WO2020025840A1 - Sistema y método de tratamiento de material textil con ozono - Google Patents

Sistema y método de tratamiento de material textil con ozono Download PDF

Info

Publication number
WO2020025840A1
WO2020025840A1 PCT/ES2019/070423 ES2019070423W WO2020025840A1 WO 2020025840 A1 WO2020025840 A1 WO 2020025840A1 ES 2019070423 W ES2019070423 W ES 2019070423W WO 2020025840 A1 WO2020025840 A1 WO 2020025840A1
Authority
WO
WIPO (PCT)
Prior art keywords
textile material
hollow chamber
textile
ozone
guide rollers
Prior art date
Application number
PCT/ES2019/070423
Other languages
English (en)
French (fr)
Inventor
Vicente ALBERT REVERT
Victoria PUCHOL ESTORS
Peiming LIU
Original Assignee
Jeanologia, S. L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeanologia, S. L. filed Critical Jeanologia, S. L.
Priority to EP19745651.0A priority Critical patent/EP3831997B1/en
Priority to US17/263,681 priority patent/US11629446B2/en
Priority to ES19745651T priority patent/ES2934614T3/es
Priority to CN201980050986.4A priority patent/CN112867819B/zh
Publication of WO2020025840A1 publication Critical patent/WO2020025840A1/es

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/14Containers, e.g. vats
    • D06B23/18Sealing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/001Washing machines, apparatus, or methods not otherwise provided for using ozone
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/10Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
    • D06B3/12Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics in zig-zag manner over series of guiding means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B21/00Successive treatments of textile materials by liquids, gases or vapours
    • D06B21/02Successive treatments of textile materials by liquids, gases or vapours the treatments being performed in a single container
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/02Rollers
    • D06B23/023Guiding rollers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/04Carriers or supports for textile materials to be treated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/20Arrangements of apparatus for treating processing-liquids, -gases or -vapours, e.g. purification, filtration or distillation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/04Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of yarns, threads or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/34Driving arrangements of machines or apparatus
    • D06B3/345Means for controlling the tension in the textile material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/34Driving arrangements of machines or apparatus
    • D06B3/36Drive control
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/50Control of washer-dryers characterised by the purpose or target of the control
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/50Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs by irradiation or ozonisation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B2700/00Treating of textile materials, e.g. bleaching, dyeing, mercerising, impregnating, washing; Fulling of fabrics
    • D06B2700/09Apparatus for passing open width fabrics through bleaching, washing or dyeing liquid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/10Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
    • D06B3/18Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics combined with squeezing, e.g. in padding machines

