WO2020022093A1 - 加熱装置及び加熱方法 - Google Patents

加熱装置及び加熱方法 Download PDF

Info

Publication number
WO2020022093A1
WO2020022093A1 PCT/JP2019/027590 JP2019027590W WO2020022093A1 WO 2020022093 A1 WO2020022093 A1 WO 2020022093A1 JP 2019027590 W JP2019027590 W JP 2019027590W WO 2020022093 A1 WO2020022093 A1 WO 2020022093A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating
work
energization
heater
Prior art date
Application number
PCT/JP2019/027590
Other languages
English (en)
French (fr)
Inventor
伊藤 徹
Original Assignee
中央発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央発條株式会社 filed Critical 中央発條株式会社
Priority to CN201980014041.7A priority Critical patent/CN111742612B/zh
Publication of WO2020022093A1 publication Critical patent/WO2020022093A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • the present disclosure relates to a heating device and a heating method for heating a metal work.
  • Patent Literature 1 (1) prior to performing the heat treatment, conducting heating while measuring the temperature of a work such as a steel plate with a contact-type thermometer to obtain a desired heating pattern. After determining the output pattern of the electric energy necessary for the above and storing this output pattern and the actual voltage and actual current at this time in the storage device, (2) controlling the electric energy output so as to become the stored output pattern The workpiece is heated by energization.
  • Patent Literature 1 the work is heated and heated only based on the output pattern of the actual voltage and the actual current determined in advance.
  • a problem such as the heating temperature (hereinafter, also referred to as “target temperature”) not rising, or the temperature of the work exceeding the target temperature will occur.
  • the present disclosure provides an example of a heating device or a heating method that raises the temperature of a work to a target temperature with high accuracy.
  • the metal work heating device is a heater that heats the work, a temperature detector that detects the temperature of the work before being heated by the heater, and a temperature detector that detects the work.
  • a heating energy calculation unit for calculating an amount of energy required to raise the temperature of the workpiece to the heating temperature by the heater based on a temperature difference between the detected temperature (To) and the target heating temperature (Tt);
  • a control unit that controls the heater so that the heating energy amount calculated by the energy calculation unit is applied to the work.
  • the work when the actual initial temperature is higher than the initial temperature at the time of determining the output pattern, the work is heated and heated until it exceeds the target temperature.
  • the actual initial temperature when the actual initial temperature is lower than the initial temperature at the time of determining the output pattern, the work is not heated or heated to the target temperature.
  • the heating energy is calculated based on the temperature difference between the detected temperature (To) detected by the temperature detector and the target heating temperature (Tt), the detected temperature (To) is calculated. That is, the influence of the initial temperature can be reduced. Therefore, it is possible to raise the temperature of the work to the target temperature with high accuracy.
  • FIG. 1 is a schematic diagram of a heating device according to an embodiment of the present disclosure. It is a graph which shows an example of an energization pattern, the elapsed time from the start of energization, and a temperature change. It is a graph which shows another example of an energization pattern, the elapsed time from the start of energization, and a temperature change. It is a figure which shows the temperature measurement site
  • FIG. 3 is a diagram illustrating a heating method according to an embodiment of the present disclosure.
  • the heating device and the heating method according to the present disclosure are applied to a heating device that heats a stabilizer (hereinafter, referred to as a “work”) for a vehicle.
  • the vehicle stabilizer is a metal torsion bar that connects the left and right suspension devices.
  • the heating device 1 includes a heater 10 and a heating control device 30 as shown in FIG.
  • the heater 10 heats the work W.
  • the heating control device 30 controls the output of the heater 10.
  • the heater 10 is an energization heater that raises the temperature of the work W by applying a current to the work W. That is, the heater 10 energizes the work W via the energizing electrodes 11 connected to both ends of the work W in the longitudinal direction, and heats the work W due to the Joule loss generated between the two energized electrodes 11. The temperature of W is raised.
  • the heating control device 30 includes the temperature detection device 20, a control unit 31, a selection unit 32, a warning unit 33, and the like.
  • the temperature detection device 20 detects the temperature of the work W.
  • the control unit 31 controls the amount of power supply to the work W.
  • the selection unit 32 is an operation unit operated by a worker.
  • the warning unit 33 issues a warning by means that appeals to the five senses of the operator, such as a sound and a warning lamp.
  • the temperature detection device 20 has a temperature detector 21, a temperature calculation unit 22, and the like.
  • the temperature detector 21 is configured by a non-contact type thermometer such as an infrared thermography device.
  • the temperature calculator 22 converts an output signal from the temperature detector 21 into a temperature.
  • the non-contact type thermometer that is, the temperature detector 21 outputs temperature energy thermally radiated from the work as an electric signal.
  • the temperature calculator 22 converts an output signal from the temperature detector 21 into a temperature based on the emissivity of the work W stored in advance.
  • the temperature calculation unit 22 calculates a detected temperature of the work W to be heated by the heater 10 before being heated by the heater 10 (hereinafter, referred to as “temperature before heating To”). Output to the heating energy calculator 34.
