WO2020021593A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2020021593A1
WO2020021593A1 PCT/JP2018/027484 JP2018027484W WO2020021593A1 WO 2020021593 A1 WO2020021593 A1 WO 2020021593A1 JP 2018027484 W JP2018027484 W JP 2018027484W WO 2020021593 A1 WO2020021593 A1 WO 2020021593A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
reheater
valve
heat exchanger
Prior art date
Application number
PCT/JP2018/027484
Other languages
English (en)
French (fr)
Inventor
智典 小島
崇憲 八代
久登 森田
七種 哲二
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880095733.4A priority Critical patent/CN112437856B/zh
Priority to JP2020531839A priority patent/JP7003266B2/ja
Priority to PCT/JP2018/027484 priority patent/WO2020021593A1/ja
Publication of WO2020021593A1 publication Critical patent/WO2020021593A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner having a function of performing a reheat dehumidification operation.
  • Patent Literature 1 Conventionally, an air conditioner having a reheater and an evaporator provided indoors and a condenser provided outside a room is known (for example, see Patent Document 1).
  • the air conditioner of Patent Literature 1 is configured to control the dehumidifying ability of the evaporator by adjusting the amount of the refrigerant flowing through the reheater and the amount of the refrigerant flowing through the condenser.
  • the air conditioner of Patent Document 1 has a configuration in which the refrigerant always flows through the condenser. Therefore, when performing the reheat dehumidification operation, the refrigerant may fall into the condenser.
  • the refrigerant lays down in the condenser, the amount of the refrigerant circulating between the compressor, the reheater, the expansion valve, and the evaporator is insufficient, so that the dehumidifying capacity is reduced, and the dehumidifying operation cannot be performed efficiently. There is a problem that.
  • the present invention has been made to solve the above-described problems, and has as its object to provide an air conditioner that prevents a decrease in dehumidifying capacity and efficiently performs a dehumidifying operation.
  • the air conditioner according to the present invention includes a main circuit in which a compressor, a reheater, a first expansion valve, and an evaporator are sequentially connected by a main pipe, and a first expansion valve provided between the compressor and the reheater. And a cooling circuit in which a cooling on-off valve, a condenser, and a second expansion valve are connected by a cooling pipe that connects between the evaporator and the evaporator, a refrigerant circuit in which the refrigerant circulates, and a control device that controls the refrigerant circuit.
  • the reheater and the evaporator are arranged in the air-conditioned space, the condenser is arranged outside the air-conditioned space, and the control device operates the cooling on-off valve during the dehumidifying operation for dehumidifying the air in the air-conditioned space. It is to be closed.
  • the cooling on-off valve since the cooling on-off valve is closed during the dehumidifying operation, the refrigerant can be prevented from stagnation in the outdoor heat exchanger, so that the dehumidifying capacity is prevented from lowering and the dehumidifying operation is efficiently performed. be able to.
  • FIG. 1 is an overall configuration diagram of an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram schematically illustrating a functional configuration of the control device of FIG. 1.
  • FIG. 2 is an explanatory diagram illustrating a state of a refrigerant circuit during a dehumidifying operation of the air-conditioning apparatus of FIG. 1.
  • FIG. 2 is an explanatory diagram illustrating a state of a refrigerant circuit during an intermediate operation of the air-conditioning apparatus of FIG. 1.
  • FIG. 2 is an explanatory diagram illustrating a state of a refrigerant circuit during a cooling operation of the air-conditioning apparatus of FIG. 1.
  • FIG. 1 is an overall configuration diagram of an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram schematically illustrating a functional configuration of the control device of FIG. 1.
  • FIG. 2 is an explanatory diagram illustrating a state of a refrigerant circuit during a dehum
  • FIG. 2 is an explanatory diagram illustrating a state of a refrigerant circuit during a defrosting operation of the air-conditioning apparatus of FIG. 1.
  • 3 is a flowchart illustrating an operation during a refrigerant amount adjustment operation among operations of the air-conditioning apparatus of FIG. 1.