Definitions

  • the present invention relates to the textile field, and more particularly to the removal of floating color from textile materials and / or to the induction of other effects on textile materials by exposing the latter to ozone gas.
  • the invention relates to the case of treating a textile material with ozone gas when the latter is being processed while extending and moving longitudinally.
  • a first aspect of the invention is a system for processing the textile material, and a second aspect of the invention is a method of treating the textile material.
  • the system adapts to execute the method.
  • the textile material may comprise any type of materials known in the clothing and textile industries, non-limiting examples being cotton and wool.
  • the textile material can be a fabric or a set of nonwoven and unbound yarns.
  • Denim is a very popular clothing, and clothing made of denim is welcomed by many people.
  • the removal of a floating color from the denim is a very important process in the manufacturing process.
  • the floating color is normally removed by rinsing using a rinse bath.
  • Treating textile materials with ozone gas is a well-known and widely applied technological concept in the textile industry. It is known that such treatment serves several different purposes, such as the alteration of the color of the textiles or the change of their appearance and / or surface chemistry. This is possible due to the fact that ozone is a known strong oxidant that can react with textile fibers. Therefore, a large number of state-of-the-art documents describe various inventions and scientific discoveries related to the treatment of textile materials, such as textile materials and clothing, with ozone gas. Two common variations of the implementation of such treatments they are to immerse the textile in a liquid that contains ozone dissolved in it, or expose the textile to a gas atmosphere that contains ozone gas at relatively high concentrations.
  • the ozone gas can be more immediate and easily controlled to be high, compared to the first variation. For this reason, the second variation is of great interest for the industrial processing of long textile materials in which relatively high concentrations of ozone are needed.
  • the present invention relates to said second variation. Examples of types of textile materials mentioned in the relevant prior art are fabrics, such as denim fabrics, and threads.
  • a document of the state of the art which refers to the second variation is the patent with publication number ES2423529, which describes a system for treating a textile material.
  • the system comprises a processing chamber, a textile feed port and a textile discharge port to respectively allow the continuous textile material to pass part by part through the interior of the main chamber containing an ozone-rich gas atmosphere. to treat the textile material that passes through it.
  • these ports contain liquid tanks that are intended to moisten and wash the textile material as it enters and exits the system, and also aims to act as physical barriers to prevent toxic ozone gas from leaving the system. chamber and be released to the environment, thus also allowing the concentration of ozone gas inside the chamber to not dissipate due to gas leaks.
  • the main chamber comprises rollers that are configured such that the textile material inside the chamber is loose, forming bags that hang between the rollers.
  • the purpose of the present invention is to provide a system and method of treating a textile with ozone gas, for example, to remove floating color with ozone.
  • the solution comprises using a tension compensator that is in contact with the textile material inside the chamber, and prevents the formation of ozone-induced defects, contributing to tension the textile material and controlling the tension of the textile material.
  • the textile material when passing through the chamber is not transported by a conveyor belt and the like, but passes through and is guided by rollers arranged inside the chamber.
  • the purpose of the invention in its first aspect is to provide a system (physical device) for processing textile materials with ozone gas, and the system comprises a voltage compensator and is adapted to implement the method of the invention, and to solve the technical problems mentioned above.
  • the system is a device, and the terms “device” and “system” mean the same thing here, therefore they are used interchangeably.
  • the present invention in its first aspect is a system for treating a textile material with ozone gas, the textile material being a fabric or a set of threads, the system comprising
  • a hollow chamber comprising in its interior a plurality of guide rollers, the plurality of guide rollers being configured to contact and guide the textile material to pass, being longitudinally tensioned and extended from side to side, through the hollow chamber;
  • an ozone supply system connected to the hollow chamber and configured to supply the latter with ozone gas at a desired concentration value
  • a textile feed port that is adjacent and connects to the hollow chamber, and comprises a first tank that is configured to contain a first reservoir of a first liquid that prevents ozone leakage through the textile feed port when the system works;
  • a textile discharge port that is adjacent and connects to the main chamber, and comprises a second tank that is configured to contain a second reservoir of a second liquid that prevents ozone leakage through the textile discharge port when the system works;
  • the system is configured such that the textile material passes successively through the first tank, through the interior of the hollow chamber, and through the second tank, the system being characterized by the hollow chamber comprising inside at least one tension compensator configured to control the tension of the textile material when the latter passes through the hollow chamber.
  • the tension compensator comprises a contact part that is configured to contact the textile material and that is movable along a geometric line between a first working position and a corresponding second working position, and control the tension of the textile material that passes by deflecting the latter by applying a deflection force of between 0.5 N and 400 N when the textile material along its length intersects with said geometric line.
  • system further comprises
  • a sensor that is connected to or is part of the at least one voltage compensator, and is connected to said first signal transmitting means, and is configured to detect the actual position of the contact part of the at least one voltage compensator and generate a corresponding feedback signal and transmit said feedback signal by said first signal transmittance means;
  • a voltage control unit which is optionally part of the at least one voltage compensator, and comprises a programmable microprocessor connected to the second signal transmitting means and to the first means of signal transmittance, and the microprocessor is configured to receive the feedback signal and correlate it with the actual position of the contact part or the corresponding one with said real value of the position of the deflection force or actual value of the tension of the textile material , and is also configured to compare said real position or actual value of the deflection force or tension with one programmed by the user of the system corresponding to the desired position or desired value of the deflection force or tension, and when said real position or real value does not correspond to said desired position or corresponding desired value of the deflection force or tension, the microprocessor is configured and programmed to calculate a desired rotational speed at which the at least one of the plurality of driving rollers must rotate so that said real position or actual value of the deflection force or tension becomes equal to the po desired position or corresponding desired value of the deflection force or tension, and generate an instruction
  • the feedback and instructional signals may be, for example, electrical signals and the like
  • the first and second signal transmitting means may optionally be parts of the at least one voltage compensator, and may be, for example, electrical wires and the like.
  • the drive roller can comprise motors that drive the rotation of the rollers and connected to said second signal transmitting means, and optionally comprise its own microprocessors that are configured and programmed to control the speed of rotation of the motors and thus of the driving rollers. .
  • the deflection force When the deflection force is between 0.5 N and 400 N, which means that the deflection force has a value between 0.5 N and 400 N, then the deflection force has a defect prevention value due to that the value of the deflection force is optimal to prevent the formation of ozone-induced defects.
  • the deflection force is constantly between 0.5 N and 400 N, and most preferably the value of the deflection force is constant or substantially constant.
  • the present invention teaches the use of a tension compensator inside the chamber in which the ozone treatment of the textile material takes place, and also teaches the preferred way by which the tension compensator manages to prevent the formation of ozone-induced defects on The textile material.
  • the system tension compensator controls the tension of the textile band by applying a deflection force to the latter, which can also be considered a load applied to the textile material that tensiones it and keeps it in contact with the tension compensator and diverts it from the path that the textile material would follow in the absence of the tension compensator.
  • the tension compensator which in one example is a free one (free roller, free roller system), applies a deflection force (a load) to the textile material that is stable or controllable. Therefore, the voltage compensator, and more specifically its part that contacts the textile material, is configured to be mobile.
  • the deflection / load force applied from the tension compensator to the textile material is preferably measured by a sensor, such as a load cell, a potentiometer, an inclinometer, attached to or integrated in the voltage compensator and designed to measure the position of the voltage compensator, and preferably the position of the contact part.
  • a sensor such as a load cell, a potentiometer, an inclinometer, attached to or integrated in the voltage compensator and designed to measure the position of the voltage compensator, and preferably the position of the contact part.
  • the deflection / load force is perpendicular to a geometric plane that is tangent to the center of the interface between the contact part and the textile material that come into contact with each other. Most of these sensors directly measure the position of the contact part, and the deflection force (load) is calculated using a correlation function between said position and said force.
  • said sensors optionally comprise corresponding microprocessors that calculate the force / load and optionally communicate with a voltage control unit which also comprises a microprocessor.
  • Said tension control unit is optionally configured to control the impulse / rotation of properly configured drive rollers, thereby controlling the torque output of the drive roller, thereby controlling and further stabilizing the tension of the textile material, as commonly described in prior art regarding the general use of tension compensators, such as free rollers, in the textile industry.
  • the above-mentioned defect prevention value of the deflection force between 0.5 N and 400 N which approximately corresponds to a load of between 0.5 kg and 400 kg, is important to prevent the formation of Ozone induced defects.
  • the deflection force is between 10 N and 200 N, or between 1 N and 100 N.
  • the hollow chamber is the chamber within which essentially the treatment of the textile material with the ozone gas takes place.
  • the hollow chamber and any of the system components contained inside the hollow chamber are made of materials that are not corroded by ozone gas, for example the walls of the hollow chamber can be made of stainless steel.
  • the walls of the hollow chamber do not contain open holes or gaps or fissures that allow toxic ozone gas to escape into the environment outside the system when the textile feed port and the textile discharge port do not contain the respective liquid reservoirs.
  • the hollow chamber contains inputs / ports to which the ozone supply system, or other optional components, can be connected or adjusted, in a manner that prevents said ozone gas from escaping into the environment.
  • the hollow chamber optionally comprises at least one door that can be hermetically sealed, and is intended to provide access to the interior of the hollow chamber when the system is not in operation.
  • the hollow chamber optionally comprises at least one viewing window made of a transparent material such as glass to allow inspection of the interior of the chamber when the system operates.
  • the ozone supply system is an ozone generating device that converts atmospheric air oxygen into ozone gas, and provides ozone gas inside the chamber or a gas that is rich in ozone.
  • the ozone generating device is an independent unit located next to or next to the hollow chamber, and ozone gas is connected and passes to the hollow chamber, and for example to at least one gas inlet fixed to a side wall of the hollow chamber, by appropriate pipes connected to said gas inlet and to an air outlet nozzle of the ozone generating device through which the ozone produced leaves the ozone generating device.
  • the ozone supply system comprises gas tanks or cylinders containing ozone gas.
  • the system comprises at least one sensor that monitors the concentration of ozone exposed to any area inside the hollow chamber, the ozone generating device and the optional pipes between the first two, to measure the concentration of ozone gas to check if the latter has the desired ozone concentration value, such that the ozone generating device or its connection to the hollow chamber can be properly adjusted during the operation of the system in order to have said desired value.
  • said desired ozone concentration value is between 2 g / Nm 3 and 150 g / Nm 3 , because within this range of values the prevention of defect formation is facilitated using this system, especially when the textile material and its longitudinal segment moves through the camera at a very high or very low linear speed.
  • the first liquid and the second liquid are liquids, such as water, that are commonly used when treating textiles. These liquids optionally comprise additional substances that serve various purposes such as controlling the efficiency and speed of the chemical reaction between the textile material and the ozone gas, and / or washing the textile material and its longitudinal segment just before the latter enters the hollow chamber or just after the longitudinal segment leaves the hollow chamber.
  • the most important effect of these liquids and the two deposits formed by them is that they act as liquid barriers that, in combination with the other components and the system configuration, do not allow ozone gas to leave the hollow chamber through the discharge and feed ports of textile.
  • the first and the second liquid are supplied to the system, for example they are supplied manually.
  • the system comprises a liquid supply system connected to the first tank and / or the second tank, and configured to supply the first liquid and / or the second liquid.
  • Liquids can be supplied from outside the system directly to the tanks when the configuration of the ports is such that the tanks are easily accessible to the user.
  • the textile feed port and / or the textile discharge ports respectively, have a first and a second liquid inlet through which the first and second liquid are supplied to the respective tanks.
  • the textile material moves longitudinally passing through the system as described above.
  • the linear speed at which the textile material, and thus each longitudinal segment (part) of it, travels through the system is constant during the operation.
  • the linear speed varies during operation, such that different longitudinal segments are treated under different conditions that result in different final effects on the textile material, or such that the final effect on all parts of the material Textile that travels through the hollow chamber is the same when there are voluntary or involuntary temporary changes in the other processing parameters and the speed has to be adjusted to compensate for such changes.
  • the textile material, or a longitudinal segment thereof passes through the system by pulling / propelling the textile material using an appropriate drive roller and components as described further below.
  • certain types of rollers are arranged inside the hollow chamber and the textile feed port and the textile discharge port of the textile to ensure that the textile material in contact with said certain types of rollers follows through the system a well defined trajectory and move without complications through said trajectory.
  • the dimensions of the system and its components are such that they allow the textile material to pass through the system being extended from side to side. Therefore, optionally and preferably, the width of the main system and each of the system components through which the textile material passes is greater than the width of the textile material.
  • the length of each of the various rollers and components, such as the contact part of the tension compensator, in contact with the textile material is greater than the width of the textile material.
  • the textile material treated by the system extends completely from side to side when it passes longitudinally and travels / runs through the system.
  • a longitudinal segment is a part of the textile material that enters, moves through and out of the system as described above.
  • the longitudinal segment has the same width and thickness as the textile material and is the length of a fraction of the length of the textile material.
  • each of the first tank and second tank respectively contain at least one first immersed roller and at least one second immersed roller, which are immersed in the respective first and second tanks when the system.
  • the at least one immersed first roller is configured to receive the textile material (a longitudinal segment) that enters the first liquid reservoir and redirect it to its outlet to move into the hollow chamber.
  • the at least one second submerged roller is configured to receive the textile material (a longitudinal segment) that enters the second liquid reservoir and redirect it at its outlet to move out of the hollow chamber and the textile discharge port.
  • Each optional submerged roller is optionally a guide roller, and more precisely, an external guide roller, which means a guide roller located outside the hollow chamber.
  • each of the guide rollers is arranged such that the textile material is completely placed side to side in contact with a part of the outer surface of the guide roller when the textile material (a longitudinal segment thereof) moves to through said guide roller.
  • the guide rollers are fixed on one or more walls inside the hollow chamber and / or on a supported fixing structure thereof, and are arranged such that their axis of rotation is perpendicular to the direction of movement of the textile material and its longitudinal segment.
  • the at least one voltage compensator is preferably fixed on one or more walls of the chamber and / or on a supported fixing structure thereof.
  • any of the at least voltage compensator is configured such that when during the operation of the system the deflection force applied by the voltage compensator does not have a defect prevention value, then the voltage compensator is automatically adjusted, which means that its contact part moves, such that the deflection force obtains a prevention value of defects.
  • said adjustment may not be automatic, but occurs after the intervention of the system user, especially when the contact part has reached the first and second work positions mentioned above or has moved out of the geometric line mentioned above concerning the displacement / movement of the voltage compensator.
  • the voltage compensator which means its contact part, is mobile such that the interface between the voltage compensator and the textile material is mobile with respect to a stationary reference point within the hollow chamber.
  • the deflection force has a defect prevention value, then the formation of ozone-induced defects on the treated textile material and its longitudinal segments within the chamber is prevented.
  • There must be at least one tension compensator in the hollow chamber however, optionally and preferably, there are two or more tension compensators arranged along the travel path, followed by the textile material within the hollow chamber. It is observed that the textile material treated within the hollow chamber is longitudinally continuous and moves along its length, therefore at any specific time the length of the tensioned textile material within the hollow chamber is equal to the travel path in That specific moment.
  • the voltage compensator is configured such that it is not easily corroded or damaged by ozone gas.
  • the surface of the voltage compensator that is exposed to ozone gas is made of stainless steel and / or Teflon and / or other material that is resistant to corrosion.
  • the system comprises said additional components.
  • the tension compensator is configured such that the deflection force applied from the tension compensator to the passing textile material is substantially uniformly distributed through the interface between said tension compensator and the passing textile material; for example, said uniform distribution is achieved by the contact part which is a cylinder having a longitudinal direction parallel to that of the width of the textile material and the length of the contact part is greater than the width of the textile material, and the Textile material is evenly contacted side by side with the contact part of the tension compensator.
  • the system optionally comprises at least one sensor and is configured to measure the deflection force.
  • the sensor normally measures the deflection force measuring a physical parameter correlated with the deflection force.
  • Non-limiting examples of said sensor is a pressure sensor, a load / weight sensor such as a load cell, or an inclinometer that is part or connected to the voltage compensator and is configured to measure / monitor the position of the Contact part in contact with the textile material.
  • Other non-limiting examples are a tension meter disposed within the hollow chamber and configured to measure the tension of the textile material. Tension meters are known in the textile industry.
  • a sensor is an optical sensor configured to measure the position of the textile material or the tension compensator in or near the region where the textile material is in contact and deflected by the tension compensator.
  • the sensor is optionally calibrated to directly indicate the deflection force according to a correlation function between the parameter measured by the sensor and the deflection force associated with the position of the contact part and / or the textile material in contact with the part of Contact.
  • tension compensators normally have integrated sensors to measure the load or pressure or force exerted by the textile material on the tension compensator and vice versa, therefore, preferably the at least one tension compensator comprises a sensor integrated measuring the pressure or load or force exerted by the textile material on the tension compensator.
  • any or each sensor is configured to generate an emergency signal when the deflection force does not have the defect prevention value, or when the value of a physical parameter correlated with the deflection force and measured by the sensor does not correspond with a case in which the deflection force has the value of defect prevention.
  • a deflection force is measured by a sensor, such as a load cell that joins or integrates into the compensator, detecting the position of the tension compensator in contact with the textile material and that is calibrated to correlate said position with the force of detour.
  • the system comprises at least one actuator, such as a motor or hydraulic or pneumatic or mechanical or electromechanical actuator, connected to a corresponding voltage compensator and configured to push and move the contact part of the voltage compensator through the geometric line mentioned above and between the first and second work positions.
  • the actuator is part of the voltage compensator, and, for example, is a motor.
  • the actuator is connected and controlled by a voltage control unit comprising a microprocessor connected to the sensor and is configured to receive from said sensor a feedback signal that is based on the value measured by the sensor.
  • the actuator is configured to move the contact part of the voltage compensator when the feedback signal indicates that the deflection force does not have a defect prevention value or that the physical parameter correlated with said force measured by The sensor does not correspond to a case where the deflection force has a defect prevention value.
  • the feedback signal may be an electrical signal or a wirelessly transmitted radio (and the like).
  • any sensor or actuator comprises a corresponding microprocessor and is configured to be controlled by and / or generate electrical signals received by said voltage control unit.
  • each microprocessor or the voltage control unit is connected to and configured to receive and communicate electrical signals to other microprocessors or a central computer unit.
  • the guide rollers are in contact with the textile material, and thus any longitudinal segment of the textile material that passes through the hollow chamber is brought into contact, keeping the textile material stretched through its length and defining its travel path within of the hollow chamber, when the textile material (longitudinal segment) is inside and passes through the hollow chamber.
  • the plurality of guide rollers comprises, or it is divided into at least two groups of guide rollers, each of a first group and a second group of at least two groups has at least two guide rollers, the first group is fixed on an upper part of the hollow chamber and The second group is fixed on a lower part of the hollow chamber, the plurality of guide rollers also being configured to guide the textile material to pass through both the upper and lower parts of the interior of the hollow chamber.
  • the plurality of drive rolls comprises a First Foulard type roller (also known as Foulard roller, or Foulard) fixed inside the hollow chamber and then the textile feed port, and is configured to contact and receive the textile material leaving the port of textile feed, and for squeezing liquid from the textile material such that a wet pick-up value of the latter when leaving the first Foulard type roller is between 30% and 90%.
  • a First Foulard type roller also known as Foulard roller, or Foulard
  • the wet collection value is defined as (weight of the liquid absorbed on the textile material) / (weight of the textile material when dry) * 100 (%), in which both of the above-mentioned weights are measured in the same units of weight.
  • the aforementioned range for the wet collection value helps to optimize the prevention of the formation of ozone-induced defects on the textile material.
  • the plurality of driving rollers optionally comprises a second Foulard type roller fixed next to the textile discharge port and outside the hollow chamber, and is configured to be in contact with and receive the textile material leaving the textile material discharge port, and is also configured to squeeze liquid from the textile material.
  • the second Foulard type roller is intended to further stop the reaction between ozone and the textile material, thus further preventing the formation of ozone-induced defects, because the liquid that is squeezed by the second Foulard type roller can contain ozone gas trapped inside. Another way to remove the liquid from the textile material is by drying the latter.
  • the system comprises a dryer unit configured to receive and dry the textile material leaving the textile discharge port or the second optional Foulard type roller. This dryer unit can be of any type used in the textile industry in relation to other types of systems and processes.
  • each of the Foulard type rollers of the system can drive the movement of the textile material through the system because they pick up, compress and move the parts of the textile material that pass through them. Therefore, each of the Foulard type rollers acts as a drive roller.
  • the system has at least one drive roller dedicated to driving only the movement / passage of the textile material.
  • the plurality of drive rollers comprises at least one internal traction roller disposed inside the hollow chamber, the at least one internal traction roller being configured to contact the textile material and propel it to pass through the hollow chamber.
  • the plurality of drive rollers comprises at least one external traction roller located outside the hollow chamber and configured to be in contact with the textile material and propel it, so that the textile part passes through The hollow chamber
  • drive rollers such as internal or external traction rollers, for driving textile materials are well known in the textile industry.
  • a drive roller comprises or is connected to a motor comprising a rotating shaft connected to and configured to rotate the cylindrical part of the roller in contact with the textile material.
  • any of the at least one drive roller is configured such that its turning speed is adjustable, such that the deflection force has the value of defect prevention.
  • the drive roller (or the motor that drives the drive roller) comprises a microprocessor configured to control the rotational speed of the drive roller (or the motor that drives the drive roller), and said controller is connected to the microprocessor of one of said sensors or to a central computer connected to said sensor, and is configured to change / adjust the speed of rotation of the drive roller (or of the motor that drives the drive roller) when the sensor generates the aforementioned emergency signal.
  • the plurality of drive rollers is configured to drive the textile material to move / pass through the hollow chamber at a linear speed of between 5 m / min and 140 m / min; obviously, each of the plurality of the driving rollers contributes to said linear speed by rotating at an appropriate rotational speed.
  • the productivity of the system is high and thus compatible with the needs of the textile industry, and a uniform treatment of the textile with formation of defects that are prevented is also achieved, because the textile material passes quickly enough with the mechanical forces applied to the fibers of the textile material that are uniformly controlled along the various parts of the travel path of the textile material within the chamber, without affecting said textile material and fibers due to possible small variations in the concentration of ozone along said path.
  • the wet collection value of the textile material (longitudinal segment) does not change significantly within the hollow chamber, and thus better control of the prevention of ozone-induced defects is achieved. .
  • the system optionally comprises an ozone gas destruction unit connected to the hollow chamber and / or the ozone supply system, and configured to extract and destroy the ozone gas inside the hollow chamber and / or the ozone supply system .
  • This unit may be the same or similar to ozone gas destruction units that are known and widely used in the textile industry.
  • the ozone gas destruction unit may optionally comprise one or more pumps for sucking gas from the hollow chamber and / or the ozone generating device and / or any intermediate pipe.
  • the ozone gas destruction unit is intended to destroy the ozone before the system shuts down, so that a user can subsequently safely open the system, and also aims to remove ozone from the chamber when a malfunction is detected. operation in normal operation and system components, and an emergency stop of the system is necessary to protect the user and to prevent the formation of defects on the processed textile material.
  • the system and the technical effects produced by it are optimized when the first and second liquids contained respectively in the first and second tanks when the system is operating are constantly replenished or replaced or within certain time intervals.
  • said liquids can be contaminated by ozone gas and / or dust and / or other chemical impurities, which will then affect the textile material and its treatment, because the textile material is wetted by said liquids.
  • the textile material when processed by the system, can leave fibers or other substances in the liquids as deposits, and such deposits can return to the textile material, negatively affecting the quality of the textile material and promoting the formation of defects induced by ozone
  • the system further comprises a liquid purification unit connected to the first tank and / or the second tank and configured to receive liquid from it, and to remove from said liquid ozone, fibers released by the material textile and chemical by-products produced by the treatment of the textile material and passed to the liquid.
  • the first and second tanks respectively have a first and a second liquid outlet fixed on them, and the liquid purification unit is connected to these outputs. Liquid purification units are widely known and used in the textile industry in other types of systems.
  • the components of the aforementioned system and the intervals for linear velocity and ozone concentration related to the best operation and configuration of the system result in the optimal treatment of the textile material and the prevention of the formation of defects, when each part of the textile passing through the hollow chamber follows a path of at least 10 m in length within the hollow chamber.
  • This trajectory is determined by the dimensions of the hollow chamber and the spatial configuration of its components, which are in contact and guide the passage of the textile material (longitudinal segment). Therefore, optionally, the hollow chamber is configured such that the textile material follows a travel path of at least 10 m in length in the hollow chamber.
  • the performance of the system is further optimized, especially when the system is used to treat elastic textile materials such as an elastic denim fabric, when optionally each of the guide rollers of the plurality of guide rollers has an optimum value diameter , to prevent ozone-induced defects on the textile material, between 50 mm and 500 mm.
  • the guide rollers can keep the textile material evenly stretched across its length and width.
  • This effect is further enhanced in the optional case, in which each of the two consecutive guide rollers along the travel path that the textile material follows within the hollow chamber is arranged such that the length of the part of the displacement path between said consecutive guide rollers is of an optimal value, to prevent ozone-induced defects, between 20 cm and 200 cm, and preferably between 60 cm and 90 cm.
  • the system is very suitable for use to treat the textile material with ozone gas after the latter is dyed.
  • the prevention of the formation of the defects induced by the ozone is optimized when the treatment with ozone by the system is done soon after dyeing the textile material.
  • the system optionally also includes at least one dyeing unit located outside the hollow chamber and the feeding and receiving ports of textile and configured to dye textile material.
  • the dyeing unit is located close to the textile feeding port and is configured to pass the textile material to the textile feeding port.
  • the system is very suitable for use to treat the textile material with ozone gas before the latter is dyed.
  • the system optionally comprises at least one dyeing unit located next to the textile feed port and configured to receive the textile material from the textile discharge port and dye it.
  • the dyeing unit may comprise washing subunits that are configured to wash the longitudinal segments of the textile before or after said longitudinal segments are dyed.
  • the system optionally also comprises a deployment unit configured to deploy and / or unwind the textile material and pass the deployed textile material to the textile feed port.
  • the system optionally comprises a first accumulation unit, for example a J-box, which is configured to receive and accumulate at least partially the textile material and pass the latter to the textile feed port.
  • a first accumulation unit for example a J-box
  • the system optionally further comprises a second accumulation unit, for example a J-box with optionally a roller attached thereto, configured to receive, accumulate at least partially, and optionally wind the longitudinal segment leaving the discharge port of textile or the second optional Foulard roller.
  • the textile material can be a fabric, or it can be a set of threads that means nonwoven and unbound threads.
  • said assembly has the width and height of a fabric, and the threads are distributed evenly along said width.
  • each of the guide rollers of the plurality of guide rollers comprises fins configured to reduce the contact area between the textile material (longitudinal segment of the textile material) and the rollers of guide.
  • the textile material is not part of the system, and the option that each of the guide rollers comprises fins is mainly contemplated by the case that the system is intended to be used to process a textile material comprising nonwoven threads.
  • the threads of the web are fed to the textile feed port as substantially parallel and not woven or matted or bonded together, and the threads are brought into contact with the upper edges of the fins of each of the guide rollers when the textile material (longitudinal segment) passes through the guide roller.
  • the system may, for example, comprise known types of guide rollers comprising fins.
  • the longitudinal axis of the fins is parallel to the axis of rotation of the guide roller.
  • the fabric is a textile material comprising threads, which means nonwoven threads and not joined together
  • the parts of the threads of the textile material, and thus of any longitudinal segment, which are located between the guide rollers of the plurality of guide rollers can be contacted or be very close to each other. This is not desired, because it can result in non-homogeneous ozone treatment of each wire and can trigger the formation of ozone-induced defects.
  • the hollow chamber therein and between at least two of the guide rollers of the plurality of guide rollers comprises at least one separator configured to spatially separate a first set of the threads of the textile material from a second set of threads of the textile material.
  • the first set of threads of the textile material passes on or contacts one side of the separator, and the second set of threads passes on or contacts the other side of the separator, thus being spatially separated from the threads of the first set.
  • the at least one separator is a cylinder fixed within the chamber, its longitudinal axis being perpendicular to the travel path of the textile material in the vicinity of said separator.
  • said separator also comprises fins.
  • "proximity” means a distance of a few centimeters, for example a distance up to 30 cm or up to 10 cm from the separator.
  • the aforementioned system is: a device for removing floating color with ozone, comprising a hollow chamber, in which a Left side wall of the hollow chamber is provided with a textile feed port, and a right side wall of the hollow chamber is provided with a textile discharge port;
  • the hollow chamber is internally provided with guide rollers to change a direction of movement of the denim, the guide rollers are divided into two groups depending on their positions, each of the two groups have at least two guide rollers, one group it is fixed on an upper part of the hollow chamber and the other group can be fixed on a lower part of the hollow chamber;
  • a drive roller to drive the denim so that it moves from left to right is fixed above the textile discharge port through a support, and a drive shaft of the drive roller is connected to a rotation shaft of a drive motor through a transmission mechanism;
  • an air inlet is disposed in the hollow chamber, the air inlet communicates with an air outlet port of an air intake pipe, and an
  • the tension compensator of the exemplary embodiment comprises a contact portion that is configured to contact the textile material and that is movable along a geometric line between a first working position and a corresponding second working position, and controlling the tension of the textile material that passes by deflecting the latter by applying a deflection force of between 0.5 N and 400 N when the textile material along its length is cross with that geometric line.
  • the drive roller drives the tensioned textile onto the guide roller so that it moves from left to right, and in the meantime, the ozone generating device generates ozone and supplies ozone to the hollow chamber.
  • the drive roller also drives the textile material so that it moves from right to left.
  • the hollow chamber is preferably made of stainless steel, and the hollow chamber is optionally and preferably 4 m * 1, 1 m * 2.5 m (length * height * width).
  • the length of the textile in the hollow chamber is optionally and preferably 50 m ⁇ 5 m, such that it adapts to an ozone concentration.
  • the hollow chamber is provided with the textile feed port, the textile discharge port, the air inlet and the air outlet, in which the air outlet communicates with an air inlet port of an air outlet pipe.
  • the textile feed port and the textile discharge port are both provided with a sealing structure to prevent ozone from overflowing therewith.
  • the sealing structure can be used to reduce, but not completely eradicate, ozone leakage.
  • the sealing structure comprises a first distribution plate, the upper part of the first distribution plate being supported against the upper part of the hollow chamber, and a gap is arranged between the part bottom of the first distribution plate and the bottom of the hollow chamber;
  • the sealing structure optionally further comprises a second distribution plate, the lower part of the second distribution plate being supported against the bottom of the hollow chamber, and a gap is arranged between the upper part of the second distribution plate and the upper part of the hollow chamber;
  • the first distribution plate is located between a side wall of the hollow chamber and the second distribution plate, and the height at which the bottom of the first distribution plate is located is less than the height at which it is locate the upper part of the second distribution plate;
  • water is loaded between the side wall and the first distribution plate, and between the first distribution plate and the second distribution plate, and the height at which the water level of the water is located is less than the height at the one that the upper part of the second distribution plate is located, but superior to the height at which the lower part of the first distribution plate is located
