WO2020021706A1 - 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 - Google Patents

熱交換器、熱交換器ユニット、及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2020021706A1
WO2020021706A1 PCT/JP2018/028272 JP2018028272W WO2020021706A1 WO 2020021706 A1 WO2020021706 A1 WO 2020021706A1 JP 2018028272 W JP2018028272 W JP 2018028272W WO 2020021706 A1 WO2020021706 A1 WO 2020021706A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat exchange
water guide
water
exchange unit
Prior art date
Application number
PCT/JP2018/028272
Other languages
English (en)
French (fr)
Inventor
中村 伸
前田 剛志
暁 八柳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020532112A priority Critical patent/JP6932262B2/ja
Priority to EP18927913.6A priority patent/EP3832244A4/en
Priority to PCT/JP2018/028272 priority patent/WO2020021706A1/ja
Priority to US17/059,795 priority patent/US11578930B2/en
Priority to CN201880095254.2A priority patent/CN112424552B/zh
Publication of WO2020021706A1 publication Critical patent/WO2020021706A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/22Safety or protection arrangements; Arrangements for preventing malfunction for draining

Definitions

  • the present invention relates to a heat exchanger having a flat tube and fins, a heat exchanger unit, and a refrigeration cycle device, and particularly to an arrangement of a water guide member for guiding water remaining in the fins.
  • a heat exchanger including a flat tube which is a heat transfer tube having a flat multi-hole cross section
  • a heat exchanger there is a heat exchanger in which flat tubes are arranged so as to extend in the tube axis direction in the left-right direction, and are arranged at predetermined intervals in the up-down direction.
  • plate-shaped fins are arranged side by side in the tube axis direction of a flat tube, and perform heat exchange between air passing between the fins and fluid flowing in the flat tube.
  • the spacers are arranged over substantially the entire area in the width direction of the fins below the heat exchange section including the fins and the flat tubes. Therefore, there is a problem that water flowing down the fins stays between the fins and the upper surface of the spacer. For this reason, water stays at the lower end of the heat exchange unit, and the air passage between the fins is blocked, the amount of air passing through the heat exchange unit decreases, and the heat exchange performance decreases. Further, when the heat exchanger is used under low outside air conditions, the accumulated water freezes, and the frozen portion expands from the frozen water as a starting point, and the heat exchange portion may be damaged.
  • the present invention has been made to solve the problems as described above, and by promoting drainage from a heat exchange unit, a heat exchanger with improved frost resistance and heat exchange performance, a heat exchanger unit, And a refrigeration cycle device.
  • the heat exchanger according to the present invention is formed by a flat tube, a plate-like body having a plate surface extending in a longitudinal direction and a width direction orthogonal to the longitudinal direction, and is disposed with the longitudinal direction facing up and down, A fin disposed so as to intersect with the tube axis of the flat tube; and a first water guide member disposed below the fin, wherein the fin is one end edge in the width direction.
  • a pipe disposition area provided on a side edge and formed with an insertion portion into which the flat tube is inserted, and a water introduction side edge which is the other edge in the width direction, and the insertion portion is not formed.
  • a first water guide member the first water guide member being located at an end of the first upper surface in a cross section perpendicular to the pipe axis, the first upper surface being opposed to a lower end of the fin.
  • a first ridge line which is a ridge line closer to the water conveyance side edge, And a second ridge is a ridge closer to the tube disposed side edge of the ridge line positioned at an end portion of the upper surface of the second ridge is located below the water conveying region of the fin.
  • the heat exchanger unit according to the present invention includes the heat exchanger described above, and a blower that sends air to the heat exchanger, wherein the heat exchanger has the water guide region closer to the windward side than the pipe arrangement region. It is arranged to be located.
  • a refrigeration cycle apparatus includes the above-described heat exchanger unit.
  • the second ridge line which is the ridge line closer to the pipe arrangement region, is provided below the water transfer region of the fin, so that the water at the lower end portion of the fin is in the second position. It flows downward from the second ridge line of the first water guiding member, and promotes drainage from the heat exchanger.
  • FIG. 2 is a perspective view showing the heat exchanger according to the first embodiment.
  • FIG. 2 is an explanatory diagram of a refrigeration cycle device to which the heat exchanger according to Embodiment 1 is applied. It is explanatory drawing of the cross-section of the heat exchanger of FIG. It is a partial front view of the heat exchanger of FIG. It is the fragmentary top view which looked at the water guide member of FIG. 3 from the fin side.
  • FIG. 3 is an explanatory diagram of a cross-sectional structure of a heat exchanger as a comparative example of the heat exchanger according to Embodiment 1.
  • FIG. 3 is a partial front view of a heat exchanger as a comparative example of the heat exchanger according to Embodiment 1.
  • FIG. 4 is an explanatory diagram of a cross-sectional structure of a heat exchange unit that is a modification of the heat exchange unit according to Embodiment 1.
  • FIG. 4 is an explanatory diagram of a cross-sectional structure of a heat exchange unit that is a modification of the heat exchange unit according to Embodiment 1.
  • FIG. 4 is an explanatory diagram of a cross-sectional structure of a heat exchange unit that is a modification of the heat exchange unit according to Embodiment 1.
  • FIG. 4 is an explanatory diagram of a cross-sectional structure of a heat exchange unit that is a modification of the heat exchange unit according to Embodiment 1.
  • FIG. 4 is an explanatory diagram of a cross-sectional structure of a heat exchange unit that is a modification of the heat exchange unit according to Embodiment 1.
  • FIG. 4 is an explanatory diagram of a cross-sectional structure of a heat exchange unit that is a modification of the heat exchange unit according to Embodiment 1.
  • FIG. 9 is a perspective view showing a heat exchanger according to a second embodiment. It is explanatory drawing of the cross-section of the heat exchanger of FIG.
  • FIG. 13 is an explanatory diagram of a cross-sectional structure of a heat exchanger that is a modification of the heat exchanger according to Embodiment 2.
  • FIG. 13 is an explanatory diagram of a cross-sectional structure of a heat exchanger that is a modification of the heat exchanger according to Embodiment 2.
  • FIG. 13 is an explanatory diagram of a cross-sectional structure of a heat exchanger that is a modification of the heat exchanger according to Embodiment 2.
  • FIG. 13 is an explanatory diagram of a cross-sectional structure of a heat exchanger according to Embodiment 3. It is a partial front view of the heat exchanger of FIG.
  • FIG. 19 is a partial top view of the water guide member of FIG. 18 as viewed from the fin side.
  • FIG. 1 is a perspective view showing a heat exchanger 100 according to the first embodiment.
  • FIG. 2 is an explanatory diagram of the refrigeration cycle apparatus 1 to which the heat exchanger 100 according to Embodiment 1 is applied.
  • the heat exchanger 100 shown in FIG. 1 is mounted on a refrigeration cycle device 1 such as an air conditioner or a refrigerator.
  • a refrigeration cycle device 1 of an air conditioner is illustrated.
  • the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the expansion device 6, and the indoor heat exchanger 7 are connected by a refrigerant pipe 90 to form a refrigerant circuit.
  • the refrigerant flows through the refrigerant pipe 90, and the flow of the refrigerant is switched by the four-way valve 4, so that the heating operation, the refrigeration operation, and the defrosting operation can be switched.
  • the outdoor heat exchanger 5 mounted on the outdoor unit 8 and the indoor heat exchanger 7 mounted on the indoor unit 9 include the blower 2 in the vicinity.
  • the blower 2 sends outside air to the outdoor heat exchanger 5, and performs heat exchange between the outside air and the refrigerant.
  • the blower 2 sends indoor air to the indoor heat exchanger 7, performs heat exchange between the indoor air and the refrigerant, and balances the temperature of the indoor air.
  • the heat exchanger 100 can be used as the outdoor heat exchanger 5 mounted on the outdoor unit 8 and the indoor heat exchanger 7 mounted on the indoor unit 9 in the refrigeration cycle apparatus 1, and functions as a condenser or an evaporator. .
  • devices such as the outdoor unit 8 and the indoor unit 9 on which the heat exchanger 100 is mounted are particularly referred to as a heat exchanger unit.
  • FIG. 3 is an explanatory diagram of a cross-sectional structure of the heat exchanger 100 of FIG.
  • FIG. 4 is a partial front view of the heat exchanger 100 of FIG.
  • FIG. 5 is a partial top view of the water guide members 51 and 52 of FIG. 3 as viewed from the fin 30 side.
  • FIG. 3 shows a view of a cross section perpendicular to the y-axis of the heat exchange unit 10 in FIG. 1 viewed from the y direction.
  • FIG. 4 shows a view of the heat exchange unit 10 viewed from the x direction.
  • FIG. 5 is a view of the water guide members 51 and 52 viewed from the side where the fins 30 are arranged.
  • the heat exchange unit 10 is configured by arranging a plurality of flat tubes 20 whose tube axes are oriented in the y direction in parallel in the z direction.
  • the flat tube 20 has a flat shape having a long axis and a short axis in a cross section perpendicular to the tube axis.
  • the long axis of the flat tube 20 is oriented in the x direction.
  • the fins 30 are attached to the flat tube 20 such that the plate surface 48 of the plate-shaped fin 30 intersects the tube axis of the flat tube 20.
  • the fin 30 is a rectangle whose longitudinal direction faces the direction in which the flat tubes 20 are arranged in parallel.
  • the fins 30 extend in the longitudinal direction along the z direction, and extend in the width direction orthogonal to the longitudinal direction in the x direction.
  • the fin 30 has an insertion portion 24 into which the flat tube 20 is inserted.
  • the water guiding side edge 31 which is one edge of the fin 30 is located on the windward side, and the pipe disposition side edge 32 which is the other edge is located on the leeward side.
  • the insertion portion 34 is a notch provided on the tube-arranged side edge 32 of the fin 30, and the flat tube 20 is inserted into the insertion portion 34.
  • the flat tube 20 has a refrigerant flowing therein, and performs heat exchange between the air sent into the heat exchanger 100 and the internal refrigerant.
  • a plurality of fins 30 are provided along the tube axis direction of the flat tube 20. Adjacent fins 30 are arranged with a predetermined gap FP therebetween, so that air passes between the gaps FP. The fins 30 make contact with the air passing through the adjacent fins 30 and the gap FP, and conduct heat exchange by transferring heat to the refrigerant.
  • the fins 30 are arranged with their longitudinal directions oriented in the direction in which the flat tubes 20 are arranged in parallel. That is, the longitudinal direction of the fin 30 is oriented in the z direction. In the first embodiment, the fins 30 are arranged such that the longitudinal direction coincides with the direction of gravity.
  • the heat exchange unit 10 includes a first water guide member 51 and a second water guide member 52 below the fin 30.
  • the first water guide member 51 and the second water guide member 52 may be collectively referred to as water guide members 51 and 52.
  • the water guide members 51 and 52 are arranged below the lower edge 37 of the fin 30.
  • the water guide members 51 and 52 are arranged with a gap between the water guide members 51 and 52 and the lower edge 37.
  • the water guide members 51 and 52 are installed with the longitudinal direction facing in the y direction.
  • the water guide members 51 and 52 have a rectangular cross section perpendicular to the y-axis as shown in FIG. 3, have a first ridge 55 at one end of an upper surface 57, and a second ridge 56 at the other end.
  • the water guide members 51 and 52 include a first side surface 58 below the first ridgeline 55 and a second side surface 59 below the second ridgeline 56.
  • the first side surface 58 and the second side surface 59 are arranged so as to be orthogonal to the upper surface 57.
  • the cross-sectional shape of the water guide members 51 and 52 is not limited only to the shape shown in FIG.
  • the water guide members 51 and 52 may be hollow members, for example, or may be formed by bending a plate-like member.
  • 57, a first side surface 58, and a second side surface 59 may be formed.
  • the upper surface 57 of the first water guide member 51 may be referred to as a first upper surface
  • the upper surface 57 of the second water guide member 52 may be referred to as a second upper surface.
  • the first water guide member 51 is located below the water guide region 35 located on the water guide side edge 31 side of the fin 30.
  • the water guide area 35 of the fin 30 is an area located between the water guide side edge 31 shown in FIG. 3 and the straight line L22.
  • the straight line L22 is a straight line that passes through the edge on the water guide side edge 31 side of the plurality of insertion portions 34 provided on the fin 30.
  • the water guide area 35 is an area where the flat tubes 20 that obstruct the flow of water such as dew condensation water and frost melting water flowing from above the fins 30 are not provided when the z direction is the gravity direction.
  • the first water guiding member 51 has the first ridge 55 and the second ridge 56 located below the water guiding area 35. That is, the upper surface 57 of the first water guide member 51 is located between the straight line L21 and the straight line L22 which are extensions of the water guide side edge 31.
