WO2020022173A1 - 改質フライアッシュの製造方法 - Google Patents

改質フライアッシュの製造方法 Download PDF

Info

Publication number
WO2020022173A1
WO2020022173A1 PCT/JP2019/028211 JP2019028211W WO2020022173A1 WO 2020022173 A1 WO2020022173 A1 WO 2020022173A1 JP 2019028211 W JP2019028211 W JP 2019028211W WO 2020022173 A1 WO2020022173 A1 WO 2020022173A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
unburned carbon
classification
air
heating
Prior art date
Application number
PCT/JP2019/028211
Other languages
English (en)
French (fr)
Inventor
昂平 大村
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2020022173A1 publication Critical patent/WO2020022173A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B3/00Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method for producing a modified fly ash.
  • fly ash When fly ash is used as a cement mixture or a concrete mixture (hereinafter collectively referred to as a mixture), it is generally preferable that fly ash contain little unburned carbon.
  • the unburned carbon content of fly ash generated from coal-fired power plants generally varies, and as much as about 15% by mass is present, and at present, only some of them are suitable as mixed materials. .
  • unburned carbon particles often have a large particle size, and it has been proposed to classify the particles into a coarse powder having a large unburned carbon content and a fine powder having a small unburned carbon content by classification (for example, see Patent Documents 1 and 2). .
  • the specific gravity of the unburned carbon particles is smaller than the specific gravity of the fly ash particles, there is little difference in weight between the large unburned carbon particles and the small fly ash particles.
  • the air classification using the weight difference or the like it is possible to distribute large unburned carbon particles to the coarse powder side, but fly ash particles smaller than the particles are also distributed to the coarse powder side at the same time.
  • Unburned carbon particles and fly ash particles could not be separated, and it was difficult to sufficiently reduce the unburned carbon content on the fine powder side only by performing air classification. Therefore, in order to effectively reduce unburned carbon by classification, it is necessary to use a sieve or rely on wet classification.
  • classification by a sieve has a problem in the throughput, and continuous processing of a large amount of fly ash requires a large amount of equipment.
  • costs such as drying after treatment and treatment of heavy metals that may leach into a medium are problems.
  • JP 2001-121084 A JP-A-58-095576 JP 2008-126117 A JP-A-11-060299
  • the present inventors have conducted intensive studies in view of the above problems.
  • the inventors of the present invention have completed the present invention, focusing on the fact that the smaller the particle size of unburned carbon contained in fly ash, the faster the combustion reaction proceeds when heated.
  • the present invention relates to a method for producing a modified fly ash having a low unburned carbon content by burning a raw material fly ash and burning and removing unburned carbon, wherein air classification is performed prior to subjecting the raw material fly ash to heating.
  • unburned carbon contained in fly ash can be efficiently removed in a short time as compared with the conventional method.
  • the raw material fly ash to be treated in the present invention refers to a general fly ash generated in a facility for burning coal such as a coal-fired power plant. It also includes fly ash generated by co-firing fuel other than coal and combustible waste in addition to coal.
  • Fly ash contains unburned carbon, which is left unburned in carbon content, and has a high content of about 15% by mass. If this unburned carbon is large, a problem occurs when fly ash is used as a mixture. Specifically, when the unburned carbon content is large, there is a high possibility that the unburned carbon will emerge on the surface of the mortar or concrete and a black portion will be generated. Further, there may be a problem that a chemical such as a chemical admixture is adsorbed on unburned carbon.
  • fly ash containing both unburned carbon particles having a large particle diameter and unburned carbon particles having a small particle diameter is subjected to heating, even if the small unburned carbon particles are burnt and disappear at an early stage, the large unburned carbon particles are removed.
  • the heating time In order to sufficiently reduce the unburned carbon content by burning the unburned carbon, the heating time must be further extended. Despite the small unburned carbon being burned, continuing to heat the entire fly ash for some large unburned carbon particles is inefficient and undesirable.
  • the combustion reaction can be completed in a shorter time by removing only large unburned carbon particles.
  • the purpose is to reduce the unburned carbon particles, it is of course possible to reduce the particle size by pulverization.
  • the use of the modified fly ash in the present invention is a mixed material, and the spherical particles inherent to fly ash Is not preferred.
  • fly ash when fly ash is used as a mixture, spherical particles of fly ash act to improve the fluidity of concrete. Therefore, it is not desirable that the shape of fly ash is destroyed by pulverization because the value of fly ash as a mixture is reduced.
  • coarse powder large unburned carbon particles
  • a known technique used for classifying powders can be used for air classification.
  • the most general ones are air flow classifiers using a centrifugal force field, and others include classifiers using a gravitational field and classifiers using an inertial force field.
