WO2020024548A1 - 一种pid控制器设计方法 - Google Patents

一种pid控制器设计方法 Download PDF

Info

Publication number
WO2020024548A1
WO2020024548A1 PCT/CN2018/124637 CN2018124637W WO2020024548A1 WO 2020024548 A1 WO2020024548 A1 WO 2020024548A1 CN 2018124637 W CN2018124637 W CN 2018124637W WO 2020024548 A1 WO2020024548 A1 WO 2020024548A1
Authority
WO
WIPO (PCT)
Prior art keywords
order
equation
pid controller
gain
fractional
Prior art date
Application number
PCT/CN2018/124637
Other languages
English (en)
French (fr)
Inventor
郑伟佳
罗映
Original Assignee
佛山科学技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山科学技术学院 filed Critical 佛山科学技术学院
Priority to US16/760,341 priority Critical patent/US20210124315A1/en
Publication of WO2020024548A1 publication Critical patent/WO2020024548A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B21/00Systems involving sampling of the variable controlled
    • G05B21/02Systems involving sampling of the variable controlled electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms

Definitions

  • the invention relates to the technical field of PID controllers.
  • Equation 1 The control model of the traditional PID controller is shown in Equation 1:
  • K P is the proportional gain
  • K I is the integral gain
  • K D is the differential gain
  • s is the Laplacian
  • the traditional PID controller has the advantages of simple structure and easy implementation.
  • the traditional PID controller's control model is prone to problems such as excessive overshoot and long adjustment time, which cannot meet the performance index requirements of high-performance motion control systems.
  • Equation 2 The improved control model of the PID controller is shown in Equation 2:
  • ⁇ and u are fractional orders.
  • the parameter tuning methods of fractional-order PID controllers are mainly divided into two categories: frequency domain design methods and time domain optimization algorithms.
  • the frequency domain design method solves the parameters of the fractional-order controller by specifying the gain crossing frequency and phase margin of the system according to the robustness criterion.
  • the time domain optimization algorithm searches the controller parameters according to the given dynamic performance indicators.
  • the frequency domain design method determines the system's gain crossing frequency and phase margin, and solves the parameters of the fractional-order controller according to the robustness criterion.
  • the obtained fractional-order controller can ensure that the system is robust to open-loop gain disturbances.
  • Some frequency-domain design methods cannot be used directly for the design of fractional-order PID controllers.
  • the time domain optimization algorithm searches the controller parameters according to the given dynamic performance index.
  • the obtained controller can make the system achieve good step response following performance, but it cannot guarantee the system has good stability and robustness to gain disturbances.
  • searching for controller parameters using a time-domain optimization algorithm requires a large number of numerical calculations, which is not conducive to practical applications.
  • the technical problem to be solved by the present invention is: how to simplify the setting process of the PID controller parameters, and at the same time, can ensure that the servo system applied by the PID controller meets the requirements of stability and robustness.
  • Equation 2 A PID controller design method, setting the control model of the PID controller, as shown in Equation 2:
  • K P is the proportional gain
  • K I is the integral gain
  • K D is the differential gain
  • is the integration order
  • u is the differential order
  • s is the Laplace operator
  • ⁇ 1 , ⁇ 2 and K are object model parameters
  • the method includes the following steps:
  • Step 1 Select the cutoff frequency ⁇ c and phase margin of the control system
  • Step 2 According to the optimal proportional model of the fractional-order PID controller control model parameters, according to the cutoff frequency ⁇ c of the control system and the phase margin Get the values of the scale factors a and b;
  • Step 3 Calculate the amplitude information and phase information of the transfer function at the cutoff frequency ⁇ c according to Equations 5 and 6, respectively. Equations 5 and 6 are shown below;
  • a ( ⁇ ) - ⁇ 1 ⁇ 2
  • B ( ⁇ ) ⁇ 2 ⁇ - ⁇ 3 ;
  • Step 4 According to the proportionality coefficients a and b obtained in step 2, list two equations regarding the integral gain K I and the fractional order ⁇ , as shown in Equation 7 and Equation 8, respectively;
  • Step 5 Solve the integral gain K I and the fractional order ⁇ according to Equations 7 and 8.
  • Step 7 Calculate the proportional gain K P according to Equation 9. Equation 9 is shown below.
  • the beneficial effect of the present invention is that the present invention reduces the score by establishing the proportional relationship between the integral gain K I and the differential gain K D of the fractional-order PID controller, and the proportional relationship between the integral order ⁇ and the differential order u.
  • the degree of freedom of the parameters of the first-order PID controller reduces the difficulty of parameter tuning.
  • FIG. 1 is a schematic flowchart of a method of the present invention.
  • the present invention discloses a method for designing a PID controller, and sets a control model of the PID controller, as shown in Equation 2:
  • K P is the proportional gain
  • K I is the integral gain
  • K D is the differential gain
  • is the integration order
  • u is the differential order
  • s is the Laplace operator
  • ⁇ 1 , ⁇ 2 and K are object model parameters
  • the method includes the following steps:
  • Step 1 Select the cutoff frequency ⁇ c and phase margin of the control system
  • Step 2 According to the optimal proportional model of the fractional-order PID controller control model parameters, according to the cutoff frequency ⁇ c of the control system and the phase margin Get the values of the scale factors a and b;
  • Step 3 Calculate the amplitude information and phase information of the transfer function at the cutoff frequency ⁇ c according to Equations 5 and 6, respectively. Equations 5 and 6 are shown below;
  • a ( ⁇ ) - ⁇ 1 ⁇ 2
  • B ( ⁇ ) ⁇ 2 ⁇ - ⁇ 3 ;
  • Step 4 According to the proportionality coefficients a and b obtained in step 2, list two equations regarding the integral gain K I and the fractional order ⁇ , as shown in Equation 7 and Equation 8, respectively;
  • Step 5 Solve the integral gain K I and the fractional order ⁇ according to Equations 7 and 8.
  • Step 7 Calculate the proportional gain K P according to Equation 9. Equation 9 is shown below.
  • the present invention reduces the fractional-order PID controller by establishing a proportional relationship between the integral gain K I and the differential gain K D of the fractional-order PID controller, and a proportional relationship between the integral-order ⁇ and the differential-order u.
  • the degree of freedom of parameters reduces the difficulty of parameter setting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Feedback Control In General (AREA)

