているが、ミスト成膜においては、ミストの粒径(数μm~十数μm)よりも小さく、ミスト内に捕捉されてキャリアガスCGSによって浮遊できるサイズであれば良い。そのようなナノ粒子としては、金属系では、金ナノ粒子、白金ナノ粒子、銀ナノ粒子、銅ナノ粒子、或いは良導体に精製されたカーボンナノロッド等が使用でき、酸化物系では、酸化鉄ナノ粒子、酸化亜鉛ナノ粒子、酸化珪素(シリカ)ナノ粒子等が使用でき、窒化物系では、窒化珪素ナノ粒子、窒化アルミニウムナノ粒子等が使用できる。さらに半導体系としては、半導体に精製されたカーボンナノロッドやシリコンナノ粒子等も使用できる。シリコンナノ粒子としては、例えば、国際公開第2016/185978号に開示されているように、pn接合太陽電池を形成する半導体層の表面に成膜(塗布)して効率を向上させる炭化水素で分子終端したシリコンナノ粒子であっても良い。
 また、図1に示したミスト発生部14は、超音波振動子14Cを用いた超音波霧化方式であったが、基板Pに噴霧されるミスト(キャリアガスCGS)の温度を高めても良い場合は、微粒子を含有した溶液(純水等)をヒータで加熱して溶液の液面からミストを発生させる加熱霧化方式としても良い。逆に、基板Pに噴霧されるミスト(キャリアガスCGS)の温度を低くしたい場合は、微粒子を含有した溶液(純水等)に、粒状に砕いたドライアイスを適当な時間間隔で投入し、溶液の液面からミストを発生させる霧化方式としても良い。この場合、ドライアイスの粒が溶ける過程で、冷えた二酸化炭素ガス(炭酸ガス:CO2)が発生し、それがキャリアガスCGSとなってミストを運ぶことになる。炭酸ガスは空気よりも比重が大きく冷えている為、基板Pの表面に沿って流れ易くなり、ミストの基板Pへの付着率を高めることができる。
〔第4の実施の形態〕
 図26は、先の図1に示したミスト成膜装置MDEを、ロール方式に適用した場合の概略的な構成を表した図であり、直交座標系XYZは図1と同じ向きに設定される。本実施の形態では、直径が20~60cmの円筒状の回転ドラムDRによって、シート状の長尺の基板Pが長尺方向に搬送される。先の図2、図11、図16のように、フレキシブルなシート状の基板Pを長尺方向に一定の長さに亘って平面状に支持する場合、基板Pには長尺方向に所定のテンションが付与されて平坦な状態に張設された状態で搬送される。その際に、基板Pには長尺方向に延びたシワ(凹凸となる縦シワ)が長尺方向と交差した幅方向の何ヶ所かに発生するおそれもある。そのようなシワが発生すると、基板Pの表面にミスト成膜された微粒子による薄膜層に許容範囲以上の厚みムラが生じ得る。これに対して、回転ドラムDRを用いる場合は、基板Pの裏面を回転ドラムDRの外周面に密着支持させた状態、即ち基板Pの表面を安定した円筒面状に湾曲させて支持した状態で、回転ドラムDRの回転によって基板Pを長尺方向に搬送することができる。
 図26において、回転ドラムDRは、Y軸と平行に設定される中心軸AXdから一定半径で円筒面状に湾曲すると共に、Y方向に基板Pの幅よりも長い外周面DRaを有する。回転ドラムDRのY方向の両端部には、中心軸AXdと同軸のシャフトSftが設けられ、シャフトSftはボール・ベアリング又はヘア・ベアリングを介して、装置本体に回転可能に軸支される。回転ドラムDRの中心軸AXdからの半径は、基板PのY方向の幅が1m以下の場合は、10~30cmの範囲が望ましい。さらに、本実施の形態では、回転ドラムDRの中心軸AXdと平行に設定され回転中心線を有する一対のニップローラ7A、7Bと1つのテンションローラ7Cとが、回転ドラムDRの+X方向側に配置される。そして、図2で示したような金属製の無端状のベルト5Cが、回転ドラムDR、一対のニップローラ7A、7B、テンションローラ7Cの各々に掛け回されるように設けられる。本実施の形態では、回転ドラムDR、一対のニップローラ7A、7B、ベルト5Cによって、基板Pを長尺方向に移動させる移動機構(搬送機構)が構成される。
 XZ面内において、回転ドラムDRは中心軸AXdを中心に時計回りに回転し、ベルト5Cは、回転ドラムDRの外周面DRaの周方向における進入位置CA1から外周面DRaに接触し、約半周先の離脱位置CA2で外周面DRaから離れるようにかけ渡される。離脱位置CA2からニップローラ7Aに向かうベルト5Cの表面は、XY面に対して角度-θpだけ傾くように設定される。角度θpは、30度~60度程度に設定される。一対のニップローラ7A、7Bは、ベルト5Cの表面と裏面とを所定のニップ圧で挟持しつつ、回転モータからのトルクによって、ベルト5Cが一定の速度で搬送されるように回転駆動される。ニップローラ7A、7Bを通ったベルト5Cは、テンションローラ7Cに接触した後、再び回転ドラムDRの外周面DRaに送られる。テンションローラ7Cは、テンション付与機構7Dによって、ニップローラ7Bと回転ドラムDRの進入位置CA1との間のベルト5Cに、無端軌道の外側に付勢するような力を与える。なお、一対のニップローラ7A、7Bの一方を回転モータで回転する駆動ローラとする代わりに、回転ドラムDRを回転モータからのトルクで回転させるようにしても良い。