  • a classification method other than air classification for example, a method using a sieve can be considered, but a sieve is not preferable in terms of processing capacity.
  • a sieve for the purpose of reducing the content of unburned carbon as described in Patent Document 1, it is preferable to use a sieve even if there is a problem in processing capacity.
  • the classification point may be appropriately set in consideration of the balance between the two.
  • the classification point it is preferable to set the conditions so that the 45 ⁇ m sieve residue of the fine powder can be reduced to 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less.
  • the adjustment can be performed by a known method according to the particle size of the raw material fly ash and the air classifier to be used.
  • the residue of the 45 ⁇ m sieve of the raw material fly ash is as wide as 5 to 50% by mass, but the classification point of any type of raw material fly ash may be fixed to the above conditions.
  • the classification point is set using the amount of coarse powder (or the amount of fine powder) such as 45 ⁇ m sieve residue as an index, it is necessary to perform air classification even when the index is satisfied at the time of raw material fly ash. That is, the fine powder obtained by air classification and the raw fly ash are different in the following points even if the 45 ⁇ m sieve residue is the same. Since the former is preferentially removed from particularly large unburned carbon by air classification, even if it does not pass through a 45 ⁇ m sieve, it contains only particles that are not particularly large (eg, about 46 to 100 ⁇ m). On the other hand, the latter does not perform any processing, and thus may contain even larger (eg, about 46 to 300 ⁇ m) particles. For this reason, air classification is performed even when the residue of the 45 ⁇ m sieve at the time of the raw material fly ash is less than the target value.
  • the residue of the 45 ⁇ m sieve at the time of the raw material fly ash is less than the target value.
  • the fine powder obtained by air classification can be directly used for heating.
  • the heating means is not particularly limited, and for example, heating can be performed using a rotary kiln, a swirling air-flow combustion furnace, a fluidized bed furnace, or the like.
  • the heating temperature is preferably from 500 ° C to 1000 ° C, more preferably from 700 ° C to 1000 ° C.
  • the heating temperature and time can be appropriately set depending on the unburned carbon content required for the fly ash to be recovered. The higher the temperature, the longer the time, the longer the unburned carbon content tends to be, but according to the present invention, In this case, the unburned carbon content can be reduced at a lower temperature and / or in a shorter time than when heating unclassified fly ash conventionally known.
  • the fly ash after the completion of the heating is introduced into the cooling step.
  • the cooling may be either indirect cooling or direct cooling, and is generally performed to 200 ° C. or lower, preferably 100 ° C. or lower. Finally, it is cooled down to about room temperature by natural cooling or the like before use.
  • fly ash obtained by heating and having reduced unburned carbon has an unburned carbon content of 3% by mass or less, preferably 2% by mass or less, according to JIS. It is preferable that the amount is reduced to equal to or more than the type II fly ash.
  • the measurement of the unburned carbon content can be performed by a known technique.
  • a method of infrared detection of CO 2 ⁇ CO gas generated by burning a method of measuring ignition loss and estimating unburned carbon content from the ignition material; or a method of calculating based on methylene blue adsorption amount Density specific gravity test; a method of estimating the unburned carbon content by irradiating microwaves, and the like.
  • modified fly ash can be used as a mixture by a known method.
  • the coarse powder obtained by air classification may be separately heated to burn off unburned carbon, and may be used alone or mixed with the modified fly ash as a mixed material. It is most preferable to use a cement clinker raw material in consideration of the properties and the quality of the modified fly ash.
  • Fly ash generated from domestic coal-fired power plants is used as a raw material and introduced into two types of air classifiers (classifier A: forced vortex airflow classifier, classifier B: free vortex airflow classifier) to produce fine powder.
  • classifier A forced vortex airflow classifier
  • classifier B free vortex airflow classifier
  • Table 1 shows the raw material, the unburned carbon content of the recovered fine powder, and the 45 ⁇ m sieve residue.
  • the unburned carbon content is a value estimated from the ignition loss at 975 ° C.
  • the 45 ⁇ m sieve residue is a value obtained by carrying out the method according to the 45 ⁇ m sieve residue test method specified in JIS A6201.
  • Thermogravimetry (TG) was performed on these three samples to calculate the rate of reduction of unburned carbon.
  • the TG measurement conditions were as follows: the temperature was raised from room temperature to 600 ° C. at a rate of 20 ° C./min, and then maintained at 600 ° C. for 90 minutes, and the charged amount was 19.0 ⁇ 0.3 mg.
  • FIG. 1 shows the TG measurement results.
  • both the classifier A fine powder and the classifier B fine powder have a faster weight reduction rate, that is, a faster reduction rate of unburned carbon.
  • the average weight loss rate between 30 minutes and 40 minutes in FIG. 1 is calculated as shown in Table 2.
  • the unburned carbon is reduced at a rate of about 1.47 times that of the raw powder for the classifier A fine powder and about 1.13 times that of the raw powder for the classifier B fine powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