Abstract

一种PID控制器设计方法,令PID控制器的控制模型中的K D=aK I,u=bλ,其中a和b为比例系数,重新设定PID控制器的控制模型,设置控制系统中被控对象的传递函数;选定控制系统的截止频率以及相位裕度;根据分数阶PID控制器控制模型参数的最优比例模型,根据控制系统的截止频率以及相位裕度得到比例系数a和b的值;计算传递函数在截止频率处的幅值信息以及相位信息;列出关于积分增益K I与分数阶次λ的两个方程;求解积分增益K I与分数阶次λ;求解微分增益K D与分数阶次u;计算比例增益K P。本方法通过建立分数阶PID控制器积分增益K I和微分增益K D之间的比例关系,以及积分阶次λ和微分阶次u之间的比例关系,降低了分数阶PID控制器参数的自由度,降低了参数整定难度。

Description

一种PID控制器设计方法 技术领域
本发明涉及PID控制器技术领域。
背景技术
目前,伺服系统广泛使用的是传统的基于输出误差的反馈控制方式,而这种控制方式主要是通过PID控制器实现的,传统的PID控制器的控制模型如式1所示:
Figure PCTCN2018124637-appb-000001
其中K P是比例增益,K I是积分增益,K D是微分增益,s是拉普拉斯算子。
传统PID控制器具有结构简单、容易实现等优点。但是传统的PID控制器的控制模型容易出现超调量过大、调节时间过长等问题,无法满足高性能运动控制系统的性能指标要求。
基于上述问题,本领域技术人员对PID控制器的控制模型进行改进,改进后的PID控制器的控制模型如式2所示:
Figure PCTCN2018124637-appb-000002
其中λ和u是分数阶次,已有研究表明,对伺服系统采用分数阶PID控制器能够获得比采用整数阶PID控制器更好的控制性能。但是对分数阶控制器的参数整定目前尚无普遍认同的原则或方法。因此,对设计分数阶PID控制器,比设计整数阶PID控制器更加困难。
目前分数阶PID控制器的参数整定方法主要分为频域设计法和时域优化算法两类。频域设计法通过指定系统的增益穿越频率和相位裕度,根据鲁棒性准则求解分数阶控制器的参数。时域优化算法根据给定的动态性能指标搜索控制器参数。
频域设计法通过指定系统的增益穿越频率和相位裕度,根据鲁棒性准则求解分数阶控制器的参数,得到的分数阶控制器能保证系统对开环增益扰动具有鲁棒性,但现有的频域设计法无法直接用于分数阶PID控制器的设计,而且,由于对增益穿越频率和相位裕度的选取并没有明确的准则或方法,因此,频域设计法无法保证控制系统具有最优的动态响应性能。时域优化算法根据给定的动态性能指标搜索控制器参数,得到的控制器能使系统达到良好的阶跃响应跟随性能,但无法保证系统具有良好的稳定性和对增益扰动的鲁棒性。同时,采用时域优化算法搜索控制器参数需要进行大量的数值计算,不利于实际应用。
发明内容
本发明要解决的技术问题是:如何使PID控制器参数的设定过程简化,同时能够保证PID控制器所应用的伺服系统满足稳定性和鲁棒性要求。
本发明解决其技术问题的解决方案是:
一种PID控制器设计方法,设定PID控制器的控制模型,如式2所示:
Figure PCTCN2018124637-appb-000003
其中K P是比例增益,K I是积分增益,K D是微分增益,λ是积分阶次,u是微分阶次,s是拉普拉斯算子;
令式2中K D=aK I,u=bλ,其中a和b为比例系数,重新设定PID控制器的控制模型,如式3所示:
Figure PCTCN2018124637-appb-000004
设置控制系统中被控对象的传递函数如式4所示:
Figure PCTCN2018124637-appb-000005
其中τ 1、τ 2和K是对象模型参数;
本方法包括以下步骤:
步骤1,选定控制系统的截止频率ω c以及相位裕度
Figure PCTCN2018124637-appb-000006
步骤2,根据分数阶PID控制器控制模型参数的最优比例模型,根据控制系统的截止频率ω c以及相位裕度
Figure PCTCN2018124637-appb-000007
得到比例系数a和b的值;
步骤3,根据式5和式6分别计算传递函数在截止频率ω c处的幅值信息以及相位信息,式5和式6如下所示;
Figure PCTCN2018124637-appb-000008
Figure PCTCN2018124637-appb-000009
其中,A(ω)=-τ 1ω 2,B(ω)=τ 2ω-ω 3
步骤4,根据步骤2得到的比例系数a和b,列出关于积分增益K I 与分数阶次λ的两个方程,分别如式7和式8所示;
Figure PCTCN2018124637-appb-000010
Q 2K I 2+Q 1K I+Z=0   式8
其中式7中
Figure PCTCN2018124637-appb-000011
式8中
Figure PCTCN2018124637-appb-000012