  • FIG. 9 is an explanatory diagram illustrating a specific configuration of an indoor heat exchanger according to Embodiment 2 of the present invention. It is explanatory drawing which illustrated the Mollier diagram of the non-azeotropic mixed refrigerant.
  • FIG. 3 is a Mollier chart showing a specific example of a temperature gradient of a non-azeotropic mixed refrigerant.
  • FIG. 13 is an overall configuration diagram of an air-conditioning apparatus according to Embodiment 3 of the present invention.
  • FIG. 14 is a flowchart illustrating an operation during a refrigerant amount adjustment operation among the operations of the air-conditioning apparatus of FIG. 13.
  • FIG. 1 is an overall configuration diagram of an air conditioner according to Embodiment 1 of the present invention.
  • the air conditioner 100 adjusts the temperature and humidity of air in an air-conditioned space such as a room, and has a function of performing a reheat dehumidification operation.
  • the air conditioner 100 includes an indoor unit 70 installed in an air-conditioned space and an outdoor unit 80 installed outside the air-conditioned space.
  • the indoor unit 70 and the outdoor unit 80 are connected by the refrigerant pipe 20.
  • the inside of the conditioned space is also referred to as a room
  • the outside of the conditioned space is also referred to as an outside.
  • the indoor unit 70 is, for example, a floor-mounted dehumidifier placed on the floor of an air-conditioned space, or a ceiling-mounted or ceiling-mounted dehumidifier provided on the ceiling.
  • the indoor unit 70 includes a compressor 1, a reheating on-off valve 2, a reheater 3, a first expansion valve 4, an indoor heat exchanger 5, a cooling on-off valve 6, a second expansion valve 9, and a defrosting on-off valve 10. Is housed.
  • the outdoor unit 80 is installed outdoors or in a machine room.
  • the outdoor unit 80 houses the outdoor heat exchanger 7 and the liquid reservoir 8.
  • the air-conditioning apparatus 100 includes the compressor 1, the reheat on-off valve 2, the reheater 3, the first expansion valve 4, the indoor heat exchanger 5, the cooling on-off valve 6, the outdoor heat exchanger 7, the liquid reservoir 8,
  • the second expansion valve 9 and the defrost opening / closing valve 10 are connected by a refrigerant pipe 20, and have a refrigerant circuit 30 through which the refrigerant circulates.
  • a single mixed refrigerant, a pseudo single mixed refrigerant, a non-azeotropic mixed refrigerant, or the like can be used.
  • a non-azeotropic mixed refrigerant for example, a mixed refrigerant of R32, R125, R134a, r1234yf, and CO2 can be used.
  • the composition of R32 is 49 wt% to 55 wt%
  • the composition of R125 is 16 wt% to 22 wt%
  • the composition of R134a is 7 wt% to 13 wt%
  • the composition of r1234yf is 6 wt%.
  • the composition of CO 2 is 7 wt% 1313 wt%
  • the total composition is 100 wt%.
  • R448A, R449A, R407F, or the like which is a non-azeotropic mixed refrigerant having a composition other than the above, may be employed.
  • the refrigerant pipe 20 includes a main pipe 21, a cooling pipe 22, and a bypass pipe 23.
  • the main pipe 21 is a pipe that sequentially connects the compressor 1, the reheat on-off valve 2, the reheater 3, the first expansion valve 4, and the indoor heat exchanger 5 in a ring shape. That is, the refrigerant circuit 30 includes a main circuit 31 formed by connecting the compressor 1, the reheat on-off valve 2, the reheater 3, the first expansion valve 4, and the indoor heat exchanger 5 by the main pipe 21. .
  • the cooling pipe 22 is a pipe that connects the space between the compressor 1 and the reheater 3 to the space between the first expansion valve 4 and the indoor heat exchanger 5. More specifically, the cooling pipe 22 connects the main pipe 21 between the compressor 1 and the reheat on-off valve 2 and the main pipe 21 between the first expansion valve 4 and the indoor heat exchanger 5.