  • the second water guide member 52 is located below the pipe arrangement area 36 located on the pipe arrangement side edge 32 of the fin 30.
  • the tube arrangement area 36 of the fin 30 is an area located between the tube arrangement side edge 32 shown in FIG. 3 and the straight line L22.
  • the tube arrangement region 36 is a region where a plurality of flat tubes 20 are arranged in parallel in the z direction.
  • the second water guide member 52 has the first ridgeline 55 and the second ridgeline 56 located below the pipe arrangement region 36. That is, the upper surface 57 of the second water guide member 52 is located between the straight line L23 and the straight line L22, which are extensions of the pipe arrangement side edge 32.
  • FIG. 6 is an explanatory diagram of a cross-sectional structure of a heat exchanger 1000 as a comparative example of the heat exchanger 100 according to the first embodiment.
  • FIG. 7 is a partial front view of a heat exchanger 1000 as a comparative example of the heat exchanger 100 according to Embodiment 1.
  • the heat exchange unit 1010 of the heat exchanger 1000 according to the comparative example does not include the water guide members 51 and 52, unlike the heat exchange unit 10 according to the first embodiment.
  • the water that has flowed down from the upper part through the water guide region 35 stays in the gap FP at the lower end of the fin 30.
  • FIG. 6 and 7 is a schematic representation of water accumulated at the lowermost end of the heat exchange unit 1010.
  • the accumulated water 61 increases due to the water flowing down from above the heat exchange unit 1010, and expands downward, so that the influence of gravity increases.
  • the gravitational force G applied to the stagnant water 61 becomes larger than the surface tension ST of the stagnant water 61, the stagnant water 61 is no longer affected by the surface tension ST, separates from the lower edge 37 of the fin 30, and falls.
  • the fallen stagnant water 61 is received by a drain pan arranged below the heat exchange unit 1010.
  • the heat exchange unit 1010 of the heat exchanger 1000 of the comparative example discharges the accumulated water 61 when the accumulated water 61 accumulated at the lower end receives a gravity G exceeding the surface tension ST. Therefore, a predetermined amount of water stays at the lower end of the heat exchange unit 1010 of the comparative example.
  • a first water guide member 51 and a second water guide member 52 are arranged below the heat exchange unit 10. Therefore, when the water staying at the lower end of the heat exchange unit 10 expands below the fins 30 due to gravity, it contacts at least one of the first water guide member 51 and the second water guide member 52, and the water in the opposite direction to the z direction. Surface tension occurs. Therefore, the water staying at the lower end of the heat exchange unit 10 is subjected to gravity and surface tension in the direction opposite to the z direction, so that water separation is promoted.
  • the water flowing from the upper part of the heat exchange unit 10 is likely to concentrate in the water guiding area 35 between the water guiding side edge 31 and the straight line L22.
  • frost adheres to the heat exchange unit 10, so the refrigeration cycle apparatus 1 performs a frost melting operation.
  • the air sent to the heat exchanger 100 stops, so that the water attached to the heat exchange unit 10 flows down in the z direction in the reverse direction only under the influence of gravity. Therefore, in the water transfer region 35 of the heat exchange unit 10, the amount of water flowing down under the influence of gravity during the frost melting operation is relatively large, and the water transfer region is provided by the first water transfer member 51 disposed below the water transfer region 35. The drainage of water at the bottom of 35 is promoted.
  • the heat exchanger 100 operates as a normal evaporator in the refrigeration cycle apparatus 1
  • air flows into the heat exchange unit 10. Therefore, the water that has flowed down to the lower end of the heat exchange unit 10 easily moves to the leeward side due to the influence of the air flow. Therefore, water tends to stay at the lower end of the pipe arrangement area 36 between the pipe arrangement side edge 32 and the straight line L22. Since the second water guide member 52 is arranged below the pipe arrangement area 36, the heat exchange section 10 has a lower end from the lower end of the pipe arrangement area 36 where water tends to stay when operating as a normal evaporator. Water discharge can be promoted.
  • the heat exchange unit 10 includes the first water guide member 51 and the second water guide member 52 below the lower end edge 37 of the fin 30, so that heat is The discharge of water from the exchange unit 10 can be promoted. By facilitating the discharge of water from the heat exchange unit 10, the clogging of the gap FP of the fin 30 can be suppressed, and the heat exchange performance is improved. Further, it is possible to prevent the heat exchange unit 10 from being damaged due to freezing of the water remaining in the gap FP between the fins 30 under a low-temperature outside air condition. Further, since the amount of water to be frozen can be reduced, the amount of heat to be melted during the defrosting operation can be reduced, so that the defrosting operation time can be shortened.
  • the z direction coincides with the direction of gravity.
  • the heat exchanger 100 is disposed with the z direction inclined with respect to the direction of gravity, the above-described water discharge promoting effect can be obtained. Can be obtained.
  • the water guide members 51 and 52 need to be located below the fin 30 in the direction of gravity.
  • FIG. 8 is an explanatory diagram of a cross-sectional structure of a heat exchange unit 10a which is a modification of the heat exchange unit 10 according to Embodiment 1.
  • FIG. 8 shows the same cross section as FIG.
  • the heat exchange unit 10a differs from the heat exchange unit 10 in that the flat tube 20 is inclined.
  • the ends 21a and 21b located on the water guiding side edge 31 side are positioned lower than the ends located on the tube placement side edge 32 side. That is, the flat tubes 20a and the flat tubes 20b are inclined in the z-direction opposite to the water guide region 35.
  • the heat exchanger 100 has the z-direction opposite to the gravity direction. Therefore, the water staying on the flat tubes 20a and 20b is guided to the water guiding area 35 by gravity.
  • the heat exchange unit 10a water flows down the water guide region 35 from above the heat exchange unit 10a.
  • the water on the flat tube 20 is also guided from the water guide area 35 to the lower end of the fin 30.
  • the water guide members 51 and 52 are arranged below the lower end edge 37 of the fin 30. Since the first water guide member 51 is disposed below the water guide region 35, the discharge of water from the lower end of the water guide region 35 is promoted. Further, since the second water guide member 52 is arranged below the pipe arrangement area 36, the discharge of water staying at the lower end of the pipe arrangement area 36 is promoted.
  • FIG. 9 is an explanatory diagram of a cross-sectional structure of a heat exchange unit 10b which is a modification of the heat exchange unit 10 according to the first embodiment.
  • FIG. 9 shows the same cross section as FIG.
  • the heat exchange unit 10b is different from the heat exchange unit 10 in the shape of the water guide members 51 and 52.
  • the heat exchange unit 10b includes a first water guide member 51a and a second water guide member 52a.
  • the first water guide member 51a and the second water guide member 52a have a second side surface 59a below the second ridgeline 56a.
  • the second side surface 59a is formed obliquely, and is a slope that is inclined in the reverse direction in the z direction from the second ridge line 56a toward the tube arrangement side edge 32 of the fin 30.
  • the first water guide member 51a is arranged below the water guide region 35, and at least the first ridge line 55 and the second ridge line 56a are arranged between the extension of the water guide side edge 31 and the straight line L22.
  • the second water guide member 52a is arranged below the pipe arrangement area 36, and at least the first ridge line 55 and the second ridge line 56a are arranged between the extension of the pipe arrangement side edge 32 and the straight line L22. I have.
  • FIG. 10 is an explanatory diagram of a cross-sectional structure of a heat exchange unit 10c which is a modification of the heat exchange unit 10 according to the first embodiment.
  • FIG. 10 shows the same cross section as FIG.
  • the heat exchange part 10c is different from the heat exchange part 10b in the shape of the water guide members 51 and 52.
  • the heat exchange unit 10c includes a first water guide member 51b and a second water guide member 52b.
  • the first water guide member 51b and the second water guide member 52b have a first side surface 58a below the first ridgeline 55a.
  • the first side surface 58a is formed obliquely, and is a slope that is inclined in the reverse direction in the z direction from the first ridgeline 55a toward the water guide side edge 31 of the fin 30.
  • the second side surface 59a is configured in the same manner as the first water guide member 51a and the second water guide member 52a of the heat exchange unit 10b.
  • the first water guide members 51a and 51b and the second water guide members 52a and 52b have slopes formed from at least one of the first ridge line 55a and the second ridge line 56a. Therefore, when the water staying at the lower edge 37 of the fin 30 comes into contact with the water guide members 51a, 51b, 52a, 52b, it also comes into contact with the sloped first side surface 58a or the second side surface 59a, and due to surface tension, the water stays. Is easily guided to the slope side. Therefore, the performance of the water guide members 51a, 51b, 52a, and 52b to discharge water is improved.
  • the second side surface 59a is located on the leeward side, so that the water is forced to flow by the force of the air to the second side surface 59a side. It is guided to. Then, the water staying at the lower edge 37 of the fin 30 is easily discharged from the fin 30 due to the force of the air flow, gravity, and surface tension due to the contact between the water and the second side surface 59a.
  • the water guide members 51a and 52a may be provided with only the second side surface 59a which is a slope located on the leeward side.
  • the surface tension due to the contact between the water and the first side surface 58a is provided. Thereby, the water discharge performance can be further improved.
  • FIG. 11 is an explanatory diagram of a cross-sectional structure of a heat exchange unit 10d which is a modification of the heat exchange unit 10 according to the first embodiment.
  • FIG. 11 shows the same cross section as FIG.
  • the heat exchanger 100 according to Embodiment 1 may omit the second water guide member 52 like the heat exchange unit 10d.
  • the first water guide member 51 is disposed below the water guide region 35 where water flowing down from the upper portion of the fin 30 is most likely to stay. Therefore, if only the first water guide member 51 is installed, the heat exchange unit 10d promotes the discharge of water from the lower end of the water guide region 35, and the heat exchanger 100 improves the heat exchange performance and freezes. This makes it possible to suppress problems such as breakage due to damage.
  • FIG. 12 is an explanatory diagram of a cross-sectional structure of a heat exchange unit 10e which is a modification of the heat exchange unit 10 according to the first embodiment.
  • FIG. 12 shows the same cross section as FIG.
  • the heat exchange unit 10e is different from the heat exchange unit 10 in the arrangement of the first water guide member 51 and the second water guide member 52.
  • the first water guiding member 51 is disposed such that the first ridgeline 55 protrudes in the x direction opposite to the water guiding side edge 31 of the fin 30.
  • the second water guide member 52 is also arranged such that the second ridgeline 56 protrudes in the x-direction from the end edge 32 of the fin 30 on the tube arrangement side.
  • the first water guide member 51 and the second water guide member 52 are arranged with one ridge line protruding from the fin 30.
  • the first water guide member 51 has the upper surface 57 disposed below the water guide side edge 31 of the fin 30, and the second water guide member 52 has the upper surface 57 disposed below the pipe placement side edge 32 of the fin 30. Have been.
  • the heat exchange section 10 e since air flows into the heat exchange section 10e in the x direction, dew condensation is likely to occur on the water guide side edge 31. Therefore, the heat exchange section 10 e has a large amount of water flowing along the water conveyance side edge 31 from the upper part.
  • the upper surface 57 of the first water guide member 51 is located below the water guide side edge 31 of the fin 30, water flowing down the water guide side edge 31 where dew condensation is likely to occur will flow down the lower end edge 37 of the fin 30. And comes into contact with the upper surface 57 of the first water guide member 51. The water that has transmitted along the water guide side edge 31 contacts the upper surface 57 of the first water guide member 51, thereby promoting discharge.
  • At least one ridge line of the water guide members 51 and 52 is disposed below the lower edge 37 of the fin 30 as in the heat exchange units 10 and 10a to 10e. Even with such a configuration, it is possible to improve water dischargeability.
  • Embodiment 2 FIG.
  • the heat exchanger 200 according to the second embodiment is different from the heat exchanger 100 according to the first embodiment in that the heat exchanger 10 is changed to a plurality.
  • a description will be given focusing on changes from the first embodiment.
  • each part of the heat exchanger 200 according to the second embodiment those having the same function in each drawing are denoted by the same reference numerals as those used in the description of the first embodiment.
  • FIG. 13 is a perspective view showing a heat exchanger 200 according to the second embodiment.
  • the heat exchanger 200 shown in FIG. 13 includes two heat exchange units 210a and 210b.
  • the heat exchange units 210a and 210b are arranged in series along the x direction shown in FIG.