Figure PCTCN2018124637-appb-000013
Figure PCTCN2018124637-appb-000014
步骤5,根据式7和式8,求解积分增益K I与分数阶次λ;
步骤6,根据关系K D=aK I,u=bλ,求解微分增益K D与分数阶次u;
步骤7,根据式9计算比例增益K P,式9如下所示;
Figure PCTCN2018124637-appb-000015
其中
Figure PCTCN2018124637-appb-000016
Figure PCTCN2018124637-appb-000017
本发明的有益效果是:本发明通过建立分数阶PID控制器积分增益K I和微分增益K D之间的比例关系,以及积分阶次λ和微分阶次u之间的比例关系,降低了分数阶PID控制器参数的自由度,降低了参数整定难度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单说明。显然,所描述的附图只是本发明的一部分实施例,而不是全部实施例,本领域的技术人员在不付出创造性劳动的前提下,还可以根据这些附图获得其他设计方案和附图。
图1是本发明的方法流程示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
参照图1,本发明创造公开了一种PID控制器设计方法,设定PID控制器的控制模型,如式2所示:
Figure PCTCN2018124637-appb-000018
其中K P是比例增益,K I是积分增益,K D是微分增益,λ是积分阶次,u是微分阶次,s是拉普拉斯算子;
令式2中K D=aK I,u=bλ,其中a和b为比例系数,重新设定PID控制器的控制模型,如式3所示:
Figure PCTCN2018124637-appb-000019
设置控制系统中被控对象的传递函数如式4所示:
Figure PCTCN2018124637-appb-000020
其中τ 1、τ 2和K是对象模型参数;
本方法包括以下步骤:
步骤1,选定控制系统的截止频率ω c以及相位裕度
Figure PCTCN2018124637-appb-000021
步骤2,根据分数阶PID控制器控制模型参数的最优比例模型,根据控制系统的截止频率ω c以及相位裕度
Figure PCTCN2018124637-appb-000022
得到比例系数a和b的值;
步骤3,根据式5和式6分别计算传递函数在截止频率ω c处的幅值信息以及相位信息,式5和式6如下所示;
Figure PCTCN2018124637-appb-000023
Figure PCTCN2018124637-appb-000024
其中,A(ω)=-τ 1ω 2,B(ω)=τ 2ω-ω 3
步骤4,根据步骤2得到的比例系数a和b,列出关于积分增益K I与分数阶次λ的两个方程,分别如式7和式8所示;
Figure PCTCN2018124637-appb-000025
Q 2K I 2+Q 1K I+Z=0   式8
其中式7中
Figure PCTCN2018124637-appb-000026
式8中
Figure PCTCN2018124637-appb-000027
Figure PCTCN2018124637-appb-000028
Figure PCTCN2018124637-appb-000029
步骤5,根据式7和式8,求解积分增益K I与分数阶次λ;
步骤6,根据关系K D=aK I,u=bλ,求解微分增益K D与分数阶次u;
步骤7,根据式9计算比例增益K P,式9如下所示;
Figure PCTCN2018124637-appb-000030
其中
Figure PCTCN2018124637-appb-000031
Figure PCTCN2018124637-appb-000032
具体地,本发明通过建立分数阶PID控制器积分增益K I和微分增益K D之间的比例关系,以及积分阶次λ和微分阶次u之间的比例关系,降低了分数阶PID控制器参数的自由度,降低了参数整定难度。
为更充分地说明本发明创造所述PID控制器参数最优比例模型建立方法的具体过程,现通过一个应用在永磁同步电机伺服系统的分数阶PID控制器参数整定过程进行说明。
设定伺服系统的速度环控制对象传递函数为
Figure PCTCN2018124637-appb-000033
根据实际应用状况,设定截止频率ω c=60rad/s,设定相位裕度
Figure PCTCN2018124637-appb-000034
设定比例系数a=7.553×10 -4,比例系数b=1.253,经过上述方法的各个步骤,计算得到该伺服系统的PID控制器的控制模型如下所示:
Figure PCTCN2018124637-appb-000035
以上对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (1)