原料フライアッシュを加熱し、未燃カーボンを燃焼除去して未燃カーボン含有量の少ない改質フライアッシュを製造する方法において、未燃カーボンを十分に燃焼除去するためには、燃焼に必要な空気(酸素)が十分量存在する環境下において500~1000℃程度で加熱する必要がある。フライアッシュと多量の空気を前記温度まで昇温させるためには多大なエネルギーを要し、より効率的に未燃カーボンの燃焼を行う方法が求められている。本発明では、原料フライアッシュを加熱に供するに先立ち、空気分級を行って粗粉を除去することで上記課題を解決する。分級点としては、45μmふるい残が30質量%以下となる程度とすることが好ましい。

Description

改質フライアッシュの製造方法
 本発明は改質フライアッシュの製造方法に関する。
 フライアッシュをセメント混合材又はコンクリート混合材(以下、あわせて混合材と記す)として使用する場合、一般にフライアッシュに含まれる未燃カーボンが少ないものが好適とされる。
 しかし、一般に石炭火力発電所から発生したフライアッシュの未燃カーボン含有量は様々であり、多いもので15質量%ほど存在し、混合材として好適なものは一部に限られるのが現状である。
 フライアッシュの未燃カーボンを減らす方法は種々提案されている。例えば、未燃カーボン粒子は、その粒径が大きいことが多く、分級により未燃カーボン含有量の多い粗粉と、少ない微粉に分けることが提案されている(例えば、特許文献1、2参照)。
 ここで、未燃カーボン粒子の比重はフライアッシュ粒子の比重よりも小さいため、大きな未燃カーボン粒子であっても小さなフライアッシュ粒子との重量差があまり無い。即ち、重量差等を利用した空気分級では、大きな未燃カーボン粒子を粗粉側に分配することは可能であるが、当該粒子より小さなフライアッシュ粒子も同時に粗粉側に分配されてしまうため、未燃カーボン粒子とフライアッシュ粒子を分離することができず、空気分級を行うだけでは微粉側の未燃カーボン含有量を充分に減らすことは困難であった。従って、実効性をもって分級により未燃カーボンを減らすためには、篩を用いるか、湿式分級に頼らざるを得なかったのが実情である。しかしながら、篩による分級では処理量に問題があり、連続的に大量のフライアッシュを処理することは多大な設備を要する。湿式分級では、処理後の乾燥や媒体に浸出するおそれのある重金属の処理などのコストが問題である。
 より実用的な方法としては、フライアッシュを未燃カーボンの燃焼温度以上に加熱して未燃カーボンを燃焼除去する方法がある(例えば、特許文献3,4参照)。
特開2001-121084号公報 特開昭58-095576号公報 特開2008-126117号公報 特開平11-060299号公報
 未燃カーボンを十分に燃焼除去するためには、燃焼に必要な空気(酸素)が十分量存在する環境下において500~1000℃程度で加熱する必要がある。フライアッシュと多量の空気を前記温度まで昇温させるためには多大なエネルギーを要し、より効率的に未燃カーボンの燃焼を行う方法が求められている。
 本発明者らは上記課題に鑑み鋭意検討を行った。そして、フライアッシュに含まれる未燃カーボンの粒子径が小さいほど、加熱した際に素早く燃焼反応が進むことに着目し、本発明を完成するに到った。
 即ち本発明は、原料フライアッシュを加熱し、未燃カーボンを燃焼除去して未燃カーボン含有量の少ない改質フライアッシュを製造する方法において、原料フライアッシュを加熱に供するに先立ち、空気分級を行って粗粉を除去することを特徴とする改質フライアッシュの製造方法である。
 本発明によれば、従来の方法に比べ、フライアッシュに含まれる未燃カーボンを短時間で効率的に除去することが可能である。
フライアッシュのカーボン減少速度を熱重量測定(TG)にて分析した結果。
 以下、本発明を詳細に説明する。
 本発明において処理に供する原料フライアッシュは、石炭火力発電所などの石炭を燃焼する設備において発生する一般的なフライアッシュを指す。また、石炭と併せて、石炭以外の燃料や可燃系廃棄物が混焼され発生したフライアッシュも含む。
 フライアッシュには炭素分の燃え残りとされる未燃カーボンが含有されており、含有量は多いもので15質量%ほどである。この未燃カーボンが多いと、フライアッシュを混合材として使用した場合に問題を生じる。具体的には、未燃カーボン含有量が多いと、モルタルやコンクリートの表面に未燃カーボンが浮き出し、黒色部が発生するといった問題が生じる可能性が高い。さらに、化学混和剤などの薬剤が未燃カーボンに吸着すると言った問題も生じる可能性がある。