  • the x direction is a direction parallel to the flat tubes 20 of the heat exchange units 210a and 210b and a direction perpendicular to the tube axis of the flat tubes 20.
  • the air flowing into the heat exchanger 200 is the x direction. Flows along.
  • the heat exchange units 210a and 210b are arranged in series along the ventilation direction of the heat exchanger 100, the first heat exchange unit 210a is arranged on the windward side, and the second heat exchange unit 210b is arranged on the leeward side. Located on the side. Headers 213 and 215 are arranged at both ends of the first heat exchange unit 210a, and the flat tube 20 connects between the header 213 and the header 215. Headers 214 and 215 are arranged at both ends of the heat exchange unit 210b, and the flat tube 20 connects between the header 214 and the header 215.
  • the refrigerant flowing into the header 213 from the refrigerant pipe 91 passes through the first heat exchange section 210a, flows into the heat exchange section 210b via the header 215, and flows out from the header 214 to the refrigerant pipe 92.
  • the first heat exchange unit 210a and the second heat exchange unit 210b may have the same structure or different structures.
  • FIG. 14 is an explanatory diagram of a cross-sectional structure of the heat exchanger 200 of FIG.
  • FIG. 14 is a view of a cross section of the heat exchange unit 210 of FIG. 13 perpendicular to the y-axis viewed from the y direction.
  • the first heat exchange unit 210a and the second heat exchange unit 210b have the same structure as the heat exchange unit 10 according to the first embodiment except for the arrangement of the water guide members 51, 52, and 253.
  • the first heat exchange section 210a is arranged such that the tube arrangement side edge 232 faces the second heat exchange section 210b.
  • the second heat exchange unit 210b is arranged such that the water guide side edge 231 faces the first heat exchange unit 210a.
  • the pipe-locating-side edge 232 of the first heat exchange unit 210a and the water-guiding-side edge 231 of the second heat exchange unit 210b are arranged to face each other with a predetermined gap 240 therebetween.
  • a first water guide member 51 is disposed below the water guide region 35 of the first heat exchange unit 210a.
  • the second water guide member 52 is arranged below the pipe arrangement region 36 of the second heat exchange unit 210b.
  • the first water guide member 51 and the second water guide member 52 have at least one of the first side surface 58a and the second side surface 59a that are inclined surfaces like the heat exchange units 10b and 10c of the first embodiment.
  • the same effects as those of the heat exchange units 10b and 10c can be obtained.
  • the first water guide member 51 and the second water guide member 52 are formed such that the first ridgeline 55 of the first water guide member 51 is formed by the fin 30 of the first heat exchange unit 210a, as in the heat exchange unit 10e of the first embodiment.
  • the first heat exchange unit 210a and the second heat exchange unit 210b can also obtain the same effects as the heat exchange unit 10e of the first embodiment.
  • third water guide member 253 is arranged below the gap 240 between the first heat exchange unit 210a and the second heat exchange unit 210b.
  • the first ridgeline 255 of the third water guide member 253 is located below the pipe arrangement region 36 of the first heat exchange unit 210a.
  • the second ridgeline 256 of the third water guide member 253 is located below the water guide area 35 of the second heat exchange unit 210b.
  • the upper surface 257 of the third water guide member 253 is located below the pipe-side edge 232 of the first heat exchange unit 210a and the water guide-side edge 231 of the second heat exchange unit 210b.
  • the heat exchanger 200 is arranged such that the reverse direction in the z direction matches the direction of gravity.
  • the water attached to the intermediate region 33 of the first heat exchange unit 210a moves to the pipe arrangement side edge 232 side.
  • the water that has reached the pipe-arranged side edge 232 moves down along the pipe-arranged side edge 232 as it is due to gravity, or contacts the water-conveying-side edge 31 of the second heat exchange unit 210b, and the gap 240 And move down.
  • the gap 240 has approximately the same size as the gap FP of the fin 30, the water present in the gap 240 stays at the lower end of the fin 30 due to the surface tension ST. However, since the upper surface 257 of the third water guide member 253 is disposed below the gap 240, the water staying at the lower end of the gap 240 contacts the upper surface 257 of the third water guide member 253, and reverses in the z direction. It is guided in the direction, and discharge from the fin 30 is promoted.
  • the upper surface 257 of the third water guide member 253 may be referred to as a third upper surface.
  • the third water guide member 253 is configured to be driven by the flow of air from the lower end of the first heat exchange unit 210a. The transferred water comes into contact and promotes drainage. Further, since the second ridgeline 256 of the third water guide member 253 is located below the water guide region 35 of the second heat exchange unit 210b, the third water guide member 253 passes through the water guide region 35 from above the second heat exchange unit 210b. The water that has moved to the lower end contacts and promotes drainage.
  • the fins 30 on the windward side are apt to condense and water is easily attached.
  • the third water guide member 253 is arranged such that the center is located at the center of the gap 240, but the first heat exchange unit 210a and the second heat exchange unit 210b are condensed. The position can be shifted appropriately depending on the balance of the amounts.
  • the second water guide member 52 of the second heat exchange unit 210b may be omitted. Further, as a modification of the heat exchanger 200 according to the second embodiment, at least one of the first heat exchange unit 210a and the second heat exchange unit 210b is replaced with the heat exchange units 10, 10a, and 10b according to the first embodiment. , 10c, or 10e, the effect of promoting water discharge from the gap 240 can be obtained by configuring the water guide member to be disposed at least below the gap 240. .
  • FIG. 15 is an explanatory diagram of a cross-sectional structure of a heat exchanger 200a which is a modification of the heat exchanger 200 according to Embodiment 2.
  • the heat exchanger 200a is obtained by changing the configuration of the first heat exchange unit 210a of the heat exchanger 200.
  • the flat tube 20 is inclined in the direction of gravity toward the tube arrangement side edge 232.
  • the water adhering to the intermediate region 233a between the insertion portions 234a into which the flat tubes 20 are inserted flows down and easily moves from the upper surface of the flat tubes 20a to the tube arrangement side edge 232 side.
  • the air may flow not only in the x direction but also in the x direction.
  • the distribution of water adhering to the fins 30 changes due to condensation and the like, but the heat exchange units 210a, 210aa and 210b are located below the fins 30. Since a plurality of water guide members are arranged, the drainage is promoted by contacting the water guide members 51, 51a, 52, 52a, 253 when the fin 30 flows down to the lower end edge 37.
  • the heat exchange unit 210b is replaced with the heat exchange unit 10a according to the first embodiment in which the flat tube 20 is inclined in the direction of gravity toward the water introduction region 35. May be.
  • the flat tube 20 is inclined in the direction of gravity toward the leeward direction, the water in the intermediate region 233a is easily drained, and the drainage of the entire heat exchanger 200, 200a is improved.
  • FIG. 16 is an explanatory diagram of a cross-sectional structure of a heat exchanger 200b which is a modification of the heat exchanger 200 according to Embodiment 2.
  • the heat exchanger 200b is obtained by changing the configuration of the second heat exchange unit 210b of the heat exchanger 200.
  • the flat tube 20 is inclined in the direction of gravity toward the water-guiding-side edge 231. Water adhering to the intermediate region 233b between the insertion portions 234b into which the flat tubes 20 are inserted flows down and easily moves from the upper surface of the flat tubes 20a to the water guide region 35. Therefore, water is easily discharged also in the pipe arrangement region 36 of the second heat exchange unit 210bb.
  • the air may flow not only in the x direction but also in the opposite direction to the x direction.
  • the distribution of water adhering to the fins 30 changes due to dew condensation or the like, and the air enters the pipe arrangement region 36 of the second heat exchange unit 210bb located on the windward side. Dew condensation easily occurs.
  • the water adhering to the intermediate region 233b easily moves to the water conveyance region 35 because the flat tube 20 is inclined toward the water conveyance region 35.
  • the air flows in the opposite direction to the x direction, there is an advantage that the water attached to the intermediate region 233b is guided to the water guiding region 35 by the flow of the air, and the drainage is promoted.
  • FIG. 17 is an explanatory diagram of a cross-sectional structure of a heat exchanger 200c which is a modification of the heat exchanger 200 according to Embodiment 2.
  • the heat exchanger 200c is obtained by changing the position of the third water guide member 253 of the heat exchanger 200.
  • the first ridgeline 255 of the third water guide member 253 is located below the gap 240 between the first heat exchange unit 210a and the second heat exchange unit 210b.
  • the third water guide member 253 is disposed closer to the water guide area 35 side of the second heat exchange unit 210b, when air flows into the heat exchanger 200c from the x direction, the second heat exchange unit 210b In this case, there is an advantage that the discharge of water transmitted through the water guide region 35, which is a region where dew condensation or the like easily occurs, is promoted.
  • the arrangement of the third water guide member 253 of the heat exchanger 200c can be applied to the heat exchangers 200a and 200b.
  • Embodiment 3 FIG.
  • the heat exchanger 300 according to the third embodiment is configured such that the water guide members 51 and 52 of the heat exchange unit 10 are connected to the heat exchanger 100 according to the first embodiment by a fourth water guide member 54.
  • a description will be given focusing on changes from the first embodiment.
  • those having the same function in each drawing are denoted by the same reference numerals as those used in the description of the first embodiment.
  • FIG. 18 is an explanatory diagram of a cross-sectional structure of the heat exchanger 300 according to Embodiment 3.
  • FIG. 19 is a partial front view of the heat exchanger 300 of FIG.
  • FIG. 20 is a partial top view of the water guide members 51, 52, and 54 of FIG. 18 as viewed from the fin 30 side.
  • the heat exchange unit 310 of the heat exchanger 300 includes a fourth water conduction member 54 that connects the first water conduction member 51 and the second water conduction member 52 to the heat exchange unit 10 of the heat exchanger 100 according to Embodiment 1. It has been added.
  • FIG. 18 shows a cross-sectional structure of a portion of the heat exchange section 310 where the fourth water guide member 54 is arranged.
  • the heat exchange section 310 includes a first water guide member 51 and a second water guide member 52, and further includes a fourth water guide member 54 that connects the first water guide member 51 and the second water guide member 52.
  • the fourth water guide members 54 are arranged at intervals in the y direction, extend in the x direction, and are connected to the first water guide member 51 and the second water guide member 52.
  • the water guide structure 350 to which the first water guide member 51, the second water guide member 52, and the fourth water guide member 54 are connected is formed in a lattice shape when viewed from the fin 30 side.
  • the fourth water guide member 54 is formed such that the width W is larger than the thickness tF of the fins 30 and smaller than the interval FP between the fins 30. With this configuration, the fourth water guide member 54 does not block the gap FP between the fins 30 and does not hinder drainage from the lower end of the fins 30.
  • the water guide structure 350 is configured by integrally connecting the first water guide member 51, the second water guide member 52, and the fourth water guide member 54, the water guide structure 350 can be easily installed below the fins 30. There is. In addition, since the water guide structure 350 does not close the gap FP between the fins 30, the fourth water guide member 54 can also promote drainage from the lower end of the fin 30. Further, by configuring the fins 30 to be in contact with the water guide structure 350, the fins 30 and the upper structure such as the flat tube 20 can be configured to be supported.
  • the first water guide member 51 and the second water guide member 52 of the water guide structure 350 may have the same shape as the first water guide members 51a and 51b and the second water guide members 52a and 52b according to the first embodiment. good. Also, the arrangement of the first water guide member 51 and the second water guide member 52 of the water guide structure 350 can be the same as the arrangement in the first and second embodiments.
  • 1 refrigeration cycle device 2 blower, 3 compressor, 4 four-way valve, 5 outdoor heat exchanger, 6 expansion device, 7 indoor heat exchanger, 8 outdoor unit, 9 indoor unit, 10 heat exchange unit, 10a heat exchange unit, 10b heat exchange part, 10c heat exchange part, 10d heat exchange part, 10e heat exchange part, 13 header, 15 header, 20 flat tube, 20a flat tube, 20b flat tube, 21a end portion, 21b end portion, 24 insertion portion, 30 fin, 31 ⁇ water guide side edge, 32 pipe placement side edge, 33 middle area, 34 insertion section, 35 water placement area, 36 pipe placement area, 37 lower end edge, 48 plate surface, 51 (first) water guide member, 51a (First) water guide member, 51b # (first) water guide member, 52 # (second) water guide member, 52a # (second) water guide member, 52b # (second) water guide member, 54 # (fourth) guide Member, 55 ° first ridge line, 55a first ridge line, 56 second ridge line, 56a second ridge line, 57 upper surface,