  • the heating energy calculator 34 calculates the preheating temperature To in the heater 10 based on the temperature difference between the target heating temperature (hereinafter, referred to as “target temperature Tt”) of the work W and the preheating temperature To.
  • target temperature Tt the target heating temperature
  • preheating energy amount E The amount of energy required to raise the temperature of the work W to the target temperature Tt
  • the above function may be regarded as a linear function for the same work W.
  • the function needs to be a function that takes into account the temperature difference between the workpiece W and the ambient temperature.
  • the control unit 31 outputs the heating energy amount E to the heater 10 so as to be applied to the work, that is, controls the total energization power. Specifically, for example, the control unit 31 controls the voltage applied to the work W as shown by the thick solid line P in FIG. 2A or 2B, and the area surrounded by the thick solid line P, that is, the power is the amount of heating energy.
  • the heater 10 is controlled so as to be E.
  • FIG. 2A or 2B shows the relationship between the elapsed time from the start of energization and the applied voltage. Since the current value is uniquely determined from the applied voltage via the electric resistance value, the thick solid line P in FIG. 2A or 2B indicates a heating control output pattern, that is, an “energization pattern”.
  • the control unit 31 includes a storage unit 31A that stores an energization pattern.
  • the control unit 31 controls the applied voltage, that is, the energized current value according to the elapsed time from the start of energization so that the energized pattern is stored in the storage unit 31A in advance.
  • the warning unit 33 is provided when the time difference between the elapsed time from the start of heating when the energization is started to the completion of the application of the heating energy amount E and the previously stored elapsed time is larger than the previously stored time. Give a warning.
  • the “elapsed time stored in advance” is a time that varies depending on the material, shape, size, and the like of the work W, and is determined based on a trial energizing test performed in advance.
  • the determined time is stored in the storage unit 31A in advance in association with the energization pattern.
  • an energizing pattern in which the applied voltage is gradually decreased from the maximum energized state where the applied voltage is maximum to reduce the current value, and then the energizing is cut off is referred to as “energized pattern A”.
  • energized pattern A an energizing pattern in which the applied voltage is gradually decreased from the maximum energized state where the applied voltage is maximum to reduce the current value, and then the energizing is cut off.
  • Decreasing the applied voltage gradually includes decreasing the applied voltage stepwise.
  • an energization pattern in which energization is cut off without gradually decreasing the current value from the maximum energization state is referred to as “energization pattern B”.
  • Maximum energization state means "a state in which the maximum current value in the energization pattern at energization is energized". Therefore, when the energization patterns are different, the maximum current value may be different.
  • the energizing time of the energizing pattern B is shorter than the energizing time of the energizing pattern A. Therefore, in order to apply the heating energy amount E to the work W in a short time, it is desirable to use the energization pattern B.
  • a plurality of graphs a to h other than the thick solid line P in the graphs shown in FIG. 2A and FIG. 2B show the progress from the start of energization when the work W of the same shape made of the same material is energized. It is a graph which shows time and a temperature change. Each graph a to h showing the temperature change corresponds to each part a to h of the work W shown in FIG.
  • the storage unit 31A capable of storing a plurality of energization patterns is used, and the selection unit 32 for selecting which energization pattern is to be used from among the energization patterns stored in the storage unit 31A in advance. Is provided.
  • the control unit 31 heats the work W in the energization pattern selected by the operator via the selection unit 32.
  • FIG. 4 is an operation diagram schematically showing a heating method performed by the heating device 1. Reference numerals in parentheses in the following description indicate each step (process) shown in FIG.
  • a temperature detection step of detecting the temperature of the work W based on the output signal of the temperature detector 21 is executed (S1).
  • a heating energy calculation step of calculating the heating energy E based on the temperature difference between the pre-heating temperature To and the target temperature Tt detected in the temperature detection step (S1) is executed (S5).
  • energization heating is started in an energization pattern pre-selected by the operator, and the heating step is executed (S10). ).
  • the heating step (S10) it is determined whether the heating energy amount E calculated in the heating energy amount calculation step (S5) has been input to the work W, that is, the energization according to the selected energization pattern has been completed. It is determined whether or not (S15).
  • the time difference between the elapsed time from the start of heating to the time when the application of the heating energy E is completed and the previously stored elapsed time is: It is determined whether or not the time is longer than a previously stored time (S20).
  • the heating energy amount E is calculated based on the temperature difference between the pre-heating temperature To detected by the temperature detector 21 and the target temperature Tt.
  • the temperature of W can be raised to the target temperature with high accuracy.