  • connection portion between the main pipe 21 between the compressor 1 and the reheat on-off valve 2 and the cooling pipe 22 is referred to as a first connection portion M.
  • a connection portion between the first expansion valve 4 and the indoor heat exchanger 5 and the cooling pipe 22 is referred to as a second connection portion N.
  • the bypass pipe 23 is a pipe connecting the discharge side of the compressor 1 to a position between the reheater 3 and the first expansion valve 4.
  • the discharge side of the compressor 1 is between the compressor 1 and the first connection portion M.
  • the bypass pipe 23 connects the main pipe 21 between the compressor 1 and the first connection part M, and the main pipe 21 between the reheater 3 and the first expansion valve 4.
  • the defrost opening / closing valve 10 for opening / closing the bypass pipe 23 is provided. That is, the refrigerant circuit 30 includes the bypass circuit 33 which is an open circuit in which the defrost opening / closing valve 10 is provided in the bypass pipe 23.
  • the reheater 3 and the first expansion valve 4, and the outdoor heat exchanger 7 and the second expansion valve 9 are connected in parallel.
  • the compressor 1 sucks and compresses a refrigerant, and discharges it in a high-temperature and high-pressure gas state.
  • the compressor 1 is, for example, a compressor whose rotation speed is controlled by an inverter circuit or the like and whose discharge amount of refrigerant can be adjusted.
  • the compressor 1 may be a constant-speed compressor that operates at a constant rotation speed.
  • the reheater 3, the indoor heat exchanger 5, and the outdoor heat exchanger 7 are, for example, fin-and-tube heat exchangers formed by pipes through which a refrigerant flows and fins attached to the pipes.
  • the reheater 3 condenses the refrigerant by exchanging heat between the refrigerant compressed by the compressor 1 and air.
  • the indoor heat exchanger 5 and the reheater 3 are provided on a common air path.
  • the indoor heat exchanger 5 is an air heat exchanger that functions as an evaporator (cooler) for evaporating the refrigerant. That is, the indoor heat exchanger 5 evaporates the refrigerant by exchanging heat between air and the refrigerant expanded in at least one of the first expansion valve 4 and the second expansion valve 9.
  • the outdoor heat exchanger 7 is an air heat exchanger that functions as a condenser that condenses the refrigerant. That is, the outdoor heat exchanger 7 condenses the refrigerant by exchanging heat between the refrigerant compressed by the compressor 1 and air.
  • the first expansion valve 4 is, for example, an electronic expansion valve, and is arranged downstream of the reheater 3.
  • the first expansion valve 4 expands the refrigerant condensed in the reheater 3.
  • the second expansion valve 9 is, for example, an electronic expansion valve, and is disposed downstream of the outdoor heat exchanger 7.
  • the second expansion valve 9 expands the refrigerant condensed in the outdoor heat exchanger 7.
  • the reheat on-off valve 2, the cooling on-off valve 6, and the defrosting on-off valve 10 are, for example, solenoid valves having an open state and a closed state, and allow the refrigerant to pass in the open state.
  • the reheat on-off valve 2 shuts off the refrigerant flowing to the reheater 3 via the first connection portion M.
  • the cooling on-off valve 6 shuts off the refrigerant flowing to the outdoor heat exchanger 7 via the first connection portion M.
  • the defrost opening / closing valve 10 shuts off the refrigerant flowing into the bypass pipe 23.
  • the liquid reservoir 8 is a member that stores excess refrigerant.
  • the indoor unit 70 is provided with the indoor blower 11 that sends air to the indoor heat exchanger 5 and the reheater 3.
  • the outdoor unit 80 is provided with an outdoor blower 12 that is attached to the outdoor heat exchanger 7 and sends air to the outdoor heat exchanger 7.
  • the indoor blower 11 and the outdoor blower 12 are blowers whose rotation speed is controlled by, for example, an inverter circuit or the like, and which can adjust the amount of blown air.
  • the indoor unit 70 is provided with an indoor refrigerant leak sensor 41, a control device 50, pressure sensors 61 to 63, refrigerant temperature sensors 65 to 68, and an air temperature sensor 91.