Abstract

熱交換性能を向上させ、かつ排水性能及び着霜に対する耐力が向上した熱交換器、熱交換器ユニット、及び冷凍サイクル装置を得ることを目的とする。この発明は、扁平管と、長手方向と該長手方向に直交する幅方向とに延びる板面を有する板状体で形成され、長手方向を上下方向に向けて配置され、扁平管の管軸に交差するように配置されるフィンと、フィンの下方に配置される第1導水部材と、を備える。フィンは、幅方向の一方の端縁である管配置側端縁に設けられ扁平管が挿入される挿入部が形成された管配置領域と、幅方向の他方の端縁である導水側端縁側に位置し、挿入部が形成されていない部分である導水領域と、を備える。第1導水部材は、フィンの下端部に対向する第1の上面と、管軸に垂直な断面において第1の上面の端部に位置する稜線のうち導水側端縁に近い方の稜線である第1稜線と、第1の上面の端部に位置する稜線のうち管配置側端縁に近い方の稜線である第2稜線と、を備える。第2稜線は、フィンの導水領域の下方に位置する。

Description

熱交換器、熱交換器ユニット、及び冷凍サイクル装置
 本発明は、扁平管及びフィンを有する熱交換器、熱交換器ユニット、及び冷凍サイクル装置に関し、特にフィンに滞留する水を導水する導水部材の配置に関する。
 従来の熱交換器において熱交換性能を向上させるために、断面が扁平多穴形状の伝熱管である扁平管を備えた熱交換器が知られている。このような熱交換器として、扁平管を管軸方向を左右方向に延びる様に配置し、上下方向に所定の間隔をおいて配置した熱交換器がある。このような熱交換器は、板状のフィンを扁平管の管軸方向に並べて配置されており、フィンの間を通過する空気と扁平管内を流れる流体との間で熱交換を行う。
 このような熱交換器において、熱交換器の下端に対向する面を有するスペーサを配置したものが知られている(例えば特許文献1)。スペーサは、熱交換器の下端から結露水を底フレームに導くものである。
特許第5464207号公報
 しかし、特許文献1に示されている熱交換器においては、フィンと扁平管とから構成された熱交換部の下方において、フィンの幅方向のほぼ全域にわたってスペーサが配置されている。従って、フィンを伝わって流下してきた水が、フィンとスペーサの上面との間に滞留するという課題があった。そのため、熱交換部の下端部においては、水が滞留し、フィンの間の風路を閉塞してしまい、熱交換部を通過する空気の量が低下し、熱交換性能が低下してしまう。また、熱交換器が低外気条件で用いられる場合は、滞留した水が凍結し、それを起点として凍結部が拡大し、熱交換部が破損するおそれもある。
 本発明は、上記のような課題を解決するためのものであり、熱交換部からの排水を促進させることにより、着霜に対する耐力及び熱交換性能を向上した熱交換器、熱交換器ユニット、及び冷凍サイクル装置を得ることを目的とする。
 本発明に係る熱交換器は、扁平管と、長手方向と該長手方向に直交する幅方向とに延びる板面を有する板状体で形成され、前記長手方向を上下方向に向けて配置され、前記扁平管の管軸に交差するように配置されるフィンと、前記フィンの下方に配置される第1導水部材と、を備え、前記フィンは、前記幅方向の一方の端縁である管配置側端縁に設けられ前記扁平管が挿入される挿入部が形成された管配置領域と、前記幅方向の他方の端縁である導水側端縁側に位置し、前記挿入部が形成されていない部分である導水領域と、を備え、前記第1導水部材は、前記フィンの下端部に対向する第1の上面と、前記管軸に垂直な断面において、前記第1の上面の端部に位置する稜線のうち前記導水側端縁に近い方の稜線である第1稜線と、前記第1の上面の端部に位置する稜線のうち前記管配置側端縁に近い方の稜線である第2稜線と、を備え、前記第2稜線は、前記フィンの前記導水領域の下方に位置する。
 本発明に係る熱交換器ユニットは、上記の熱交換器と、前記熱交換器に空気を送る送風機と、を備え、前記熱交換器は、前記導水領域が前記管配置領域よりも風上側に位置するように配置される。
 本発明に係る冷凍サイクル装置は、上記の熱交換器ユニットを搭載する。
 本発明によれば、第1導水部材の稜線のうち管配置領域に近い方の稜線である第2稜線が、フィンの導水領域の下方に設けられているため、フィンの下端部の水が第1導水部材の第2稜線から下方に流れ、熱交換器からの排水を促進する。
実施の形態1による熱交換器を示す斜視図である。 実施の形態1に係る熱交換器が適用された冷凍サイクル装置の説明図である。 図1の熱交換器の断面構造の説明図である。 図1の熱交換器の部分正面図である。 図3の導水部材をフィン側から見た部分上面図である。 実施の形態1に係る熱交換器の比較例としての熱交換器の断面構造の説明図である。 実施の形態1に係る熱交換器の比較例としての熱交換器の部分正面図である。 実施の形態1に係る熱交換部の変形例である熱交換部の断面構造の説明図である。 実施の形態1に係る熱交換部の変形例である熱交換部の断面構造の説明図である。 実施の形態1に係る熱交換部の変形例である熱交換部の断面構造の説明図である。 実施の形態1に係る熱交換部の変形例である熱交換部の断面構造の説明図である。 実施の形態1に係る熱交換部の変形例である熱交換部の断面構造の説明図である。 実施の形態2に係る熱交換器を示す斜視図である。 図13の熱交換器の断面構造の説明図である。 実施の形態2に係る熱交換器の変形例である熱交換器の断面構造の説明図である。 実施の形態2に係る熱交換器の変形例である熱交換器の断面構造の説明図である。 実施の形態2に係る熱交換器の変形例である熱交換器の断面構造の説明図である。 実施の形態3に係る熱交換器の断面構造の説明図である。 図18の熱交換器の部分正面図である。 図18の導水部材をフィン側から見た部分上面図である。
 以下に、熱交換器、熱交換器ユニット、及び冷凍サイクル装置の実施の形態について説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。また、明細書全文に表れている構成要素の形態は、あくまで例示であって、本発明は明細書内の記載のみに限定されるものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。さらに、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。なお、各図に示されるx、y、zの各方向は、各図において共通の方向を示している。
 実施の形態1.
 図1は、実施の形態1による熱交換器100を示す斜視図である。図2は、実施の形態1に係る熱交換器100が適用された冷凍サイクル装置1の説明図である。図1に示された熱交換器100は、空気調和装置又は冷蔵庫等の冷凍サイクル装置1に搭載されるものである。実施の形態1においては、空気調和装置の冷凍サイクル装置1を例示している。冷凍サイクル装置1は、圧縮機3、四方弁4、室外熱交換器5、膨張装置6、及び室内熱交換器7を冷媒配管90により接続し、冷媒回路を構成したものである。冷凍サイクル装置1は、冷媒配管90内には冷媒が流通し、四方弁4により冷媒の流れを切り換えることにより、暖房運転、冷凍運転、及び除霜運転を切り換えることができる。
 室外機8に搭載された室外熱交換器5及び室内機9に搭載された室内熱交換器7は、近傍に送風機2を備える。室外機8において送風機2は、室外熱交換器5に外気を送り込み、外気と冷媒との間で熱交換を行う。また、室内機9において送風機2は、室内熱交換器7に室内の空気を送り込み、室内の空気と冷媒との間で熱交換を行い、室内の空気の温度を調和する。熱交換器100は、冷凍サイクル装置1において室外機8に搭載された室外熱交換器5及び室内機9に搭載された室内熱交換器7として用いることができ、凝縮器又は蒸発器として機能する。なお、ここでは熱交換器100が搭載された室外機8及び室内機9などの機器を、特に熱交換器ユニットと呼ぶ。
 図1に示される熱交換器100は、熱交換部10を備える。実施の形態1において、熱交換器100に流入する空気は、x方向に沿って流入する。熱交換部10の両端にはヘッダ13、15が配置されており、ヘッダ13とヘッダ15との間を扁平管20が接続している。冷媒配管91からヘッダ13に流入した冷媒は、熱交換部10を通過し、ヘッダ15を経て冷媒配管92へ流出する。扁平管20内を流動する冷媒と熱交換部10を通過する空気との間で熱交換が行われる。
 図3は、図1の熱交換器100の断面構造の説明図である。図4は、図1の熱交換器100の部分正面図である。図5は、図3の導水部材51、52をフィン30側から見た部分上面図である。図3は、図1の熱交換部10のy軸に垂直な断面をy方向から見た図を示している。図4は、熱交換部10をx方向から見た図を示している。図5は、導水部材51、52をフィン30が配置されている側から見た図である。熱交換部10は、y方向に管軸を向けた複数の扁平管20をz方向に並列に並べて構成されている。扁平管20は、管軸に垂直な断面において、長軸と短軸とを有する扁平形状に構成されている。扁平管20は、その長軸をx方向に向けている。また、板状体であるフィン30の板面48を扁平管20の管軸に交差させるようにして、フィン30が扁平管20に取り付られている。フィン30は、扁平管20が並列されている方向に長手方向を向けた矩形である。つまり、フィン30は、z方向に沿って長手方向を向け、長手方向に対し直交する幅方向をx方向に向けて延設されている。フィン30は、扁平管20が挿入される挿入部24が設けられている。実施の形態1においては、フィン30の一方の端縁である導水側端縁31が風上側に位置し、他方の端縁である管配置側端縁32が風下側に位置している。挿入部34は、フィン30の管配置側端縁32に設けられた切り欠きであり、この挿入部34に扁平管20が挿入されている。