 基板Pは、ベルト5Cの回転ドラムDRへの進入位置CA1に対して、回転方向の下流側の進入位置CA3で、円筒面状に湾曲したベルト5Cの表面に接触し始め、ベルト5Cに密着した状態でニップローラ7Aの位置まで搬送された後、ニップローラ7Aの所でベルト5Cから離れるように搬送される。なお、不図示ではあるが、基板Pは、長尺方向(搬送方向)に所定のテンションが付与された状態で、基板搬送機構によってベルト5Cと同期した速度で長尺方向に搬送される。
 本実施の形態では、先の図2、図11、図16の各々に示した導風部材31が、回転ドラムDRの外周面DRaの外径(半径)に合わせるように基板Pの搬送方向に沿って円弧状に湾曲して成型され、回転ドラムDRの外周面DRaの+Z方向側の一部分を覆うように設置される。回転ドラムDRの回転方向に関して、導風部材31の上流側にはミスト噴出部30が設けられ、導風部材31の下流側にはミスト回収部32が設けられる。本実施の形態でも、ミストを含むキャリアガスCGSは、ミスト噴出部30のノズル部30Aから基板Pに向けて噴出され、導風部材31と基板Pとで囲まれた内部空間を回転ドラムDRの回転方向と同じ向きに流れて、ミスト回収部32の回収ポート部32Aで回収される。なお、ミスト噴出部30のノズル部30Aの近傍には、先の図3と同様に、プラズマアシスト用の一対の電極棒50A、50Bを配置しても良い。
 さらに、本実施の形態では、回転ドラムDRの外周面DRaに掛け回されたベルト5Cに沿って基板Pを装着(通紙)する作業、ベルト5Cや回転ドラムDRの清掃作業、又はベルト5Cの交換作業等の為に、ミスト噴出部30とミスト回収部32とが一体的に取り付けられた導風部材31(ミスト成膜機構)をZ方向(上下方向)に移動させる駆動機構ZAUが設けられる。また、回転ドラムDRの外周面DRa上の離脱位置CA2からニップローラ7Aの位置まで、ベルト5Cと基板Pは一体となって傾き角-θpで平坦な状態で搬送されるので、先の図16、図17に示した構成と同様の支持テーブル5Dを設けることができる。その場合、支持テーブル5Dの平坦な上表面(ヘア・ベアリングの気体層が形成される支持面5Da)は、ベルト5Cの裏面と平行に対向するように、水平面(XY面)に対して角度-θpだけ傾けて設置される。支持テーブル5Dの傾き角-θpは、電圧に応じて伸縮するピエゾ素子等を用いた複数のアアクチュエータ6A、6Bによって調整される。なお、支持テーブル5Dの支持面5Daには、先の図17で示した構成と同様のアクチュエータ5Sを設けて、ベルト5Cと共に基板Pを加熱したり、ベルト5Cと共に基板Pに微小振動を与えたりしても良い。
 本実施の形態では、回転ドラムDRの外周面DRa(ベルト5C)に倣って円筒面状に湾曲した基板Pの表面でミスト成膜を行うように構成した。その為、ミスト成膜領域(導風部材31で覆われた領域)における基板Pの搬送速度を、回転ドラムDR(ベルト5C)の回転速度の制御によって目標値に安定させることができ、基板Pの搬送速度のムラを容易に低減することができる。さらに、回転ドラムDR上でミスト成膜された直後の基板Pは、水平面に対して傾き角-θp(θp=30度~60度)で一定の長さに亘って平坦に搬送される。その為、成膜直後に基板Pの表面に一様な厚みで付着した液膜の全体には、-Z方向に働く重力Gfによって、基板Pの表面に沿って斜め下方に向いた分力Fgが作用する。その分力Fgの作用によって、液膜が乾燥していく途中において、基板Pの表面上で液膜が完全に乾燥(蒸発)した部分と液膜が残留する部分とが、一時的にまばらに混在するような乾燥ムラの発生を抑えることができる。
 このような効果は、先の図16に示したミスト成膜装置の構成でも同様に得られる。なお、図26に示した傾き角-θp、又は図16に示した傾き角θpは、基板Pの表面の親液性の度合いも考慮して、成膜直後の液膜が分力Fgの作用で基板Pの表面を流れ落ちることがないような値に設定される。従って、例えば、基板Pの表面の親液性が高く液膜の密着性が強い場合は、傾き角θpの絶対値を60度以上にすることもできる。