  • the control unit 31 changes the current value according to the elapsed time from the start of energization so that the energization pattern is stored in the storage unit 31A in advance.
  • the control unit 31 is characterized in that the work is heated in the energization pattern selected via the selection unit 32.
  • the work can be heated in an energization pattern suitable for each work W, so that the work can be heated to the target temperature with high accuracy even for works W of various shapes.
  • thermometer Since the non-contact type thermometer detects the temperature based on the temperature energy radiated from the work W, if the property and state of the work surface (hereinafter referred to as “surface properties”) or the thermal emissivity change, The difference between the detected temperature and the true temperature (hereinafter, “detection error”) also changes. That is, when the surface properties and thermal emissivity of the work W change significantly, the detection error also increases.
  • the detection error with respect to the change in the surface properties or the thermal emissivity of the work may be reduced to a level that does not pose a problem in practical use.
  • the temperature of the work W when the temperature of the work W is low, even if it is a non-contact type thermometer, the temperature of the work is detected with accuracy that does not cause a problem in practical use without being greatly affected by surface properties and the like. be able to.
  • the case where the temperature of the work is low means, for example, a temperature range of about 0 ° C. to 30 ° C.
  • the detection error is 10%
  • the detection error generated when the temperature of the work W is low is at most about 3 ° C.
  • the temperature after heating may have a maximum temperature difference of 3 ° C. with respect to the target temperature Tt.
  • a temperature difference of 3 ° C. from 200 ° C. is a small temperature difference of less than 10%. Therefore, practically, there is almost no problem.
  • a maximum temperature difference of 20 ° C. with respect to the target temperature Tt of 200 ° C. may occur.
  • thermometers such as thermocouples are less affected by surface properties and other factors, and have small detection errors.However, the time required for temperature detection is longer than that of non-contact type thermometers. There is a problem that is long.
  • the temperature of the work when the work W is not heated, that is, when the temperature of the work W is low, the temperature of the work is detected by the non-contact type thermometer.
  • the temperature of the work can be detected with an accuracy that does not cause a problem. Therefore, the temperature of the work W can be quickly and accurately raised to the target temperature.
  • a warning is issued when the time difference between the elapsed time from the start of heating to the time when the application of the heating energy amount is completed and the previously stored elapsed time is larger than the previously stored time.
  • a section 33 is provided.
  • the heating energy amount E is theoretically the same. Therefore, when the time difference between the elapsed time from the start of heating to the time when the application of the heating energy E is completed and the previously stored elapsed time is larger than the previously stored time, an abnormality occurs in the heating device. Likely to be. Therefore, in the present embodiment, a warning is issued in the above situation.
  • the current value gradually increases from the maximum energized state. Without turning off the power.
  • the current value is gradually decreased from the maximum energized state. After that, cut off the current.
  • the embodiments of the present disclosure have been described in which the stabilizer is the work W.
  • the application of the present disclosure is not limited to the stabilizer.
  • the present disclosure can be applied to other metal products such as a coil spring, a torsion bar, and a leaf spring.
  • the heating device and the heating method according to the present disclosure are applied to the heating performed before the coating, but the present disclosure is not limited thereto.
  • quenching, tempering, or strain relief annealing is performed.
  • the present disclosure has been described using two types of energization patterns as examples.
  • the present disclosure is not limited to this.
  • the heating may be performed by applying only one type of energizing pattern, or the heating may be performed by using an energizing pattern selected from three or more types of energizing patterns.
  • the configuration is such that the operator selects the energization pattern.
  • the invention according to the present disclosure is not limited to this.
  • the present disclosure may have a configuration in which the heating device 1 automatically determines the shape, size, and the like of the work W, and the heating device 1 automatically selects an energization pattern to perform energization heating.
  • the work W is heated by the electric heating.
  • the present disclosure is not limited to this.
  • the present disclosure relates to, for example, induction heating, flame heating, an image furnace for heating the work W by condensing light with a reflecting mirror, fluidizing the heated solid particles, and contacting the work W with the solid particles to form the work W.
  • a fluidized bed furnace for heating, a heater for blowing heated gas to the work W, and a heater using infrared rays, plasma, nitrite, or superheated steam may be used.
  • a warning is issued when the time difference between the elapsed time from the start of heating to the time when the application of the heating energy amount E is completed and the previously stored elapsed time is larger than the previously stored time.
  • a warning unit 33 that emits light is provided.
  • the present disclosure is not limited to this.
  • the present disclosure may be configured to use, for example, a configuration that does not use the warning unit 33 or a configuration that issues a warning when the elapsed time from the start of heating exceeds an elapsed time stored in advance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