 扁平管20は、内部に冷媒が流通し、熱交換器100に送り込まれた空気と内部の冷媒との間で熱交換を行う。フィン30は扁平管20の管軸方向に沿って複数設置されている。隣合うフィン30同士は、所定の隙間FPを空けて配置されており、隙間FPの間を空気が通過する様に構成されている。フィン30は、隣合うフィン30と隙間FPを通過する空気と接触し、冷媒に熱を伝達することにより熱交換が行われる。
 図3に示されるように、フィン30は、扁平管20が並列する方向に長手方向を向けて配置されている。つまり、フィン30の長手方向は、z方向に向けられている。実施の形態1において、フィン30は、長手方向を重力方向と一致させて配置されている。熱交換部10は、フィン30の下方に第1導水部材51及び第2導水部材52を備える。なお、以下の説明において、第1導水部材51と第2導水部材52とを総称して導水部材51、52と呼ぶ場合がある。
 図3に示される様に、導水部材51、52は、フィン30の下端縁37の下方に配置されている。実施の形態1においては、導水部材51、52と下端縁37との間に空隙をおいて導水部材51、52が配置されている。また、図4及び図5に示される様に、導水部材51、52は、y方向に長手方向を向けて設置されている。導水部材51、52は、y軸に垂直な断面形状が図3に示される様な矩形で形成され、上面57の一方の端に第1稜線55を備え、他方の端に第2稜線56を備える。そして、導水部材51、52は、第1稜線55から下方に第1の側面58を備え、及び第2稜線56から下方に第2の側面59を備える。第1の側面58及び第2の側面59は、上面57に対し直交するように配置されている。なお、導水部材51、52の断面形状は、図3に示される形状のみに限定されるものではない。上面57と第1の側面58及び第2の側面59とが直交して配置されていれば、導水部材51、52は、例えば中空の部材であってもよいし、板状部材を折り曲げて上面57、第1の側面58、及び第2の側面59を形成しても良い。なお、第1導水部材51の上面57を第1の上面、第2導水部材52の上面57を第2の上面、と呼ぶ場合がある。
 第1導水部材51は、フィン30の導水側端縁31側に位置する導水領域35の下方に位置している。フィン30の導水領域35は、図3に示される導水側端縁31と直線L22との間に位置する領域である。直線L22は、フィン30に設けられた複数の挿入部34の導水側端縁31側の縁を通る直線である。導水領域35は、z方向逆向きを重力方向としたときに、フィン30の上部から流れる結露水や霜の融解水などの水の流れを阻害する扁平管20が設置されていない領域である。実施の形態1においては、第1導水部材51は、第1稜線55と第2稜線56とが導水領域35の下方に位置している。つまり、第1導水部材51の上面57は、導水側端縁31の延長線である直線L21と直線L22との間に位置している。
 第2導水部材52は、フィン30の管配置側端縁32側に位置する管配置領域36の下方に位置している。フィン30の管配置領域36は、図3に示される管配置側端縁32と、直線L22との間に位置する領域である。管配置領域36は、z方向に複数の扁平管20が並列して配置されている領域である。実施の形態1においては、第2導水部材52は、第1稜線55と第2稜線56とが管配置領域36の下方に位置している。つまり、第2導水部材52の上面57は、管配置側端縁32の延長線である直線L23と直線L22との間に位置している。
 図6は、実施の形態1に係る熱交換器100の比較例としての熱交換器1000の断面構造の説明図である。図7は、実施の形態1に係る熱交換器100の比較例としての熱交換器1000の部分正面図である。比較例の熱交換器1000の熱交換部1010は、実施の形態1に係る熱交換部10と異なり、導水部材51、52を備えていない。熱交換部1010は、上部から導水領域35を伝わって流下してきた水がフィン30の下端部の隙間FPに滞留する。図6及び図7に示される滞留水61は、熱交換部1010の最下端部に溜まる水を模式的に表したものである。滞留水61は、熱交換部1010の上方から流下してくる水により増加し、下方に膨らんでいき重力の影響が大きくなる。そして、滞留水61に掛かる重力Gが滞留する61の表面張力STよりも大きくなると、滞留水61は、表面張力STの影響を受けなくなり、フィン30の下端縁37から離脱して落下する。落下した滞留水61は、熱交換部1010の下方に配置されたドレンパンによって受け止められる。
 <実施の形態1に係る熱交換器100の効果>
 比較例の熱交換器1000の熱交換部1010は、下端部に溜まる滞留水61が表面張力STを上回る重力Gを受けた時に、滞留水61が排出される。従って、比較例の熱交換部1010の下端部には所定の量の水が滞留することになる。これに対して、熱交換部10の下方には、第1導水部材51及び第2導水部材52が配置されている。そのため、熱交換部10の下端部に滞留している水が重力を受けてフィン30の下方に膨らむと第1導水部材51及び第2導水部材52の少なくとも一方に接触し、z方向逆向きの表面張力が生じる。従って、熱交換部10の下端部に滞留する水は、z方向逆向きに重力と表面張力とを受けるため、水離脱が促進される。
 特に、導水側端縁31と直線L22との間の導水領域35は、熱交換部10の上部から流下する水が集中し易い。外気が氷点下に近い、又は氷点下である低温時には、熱交換部10に霜が付着するため、冷凍サイクル装置1は、霜融解運転を行う。霜融解運転においては、熱交換器100に送られる空気が停止するため、熱交換部10に付着した水は、重力の影響のみを受けて水がz方向逆向きに流下する。従って、熱交換部10の導水領域35は、霜融解運転時には重力の影響を受けて流下する水の量が比較的多く、導水領域35の下方に配置されている第1導水部材51により導水領域35の下部にある水の排出が促進される。
 また、熱交換器100が冷凍サイクル装置1において通常の蒸発器としての運転をする場合は、熱交換部10に空気が流入する。そのため、熱交換部10の下端部まで流下した水は、空気の流れの影響により風下側に移動しやすい。そのため、管配置側端縁32と直線L22との間の管配置領域36の下端部に水が滞留し易くなる。熱交換部10は、管配置領域36の下方に第2導水部材52が配置されているため、通常の蒸発器として運転されている際に水が滞留し易い管配置領域36の下端部からの水の排出を促進させることができる。
 以上のように、実施の形態1に係る熱交換器100によれば、熱交換部10がフィン30の下端縁37の下方に第1導水部材51及び第2導水部材52を備えることにより、熱交換部10からの水の排出を促進させることができる。熱交換部10から水の排出を促進させることにより、フィン30の隙間FPの閉塞を抑制することができ、熱交換性能が向上する。また、低温外気条件下においてフィン30の隙間FPに滞留した水分の凍結により熱交換部10が破損するのを防ぐことができる。さらに、凍結する水の量も低減させることができるため、除霜運転時に溶融させる熱量を少なくすることができるため、除霜運転時間を短縮させることができる。なお、実施の形態1においては、z方向が重力方向に一致しているが、例えばz方向を重力方向に対して傾斜させて熱交換器100が配置されていても上記の水の排出促進効果を得ることができる。ただし、導水部材51、52は、フィン30の重力方向下方に位置している必要がある。
 <実施の形態1に係る熱交換部10の変形例>
 図8は、実施の形態1に係る熱交換部10の変形例である熱交換部10aの断面構造の説明図である。図8は、図3と同じ断面を示している。熱交換部10aは、熱交換部10に対し、扁平管20を傾斜させている点で異なる。扁平管20a及び扁平管20bは、導水側端縁31側に位置する端部21a及び端部21bが、管配置側端縁32側に位置する端部よりも下方に位置している。つまり、扁平管20a及び扁平管20bは、導水領域35に向かってz方向逆向きに傾斜している。
 実施の形態1において、熱交換器100は、z方向逆向きを重力方向と一致させている。よって、扁平管20a、20b上に滞留した水は、重力によって導水領域35に導かれる。熱交換部10と同じく、熱交換部10aにおいても、熱交換部10aの上部から導水領域35を水が流下する。上部から流下してくる水に加えて、扁平管20上の水も導水領域35からフィン30の下端部まで導かれる。熱交換部10aにおいても、フィン30の下端縁37の下方に導水部材51、52が配置されている。導水領域35の下方には、第1導水部材51が配置されているため、導水領域35の下端部からの水の排出が促進される。また、管配置領域36の下方にも第2導水部材52が配置されているため、管配置領域36の下端部に滞留した水の排出が促進される。
 変形例である熱交換部10aにおいては、導水部材51、52が熱交換部10と同様な配置であるため、上記の熱交換部10と同様な効果を得られる。また、熱交換部10aは、扁平管20が傾斜して配置されているため、扁平管20aと扁平管20bとの間の中間領域33に付着した水が流下し扁平管20aの上面に滞留しても、導水領域35に導かれる。よって、熱交換部10aは、熱交換部10と比較して管配置領域36に付着した水の排出性が向上している。
 図9は、実施の形態1に係る熱交換部10の変形例である熱交換部10bの断面構造の説明図である。図9は、図3と同じ断面を示している。熱交換部10bは、熱交換部10に対し、導水部材51、52の形状を変更したものである。熱交換部10bは、第1導水部材51aと第2導水部材52aとを備える。第1導水部材51a及び第2導水部材52aは、第2稜線56aから下方に第2の側面59aを備える。第2の側面59aは、斜めに形成されており、第2稜線56aからフィン30の管配置側端縁32側に向かってz方向逆向きに傾斜する斜面になっている。
 第1導水部材51aは、導水領域35の下方に配置されており、少なくとも第1稜線55及び第2稜線56aが導水側端縁31の延長線と直線L22との間に配置されている。また、第2導水部材52aは、管配置領域36の下方に配置されており少なくとも第1稜線55及び第2稜線56aが管配置側端縁32の延長線と直線L22との間に配置されている。