Claims (34)

  1.  被処理物の表面に材料物質による層を堆積させる為に、前記材料物質の微粒子又は分子を含有する溶液のミストを含むキャリア気体を前記被処理物の表面に噴霧するミスト発生装置であって、
     前記溶液を霧化して前記ミストを含む前記キャリア気体を送出するミスト発生部と、
     前記ミスト発生部からの前記キャリア気体が前記被処理物の表面に噴霧されるまでの流路中で、前記キャリア気体によって浮遊する前記ミストに波長400nm以下の紫外線光を照射する紫外線照射部と、
     を備える、ミスト発生装置。
  2.  請求項1に記載のミスト発生装置であって、
     前記ミストを含む前記キャリア気体の流路を規定する壁面を有する流路形成部を備え、
     前記紫外線照射部からの前記紫外線光は、前記流路形成部の少なくとも一部に設けられて前記紫外線光に対して透過性を有する光透過部材を介して前記ミストに照射される、ミスト発生装置。
  3.  請求項2に記載のミスト発生装置であって、
     前記紫外線照射部は、波長200nmよりも短い真空紫外波長域の紫外線光を発生する光源を備える、ミスト発生装置。
  4.  請求項3に記載のミスト発生装置であって、
     前記光源は、波長180nm~400nmの間に複数の輝線スペクトルを有する低圧水銀放電ランプ、波長172nmに輝線スペクトルを有するエキシマ放電ランプ、又は波長200nm以下にスペクトル分布を有するキセノンガスを封入した真空紫外フラッシュランプである、ミスト発生装置。
  5.  請求項3に記載のミスト発生装置であって、
     前記光源は、波長200nm以下のレーザ光を射出するレーザ光源である、ミスト発生装置。
  6.  請求項4に記載のミスト発生装置であって、
     前記流路形成部を流れる前記キャリア気体又は前記ミストの温度が、前記低圧水銀放電ランプ、前記エキシマ放電ランプ、又は前記真空紫外フラッシュランプの発熱によって上昇することを抑える為に、前記光透過部材に対して設けられた断熱機構を備える、ミスト発生装置。
  7.  請求項2~5のいずれか一項に記載のミスト発生装置であって、
     前記流路形成部、又は前記光透過部材の温度を調整する温度調整機構を備える、ミスト発生装置。
  8.  請求項6又は請求項7に記載のミスト発生装置であって、
     前記流路形成部の前記光透過部材は、石英による円管状又は平面状の壁面を有するように形成される、ミスト発生装置。
  9.  請求項8に記載のミスト発生装置であって、
     前記流路形成部、及び前記光透過部材の内側の壁面は、前記ミストが集まって液滴となった場合の接触角が90度以上となるような撥液性を有する、ミスト発生装置。
  10.  請求項9に記載のミスト発生装置であって、
     前記流路形成部の前記内側の壁面の一部には、前記内側の壁面に生じた前記液滴を重力の方向に集めて前記流路形成部の外部に排出する為の開口部が設けられる、ミスト発生装置。
  11.  材料物質による微粒子を含有した溶液のミストを含むキャリア気体を被処理物の表面に噴霧して、前記被処理物の表面に前記材料物質による層を形成するミスト成膜方法であって、
     前記ミストの発生部から前記被処理物の表面に至る前までの前記キャリア気体の流路内で、前記キャリア気体によって浮遊して流れる前記ミストに波長400nm以下の第1の紫外線光を照射する第1の光照射工程と、
     前記第1の紫外線光の照射を受けた前記ミストを前記被処理物の表面に付着させる噴霧工程と、
     前記ミストの付着により前記材料物質による前記微粒子が堆積した前記被処理物の表面領域に、波長400nm以下の第2の紫外線光を照射する第2の光照射工程と、
     を含む、ミスト成膜方法。
  12.  請求項11に記載のミスト成膜方法であって、
     前記第1の紫外線光と前記第2の紫外線光は、波長200nm以下に輝線スペクトルを含む放電ランプ又はフラッシュランプからの光、或いは波長200nm以下で発振するレーザ光源からのレーザ光である、ミスト成膜方法。
  13.  請求項12に記載のミスト成膜方法であって、
     前記第1の光照射工程では、
     前記ミストの発生部から前記被処理物の表面に至る前記キャリア気体の流路を形成する流路形成部の少なくとも一部に設けられた光透過部材を介して、前記第1の紫外線光を前記ミストに照射する、ミスト成膜方法。
  14.  請求項13に記載のミスト成膜方法であって、
     温度調整機構によって、前記流路形成部又は前記光透過部材の前記キャリア気体と接する面を、前記流路形成部に流入される前記ミストの温度に対応した温度に調整する、ミスト成膜方法。