 本発明では、原料フライアッシュを加熱に供するに先立ち、空気分級によってフライアッシュ中に含まれる粗粉を除去する。空気分級後に得られる微粉は未燃カーボン含有量が多少低減される場合もあれば、増加する場合もあるし、ほとんど変わらない場合もあるが、本発明においては空気分級によって未燃カーボン含有量が増減しても何ら問題はない。
 空気分級によって粒子径の大きな未燃カーボン粒子を除去しておくことで、後の加熱工程において効率的な燃焼除去が可能である。これは、未燃カーボンの燃焼反応は非表面積が大きい方が、即ち粒子径が小さい方が素早く効率的に進むためである。
 粒子径が大きな未燃カーボン粒子と粒子径が小さな未燃カーボン粒子が含まれるフライアッシュを共に加熱に供すると、小さな未燃カーボン粒子は早い段階で燃焼し消失しても、大きな未燃カーボンが燃焼し終わっておらず、これを燃焼させて未燃カーボン含有量を十分に低減させるには、さらに加熱時間を延ばして対処しなければならない。小さな未燃カーボンは燃焼し終わっているにもかかわらず、一部の大きな未燃カーボン粒子のためにフライアッシュ全体を加熱し続けることは非効率的であり望ましくない。
 そこで、本発明では大きな未燃カーボン粒子のみを取り除いておくことにより、燃焼反応をより短時間で終わらせることを可能とする。未燃カーボン粒子を細かくするといった目的に限れば、粉砕により粒子径を小さくすることも当然可能であるが、本発明における改質フライアッシュの用途は混合材であり、フライアッシュが本来有する球形粒子が破壊されることは好ましくない。
 フライアッシュを混合材として使用した際、フライアッシュの球形粒子が作用して、コンクリートの流動性が向上することが知られている。従って、粉砕によりフライアッシュの形状を破壊してしまうことはフライアッシュの混合材としての価値を低下させてしまうため望ましくなく、本発明においては空気分級により粗粉(大きな未燃カーボン粒子)を除去することとしている。
 空気分級には粉体の分級に使用される公知の技術を使用可能である。最も汎用的なものとしては遠心力場を利用した気流分級機があり、その他に重力場を利用した分級機、慣性力場を利用した分級機などがある。
 空気分級以外の分級方法としては、例えば篩による方法が考えられるが、篩は処理能力の点から好ましくない。特許文献1にも記載があるように未燃カーボン含有量を低減させるといった目的であれば、処理能力の問題を抱えてでも篩を用いることは好適である。しかしながら、本発明においては分級工程において未燃カーボン含有量を低下させる必要は無く、篩を選択するメリットは存在しない。
 分級点が小さいほど、微粉に含まれる未燃カーボンの粒子径も小さくなるため、未燃カーボン除去に必要な熱エネルギーが少なくてすむ傾向があり、一方、分級点が大きいほど回収できる微粉が多くなる傾向があるため、最終的な改質フライアッシュの回収率も高くなる傾向が強い。双方のバランスを考慮して分級点は適宜設定すればよい。
 分級点の設定の目安としては、微粉の45μmふるい残分を30質量%以下にできる条件に設定することが好ましく、より好ましくは同20質量%以下、さらに好ましくは10質量%以下にできる条件に設定する。当該調整は、原料フライアッシュの粒度に応じ、採用する空気分級機に合わせて公知の方法で行うことができる。
 通常、原料フライアッシュの45μmふるい残分は5~50質量%と幅広いが、どのような原料フライアッシュであっても分級点を上記条件に固定しておけばよい。
 なお、分級点を45μmふるい残分等の粗粉量(あるいは微粉量)を指標にして設定した場合、原料フライアッシュの時点で当該指標を満足する場合でも空気分級を行う必要がある。即ち、空気分級により得られた微粉と原料フライアッシュとでは、45μmふるい残分が同じであっても次の点で異なる。前者は空気分級により特に大きな未燃カーボンから優先的に除去されているため、45μmふるいを通過しないといっても特段大きくない(例えば46~100μm程度の)粒子のみを含んだ状態である。一方で後者は何も処理を行っていないため、さらに大きな(例えば46~300μm程度の)粒子を含んでいる可能性がある。このような理由から、原料フライアッシュの時点で45μmふるい残分が前記目標値以下であった場合でも空気分級を行う。