  • the outdoor unit 80 is provided with a pressure sensor 64, a refrigerant temperature sensor 69, and an air temperature sensor 92.
  • the pressure sensor 61 is provided on the suction side of the compressor 1 and measures a low pressure, which is a pressure of the refrigerant sucked by the compressor 1.
  • the pressure sensor 62 is provided on the discharge side of the compressor 1 and measures a high pressure that is a pressure of the refrigerant discharged from the compressor 1.
  • the pressure sensor 63 is provided on the outlet side of the reheater 3, that is, at or near the outlet of the reheater 3, and measures the reheater outlet pressure, which is the pressure of the refrigerant flowing out of the reheater 3.
  • the pressure sensor 64 is provided on the outlet side of the outdoor heat exchanger 7, that is, at or near the outlet of the outdoor heat exchanger 7, and measures a condenser outlet pressure that is the pressure of the refrigerant flowing out of the outdoor heat exchanger 7.
  • the refrigerant temperature sensors 65 to 69 are constituted by, for example, thermistors.
  • the refrigerant temperature sensor 65 is provided on the suction side of the compressor 1 and measures a suction temperature which is a temperature of the refrigerant drawn into the compressor 1.
  • the refrigerant temperature sensor 66 is provided on the discharge side of the compressor 1 and measures a discharge temperature which is a temperature of the refrigerant discharged from the compressor 1.
  • the refrigerant temperature sensor 67 is provided on the outlet side of the reheater 3 and measures the reheater outlet temperature, which is the temperature of the refrigerant flowing out of the reheater 3.
  • the refrigerant temperature sensor 68 is provided on the outlet side of the indoor heat exchanger 5 and measures the temperature of the refrigerant flowing out of the indoor heat exchanger 5 (evaporator outlet temperature).
  • the refrigerant temperature sensor 69 is provided on the outlet side of the outdoor heat exchanger 7 and measures the condenser outlet temperature that is the temperature of the refrigerant flowing out of the outdoor heat exchanger 7.
  • the air temperature sensors 91 and 92 are composed of, for example, thermistors.
  • the air temperature sensor 91 is provided at a suction port of the indoor unit 70 and measures the temperature of the air-conditioned space as the indoor temperature.
  • the air temperature sensor 92 is provided in the outdoor unit 80 and measures the temperature of the outside or the machine room as the outside air temperature.
  • the indoor refrigerant leakage sensor 41 is provided in the air-conditioned space and detects leakage of the refrigerant.
  • the outdoor refrigerant leakage sensor 42 is provided outside the air-conditioned space and detects leakage of the refrigerant.
  • the indoor refrigerant leakage sensor 41 and the outdoor refrigerant leakage sensor 42 output a leakage signal indicating occurrence of refrigerant leakage to the control device 50 when detecting leakage of refrigerant.
  • Each of the pressure sensors outputs measured pressure data to the control device 50.
  • Each of the temperature sensors outputs data of the measured temperature to the control device 50. That is, each refrigerant leak sensor, each pressure sensor, and each temperature sensor are electrically or optically connected to the control device 50.
  • the indoor unit 70 is provided with the abnormality alarm 45 including at least one of a speaker and a light emitter.
  • the light emitter an LED (light emitting diode) or the like can be used.
  • the abnormality alarm 45 notifies the occurrence of abnormality by outputting sound, voice, light, or the like in response to an instruction from the control device 50.
  • the control device 50 controls the refrigerant circuit 30. That is, the control device 50 acquires the output of each pressure sensor and each temperature sensor, and obtains the compressor 1, the reheat on-off valve 2, the first expansion valve 4, the cooling on-off valve 6, the second expansion valve 9, and the Various actuators such as the frost on-off valve 10 are controlled. Further, when an abnormality occurs, the control device 50 causes the abnormality alarm device 45 to notify that the abnormality has occurred.
  • the control device 50 of the first embodiment causes the abnormality alarm 45 to output sound, voice, light, or the like when each refrigerant leakage sensor detects an abnormality in refrigerant leakage.