  15.  請求項14に記載のミスト成膜方法であって、
     前記流路形成部又は前記光透過部材の前記キャリア気体と接する面は、前記ミストが集まって液滴となった場合の接触角が90度以上となるような撥液性が付与される、ミスト成膜方法。
  16.  請求項15に記載のミスト成膜方法であって、
     前記流路形成部の前記キャリア気体と接する面に付着した前記液滴を、重力の方向に集めて前記流路形成部の外部に排出する、ミスト成膜方法。
  17.  材料物質による微粒子を含有した溶液のミストを被処理基板の表面に噴霧して、前記被処理基板の表面に前記材料物質による層を形成するミスト成膜装置であって、
     前記溶液の霧化により発生するミストを含むキャリア気体を送出するミスト発生部と、
     前記キャリア気体を前記被処理基板の表面に向けて噴出するミスト噴出部と、
     前記被処理基板と前記ミスト噴出部とを前記被処理基板の表面に沿った方向に相対的に移動させる移動機構と、
     前記ミスト発生部から前記ミスト噴出部に至る前記キャリア気体の流路を形成するように囲む壁面を有し、該壁面の少なくとも一部を光透過部材で構成した流路形成部と、
     前記流路形成部の前記光透過部材を介して、前記流路形成部の内側を流れる前記キャリア気体に向けて波長400nm以下の紫外線光を照射する第1の紫外線照射部と、
     を備える、ミスト成膜装置。
  18.  請求項17に記載のミスト成膜装置であって、
     前記第1の紫外線照射部は、波長200nmよりも短い波長域の紫外線光を発生する光源を含む、ミスト成膜装置。
  19.  請求項18に記載のミスト成膜装置であって、
     前記光源は、波長180nm~400nmの間に複数の輝線スペクトルを有する低圧水銀放電ランプ、波長172nmに輝線スペクトルを有するエキシマ放電ランプ、又はキセノンガスを封入して波長200nm以下にスペクトル分布を有する真空紫外フラッシュランプとした、ミスト成膜装置。
  20.  請求項18に記載のミスト成膜装置であって、
     前記光源は、波長200nm以下のレーザ光を射出するレーザ光源である、ミスト成膜装置。
  21.  請求項17~20のいずれか一項に記載のミスト成膜装置であって、
     前記流路形成部又は前記光透過部材の前記キャリア気体と接する前記壁面の温度を調整する温度調整機構を備える、ミスト成膜装置。
  22.  請求項21に記載のミスト成膜装置であって、
     前記流路形成部の前記光透過部材は、石英による円管状又は平面状の壁面となるように形成される、ミスト成膜装置。
  23.  請求項17~22のいずれか一項に記載のミスト成膜装置であって、
     前記流路形成部及び前記光透過部材の前記キャリア気体と接する前記壁面は、前記ミストが集まって液滴となった場合の接触角が90度以上となるような撥液性を有する、ミスト成膜装置。
  24.  請求項23に記載のミスト成膜装置であって、
     前記流路形成部の前記壁面の一部には、前記壁面に生じた前記液滴を重力の方向に集めて前記流路形成部の外部に排出する為の開口部が設けられる、ミスト成膜装置。
  25.  請求項17~24のいずれか一項に記載のミスト成膜装置であって、
     前記移動機構は、前記被処理基板をほぼ平坦に支持して前記ミスト噴出部に対して一方向に所定速度で移動させる駆動部を備え、
     さらに、前記被処理基板の移動方向に関して前記ミスト噴出部の下流側に設けられ、前記ミストの付着により前記材料物質による前記微粒子が堆積した前記被処理基板の表面領域に、波長400nm以下の紫外光を照射する第2の紫外線照射部が設けられる、ミスト成膜装置。
  26.  請求項17~25のいずれか一項に記載のミスト成膜装置であって、
     前記ミスト発生部は、
     前記微粒子を含む前記溶液を収容する第1の容器と、前記第1の容器内の前記溶液の液面から前記ミストを発生させるための高周波振動を前記第1の容器の外側から与える第1の振動源と、前記溶液中での前記微粒子の凝集を抑制する為の振動を前記溶液に直接与える第2の振動源と、
     を有する、ミスト成膜装置。
  27.  請求項17~25のいずれか一項に記載のミスト成膜装置であって、
     前記ミスト噴出部は、前記ミストを含む前記キャリア気体を貯留する内部空間を規定する内壁面と、前記内部空間に貯留された前記キャリア気体を噴出するスリット状のノズル開口とを備える、ミスト成膜装置。
  28.  請求項27に記載のミスト成膜装置であって、