 図10は、実施の形態1に係る熱交換部10の変形例である熱交換部10cの断面構造の説明図である。図10は、図3と同じ断面を示している。熱交換部10cは、熱交換部10bに対し、更に導水部材51、52の形状を変更したものである。熱交換部10cは、第1導水部材51bと第2導水部材52bとを備える。第1導水部材51b及び第2導水部材52bは、第1稜線55aから下方に第1の側面58aを備える。第1の側面58aは、斜めに形成されており、第1稜線55aからフィン30の導水側端縁31側に向かってz方向逆向きに傾斜する斜面になっている。第2の側面59aは、上記の熱交換部10bの第1導水部材51a及び第2導水部材52aと同様に構成されている。
 第1導水部材51a、51b及び第2導水部材52a、52bは、第1稜線55a及び第2稜線56aの少なくとも一方から斜面が形成されている。そのため、フィン30の下端縁37に滞留した水が導水部材51a、51b、52a、52bに接触すると斜面になっている第1の側面58a又は第2の側面59aにも接触し、表面張力により水が斜面側に誘導されやすい。そのため、導水部材51a、51b、52a、52bは水を排出させる性能が向上する。
 実施の形態1において、導水側端縁31側から熱交換器100に空気が流入した場合、第2の側面59aは風下側に位置するため空気の流れによる力で水が第2の側面59a側に誘導される。すると、フィン30の下端縁37に滞留する水は、空気の流れの力、重力、及び水と第2の側面59aとの接触による表面張力により、フィン30から排出されやすい。熱交換部10bのように、導水部材51a、52aに風下側に位置する斜面である第2の側面59aのみを設けても良い。しかし、熱交換部10cのように、導水部材51b、52bに第1稜線55aと第2稜線56aとの両方に隣接する斜面を設けることにより、水と第1の側面58aとの接触による表面張力により、さらに水の排出性能を向上させることができる。
 図11は、実施の形態1に係る熱交換部10の変形例である熱交換部10dの断面構造の説明図である。図11は、図3と同じ断面を示している。実施の形態1に係る熱交換器100は、熱交換部10dのように第2導水部材52を省略してもよい。第1導水部材51は、フィン30の上部から流下してくる水が最も滞留し易い導水領域35の下方に配置されている。そのため、第1導水部材51のみが設置されていれば、熱交換部10dは、導水領域35の下端部からの水の排出が促進され、熱交換器100は、熱交換性能が向上し、凍結による破損などの不具合を抑制することが可能となる。
 図12は、実施の形態1に係る熱交換部10の変形例である熱交換部10eの断面構造の説明図である。図12は、図3と同じ断面を示している。熱交換部10eは、熱交換部10に対し、第1導水部材51及び第2導水部材52の配置を変更したものである。熱交換部10eにおいて、第1導水部材51は、第1稜線55がフィン30の導水側端縁31よりもx方向逆向きにはみ出して配置されている。また、第2導水部材52も、第2稜線56がフィン30の管配置側端縁32よりもx方向にはみ出して配置されている。つまり、第1導水部材51及び第2導水部材52は、一方の稜線をフィン30からはみ出させて配置されている。言い換えると、第1導水部材51は、フィン30の導水側端縁31の下方に上面57が配置され、第2導水部材52は、フィン30の管配置側端縁32の下方に上面57が配置されている。
 実施の形態1においては、熱交換部10eにはx方向に空気が流入するため、導水側端縁31は結露が生じやすい。そのため、熱交換部10eは、上部から導水側端縁31に沿って流れる水が多い。その場合、第1導水部材51の上面57がフィン30の導水側端縁31の下方に位置することにより、結露しやすい導水側端縁31を伝わって流下する水が、フィン30の下端縁37に至り、第1導水部材51の上面57に接触する。導水側端縁31を伝わってきた水は、第1導水部材51の上面57に接触することにより、排出が促進される。
 また、熱交換部10dの管配置領域36は、扁平管20が複数配置されているため、フィン30の上部から水が流下しにくい構成になっている。しかし、実施の形態1において熱交換器100が蒸発器として運転している場合は、x方向に空気が流入する。そのため、中間領域33に付着した水は、空気の流れにより管配置側端縁32側へ移動する。よって、管配置側端縁32は、空気の流れにより管配置側端縁32側に移動した水が上方から流下してくる。このときに管配置側端縁32の下方に第2導水部材52の上面57が配置されていると、管配置側端縁32を伝わって流下する水が、フィン30の下端縁37に至り、第2導水部材52の上面57に接触する。管配置側端縁32を伝わってきた水は、第2導水部材52の上面57に接触することにより、排出が促進される。
 以上のように、実施の形態1の熱交換器100は、熱交換部10、10a~10eのように、導水部材51、52の少なくとも一方の稜線がフィン30の下端縁37の下方に配置されている構成であっても、水の排出性を向上させることができる。
 実施の形態2.
 実施の形態2に係る熱交換器200は、実施の形態1に係る熱交換器100に対し、熱交換部10を複数に変更したものである。実施の形態2に係る熱交換器200においては、実施の形態1に対する変更点を中心に説明する。実施の形態2に係る熱交換器200の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
 図13は、実施の形態2に係る熱交換器200を示す斜視図である。図13に示される熱交換器200は、2つの熱交換部210a、210bを備える。熱交換部210a、210bは、図1に示されるx方向に沿って直列に配置されている。x方向は、熱交換部210a、210bの扁平管20の並列方向及び扁平管20の管軸に対し垂直な方向であり、実施の形態2において、熱交換器200に流入する空気は、x方向に沿って流入する。よって、熱交換部210a、210bは、熱交換器100の通風方向に沿って直列に配置されており、第1の熱交換部210aが風上側に配置され、第2の熱交換部210bが風下側に配置されている。第1の熱交換部210aの両端にはヘッダ213、215が配置されており、ヘッダ213とヘッダ215との間を扁平管20が接続している。熱交換部210bの両端にはヘッダ214、215が配置されており、ヘッダ214とヘッダ215との間を扁平管20が接続している。冷媒配管91からヘッダ213に流入した冷媒は、第1の熱交換部210aを通過し、ヘッダ215を経て熱交換部210bに流入し、ヘッダ214から冷媒配管92へ流出する。なお、第1の熱交換部210aと第2の熱交換部210bとは、同じ構造であっても良いし、異なる構造であっても良い。
 図14は、図13の熱交換器200の断面構造の説明図である。図14は、図13の熱交換部210のy軸に垂直な断面をy方向から見た図を示している。第1の熱交換部210a及び第2の熱交換部210bは、導水部材51、52、253の配置を除いては実施の形態1に係る熱交換部10と同様な構造になっている。
 第1の熱交換部210aは、管配置側端縁232が第2の熱交換部210bに面して配置されている。第2の熱交換部210bは、導水側端縁231が第1の熱交換部210aに面して配置されている。第1の熱交換部210aの管配置側端縁232と第2の熱交換部210bの導水側端縁231とは、所定の間隙240を持って対向して配置されている。
 第1の熱交換部210aの導水領域35の下方には、第1導水部材51が配置されている。第2の熱交換部210bの管配置領域36の下方には、第2導水部材52が配置されている。なお、第1導水部材51及び第2導水部材52は、実施の形態1の熱交換部10b、10cのように斜面である第1の側面58a及び第2の側面59aの少なくとも一方を備えていても良く、これにより熱交換部10b、10cと同様な効果を得ることができる。また、第1導水部材51及び第2導水部材52は、実施の形態1の熱交換部10eのように、第1導水部材51の第1稜線55が第1の熱交換部210aのフィン30の導水側端縁31よりもx方向逆向きにはみ出して配置されていても良く、また、第2導水部材52の第2稜線56が第2の熱交換部210bのフィン30の管配置側端縁32よりもx方向にはみ出して配置されていても良い。このように構成されることにより、第1の熱交換部210a及び第2の熱交換部210bも、実施の形態1の熱交換部10eと同様の効果を得ることができる。
 第1の熱交換部210aと第2の熱交換部210bとの間の間隙240の下方には、第3導水部材253が配置されている。第3導水部材253の第1稜線255は、第1の熱交換部210aの管配置領域36の下方に位置している。また、第3導水部材253の第2稜線256は、第2の熱交換部210bの導水領域35の下方に位置している。言い換えると、第1の熱交換部210aの管配置側端縁232及び第2の熱交換部210bの導水側端縁231の下方に第3導水部材253の上面257が位置している。
 実施の形態2において、第1の熱交換部210a及び第2の熱交換部210bには、x方向に空気が流入する。また、熱交換器200は、z方向逆向きを重力方向と一致させて配置されている。熱交換器200は、x方向に空気が流入するため、第1の熱交換部210aの中間領域33に付着した水が管配置側端縁232側へ移動する。管配置側端縁232に至った水は、重力によりそのまま管配置側端縁232を伝って下方に移動するか、又は第2の熱交換部210bの導水側端縁31に接触し、間隙240を伝わって下方に移動する。
 間隙240は、フィン30の隙間FPと同程度の寸法であるため、間隙240に存在する水は、表面張力STによりフィン30の下端部に滞留する。しかし、間隙240の下方には、第3導水部材253の上面257が配置されているため、間隙240の下端部に滞留した水は、第3導水部材253の上面257に接触し、z方向逆向きに誘導され、フィン30からの排出が促進される。なお、第3導水部材253の上面257を第3の上面と呼ぶ場合がある。