 空気分級により得られた微粉はそのまま加熱に供することができる。加熱手段は特に限定されず、例えばロータリーキルン、旋回気流燃焼炉、流動層炉などを使用して加熱することが可能である。加熱温度は500℃以上1000℃以下とすることが好ましく、700℃以上1000℃以下とすることがより好ましい。加熱の温度及び時間は、回収されるフライアッシュに求める未燃カーボン含有量により適宜設定でき、温度が高いほど、時間が長いほど未燃カーボン含有量は少なくなる傾向があるが、本発明によれば、従来知られている未分級のフライアッシュを加熱するよりも、より低温及び/又は短時間で未燃カーボン含有量を低減できる。
 加熱完了後のフライアッシュは冷却工程に導入することが好ましい。冷却は間接冷却、直接冷却のいずれでも良く、一般的には、200℃以下、好ましくは100℃以下まで冷却する。さらに最終的には室温程度まで自然冷却等により冷却して用いることになる。
 本発明においては、上記加熱により得られる未燃カーボンが低減されたフライアッシュ(以下、改質フライアッシュと記す)は未燃カーボン含有量が3質量%以下、好ましくは2質量%以下と、JIS II種フライアッシュ同等以上まで低減されていることが好ましい。未燃カーボン含有量の測定は公知の技術により実施することが可能である。例えば、燃焼させて発生したCO・COガスを赤外線検出する方法;強熱減量を測定し、該強熱原料から未燃カーボン含有量を推定する方法;あるいはメチレンブルー吸着量に基づいて算出する方法;密かさ比重試験;マイクロ波を照射して未燃カーボン含有量を推定する方法などが挙げられる。
 このようにして得られた改質フライアッシュは、公知の方法により混合材として使用することが可能である。
 なお、空気分級により得られた粗粉は、別途加熱して未燃カーボンを燃焼除去して、単独または前記改質フライアッシュと混合して、混合材として使用することも可能であるが、経済性や改質フライアッシュの品質を考慮してセメントクリンカー原料とすることが最も好ましい。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 国内の石炭火力発電所にて発生したフライアッシュを原料とし、2種類の空気分級機(分級機A:強制渦式気流分級機、分級機B:自由渦式気流分級機)に導入して微粉を回収した。微粉の回収率はそれぞれ70±5質量%となるように行った。原料、及び回収した微粉の未燃カーボン含有量と45μmふるい残分を表1に示す。なお、未燃カーボン含有量は975℃における強熱減量から推定した値、45μmふるい残分はJIS A 6201に定められる45μmふるい残分試験方法に準じて実施し、得られた値である。
 これら3つの試料について、熱重量測定(TG)を実施し、未燃カーボンの減少速度を算出した。TGの測定条件は、常温から600℃まで20℃/分で昇温、その後600℃で90分間保持とし、仕込み量は19.0±0.3mgとした。TGの測定結果を図1に示す。
 原料(原粉)と比較して、分級機A微粉、分級機B微粉ともに重量減少速度が速い、即ち未燃カーボンの減少速度が速いことがわかる。例えば、図1における30分から40分の間での平均重量減少速度を算出すると表2のようになる。
 分級機A微粉については原粉の約1.47倍、分級機B微粉については原粉の約1.13倍の速度で未燃カーボンが減少することがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1.  原料フライアッシュを加熱し、未燃カーボンを燃焼除去して未燃カーボン含有量の少ない改質フライアッシュを製造する方法において、原料フライアッシュを加熱に供するに先立ち、空気分級を行って粗粉を除去することを特徴とする改質フライアッシュの製造方法。
  2.  空気分級が遠心力場を利用した気流分級である請求項1記載の改質フライアッシュの製造方法。
  3.  微粉の45μmふるい残分が30質量%以下となるように分級点を調整して空気分級を行う請求項1記載の改質フライアッシュの製造方法。
  4.  除去した粗粉をセメントクリンカー原料として利用する請求項1記載の改質フライアッシュの製造方法。
PCT/JP2019/028211 2018-07-27 2019-07-18 改質フライアッシュの製造方法 WO2020022173A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018141091A JP2020015655A (ja) 2018-07-27 2018-07-27 改質フライアッシュの製造方法
JP2018-141091 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022173A1 true WO2020022173A1 (ja) 2020-01-30