     前記ミスト噴出部の前記内部空間の前記ミストが前記内壁面に集まって液滴となり、該液滴が前記ノズル開口から前記被処理基板上に落下することを抑制する滴下抑制機構を、更に備えるミスト成膜装置。
  29.  材料物質による微粒子を含有した溶液を被処理基板の表面に所定の厚みの液膜となるように塗布し、前記液膜の乾燥によって前記被処理基板の表面に前記微粒子による層を形成する微粒子成膜装置であって、
     前記被処理基板の表面に前記溶液による液膜を所定の厚みで塗布する塗布機構と、
     前記被処理基板を前記塗布機構に対して前記被処理基板の表面に沿った方向に所定の速度で搬送する移動機構と、
     前記塗布機構によって前記液膜が形成され始めてから前記液膜の溶媒が蒸発又は揮発するまでの間に、前記被処理基板を微小振動させる振動機構と、
     を備える、微粒子成膜装置。
  30.  請求項29に記載の微粒子成膜装置であって、
     前記塗布機構は、前記溶液の霧化により発生するミストを含むキャリアガスを前記被処理基板の表面に噴霧して、前記溶液による液膜を形成するミスト成膜機構である、微粒子成膜装置。
  31.  請求項29に記載の微粒子成膜装置であって、
     前記塗布機構は、前記溶液をインク材料として前記被処理基板の表面に転写する印刷機構である、微粒子成膜装置。
  32.  請求項29~31のいずれか一項に記載の微粒子成膜装置であって、
     前記振動機構は、前記移動機構によって搬送される前記被処理基板の搬送経路に沿って、前記被処理基板と対向するように分散して配置される複数の振動子を含み、前記振動子の振動によって、前記被処理基板の表面と垂直な方向に前記被処理基板を微小振動させる、微粒子成膜装置。
  33.  請求項32に記載の微粒子成膜装置であって、
     前記移動機構は、前記被処理基板の前記液膜が形成される表面を、重力が働く方向と直交した水平面と平行な状態、又は前記水平面に対して所定角度で傾いた状態で平坦に搬送する搬送経路を有し、
     該平坦に搬送する搬送経路内であって前記被処理基板の前記液膜が形成される表面の反対側の裏面に対向する部分に配置され、前記被処理基板を平坦に支持する支持面を持った支持テーブルを、更に備える、微粒子成膜装置。
  34.  請求項33に記載の微粒子成膜装置であって、
     前記支持テーブルは、前記支持面と前記被処理基板の裏面とを非接触な状態にする気体層を形成する為のエアベアリング機構を有し、
     前記振動機構の前記複数の振動子の各々の振動は、前記気体層を介した音波として前記被処理基板に伝搬される、微粒子成膜装置。
PCT/JP2019/028198 2018-08-01 2019-07-18 ミスト発生装置、並びにミスト成膜方法、及びミスト成膜装置 WO2020026823A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020533413A JP7006793B2 (ja) 2018-08-01 2019-07-18 ミスト成膜装置、並びにミスト成膜方法
KR1020217006201A KR102527442B1 (ko) 2018-08-01 2019-07-18 미스트 발생 장치, 그리고 미스트 성막 방법, 및 미스트 성막 장치
CN201980063513.8A CN112752616B (zh) 2018-08-01 2019-07-18 雾发生装置以及雾成膜方法和雾成膜装置
US17/162,609 US11628468B2 (en) 2018-08-01 2021-01-29 Mist generator, mist film formation method and mist film formation apparatus
JP2022000849A JP7260006B2 (ja) 2018-08-01 2022-01-06 ミスト成膜装置及びミスト成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018144806 2018-08-01
JP2018-144806 2018-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/162,609 Continuation US11628468B2 (en) 2018-08-01 2021-01-29 Mist generator, mist film formation method and mist film formation apparatus