  • the control device 50 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the RAM is a volatile storage medium that stores various data.
  • the ROM is a non-volatile storage medium that stores an operation program for causing the control device 50 to execute operation control in each operation mode described later.
  • the controller 50 appropriately controls the compressor 1, the reheat on-off valve 2, the first expansion valve 4, the cooling on-off valve 6, the second expansion valve 9, the defrosting on-off valve 10, and the like according to the operation program in the ROM. Then, air conditioning is performed in each operation mode. That is, the control device 50 can be configured by an arithmetic device such as a CPU, and an operation program that realizes the following various functions in cooperation with such an arithmetic device.
  • the flow of air in the indoor unit 70 will be schematically described.
  • air is taken into the indoor unit 70.
  • the air taken into the indoor unit 70 passes through the indoor heat exchanger 5 functioning as an evaporator, and the absolute humidity decreases. That is, when the air containing moisture passes through the indoor heat exchanger 5, the moisture in the air condenses on the indoor heat exchanger 5, so that the absolute humidity of the air decreases.
  • the absolute humidity is reduced by passing through the indoor heat exchanger 5, and the air whose temperature has decreased is cold air having a high relative humidity.
  • the air that has passed through the indoor heat exchanger 5 is reheated by passing through the reheater 3, and the relative humidity decreases.
  • the air whose relative humidity has decreased after passing through the reheater 3 is blown into the room.
  • the air taken into the indoor unit 70 is blown into the room in a state where the relative humidity is reduced, so that the relative humidity in the room is reduced. This is the flow of air in the indoor unit 70 during the dehumidifying operation or the intermediate operation described below.
  • FIG. 2 is a block diagram schematically showing a functional configuration of the control device of FIG.
  • the control device 50 includes an arithmetic processing unit 51 and a storage unit 52.
  • the arithmetic processing unit 51 includes a setting processing unit 51a, an operation control unit 51b, an excess refrigerant detection unit 51c, and a leakage processing unit 51d.
  • the setting processing unit 51a receives an operation signal indicating the content of the operation and setting by the user from a remote controller (not shown) for operation of the air-conditioning apparatus 100 or the like. Then, the setting processing unit 51a sets an operation mode, a target temperature, a target humidity, and the like according to the operation signal.
  • the surplus refrigerant detection unit 51c detects the generation of surplus refrigerant by any one of the following methods, and outputs a detection signal to the operation control unit 51b when the generation of surplus refrigerant is detected.
  • the surplus refrigerant detection unit 51c can be configured to determine the degree of supercooling and determine whether the obtained degree of supercooling is greater than a supercooling threshold. This determination is based on the fact that the degree of supercooling increases when excess refrigerant is generated. That is, the surplus refrigerant detection unit 51c outputs a detection signal to the operation control unit 51b when the obtained degree of supercooling is larger than the supercooling threshold.
  • the detection of the surplus refrigerant may utilize the fact that the discharge temperature of the refrigerant becomes high when the surplus refrigerant is generated. That is, the surplus refrigerant detection unit 51c may obtain the discharge temperature from the refrigerant temperature sensor 66 and determine whether the obtained discharge temperature is higher than the discharge threshold. Then, the surplus refrigerant detection unit 51c may output a detection signal to the operation control unit 51b when the discharge temperature is higher than the discharge threshold.
  • the detection of the excess refrigerant may utilize the fact that the high pressure increases when excess refrigerant is generated. That is, the surplus refrigerant detection unit 51c may acquire the high pressure from the pressure sensor 62 and determine whether the acquired high pressure is greater than the high pressure threshold. Then, the surplus refrigerant detection unit 51c may output a detection signal to the operation control unit 51b when the high pressure is higher than the high pressure threshold.
  • the detection of the surplus refrigerant may utilize the fact that the low pressure increases when the surplus refrigerant is generated. That is, the surplus refrigerant detection unit 51c may acquire the low pressure from the pressure sensor 61 and determine whether the acquired low pressure is larger than the low pressure threshold. Then, the surplus refrigerant detection unit 51c may output a detection signal to the operation control unit 51b when the low pressure is larger than the low pressure threshold.