  1. 一种PID控制器设计方法,其特征在于:设定PID控制器的控制模型,如式2所示:
    Figure PCTCN2018124637-appb-100001
    其中K P是比例增益,K I是积分增益,K D是微分增益,λ是积分阶次,u是微分阶次,s是拉普拉斯算子;
    令式2中K D=aK I,u=bλ,其中a和b为比例系数,重新设定PID控制器的控制模型,如式3所示:
    Figure PCTCN2018124637-appb-100002
    设置控制系统中被控对象的传递函数如式4所示:
    Figure PCTCN2018124637-appb-100003
    其中τ 1、τ 2和K是对象模型参数;
    本方法包括以下步骤:
    步骤1,选定控制系统的截止频率ω c以及相位裕度
    Figure PCTCN2018124637-appb-100004
    步骤2,根据建立分数阶PID控制器控制模型参数的最优比例模型,根据控制系统的截止频率ω c以及相位裕度
    Figure PCTCN2018124637-appb-100005
    得到比例系数a和b的值;
    步骤3,根据式5和式6分别计算传递函数在截止频率ω c处的幅值信息以及相位信息,式5和式6如下所示;
    Figure PCTCN2018124637-appb-100006
    Figure PCTCN2018124637-appb-100007
    其中,A(ω)=-τ 1ω 2,B(ω)=τ 2ω-ω 3
    步骤4,根据步骤2得到的比例系数a和b,列出关于积分增益K I与分数阶次λ的两个方程,分别如式7和式8所示;
    Figure PCTCN2018124637-appb-100008
    Q 2K I 2+Q 1K I+Z=0  式8
    其中式7中
    Figure PCTCN2018124637-appb-100009
    式8中
    Figure PCTCN2018124637-appb-100010
    Figure PCTCN2018124637-appb-100011
    步骤5,根据式7和式8,求解积分增益K I与分数阶次λ;
    步骤6,根据关系K D=aK I,u=bλ,求解微分增益K D与分数阶次u;
    步骤7,根据式9计算比例增益K P,式9如下所示;
    Figure PCTCN2018124637-appb-100012
    其中
    Figure PCTCN2018124637-appb-100013
    Figure PCTCN2018124637-appb-100014
PCT/CN2018/124637 2018-08-03 2018-12-28 一种pid控制器设计方法 WO2020024548A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/760,341 US20210124315A1 (en) 2018-08-03 2018-12-28 Method For Designing PID Controller (as amended)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810876468.5A CN108803311A (zh) 2018-08-03 2018-08-03 一种pid控制器设计方法
CN201810876468.5 2018-08-03