金属製のワークの加熱装置は、ワークを加熱する加熱器と、加熱器により加熱される前のワークの温度を検出する温度検出器と、温度検出器により検出された検出温度と目標とする加熱温度との温度差に基づいて、加熱器にてワークを加熱温度まで昇温させるために必要なエネルギー量を演算する加熱エネルギー演算部と、加熱エネルギー演算部にて演算された加熱エネルギー量がワークに付与されるように加熱器を制御する制御部とを備える。

Description

加熱装置及び加熱方法 関連出願の相互参照
 本国際出願は、2018年7月23日に日本国特許庁に出願された日本国特許出願第2018-137780号に基づく優先権を主張するものであり、日本国特許出願第2018-137780号の全内容を参照により本国際出願に援用する。
 本開示は、金属製のワークを加熱するための加熱装置及び加熱方法に関する。
 例えば、特許文献1に記載の発明では、(1)加熱処理を行う前に、接触式の温度計により鋼板等のワークの温度を測定しながら通電加熱を行って所望の昇温パターンを得るのに必要な電気エネルギーの出力パターンを決定し、この出力パターンとこの時の実績電圧、実績電流とを記憶装置に保存した後、(2)保存した出力パターンとなるように電気エネルギーの出力を制御してワークを通電加熱している。
特開2011-82006号公報
 しかし、特許文献1に記載の発明では、事前に決定した実績電圧及び実績電流の出力パターンのみに基づいてワークを加熱し、昇温させているので、通電終了時に、ワークの温度が目標とする加熱温度(以下、「目標温度」ともいう。)まで上昇していないか、又は、ワークの温度が目標温度を超えてしまう等の問題が発生する可能性が高い。
 本開示は、上記問題に鑑み、ワークの温度を高い精度で目標温度まで昇温させる加熱装置又は加熱方法の一例を提供する。
 本開示の一局面に係る金属製のワークの加熱装置は、ワークを加熱する加熱器と、加熱器により加熱される前のワークの温度を検出する温度検出器と、温度検出器により検出された検出温度(To)と目標とする加熱温度(Tt)との温度差に基づいて、加熱器にてワークを加熱温度まで昇温させるために必要なエネルギー量を演算する加熱エネルギー演算部と、加熱エネルギー演算部にて演算された加熱エネルギー量がワークに付与されるように加熱器を制御する制御部とを備える。
 特許文献1に記載の発明では、加熱される前のワークの温度(以下、「初期温度」という。)が考慮されていないので、事前に決定した出力パターンにて電気エネルギーをワークに付与しても、ワークの温度を高い精度で目標温度まで昇温させることできない。
 つまり、出力パターンを決定する際の初期温度より現実の初期温度が高い場合には、ワークは目標温度を超えるまで加熱され昇温される。一方、出力パターンを決定する際の初期温度より現実の初期温度が低い場合には、ワークは目標温度まで加熱および昇温されない。
 これと対照的に、本開示では、温度検出器により検出された検出温度(To)と目標とする加熱温度(Tt)との温度差に基づいて加熱エネルギーを演算するので、検出温度(To)、つまり初期温度の影響を小さくすることができる。したがって、ワークの温度を高い精度で目標温度まで昇温させることが可能となる。
本開示の実施形態に係る加熱装置の模式図である。 通電パターン、及び、通電開始時からの経過時間と温度変化の一例を示すグラフである。 通電パターン、及び、通電開始時からの経過時間と温度変化の別の一例を示すグラフである。 図2A,2Bにおける温度測定部位を示す図である。 本開示の実施形態に係る加熱方法を示す図である。
 以下の実施形態は、本開示の技術的範囲に属する実施形態の一例を示すものである。特許請求の範囲に記載された発明特定事項等は、下記の実施形態に示された具体的構成や構造等に限定されるものではない。
 本実施形態は、車両用のスタビライザ(以下、「ワーク」と呼ぶ。)を加熱する加熱装置に本開示に係る加熱装置及び加熱方法を適用したものである。車両用のスタビライザとは、左右の懸架装置を連結する金属製のトーションバーである。
 (第1実施形態)
 1.加熱装置の構成
 加熱装置は、加熱対象であるワークWを加熱し、昇温させる。
 加熱装置1は、図1に示されるように、加熱器10及び加熱制御装置30等を有している。加熱器10はワークWを加熱する。加熱制御装置30は、加熱器10の出力を制御する。
 加熱器10は、ワークWに電流を通電することによりワークWを昇温させる通電加熱器である。すなわち、加熱器10は、ワークWの長手方向両端側それぞれに接続された通電電極11を介してワークWに通電し、2つの通電電極11間で発生するジュール損に伴って発生する熱によりワークWを昇温させる。
 加熱制御装置30は、温度検出装置20、制御部31、選択部32及び警告部33等を有している。温度検出装置20は、ワークWの温度を検出する。制御部31は、ワークWへの通電量を制御する。選択部32は、作業員により操作される操作部である。警告部33は、音声や警告ランプ等の作業者の五感に訴える手段により警告を発する。
 温度検出装置20は、温度検出器21及び温度演算部22等を有している。温度検出器21は、赤外線サーモグラフィ装置等の非接触式温度計にて構成されている。温度演算部22は、温度検出器21からの出力信号を温度に換算する。
 非接触式温度計、つまり温度検出器21は、ワークから熱放射される温度エネルギーを電気信号として出力する。温度演算部22は、予め記憶されているワークWの放射率に基づいて、温度検出器21からの出力信号を温度に換算する。
 温度演算部22は、加熱器10による加熱対象となっているワークWであって、加熱器10にて加熱される前のワークWの検出温度(以下、「加熱前温度To」という。)を加熱エネルギー演算部34に出力する。
 加熱エネルギー演算部34は、ワークWについての目標とする加熱温度(以下、「目標温度Tt」という。)と加熱前温度Toとの温度差に基づいて、加熱器10にて加熱前温度Toから目標温度TtまでワークWを昇温させるために必要なエネルギー量(以下、「加熱エネルギー量E」という。)を演算する。
 目標温度Ttは、通常、加熱前温度Toより高い温度であるので、加熱エネルギー量Eは、目標温度Ttから加熱前温度Toを減じた値(=Tt-To)の関数、つまり、E=f(Tt-To)となる。