  • the structure of the hollow chamber is optimized, when using the partition plate and the side wall to form a water sealing structure that can effectively prevent ozone overflow and reduce the water inlet in the hollow part inside the second distribution plate.
  • a water sealing structure that can effectively prevent ozone overflow and reduce the water inlet in the hollow part inside the second distribution plate.
  • other liquids can be used to replace the water for sealing.
  • the air inlet is located in the upper part of the hollow chamber within the first distribution plate, and can also be additionally located in the lower part or the side wall of the chamber hollow inside the second distribution plate.
  • the air inlet is provided with a three-way valve
  • a three-way valve valve port communicates with the hollow chamber
  • a valve port communicates with the port From the air outlet of the air intake pipe
  • a valve port communicates with the air outlet port of an air guide pipe.
  • the air inlet port of the air guide pipe is connected to an air outlet of an air blower. In this way, the air pressure in the air inlet can be increased by means of the air blower, thus increasing the intensity of the ozone action with the denim (or other textile), and improving the effect of treating with ozone , and for example the effect of removing the floating color.
  • the air intake pipe is provided with a flow valve, which is used to adjust an ozone inflation volume, to control the amount of ozone in the hollow chamber.
  • an ozone concentration monitoring sensor is arranged in the hollow chamber, and is connected to a microprocessor system.
  • the microprocessor system is connected to a control system for the ozone generating device, which adjusts the rate of ozone generation according to the ozone concentration, to control the amount of ozone in the hollow chamber.
  • the ozone generating device can be purchased directly on the market, and the ozone generating structure and its operational principles belong to the state of the art, and will not be described in detail herein.
  • the present invention is not intended to provide a new ozone generating device.
  • the device for removing floating color with ozone optionally further comprises at least two rinsing baths (liquid tanks), in which at least one can be located on a left side of the hollow chamber and at least one can be located on a right side of the hollow chamber; a drive roller to drive the denim so that it moves from left to right is optionally disposed above the discharge port of the rinse bath, and a drive shaft of the drive roller is optionally connected to a rotation shaft of a drive motor to through a transmission mechanism; the rinse bath is optionally filled with water, and the guide roller for changing a direction of movement of the denim is optionally provided inside the water in the rinse bath; and by means of the impeller motor, the denim (textile material) is driven to pass sequentially through the guide roller of the rinse bath located in front of the hollow chamber, the impeller roller of the rinse bath located in front of the hollow chamber, the hollow chamber guide roller, the hollow chamber drive roller, the rinse bath guide roller located behind the hollow chamber and the rinse bath drive roller located in front of the
  • the rinse bath optionally preferably comprises a cavity open upwards, and the side wall of the cavity is provided with the water inlet and the water outlet; the water inlet is connected to the water inlet pipe, and the water outlet port of the water inlet pipe communicates with the cavity; and the water outlet is connected to the water outlet pipe, and the water inlet port of the water outlet pipe communicates with the cavity.
  • the water inlet and the water outlet in the cavity are used to carry out the circulation and renewal of the water in the rinse bath.
  • two rinse baths are preferably arranged, in which one is located on the left side of the hollow chamber and the other is located on the right side of the hollow chamber.
  • the water that leaves with respect to the back of the hollow chamber can be used as water that enters with respect to the front of the hollow chamber to improve the water utilization rate.
  • the water outlet of the rinse bath that is located on the relative back can be connected, through a pipe, with the water inlet of the rinse bath that is located in the relative front, and a water pump can be arranged in the pipe to drive the water to circulate.
  • An ozone floating color removal method is characterized by performing an oxidation reaction of ozone with the floating color on a textile by means of the property of strong oxidation of ozone, to separate the floating color of the textile.
  • Said method is a method of treating a textile material with ozone gas.
  • the invention in its second aspect is a method of treating a textile material, the method comprising the step of: providing a first liquid to a first tank, and providing a second liquid to a second tank, in a system comprising: a hollow chamber comprising in its interior a plurality of guide rollers, the plurality of guide rollers being configured to contact and guide the textile material so that it passes, being longitudinally tensioned and extended from side to side, through the hollow chamber; an ozone supply system connected to the hollow chamber and configured to supply the latter with ozone gas at a desired concentration value; a textile feed port that is adjacent and connects to the hollow chamber, and comprises the first tank that is configured to contain a first reservoir of the first liquid that prevents ozone leakage through the textile feed port when the system; a textile discharge port that is adjacent and is connected to the main chamber, and comprises the second tank that is configured to contain a second reservoir of the second liquid that prevents ozone leakage through the textile discharge port when the system; a plurality of drive rollers configured to
  • the tension compensator comprises a contact part that is configured to contact the textile material, and which is movable along a geometric line between a first position of corresponding work and a second working position, and control the tension of the textile material that passes by diverting the latter by applying a deflection force of between 0.5 N and 400 N when the textile material along its length intersects with said line geometric, and in the third stage of the method controlling the tension of the textile material comprises applying the deflection force of between 0.5 N and 400 N to the textile material using the tension compensator (which means using the contact part).
  • the contact part can be located at any point along said geometric line, and said force of said defect prevention value is applied when it is located at any point along said geometric line.
  • the deflection force that is applied to the textile material is constantly between 0.5 N and 400 N, and optionally the value of the deflection force is constant or substantially constant.
  • the first stage of the method can also be described as follows: providing a first liquid to a first tank, and providing a second liquid to a second tank, in a system that is according to the first aspect of the invention.
  • the desired ozone concentration value is between 2 g / Nm 3 and 150 g / Nm 3 , and for example is between 2 g / Nm 3 and 30 g / Nm 3 , or is between 25 g / Nm 3 and 150 g / Nm 3 .
  • the concentration of ozone in air in the chamber is between 5% and 15%, and preferably 10%.
  • the above method involves the action of extending the textile material through the system to bring the textile material into contact with the rollers and the tension compensator, and this can be done preferably and optionally during any of the steps of the method, but preferably it is done during / in or before the first stage of the method, or during / in the third stage.
  • passing the textile material during the third stage involves operating the system and as such using its components and its configuration for guiding and driving the textile material through the various components of the system, such as the guide rollers , which are intended to put in contact and guide the passage of textile material.
  • a non-preferable alternative way of passing / driving the textile material is to manually push the textile material from outside the discharge port of textile material.
  • the third stage of the method comprises adjusting the rotational speed of at least one drive roller to tension the textile material such that the material passes through a region (for example, through the geometric line mentioned above) within the that the tension compensator can be in contact with the textile material and is capable of controlling the tension, and for example the force of deflection of the defect prevention value is applied as described above.
  • the third stage of the method comprises squeezing the liquid from the textile material using the first Foulard type roller, thus adjusting the wet collection value of the textile material when it exits the first Foulard type roller so that it is between 30% and 90%.
  • the method further comprises adjusting the first Foulard type to squeeze the textile material to achieve the wet collection value.
  • the method comprises guiding the textile material so that it passes through both the upper part and the lower part of the interior of the hollow chamber.
  • This last option requires the use of the optional feature of the system mentioned above that the guide rollers of the plurality of guide rollers are configured such that the textile material passes through both the top and bottom of the hollow chamber .
  • the option of, during the third stage of the method, using at least one sensor to measure the value of the deflection force and / or the correlated physical parameter is contemplated With the force of diversion.
  • the system comprises an electromechanical actuator as described above and that during the third stage of the method use the value measured by the at least one sensor as a feedback signal to adjust the position of the contact part of the voltage compensator using said electromechanical actuator. In this way the task of ensuring that the diversion force has the prevention value is facilitated.
  • the system comprises the second Foulard type roller as described above, then it is preferable, during the third stage of the method, to squeeze the liquid from the textile material using the second Foulard type roller.
  • the system is exceptionally very suitable for treating the textile material with ozone just before or just after the textile material or parts of it are dyed.
  • the method optionally comprises dyeing the textile material.
  • dyeing is done before or after the third stage mentioned above of the method.
  • Said dyeing can be implemented using a system comprising the dyeing unit mentioned above.
  • the method can be implemented when the textile material is cloth, or when the textile material comprises nonwoven and unbound yarns.
  • each of the guide rollers has fins
  • the third stage of the method It further comprises using the fins of the guide rollers to reduce the contact area between the textile material and the guide rollers.
  • the use of guide rollers comprising fins can also be implemented to treat a fabric.
  • the textile material is passed at a high linear speed when the ozone concentration value is relatively low, and the band speed is passed at a linear low speed when the ozone concentration value is relatively high.
  • the optional case is revealed that, when the desired ozone concentration value is between 2 g / Nm 3 and 15 g / Nm 3 , then during / in the third stage of the method the textile material is passed to through the hollow chamber at a linear speed between 25 m / min and 50 m / min.
  • the optional case is also disclosed that, when the desired ozone concentration value is between 10 g / Nm 3 and 150 g / Nm 3 , then during / in the third stage of the method the textile material is passed through of the hollow chamber at a linear speed between 20 m / min and 150 m / min.
  • the optional case that the desired ozone concentration value is between 5 g / Nm 3 and 30 g / Nm 3 is disclosed, and during / in the third stage of the method the textile material is passed through the hollow chamber at a linear speed between 25 m / min and 50 m / min.
  • the value of the ozone concentration and the linear velocity taking into account the length of the travel path along which it passes the textile material inside the hollow chamber and also taking into account whether the textile material, and also the textile material, is a fabric or comprises threads separated from each other.
  • the textile material is a denim fabric
  • the hollow chamber (13) is configured such that inside the textile material follows a displacement path of a length of between 10 m and 35 m, the desired ozone concentration value is between 2 g / Nm 3 and 30 g / Nm 3 , and in the third stage of the method pass the textile material through the hollow chamber (13) at a linear velocity of between 25 m / min and 50 m / min
  • the textile material is a denim fabric
  • the hollow chamber (13) is configured such that within it the textile material follows a displacement path of between 10 m and a length 35 m, the desired ozone concentration value is between 25 g / Nm 3 and 150 g / Nm 3
  • in the third stage of the method pass the textile material through the hollow chamber (13) at a linear speed between 50 m / min and 140 m / min.
  • the method also comprises adjusting the ozone concentration value and the linear velocity of the textile material according to the type of the textile material.
  • the textile material is denim fabric dyed with indigo dyes, reagents and / or sulphurous, the desired ozone concentration value is between 2 g / Nm 3 and 15 g / Nm 3 , and in the third stage of the method the textile material is passed through the hollow chamber at a linear speed between 25 m / min and 50 m / min, ii) the textile material is fabric that is raw and / or in an unprocessed state, the desired ozone concentration value is 20 g / Nm 3 , and in (during) the third stage of the method the textile material is passed through the hollow chamber at a linear speed of 40 m / min, iii) the textile comprises wool, the desired ozone concentration value is
  • the present invention is for treating the textile material, in which the treatment of the textile material can be understood, in a non-limiting manner, as is any of the following finishing effects: shine the textile material, remove the re-dyeing of the textile material, washing the textile material, bleaching the textile material, altering the color of the textile material, regulating the pH of the textile material, fixing sulfur dye of the textile material, oxidizing an adsorbed dye on the textile material, bleaching the textile material , prepare the textile material for dyeing, improve the subsequent uptake of dyes or pigments or dyes or resins or enzymes by the textile material, improve the defective dyeing of the textile material, improve the anti-aging performance of the textile material, remove the floating color of the material textile, mercerize the textile material, remove the sizing of the textile material, prevent shrinkage of the textile material.
  • the inventors in view of the unexpectedly good prevention of the formation of ozone-induced defects on the textile material by implementing the present invention suggest that the dynamics of the reaction of the ozone gas with the textile material it depends, at least in some way, on the tension of the textile material inside the chamber, and vice versa.
  • the inventors suggest that the exact mechanical state, such as tension, of the fibers of the textile material should be controlled when the fibers are exposed to ozone gas. For this reason, the use of at least one ozone voltage compensator containing a hollow chamber solves the problem of how to prevent the formation of ozone-induced defects.
  • the system can also comprise voltage controllers such as voltage compensators located outside the hollow chamber.
  • Fig. 1 is a schematic diagram of a cross section of a first preferred embodiment of the system when the latter operates.
  • Fig. 2 is a three-dimensional perspective of a part of the system as compared to Fig. 1, as seen from outside the system.
  • Fig. 3 is a schematic diagram of a cross section of a second preferred embodiment of the system when it operates, which comprises the system of Fig. 1 as a part of the overall system.
  • Fig. 4 is a three-dimensional perspective of the system with respect to Fig. 3 as seen from outside the system.
  • Fig. 5 is a third preferred embodiment of the system, in which the system is intended to be used to treat textile material comprising a set of threads not tissues not attached to each other.
  • Fig. 6 is a schematic diagram of a cross section of an embodiment of the voltage compensator, and shows 3 different working positions of the voltage compensator.
  • Fig. 7 is a schematic diagram of a cross section of the exemplary embodiment of the first aspect of the invention.
  • Fig. 1 shows a first preferred embodiment of the system of the first aspect of the invention.
  • the system 1 is located on the floor G, and comprises the hollow chamber 13, the textile feeding port 16 which is adjacent and is connected, for example, by the side walls of the system (not shown completely), to the first wall 20 of the hollow chamber 13.
  • System 1 also comprises the textile discharge port 26 that is adjacent and is connected to a second wall 30 of the hollow chamber.
  • Said textile feed port 16 comprises the first tank 19, the first liquid inlet 15, the first liquid outlet 18 that can be connected to a liquid purification unit (not shown), and the first submerged roller 21, and the external textile redirection means 39 which in this case is a bar.
  • Said textile discharge port 26 comprises the second tank 29, the second liquid inlet 17, the second submerged roller 22 and the second liquid outlet that can be connected to said liquid purification unit.
  • the first and second liquid inlets 15, 17 can be connected to a liquid supply system (not shown).
  • the system 1 also comprises a support structure S that keeps the hollow chamber 13 and the textile discharge and feeding ports 26, 16 above the ground.
  • the ozone supply system is a ozone generating device 40 (rectangle highlighted by the gray color) located below the textile feed port 16, and is connected by pipe (not shown) to eight gas inlets 10 (air inlets) fixed on the rear side wall of the hollow chamber 13.
  • the first reservoir 34 indicated by the light gray color and the second reservoir 35 are formed respectively such that the lower edges of the first and second walls 20, 30 are completely submerged within the respective reservoirs 34 and 35.
  • each of the front and rear side walls (with respect to the drawing plane) of the hollow chamber extends towards the first tank 19 and the second tank 29 which act as the corresponding side wall thereof, and which they also join the entire length of the front and rear side edges (not shown) of said first wall 20 and said second wall 30. For this reason, the ozone gas in the hollow chamber cannot escape through the feeding ports and discharge of textile material 16, 26 when the first and second deposits 34, 35 are respectively present.
  • the hollow chamber 13 also comprises a plurality of guide rollers 7 (for presentation clarity not all the guide rollers are indicated numerically, the reader can distinguish them in the drawing), two internal traction rollers 8 each being driven by a motor of corresponding traction 6 properly connected to the first and located above the hollow chamber, and three voltage compensators 1 1.
  • the system 1 further comprises the first Foulard-type roller 9 which is driven by a first drive motor 37 properly connected thereto located above the hollow chamber 13 near the textile feed port 16, and the system 1 also comprises the second Foulard type roller 14 which is operable by a second drive motor 31 properly connected thereto located above the first.
  • first Foulard-type roller 9 which is driven by a first drive motor 37 properly connected thereto located above the hollow chamber 13 near the textile feed port 16
  • the system 1 also comprises the second Foulard type roller 14 which is operable by a second drive motor 31 properly connected thereto located above the first.
  • each of the first and second Foulard type rollers 9, 14 comprises a set of two respective sub-rollers (not numerically indicated) and the distance between the sub-rollers of each set is adjustable such that the pressure applied to the textile material 2 and its longitudinal segments 3 that pass between said sub-rollers is also adjustable such that the amount of liquid withdrawn from the textile material 2 is controlled and thus the wet collection value of the latter (for example of a longitudinal segment 3) when leaving each Foulard roller.
  • the system 1 also comprises another drive roller, which is an external traction roller 32, located outside the hollow chamber 1 and above the second tank 29 and reservoir 35, said external traction roller 32 being connected and being driven by the motor. external impeller 33 located next to the first.
  • system 1 also comprises the external textile redirection means 39 which is an external guide roller.
  • the external textile redirection means 39 of the system which are external guide rollers and / or bars and configured to guide the textile material 2, and thus its longitudinal segments 3, to enter the textile feed port 16 and exit the textile discharge port in the appropriate directions to pass through of the system and its rollers.
  • the textile material 2 that extends longitudinally through and passes through the system when the latter is used is represented by the thick gray line.
  • Examples of the longitudinal segments 3 of the textile material 1 are represented by the thick black lines superimposed on the thick gray line representing the textile material 2.
  • the hollow chamber 13 of the system 1 also comprises sensors for monitoring the concentration of ozone 12 that can be connected to the microprocessor system of a gas analyzer (not shown) and are configured to measure the concentration of ozone gas inside the chamber hollow when the system works.
  • the upper wall of the hollow chamber has a gas outlet 5 fixed thereon, and by said gas outlet 5 a gas destruction unit 4 is connected to the hollow chamber.
  • the gas destruction unit 4 which in this specific case contains the Caroulite® catalyst, is configured to remove gas from inside the hollow chamber, destroy its ozone content and release 38 non-toxic exhaust gas into the environment.
  • the axis of width of the textile material 2 and the axis of rotation of all types of rollers represented therein are substantially perpendicular to the plane of Fig. 1.
  • the textile materials execute a longitudinal movement when they pass through the hollow chamber, and during said longitudinal movement the textile material travels along the length of the system and within the hollow chamber passes successively through the upper and lower part of the hollow chamber.
  • the width of the system and the length of the guide rollers are greater than the width of the textile material, such that the latter can pass through the system and its rollers, being extended from side to side and uniformly in contact with each other. of the guide rollers.
  • the travel path of the textile material 2 (and any of its longitudinal segments 3) within the chamber is greater than 10 m.
  • Fig. 2 shows a three-dimensional perspective of a part of the system 1 of Fig. 1, as seen from outside the system 1 and behind the rear side wall 49 of the hollow chamber (hollow chamber 13 in Fig. 1) .
  • Fig. 2 shows the two traction motors 6, the external traction motor 33 and clearly shows four of said gas inlets 10.
  • FIG. 2 also shows part of the pipe 42 connecting said gas inlets 10 to the generating device ozone (not shown), and also shows that attached to said pipe 42 there is a fan motor 43 that is connected and drives a fan (not shown) located inside the pipeline 42 and configured to increase the flow at which the ozone gas is injected into the hollow chamber, such that the concentration of the ozone gas is substantially uniform within the hollow chamber in operation normal system Said fan essentially functions as the gas blower mentioned in relation to the exemplary embodiment of the first aspect of the invention.
  • Fig. 2 also shows the gas analyzer 44 which is connected to the ozone concentration monitoring sensors 12 (not shown) depicted in Fig. 1.
  • the gas analyzer 44 comprises a microprocessor system that is configured to receiving and optionally analyzing signals sent by the ozone concentration monitoring sensors 12, and the gas analyzer optionally shows the ozone gas concentration measured by a screen connected and controlled by said microprocessor system.
  • Fig. 3 shows a second preferred embodiment of the system.
  • the system 1 of Fig. 1 is part of the system 51 shown in Fig. 2.
  • the system 51 also comprises the first accumulation unit 45, the dryer unit 46 and the second accumulation unit 47.
  • Fig. 3 also shows as a thick gray line the textile material 2 that is present and extends through the system 51 when said system 51 operates.
  • the rectangular dashed boxes drawn in Fig. 3 indicate a first 7a and a second 7b set of guide rollers respectively located at the top and bottom of the hollow chamber.
  • Fig. 4 shows a three-dimensional perspective of the system 51 of Fig. 3, as seen from the front and above the system 51.
  • the front side wall 54 of the sub-system 1 (system 1 in Fig. 1) comprises a door 52 comprising a glass window 53 to see inside the chamber when the door 52 is closed as shown.
  • the system 51 also comprises a computer 70 that is connected to corresponding microprocessors of several of the electronic and / or electromechanical parts of the system 51, and is configured to monitor and control, according to user inputs, the operation of said parts and the system 51, and in particular any of the process parameters that are critical for treating the textile material and preventing the formation of defects, examples of such parameters being: the linear speed with which the longitudinal segment passes through the hollow chamber 13, the value of the diverting force, the collection in wet of the textile material after passing through the first Foulard roller.
  • the system of the first aspect of the invention optionally comprises computer 70, the latter being preferably connected to monitor the operation of and control any of the following system components when said components are present: first and second Foulard type rollers.
  • any of the driving rollers such as the external traction roller 32 and its motor 33 corresponding (the motor can be a component of the roller), the internal traction roller and its corresponding motor 6 (the motor can be a component of the roller), the ozone generating device 40, fan and motor 43 connected to it, sensor Ozone concentration monitor 12, gas analyzer 44, gas destruction unit 4, sec unit adora 46, liquid supply system, liquid purification unit.
  • the system can be connected to at least one power supply unit, which can also be a component of the system and can be connected to an external power network and power the system and its various components.
  • Said computer 70 can also be connected to said power unit (power unit not shown in any of the drawings).
  • the computer can be connected to any other electromechanical or electronic component not mentioned above of the system such as valves, gates, regulators, etc., which are commonly present in industrial textile processing systems and often comprise microprocessors connectable with computers.
  • Fig. 5 describes another embodiment of the system of the first aspect of the invention. This embodiment is preferred when the textile material comprises nonwoven threads.
  • the system 61 of Fig. 5 has a structure similar to the system 1 shown in Fig. 1. Therefore, the components of the system 62 of Fig. 5 that are substantially the same or serve substantially similar functionality as the components mentioned above of system 1, are described with the same reference numbers.
  • the system 62 in Fig. 5 has the following distinct characteristics: there are two large glass display windows 36 fixed on the rear side wall of the chamber, there is the external tension compensator 60 to the right of the second Foulard type roller 60 , there are the spacers 61, each of the guide rollers 7 of the plurality of guide rollers comprises fins 72 that are clearly shown in box Q of Fig.
  • each fin 72 is parallel to the axis of rotation of the roller 7, and between 72 neighboring flaps there are gaps.
  • each thread of the longitudinal segment 3 is not making contact with the guide roller 7, and this facilitates the treatment with uniform ozone of the wire and the prevention of the formation of the defects induced by the ozone.
  • Each of the spacers 61 is essentially a bar parallel to the guide rollers and fixed on either or both of the front and rear side wall (not shown / marked with the reference sign in Fig.
  • each separator 61 is intended to maintain a first set of threads of the longitudinal segment (passing through said separator 61) spatially separated from a second set of threads of the longitudinal segment, such that each thread of each first and second corresponding set is treated more uniformly by the ozone gas as it moves through the chamber and between the successive guide rollers 7, as indicated by Fig. 5. Therefore, the separators contribute to the prevention of formation of the defects induced by ozone, forming with the at least one tension compensator 1 1 and the plurality of guide rollers 7 a synergistic effect.
  • Fig. 6 shows a cross section of an example of a voltage compensator 1 1, which in this case is a common type of a voltage compensator, and describes its operation.
  • the tension compensator comprises the first shaft 81 that is attached and is substantially perpendicular to either or both of the rear and front side wall (not shown) of the system (not shown).
  • the longitudinal axis of the first shaft 81 is perpendicular to the plane of Fig. 6, and the first shaft 81 can rotate about said axis, as indicated by the double arrows shown.
  • the contact portion 83 is also a shaft parallel to the first shaft 81.
  • the connector 82 joins an edge of the contact part 83 and does not make contact with the longitudinal segment 3 of the textile material, thus does not prevent the latter from sliding around the contact part 83.
  • a second connector similarly configured with the connector 82 shown, can be attached to the other (opposite) edge (not shown) of the part of contact 83.
  • the connector 82, and thus the contact part 83 can also rotate about the longitudinal axis of the first shaft 81, following the movement of the latter when it rotates.
  • the longitudinal segment 3 (textile material) contacts the contact part 83 when it passes through the tension compensator 1 1.
  • the direction of movement of the longitudinal segment 3 as it passes through the tension compensator 1 1 is indicated in Fig. 6 by the thick gray curved arrow.
  • the deflection force F has the prevention value and the fibers (not shown) of the longitudinal segment 3 are in an optimal mechanical state to be treated with ozone.
  • the contact part 83 with the longitudinal segment 3 is in position O, and then the longitudinal segment 3 is pulled upwards to position N1 by external forces not shown, then the voltage compensator 1 1, which means its part of contact 83, rotates moving to
  • the voltage compensator 1 1 comprises a sensor for measuring the value of the deflection force related to the interaction between the voltage compensator 1 1 and the longitudinal segment 3, or measuring a physical parameter correlated with said value of the force of detour.
  • the sensor is an inclinometer that measures the angle between the position of the contact part of the voltage compensator 83 and the connector 82 with respect to the O position.
  • the voltage compensator 1 1 is preferably automatically adjusted to maintain that the deflection force has the prevention value. However, it is also contemplated that it be manually adjusted by the system user, or adjusted by an actuator that adjusts the position of the voltage compensator.
  • Another example of the sensor is the Novohall rotary sensor (RFC4800 series) which is used, for example, attached / integrated in the first rotation shaft 81 mentioned above.
  • the device for removing floating color with ozone as shown in Fig. 7 comprises a hollow chamber 13, in which a left side wall of the hollow chamber is provided of a textile feed port, and a right side wall of the hollow chamber is provided with a textile discharge port; the hollow chamber is internally provided with guide rollers 7 to change a direction of movement of the denim, the guide rollers 7 are divided into two groups depending on their positions, each group has at least two guide rollers, a group 7a is fixed on an upper part of the hollow chamber and the other group is fixed on a lower part of the hollow chamber; a drive roller whose second Foulard-type roller 14 to drive the denim so that it moves from left to right, and compress the passing textile, is fixed above the textile discharge port through a support, and a shaft of rotation of said drive roller is connected to a rotation shaft of a drive motor through a transmission mechanism; and an air inlet is arranged in the hollow chamber and communicates with an outlet air port of an air intake pipe, and
  • the drive roller drives the textile 2, which is tensioned on the guide rollers, so that it moves from left to right, and in the meantime, the ozone generating device (not shown) generates ozone and supplies ozone to the hollow chamber.
  • the device also comprises a tension compensator 1 1, a second drive roller that is an external traction roller 32, and a third drive roller that is a first Foulard type roller 9 configured for compress the passing textile denim.
  • This embodiment can be used to remove the floating color of fabric and hard printed textile, and can prevent dyeing caused by rinsing.
  • the upper part of the hollow chamber is sealed, the hollow chamber is only provided with the textile feed port, the textile discharge port, the air inlet and the air outlet, and the Air outlet communicates with an air inlet port of an air outlet pipe.
  • the textile feed port and the textile discharge port are both provided with a sealing structure to prevent ozone from overflowing from it. Please note that the sealing structure can be used to reduce / prevent, but not completely eradicate, ozone leakage.
  • the sealing structure comprises a first distribution plate 95, the upper part of the first distribution plate 95 rests against the upper part of the hollow chamber, and a gap is disposed between the lower part of the first distribution plate 95 and the bottom of the hollow chamber;
  • the sealing structure further comprises a second distribution plate 94, the lower part of the second distribution plate 94 rests against the lower part of the hollow chamber, and a gap is disposed between the upper part of the second distribution plate 94 and the upper part of the hollow chamber;
  • the first distribution plate 95 is located between a side wall of the hollow chamber and the second distribution plate 94; and the height at which the lower part of the first distribution plate 95 is located is less than the height at which the upper part of the second distribution plate 94 is located; water is charged between the side wall and the first distribution plate and between the first distribution plate and the second distribution plate 94; and the height at which the water level of the water is located is less than the height at which the upper part of the second distribution plate 94 is located, but is greater than the height at which the lower part of the first
  • the structure of a hollow chamber body is optimized, and use the distribution plate and the side wall to form a water sealing structure that can effectively prevent the overflow of ozone and reduce the entry of water into the hollow part within the second distribution plate.
  • a water sealing structure that can effectively prevent the overflow of ozone and reduce the entry of water into the hollow part within the second distribution plate.
  • other liquids can be used to replace the water for sealing.
  • the air inlet is preferably located in the upper part of the hollow chamber within the first distribution plate, and can also be located in the lower part or side wall of the hollow chamber within the Second distribution plate.
  • the air inlet is provided with a three-way valve, a valve port from which it communicates with the hollow chamber, a valve port communicates with the air outlet port of the air intake pipe, a valve port communicates with the air outlet port of an air guide pipe.
  • the air inlet port of the air guide pipe is connected to the air outlet of an air blower.
  • the air intake pipe is provided with a flow valve, such that the volume of ozone inflation can be adjusted through the flow valve, to control the amount of ozone in the hollow chamber.
  • an ozone concentration monitoring sensor is provided in the hollow chamber, and is connected to a microprocessor system that is connected to an ozone generator device control system, to adjust the ozone generation speed according to the ozone concentration and additionally to control the amount of ozone in the hollow chamber.
  • the driving rollers that pass the textile material through the system, which means driving the textile material to move it successively through the reservoir of the first liquid, through the interior of the hollow chamber and through the reservoir of the second liquid, and prevent the formation of ozone-induced defects on the textile material by controlling the tension of the textile material using the tension compensator and with a mobile contact part of the latter applying to the textile material a deflection force of a value constantly between 0.5 N Y 400 N.
  • the textile material extends similarly to what is indicated by Fig. 1.
  • the first and second liquids are water.
  • the desired ozone concentration value is between 2 g / Nm 3 and 150 g / Nm 3 .
  • the passage of the textile material is done at a linear speed between 5 m / min and 140 m / min.
  • the method comprises adjusting the speed of rotation of any of the plurality of driving rollers, thus further controlling the tension of the textile material.
  • the system comprises the first Foulard type roller, and operating the system comprises adjusting the first to squeeze water from the longitudinal segment such that the wet pick-up value of the latter when leaving the first Foulard type roller is between 30 % and 90%.
  • the hollow chamber is configured such that in its interior the textile material follows a displacement path of a length between 10 m and 200 m, and in the third stage of the method the textile material is passed through the hollow chamber at a linear speed between 5 m / min and 140 m / min, and the desired ozone concentration value is between 2 g / Nm 3 and 150 g / Nm 3 .
  • the inventors have observed that by implementing the invention, the formation of ozone-induced defects is significantly prevented compared to what is achieved with the state of the art.
  • the implementation of the invention can result in a 2-fold increase in the number of ozone-induced defects that appear on the textile material, or in a substantially greater decrease in the number of defects, compared to what is achieved when only the teachings of the state of the art apply.
  • a method of removal of floating color with ozone comprising: performing an oxidation reaction of ozone with the floating color on a textile by means of the property of strong oxidation of ozone, to separate the floating color of the textile.
  • Clause 2 The method of removal of floating color with ozone according to clause 1, in which the textile is fabric, thread or hard textile printed.
  • Clause 3 The method of removal of floating color with ozone according to clause 1, in which the textile having the floating color to be removed is placed in an air chamber filled with ozone, to make the textile contact Ozone in the air.
  • Clause 4 The method of removal of floating color with ozone according to clause 1, in which the textile having the floating color to be removed is placed in water loaded with ozone, to make the textile contact the ozone in Water.
  • a device for treating an ozone textile material comprising a hollow chamber, in which a left side wall of the hollow chamber is provided with a textile feed port, and a right side wall of the hollow chamber is provided with a textile discharge port;
  • the hollow chamber is internally provided with guide rollers to change a direction of movement of the denim, the guide rollers are divided into two groups depending on the positions, each of the two groups of the guide rollers has at least two rollers as a guide, one group is fixed on an upper part of the hollow chamber and the other group is fixed on a lower part of the hollow chamber;
  • a drive roller to drive the denim so that it moves from left to right is fixed above the textile discharge port through a support, and a drive shaft of the drive roller is connected to a rotation shaft of a drive motor through a transmission mechanism;
  • an air inlet is disposed in the hollow chamber and communicates with an outlet air port of an air intake pipe, and an inlet port of air from the air intake pipe communicates with an air outlet nozzle of an ozone
  • the voltage compensator comprises a contact part that is configured to contact the textile material and that is movable along a geometric line (GL) between a first position of work (N1) and a second working position (N2) corresponding, and control the tension of the textile material that passes by diverting the latter by applying a deflection force (F) of between 0.5 N and 400 N when the textile material a along its length it intersects with said geometric line (GL).
  • a deflection force F
  • the sealing structure comprises a first distribution plate, an upper part of the first distribution plate is supported against an upper part of the hollow chamber, and a gap is disposed between a lower part of the first distribution plate and a lower part of the hollow chamber;
  • the sealing structure further comprises a second distribution plate, a lower part of the second distribution plate is supported against the lower part of the hollow chamber, and a gap is disposed between an upper part of the second distribution plate and a part upper hollow chamber;
  • the first distribution plate is located between a side wall of the hollow chamber and the second distribution plate, and a height at which the bottom of the first distribution plate is located is less than a height at which the upper part of the second distribution plate; water is loaded between the side wall and the first distribution plate and between the first distribution plate and the second distribution plate, and a height at which a water level of the water is located is less than a height at which it locate
  • Clause 8 Device according to any of clauses 5-7, in which the air inlet is located in the upper part of the hollow chamber within the first distribution plate, or, is located in the lower part or the side wall of the hollow chamber inside the second distribution plate.
  • Clause 9 Device according to any of clauses 5-8, in which the upper part of the hollow chamber is sealed, and the hollow chamber is provided only with the textile feed port, the textile discharge port, the entrance of air and the air outlet, in which the air outlet communicates with an air inlet port of an air outlet pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