 なお、第3導水部材253は、第1稜線255が第1の熱交換部210aの管配置領域36の下方に位置しているため、第1の熱交換部210aの下端部から空気の流れにより移動した水が接触し、排水を促進させる。また、第3導水部材253は、第2稜線256が第2の熱交換部210bの導水領域35の下方に位置しているため、第2の熱交換部210bの上部から導水領域35を伝わって下端部まで移動した水が接触し、排水を促進させる。実施の形態2の熱交換器200のように、通風方向に直列に2つの熱交換部210a、210bが並べられている場合は、風上側のフィン30が結露しやすく水が付着しやすい。図14に示される様に、第3導水部材253は、中央が間隙240の中央に位置するように配置されているが、第1の熱交換部210a及び第2の熱交換部210bの結露する量のバランスにより、適宜位置をずらすことができる。
 第2の熱交換部210bの第2導水部材52は、省略しても良い。また、実施の形態2の熱交換器200の変形例として、第1の熱交換部210a及び第2の熱交換部210bの少なくとも一方を、実施の形態1に係る熱交換部10、10a、10b、10c、10eの何れかに置換しても良いが、少なくとも間隙240の下方に導水部材が配置されるような構成にすることにより、上記の間隙240からの水排出促進効果を得ることが出来る。
 図15は、実施の形態2に係る熱交換器200の変形例である熱交換器200aの断面構造の説明図である。熱交換器200aは、熱交換器200の第1の熱交換部210aの構成を変更したものである。熱交換器200aの第1の熱交換部210aaは、扁平管20が管配置側端縁232に向かって重力方向に傾斜している。扁平管20が挿入される挿入部234aの間の中間領域233aに付着している水は、流下して扁平管20aの上面から管配置側端縁232側に移動し易くなる。従って、第2の熱交換部210bと比較して結露し易い第1の熱交換部210aの管配置領域36においても、水が排出されやすくなる。更に、管配置領域36から移動した水は、間隙240を伝わって下端部から第3導水部材253により排出が促進されるため、熱交換器200a全体として排水性が向上する。
 なお、実施の形態2に係る熱交換器200、200aは、空気が流入する方向をx方向だけでなく、x方向逆向きに流入させても良い。熱交換器200、200aに対しx方向逆向きに空気が流入した場合、結露等によりフィン30に付着する水の分布が変化するが、熱交換部210a、210aa、210bは、フィン30の下方に複数の導水部材が配置されているため、フィン30を流下して下端縁37に至った時に導水部材51、51a、52、52a、253と接触することにより排水が促進される。また、空気が流入する方向をx方向逆向きにした場合、熱交換部210bを扁平管20を導水領域35に向かって重力方向に傾斜させた実施の形態1に係る熱交換部10aに置換しても良い。扁平管20を風下に向かって重力方向に傾斜させることにより、中間領域233aの水が排水されやすくなり、熱交換器200、200a全体の排水性が向上する。
 図16は、実施の形態2に係る熱交換器200の変形例である熱交換器200bの断面構造の説明図である。熱交換器200bは、熱交換器200の第2の熱交換部210bの構成を変更したものである。熱交換器200bの第2の熱交換部210bbは、扁平管20が導水側端縁231に向かって重力方向に傾斜している。扁平管20が挿入される挿入部234bの間の中間領域233bに付着している水は、流下して扁平管20aの上面から導水領域35に移動し易くなる。従って、第2の熱交換部210bbの管配置領域36においても、水が排出されやすくなる。
 なお、実施の形態2に係る熱交換器200bは、空気が流入する方向をx方向だけでなく、x方向逆向きに流入させても良い。熱交換器200bに対しx方向逆向きに空気が流入した場合、結露等によりフィン30に付着する水の分布が変化し、風上側に位置する第2の熱交換部210bbの管配置領域36に結露が生じやすくなる。この場合、第2の熱交換部210bbは、扁平管20が導水領域35側に傾斜しているため、中間領域233bに付着している水が導水領域35に移動しやすい。また、空気がx方向逆向きに流入する場合には、中間領域233bに付着した水は空気の流れにより導水領域35に導かれ、排水が促進されるという利点がある。
 図17は、実施の形態2に係る熱交換器200の変形例である熱交換器200cの断面構造の説明図である。熱交換器200cは、熱交換器200の第3導水部材253の位置を変更したものである。熱交換器200cは、第3導水部材253の第1稜線255が、第1の熱交換部210aと第2の熱交換部210bとの間の間隙240の下方に位置している。このように構成されることにより、間隙240を伝わって第3導水部材253の上面257に到達した水は、第1稜線255から下方に排出されるため、間隙240を伝わってきた水の排出が促進される。また、第3導水部材253が第2の熱交換部210bの導水領域35側に寄って配置されているため、x方向から熱交換器200cに空気が流入した場合に第2の熱交換部210bにおいて結露等が生じ易い領域である導水領域35を伝わって来る水の排出が促進されるという利点がある。なお、熱交換器200cの第3導水部材253の配置は、熱交換器200a、200bにも適用することができる。
 実施の形態3.
 実施の形態3に係る熱交換器300は、実施の形態1に係る熱交換器100に対し、熱交換部10の導水部材51、52を第4導水部材54で接続したものである。実施の形態3に係る熱交換器300においては、実施の形態1に対する変更点を中心に説明する。実施の形態3に係る熱交換器100の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
 図18は、実施の形態3に係る熱交換器300の断面構造の説明図である。図19は、図18の熱交換器300の部分正面図である。図20は、図18の導水部材51、52、54をフィン30側から見た部分上面図である。熱交換器300の熱交換部310は、実施の形態1に係る熱交換器100の熱交換部10に対し、第1導水部材51と第2導水部材52とを接続する第4導水部材54を追加したものである。なお、図18は、熱交換部310の第4導水部材54が配置されている部分の断面構造を示している。
 熱交換部310は、第1導水部材51及び第2導水部材52とを備え、更に第1導水部材51と第2導水部材52とを接続する第4導水部材54を備える。第4導水部材54は、y方向に間隔をおいて配置されており、x方向に延び第1導水部材51と第2導水部材52と接続されている。
 図20に示される様に、第1導水部材51、第2導水部材52、及び第4導水部材54が接続された導水構造350は、フィン30側から見ると格子状に形成されている。第4導水部材54は、幅Wがフィン30の厚さtFよりも大きくフィン30の間隔FPよりも小さく形成されている。このように構成されることにより、第4導水部材54は、フィン30の隙間FPを塞ぐことがなく、フィン30の下端部からの排水を阻害することがない。
 導水構造350は、第1導水部材51、第2導水部材52、及び第4導水部材54を一体に接続することにより構成されているため、フィン30の下方に設置するのが容易になるという利点がある。また、導水構造350は、フィン30の隙間FPを塞ぐことがないため、第4導水部材54もフィン30の下端部からの排水を促進させることができる。また、フィン30を導水構造350に接するように構成することで、フィン30及び扁平管20等の上部の構造を支持するように構成することもできる。なお、導水構造350の第1導水部材51及び第2導水部材52は、実施の形態1に係る第1導水部材51a、51b及び第2導水部材52a、52bと同様な形状に構成されていても良い。また、導水構造350の第1導水部材51及び第2導水部材52の配置についても、実施の形態1及び実施の形態2における配置と同様にすることができる。
 1 冷凍サイクル装置、2 送風機、3 圧縮機、4 四方弁、5 室外熱交換器、6 膨張装置、7 室内熱交換器、8 室外機、9 室内機、10 熱交換部、10a 熱交換部、10b 熱交換部、10c 熱交換部、10d 熱交換部、10e 熱交換部、13 ヘッダ、15 ヘッダ、20 扁平管、20a 扁平管、20b 扁平管、21a 端部、21b 端部、24 挿入部、30 フィン、31 導水側端縁、32 管配置側端縁、33 中間領域、34 挿入部、35 導水領域、36 管配置領域、37 下端縁、48 板面、51 (第1)導水部材、51a (第1)導水部材、51b (第1)導水部材、52 (第2)導水部材、52a (第2)導水部材、52b (第2)導水部材、54 (第4)導水部材、55 第1稜線、55a 第1稜線、56 第2稜線、56a 第2稜線、57 上面、58 第1の側面、58a 第1の側面、59 第2の側面、59a 第2の側面、61 滞留水、90 冷媒配管、91 冷媒配管、92 冷媒配管、100 熱交換器、200 熱交換器、200a 熱交換器、200b 熱交換器、200c 熱交換器、210 熱交換部、210a (第1の)熱交換部、210aa (第1の)熱交換部、210b (第2の)熱交換部、210bb (第2の)熱交換部、213 ヘッダ、214 ヘッダ、215 ヘッダ、231 導水部側端縁、232 管配置側端縁、233 中間領域、234a 挿入部、234b 挿入部、240 間隙、253 (第3)導水部材、255 第1稜線、256 第2稜線、257 上面、300 熱交換器、310 熱交換部、350 導水構造、1000 熱交換器、1010 熱交換部、FP 隙間、G 重力、ST 表面張力。