 加熱装置1の雰囲気温度が、常温(例えば、25℃程度)でほぼ一定の場合には、同一のワークWであれば、上記関数は線形関数とみなしてよい。しかし、雰囲気温度が、常温より低い場合や変化が大きい場合には、ワークWからの放熱量が、ワークWと雰囲気温度との温度差によって大きく変化する。したがって、当該場合には、上記関数をワークWと雰囲気温度との温度差を考慮した関数とする必要がある。
 制御部31は、加熱エネルギー量Eがワークに付与されるように加熱器10へ出力する、つまり通電総通電電力を制御する。具体的には、制御部31は、例えば、図2A又は図2Bの太い実線Pで示されるようにワークWへの印加電圧を制御し、太い実線Pで囲まれる面積、つまり電力が加熱エネルギー量Eとなるように加熱器10を制御する。
 以下、通電開始時からの経過時間と電流値との関係を「通電パターン」という。図2A又は図2Bでは、通電開始時からの経過時間と印加電圧と関係を示す。電流値は電気抵抗値を介して印加電圧から一義的に決定されるので、図2A又は図2Bの太い実線Pは加熱制御出力のパターン、すなわち「通電パターン」を示す。
 制御部31は、図1に示されるように、通電パターンを記憶する記憶部31Aを有する。制御部31は、予め記憶部31Aに記憶された通電パターンとなるように、通電開始時からの経過時間に応じて印加電圧、つまり通電電流値を制御する。
 警告部33は、通電を開始した加熱開始時から加熱エネルギー量Eの付与が完了した時までの経過時間と予め記憶されている経過時間との時間差が、予め記憶されている時間より大きいときに、警告を発する。
 上記「予め記憶されている経過時間」は、ワークWの材質、形状、大きさ等により異なる時間であって、予め行われた試作通電試験等に基づいて決定される。決定された当該時間は、通電パターンと対応付けされて記憶部31Aに予め記憶される。
 2.通電パターン
 例えば、図2Aに示されるように、印加電圧が最大となる最大通電状態から印加電圧を徐々に低下させて電流値を低下させた後、通電を遮断する通電パターンを「通電パターンA」と呼ぶ。印加電圧を徐々に低下させることには、印加電圧を段階的に低下させることも含む。
 一方、図2Bに示されるように、最大通電状態から徐々に電流値を低下させることなく、通電遮断する通電パターンを「通電パターンB」と呼ぶ。
 「最大通電状態」とは、「通電時の通電パターンにおける最大電流値が通電されている状態」をいう。したがって、通電パターンが異なる場合には、最大電流値も異なる場合がある。
 図2A,2Bから明らかように、通電パターンAと通電パターンBとを比較すると、加熱エネルギー量Eが同一の場合には、通電パターンBの通電時間は通電パターンAの通電時間より短くなる。したがって、短時間にてワークWに加熱エネルギー量Eを付与するには、通電パターンBとすることが望ましい。
 しかし、本発明者による試験検討により、ワークWに通電される電流の通電経路のうち最大経路断面積と最小経路断面積との差が大きいと、ワークW全体を均一に昇温させることが難しいことが判明した。以下、最大経路断面積と最小経路断面積との差を「面積差」という。
 図2A及び図2Bに示されるグラフのうち太い実線P以外の複数本のグラフa~hは、同一の材質にて構成された同一形状のワークWに通電した場合における、通電開始時からの経過時間と温度変化を示すグラフである。温度変化を示す各グラフa~hは、図3に示されるワークWの各部位a~hに対応する。
 図2Bに示されるように、面積差が大きい場合に、通電パターンBにて通電すると、1つのワークWにおける温度バラツキが大きくなる。しかし、面積差が大きい場合であっても、通電パターンAにて通電すると、通電パターンBにて通電したときに比べて、1つのワークWにおける温度バラツキを小さくすることができる。
 本発明者による試験検討によれば、面積差が1%以上となると、ワークW全体を均一に昇温させることが難しくなることが判明している。面積差が大きい場合に通電パターンAにて通電すると、通電パターンBにて通電する場合に比べて、5℃~10℃程度、温度バラツキを小さくすることができることを試験にて確認している。
 そこで、本実施形態では、複数の通電パターンが記憶可能な記憶部31Aを用いるとともに、記憶部31Aに予め記憶された通電パターンのうち、いずれの通電パターンを用いるかを選択するための選択部32を設けている。制御部31は、選択部32を介して作業者により選択された通電パターンにてワークWを加熱する。
 3.加熱方法
 図4は、加熱装置1で実行される加熱方法の概略を示す作動図である。以下の説明における括弧内の符号は、図4に示される各ステップ(工程)を示す。
 ワークWが加熱装置1に搬入されると、先ず、温度検出器21の出力信号に基づいてワークWの温度を検出する温度検出工程が実行される(S1)。次に、温度検出工程(S1)により検出された加熱前温度Toと目標温度Ttとの温度差に基づいて、加熱エネルギー量Eを演算する加熱エネルギー量演算工程が実行される(S5)。
 そして、温度検出工程(S1)にて加熱前温度Toが検出されたワークWに対して、作業者により予め選択されている通電パターンにて通電加熱が開始されて加熱工程が実行される(S10)。加熱工程(S10)が開始されると、加熱エネルギー量演算工程(S5)にて演算された加熱エネルギー量EがワークWに投入されたか否か、つまり、選択された通電パターンによる通電が完了したか否かが判定される(S15)。
 ワークWへの加熱エネルギー量Eの投入が完了すると(S15:YES)、加熱開始時から加熱エネルギー量Eの付与が完了した時までの経過時間と予め記憶されている経過時間との時間差が、予め記憶されている時間より大きいか否かが判定される(S20)。
 このとき、加熱開始時から加熱エネルギー量Eの付与が完了した時までの経過時間と予め記憶されている経過時間との時間差が、予め記憶されている時間より大きいと判定されたときには(S20:YES)、警告部33にて警告が発せられる(S25)。
 警告後(S25)、又は警告が実行されることなく(S20:NO)、通電加熱が完了すると、当該ワークWについての加熱が終了し、次のワークWについて、S1が実行される。
 4.本実施形態に係る加熱装置及び加熱方法の特徴
 本実施形態では、温度検出器21により検出された加熱前温度Toと目標温度Ttとの温度差に基づいて加熱エネルギー量Eを演算するので、ワークWの温度を高い精度で目標温度まで昇温させることが可能となる。