Un sistema y un método de tratamiento de un material textil con gas ozono. El sistema comprende: un sistema de suministro de gas ozono, una cámara hueca que puede llenarse con el ozono proporcionado por dicho sistema de suministro de gas, un puerto de alimentación de textil conectado a dicha cámara y que comprende un primer líquido que puede llenar el tanque, un puerto de descarga de textil conectado a dicha cámara y que comprende un segundo líquido que puede llenar el tanque, rodillos de guía, rodillos impulsores, al menos un compensador de tensión ubicado dentro de la cámara hueca. El sistema se adapta para implementar el método, comprendiendo este último: usar el sistema y proporcionar líquido a dicho primer y segundo tanques, proporcionar gas ozono a dicha cámara hueca, impulsar el material textil para que pase tensado a través del sistema mientras se controla su tensión usando los compensadores de tensión. El uso de los compensadores de tensión previene la formación de los defectos inducidos por el ozono sobre el material textil.

Description

SISTEMA Y MÉTODO DE TRATAMIENTO DE MATERIAL TEXTIL CON OZONO
CAMPO DE LA INVENCIÓN
La presente invención se refiere al campo textil, y más particularmente a la retirada de color flotante de materiales textiles y/o a la inducción de otros efectos sobre materiales textiles exponiendo estos últimos a gas ozono. Específicamente, la invención se refiere al caso de tratar con gas ozono un material textil cuando este último se está procesando mientras que se extiende y se mueve longitudinalmente. Un primer aspecto de la invención es un sistema para procesar el material textil, y un segundo aspecto de la invención es un método de tratamiento del material textil. El sistema se adapta para ejecutar el método. El material textil puede comprender cualquier tipo de materiales conocidos en las industrias de la ropa y textiles, siendo ejemplos no limitantes algodón y lana. El material textil puede ser una tela o un conjunto de hilos no tejidos y no unidos entre ellos.
ANTECEDENTES DE LA INVENCIÓN
La mezclilla es una tela de vestir actualmente muy popular, y las prendas de vestir hechas de mezclilla son bienvenidas por muchas personas. La retirada de un color flotante de la mezclilla es un proceso muy importante en el proceso de fabricación. Actualmente, el color flotante se retira normalmente por aclarado usando un baño de aclarado. Sin embargo, para retirar el color flotante de la mezclilla, y/o para alterar el color de la mezclilla u otros materiales textiles, y para tratar materiales textiles para lograr un amplio intervalo de efectos de acabado, es frecuentemente ventajoso tratar dichos materiales con gas ozono.
El tratar materiales textiles con gas ozono es un concepto tecnológico bien conocido y ampliamente aplicado en la industria textil. Se conoce que dicho tratamiento sirve para diversos fines diferentes, tales como la alteración del color de los textiles o el cambio de su aspecto y/o química superficial. Esto es posible debido al hecho de que el ozono es un oxidante fuerte conocido que puede reaccionar con las fibras de textiles. Por tanto, un gran número de documentos del estado de la técnica describen diversas invenciones y descubrimientos científicos relacionados con el tratamiento de materiales textiles, tales como materiales textiles y prendas de vestir, con gas ozono. Dos variaciones comunes de la implementación de dichos tratamientos son sumergir el textil en un líquido que contiene disuelto en él ozono, o exponer el textil a una atmósfera de gas que contiene gas ozono a concentraciones relativamente altas. En la segunda variación, el gas ozono puede ser más inmediata y fácilmente controlado para ser alto, en comparación con en la primera variación. Por este motivo, la segunda variación es de gran interés para la tarea de procesamiento a nivel industrial de materiales textiles largos en los que se necesitan aplicar concentraciones relativamente altas de ozono. La presente invención se refiere a dicha segunda variación. Los ejemplos de tipos de materiales textiles mencionados en el estado de la técnica relevante son telas, tales como telas de mezclilla, e hilos.
Un documento del estado de la técnica que se refiere a la segunda variación es la patente con número de publicación ES2423529, que describe un sistema para tratar un material textil. El sistema comprende una cámara de procesamiento, un puerto de alimentación de textil y un puerto de descarga de textil para permitir respectivamente que el material textil continuo pase parte por parte a través del interior de la cámara principal que contiene una atmósfera de gas rica en ozono para tratar el material textil que pasa a su través. Cuando funciona el sistema, dichos puertos contienen respectivamente depósitos de líquido que tienen como finalidad humedecer y lavar el material textil a medida que entra y sale del sistema, y también tienen como finalidad actuar de barreras físicas para prevenir que el gas ozono tóxico salga de la cámara y sea liberado al entorno, permitiendo así también que la concentración de gas ozono dentro de la cámara no se disipe debido a fugas de gas. En ese sistema, sin embargo, la cámara principal comprende rodillos que se configuran tal que el material textil dentro de la cámara esté suelto, formando bolsas que cuelgan entre los rodillos.
Otro ejemplo de un documento relevante del estado de la técnica es la solicitud de patente con número de publicación NZ521592A que describe un sistema que es similar al previo, con una diferencia principal en que mientras se procesa el material textil se soporta sobre una cinta transportadora (o medio similar), que es poroso tal que se puede inyectar gas a través de la cinta y el material textil soportado encima.
Los documentos anteriormente mencionados, así como diversos otros, describen cómo se pueden controlar ciertos parámetros, concretamente la concentración de gas ozono y la recogida en húmedo del material textil dentro de la cámara, para estar dentro de ciertos intervalos para facilitar el tratamiento del material textil. Sin embargo, los inventores de la presente solicitud han observado que cuando se aplican las enseñanzas del estado de la técnica como tales, se forman aleatoriamente una variedad de defectos sobre el material textil como resultado de tratarlo con gas ozono. Los ejemplos de dichos defectos son líneas y manchas que tienen diferente color en comparación con las partes del material textil que lo rodean. Por consiguiente, el material textil llega a ser estéticamente poco atractivo. Además, los inventores han observado que incluso cuando se hacen grandes esfuerzos hacia controlar con exactitud los parámetros anteriormente mencionados, se obtienen resultados no coherentes cuando se repite el método o funciona el sistema usando los mismos parámetros. Dichos problemas e incoherencias pueden impedir el uso más amplio de esta tecnología en la industria textil, y también pueden impedir su mejora hacia hacerlo compatible con el procesamiento del material textil a altas velocidades. Por tanto, se necesita una solución técnica para resolver los problemas técnicos anteriormente mencionados.
SUMARIO DE LA INVENCIÓN
El fin de la presente invención es proporcionar un sistema y un método de tratamiento de un textil con gas ozono, por ejemplo, para retirar color flotante con ozono. Esencialmente, es un objeto de la invención proporcionar un método de tratamiento de materiales textiles con ozono, y la presente invención ofrece una solución para prevenir la formación de defectos inducidos por el ozono sobre el material textil cuando este último se pasa a través de una cámara dentro de la que el material textil se expone a gas ozono, incluso cuando la concentración del gas ozono es alta y/o cuando se pasa el material textil, que significa que se procesa, a altas velocidades. La solución comprende usar un compensador de tensión que está en contacto con el material textil dentro de la cámara, y previene la formación de los defectos inducidos por el ozono, contribuyendo a tensionar el material textil y controlar la tensión del material textil. Se observa que el material textil cuando pasa a través de la cámara no es transportado por una cintra transportadora y similares, sino que pasa a través y es guiado por rodillos dispuestos dentro de la cámara. Implementando dichas partes de la solución, se resuelven los problemas de cómo prevenir la formación de los defectos inducidos por el ozono sobre el material textil, y cómo evitar las inconsistencias en los efectos inducidos por el ozono sobre el material textil, incluso cuando el material textil se procese/trate a altas velocidades de procesamiento. Es otro objeto de la presente invención proporcionar un sistema para tratar textil con gas ozono, y un ejemplo de tratamiento es retirar el color flotante con ozono. Esencialmente, el fin de la invención en su primer aspecto es proporcionar un sistema (dispositivo físico) para procesar materiales textiles con gas ozono, y el sistema comprende un compensador de tensión y se adapta para implementar el método de la invención, y para resolver los problemas técnicos mencionadas anteriormente. El sistema es un dispositivo, y los términos “dispositivo” y“sistema” significan en el presente documento la misma cosa, por tanto se usan indistintamente.
La presente invención en su primer aspecto es un sistema para tratar un material textil con gas ozono, siendo el material textil una tela o un conjunto de hilos, comprendiendo el sistema
- una cámara hueca que comprende en su interior una pluralidad de rodillos de guía, estando la pluralidad de rodillos de guía configurada para poner en contacto y guiar el material textil para que pase, estando longitudinalmente tensado y extendido de lado a lado, a través de la cámara hueca;
- un sistema de suministro de ozono conectado a la cámara hueca y configurado para suministrar a esta última gas ozono a un valor de concentración deseado;
- un puerto de alimentación de textil que es adyacente y se conecta a la cámara hueca, y comprende un primer tanque que se configura para contener un primer depósito de un primer líquido que previene la fuga de ozono a través del puerto de alimentación de textil cuando funciona el sistema;
- un puerto de descarga de textil que es adyacente y se conecta a la cámara principal, y comprende un segundo tanque que se configura para contener un segundo depósito de un segundo líquido que previene la fuga de ozono a través del puerto de descarga de textil cuando funciona el sistema;
- una pluralidad de rodillos impulsores configurados para impulsar el material textil para que se mueva a través del sistema; en el que el sistema se configura tal que el material textil pase sucesivamente a través del primer depósito, a través del interior de la cámara hueca, y a través del segundo depósito, caracterizándose el sistema por que la cámara hueca comprende en su interior al menos un compensador de tensión configurado para controlar la tensión del material textil cuando este último pasa a través de la cámara hueca.
Opcionalmente y preferentemente, el compensador de tensión comprende una parte de contacto que se configura para poner en contacto con el material textil y que sea móvil a lo largo de una línea geométrica entre una primera posición de trabajo y una segunda posición de trabajo correspondientes, y controlar la tensión del material textil que pasa desviando este último aplicándole una fuerza de desvío de entre 0,5 N y 400 N cuando el material textil a lo largo de su longitud se cruza con dicha línea geométrica.
En el presente documento, la expresión“cuando el material textil a lo largo de su longitud se cruza con dicha línea geométrica” se puede escribir alternativamente “cuando el material textil en al menos un punto a lo largo de su longitud se cruza con dicha línea geométrica”, y se podría expresar alternativamente“cuando una línea definida por el movimiento de avance lineal del material textil (en su longitudinal dirección) se cruza con dicha línea geométrica”.
Opcionalmente y preferentemente, el sistema comprende además
- primeros medios de transmitancia de señales;
- segundos medios de transmitancia de señales conectados a al menos uno de la pluralidad de rodillos impulsores, estando dicho al menos uno de la pluralidad de rodillos impulsores configurado para recibir señales de instrucción por los segundos medios de transmitancia de señales y cambiar su velocidad de giro según dichas señales de instrucción;
- un sensor que está conectado a o es parte del al menos un compensador de tensión, y está conectado a dichos primeros medios de transmitancia de señales, y se configura para detectar la posición real de la parte de contacto del al menos un compensador de tensión y generar una señal de retroalimentación correspondiente y transmitir dicha señal de retroalimentación por dichos primeros medios de transmitancia de señales;
- una unidad de control de la tensión, que es opcionalmente parte del al menos un compensador de tensión, y comprende un microprocesador programable conectado a los segundos medios de transmitancia de señales y a los primeros medios de transmitancia de señales, y el microprocesador se configura para recibir la señal de retroalimentación y correlacionarla con la posición real de la parte de contacto o la correspondiente con dicho valor real de la posición de la fuerza de desvío o valor real de la tensión del material textil, y también se configura para comparar dicha posición real o valor real de la fuerza de desvío o de la tensión con uno programado por el usuario del sistema correspondiente a la posición deseada o valor deseado de la fuerza de desvío o de la tensión, y cuando dicha posición real o valor real no se corresponde a dicha posición deseada o valor deseado correspondiente de la fuerza de desvío o de la tensión, el microprocesador se configura y programa para calcular una velocidad de giro deseada a la que el al menos uno de la pluralidad de rodillos impulsores debe girar con el fin de que dicha posición real o valor real de la fuerza de desvío o de la tensión llegue a ser igual a la posición deseada o valor deseado correspondiente de la fuerza de desvío o de la tensión, y generar una señal de instrucción correspondiente a dicha velocidad de giro deseada, y transmitir dicha señal de instrucción por los segundos medios de transmitancia de señales.
Las señales de retroalimentación y de instrucción pueden ser, por ejemplo, señales eléctricas y similares, los primeros y segundos medios de transmitancia de señales pueden ser opcionalmente partes del al menos un compensador de tensión, y pueden ser, por ejemplo, hilos eléctricos y similares. El rodillo impulsor puede comprender motores que impulsan la rotación de los rodillos y conectados a dichos segundos medios de transmitancia de señales, y opcionalmente comprender sus propios microprocesadores que se configuran y programan para controlar la velocidad de giro de los motores y así de los rodillos impulsores.
Cuando la fuerza de desvío es de entre 0,5 N y 400 N, que significa que la fuerza de desvío tiene un valor de entre 0,5 N y 400 N, entonces la fuerza de desvío tiene un valor de prevención de defectos debido a que el valor de la fuerza de desvío es óptimo para prevenir la formación de los defectos inducidos por el ozono. Opcionalmente y preferentemente, la fuerza de desvío es constantemente entre 0,5 N y 400 N, y lo más preferentemente el valor de la fuerza de desvío es constante o sustancialmente constante.
Se observa en la industria textil que, los rodillos de guía, los rodillos impulsores, los sistemas de suministro de ozono (dispositivos generadores de ozono) y los compensadores de tensión son dispositivos conocidos. La presente invención enseña el uso de un compensador de tensión dentro de la cámara en la que tiene lugar el tratamiento con ozono del material textil, y también enseña la forma preferida por la que el compensador de tensión logra prevenir la formación de los defectos inducidos por el ozono sobre el material textil. El compensador de tensión del sistema controla la tensión de la banda textil aplicando a esta última una fuerza de desvío que también se puede considerar una carga aplicada sobre el material textil que lo tensiona y lo mantiene en contacto con el compensador de tensión y lo desvía de la trayectoria que seguiría el material textil en ausencia del compensador de tensión. Existen otros factores que influyen en la tensión del material textil dentro de la cámara, ejemplos de dichos factores son el peso del material textil, fricción del material textil con los diversos componentes (por ejemplo, rodillos) que se ponen en contacto con el material textil que pasa a través del sistema, y cualquier diferencia en las fuerzas de tracción aplicadas al material textil de los diferentes rodillos impulsores del sistema. Dichos otros factores cambian frecuentemente incontrolablemente durante la operación del sistema. A diferencia, el compensador de tensión, que en un ejemplo es uno libre (rodillo libre, sistema de rodillos libres), aplica al material textil una fuerza de desvío (una carga) que es estable o cambia controlablemente. Por tanto, el compensador de tensión, y más específicamente su parte que se pone en contacto con el material textil, se configura para ser móvil. Como resultado, cuando los otros factores cambian de una forma que contribuyen a tirar hacia una dirección del material textil y la parte de contacto del compensador de tensión en contacto con el material textil, entonces la parte de contacto en contacto con el material textil se mueve hacia, o sustancialmente hacia, la misma dirección, previniéndose así que dicho cambio de los otros factores resulte en sobre-tensionado (sobre-tensionado sustancial) del material textil. Asimismo, cuando los otros factores cambian en una forma en la que contribuyen a aflojar el material textil y moverlo en otra dirección alejada de la parte de contacto, entonces la parte de contacto en contacto con el material textil se mueve hacia, o sustancialmente hacia, dicha otra dirección, previniéndose así que dicho cambio de los otros factores resulte en el aflojamiento (aflojamiento sustancial) del material textil. La fuerza de desvío/carga aplicada desde el compensador de tensión hasta el material textil, siendo dicha fuerza/carga opuesta a la fuerza reaccionaria/carga aplicada desde el material textil hasta el compensador de tensión, se mide preferentemente por un sensor, tal como una célula de carga, un potenciómetro, un inclinómetro, unido a o integrado en el compensador de tensión y diseñado para medir la posición del compensador de tensión, y preferentemente la posición de la parte de contacto. Preferentemente, la fuerza de desvío/carga es perpendicular a un plano geométrico que es tangente al centro de la interfase entre la parte de contacto y el material textil que se ponen en contacto entre sí. La mayoría de dichos sensores miden directamente la posición de la parte de contacto, y se calcula la fuerza de desvío (carga) usando una función de correlación entre dicha posición y dicha fuerza. Asimismo, dichos sensores comprenden opcionalmente microprocesadores correspondientes que calculan la fuerza/carga y opcionalmente comunican con una unidad de control de la tensión que también comprende un microprocesador. Dicha unidad de control de la tensión se configura opcionalmente para controlar el impulso/rotación de rodillos impulsores apropiadamente configurados, controlando así la salida de par de torsión del rodillo impulsor, controlando y estabilizando así adicionalmente la tensión del material textil, como se describe comúnmente en el estado de la técnica referente al uso general de compensadores de tensión, tales como rodillos libres, en la industria textil. Se observa que el valor de prevención de defectos de la fuerza de desvío anteriormente mencionada de entre 0,5 N y 400 N, que aproximadamente corresponde a una carga de entre 0,5 kg y 400 kg, es importante para prevenir la formación de los defectos inducidos por el ozono. Opcionalmente, la fuerza de desvío es de entre 10 N y 200 N, o de entre 1 N y 100 N.
La cámara hueca es la cámara dentro de la que tiene lugar esencialmente el tratamiento del material textil con el gas ozono. Preferentemente, la cámara hueca y cualquiera de los componentes del sistema contenidos en el interior de la cámara hueca están hechos de materiales que no son corroídos por el gas ozono, por ejemplo las paredes de la cámara hueca se pueden hacer de acero inoxidable. Las paredes de la cámara hueca no contienen orificios o huecos abiertos o fisuras que permitan que el gas ozono tóxico escape al entorno fuera del sistema cuando el puerto de alimentación de textil y el puerto de descarga de textil no contienen los depósitos respectivos de líquido. Sin embargo, la cámara hueca contiene entradas/puertos a los que se pueden conectar o ajustar el sistema de suministro de ozono, u otros componentes opcionales, de un modo que prevenga dicho escape del gas ozono al entorno. Además, la cámara hueca comprende opcionalmente al menos una puerta que se puede cerrar herméticamente, y tiene como finalidad ofrecer acceso al interior de la cámara hueca cuando el sistema no está en funcionamiento. Además, la cámara hueca comprende opcionalmente al menos una ventana de visualización hecha de un material transparente tal como vidrio para permitir la inspección del interior de la cámara cuando funciona el sistema. Preferentemente, el sistema de suministro de ozono es un dispositivo generador de ozono que convierte el oxígeno del aire atmosférico en gas ozono, y proporciona al interior de la cámara el gas ozono o un gas que es rico en ozono. Más preferentemente, el dispositivo generador de ozono es una unidad independiente ubicada al lado o próxima a la cámara hueca, y está conectada y pasa gas ozono a la cámara hueca, y por ejemplo a al menos una entrada de gas fijada en una pared lateral de la cámara hueca, por tuberías apropiadas conectadas a dicha entrada de gas y a una boquilla de salida de aire del dispositivo generador de ozono por el que el ozono producido sale del dispositivo generador de ozono. También se contempla el caso opcional en el que el sistema de suministro de ozono comprende tanques o cilindros de gas que contienen gas ozono. Opcionalmente, el sistema comprende al menos un sensor que monitoriza la concentración de ozono expuesto a cualquier área del interior de la cámara hueca, del dispositivo generador de ozono y de las tuberías opcionales entre los dos primeros, para medir la concentración del gas ozono para comprobar si este último tiene el valor de concentración de ozono deseado, tal que el dispositivo generador de ozono o su conexión a la cámara hueca se puedan ajustar apropiadamente durante la operación del sistema con el fin de tener dicho valor deseado. Preferentemente, dicho valor de concentración de ozono deseado es entre 2 g/Nm3 y 150 g/Nm3, debido a que dentro de este intervalo de valores se facilita la prevención de la formación de defectos usando este sistema, especialmente cuando el material textil y su segmento longitudinal se mueven a través de la cámara a una velocidad lineal muy alta o muy baja.
El primer líquido y el segundo líquido son líquidos, tales como agua, que se usan comúnmente cuando se tratan textiles. Estos líquidos comprenden opcionalmente sustancias adicionales que sirven a diversos fines tales como controlar la eficacia y velocidad de la reacción química entre el material textil y el gas ozono, y/o lavar el material textil y su segmento longitudinal justo antes de que este último entre en la cámara hueca o justo después de que el segmento longitudinal salga de la cámara hueca. El efecto más importante de estos líquidos y los dos depósitos formados por ellos es que actúan de barreras líquidas que en combinación con los otros componentes y la configuración del sistema no permiten que el gas ozono salga de la cámara hueca por los puertos de descarga y alimentación de textil. El primer y el segundo líquido se suministran al sistema, por ejemplo se suministran manualmente. Opcionalmente, el sistema comprende un sistema de suministro de líquido conectado al primer tanque y/o el segundo tanque, y configurado para suministrar el primer líquido y/o el segundo líquido. Los líquidos se pueden suministrar desde fuera del sistema directamente a los tanques cuando la configuración de los puertos es tal que los tanques estén fácilmente accesibles para el usuario. Alternativamente, el puerto de alimentación de textil y/o los puertos de descarga de textil, respectivamente, tienen una primera y una segunda entrada de líquido por la que se suministran el primer y segundo líquido a los tanques respectivos.
Cuando funciona el sistema, el material textil se mueve longitudinalmente pasando a través del sistema como se describe más arriba. Preferentemente, la velocidad lineal a la que el material textil, y así cada segmento longitudinal (parte) de él, se desplaza a través del sistema es constante durante la operación. Sin embargo, se contempla la opción de que la velocidad lineal varíe durante la operación, tal que se tratan diferentes segmentos longitudinales bajo diferentes condiciones que resultan en diferentes efectos finales sobre el material textil, o tal que el efecto final sobre todas las partes del material textil que se desplaza a través de la cámara hueca sea el mismo cuando existen cambios temporales voluntarios o involuntarios en los otros parámetros de procesamiento y la velocidad se tiene que ajustar para compensar dichos cambios. El material textil, o un segmento longitudinal de él, pasa a través del sistema tirando/impulsando el material textil usando un rodillo impulsor apropiado y componentes como se describen adicionalmente más adelante. En todos los casos, ciertos tipos de rodillos se disponen dentro del interior de la cámara hueca y el puerto de alimentación de textil y el puerto de descarga de textil del textil para asegurar que el material textil en contacto con dichos ciertos tipos de rodillos siga a través del sistema una trayectoria bien definida y se mueva sin complicaciones a través de dicha trayectoria. Preferentemente, las dimensiones del sistema y sus componentes son tales que permiten que el material textil pase a través del sistema estando extendido de lado a lado. Por tanto, opcionalmente y preferentemente, la anchura del principal sistema y de cada uno de los componentes del sistema a través de los que pasa el material textil es mayor que la anchura del material textil. Asimismo, preferentemente la longitud de cada uno de los diversos rodillos y componentes, tales como la parte de contacto del compensador de tensión, en contacto con el material textil es mayor que la anchura del material textil. Preferentemente, el material textil tratado por el sistema se extiende completamente de lado a lado cuando pasa longitudinalmente y se desplaza/corre a través del sistema.
Un segmento longitudinal es una parte del material textil que entra, se desplaza a través y sale del sistema como se ha descrito anteriormente. El segmento longitudinal tiene la misma anchura y espesor que el material textil y tiene la longitud de una fracción de la longitud del material textil.
En una configuración opcional, aunque preferida, del sistema, cada uno del primer tanque y segundo tanque contienen respectivamente en ellos al menos un primer rodillo inmerso y al menos un segundo rodillo inmerso, que se sumergen en el primer y segundo depósitos respectivos cuando funciona el sistema. El al menos un primer rodillo inmerso se configura para recibir el material textil (un segmento longitudinal) que entra en el primer depósito de líquido y redirigirlo a su salida para moverse hacia el interior de la cámara hueca. Similarmente, el al menos un segundo rodillo sumergido se configura para recibir el material textil (un segmento longitudinal) que entra en el segundo depósito de líquido y redirigirlo a su salida para moverse hacia fuera de la cámara hueca y el puerto de descarga de textil. Cada rodillo sumergido opcional es opcionalmente un rodillo de guía, y más precisamente, un rodillo de guía externo, que significa un rodillo de guía ubicado fuera de la cámara hueca.
Cuando el material textil (un segmento longitudinal) entra en el interior de la cámara hueca, es guiado dentro de esta última por la pluralidad de rodillos de guía fijados dentro de la cámara hueca. Preferentemente, cada uno de los rodillos de guía está dispuestos tal que el material textil se ponga completamente de lado a lado en contacto con una parte de la superficie externa del rodillo de guía cuando el material textil (un segmento longitudinal de él) se mueve a través de dicho rodillo de guía. Además, preferentemente, los rodillos de guía se fijan sobre una o más paredes del interior de la cámara hueca y/o sobre una estructura de fijación soportada de la misma, y se disponen tal que su eje de giro sea perpendicular a la dirección del movimiento del material textil y su segmento longitudinal.