Claims (13)

  1.  扁平管と、
     長手方向と該長手方向に直交する幅方向とに延びる板面を有する板状体で形成され、前記長手方向を上下方向に向けて配置され、前記扁平管の管軸に交差するように配置されるフィンと、
     前記フィンの下方に配置される第1導水部材と、を備え、
     前記フィンは、
     前記幅方向の一方の端縁である管配置側端縁に設けられ前記扁平管が挿入される挿入部が形成された管配置領域と、
     前記幅方向の他方の端縁である導水側端縁側に位置し、前記挿入部が形成されていない部分である導水領域と、を備え、
     前記第1導水部材は、
     前記フィンの下端部に対向する第1の上面と、
     前記管軸に垂直な断面において、前記第1の上面の端部に位置する稜線のうち前記導水側端縁に近い方の稜線である第1稜線と、前記第1の上面の端部に位置する稜線のうち前記管配置側端縁に近い方の稜線である第2稜線と、を備え、
     前記第2稜線は、
     前記フィンの前記導水領域の下方に位置する、熱交換器。
  2.  前記第1導水部材は、
     前記第1稜線及び前記第2稜線を前記導水領域の下方に位置するように配置される、請求項1に記載の熱交換器。
  3.  前記フィンの前記幅方向において前記管配置領域の下方に配置される第2導水部材を更に有する、請求項1又は2に記載の熱交換器。
  4.  前記第2導水部材は、
     前記フィンの下端部に対向する第2の上面と、
     前記管軸に垂直な断面において、前記第2の上面の端部に位置する稜線のうち前記導水側端縁に近い方の稜線である第1稜線と、前記第2の上面の端部に位置する稜線のうち前記管配置側端縁に近い方の稜線である第2稜線と、を備え、
     前記第2導水部材の前記第2稜線は、
     前記フィンの前記管配置側端縁から外側に位置する、請求項3に記載の熱交換器。
  5.  第1の熱交換部と、
     通風方向において前記第1の熱交換部に直列に配置された第2の熱交換部と、
     前記第1の熱交換部及び前記第2の熱交換部の少なくとも一方の下方に配置された第3導水部材と、を備え、
     前記第1の熱交換部及び前記第2の熱交換部のそれぞれは、
     扁平管と、
     長手方向と該長手方向に直交する幅方向とに延びる板面を有する板状体で形成され、前記長手方向を上下方向に向けて配置され、前記扁平管の管軸に交差するように配置されるフィンと、を備え、
     前記フィンは、
     前記幅方向の一方の端縁である管配置側端縁に設けられ前記扁平管が挿入される挿入部が形成された管配置領域と、
     前記幅方向の他方の端縁である導水側端縁側に位置し、前記挿入部が形成されていない部分である導水領域と、を備え、
     前記第1の熱交換部の前記管配置領域と前記第2の熱交換部の前記導水領域とは、
     間隙を隔てて隣合って配置され、
     前記第3導水部材は、
     前記間隙の下方に位置する、熱交換器。
  6.  前記第3導水部材は、
     前記フィンの下端部に対向する第3の上面と、
     前記管軸に垂直な断面において、前記第3の上面の前記第1の熱交換部側の端部に位置する第1稜線を備え、
     前記第3導水部材の前記第1稜線は、
     前記間隙の下方に位置する、請求項5に記載の熱交換器。
  7.  請求項1~4の何れか1項に記載の熱交換器と、
     前記熱交換器に空気を送る送風機と、を備え、
     前記熱交換器は、
     前記導水領域が前記管配置領域よりも風上側に位置するように配置される、熱交換器ユニット。
  8.  請求項1~4の何れか1項に記載の熱交換器と、
     前記熱交換器に空気を送る送風機と、を備え、
     前記熱交換器は、
     前記管配置領域が前記導水領域よりも風上側に位置するように配置される、熱交換器ユニット。
  9.  請求項5又は6に記載の熱交換器と、
     前記熱交換器に空気を送る送風機と、を備え、
     前記熱交換器は、
     前記第1の熱交換部が前記第2の熱交換部よりも風上側に位置するように配置される、熱交換器ユニット。
  10.  前記第1の熱交換部の前記扁平管は、
     前記第2の熱交換部側へ向かって重力方向に傾斜している、請求項9に記載の熱交換器ユニット。
  11.  請求項5又は6に記載の熱交換器と、
     前記熱交換器に空気を送る送風機と、を備え、
     前記熱交換器は、
     前記第2の熱交換部が前記第1の熱交換部よりも風上側に位置するように配置される、熱交換器ユニット。
  12.  前記第2の熱交換部の前記扁平管は、
     前記第1の熱交換部側へ向かって重力方向に傾斜している、請求項11に記載の熱交換器ユニット。
  13.  請求項7~12の何れか1項に記載の熱交換器ユニットを搭載する冷凍サイクル装置。
PCT/JP2018/028272 2018-07-27 2018-07-27 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 WO2020021706A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020532112A JP6932262B2 (ja) 2018-07-27 2018-07-27 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
EP18927913.6A EP3832244A4 (en) 2018-07-27 2018-07-27 HEAT EXCHANGER, HEAT EXCHANGER UNIT AND REFRIGERATION CYCLE DEVICE
PCT/JP2018/028272 WO2020021706A1 (ja) 2018-07-27 2018-07-27 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
US17/059,795 US11578930B2 (en) 2018-07-27 2018-07-27 Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
CN201880095254.2A CN112424552B (zh) 2018-07-27 2018-07-27 热交换器、热交换器单元及制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028272 WO2020021706A1 (ja) 2018-07-27 2018-07-27 熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020021706A1 true WO2020021706A1 (ja) 2020-01-30

Family

ID=69180760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028272 WO2020021706A1 (ja) 2018-07-27 2018-07-27 熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Country Status (5)

Country Link
US (1) US11578930B2 (ja)
EP (1) EP3832244A4 (ja)
JP (1) JP6932262B2 (ja)
CN (1) CN112424552B (ja)
WO (1) WO2020021706A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737246B2 (en) * 2021-04-27 2023-08-22 Quanta Computer Inc. Dual-radiator cooling device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132352U (ja) * 1976-04-02 1977-10-07
JPS5480656U (ja) * 1977-11-18 1979-06-07
JPS6148811U (ja) * 1984-09-05 1986-04-02
JPH07172152A (ja) * 1993-05-19 1995-07-11 Nippondenso Co Ltd 空気調和装置のクーリングユニットおよび排水ケース
JPH08104129A (ja) * 1994-10-04 1996-04-23 Nippondenso Co Ltd 自動車用空調装置
JP2010139166A (ja) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp 空気調和機
WO2013105133A1 (ja) * 2012-01-11 2013-07-18 三菱電機株式会社 プレートフィンチューブ式熱交換器及びそれを備えた冷凍空調システム
JP5464207B2 (ja) 2011-12-28 2014-04-09 ダイキン工業株式会社 冷凍装置の室外ユニット
JP2015055401A (ja) * 2013-09-11 2015-03-23 ダイキン工業株式会社 熱交換器の製造方法及び熱交換器
CN105057901A (zh) * 2015-07-31 2015-11-18 浙江金宸三普换热器有限公司 微通道平行流换热器的加工方法
JP2016133256A (ja) * 2015-01-19 2016-07-25 ダイキン工業株式会社 空気調和装置の熱交換ユニット
WO2017183180A1 (ja) * 2016-04-22 2017-10-26 三菱電機株式会社 熱交換器
WO2017221303A1 (ja) * 2016-06-20 2017-12-28 三菱電機株式会社 熱交換器およびこの熱交換器を備えたヒートポンプ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313794A (ja) * 1989-06-12 1991-01-22 Matsushita Refrig Co Ltd フィン付熱交換器
JP2000046375A (ja) 1998-07-27 2000-02-18 Mitsubishi Heavy Ind Ltd 室外ユニット及び空気調和機
US9989276B2 (en) * 2014-04-17 2018-06-05 Mahle International Gmbh Condensate drainage device for heat exchanger
WO2016056076A1 (ja) 2014-10-08 2016-04-14 三菱電機株式会社 除湿装置
EP3534103B1 (en) 2016-10-28 2020-12-23 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132352U (ja) * 1976-04-02 1977-10-07
JPS5480656U (ja) * 1977-11-18 1979-06-07
JPS6148811U (ja) * 1984-09-05 1986-04-02
JPH07172152A (ja) * 1993-05-19 1995-07-11 Nippondenso Co Ltd 空気調和装置のクーリングユニットおよび排水ケース
JPH08104129A (ja) * 1994-10-04 1996-04-23 Nippondenso Co Ltd 自動車用空調装置
JP2010139166A (ja) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp 空気調和機
JP5464207B2 (ja) 2011-12-28 2014-04-09 ダイキン工業株式会社 冷凍装置の室外ユニット
WO2013105133A1 (ja) * 2012-01-11 2013-07-18 三菱電機株式会社 プレートフィンチューブ式熱交換器及びそれを備えた冷凍空調システム
JP2015055401A (ja) * 2013-09-11 2015-03-23 ダイキン工業株式会社 熱交換器の製造方法及び熱交換器
JP2016133256A (ja) * 2015-01-19 2016-07-25 ダイキン工業株式会社 空気調和装置の熱交換ユニット
CN105057901A (zh) * 2015-07-31 2015-11-18 浙江金宸三普换热器有限公司 微通道平行流换热器的加工方法
WO2017183180A1 (ja) * 2016-04-22 2017-10-26 三菱電機株式会社 熱交換器
WO2017221303A1 (ja) * 2016-06-20 2017-12-28 三菱電機株式会社 熱交換器およびこの熱交換器を備えたヒートポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832244A4

Also Published As

Publication number Publication date
US11578930B2 (en) 2023-02-14
JP6932262B2 (ja) 2021-09-08
CN112424552B (zh) 2023-01-17
EP3832244A4 (en) 2021-08-04
CN112424552A (zh) 2021-02-26
JPWO2020021706A1 (ja) 2021-04-30
US20210207900A1 (en) 2021-07-08
EP3832244A1 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US9459053B2 (en) Heat exchanger and air-conditioning apparatus
US11009300B2 (en) Heat exchanger and air-conditioning apparatus
KR101558717B1 (ko) 열교환기 및 이를 탑재한 공기 조화기
US11175053B2 (en) Heat exchanger, refrigeration cycle device, and air-conditioning apparatus
CN110398163B (zh) 热交换器
WO2020021706A1 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
WO2020012549A1 (ja) 熱交換器、熱交換装置、熱交換器ユニット及び冷凍サイクル装置
US11384997B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
US11391521B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP6903237B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
CN107850358B (zh) 热交换器及制冷循环装置
CN112771342B (zh) 热交换器及制冷循环装置
JP6921323B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
CN110945300B (zh) 制冷剂分配器、热交换器及制冷循环装置
WO2020012548A1 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532112

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018927913

Country of ref document: EP

Effective date: 20210301