 本実施形態に係る制御部31は、予め記憶部31Aに記憶された通電パターンとなるように、通電開始時からの経過時間に応じて電流値を変化させる。
 これにより、ワークWの形状等に応じた通電パターンを予め記憶部31Aに記憶させることができるので、ワークWの形状等に応じた通電パターンにて通電加熱をすることができる。延いては、ワークW全体を略均一に目標温度まで昇温させることが可能となる。
 本実施形態に係る制御部31は、選択部32を介して選択された通電パターンにてワークを加熱することを特徴としている。これにより、個々のワークWに適した通電パターンにてワークを加熱することができるので、様々な形状のワークWに対しても高い精度で目標温度までワークを昇温させることができる。
 非接触式の温度計は、ワークWから熱放射される温度エネルギーに基づいて温度を検出するので、ワーク表面の性質及び状態(以下、「表面性状」という。)や熱放射率が変化すると、検出温度と真の温度との差(以下、「検出誤差」という。)も変化する。つまり、ワークWの表面性状や熱放射率が大きく変化すると、検出誤差も大きくなる。
 しかし、ワークWの温度が低い場合には、ワークの表面性状や熱放射率の変化に対する検出誤差が、実用上、問題とならない程度まで小さくなる場合もある。
 つまり、ワークWの温度が低い場合には、非接触式の温度計であっても、表面性状等の影響を大きく受けることなく、実用上、問題とならない程度の精度でワークの温度を検出することができる。ワークの温度が低い場合とは、例えば0℃~30℃程度の温度範囲をいう。
 すなわち、仮に、検出誤差が10%であるとき、ワークWの温度が低い場合に発生する検出誤差は最大でも約3℃である。目標温度Ttが、例えば200℃である場合においては、加熱後の温度は、当該目標温度Ttに対して最大3℃の温度差が発生し得る。
 200℃に対する3℃の温度差は、10%に満たない小さい温度差である。したがって、実用上、殆ど問題とならない。比較として、ワークWの温度を検出しながら当該ワークWを加熱する装置では、200℃の目標温度Ttに対して最大20℃の温度差が発生し得る。
 熱電対等の接触式の温度計は、非接触式の温度計に比べて、表面性状等の影響を大きく受けず、検出誤差が小さいものの、温度検出に要する時間が非接触式の温度計に比べて長いという問題がある。
 これと対照的に、本実施形態では、ワークWが加熱前のとき、つまりワークWの温度が低いときに、非接触式の温度計にてワークの温度を検出するので、短時間にて実用上、問題とならない程度の精度でワークの温度を検出することができる。したがって、速やかにワークWを目標温度まで精度よく昇温させることできる。
 本実施形態では、加熱開始時から加熱エネルギー量の付与が完了した時までの経過時間と予め記憶されている経過時間との時間差が、予め記憶されている時間より大きいときに、警告を発する警告部33を備える。
 すなわち、形状や材質が同一である同種のワークにおいては、理論上、加熱エネルギー量Eは同一である。したがって、加熱開始時から加熱エネルギー量Eの付与が完了した時までの経過時間と予め記憶されている経過時間との時間差が、予め記憶されている時間より大きいときには、加熱装置に異常が発生している可能性が高い。そこで、本実施形態では、上記の状況のときには、警告を発する。
 本実施形態では、ワークWに通電される電流の通電経路のうち最大経路断面積と最小経路断面積との差が予め決められた所定値未満の場合には、最大通電状態から徐々に電流値を低下させることなく、通電を遮断する。
 一方、ワークWに通電される電流の通電経路のうち最大経路断面積と最小経路断面積との差が予め決められた所定値以上の場合には、最大通電状態から徐々に電流値を低下させた後、通電を遮断する。
 これにより、ワークWに適した通電パターンにてワークを加熱することができるので、様々な形状のワークに対しても高い精度で目標温度までワークを昇温させることできる。
 (その他の実施形態)
 上述の実施形態では、スタビライザをワークWとして本開示の実施形態を説明した。しかし、本開示の適用対象は、スタビライザに限定されるものではない。本開示は、例えば、コイルばね、トーションバー、リーフスプリング等のその他の金属製品に対しても適用することができる。
 上述の実施形態では、塗装前に行われる加熱に本開示に係る加熱装置及び加熱方法を適用したが、本開示はこれに限定されるものではなく、例えば焼き入れ、焼き戻し又は歪取焼鈍等の熱処理等にも適用することができる。
 上述の実施形態では、2種類の通電パターンを例に本開示を説明した。しかし、本開示は、これに限定されるものではない。本開示は、1種類の通電パターンのみで通電加熱する、又は3種類以上の通電パターンの中から選択された通電パターンにて通電加熱をするものであってもよい。
 上述の実施形態では、作業者が通電パターンを選択する構成であった。しかし、本開示に係る発明は、これに限定されない。本開示は、ワークWの形状や大きさ等を加熱装置1が自動判別し、加熱装置1が通電パターンを自動的に選択して通電加熱する構成としてもよい。
 上述の実施形態では、通電加熱にてワークWを加熱した。しかし、本開示はこれに限定されるものではない。本開示は、例えば、誘導加熱、火炎加熱、反射鏡により光を集光してワークWを加熱するイメージ炉、加熱した固体粒子を流動化させて固体粒子とワークWとの接触によりワークWを加熱する流動層炉、加熱された気体をワークWに吹き付ける加熱器、及び赤外線、プラズマ、硝石や過熱蒸気を用いた加熱器であってもよい。
 上述の実施形態では、加熱開始時から加熱エネルギー量Eの付与が完了した時までの経過時間と予め記憶されている経過時間との時間差が、予め記憶されている時間より大きいときに、警告を発する警告部33を設けた。しかし、本開示はこれに限定されるものではない。本開示は、例えば、警告部33を用いない構成、又は加熱開始時からの経過時間が予め記憶されている経過時間を超えたときに警告を発する構成であってもよい。
 さらに、本開示は、請求の範囲に記載された発明の趣旨に合致するものであればよく、上述の実施形態に限定されるものではない。たとえば、上述した複数の実施形態のうち少なくとも2つの実施形態が組み合わせられた構成、又は上述の実施形態において、図示された構成要件のうちいずれかを用いない構成でもよい。