Publications (1)

Publication Number Publication Date
WO2020026823A1 true WO2020026823A1 (ja) 2020-02-06

Family

ID=69231743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028198 WO2020026823A1 (ja) 2018-08-01 2019-07-18 ミスト発生装置、並びにミスト成膜方法、及びミスト成膜装置

Country Status (6)

Country Link
US (1) US11628468B2 (ja)
JP (2) JP7006793B2 (ja)
KR (1) KR102527442B1 (ja)
CN (1) CN112752616B (ja)
TW (1) TWI811413B (ja)
WO (1) WO2020026823A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925548B1 (ja) * 2020-07-08 2021-08-25 信越化学工業株式会社 酸化ガリウム半導体膜の製造方法及び成膜装置
JPWO2022025053A1 (ja) * 2020-07-27 2022-02-03
US20220275506A1 (en) * 2021-02-26 2022-09-01 Entegris, Inc. Solids vaporizer
WO2023210381A1 (ja) * 2022-04-25 2023-11-02 信越化学工業株式会社 成膜方法、成膜装置、及び積層体
JP7492621B2 (ja) 2020-07-08 2024-05-29 信越化学工業株式会社 成膜装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102180798B1 (ko) * 2018-10-19 2020-11-19 주식회사 포스코 용융도금강판의 냉각장치
TWI732643B (zh) * 2020-08-05 2021-07-01 大陸商廣州市創韋照明燈具有限公司 供液系統
CN113295105B (zh) * 2021-05-06 2022-05-27 清华大学 一种空间载波调制装置
CN115613005A (zh) * 2021-07-16 2023-01-17 长鑫存储技术有限公司 雾化装置与薄膜沉积系统
US20240066535A1 (en) * 2022-08-24 2024-02-29 Spraying Systems Co. Controllably providing a coating of nanoparticles on a conveyed substrate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502939A (ja) * 1988-02-10 1992-05-28 シンメトリックス・コーポレーション 材料析出方法及び装置
JP2000513500A (ja) * 1996-03-05 2000-10-10 サイメトリックス コーポレイション プライマを用いて材料を堆積させる方法および装置
JP2001500318A (ja) * 1996-03-14 2001-01-09 サイメトリックス コーポレイション 集積回路にシリコンジオキシドおよびシリコンガラス層を形成する方法および装置
JP2001503567A (ja) * 1996-03-04 2001-03-13 サイメトリックス コーポレイション 改良ミストおよびミストフローを有するミスト状前駆体の堆積装置および方法
JP2002526907A (ja) * 1997-11-17 2002-08-20 シメトリックス・コーポレーション 薄膜のミスト状付着を行うための方法及び装置
JP2013028480A (ja) * 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP2015027657A (ja) * 2012-09-18 2015-02-12 株式会社リコー 液体吐出ヘッドの清掃方法、清掃装置及び微粒子製造装置
JP2016216238A (ja) * 2015-05-25 2016-12-22 東レエンジニアリング株式会社 基板搬送装置
JP2018074070A (ja) * 2016-11-01 2018-05-10 東レエンジニアリング株式会社 熱処理装置および熱処理方法
KR20180074852A (ko) * 2016-12-23 2018-07-04 주식회사 나래나노텍 개선된 인라인 미세 채널 타입 상압 저온 미스트 cvd 장치