Publications (1)

Publication Number Publication Date
WO2020024548A1 true WO2020024548A1 (zh) 2020-02-06

Family

ID=64079175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124637 WO2020024548A1 (zh) 2018-08-03 2018-12-28 一种pid控制器设计方法

Country Status (3)

Country Link
US (1) US20210124315A1 (zh)
CN (1) CN108803311A (zh)
WO (1) WO2020024548A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031444A (zh) * 2021-03-10 2021-06-25 中国科学院光电技术研究所 一种基于指标优化的倾斜镜控制器设计方法
CN113406882A (zh) * 2021-06-10 2021-09-17 西北工业大学 一种基于分数阶pid控制的核动力装置管路系统减振降噪方法
CN114859715A (zh) * 2022-04-21 2022-08-05 武汉大学 一种磁悬浮转台运动控制系统的分数阶滑模运动控制方法
CN116205074A (zh) * 2023-03-15 2023-06-02 四川大学 一种反应堆堆芯功率非线性控制算法的稳定域获取方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803311A (zh) * 2018-08-03 2018-11-13 佛山科学技术学院 一种pid控制器设计方法
CN109254528B (zh) * 2018-11-29 2021-03-26 曾喆昭 一种三速智慧pid控制方法
CN109254529B (zh) * 2018-11-29 2021-05-11 长沙理工大学 一种双速自适应比例-微分控制方法
CN110090728B (zh) * 2019-01-24 2020-11-06 济南大学 用于控制水泥生料立磨中喂料量的方法、装置及设备
CN109828455B (zh) * 2019-01-29 2020-11-17 华中科技大学 一种分数阶pid控制器及其参数整定方法
CN110032171B (zh) * 2019-04-23 2020-06-12 北京航天飞腾装备技术有限责任公司 一种基于截止频率控制回路设计方法
CN110531612B (zh) * 2019-08-16 2022-06-17 佛山科学技术学院 一种分数阶pid控制器的参数整定方法
CN112162483B (zh) * 2020-09-23 2023-01-24 广东电网有限责任公司云浮供电局 一种比例-积分控制器的最优参数获取方法
CN112865132B (zh) * 2020-12-31 2023-11-14 燕山大学 双区域互联电力系统的负荷频率控制参数的处理方法
CN113325697B (zh) * 2021-06-11 2022-10-14 同济大学 一种自动控制系统
US11215977B1 (en) * 2021-06-15 2022-01-04 King Abdulaziz University Method of linear active disturbance rejection control for fractional order systems
CN113625573B (zh) * 2021-09-18 2023-06-30 金陵科技学院 受非对称死区输入影响的分数阶系统反步滑模控制方法
CN114619450B (zh) * 2022-03-24 2023-07-04 华中科技大学 一种面向机械臂的分数阶阻抗控制器及其设计方法
CN114740709A (zh) * 2022-05-06 2022-07-12 南京轻机包装机械有限公司 一种基于伯德图的控制系统pi参数工程整定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060265085A1 (en) * 2005-05-17 2006-11-23 Utah State University Tuning methods for fractional-order controllers
CN103092069A (zh) * 2013-01-28 2013-05-08 上海交通大学 基于参数稳定域的PIλDμ控制器参数整定方法
CN103558755A (zh) * 2013-11-05 2014-02-05 四川理工学院 分数阶积分pid控制器整定和自整定方法
CN104777746A (zh) * 2015-04-09 2015-07-15 长春理工大学 一种增强型的增益鲁棒分数阶pid控制器参数整定方法
CN106338913A (zh) * 2016-11-04 2017-01-18 河北省科学院应用数学研究所 基于相位裕量和截止频率的分数阶pid控制器设计方法
CN106681150A (zh) * 2017-01-19 2017-05-17 华侨大学 基于闭环参考模型的分数阶pid控制器参数优化整定方法
CN108803311A (zh) * 2018-08-03 2018-11-13 佛山科学技术学院 一种pid控制器设计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511262B (zh) * 2015-12-10 2018-06-08 武汉工程大学 分数阶鲁棒控制器的参数快速整定方法及系统
CN106773654B (zh) * 2016-12-12 2019-10-29 中南大学 一种分数阶pid控制器参数优化整定方法
CN107045280A (zh) * 2017-03-24 2017-08-15 清华大学 分数阶pid控制器的有理化实现方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060265085A1 (en) * 2005-05-17 2006-11-23 Utah State University Tuning methods for fractional-order controllers
CN103092069A (zh) * 2013-01-28 2013-05-08 上海交通大学 基于参数稳定域的PIλDμ控制器参数整定方法
CN103558755A (zh) * 2013-11-05 2014-02-05 四川理工学院 分数阶积分pid控制器整定和自整定方法
CN104777746A (zh) * 2015-04-09 2015-07-15 长春理工大学 一种增强型的增益鲁棒分数阶pid控制器参数整定方法
CN106338913A (zh) * 2016-11-04 2017-01-18 河北省科学院应用数学研究所 基于相位裕量和截止频率的分数阶pid控制器设计方法
CN106681150A (zh) * 2017-01-19 2017-05-17 华侨大学 基于闭环参考模型的分数阶pid控制器参数优化整定方法
CN108803311A (zh) * 2018-08-03 2018-11-13 佛山科学技术学院 一种pid控制器设计方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031444A (zh) * 2021-03-10 2021-06-25 中国科学院光电技术研究所 一种基于指标优化的倾斜镜控制器设计方法
CN113031444B (zh) * 2021-03-10 2022-04-19 中国科学院光电技术研究所 一种基于指标优化的倾斜镜控制器设计方法
CN113406882A (zh) * 2021-06-10 2021-09-17 西北工业大学 一种基于分数阶pid控制的核动力装置管路系统减振降噪方法
CN114859715A (zh) * 2022-04-21 2022-08-05 武汉大学 一种磁悬浮转台运动控制系统的分数阶滑模运动控制方法
CN114859715B (zh) * 2022-04-21 2024-04-26 武汉大学 一种磁悬浮转台运动控制系统的分数阶滑模运动控制方法
CN116205074A (zh) * 2023-03-15 2023-06-02 四川大学 一种反应堆堆芯功率非线性控制算法的稳定域获取方法
CN116205074B (zh) * 2023-03-15 2024-06-04 四川大学 一种反应堆堆芯功率非线性控制算法的稳定域获取方法