Similarmente, el al menos un compensador de tensión se fija preferentemente sobre una o más paredes de la cámara y/o sobre una estructura de fijación soportada de la misma. Preferentemente, cualquiera del al menos compensador de tensión se configura tal que cuando durante la operación del sistema la fuerza de desvío aplicada por el compensador de tensión no tenga un valor de prevención de defectos, entonces el compensador de tensión se ajuste automáticamente, que significa que se mueve su parte de contacto, tal que la fuerza de desvío obtenga un valor de prevención de defectos. Sin embargo, dicho ajuste puede no ser automático, sino que ocurre después de la intervención del usuario del sistema, especialmente cuando la parte de contacto ha alcanzado las primeras y segundas posiciones de trabajo anteriormente mencionadas o se ha movido hacia fuera de la línea geométrica mencionada más arriba referente al desplazamiento/movimiento del compensador de tensión. El compensador de tensión, que significa su parte de contacto, es móvil tal que la interfase entre el compensador de tensión y el material textil sea móvil con respecto a un punto de referencia inmóvil dentro de la cámara hueca. Cuando la fuerza de desvío tiene un valor de prevención de defectos, entonces se previene la formación de los defectos inducidos por el ozono sobre el material textil tratado y sus segmentos longitudinales dentro de la cámara. Debe haber al menos un compensador de tensión en la cámara hueca, sin embargo, opcionalmente y preferentemente, existen dos o más compensadores de tensión dispuestos a lo largo de la trayectoria de desplazamiento, seguido por el material textil dentro de la cámara hueca. Se observa que el material textil tratado dentro de la cámara hueca es longitudinalmente continuo y se mueve a lo largo de su longitud, por tanto en cualquier momento específico la longitud del material textil tensado dentro de la cámara hueca es igual a la trayectoria de desplazamiento en ese momento específico. Preferentemente, el compensador de tensión se configura tal que no se corroa o dañe fácilmente por el gas ozono. Por ejemplo, preferentemente la superficie del compensador de tensión que se expone al gas ozono está hecha de acero inoxidable y/o teflón y/u otro material que sea resistente a la corrosión. Cuando el compensador de tensión requiere componentes adicionales conectados con él para operar apropiadamente, entonces el sistema comprende dichos componentes adicionales. Preferentemente, el compensador de tensión se configura tal que la fuerza de desvío aplicada desde el compensador de tensión hasta el material textil que pasa esté sustancialmente uniformemente distribuida a través de la interfase entre dicho compensador de tensión y el material textil que pasa; por ejemplo, dicha distribución uniforme se logra por la parte de contacto que es un cilindro que tiene una dirección longitudinal paralela a la de la anchura del material textil y la longitud de la parte de contacto es mayor que la anchura del material textil, y el material textil se pone uniformemente en contacto de lado a lado con la parte de contacto del compensador de tensión.
Con el fin de monitorizar o estimar la prevención de los defectos inducidos por el ozono, el sistema comprende opcionalmente al menos un sensor y se configura para medir la fuerza de desvío. El sensor mide normalmente la fuerza de desvío midiendo un parámetro físico correlacionado con la fuerza de desvío. Los ejemplos no limitantes de dicho sensor es un sensor de presión, un sensor de carga/peso tal como una célula de carga, o un inclinómetro que es parte o se conecta al compensador de tensión y se configura para medir/monitorizar la posición de la parte de contacto en contacto con el material textil. Otros ejemplos no limitantes son un medidor de la tensión dispuesto dentro de la cámara hueca y configurado para medir la tensión del material textil. Se conocen en la industria textil los medidores de la tensión. Un ejemplo no limitante adicional de un sensor es un sensor óptico configurado para medir la posición del material textil o el compensador de tensión en o cerca de la región donde el material textil está en contacto y se desvía por el compensador de tensión. El sensor se calibra opcionalmente para indicar directamente la fuerza de desvío según una función de correlación entre el parámetro medido por el sensor y la fuerza de desvío asociada a la posición de la parte de contacto y/o el material textil en contacto con la parte de contacto. Como es habitual en la industria textil, los compensadores de tensión tienen normalmente sensores integrados para medir la carga o presión o fuerza ejercida por el material textil al compensador de tensión y viceversa, por tanto, preferentemente el al menos un compensador de tensión comprende un sensor integrado que mide la presión o carga o fuerza ejercida por el material textil sobre el compensador de tensión. Opcionalmente, cualquier o cada sensor se configura para generar una señal de emergencia cuando la fuerza de desvío no tiene el valor de prevención de defectos, o cuando el valor de un parámetro físico correlacionado con la fuerza de desvío y medido por el sensor no se corresponde con un caso en el que la fuerza de desvío tiene el valor de prevención de defectos. Opcionalmente, mide la fuerza de desvío un sensor, tal como una célula de carga que se une o integra en el compensador, detectando la posición del compensador de tensión en contacto con el material textil y que se calibra para correlacionar dicha posición con la fuerza de desvío.
Opcionalmente, el sistema comprende al menos un actuador, tal como un motor o un actuador hidráulico o neumático o mecánico o electromecánico, conectado a un compensador de tensión correspondiente y configurado para empujar y mover la parte de contacto del compensador de tensión a través de la línea geométrica anteriormente mencionada y entre la primera y segunda posiciones de trabajo. Preferentemente, el actuador es parte del compensador de tensión, y, por ejemplo, es un motor. Opcionalmente y preferentemente, el actuador se conecta y controla por una unidad de control de la tensión que comprende un microprocesador conectado al sensor y se configura para recibir de dicho sensor una señal de retroalimentación que se basa en el valor medido por el sensor. Lo más preferentemente, el actuador se configura para que se mueva la parte de contacto del compensador de tensión cuando la señal de retroalimentación indica que la fuerza de desvío no tiene un valor de prevención de defectos o que el parámetro físico correlacionado con dicha fuerza medida por el sensor no corresponde a un caso donde la fuerza de desvío tiene un valor de prevención de defectos. Preferentemente, la señal de retroalimentación puede ser una señal eléctrica o una de radio inalámbricamente transmitida (y similares). Preferentemente, cualquier sensor o actuador comprende un microprocesador correspondiente y se configura para ser controlado por y/o generar señales eléctricas recibidas por dicha unidad de control de la tensión. Opcionalmente, cada microprocesador o la unidad de control de la tensión se conecta a y se configura para recibir por y comunicar señales eléctricas a otros microprocesadores o una unidad de ordenador central.
Los rodillos de guía están en contacto con el material textil, y así se ponen en contacto cualquier segmento longitudinal del material textil que pasa a través de la cámara hueca, manteniendo el material textil tensado a través de su longitud y definiendo su trayectoria de desplazamiento dentro de la cámara hueca, cuando el material textil (segmento longitudinal) está dentro y pasa a través de la cámara hueca. Además, con el fin de maximizar el uso del gas ozono cuando funciona el sistema, y para compensar las posibles variaciones de la concentración de gas ozono a través del volumen interior de la cámara hueca, opcionalmente, la pluralidad de rodillos de guía comprende, o se divide en, al menos dos grupos de rodillos de guía, cada uno de un primer grupo y un segundo grupo del al menos dos grupos tiene al menos dos rodillos de guía, el primer grupo se fija sobre una parte superior de la cámara hueca y el segundo grupo se fija sobre una parte inferior de la cámara hueca, estando la pluralidad de rodillos de guía también configurada para guiar el material textil para pasar a través de tanto la parte superior como la parte inferior del interior de la cámara hueca.
Cuando el material textil (por ejemplo, un segmento longitudinal) pasa a través del primer depósito de líquido, se humedece por este último. La concentración del líquido en el material textil afecta el tratamiento por el gas ozono, y afecta la prevención de la formación de los defectos inducidos por el ozono sobre el material textil. Por tanto, opcionalmente, la pluralidad de rodillos impulsores comprende un primer rodillo de tipo Foulard (también conocido como rodillo Foulard, o Foulard) fijado dentro del interior de la cámara hueca y a continuación del puerto de alimentación de textil, y se configura para poner en contacto con y recibir el material textil que sale del puerto de alimentación de textil, y para estrujar líquido del material textil tal que un valor de recogida en húmedo de este último cuando sale del primer rodillo de tipo Foulard esté entre 30 % y 90 %. El valor de recogida en húmedo se define como (peso del líquido absorbido sobre el material textil)/(peso del material textil cuando está seco)*100 (%), en el que ambos de los pesos anteriormente mencionados se miden en las mismas unidades de peso. El intervalo anteriormente mencionado para el valor de recogida en húmedo contribuye a optimizar la prevención de la formación de los defectos inducidos por el ozono sobre el material textil.
Similarmente a lo anterior, opcionalmente la pluralidad de rodillos impulsores comprende un segundo rodillo de tipo Foulard fijado a continuación del puerto de descarga de textil y fuera de la cámara hueca, y se configura para estar en contacto con y recibir el material textil que sale del puerto de descarga de material textil, y también se configura para estrujar líquido del material textil. El segundo rodillo de tipo Foulard tiene como finalidad detener adicionalmente la reacción entre el ozono y el material textil, previniendo así adicionalmente la formación de los defectos inducidos por el ozono, debido a que el líquido que se estruja por el segundo rodillo de tipo Foulard puede contener gas ozono atrapado en su interior. Otra forma de retirar el líquido del material textil es por secado de este último. Por este motivo, opcionalmente, el sistema comprende una unidad de secadora configurada para recibir y secar el material textil que sale del puerto de descarga de textil o el segundo rodillo de tipo Foulard opcional. Esta unidad de secadora puede ser de cualquiera de los tipos usados en la industria textil en relación con otros tipos de sistemas y procesos.
Los rodillos de tipo Foulard opcionales anteriormente mencionados del sistema pueden impulsar el movimiento del material textil a través del sistema debido a que cogen, comprimen y mueven las partes del material textil que pasan a través de ellos. Por tanto, cada uno de los rodillos de tipo Foulard actúa de rodillo impulsor. Sin embargo, opcionalmente y preferentemente, el sistema tiene al menos un rodillo impulsor dedicado a impulsar únicamente el movimiento/paso del material textil. Lo más preferentemente, la pluralidad de rodillos impulsores comprende al menos un rodillo de tracción interno dispuesto en el interior de la cámara hueca, estando el al menos un rodillo de tracción interno configurado para poner en contacto con el material textil e impulsarlo para que pase a través de la cámara hueca. En otro caso opcional y más preferido, la pluralidad de rodillos impulsores comprende al menos un rodillo de tracción externo ubicado fuera de la cámara hueca y configurado para estar en contacto con el material textil e impulsarlo, de manera que la parte textil pase a través de la cámara hueca. Se conocen bien en la industria textil el uso y la configuración de los rodillos impulsores, tales como los rodillos de tracción internos o externos, para impulsar materiales textiles. Por ejemplo, como es común en la industria textil, un rodillo impulsor comprende o está conectado a un motor que comprende un árbol giratorio conectado a y configurado para girar la parte cilindrica del rodillo en contacto con el material textil. Es importante tener en cuenta que cambios imperceptibles o más grandes en la velocidad de giro de cualquiera de los rodillos anteriormente mencionados que actúan como rodillo impulsor pueden afectar la tensión del material textil y así las fuerzas entre el material textil y el compensador de tensión, y así afectar la prevención de la formación de los defectos inducidos por el ozono, cuando funciona el sistema. Por este motivo, opcionalmente cualquiera del al menos un rodillo impulsor se configura tal que su velocidad de giro sea ajustable, tal que la fuerza de desvío tenga el valor de prevención de defectos. Más preferentemente, el rodillo impulsor (o el motor que impulsa el rodillo impulsor) comprende un microprocesador configurado para controlar la velocidad de giro del rodillo impulsor (o del motor que impulsa el rodillo impulsor), y dicho controlador se conecta al microprocesador de uno de dichos sensores o a un ordenador central conectado a dicho sensor, y se configura para cambiar/ajustar la velocidad de giro del rodillo impulsor (o del motor que impulsa el rodillo impulsor) cuando el sensor genera la señal de emergencia anteriormente mencionada. Además, opcionalmente, la pluralidad de rodillos impulsores se configura para impulsar el material textil para mover/pasar a través de la cámara hueca a una velocidad lineal de entre 5 m/min y 140 m/min; obviamente, cada uno de la pluralidad de los rodillos impulsores contribuye a dicha velocidad lineal girando a una velocidad de giro apropiada. Cuando la velocidad lineal está entre los valores anteriormente mencionados, entonces la productividad del sistema es alta y así compatible con las necesidades de la industria textil, y también se logra un tratamiento uniforme del textil con formación de defectos que se previenen, debido a que el material textil pasa suficientemente rápido con las fuerzas mecánicas aplicadas a las fibras del material textil que se controlan uniformemente a lo largo de las diversas partes de la trayectoria de desplazamiento del material textil dentro de la cámara, sin ser afectados dicho material textil y las fibras por posibles pequeñas variaciones en la concentración de ozono a lo largo de dicha trayectoria. Además, en el intervalo de velocidad lineal anteriormente mencionado, el valor de recogida en húmedo del material textil (segmento longitudinal) no cambia significativamente dentro de la cámara hueca, y así se logra un mejor control de la prevención de los defectos inducidos por el ozono.
El sistema comprende opcionalmente una unidad de destrucción de gas ozono conectada a la cámara hueca y/o al sistema de suministro de ozono, y configurada para extraer y destruir el gas ozono del interior de la cámara hueca y/o del sistema de suministro de ozono. Esta unidad puede ser la misma o similar a las unidades de destrucción de gas ozono que se conocen y se usan ampliamente en la industria textil. Según la práctica habitual, la unidad de destrucción de gas ozono puede comprender opcionalmente una o más bombas para aspirar gas de la cámara hueca y/o del dispositivo generador de ozono y/o de cualquier tubería intermedia. La unidad de destrucción de gas ozono tiene como finalidad destruir el ozono antes de que el sistema se apague, tal que un usuario pueda posteriormente abrir de forma segura el sistema, y también tiene como finalidad retirar el ozono de la cámara cuando se detecta un mal funcionamiento en la operación normal y componentes del sistema, y es necesaria una parada de emergencia del sistema para proteger al usuario y para prevenir la formación de defectos sobre el material textil procesado.
Se optimizan el sistema y los efectos técnicos producidos por él cuando el primer y segundo líquidos contenidos respectivamente en el primer y segundo tanque cuando funciona el sistema se reponen o sustituyen constantemente o dentro de ciertos intervalos de tiempo. Durante la operación del sistema, dichos líquidos pueden ser contaminados por gas ozono y/o polvo y/u otras impurezas químicas, que entonces afectarán el material textil y su tratamiento, debido a que el material textil se humedece por dichos líquidos. Además, el material textil cuando se procesa por el sistema puede dejar como depósitos fibras u otras sustancias en los líquidos, y dichos depósitos pueden volver a pasar al material textil, afectando negativamente la calidad del material textil y promoviendo la formación de los defectos inducidos por el ozono. Para evitar este último problema, opcionalmente, el sistema comprende además una unidad de purificación de líquidos conectada al primer tanque y/o el segundo tanque y configurada para recibir líquido de la misma, y para retirar de dicho líquido ozono, fibras liberadas por el material textil y subproductos químicos producidos por el tratamiento del material textil y pasadas al líquido. Opcionalmente, el primer y segundo tanques tienen respectivamente una primera y una segunda salidas de líquido fijadas sobre ellos, y la unidad de purificación de líquidos se conecta a estas salidas. Se conocen y usan ampliamente las unidades de purificación de líquidos en la industria textil en otros tipos de sistemas.
Los componentes del sistema anteriormente mencionado y los intervalos para la velocidad lineal y la concentración de ozono relacionada con la mejor operación y configuración del sistema dan como resultado el óptimo tratamiento del material textil y la prevención de la formación de defectos, cuando cada parte del textil que pasa a través de la cámara hueca sigue una trayectoria de al menos 10 m de longitud dentro de la cámara hueca. Esta trayectoria se determina por las dimensiones de la cámara hueca y la configuración espacial de sus componentes, que están en contacto y guían el paso del material textil (segmento longitudinal). Por tanto, opcionalmente, la cámara hueca se configura tal que el material textil siga una trayectoria de desplazamiento de una longitud de al menos 10 m dentro de la cámara hueca.
El rendimiento del sistema se optimiza adicionalmente, especialmente cuando el sistema se usa para tratar materiales textiles elásticos tales como una tela de mezclilla elástica, cuando opcionalmente cada uno de los rodillos de guía de la pluralidad de rodillos de guía tiene un diámetro de un valor óptimo, para prevenir los defectos inducidos por el ozono sobre el material textil, de entre 50 mm y 500 mm. En ese caso, los rodillos de guía pueden mantener el material textil uniformemente tensado a través de su longitud y anchura. Este efecto se potencia adicionalmente en el caso opcional, en el que cada uno de los dos rodillos de guía consecutivos a lo largo de la trayectoria de desplazamiento que sigue el material textil dentro de la cámara hueca se dispone tal que la longitud de la parte de la trayectoria de desplazamiento entre dichos rodillos de guía consecutivos sea de un valor óptimo, para prevenir los defectos inducidos por el ozono, de entre 20 cm y 200 cm, y preferentemente de entre 60 cm y 90 cm.
El sistema es muy apto para usarlo para tratar con gas ozono el material textil después de que este último se tiña. Para este tipo de uso, la prevención de la formación de los defectos inducidos por el ozono se optimiza cuando el tratamiento con ozono por el sistema se hace pronto después de teñir el material textil. Por este motivo, opcionalmente el sistema comprende además al menos una unidad de teñido ubicada fuera de la cámara hueca y los puertos de alimentación y recepción de textil y configurada para teñir el material textil. Opcionalmente y preferentemente, la unidad de teñido se ubica próxima al puerto de alimentación de textil y se configura para que pase el material textil hasta el puerto de alimentación de textil. Asimismo, el sistema es muy apto para usarlo para tratar con gas ozono el material textil antes de que se tiña este último. En ese caso, el tratamiento con ozono uniforme y libre de defectos del material textil por el sistema puede aumentar la captación de tinte del material textil durante el proceso de teñido, y promover el teñido uniforme del material textil, especialmente cuando el tratamiento con ozono ocurre justo antes del tratamiento de teñido. Por este motivo, opcionalmente el sistema comprende al menos una unidad de teñido ubicada próxima al puerto de alimentación de textil y configurada para recibir el material textil del puerto de descarga de textil y teñirlo. La unidad de teñido puede comprender subunidades de lavado que se configuran para lavar los segmentos longitudinales del textil antes o después de que se tiñan dichos segmentos longitudinales.
Se contempla el caso de uso del sistema para procesarlo con un material textil que está originalmente plegado, por ejemplo enrollado en un rollo, o se suministra directamente al sistema por otra máquina de procesamiento textil. Por este motivo, opcionalmente el sistema comprende además una unidad de desplegamiento configurada para desplegar y/o desenrollar el material textil y pasar el material textil desplegado al puerto de alimentación de textil. Asimismo, opcionalmente el sistema comprende una primera unidad de acumulación, por ejemplo una caja en J, que se configura para recibir y acumular al menos parcialmente el material textil y pasar este último al puerto de alimentación de textil. Asimismo, puede ser deseable que el material textil tratado con ozono o su segmento longitudinal se acumule y/o enrolle después del tratamiento con ozono. Por tanto, opcionalmente el sistema comprende además una segunda unidad de acumulación, por ejemplo una caja en J con opcionalmente un rodillo unido a ella, configurado para recibir, acumular al menos parcialmente, y opcionalmente enrollar el segmento longitudinal que sale del puerto de descarga de textil o el segundo rodillo de tipo Foulard opcional.
Como se ha mencionado, el material textil puede ser una tela, o puede ser un conjunto de hilos que significa hilos no tejidos y no unidos entre ellos. Preferentemente, dicho conjunto tiene la anchura y altura de una tela, y los hilos se distribuyen uniformemente a lo largo de dicha anchura. Cuando se procesa este tipo de material textil, los inventores han encontrado que la prevención de la formación de defectos sobre el material textil y los hilos contenidos en él y procesados por el sistema se optimiza cuando los hilos del segmento longitudinal del material textil no se ponen en contacto con la superficie externa cilindrica completa de cada uno de los rodillos de guía. Entonces, la superficie de cada hilo se expone homogéneamente al gas ozono y se maximiza el efecto producido por el compensador de tensión en combinación con los rodillos de guía. Por este motivo, se contempla la variación opcional del sistema, cada uno de los rodillos de guía de la pluralidad de rodillos de guía comprende aletas configuradas para reducir el área de contacto entre el material textil (segmento longitudinal del material textil) y los rodillos de guía. El material textil no es parte del sistema, y la opción de que cada uno de los rodillos de guía comprenda aletas se contempla principalmente por el caso de que el sistema se pretenda usar para procesar un material textil que comprende hilos no tejidos. En ese caso, se contempla que los hilos de la banda se alimenten al puerto de alimentación de textil como sustancialmente paralelos y no tejidos o enmarañados o unidos entre sí, y los hilos se ponen en contacto con los bordes superiores de las aletas de cada uno de los rodillos de guía cuando el material textil (segmento longitudinal) pasa a través del rodillo de guía. En la industria textil existen diversos tipos conocidos de rodillos de guía que comprenden aletas para procesar materiales textiles que comprenden hilos no tejidos no unidos, y el sistema puede, por ejemplo, comprender tipos conocidos de rodillos de guía que comprenden aletas. Preferentemente, el eje longitudinal de las aletas es paralelo al eje de giro del rodillo de guía.
Asimismo, cuando la tela es un material textil que comprende hilos, que significa hilos no tejidos y no unidos entre ellos, las partes de los hilos del material textil, y así de cualquier segmento longitudinal, que se ubican entre los rodillos de guía de la pluralidad de rodillos de guía, pueden ponerse en contacto o estar muy próximos entre sí. Esto no se desea, debido a que puede resultar en un tratamiento con ozono no homogéneo de cada hilo y puede desencadenar la formación de los defectos inducidos por el ozono. Para resolver el problema para prevenir la formación de los defectos inducidos por el ozono sobre el material textil cuando este último comprende hilos (que significa hilos no tejidos no unidos entre ellos), opcionalmente la cámara hueca en su interior y entre al menos dos de los rodillos de guía de la pluralidad de rodillos de guía, comprende al menos un separador configurado para separar espacialmente en su proximidad un primer conjunto de los hilos del material textil de un segundo conjunto de hilos del material textil. Por ejemplo, cuando el material textil pasa próximo o en contacto al separador, el primer conjunto de hilos del material textil pasa sobre o se pone en contacto con un lado del separador, y el segundo conjunto de hilos pasa sobre o se pone en contacto con el otro lado del separador, estando así espacialmente separados de los hilos del primer conjunto. En un ejemplo no limitante, el al menos un separador es un cilindro fijado dentro de la cámara siendo su eje longitudinal perpendicular a la trayectoria de desplazamiento del material textil en la proximidad de dicho separador. En un caso opcional adicional, dicho separador también comprende aletas. En este caso, “proximidad” significa una distancia de algunos centímetros, por ejemplo una distancia hasta 30 cm o hasta 10 cm del separador.
En una realización a modo de ejemplo de la presente invención, denominada en lo sucesivo la “realización a modo de ejemplo”, el sistema anteriormente mencionado es: un dispositivo para retirar color flotante con ozono, que comprende una cámara hueca, en el que una pared lateral izquierda de la cámara hueca está provista de un puerto de alimentación de textil, y una pared lateral derecha de la cámara hueca está provista de un puerto de descarga de textil; la cámara hueca está internamente provista de rodillos de guía para cambiar una dirección de movimiento de la mezclilla, los rodillos de guía se dividen en dos grupos dependiendo de sus posiciones, cada uno de los dos grupos tienen al menos dos rodillos de guía, un grupo se fija sobre una parte superior de la cámara hueca y el otro grupo se puede fijar sobre una parte inferior de la cámara hueca; un rodillo impulsor para impulsar la mezclilla para que se mueva de izquierda a derecha se fija por encima del puerto de descarga de textil a través de un soporte, y un árbol de giro del rodillo impulsor se conecta con un árbol de giro de un motor impulsor a través de un mecanismo de transmisión; y una entrada de aire se dispone en la cámara hueca, la entrada de aire se comunica con un puerto de aire de salida de una tubería de admisión de aire, y un puerto de entrada de aire de la tubería de admisión de aire se comunica con una boquilla de salida de aire de un dispositivo generador de ozono, caracterizándose el sistema por que la cámara hueca comprende en su interior al menos un compensador de tensión configurado para controlar la tensión del material textil cuando este último pasa a través del sistema y se pone en contacto con el compensador de tensión.
En la realización a modo de ejemplo, opcionalmente y preferentemente el compensador de tensión de la realización a modo de ejemplo comprende una parte de contacto que se configura para poner en contacto con el material textil y que sea móvil a lo largo de una línea geométrica entre una primera posición de trabajo y una segunda posición de trabajo correspondientes, y controlar la tensión del material textil que pasa desviando este último aplicándole una fuerza de desvío de entre 0,5 N y 400 N cuando el material textil a lo largo de su longitud se cruza con dicha línea geométrica.
Todo las características y parámetros opcionales (o preferibles) descritos en el presente documento del sistema del primer aspecto de la invención también son características opcionales (o preferibles) de la realización a modo de ejemplo, y viceversa. En la realización a modo de ejemplo, el rodillo impulsor impulsa el textil tensionado sobre el rodillo de guía para que se mueva de izquierda a derecha, y mientras tanto, el dispositivo generador de ozono genera ozono y suministra ozono a la cámara hueca. Opcionalmente, el rodillo impulsor también impulsa el material textil para que se mueva de derecha a izquierda.
En la realización a modo de ejemplo, la cámara hueca está hecha preferentemente de acero inoxidable, y la cámara hueca es opcionalmente y preferentemente de 4 m * 1 ,1 m * 2,5 m (longitud * altura * anchura). La longitud del textil en la cámara hueca es opcionalmente y preferentemente 50 m ± 5 m, tal que se adapte a una concentración de ozono.
En la realización a modo de ejemplo, opcionalmente y preferentemente la parte superior de la cámara hueca está sellada, la cámara hueca está provista del puerto de alimentación de textil, el puerto de descarga de textil, la entrada de aire y la salida de aire, en la que la salida de aire se comunica con un puerto de entrada de aire de una tubería de salida de aire.
En la realización a modo de ejemplo, opcionalmente y preferentemente el puerto de alimentación de textil y el puerto de descarga de textil están ambos provistos de una estructura de sellado para prevenir que el ozono se desborde de la misma. Por favor, obsérvese que la estructura de sellado se puede usar para reducir, pero no erradicar completamente, la fuga de ozono.