Claims (10)

  1.  金属製のワークの加熱装置であって、
     前記ワークを加熱する加熱器と、
     前記加熱器により加熱される前の前記ワークの温度を検出する温度検出器と、
     前記温度検出器により検出された検出温度と目標とする加熱温度との温度差に基づいて、前記加熱器にて前記ワークを前記加熱温度まで昇温させるために必要なエネルギー量を演算する加熱エネルギー演算部と、
     前記加熱エネルギー演算部にて演算された加熱エネルギー量が前記ワークに付与されるように前記加熱器を制御する制御部と
     を備える、加熱装置。
  2.  前記加熱器は、前記ワークに電流を通電することにより前記ワークを昇温させる通電加熱器であり、
     前記制御部は、通電開始時からの経過時間と電流値との関係を示す通電パターンを記憶する記憶部を有しており、
     前記制御部は、予め前記記憶部に記憶された通電パターンとなるように、通電開始時からの経過時間に応じて電流値を変化させる、請求項1に記載の加熱装置。
  3.  前記記憶部は、複数の前記通電パターンを記憶可能であり、
     作業者により操作され、複数の前記通電パターンのうち加熱に用いる通電パターンを選択する選択部を備え、
     前記制御部は、前記選択部を介して選択された通電パターンにて前記ワークを加熱する、請求項2に記載の加熱装置。
  4.  前記温度検出器は、前記ワークから熱放射される温度エネルギーに基づいて温度を検出する非接触式の温度計である、請求項1~3のいずれか一項に記載の加熱装置。
  5.  加熱開始時から前記加熱エネルギー量の付与が完了した時までの経過時間と予め記憶されている経過時間との時間差が、予め記憶されている時間より大きいときに、警告を発する警告部を備える、請求項1~4のいずれか一項に記載の加熱装置。
  6.  金属製のワークの加熱方法であって、
     加熱器にて前記ワークを加熱する加熱ステップと、
     前記加熱ステップにて加熱される前の前記ワークの温度を検出する温度検出ステップと、
     前記温度検出ステップにより検出された検出温度と目標とする加熱温度との温度差に基づいて、前記ワークを前記加熱温度まで昇温させるために必要なエネルギー量を演算する加熱エネルギー量演算ステップとを備え、
     前記加熱エネルギー量演算ステップにて演算された加熱エネルギー量が前記ワークに付与されるように前記加熱器を制御する、加熱方法。
  7.  前記加熱器は、前記ワークに電流を通電することにより前記ワークを昇温させる通電加熱器であり、
     通電開始時からの経過時間と電流値との関係を通電パターンと呼ぶとき、
     前記ワークの形状に応じて予め決められた通電パターンとなるように電流値を変化させる、請求項6に記載の加熱方法。
  8.  前記ワークに通電される電流の通電経路のうち最大経路断面積と最小経路断面積との差が予め決められた所定値未満の場合には、最大通電状態から徐々に電流値を低下させることなく、通電を遮断する、請求項7に記載の加熱方法。
  9.  前記ワークに通電される電流の通電経路のうち最大経路断面積と最小経路断面積との差が予め決められた所定値以上の場合には、最大通電状態から徐々に電流値を低下させた後、通電を遮断する、請求項7又は8に記載の加熱方法。
  10.  前記温度検出ステップにおいては、前記ワークから熱放射される温度エネルギーに基づいて温度を検出する非接触式の温度計を用いて温度を検出する、請求項6~9のいずれか一項に記載の加熱方法。
PCT/JP2019/027590 2018-07-23 2019-07-11 加熱装置及び加熱方法 WO2020022093A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980014041.7A CN111742612B (zh) 2018-07-23 2019-07-11 加热装置以及加热方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-137780 2018-07-23
JP2018137780A JP7111543B2 (ja) 2018-07-23 2018-07-23 加熱装置及び加熱方法