Also Published As

Publication number Publication date
CN108803311A (zh) 2018-11-13
US20210124315A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
WO2020024548A1 (zh) 一种pid控制器设计方法
WO2020024549A1 (zh) 一种pid控制器参数最优比例模型建立方法
JP5430775B2 (ja) モータ制御装置
CN104777746B (zh) 一种增强型的增益鲁棒分数阶pid控制器参数整定方法
CN105425612B (zh) 一种水轮机调节系统控制参数的优选方法
CN110531612B (zh) 一种分数阶pid控制器的参数整定方法
CN106681150A (zh) 基于闭环参考模型的分数阶pid控制器参数优化整定方法
CN109828455B (zh) 一种分数阶pid控制器及其参数整定方法
CN111638641B (zh) 一种调控电机速度环的分数阶自抗扰控制器的设计方法
CN109298636A (zh) 一种改进的积分滑模控制方法
CN110569561B (zh) 一种分数阶pid控制器微分积分阶次估计方法
CN106887987A (zh) 一种具有增益调度切换增益的永磁同步电机滑模控制系统
CN108227476A (zh) 一种agv小车的控制方法
CN102647136A (zh) 一种步进电机控制系统及方法
CN105549392A (zh) 一种伺服系统的非线性补偿控制方法
Sinha et al. Effect of Variable Damping Ratio on design of PID Controller
Yang et al. A combined speed estimation scheme for indirect vector-controlled induction motors
Zheng et al. Stability Region Design of Fractional Complex Order $ PI^{\lambda+\mu\mathrm {i}} $ Controller Using D Segmentation
Malwatkar et al. PID controllers tuning for improved performance of unstable processes
CN116599401B (zh) 一种基于自适应滑模趋近律的永磁同步电机调速控制方法
CN109524980A (zh) 一种mmc-hvdc控制器设计方法
CN103631135A (zh) 基于向量方法的分数阶PIλ控制器的参数整定方法
CN113075885B (zh) 带时滞补偿的永磁同步电机驱动系统分数阶电流控制方法
CN113031444B (zh) 一种基于指标优化的倾斜镜控制器设计方法
CN103064286A (zh) 一种工业过程的控制方法与设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928693

Country of ref document: EP

Kind code of ref document: A1