En la realización a modo de ejemplo, opcionalmente y preferentemente la estructura de sellado comprende una primera placa de reparto, estando la parte superior de la primera placa de reparto apoyada contra la parte superior de la cámara hueca, y está dispuesto un hueco entre la parte inferior de la primera placa de reparto y la parte inferior de la cámara hueca; la estructura de sellado comprende opcionalmente además una segunda placa de reparto, estando la parte inferior de la segunda placa de reparto apoyada contra la parte inferior de la cámara hueca, y está dispuesto un hueco entre la parte superior de la segunda placa de reparto y la parte superior de la cámara hueca; opcionalmente, la primera placa de reparto se ubica entre una pared lateral de la cámara hueca y la segunda placa de reparto, y la altura a la que la parte inferior de la primera placa de reparto se ubica es inferior a la altura a la que se ubica la parte superior de la segunda placa de reparto; opcionalmente, se carga agua entre la pared lateral y la primera placa de reparto, y entre la primera placa de reparto y la segunda placa de reparto, y la altura a la que se ubica el nivel de agua del agua es inferior a la altura a la que se ubica la parte superior de la segunda placa de reparto, pero superior a la altura a la que se ubica la parte inferior de la primera placa de reparto; opcionalmente, dos de los rodillos de guía que se fijan en la parte inferior de la cámara hueca se puede ubicar en el agua; y opcionalmente el puerto de alimentación de textil y el puerto de descarga de textil están abiertos sobre la pared lateral de la cámara hueca fuera de la primera placa de reparto.
Según la presente invención, en la realización a modo de ejemplo, la estructura de la cámara hueca se optimiza, cuando usa la placa de reparto y la pared lateral para formar una estructura de sellado de agua que puede prevenir eficazmente el desbordamiento de ozono y reducir la entrada de agua en la parte hueca dentro de la segunda placa de reparto. Ciertamente, se pueden usar otros líquidos para sustituir el agua para realizar el sellado. En la realización a modo de ejemplo, opcionalmente y preferentemente la entrada de aire se ubica en la parte superior de la cámara hueca dentro de la primera placa de reparto, y también se puede ubicar adicionalmente en la parte inferior o la pared lateral de la cámara hueca dentro de la segunda placa de reparto.
En la realización a modo de ejemplo, opcionalmente y preferentemente la entrada de aire está provista de una válvula de tres vías, un puerto de válvula de la válvula de tres vías se comunica con la cámara hueca, un puerto de válvula se comunica con el puerto de salida de aire de la tubería de admisión de aire, un puerto de válvula se comunica con el puerto de salida de aire de una tubería de guía de aire. Opcionalmente, el puerto de entrada de aire de la tubería de guía de aire se conecta con una salida de aire de una soplante de aire. De esta forma, la presión del aire en la entrada de aire se puede aumentar por medio de la soplante de aire, aumentando así la intensidad de la acción del ozono con la mezclilla (u otro textil), y mejorando el efecto de tratar con ozono, y por ejemplo el efecto de retirar el color flotante.
En la realización a modo de ejemplo, opcionalmente y preferentemente la tubería de admisión de aire está provista de una válvula de flujo, que se usa para ajustar un volumen de inflado de ozono, para controlar la cantidad de ozono en la cámara hueca.
En la realización a modo de ejemplo, opcionalmente un sensor de monitorización de la concentración de ozono se dispone en la cámara hueca, y se conecta con un sistema de microprocesador. El sistema de microprocesador se conecta con un sistema de control para el dispositivo generador de ozono, que ajusta la velocidad de generación de ozono según la concentración de ozono, para controlar la cantidad de ozono en la cámara hueca.
El dispositivo generador de ozono se puede comprar directamente en el mercado, y la estructura generadora de ozono y sus principios operacionales pertenecen al estado de la técnica, y no se describirán con detalle en el presente documento. La presente invención no pretende proporcionar un nuevo dispositivo generador de ozono.
En la realización a modo de ejemplo, el dispositivo para retirar color flotante con ozono comprende opcionalmente además al menos dos baños de aclarado (depósitos de líquido), en los que al menos uno se puede ubicar en un lado izquierdo de la cámara hueca y al menos uno se puede ubicar en un lado derecho de la cámara hueca; un rodillo impulsor para impulsar la mezclilla para que se mueva de izquierda a derecha se dispone opcionalmente por encima del puerto de descarga del baño de aclarado, y un árbol de giro del rodillo impulsor se conecta opcionalmente con un árbol de giro de un motor impulsor a través de un mecanismo de transmisión; el baño de aclarado se llena opcionalmente con agua, y el rodillo de guía para cambiar una dirección de movimiento de la mezclilla se proporciona opcionalmente dentro del agua en el baño de aclarado; y por medio del motor impulsor, la mezclilla (material textil) se impulsa para pasar secuencialmente a través del rodillo de guía del baño de aclarado ubicado enfrente de la cámara hueca, el rodillo impulsor del baño de aclarado ubicado enfrente de la cámara hueca, el rodillo de guía de la cámara hueca, el rodillo impulsor de la cámara hueca, el rodillo de guía del baño de aclarado ubicado detrás de la cámara hueca y el rodillo impulsor del baño de aclarado ubicado enfrente de la cámara hueca.
En la realización a modo de ejemplo, opcionalmente el baño de aclarado comprende preferentemente una cavidad abierta hacia arriba, y la pared lateral de la cavidad está provista de la entrada de agua y la salida de agua; la entrada de agua se conecta con la tubería de entrada de agua, y el puerto de salida de agua de la tubería de entrada de agua se comunica con la cavidad; y la salida de agua se conecta con la tubería de salida de agua, y el puerto de entrada de agua de la tubería de salida de agua se comunica con la cavidad. Preferentemente, la entrada de agua y la salida de agua en la cavidad se usan para realizar la circulación y renovación del agua en el baño de aclarado. En la realización a modo de ejemplo, preferentemente están dispuestos dos baños de aclarado (depósitos), en la que uno se ubica en el lado izquierdo de la cámara hueca y el otro se ubica en el lado derecho de la cámara hueca. Opcionalmente, el agua que sale con respecto a la parte posterior de la cámara hueca se puede usar como agua que entra con respecto la parte delantera de la cámara hueca para mejorar la tasa de utilización del agua. Así, la salida de agua del baño de aclarado que se ubica en la parte posterior relativa se puede conectar, a través de una tubería, con la entrada de agua del baño de aclarado que se ubica en la parte delantera relativa, y se puede disponer en la tubería una bomba de agua para impulsar el agua para que circule.
Un método de retirada de color flotante con ozono se caracteriza por realizar una reacción de oxidación de ozono con el color flotante sobre un textil por medio de la propiedad de fuerte oxidación del ozono, para separar el color flotante del textil.
Dicho método es un método de tratamiento de un material textil con gas ozono.
Así, la invención en su segundo aspecto es un método de tratamiento de un material textil, comprendiendo el método la etapa de: proporcionar un primer líquido a un primer tanque, y proporcionar un segundo líquido a un segundo tanque, en un sistema que comprende: una cámara hueca que comprende en su interior una pluralidad de rodillos de guía, estando la pluralidad de rodillos de guía configurada para poner en contacto y guiar el material textil para que pase, estando longitudinalmente tensado y extendido de lado a lado, a través de la cámara hueca; un sistema de suministro de ozono conectado a la cámara hueca y configurado para suministrar a esta última gas ozono a un valor de concentración deseado; un puerto de alimentación de textil que es adyacente y se conecta a la cámara hueca, y comprende el primer tanque que se configura para contener un primer depósito del primer líquido que previene la fuga de ozono a través de puerto de alimentación de textil cuando funciona el sistema; un puerto de descarga de textil que es adyacente y se conecta a la cámara principal, y comprende el segundo tanque que se configura para contener un segundo depósito del segundo líquido que previene la fuga de ozono a través del puerto de descarga de textil cuando funciona el sistema; una pluralidad de rodillos impulsores configurados para impulsar el material textil para que se mueva a través del sistema; en el que el sistema se configura tal que el material textil pasa sucesivamente a través del primer depósito, a través del interior de la cámara hueca y a través del segundo depósito, y en el que la cámara hueca comprende en su interior al menos un compensador de tensión configurado para controlar la tensión del material textil cuando este último pasa a través de la cámara hueca. suministrar la cámara hueca del sistema con gas ozono a un valor de concentración de ozono deseado, usando el dispositivo generador de ozono del sistema; pasar el material textil tensado a través del sistema, usando la pluralidad de rodillos impulsores y la pluralidad de rodillos de guía del sistema; caracterizándose el método por que durante la tercera etapa se controla la tensión del material textil dentro de la cámara hueca usando el compensador de tensión del sistema.
Opcionalmente y preferentemente, en el sistema usado para ejecutar el método, el compensador de tensión comprende una parte de contacto que se configura para poner en contacto con el material textil, y que es móvil a lo largo de una línea geométrica entre una primera posición de trabajo y una segunda posición de trabajo correspondientes, y controlar la tensión del material textil que pasa desviando este último aplicándole una fuerza de desvío de entre 0,5 N y 400 N cuando el material textil a lo largo de su longitud se cruza con dicha línea geométrica, y en la tercera etapa del método controlar la tensión del material textil comprende aplicar al material textil la fuerza de desvío de entre 0. 5 N y 400 N usando el compensador de tensión (que significa usando la parte de contacto). Obviamente, la parte de contacto se puede ubicar en cualquier punto a lo largo de dicha línea geométrica, y se aplica dicha fuerza de dicho valor de prevención de defectos cuando se ubica en cualquier punto a lo largo de dicha línea geométrica.
Preferentemente, la fuerza de desvío que se aplica sobre el material textil es constantemente de entre 0,5 N y 400 N, y opcionalmente el valor de la fuerza de desvío es constante o sustancialmente constante.
La primera etapa del método también se puede describir del siguiente modo: proporcionar un primer líquido a un primer tanque, y proporcionar un segundo líquido a un segundo tanque, en un sistema que es según el primer aspecto de la invención. Opcionalmente y preferentemente, el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 150 g/Nm3, y por ejemplo es de entre 2 g/Nm3 y 30 g/Nm3, o es de entre 25 g/Nm3 y 150 g/Nm3. Alternativamente, la concentración de ozono en aire en la cámara es de entre 5 % y 15 %, y preferentemente es 10 %. Se observa que los valores anteriormente mencionados con respecto a la concentración de ozono en aire, y los valores de concentración de ozono deseados anteriormente mencionados son medióles por sensores y analizadores de concentración de ozono comercialmente disponibles, tales como Process Ozone Modelo 452 por Teledyne Instruments, y el UV-HCR Ozone Analyzer por Oxidation Technologies, LLC.
Obviamente, el método anterior implica la acción de extender el material textil a través del sistema para poner en contacto el material textil con los rodillos y el compensador de tensión, y esto se puede hacer preferentemente y opcionalmente durante cualquiera de las etapas del método, pero preferentemente se hace durante/en o antes de la primera etapa del método, o durante/en la tercera etapa. También se debe entender que pasar el material textil durante la tercera etapa implica hacer funcionar el sistema y como tal utilizar sus componentes y su configuración para el guiado e impulsión del material textil a través de los diversos componentes del sistema, tales como los rodillos de guía, que están destinados a poner en contacto y guiar el paso del material textil. Una forma alternativa no preferible de pasar/impulsar el material textil es empujar manualmente el material textil desde fuera del puerto de descarga de material textil. Preferentemente, la tercera etapa del método comprende ajustar la velocidad de giro de al menos un rodillo impulsor para tensar el material textil tal que el material pase a través de una región (por ejemplo, a través de la línea geométrica anteriormente mencionada) dentro de la que el compensador de tensión puede ponerse en contacto con el material textil y es capaz de controlar la tensión, y por ejemplo se aplica la fuerza de desvío del valor de prevención de defectos como se ha descrito anteriormente. Puesto que el valor de recogida en húmedo del material textil puede afectar críticamente el tratamiento con ozono y la prevención de la formación de defectos, cuando el sistema comprende el primer rodillo de tipo Foulard como se describe más arriba, entonces opcionalmente la tercera etapa del método comprende estrujar el líquido del material textil usando el primer rodillo de tipo Foulard, ajustando así el valor de recogida en húmedo del material textil cuando sale del primer rodillo de tipo Foulard para que esté entre 30 % y 90 %. En ese caso opcional y cuando sea necesario, el método comprende además ajustar el primer tipo Foulard para estrujar el material textil para lograr el valor de recogida en húmedo anteriormente mencionado.
Opcionalmente, durante su tercera etapa, el método comprende guiar el material textil para que pase a través de tanto la parte superior como la parte inferior del interior de la cámara hueca. Esta última opción requiere el uso de la característica opcional del sistema mencionada más arriba de que los rodillos de guía de la pluralidad de rodillos de guía se configuren tal que el material textil pase a través de tanto la parte superior como la inferior de la cámara hueca. Además, se contempla la opción de pasar el material textil a través de la cámara hueca a una velocidad lineal de entre 5 m/min y 140 m/min, y por ejemplo de entre 25 m/min y 50 m/min, o de entre 50 m/min y 140 m/min, en la tercera etapa del método.
Opcionalmente y con la condición de que el sistema tenga el sensor mencionado más arriba, se contempla la opción de, durante la tercera etapa del método, usar al menos un sensor para medir el valor de la fuerza de desvío y/o del parámetro físico correlacionado con la fuerza de desvío. Se prefiere además que el sistema comprenda un actuador electromecánico como se ha descrito anteriormente y que durante la tercera etapa del método use el valor medido por el al menos un sensor como señal de retroalimentación para ajustar la posición de la parte de contacto del compensador de tensión usando dicho actuador electromecánico. De esa forma se facilita la tarea de asegurar que la fuerza de desvío tenga el valor de prevención.
Cuando el sistema comprende el segundo rodillo de tipo Foulard como se ha descrito anteriormente, entonces es preferible, durante la tercera etapa del método, estrujar el líquido del material textil usando el segundo rodillo de tipo Foulard.
Como se ha mencionado, el sistema es excepcionalmente muy apto para tratar el material textil con ozono justo antes o justo después de que se tiña el material textil o partes de él. Por este motivo, opcionalmente el método comprende teñir el material textil. Preferentemente, el teñido se hace antes o después de la tercera etapa anteriormente mencionada del método. Dicho teñido se puede implementar usando un sistema que comprende la unidad de teñido anteriormente mencionada.
El método se puede implementar cuando el material textil es tela, o cuando el material textil comprende hilos no tejidos y no unidos entre ellos. En este último caso, y con la condición de que en el sistema usado para implementar el método cada uno de los rodillos de guía tenga aletas, opcionalmente la tercera etapa del método comprende además usar las aletas de los rodillos de guía para reducir el área de contacto entre el material textil y los rodillos de guía. Sin embargo, el uso de rodillos de guía que comprenden aletas también se puede implementar para tratar una tela.
En relación con la prevención de la formación de los defectos inducidos por el ozono sobre el material textil, es preferible que durante la tercera etapa del método se pase el material textil a una alta velocidad lineal cuando el valor de concentración de ozono sea relativamente bajo, y se pase la velocidad de banda a velocidad lineal baja cuando el valor de concentración de ozono sea relativamente alto. Por este motivo, se desvela el caso opcional de que, cuando el valor de concentración de ozono deseado sea de entre 2 g/Nm3 y 15 g/Nm3, entonces durante/en la tercera etapa del método se pasa el material textil a través de la cámara hueca a una velocidad lineal de entre 25 m/min y 50 m/min. Similarmente, también se desvela el caso opcional de que, cuando el valor de concentración de ozono deseado sea de entre 10 g/Nm3 y 150 g/Nm3, entonces durante/en la tercera etapa del método se pasa el material textil a través de la cámara hueca a una velocidad lineal de entre 20 m/min y 150 m/min. Similarmente, también se desvela el caso opcional de que el valor de concentración de ozono deseado sea de entre 5 g/Nm3 y 30 g/Nm3, y durante/en la tercera etapa del método se pasa el material textil a través de la cámara hueca a una velocidad lineal de entre 25 m/min y 50 m/min.
También en relación con prevenir la formación de los defectos inducidos por el ozono sobre el material textil, se desea ajustar el valor de la concentración de ozono y la velocidad lineal teniendo en cuenta la longitud de la trayectoria de desplazamiento a lo largo de la que pasa el material textil dentro de la cámara hueca y también teniendo en cuenta si el material textil, y así también el material textil, es una tela o comprende hilos separados entre sí. Por este motivo, se desvelan los siguientes casos opcionales: i) el material textil es una tela de mezclilla, la cámara hueca (13) se configura tal que en su interior el material textil siga una trayectoria de desplazamiento de una longitud de entre 10 m y 35 m, el valor de concentración de ozono deseado sea de entre 2 g/Nm3 y 30 g/Nm3, y en la tercera etapa del método pase el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 25 m/min y 50 m/min, ii) el material textil es una tela de mezclilla, la cámara hueca (13) se configura tal que dentro de ella el material textil siga una trayectoria de desplazamiento de una longitud de entre 10 m y 35 m, el valor de concentración de ozono deseado sea de entre 25 g/Nm3 y 150 g/Nm3, y en la tercera etapa del método pase el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 50 m/min y 140 m/min.
También en relación con prevenir la formación de los defectos inducidos por el ozono sobre el material textil, preferentemente el método también comprende ajustar el valor de concentración de ozono y la velocidad lineal del material textil según el tipo del material textil. Por este motivo, también se desvelan los siguientes casos opcionales: i) el material textil es tela de mezclilla teñida con tintes de índigo, reactivos y/o sulfurosos, el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 15 g/Nm3, y en la tercera etapa del método se pasa el material textil a través de la cámara hueca a una velocidad lineal de entre 25 m/min y 50 m/min, ii) el material textil es tela que está cruda y/o en estado sin procesar, el valor de concentración de ozono deseado es 20 g/Nm3, y en (durante) la tercera etapa del método se pasa el material textil a través de la cámara hueca a una velocidad lineal de 40 m/min, iii) el textil comprende lana, el valor de concentración de ozono deseado es de entre 15 g/Nm3 y 30 g/Nm3, y durante la tercera etapa del método se pasa el material textil a través de la cámara hueca a una velocidad lineal de entre 25 m/min y 50 m/min.
Debido al concepto inventivo de la presente invención que se refiere a resolver el problema para prevenir la formación de los defectos inducidos por el ozono sobre el material textil, se pueden procesar una gran variedad de tipos de materiales textiles usando el sistema y el método de la presente invención. Además, previniendo la formación de dichos defectos, se puede variar los diversos parámetros físicos descritos en el presente documento relacionados con la implementación de la invención para lograr diversos efectos de acabado sobre el material textil, sin padecer este último dichos defectos. Por tanto, la presente invención es para tratar el material textil, en el que el tratamiento del material textil se puede entender, de una forma no limitante, como que es cualquiera de los siguiente efectos de acabado: sacar brillo al material textil, retirar el retroteñido del material textil, lavar el material textil, decolorar el material textil, alterar el color el material textil, regular el pH del material textil, fijar tinte de azufre del material textil, oxidar un colorante adsorbido sobre el material textil, blanquear el material textil, preparar el material textil para el teñido, mejorar la posterior captación de tintes o pigmentos o colorantes o resinas o enzimas por el material textil, mejorar el teñido defectuoso del material textil, mejorar el rendimiento antienvejecimiento del material textil, retirar el color flotante del material textil, mercerizar el material textil, quitar el apresto del material textil, prevenir el encogimiento del material textil. Sin desear quedar ligado a teoría específica alguna, los inventores en vista de la prevención inesperadamente buena de la formación de los defectos inducidos por el ozono sobre el material textil implementando la presente invención sugieren que la dinámica de la reacción del gas ozono con el material textil depende, al menos de algún modo, de la tensión del material textil dentro de la cámara, y viceversa. Los inventores sugieren que el estado mecánico exacto, tal como la tensión, de las fibras del material textil se debe controlar cuando las fibras se exponen al gas ozono. Por este motivo, el uso de al menos un compensador de tensión dentro del ozono que contiene cámara hueca resuelve el problema de cómo prevenir la formación de los defectos inducidos por el ozono. Además, dada la complejidad del sistema y método, y dado el hecho de que el tratamiento con ozono tiene lugar dentro de la cámara hueca, los inventores creen que es importante tener dicho compensador de tensión dentro de la cámara hueca donde tiene lugar la reacción. Por supuesto, opcionalmente, el sistema también puede comprender controladores de tensión tales como compensadores de tensión ubicados fuera de la cámara hueca.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Las ventajas y características previas y otras serán más completamente entendidas a partir de la siguiente descripción detallada de las realizaciones, con referencia a las figuras adjuntas (dibujos), que se deben considerar de una forma ilustrativa y no limitante, en las que:
La Fig. 1 es un diagrama esquemático de una sección transversal de una primera realización preferida del sistema cuando funciona este último.
La Fig. 2 es una perspectiva tridimensional de una parte del sistema en cuanto a la Fig. 1 , como se observa desde fuera del sistema.
La Fig. 3 es un diagrama esquemático de una sección transversal de una segunda realización preferida del sistema cuando funciona, que comprende el sistema de la Fig. 1 como una parte del sistema global.
La Fig. 4 es una perspectiva tridimensional del sistema en cuanto a la Fig. 3 como se observa desde fuera del sistema.
La Fig. 5 es una tercera realización preferida del sistema, en la que el sistema se pretende usar para tratar material textil que comprende un conjunto de hilos no tejidos no unidos entre ellos.
La Fig. 6 es un diagrama esquemático de una sección transversal de una realización del compensador de tensión, y muestra 3 posiciones de trabajo diferentes del compensador de tensión.
La Fig. 7 es un diagrama esquemático de una sección transversal de la realización a modo de ejemplo del primer aspecto de la invención.
DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES
La Fig. 1 muestra una primera realización preferida del sistema del primer aspecto de la invención. En este caso, el sistema 1 se ubica sobre el suelo G, y comprende la cámara hueca 13, el puerto de alimentación de textil 16 que es adyacente y está conectado, por ejemplo, por las paredes laterales del sistema (no mostradas completamente), a la a una primera pared 20 de la cámara hueca 13. El sistema 1 también comprende el puerto de descarga de textil 26 que es adyacente y se conecta a una segunda pared 30 de la cámara hueca. Dicho puerto de alimentación de textil 16 comprende el primer tanque 19, la primera entrada de líquido 15, la primera salida de líquido 18 que se puede conectar a una unidad de purificación de líquidos (no mostrada), y el primer rodillo sumergido 21 , y el medio de redireccionamiento de textil externo 39 que en este caso es una barra. Dicho puerto de descarga de textil 26 comprende el segundo tanque 29, la segunda entrada de líquido 17, el segundo rodillo sumergido 22 y la segunda salida de líquido que se puede conectar a dicha unidad de purificación de líquidos. La primera y segunda entradas de líquido 15, 17 se pueden conectar a un sistema de suministro de líquido (no mostrado). En esta realización, el sistema 1 también comprende una estructura de soporte S que mantiene por encima del suelo la cámara hueca 13 y los puertos de descarga y alimentación de textil 26, 16. En este caso particular, el sistema de suministro de ozono es un dispositivo generador de ozono 40 (rectángulo resaltado por el color gris) ubicado por debajo del puerto de alimentación de textil 16, y está conectado por tubería (no mostrada) a ocho entradas de gas 10 (entradas de aire) fijadas sobre la pared lateral trasera de la cámara hueca 13. Cuando el sistema se suministra con el primer y un segundo líquido para ser puesto en funcionamiento, el primer depósito 34 indicado por el color gris claro y el segundo depósito 35 se forman respectivamente tal que los bordes más bajos de la primera y la segunda paredes 20, 30 se sumerjan completamente dentro de los depósitos 34 y 35 respectivos. Similarmente al estado de la técnica, en esta realización cada una de las paredes laterales delanteras y traseras (con respecto al plano del dibujo) de la cámara hueca se extiende hacia el primer tanque 19 y el segundo tanque 29 que actúan como pared lateral correspondiente del mismo, y que también se unen a la longitud entera de los bordes laterales delantero y trasero (no mostrados) de dicha primera pared 20 y dicha segunda pared 30. Por este motivo, el gas ozono en la cámara hueca no puede escapar a través de los puertos de alimentación y descarga de material textil 16, 26 cuando el primer y el segundo depósitos 34, 35 están respectivamente presentes. La cámara hueca 13 también comprende una pluralidad de rodillos de guía 7 (para claridad de presentación no se indican numéricamente todos los rodillos de guía, el lector puede distinguirlos en el dibujo), dos rodillos de tracción interna 8 siendo cada uno impulsable por un motor de tracción 6 correspondiente conectado apropiadamente al primer y ubicado encima de la cámara hueca, y tres compensadores de tensión 1 1 . El sistema 1 comprende además el primer rodillo de tipo Foulard 9 que es impulsable por un primer motor de impulsión 37 conectado apropiadamente a él ubicado encima de la cámara hueca 13 próximo al puerto de alimentación de textil 16, y el sistema 1 también comprende el segundo rodillo de tipo Foulard 14 que es accionable por un segundo motor de impulsión 31 conectado apropiadamente a él ubicado encima del primero. En este caso, como es obvio de la Fig. 1 , cada uno del primer y el segundo rodillos de tipo Foulard 9, 14 comprende un conjunto de dos sub-rodillos respectivos (no indicados numéricamente) y la distancia entre los sub-rodillos de cada conjunto es ajustable tal que la presión aplicada al material textil 2 y sus segmentos longitudinales 3 que pasan entre dichos sub-rodillos también sea ajustable tal que se controle la cantidad de líquido retirada del material textil 2 y así el valor de recogida en húmedo de este último (por ejemplo de un segmento longitudinal 3) cuando abandona cada rodillo de tipo Foulard. El sistema 1 también comprende otro rodillo impulsor, que es un rodillo de tracción externo 32, ubicado fuera de la cámara hueca 1 y por encima del segundo tanque 29 y depósito 35, estando dicho rodillo de tracción externo 32 conectado y siendo impulsable por el motor impulsor externo 33 ubicado próximo al primero. A la izquierda del segundo rodillo de tipo Foulard, el sistema 1 también comprende el medio de redireccionamiento de textil externo 39 que es un rodillo de guía externo. En general, los medios de redireccionamiento de textil externos 39 del sistema, que son rodillos de guía externos y/o barras y configurados para guiar el material textil 2, y así sus segmentos longitudinales 3, para entrar en el puerto de alimentación de textil 16 y salir del puerto de descarga de textil en las direcciones apropiadas para pasar a través del sistema y sus rodillos. En la Fig. 1 , el material textil 2 que se extiende longitudinalmente a través y pasa a través del sistema cuando se usa este último, se representa por la línea gris gruesa. Los ejemplos de los segmentos longitudinales 3 del material textil 1 se representan por las líneas negras gruesas superpuestas sobre la línea gris gruesa que representa el material textil 2. La dirección de movimiento del material textil 2, y así de cada segmento longitudinal 3, a través de las diversas partes de la trayectoria de desplazamiento del material textil se indica por las flechas negras gruesas. La cámara hueca 13 del sistema 1 también comprende sensores de monitorización de la concentración de ozono 12 que se pueden conectar al sistema de microprocesador de un analizador de gas (no mostrado) y se configuran para medir la concentración de gas de ozono dentro de la cámara hueca cuando funciona el sistema. En esta realización, la pared superior de la cámara hueca tiene una salida de gas 5 fijada encima, y por dicha salida de gas 5 una unidad de destrucción de gas 4 se conecta a la cámara hueca. La unidad de destrucción de gas 4, que en este caso específico contiene el catalizador Caroulite®, se configura para retirar gas del interior de la cámara hueca, destruir su contenido de ozono y liberar por el escape 38 gas de escape no tóxico al entorno. En Fig. 1 , el eje de anchura del material textil 2 y el eje de giro de todos los tipos de los rodillos representados en su interior son sustancialmente perpendiculares al plano de la Fig. 1. Así, es obvio que los materiales textiles ejecutan un movimiento longitudinal cuando pasan a través de la cámara hueca, y durante dicho movimiento longitudinal el material textil se desplaza a lo largo de la longitud del sistema y dentro de la cámara hueca pasa sucesivamente a través de la parte superior e inferior de la cámara hueca. Además, la anchura del sistema y la longitud de los rodillos de guía son mayores que la anchura del material textil, tal que este último pueda pasar a través del sistema y sus rodillos, estando extendido de lado a lado y uniformemente en contacto con cada uno de los rodillos de guía. En esta realización, la trayectoria de desplazamiento del material textil 2 (y cualquiera de sus segmentos longitudinales 3) dentro de la cámara es superior a 10 m.