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689247A (en) * 1986-05-15 1987-08-25 Ametek, Inc. Process and apparatus for forming thin films
KR910700103A (ko) * 1988-12-27 1991-03-13 원본미기재 기체(基體)상에의 박막 부착방법 및 이를 위한 장치
US5614252A (en) * 1988-12-27 1997-03-25 Symetrix Corporation Method of fabricating barium strontium titanate
JP2000087249A (ja) * 1998-09-04 2000-03-28 Matsushita Electric Ind Co Ltd 薄膜形成装置および方法
JP2000215797A (ja) * 1999-01-22 2000-08-04 Matsushita Electric Ind Co Ltd 薄膜形成方法及び装置
US20050001201A1 (en) 2003-07-03 2005-01-06 Bocko Peter L. Glass product for use in ultra-thin glass display applications
JP4727355B2 (ja) 2005-09-13 2011-07-20 株式会社フジクラ 成膜方法
JP2006243306A (ja) 2005-03-03 2006-09-14 Yuji Matsuura アルミニウム中空光ファイバ
JP2006269189A (ja) 2005-03-23 2006-10-05 Md Komu:Kk 長尺エキシマランプユニット
JP2007049128A (ja) * 2005-07-12 2007-02-22 Seiko Epson Corp 製膜装置
US8268408B2 (en) 2005-09-30 2012-09-18 Fujifilm Corporation Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder
JP2007315922A (ja) 2006-05-25 2007-12-06 Nippon Electric Glass Co Ltd ディスプレイ用板ガラスの異物検出方法及びその装置
JP2008101253A (ja) * 2006-10-20 2008-05-01 Ntn Corp 被膜形成装置
JP5363371B2 (ja) 2010-02-09 2013-12-11 湖北工業株式会社 中空光ファイバ及びその製造方法
JP2012243988A (ja) 2011-05-20 2012-12-10 Arimi Nakamura 薄膜形成装置
KR20140101854A (ko) 2012-02-08 2014-08-20 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 금속산화막의 제조 방법 및 금속산화막
JP6299589B2 (ja) 2012-03-05 2018-03-28 株式会社ニコン 紫外レーザ装置、該紫外レーザ装置を備えた露光装置及び検査装置
JP6327734B2 (ja) 2012-03-07 2018-05-23 国立大学法人富山大学 T細胞の刺激方法およびその利用
KR101962083B1 (ko) 2012-04-03 2019-03-25 가부시키가이샤 니콘 패턴 형성 장치
WO2013176222A1 (ja) 2012-05-24 2013-11-28 株式会社ニコン 基板処理装置、及びデバイス製造方法
JP6717191B2 (ja) 2014-04-18 2020-07-01 株式会社ニコン 成膜装置、基板処理装置、および、デバイス製造方法
JP6241384B2 (ja) 2014-07-17 2017-12-06 ウシオ電機株式会社 自己組織化単分子膜のパターニング装置、光照射装置及び自己組織化単分子膜のパターニング方法
WO2016133131A1 (ja) 2015-02-18 2016-08-25 株式会社ニコン 薄膜製造装置、及び薄膜製造方法
US20180122961A1 (en) 2015-05-21 2018-05-03 National Institute For Materials Science Solar cell composite utilizing molecule-terminated silicon nanoparticles
KR20210158882A (ko) * 2016-03-11 2021-12-31 가부시키가이샤 니콘 미스트 발생장치, 성막장치, 미스트 발생 방법, 성막 방법, 및 디바이스 제조 방법
JP6760709B2 (ja) 2017-05-31 2020-09-23 東芝三菱電機産業システム株式会社 ミスト塗布成膜装置の塗布ヘッドおよびそのメンテナンス方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502939A (ja) * 1988-02-10 1992-05-28 シンメトリックス・コーポレーション 材料析出方法及び装置
JP2001503567A (ja) * 1996-03-04 2001-03-13 サイメトリックス コーポレイション 改良ミストおよびミストフローを有するミスト状前駆体の堆積装置および方法
JP2000513500A (ja) * 1996-03-05 2000-10-10 サイメトリックス コーポレイション プライマを用いて材料を堆積させる方法および装置
JP2001500318A (ja) * 1996-03-14 2001-01-09 サイメトリックス コーポレイション 集積回路にシリコンジオキシドおよびシリコンガラス層を形成する方法および装置
JP2002526907A (ja) * 1997-11-17 2002-08-20 シメトリックス・コーポレーション 薄膜のミスト状付着を行うための方法及び装置
JP2013028480A (ja) * 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP2015027657A (ja) * 2012-09-18 2015-02-12 株式会社リコー 液体吐出ヘッドの清掃方法、清掃装置及び微粒子製造装置
JP2016216238A (ja) * 2015-05-25 2016-12-22 東レエンジニアリング株式会社 基板搬送装置
JP2018074070A (ja) * 2016-11-01 2018-05-10 東レエンジニアリング株式会社 熱処理装置および熱処理方法
KR20180074852A (ko) * 2016-12-23 2018-07-04 주식회사 나래나노텍 개선된 인라인 미세 채널 타입 상압 저온 미스트 cvd 장치