Publications (1)

Publication Number Publication Date
WO2020022093A1 true WO2020022093A1 (ja) 2020-01-30

Family

ID=69180473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027590 WO2020022093A1 (ja) 2018-07-23 2019-07-11 加熱装置及び加熱方法

Country Status (3)

Country Link
JP (1) JP7111543B2 (ja)
CN (1) CN111742612B (ja)
WO (1) WO2020022093A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055254A (ja) * 2002-07-18 2004-02-19 Nippon Steel Corp 金属板の定電流通電加熱方法
JP2011082006A (ja) * 2009-10-07 2011-04-21 Nippon Steel Corp 鋼板の加熱制御方法
WO2011115110A1 (ja) * 2010-03-16 2011-09-22 中央発條株式会社 自動車用スタビライザの製造方法
JP2017025362A (ja) * 2015-07-17 2017-02-02 トヨタ自動車株式会社 通電加熱装置および通電加熱方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592553B2 (ja) * 1991-07-25 1997-03-19 新日本製鐵株式会社 金属材料の加熱制御方法
JP2004055264A (ja) * 2002-07-18 2004-02-19 Nippon Steel Corp 金属板の定電圧通電加熱方法
JP2004055265A (ja) * 2002-07-18 2004-02-19 Nippon Steel Corp 金属板の定電力通電加熱方法
DE102011009672A1 (de) * 2011-01-28 2012-08-02 Webasto Ag Elektrische Heizung, Fahrzeug mit elektrischer Heizung sowie Verfahren zum Steuern einer elektrischen Heizung
JP5805509B2 (ja) * 2011-11-30 2015-11-04 トヨタ紡織株式会社 ヒータ制御装置及び車両用シートヒータ
JP5981171B2 (ja) * 2012-03-08 2016-08-31 中央発條株式会社 加熱異常検出装置及び電気加熱システム
JP5543046B1 (ja) * 2012-08-03 2014-07-09 パナソニック株式会社 電力制御装置およびそれを備えた機器
JP5925225B2 (ja) * 2013-02-26 2016-05-25 日本特殊陶業株式会社 ガスセンサのヒータ制御方法およびヒータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055254A (ja) * 2002-07-18 2004-02-19 Nippon Steel Corp 金属板の定電流通電加熱方法
JP2011082006A (ja) * 2009-10-07 2011-04-21 Nippon Steel Corp 鋼板の加熱制御方法
WO2011115110A1 (ja) * 2010-03-16 2011-09-22 中央発條株式会社 自動車用スタビライザの製造方法
JP2017025362A (ja) * 2015-07-17 2017-02-02 トヨタ自動車株式会社 通電加熱装置および通電加熱方法

Also Published As

Publication number Publication date
JP7111543B2 (ja) 2022-08-02
CN111742612B (zh) 2022-05-31
CN111742612A (zh) 2020-10-02
JP2020017354A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
JP5066864B2 (ja) 誘導加熱装置
EP3369514B1 (en) Heating system and method to determine workpiece characteristics
CN107262879A (zh) 控制用于电弧点火的热启动焊接电流的方法和设备
JP4217255B2 (ja) 鋼板の温度測定方法および温度測定装置、ならびに鋼板の温度制御方法
JP5198255B2 (ja) 部材の溶接方法およびシステム
WO2020022093A1 (ja) 加熱装置及び加熱方法
JP6594250B2 (ja) 温度計測装置及び温度計測方法
JP2020002466A (ja) 熱処理装置
JP6299693B2 (ja) 通電加熱装置(方法)
KR102031815B1 (ko) 소오크 시간 자동보정 및 가열이상 자가진단 기능을 구비한 산업용 온도제어장치 및 그 방법
JP6384417B2 (ja) 通電加熱装置および通電加熱方法
WO2021100173A1 (ja) ロウ付け装置及び熱交換器
JP4965031B2 (ja) 高周波加熱における温度制御方法
JP5328303B2 (ja) 光学素子の製造装置及びその製造方法
JP6164097B2 (ja) 熱処理装置
JP4878234B2 (ja) 鋼板の温度測定方法および温度測定装置、ならびに鋼板の温度制御方法
JP2010190526A (ja) 熱処理炉の運転方法と制御装置
JP6295674B2 (ja) 熱処理装置およびランプ制御方法
JP2011108513A (ja) 磁気加熱装置
JPS63307217A (ja) 加熱炉における段付軸の温度制御方法
JP2007292387A (ja) 加熱装置
JP6365189B2 (ja) 鋼材の熱処理装置およびその熱処理方法
JPH0239525A (ja) 半導体熱処理装置
KR101175428B1 (ko) 가열로용 비접촉식 온도측정기의 방사율 보정 방법, 이를 이용한 소재 가열온도 제어 방법 및 장치
JP4009861B2 (ja) 温度制御方法、温度調節器および熱処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840179

Country of ref document: EP

Kind code of ref document: A1