La Fig. 2 muestra una perspectiva tridimensional de una parte del sistema 1 de la Fig. 1 , como se ve desde fuera del sistema 1 y detrás de la pared lateral trasera 49 de la cámara hueca (cámara hueca 13 en la Fig. 1 ). La Fig. 2 muestra los dos motores de tracción 6, el motor de tracción externo 33 y muestra claramente cuatro de dichas entradas de gas 10. La Fig. 2 también muestra parte de la tubería 42 que conecta dichas entradas de gas 10 al dispositivo generador de ozono (no mostrado), y también muestra que unida a dicha tubería 42 existe un motor de ventilador 43 que está conectado e impulsa un ventilador (no mostrado) ubicado dentro de la tubería 42 y configurado para aumentar el flujo al que el gas ozono se inyecta en la cámara hueca, tal que la concentración del gas ozono sea sustancialmente uniforme dentro de la cámara hueca en operación normal del sistema. Dicho ventilador funciona esencialmente como la soplante de gas mencionada en relación con la realización a modo de ejemplo del primer aspecto de la invención. La Fig. 2 también muestra el analizador de gas 44 que está conectado a los sensores de monitorización de la concentración de ozono 12 (no mostrados) representados en la Fig. 1. El analizador de gas 44 comprende un sistema de microprocesador que se configura para recibir y opcionalmente analizar señales enviadas por los sensores de monitorización de la concentración de ozono 12, y el analizador de gas muestra opcionalmente la concentración de gas ozono medida por una pantalla conectada y controlada por dicho sistema de microprocesador.
La Fig. 3 muestra una segunda realización preferida del sistema. El sistema 1 de la Fig. 1 es parte del sistema 51 mostrado en la Fig. 2. El sistema 51 también comprende la primera unidad de acumulación 45, la unidad de secadora 46 y la segunda unidad de acumulación 47. Para claridad de la presentación, la Fig. 3 también muestra como una línea gris gruesa el material textil 2 que está presente y se extiende a través del sistema 51 cuando funciona dicho sistema 51 . Además, los recuadros rectangulares de línea discontinua dibujados en la Fig. 3 indican un primer 7a y un segundo 7b conjunto de rodillos de guía respectivamente ubicados en la parte superior e inferior de la cámara hueca.
La Fig. 4 muestra una perspectiva tridimensional del sistema 51 de la Fig. 3, como se ve desde enfrente y por encima del sistema 51. Como se muestra en la Fig. 4, la pared lateral frontal 54 del sub-sistema 1 (sistema 1 en la Fig. 1 ) comprende una puerta 52 que comprende una ventana de cristal 53 para ver dentro de la cámara cuando la puerta 52 está cerrada como se muestra. El sistema 51 también comprende un ordenador 70 que está conectado a microprocesadores correspondientes de varias de las partes electrónicas y/o electromecánicas del sistema 51 , y se configura para monitorizar y controlar, según las entradas del usuario, la operación de dichas partes y del sistema 51 , y en particular cualquiera de los parámetros de proceso que son críticos para tratar el material textil y prevenir la formación de defectos, siendo ejemplos de dichos parámetros: la velocidad lineal con la que el segmento longitudinal pasa a través de la cámara hueca 13, el valor de la fuerza de desvío, la recogida en húmedo del material textil después de pasar a través del primer rodillo de tipo Foulard. Por este motivo, el sistema del primer aspecto de la invención comprende opcionalmente el ordenador 70, siendo este último preferentemente conectado para monitorizar la operación de y controlar cualquiera de los siguientes componentes del sistema cuando dichos componentes están presentes: primer y segundo rodillo de tipo Foulard 9,14 y sus motores de impulsión 37, 31 respectivos (cada uno de estos motores puede ser un componente del rodillo respectivo y puede comprender microprocesadores conectados al ordenador), cualquiera de los rodillos impulsores tales como el rodillo de tracción externo 32 y su motor 33 correspondiente (el motor puede ser un componente del rodillo), el rodillo de tracción interno y su motor 6 correspondiente (el motor puede ser un componente del rodillo), el dispositivo generador de ozono 40, ventilador y motor 43 conectado a él, sensor de monitorización de la concentración de ozono 12, analizador de gas 44, unidad de destrucción de gas 4, unidad de secadora 46, sistema de suministro de líquido, unidad de purificación de líquidos. Obviamente, el sistema se puede conectar a al menos una unidad de fuente de alimentación, que también puede ser un componente del sistema y se puede conectar a una red de potencia externa y alimentar el sistema y sus diversos componentes. Dicho ordenador 70 también se puede conectar a dicha unidad de potencia (unidad de potencia no mostrada en ninguno de los dibujos). Además, el ordenador se puede conectar a cualquier otro componente electromecánico o electrónico no mencionado anteriormente del sistema tal como válvulas, compuertas, reguladores, etc., que están comúnmente presentes en los sistemas de procesamiento industrial de textiles y frecuentemente comprenden microprocesadores conectables con ordenadores.
La Fig. 5 describe otra realización del sistema del primer aspecto de la invención. Esta realización es una preferida cuando el material textil comprende hilos no tejidos. El sistema 61 de la Fig. 5 tiene una estructura similar al sistema 1 mostrado en la Fig. 1. Por tanto, los componentes del sistema 62 de la Fig. 5 que son sustancialmente los mismos o sirven sustancialmente a una funcionalidad similar que los componentes anteriormente mencionados del sistema 1 , se describen con los mismos números de referencia. El sistema 62 en la Fig. 5 tiene las siguientes características distintas: existen dos grandes ventanas de visualización de cristal 36 fijadas sobre la pared lateral trasera de la cámara, existe el compensador de tensión externo 60 a la derecha del segundo rodillo de tipo Foulard 60, existen los separadores 61 , cada uno de los rodillos de guía 7 de la pluralidad de rodillos de guía comprende aletas 72 que se muestran claramente en el recuadro Q de la Fig. 5, mostrando dicho recuadro una vista ampliada de uno de los rodillos de guía 7. En este caso, el eje longitudinal de cada aleta 72 es paralelo al eje de giro del rodillo 7, y entre aletas 72 vecinas existen huecos. Por este motivo, cuando el segmento longitudinal 3 del material textil 2 toca el rodillo de guía 7, está principalmente haciendo contacto con los puntos de vértice de las aletas 72, y entre aletas 72 vecinas cada hilo del segmento longitudinal 3 no está haciendo contacto con el rodillo de guía 7, y esto facilita el tratamiento con ozono uniforme del hilo y la prevención de la formación de los defectos inducidos por el ozono. Cada uno de los separadores 61 es esencialmente una barra paralela a los rodillos de guía y fijados sobre cualquiera o ambas de la pared lateral delantera y trasera (no mostradas/marcadas con el signo de referencia en la Fig. 5) de la cámara hueca 13, o sobre una estructura de soporte adicional fijada encima. Cuando funciona el sistema 62, cada separador 61 tiene como finalidad mantener un primer conjunto de hilos del segmento longitudinal (que pasa por dicho separador 61 ) espacialmente separado de un segundo conjunto de hilos del segmento longitudinal, tal que cada hilo de cada primer y segundo conjunto correspondiente se trate más uniformemente por el gas ozono a medida que se mueve a través de la cámara y entre los rodillos de guía 7 sucesivos, como se indica por la Fig. 5. Por tanto, los separadores contribuyen a la prevención de la formación de los defectos inducidos por el ozono, formando con el al menos un compensador de tensión 1 1 y la pluralidad de rodillos de guía 7 un efecto sinérgico.
La Fig. 6 muestra una sección transversal de un ejemplo de un compensador de tensión 1 1 , que en este caso es un tipo común de un compensador de tensión, y describe su funcionamiento. En este caso, el compensador de tensión comprende el primer árbol 81 que está unido y es sustancialmente perpendicular a cualquiera o ambos de la pared lateral trasera y delantera (no mostradas) del sistema (no mostrado). El eje longitudinal del primer árbol 81 es perpendicular al plano de la Fig. 6, y el primer árbol 81 puede girar alrededor de dicho eje, como se indica por las dobles flechas mostradas. Unido y soportado por el primer árbol 81 existe el conector 82 que también está unido y soporta la parte de contacto 83. La parte de contacto 83 también es un árbol paralelo al primer árbol 81 . El conector 82 se une a un borde de la parte de contacto 83 y no hace contacto con el segmento longitudinal 3 del material textil, así no impide el deslizamiento de este último alrededor de la parte de contacto 83. Obviamente, un segundo conector (no mostrado), similarmente configurado con el conector 82 mostrado, se puede unir al otro borde (opuesto) (no mostrado) de la parte de contacto 83. El conector 82, y así la parte de contacto 83, también pueden girar alrededor del eje longitudinal del primer árbol 81 , siguiendo el movimiento de este último cuando gira. El segmento longitudinal 3 (material textil) se pone en contacto con la parte de contacto 83 cuando pasa a través del compensador de tensión 1 1. La dirección del movimiento del segmento longitudinal 3 a medida que pasa por el compensador de tensión 1 1 se indica en la Fig. 6 por la flecha curvada gris gruesa. Cuando la parte de contacto 83 que se pone en contacto con el segmento longitudinal 3 está en la posición O o en cualquier posición a lo largo de la hipotética línea GL (indicada por la línea de puntos discontinua) que incluye la posición O y está entre las posiciones N1 y N2, entonces la fuerza de desvío F tiene el valor de prevención y las fibras (no mostradas) del segmento longitudinal 3 están en un estado mecánico óptimo para ser tratadas con ozono. Cuando la parte de contacto 83 con el segmento longitudinal 3 está en la posición O, y entonces se tira hacia arriba del segmento longitudinal 3 hacia la posición N1 por fuerzas externas no mostradas, entonces el compensador de tensión 1 1 , que significa su parte de contacto 83, gira moviéndose a
10 largo de dicha línea y hacia la posición N1 , previniéndose así el tensado del textil y manteniendo la fuerza de desvío F, aplicada por la parte de contacto al material textil, a un valor de prevención de defectos. Similarmente, cuando la parte de contacto 83 con el segmento longitudinal 3 está en la posición O, y entonces el segmento longitudinal 3 se suelta longitudinalmente y tiende a reducirse la fuerza de acción aplicada del material textil a la parte de contacto, entonces el compensador de tensión
1 1 gira moviéndose a lo largo de dicha línea GL y hacia la posición N2 para mantener el material textil tensado y la fuerza de desvío F a un valor de prevención de defectos. Preferentemente, el compensador de tensión 1 1 comprende un sensor para medir el valor de la fuerza de desvío relacionada con la interacción entre el compensador de tensión 1 1 y el segmento longitudinal 3, o medir un parámetro físico correlacionado con dicho valor de la fuerza de desvío. Por ejemplo, en el caso del ejemplo de la Fig. 6, el sensor es un inclinómetro que mide el ángulo entre la posición de la parte de contacto del compensador de tensión 83 y el conector 82 con respecto a la posición O. Estos tipos de sensores, tales como inclinómetros, potenciómetros y células de carga, se conocen bien y se usan ampliamente en compensadores de tensión. El compensador de tensión 1 1 se ajusta preferentemente automáticamente para mantener que la fuerza de desvío tenga el valor de prevención. Sin embargo, también se contempla que se ajuste manualmente por el usuario del sistema, o se ajuste por un actuador que ajusta la posición del compensador de tensión. Un ejemplo de un sensor usado con el compensador de tensión y que se configura para medir la posición de la parte de contacto y así medir/indicar la fuerza/carga aplicada del material textil al compensador de tensión y la fuerza de desvío correspondiente aplicada del compensador de tensión al material textil cuando el compensador de tensión se ubica a lo largo de la línea geométrica GL, es el sistema de posicionamiento de campo magnético BMR000Z por Balluf. Otro ejemplo del sensor es el sensor giratorio Novohall (serie RFC4800) que se usa, por ejemplo, unido/integrado en el primer árbol de giro 81 anteriormente mencionado.
La realización a modo de ejemplo se describe adicionalmente por la Fig. 7. El dispositivo para retirar color flotante con ozono como se muestra en la Fig. 7 comprende una cámara hueca 13, en el que una pared lateral izquierda de la cámara hueca está provista de un puerto de alimentación de textil, y una pared lateral derecha de la cámara hueca está provista de un puerto de descarga de textil; la cámara hueca está internamente provista de rodillos de guía 7 para cambiar una dirección de movimiento de la mezclilla, los rodillos de guía 7 se dividen en dos grupos dependiendo de sus posiciones, cada grupo tiene al menos dos rodillos de guía, un grupo 7a se fija sobre una parte superior de la cámara hueca y el otro grupo se fija sobre una parte inferior de la cámara hueca; un rodillo impulsor cuyo segundo rodillo de tipo Foulard 14 para impulsar la mezclilla para que se mueva de izquierda a derecha, y comprimir el textil que pasa, se fija por encima del puerto de descarga de textil a través de un soporte, y un árbol de giro de dicho rodillo impulsor está conectado con un árbol de giro de un motor impulsor a través de un mecanismo de transmisión; y una entrada de aire está dispuesta en la cámara hueca y se comunica con un puerto de aire de salida de una tubería de admisión de aire, y un puerto de entrada de aire de la tubería de admisión de aire se comunica con una boquilla de salida de aire de un dispositivo generador de ozono. El rodillo impulsor impulsa el textil 2, que se tensiona sobre los rodillos de guía, para que se mueva de izquierda a derecha, y mientras tanto, el dispositivo generador de ozono (no mostrado) genera ozono y suministra ozono a la cámara hueca. Como también se muestra en la Fig. 7, el dispositivo también comprende un compensador de tensión 1 1 , un segundo rodillo impulsor que es un rodillo de tracción externo 32, y un tercer rodillo impulsor que es un primer rodillo de tipo Foulard 9 configurado para comprimir la mezclilla textil que pasa.
Esta realización se puede usar para retirar el color flotante de tela y textil duro impreso, y puede evitar el teñido provocado por el aclarado. En la realización a modo de ejemplo, la parte superior de la cámara hueca está sellada, la cámara hueca está solo provista del puerto de alimentación de textil, el puerto de descarga de textil, la entrada de aire y la salida de aire, y la salida de aire se comunica con un puerto de entrada de aire de una tubería de salida de aire. El puerto de alimentación de textil y el puerto de descarga de textil están ambos provistos de una estructura de sellado para prevenir que el ozono se desborde de ella. Por favor, obsérvese que la estructura de sellado se puede usar para reducir/prevenir, pero no erradicar completamente, la fuga de ozono. Preferentemente, la estructura de sellado comprende una primera placa de reparto 95, la parte superior de la primera placa de reparto 95 se apoya contra la parte superior de la cámara hueca, y está dispuesto un hueco entre la parte inferior de la primera placa de reparto 95 y la parte inferior de la cámara hueca; la estructura de sellado comprende además una segunda placa de reparto 94, la parte inferior de la segunda placa de reparto 94 se apoya contra la parte inferior de la cámara hueca, y está dispuesto un hueco entre la parte superior de la segunda placa de reparto 94 y la parte superior de la cámara hueca; la primera placa de reparto 95 se ubica entre una pared lateral de la cámara hueca y la segunda placa de reparto 94; y la altura a la que se ubica la parte inferior de la primera placa de reparto 95 es inferior a la altura a la que se ubica la parte superior de la segunda placa de reparto 94; se carga agua entre la pared lateral y la primera placa de reparto y entre la primera placa de reparto y la segunda placa de reparto 94; y la altura a la que se ubica el nivel de agua del agua es inferior a la altura a la que se ubica la parte superior de la segunda placa de reparto 94, pero es superior a la altura a la que se ubica la parte inferior de la primera placa de reparto 95; dos rodillos de guía fijados en la parte inferior del sistema se ubican sumergidos en el agua; y el puerto de alimentación de textil y el puerto de descarga de textil se abren sobre la pared lateral de la cámara hueca fuera de la primera placa de reparto 95. Según la presente invención, se optimiza la estructura de un cuerpo de cámara hueca, y usa la placa de reparto y la pared lateral para formar una estructura de sellado al agua que puede prevenir eficazmente el desbordamiento del ozono y reducir la entrada de agua en la parte hueca dentro de la segunda placa de reparto. Por supuesto, se pueden usar otros líquidos para sustituir el agua para realizar el sellado.
En la realización a modo de ejemplo, la entrada de aire se ubica preferentemente en la parte superior de la cámara hueca dentro de la primera placa de reparto, y también se puede ubicar en la parte inferior o pared lateral de la cámara hueca dentro de la segunda placa de reparto. Preferentemente, la entrada de aire está provista de una válvula de tres vías, un puerto de válvula de la cual se comunica con la cámara hueca, un puerto de válvula se comunica con el puerto de salida de aire de la tubería de admisión de aire, un puerto de válvula se comunica con el puerto de salida de aire de una tubería de guía de aire. El puerto de entrada de aire de la tubería de guía de aire se conecta con la salida de aire de una soplante de aire. De esta forma, la presión del aire en la entrada de aire se puede aumentar por medio de la soplante de aire, aumentando así la intensidad de la acción del ozono con la mezclilla, y mejorando el efecto de retirar el color flotante. Preferentemente, la tubería de admisión de aire está provista de una válvula de flujo, tal que el volumen de inflado de ozono se pueda ajustar a través de la válvula de flujo, para controlar la cantidad de ozono en la cámara hueca. Además, se dispone un sensor de monitorización de la concentración de ozono en la cámara hueca, y se conecta con un sistema de microprocesador que se conecta con un sistema de control del dispositivo generador de ozono, para ajustar la velocidad de generación de ozono según la concentración de ozono y adicionalmente para controlar la cantidad de ozono en la cámara hueca.
Una realización preferida del método del segundo aspecto de la invención es del siguiente modo:
- usar el sistema descrito anteriormente en relación con la Fig. 1 y suministrar su primer tanque con el primer líquido y formar el primer depósito de líquido del primer líquido dentro del primer tanque, y suministrar el segundo tanque con el segundo líquido y formar el depósito del segundo líquido dentro del segundo tanque, siendo tanto el primer líquido como el segundo líquido agua, y extender el material textil a través del sistema según el primer aspecto de la invención, y hacer funcionar dicho sistema
- suministrar la cámara hueca con gas ozono al valor de concentración de ozono deseado, usando el dispositivo generador de ozono,
- usar los rodillos impulsores que pasan el material textil a través del sistema, que significa impulsar el material textil para moverlo sucesivamente a través del depósito del primer líquido, a través del interior de la cámara hueca y a través del depósito del segundo líquido, y prevenir la formación de defectos inducidos por el ozono sobre el material textil controlando la tensión del material textil usando el compensador de tensión y con parte de contacto móvil de este último aplicar al material textil una fuerza de desvío de un valor constantemente de entre 0,5 N y 400 N.
Preferentemente, el material textil se extiende similarmente a lo que se indica por la Fig. 1. Preferentemente, el primer y el segundo líquidos son agua. Preferentemente, el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 150 g/Nm3.
Preferentemente, el paso del material textil se hace a una velocidad lineal de entre 5 m/min y 140 m/min. También preferentemente, cuando pasa el material textil, el método comprende ajustar la velocidad de giro de cualquiera de la pluralidad de rodillos impulsores, controlando así adicionalmente la tensión del material textil. Preferentemente, el sistema comprende el primer rodillo de tipo Foulard, y hacer funcionar el sistema comprende ajustar el primero para estrujar agua del segmento longitudinal tal que el valor de recogida en húmedo de este último cuando sale del primer rodillo de tipo Foulard sea de entre 30 % y 90 %.
En otra realización del método, la cámara hueca se configura tal que en su interior el material textil siga una trayectoria de desplazamiento de una longitud de entre 10 m y 200 m, y en la tercera etapa del método se pasa el material textil a través de la cámara hueca a una velocidad lineal de entre 5 m/min y 140 m/min, y el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 150 g/Nm3.
Los inventores han observado que implementando la invención, se previene significativamente la formación de los defectos inducidos por el ozono en comparación con lo que se logra con el estado de la técnica. La implementación de la invención puede resultar en un aumento de 2 veces el número de los defectos inducidos por el ozono que aparecen sobre el material textil, o en una disminución sustancialmente mayor del número de defectos, en comparación con lo que se logra cuando solo se aplican las enseñanzas del estado de la técnica.
Lo anterior muestra y describe el principio básico, las principales características y ventajas de la presente invención. Los expertos en la técnica deben saber que la presente invención no está limitada por las realizaciones anteriores, las realizaciones y las descripciones anteriores solo describen el principio de la presente invención. La presente invención también puede tener diversos cambios y mejoras sin desviarse del espíritu y el alcance de la presente invención, y los cambios y mejoras deben todos entrar dentro del alcance de protección de la presente invención. El alcance de protección de la presente invención se define por las reivindicaciones adjuntas y sus equivalentes.
Cláusula 1 . Un método de retirada de color flotante con ozono, que comprende: realizar una reacción de oxidación de ozono con el color flotante sobre un textil por medio de la propiedad de oxidación fuerte del ozono, para separar el color flotante del textil.
Cláusula 2. El método de retirada de color flotante con ozono según la cláusula 1 , en el que el textil es tela, hilo o textil duro impreso.
Cláusula 3. El método de retirada de color flotante con ozono según la cláusula 1 , en el que el textil que tiene el color flotante a retirar se coloca en una cámara de aire llena de ozono, para hacer que el textil se ponga en contacto con el ozono en el aire.
Cláusula 4. El método de retirada de color flotante con ozono según la cláusula 1 , en el que el textil que tiene el color flotante a retirar se coloca en agua cargada con ozono, para hacer que el textil se ponga en contacto con el ozono en el agua.
Cláusula 5. Un dispositivo para tratar un material textil con ozono, que comprende una cámara hueca, en el que una pared lateral izquierda de la cámara hueca está provista de un puerto de alimentación de textil, y una pared lateral derecha de la cámara hueca está provista de un puerto de descarga de textil; la cámara hueca está internamente provista de rodillos de guía para cambiar una dirección de movimiento de la mezclilla, los rodillos de guía se dividen en dos grupos dependiendo de las posiciones, cada uno de los dos grupos de los rodillos de guía tiene al menos dos rodillos de guía, un grupo se fija sobre una parte superior de la cámara hueca y el otro grupo se fija sobre una parte inferior de la cámara hueca; un rodillo impulsor para impulsar la mezclilla para que se mueva de izquierda a derecha se fija por encima del puerto de descarga de textil a través de un soporte, y un árbol de giro del rodillo impulsor se conecta con un árbol de giro de un motor impulsor a través de un mecanismo de transmisión; se dispone una entrada de aire en la cámara hueca y se comunica con un puerto de aire de salida de una tubería de admisión de aire, y un puerto de entrada de aire de la tubería de admisión de aire se comunica con una boquilla de salida de aire de un dispositivo generador de ozono, caracterizándose el dispositivo por que la cámara hueca (13) comprende en su interior al menos un compensador de tensión configurado para controlar la tensión del material textil cuando este último pasa a través de la cámara hueca.
Cláusula 6. Dispositivo según la cláusula 5, en el que el compensador de tensión comprende una parte de contacto que se configura para poner en contacto con el material textil y que es móvil a lo largo de una línea geométrica (GL) entre una primera posición de trabajo (N1 ) y una segunda posición de trabajo (N2) correspondientes, y controlar la tensión del material textil que pasa desviando este último aplicándole una fuerza de desvío (F) de entre 0,5 N y 400 N cuando el material textil a lo largo de su longitud se cruza con dicha línea geométrica (GL).
Cláusula 7. Dispositivo según las cláusulas 5 o 6, en el que el puerto de alimentación de textil y el puerto de descarga de textil están ambos provistos de una estructura de sellado para prevenir que el ozono se desborde del mismo; la estructura de sellado comprende una primera placa de reparto, una parte superior de la primera placa de reparto se apoya contra una parte superior de la cámara hueca, y se dispone un hueco entre una parte inferior de la primera placa de reparto y una parte inferior de la cámara hueca; la estructura de sellado comprende además una segunda placa de reparto, una parte inferior de la segunda placa de reparto se apoya contra la parte inferior de la cámara hueca, y se dispone un hueco entre una parte superior de la segunda placa de reparto y una parte superior de la cámara hueca; la primera placa de reparto se ubica entre una pared lateral de la cámara hueca y la segunda placa de reparto, y una altura a la que se ubica la parte inferior de la primera placa de reparto es inferior a una altura a la que se ubica la parte superior de la segunda placa de reparto; se carga agua entre la pared lateral y la primera placa de reparto y entre la primera placa de reparto y la segunda placa de reparto, y una altura a la que se ubica un nivel de agua del agua es inferior a una altura a la que se ubica la parte superior de la segunda placa de reparto, pero es superior a la altura a la que se ubica la parte inferior de la primera placa de reparto; dos de los rodillos de guía que se fijan en la parte inferior de la cámara hueca se ubican en el agua; y el puerto de alimentación de textil y el puerto de descarga de textil están abiertos sobre la pared lateral de la cámara hueca fuera de la primera placa de reparto.
Cláusula 8. Dispositivo según cualquiera de las cláusulas 5-7, en el que la entrada de aire se ubica en la parte superior de la cámara hueca dentro de la primera placa de reparto, o, se ubica en la parte inferior o la pared lateral de la cámara hueca dentro de la segunda placa de reparto.
Cláusula 9. Dispositivo según cualquiera de las cláusulas 5-8, en el que se sella la parte superior de la cámara hueca, y la cámara hueca solo está provista del puerto de alimentación de textil, el puerto de descarga de textil, la entrada de aire y la salida de aire, en el que la salida de aire se comunica con un puerto de entrada de aire de una tubería de salida de aire.
Cláusula 10. El uso de un compensador de tensión dentro de una cámara hueca que contiene gas ozono y un material textil que pasa tensado a través de dicha cámara.