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925548B1 (ja) * 2020-07-08 2021-08-25 信越化学工業株式会社 酸化ガリウム半導体膜の製造方法及び成膜装置
WO2022009524A1 (ja) * 2020-07-08 2022-01-13 信越化学工業株式会社 酸化ガリウム半導体膜の製造方法及び成膜装置
JP2022016426A (ja) * 2020-07-08 2022-01-21 信越化学工業株式会社 酸化ガリウム半導体膜の製造方法及び成膜装置
JP2022016263A (ja) * 2020-07-08 2022-01-21 信越化学工業株式会社 酸化ガリウム半導体膜の製造方法及び成膜装置
JP7285889B2 (ja) 2020-07-08 2023-06-02 信越化学工業株式会社 酸化ガリウム半導体膜の製造方法及び成膜装置
JP7492621B2 (ja) 2020-07-08 2024-05-29 信越化学工業株式会社 成膜装置
JPWO2022025053A1 (ja) * 2020-07-27 2022-02-03
WO2022025053A1 (ja) * 2020-07-27 2022-02-03 株式会社ニコン 成膜装置、ミスト成膜装置、および導電膜の製造方法
JP7485047B2 (ja) 2020-07-27 2024-05-16 株式会社ニコン 成膜装置、ミスト成膜装置、および導電膜の製造方法
US20220275506A1 (en) * 2021-02-26 2022-09-01 Entegris, Inc. Solids vaporizer
WO2023210381A1 (ja) * 2022-04-25 2023-11-02 信越化学工業株式会社 成膜方法、成膜装置、及び積層体

Also Published As

Publication number Publication date
JPWO2020026823A1 (ja) 2021-08-05
TWI811413B (zh) 2023-08-11
JP7006793B2 (ja) 2022-02-10
KR102527442B1 (ko) 2023-04-28
JP2022058507A (ja) 2022-04-12
TW202028519A (zh) 2020-08-01
JP7260006B2 (ja) 2023-04-18
US11628468B2 (en) 2023-04-18
CN112752616B (zh) 2023-07-14
CN112752616A (zh) 2021-05-04
US20210291222A1 (en) 2021-09-23
KR20210038662A (ko) 2021-04-07

Similar Documents

Publication Publication Date Title
WO2020026823A1 (ja) ミスト発生装置、並びにミスト成膜方法、及びミスト成膜装置
JP6984587B2 (ja) ミスト発生装置、ミスト成膜装置およびミスト発生方法
JP2020114943A (ja) 薄膜製造装置、及び薄膜製造方法
JP6717191B2 (ja) 成膜装置、基板処理装置、および、デバイス製造方法
US6564421B2 (en) Multi functional cleaning module of manufacturing apparatus for flat panel display and cleaning apparatus using the same
TW200415030A (en) Liquid material discharging method, liquid material discharging apparatus, and electronic device manufactured thereby
KR20180074668A (ko) 유리 가공 방법 및 장치
CN109782550A (zh) 极紫外线成像工具的液滴产生器
US11369990B2 (en) Film forming method
JP2007094183A (ja) パターン形成体の製造方法およびパターン形成体製造用装置
US11318495B2 (en) Film forming method
JP5534552B2 (ja) パターン形成装置、パターン形成方法、デバイス製造装置、及びデバイス製造方法
WO2016121040A1 (ja) ターゲット供給装置、その処理装置および処理方法
WO2021149695A1 (ja) ミスト成膜装置及びミスト成膜方法
TW202204051A (zh) 霧產生裝置、薄膜製造裝置、及薄膜製造方法
KR100903565B1 (ko) 탄소나노튜브 도전막 제조 장비
JPS61131418A (ja) 半導体製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217006201

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19843672

Country of ref document: EP

Kind code of ref document: A1