Family

ID=69181032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028211 WO2020022173A1 (ja) 2018-07-27 2019-07-18 改質フライアッシュの製造方法

Country Status (2)

Country Link
JP (1) JP2020015655A (ja)
WO (1) WO2020022173A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885011A (ja) * 1981-11-17 1983-05-21 Sumitomo Cement Co Ltd フライアツシユの改質方法およびその装置
JPS5960115A (ja) * 1982-09-27 1984-04-06 Electric Power Dev Co Ltd 石炭灰の処理方法
JPH1045444A (ja) * 1996-07-30 1998-02-17 Nippon Cement Co Ltd 石炭灰の処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222800A (ja) * 2006-02-24 2007-09-06 Taiheiyo Cement Corp フライアッシュ中の未燃カーボン除去装置及び除去方法
JP4883623B2 (ja) * 2006-11-17 2012-02-22 有限会社大分Tlo 改質フライアッシュとその製造方法
JP6784025B2 (ja) * 2016-01-12 2020-11-11 三菱マテリアル株式会社 フライアッシュの製造方法
US20190233331A1 (en) * 2016-07-04 2019-08-01 Tokuyama Corporation Method of using fly ash
JP6288355B1 (ja) * 2017-04-28 2018-03-07 住友大阪セメント株式会社 セメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885011A (ja) * 1981-11-17 1983-05-21 Sumitomo Cement Co Ltd フライアツシユの改質方法およびその装置
JPS5960115A (ja) * 1982-09-27 1984-04-06 Electric Power Dev Co Ltd 石炭灰の処理方法
JPH1045444A (ja) * 1996-07-30 1998-02-17 Nippon Cement Co Ltd 石炭灰の処理方法

Also Published As

Publication number Publication date
JP2020015655A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
US10029235B2 (en) Fine particle size activated carbon
US11014092B2 (en) Incinerated-ash treatment device and treatment method
WO2018180680A1 (ja) 改質フライアッシュの製造方法
JP7183251B2 (ja) フライアッシュの改質方法
JP2018043910A (ja) 改質フライアッシュ、改質フライアッシュの製造方法、及び、フライアッシュ改質装置
JP6948246B2 (ja) 改質フライアッシュの製造方法、及び、改質フライアッシュの製造装置
JP7316024B2 (ja) 改質フライアッシュの製造方法、及び、改質フライアッシュの製造装置
KR102574057B1 (ko) 플라이 애시의 개질 방법 및 장치
JP3205770B2 (ja) 石炭灰の処理方法
JPS5876495A (ja) 多段乾燥方法および装置
WO2020022173A1 (ja) 改質フライアッシュの製造方法
WO2020189109A1 (ja) フライアッシュの改質方法
JP7471893B2 (ja) 石炭灰の改質方法及び改質装置
JP2016079332A (ja) 流動床装置及びこれを用いた石炭の乾燥分級方法
WO2020008783A1 (ja) フライアッシュの回収方法
JP6722839B1 (ja) フライアッシュの改質方法
JP6392491B1 (ja) 改質フライアッシュの製造方法
RU2651827C1 (ru) Способ сухого обогащения высокозольного угля
JP2006273970A (ja) バイオマス含有石炭粉末燃料の製造方法及びその利用方法並びにバイオマス含有石炭粉末燃料の製造装置
US20040111958A1 (en) Fuel from ash
JP2017128464A (ja) セメントクリンカの製造方法
JP2018015688A (ja) 水銀を吸着した粉粒体の処理装置及び処理方法
JP7047616B2 (ja) コークスの製造方法
JP6521259B2 (ja) 焼結鉱製造用焼結原料の製造方法
JP2000144265A (ja) 鉄鉱石ペレット原料の事前処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840184

Country of ref document: EP

Kind code of ref document: A1