Claims

REIVINDICACIONES
1 . Un sistema para tratar un material textil con gas ozono, comprendiendo el sistema
- una cámara hueca (13) que comprende en su interior una pluralidad de rodillos de guía (7), estando la pluralidad de rodillos de guía (7) configurada para poner en contacto y guiar el material textil para que pase, estando longitudinalmente tensado y extendido de lado a lado, a través de la cámara hueca (13);
- un sistema de suministro de ozono (40) conectado a la cámara hueca (13) y configurado para suministrar a esta última gas ozono a un valor de concentración deseado;
- un puerto de alimentación de textil (16) que es adyacente y se conecta a la cámara hueca (13), y comprende un primer tanque (19) que se configura para contener un primer depósito (34) de un primer líquido que previene la fuga de ozono a través del puerto de alimentación de textil (16) cuando funciona el sistema;
- un puerto de descarga de textil (26) que es adyacente y se conecta a la cámara principal (13), y comprende un segundo tanque (29) que se configura para contener un segundo depósito (35) de un segundo líquido que previene la fuga de ozono a través del puerto de descarga de textil (26) cuando funciona el sistema;
- una pluralidad de rodillos impulsores configurados para impulsar el material textil para que se mueva a través del sistema; en el que el sistema se configura tal que el material textil pase sucesivamente a través del primer depósito (34), a través del interior de la cámara hueca (13) y a través del segundo depósito (35), caracterizándose el sistema por que la cámara hueca (13) comprende en su interior al menos un compensador de tensión (1 1 ) configurado para controlar la tensión del material textil cuando este último pasa a través de la cámara hueca (13).
2. Sistema según la reivindicación 1 , en el que el compensador de tensión (1 1 ) comprende una parte de contacto (83) que se configura para poner en contacto con el material textil y que es móvil a lo largo de una línea geométrica (GL) entre una primera posición de trabajo (N1 ) y una segunda posición de trabajo (N2) correspondientes, y controlar la tensión del material textil que pasa desviando este último aplicándole una fuerza de desvío (F) de entre 0,5 N y 400 N cuando el material textil a lo largo de su longitud se cruza con dicha línea geométrica (GL).
3. Sistema según cualquiera de las reivindicaciones precedentes, en el que la pluralidad de rodillos de guía (7) comprende al menos dos grupos de rodillos de guía (7), cada uno de un primer grupo (7a) y un segundo grupo (7b) de los al menos dos grupos tiene al menos dos rodillos de guía (7), el primer grupo (7a) se fija sobre una parte superior de la cámara hueca (13) y el segundo grupo (7b) se fija sobre una parte inferior de la cámara hueca (13), configurándose también la pluralidad de rodillos de guía (7) para guiar el material textil para que pase a través de tanto la parte superior como la parte inferior del interior de la cámara hueca (13).
4. Sistema según cualquiera de las reivindicaciones precedentes, en el que la cámara hueca (13) comprende en su interior al menos un sensor configurado para medir la fuerza de desvío (F).
5. Sistema según cualquiera de las reivindicaciones precedentes, en el que la pluralidad de rodillos impulsores comprende un primer rodillo de tipo Foulard (9) fijado dentro del interior de la cámara hueca (13) y próximo al puerto de alimentación de material textil (16), y se configura para poner en contacto y recibir el material textil que sale del puerto de alimentación de textil (16), y para estrujar líquido del material textil tal que un valor de recogida en húmedo de este último cuando sale del primer rodillo de tipo Foulard (9) sea de entre 30 % y 90 %.
6. Sistema según cualquiera de las reivindicaciones precedentes, en el que la pluralidad de rodillos impulsores comprende un segundo rodillo de tipo Foulard (14) fijado a continuación del puerto de descarga de material textil (26) y fuera de la cámara hueca (13), que se configura para estar en contacto y recibir el material textil que sale del puerto de descarga de material textil (26), y también se configura para estrujar líquido del material textil.
7. Sistema según cualquiera de las reivindicaciones precedentes, en el que la pluralidad de rodillos impulsores comprende al menos un rodillo de tracción interno (8) dispuesto en el interior de la cámara hueca (13), configurándose el al menos un rodillo de tracción interno (8) para estar en contacto con el material textil e impulsarlo para que pase a través de la cámara hueca (13).
8. Sistema según cualquiera de las reivindicaciones precedentes, en el que la pluralidad de rodillos impulsores comprende al menos un rodillo de tracción externo (32) ubicado fuera de la cámara hueca (13) y configurado para estar en contacto con el material textil e impulsarlo para que el material textil pase a través de la cámara hueca (13).
9. Sistema según cualquiera de las reivindicaciones precedentes, en el que al menos uno de la pluralidad de rodillos impulsores comprende un microprocesador configurado para controlar y ajustar la velocidad de giro del rodillo impulsor respectivo.
10. Sistema según cualquiera de las reivindicaciones precedentes, en el que la pluralidad de rodillos impulsores impulsa el material textil para que se mueva a través de la cámara hueca (13) a una velocidad lineal de entre 5 m/min y 140 m/min.
1 1. Sistema según cualquiera de las reivindicaciones precedentes, en el que el sistema comprende además una unidad de destrucción de gas ozono (4) conectada a la cámara hueca (13) y configurada para extraer y destruir el gas ozono del interior de la cámara hueca (13).
12. Sistema según cualquiera de las reivindicaciones precedentes, en el que el sistema comprende además un sistema de suministro de líquido conectado al primer tanque (19) y/o al segundo tanque (29), y configurado para suministrar del mismo el primer líquido y/o el segundo líquido.
13. Sistema según cualquiera de las reivindicaciones precedentes, en el que el sistema comprende además una unidad de purificación de líquidos conectada al primer tanque (19) y/o al segundo tanque (29) y configurada para recibir líquido de la misma, y para retirar de dicho líquido fibras liberadas por el material textil, y subproductos químicos producidos por el tratamiento del material textil y pasados al líquido.
14. Sistema según cualquiera de las reivindicaciones precedentes, en el que cada uno de los rodillos de guía de la pluralidad de rodillos de guía (7) comprende aletas configuradas para reducir el área de contacto entre el material textil y los rodillos de guía.
15. Sistema según cualquiera de las reivindicaciones precedentes, en el que el material textil es un conjunto de hilos no tejidos y no unidos entre ellos, y en el que la cámara hueca (13) en su interior y entre al menos dos de los rodillos de guía (7) de la pluralidad de rodillos de guía (7) comprende al menos un separador (61 ) configurado para separar espacialmente en su proximidad un primer conjunto de los hilos del material textil de un segundo conjunto de los hilos del material textil.
16. Sistema según cualquiera de las reivindicaciones precedentes, en el que el sistema comprende además al menos una unidad de teñido ubicada fuera de la cámara hueca (13), el puerto de alimentación de textil (16) y el puerto receptor de textil (26), y configurada para teñir el material textil.
17. Sistema según cualquiera de las reivindicaciones precedentes, en el que el sistema comprende además una unidad de secadora (46) configurada para secar el material textil que sale del puerto de descarga de textil (26).
18. Sistema según cualquiera de las reivindicaciones precedentes, en el que el sistema comprende además una segunda unidad de acumulación (47) configurada para recibir y acumular al menos parcialmente el material textil que sale del puerto de descarga de textil (26).
19. Sistema según cualquiera de las reivindicaciones precedentes en el que el sistema comprende además una primera unidad de acumulación (45) que se configura para recibir y acumular al menos parcialmente el material textil y pasar este último al puerto de alimentación de textil (16).
20. Sistema según cualquiera de las reivindicaciones precedentes, en el que el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 150 g/Nm3.
21. Sistema según cualquiera de las reivindicaciones precedentes, en el que la cámara hueca (13) se configura tal que el material textil siga una trayectoria de desplazamiento de una longitud de al menos 10 m dentro de la cámara hueca (13).
22. Sistema según cualquiera de las reivindicaciones precedentes, en el que cada uno de los rodillos de guía (7) de la pluralidad de rodillos de guía (7) tiene un diámetro de entre 50 mm y 500 mm.
23. Sistema según cualquiera de las reivindicaciones precedentes, en el que cada dos rodillos de guía (7) consecutivos a lo largo de la trayectoria de desplazamiento que sigue el material textil dentro de la cámara hueca (13) de la pluralidad de rodillos de guía (7) se disponen tal que la longitud de la parte de la trayectoria de desplazamiento entre dichos rodillos de guía (7) consecutivos sea de entre 20 cm y 200 cm.
24. Un método de tratamiento de un material textil con gas ozono, siendo el material textil una tela o un conjunto de hilos no tejidos y no unidos entre ellos, comprendiendo el método las etapas de:
- proporcionar un primer líquido a un primer tanque (19) y un segundo líquido a un segundo tanque (19) de un sistema que es según la reivindicación 1 ;
- suministrar la cámara hueca (13) del sistema con gas ozono a un valor de concentración de ozono deseado, usando el dispositivo generador de ozono (40) del sistema;
- pasar el material textil tensado a través del sistema, usando la pluralidad de rodillos impulsores y la pluralidad de rodillos de guía (7) del sistema; caracterizándose el método por que durante la tercera etapa se controla la tensión del material textil dentro de la cámara hueca usando el compensador de tensión (1 1 ) del sistema.
25. Método según la reivindicación 24, en el que el compensador de tensión (1 1 ) comprende una parte de contacto (83) que se configura para poner en contacto con el material textil, y que es móvil a lo largo de una línea geométrica (GL) entre una primera posición de trabajo (N1 ) y una segunda posición de trabajo (N2) correspondientes, y controlar la tensión del material textil que pasa desviando este último aplicándole una fuerza de desvío (F) de entre 0,5 N y 400 N cuando el material textil a lo largo de su longitud se cruza con dicha línea geométrica (GL), y en la tercera etapa del método controlar la tensión del material textil comprende aplicar al material textil la fuerza de desvío (F) de entre 0,5 N y 400 N usando el compensador de tensión (1 1 ).
26. Método según cualquiera de las reivindicaciones 24-25, en el que la pluralidad de rodillos impulsores del sistema comprende un primer rodillo de tipo Foulard (9) fijado dentro del interior de la cámara hueca (13) y próximo al puerto de alimentación de material textil (16), y en el que la tercera etapa del método comprende además estrujar líquido del material textil usando el primer rodillo de tipo Foulard (9), ajustando así el valor de recogida en húmedo del material textil cuando sale del primer rodillo de tipo Foulard (9) para que sea de entre 30 % y 90 %.
27. Método según cualquiera de las reivindicaciones 24-26, en el que en la tercera etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 5 m/min y 140 m/min.
28. Método según cualquiera de las reivindicaciones 24-27, en el que durante la tercera etapa del método se ajusta la velocidad de giro de cualquiera de la pluralidad de los rodillos impulsores, controlándose así adicionalmente la tensión del material textil.
29. Método según cualquiera de las reivindicaciones 24-28, en el que el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 150 g/Nm3.
30. Método según cualquiera de las reivindicaciones 24-29, que comprende además teñir el material textil.
31 . Método según cualquiera de las reivindicaciones 24-30, en el que la cámara hueca (13) se configura tal que en su interior el material textil siga una trayectoria de desplazamiento de una longitud de entre 10 m y 200 m, en el que en la tercera etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 5 m/min y 140 m/min, y el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 150 g/Nm3.
32. Método según cualquiera de las reivindicaciones 24-31 , en el que el material textil es una tela de mezclilla, la cámara hueca (13) se configura tal que en su interior el material textil siga una trayectoria de desplazamiento de una longitud de entre 10 m y 35 m, el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 30 g/Nm3, y en la tercera etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 25 m/min y 50 m/min.
33. Método según cualquiera de las reivindicaciones 24-31 , en el que el material textil es una tela de mezclilla, la cámara hueca (13) se configura tal que dentro de ella el material textil siga una trayectoria de desplazamiento de una longitud de entre 10 m y 35 m, el valor de concentración de ozono deseado es de entre 25 g/Nm3 y 150 g/Nm3, y en la tercera etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 50 m/min y 140 m/min.
34. Método según cualquiera de las reivindicaciones 24-31 , en el que en la tercera etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 25 m/min y 50 m/min, y el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 15 g/Nm3.
35. Método según cualquiera de las reivindicaciones 24-31 , en el que el valor de concentración de ozono deseado es de entre 10 g/Nm3 y 150 g/Nm3, y en la tercera etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 20 m/min y 150 m/min.
36. Método según cualquiera de las reivindicaciones 24-31 , en el que el material textil es tela de mezclilla teñida con tintes de índigo, reactivos y/o sulfurosos, el valor de concentración de ozono deseado es de entre 2 g/Nm3 y 15 g/Nm3, y en la tercera etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 25 m/min y 50 m/min.
37. Método según cualquiera de las reivindicaciones 24-31 , en el que el material textil es tela que está cruda y/o en estado sin procesar, el valor de concentración de ozono deseado es 20 g/Nm3, y durante la cuarta etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de 40 m/min.
38. Método según cualquiera de las reivindicaciones 24-31 , en el que el material textil comprende lana, el valor de concentración de ozono deseado es de entre 15 g/Nm3 y 30 g/Nm3, y en la tercera etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 25 m/min y 50 m/min.
39. Método según cualquiera de las reivindicaciones 24-31 , en el que y el valor de concentración de ozono deseado es de entre 5 g/Nm3 y 30 g/Nm3, y en la tercera etapa del método se pasa el material textil a través de la cámara hueca (13) a una velocidad lineal de entre 25 m/min y 50 m/min.
PCT/ES2019/070423 2018-07-30 2019-06-18 Sistema y método de tratamiento de material textil con ozono WO2020025840A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19745651.0A EP3831997B1 (en) 2018-07-30 2019-06-18 System and method for treating textile material with ozone
US17/263,681 US11629446B2 (en) 2018-07-30 2019-06-18 System and method for treating textile material with ozone
ES19745651T ES2934614T3 (es) 2018-07-30 2019-06-18 Sistema y método para el tratamiento de material textil con ozono
CN201980050986.4A CN112867819B (zh) 2018-07-30 2019-06-18 用于以臭氧处理纺织物材料的系统和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810853472.XA CN108978088A (zh) 2018-07-30 2018-07-30 臭氧去浮色的方法和装置
CN201810853472.X 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020025840A1 true WO2020025840A1 (es) 2020-02-06

Family

ID=64551643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070423 WO2020025840A1 (es) 2018-07-30 2019-06-18 Sistema y método de tratamiento de material textil con ozono

Country Status (5)

Country Link
US (1) US11629446B2 (es)
EP (1) EP3831997B1 (es)
CN (2) CN108978088A (es)
ES (1) ES2934614T3 (es)
WO (1) WO2020025840A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853659A (zh) * 2020-12-22 2021-05-28 博格曼(江苏)纺织科技有限公司 纺织布匹节能水洗系统
CN112853648A (zh) * 2020-12-22 2021-05-28 博格曼(江苏)纺织科技有限公司 纺织布匹臭氧整理方法
CN113882097A (zh) * 2020-07-01 2022-01-04 牛仔裤科学有限公司 用于处理纺织织物的方法和设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108978088A (zh) * 2018-07-30 2018-12-11 上海森浩印染机械有限公司 臭氧去浮色的方法和装置
US20220214106A1 (en) * 2019-05-15 2022-07-07 Twine Solutions Ltd. Treatment system
KR102102435B1 (ko) * 2019-09-04 2020-04-20 한국건설기술연구원 부착력을 향상시킨 텍스타일 그리드 제조장치 및 그 방법
CN112626764B (zh) * 2020-12-01 2023-01-24 广东前进牛仔布有限公司 一种防止牛仔面料黄变的方法
CN114622364B (zh) * 2022-03-25 2024-03-26 嘉兴斯威德绒面超纤有限公司 一种硫化染色均匀氧化系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB337305A (en) * 1929-02-10 1930-10-30 Oscar Hoffmann Process and apparatus for treating textile threads and fabrics
GB387668A (en) * 1931-05-07 1933-02-07 Thomas William Holt A new or improved process for the bleaching of textile fabrics
US2727378A (en) * 1951-09-19 1955-12-20 Cook P & N Machine Company Inc Tension control for textile fabric finishing machines
DE1499109A1 (de) * 1966-08-11 1969-10-09 Sp Kb Proekt Krasilno Otdeloch Schleifenkompensator fuer sich bewegende Stoffbahnen
US3664158A (en) * 1970-02-05 1972-05-23 Tedeco Textile Dev Co As Apparatus for treatment of fabrics with liquid ammonia
GB2063944A (en) * 1979-12-05 1981-06-10 Sando Iron Works Co Continuous pretreatment and dyeing of cloth
NZ521592A (en) 2000-03-30 2003-10-31 Chargeurs Wool Eurasia Reactor for treating a solid material such as wool fibers with a noxious gas or gaseous mixture, process and plant thereof
ES2423529A1 (es) 2013-05-16 2013-09-20 Jeanologia, S.L. Máquina y método para la decoloración de tejidos continuos y producto obtenido
KR20140104682A (ko) * 2013-02-21 2014-08-29 다이텍연구원 폴리에스테르 섬유제품의 연속감량 가공장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6418580B1 (en) * 1998-09-11 2002-07-16 Agrimond, L.L.C. Method for treatment of laundry with ozone
KR100423142B1 (ko) * 1998-12-28 2004-06-23 주식회사 대우일렉트로닉스 세탁기용일체형라디칼발생장치
WO2003097916A1 (fr) * 2002-05-17 2003-11-27 Howa Kabushiki Kaisha Dispositif de decoloration de produits textiles et procede de decoloration
GB2414023B (en) * 2004-05-11 2008-04-09 Jla Ltd Washing machine, ozone dissolving apparatus and method of washing
US20080092601A1 (en) * 2006-10-23 2008-04-24 James Anthony Konides Ozone laundering system and method
WO2008105108A1 (ja) 2007-02-27 2008-09-04 Shigenori Aono 漂白繊維品の製法およびそれに用いる装置、並びにそれによって得られる漂白繊維品
CN101634105A (zh) * 2008-07-24 2010-01-27 王进仓 一种服装无水脱色洗水整理方法及其装置
US20120017379A1 (en) * 2010-07-26 2012-01-26 Mark Edward Moore Ozone laundry systems and related methods
CN102587053A (zh) * 2011-12-16 2012-07-18 江苏康尔臭氧有限公司 臭氧气体褪色处理的方法及其装置
TR201909077T4 (tr) * 2014-04-24 2019-07-22 Guardian Mfg Inc Tekstil ürünlerinin ağartılması için usuller ve sistemler.
CN105350205B (zh) * 2015-11-05 2018-07-20 广州番禺高勋染整设备制造有限公司 基于臭氧的印染行业染色、漂白、皂洗及废水处理装备
CN106381680A (zh) * 2016-11-02 2017-02-08 江南大学 一种在气相中利用臭氧对棉织物进行精练‑漂白的方法
CN106906591A (zh) * 2017-01-19 2017-06-30 武汉纺织大学 一种超声波臭氧服装工艺机
CN107190412B (zh) * 2017-05-25 2019-01-29 江南大学 一种经编积极式张力补偿装置
CN107587342A (zh) * 2017-10-24 2018-01-16 广州番禺高勋染整设备制造有限公司 一种基于臭氧的纱线或织物漂白工艺方法和装置
CN108978088A (zh) * 2018-07-30 2018-12-11 上海森浩印染机械有限公司 臭氧去浮色的方法和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB337305A (en) * 1929-02-10 1930-10-30 Oscar Hoffmann Process and apparatus for treating textile threads and fabrics
GB387668A (en) * 1931-05-07 1933-02-07 Thomas William Holt A new or improved process for the bleaching of textile fabrics
US2727378A (en) * 1951-09-19 1955-12-20 Cook P & N Machine Company Inc Tension control for textile fabric finishing machines
DE1499109A1 (de) * 1966-08-11 1969-10-09 Sp Kb Proekt Krasilno Otdeloch Schleifenkompensator fuer sich bewegende Stoffbahnen
US3664158A (en) * 1970-02-05 1972-05-23 Tedeco Textile Dev Co As Apparatus for treatment of fabrics with liquid ammonia
GB2063944A (en) * 1979-12-05 1981-06-10 Sando Iron Works Co Continuous pretreatment and dyeing of cloth
NZ521592A (en) 2000-03-30 2003-10-31 Chargeurs Wool Eurasia Reactor for treating a solid material such as wool fibers with a noxious gas or gaseous mixture, process and plant thereof
KR20140104682A (ko) * 2013-02-21 2014-08-29 다이텍연구원 폴리에스테르 섬유제품의 연속감량 가공장치
ES2423529A1 (es) 2013-05-16 2013-09-20 Jeanologia, S.L. Máquina y método para la decoloración de tejidos continuos y producto obtenido

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113882097A (zh) * 2020-07-01 2022-01-04 牛仔裤科学有限公司 用于处理纺织织物的方法和设备
CN113882097B (zh) * 2020-07-01 2024-04-02 牛仔裤科学有限公司 用于处理纺织织物的方法和设备
CN112853659A (zh) * 2020-12-22 2021-05-28 博格曼(江苏)纺织科技有限公司 纺织布匹节能水洗系统
CN112853648A (zh) * 2020-12-22 2021-05-28 博格曼(江苏)纺织科技有限公司 纺织布匹臭氧整理方法

Also Published As

Publication number Publication date
CN108978088A (zh) 2018-12-11
CN112867819A (zh) 2021-05-28
EP3831997A1 (en) 2021-06-09
US11629446B2 (en) 2023-04-18
EP3831997B1 (en) 2022-10-19
US20210222338A1 (en) 2021-07-22
CN112867819B (zh) 2023-05-16
ES2934614T3 (es) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2020025840A1 (es) Sistema y método de tratamiento de material textil con ozono
ES2384565T3 (es) Aparato para teñir sustratos textiles con tinte espumado
CN104862906B (zh) 全松式、连续化浸染增白生产线及其织物增白或固色整理生产工艺
JP7320125B2 (ja) 転写染色装置
JP2013002029A (ja) 給糸工程中で繊維材料に表面仕上げ剤、特にサイジング剤または染料を塗布するための装置
JPH0147591B2 (es)
KR100970776B1 (ko) 원단 경화장치
DK161207B (da) Apparat til behandling af en loebende tekstilbane i et fluidumbad
EP0725177A1 (en) Apparatus for treating cloth
CN208071972U (zh) 一种纱线加工装置
KR100620843B1 (ko) 무장력 코팅장치
US11168423B2 (en) Dye fixing section for an indigo dyeing machine
US5402659A (en) Apparatus for driving a lifter reel in a fabric wet processing machine
ITUD970116A1 (it) Procedimento di smerigliatura in bagnato per materiale tessile e relativo dispositivo
KR101279340B1 (ko) 섬유원단의 진공흡입탈수장치
CN113882097B (zh) 用于处理纺织织物的方法和设备
CN207362488U (zh) 一种纺织布一体式漂白设备
TW201518573A (zh) 毛巾染色機
JPH06280155A (ja) ウエブの処理のための不連続的に作動する装置の運転方法及びその装置
CN112654740B (zh) 用于连续处理织物尤其是用于控制尺寸稳定性的机器
TWI671452B (zh) 非浸泡式水洗設備
JP2013076147A (ja) 連続式真空処理装置用真空シール装置
CN212560760U (zh) 用于输送织带的辊轴结构
KR200436850Y1 (ko) 열반응성 잉크가 도포된 원단을 후처리하는 복합장치
JP3463258B2 (ja) 帯状物の処理方法とその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19745651

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019745651

Country of ref document: EP

Effective date: 20210301