  • the leak processing unit 51d acquires a leak signal from each of the indoor refrigerant leak sensor 41 and the outdoor refrigerant leak sensor 42.
  • the leak processing unit 51d outputs an indoor leak signal indicating occurrence of a refrigerant leak in the room to the operation control unit 51b.
  • the leak processing unit 51d outputs an outdoor leak signal indicating occurrence of refrigerant leak to the operation control unit 51b.
  • the leakage processing unit 51d causes the abnormality alarm 45 to output sound, voice, light, or the like.
  • the leak processing unit 51d outputs different sounds, sounds, lights, or the like to the abnormality alarm device 45 depending on whether a leak signal is obtained from the indoor refrigerant leak sensor 41 or when a leak signal is obtained from the outdoor refrigerant leak sensor 42. It may be output.
  • the operation control unit 51b periodically acquires measurement data from each pressure sensor and each temperature sensor. Then, the operation control unit 51b controls the operation of each actuator of the air-conditioning apparatus 100 using the acquired measurement data in accordance with the settings made by the setting processing unit 51a.
  • the operation control unit 51b controls, for example, the rotation speed of the compressor motor 1a of the compressor 1, the fan motor 11a of the indoor blower 11, and the fan motor 12a of the outdoor blower 12.
  • the operation control unit 51b causes the air-conditioning apparatus 100 to execute a dehumidification operation for dehumidifying air in an air-conditioned space when the operation mode is set to a dehumidification operation mode by a user operation or default setting.
  • the operation control unit 51b causes the air-conditioning apparatus 100 to execute the intermediate operation.
  • the operation control unit 51b causes the air-conditioning apparatus 100 to execute a cooling operation for cooling air in the air-conditioned space.
  • the operation control unit 51b causes the air-conditioning apparatus 100 to execute a defrosting operation for melting frost attached to the indoor heat exchanger 5.
  • the operation control unit 51b closes the cooling on-off valve 6 during the dehumidifying operation.
  • the operation control unit 51b may set the second expansion valve 9 to the fully closed state during the dehumidifying operation. In this way, it is possible to prevent the refrigerant from flowing from the cooling circuit 32 to the main circuit 31.
  • the operation control unit 51b closes the reheat on-off valve 2 during the cooling operation.
  • the operation control unit 51b may cause the first expansion valve 4 to be fully closed during the cooling operation. In this way, it is possible to prevent the refrigerant staying in the reheater 3 or the like from flowing into the indoor heat exchanger 5.
  • the operation control unit 51b causes the air-conditioning apparatus 100 to execute a refrigerant amount adjustment operation described later. That is, when the detection signal is output from the surplus refrigerant detection unit 51c, the operation control unit 51b performs the refrigerant amount adjustment control for storing the surplus refrigerant in the liquid reservoir 8 while maintaining the performance of the reheater 3.
  • the indoor refrigerant leak sensor 41 detects leakage of the refrigerant, that is, when the indoor leakage signal is output from the leakage processing unit 51d, the operation control unit 51b closes the reheat on-off valve 2, The expansion valve 9 is fully opened. Thereby, the refrigerant flowing from the first connection portion M to the reheater 3 can be shut off, and the refrigerant in the room can be stored in the outdoor heat exchanger 7 and the liquid reservoir 8, so that the leakage of the refrigerant into the room is suppressed. can do.
  • the operation control unit 51b may further make the first expansion valve 4 fully closed. In this way, it is possible to prevent the refrigerant staying in the reheater 3 or the like from flowing into the indoor heat exchanger 5. Therefore, when the leakage point of the refrigerant exists in the flow path from the second connection portion N to the first connection portion M via the indoor heat exchanger 5 and the compressor 1, it is possible to further suppress the refrigerant leakage into the room. Can be.
  • the operation control unit 51b closes the reheat on-off valve 2 and the defrosting on-off valve 10 and closes the first expansion valve 4 when the indoor refrigerant leak sensor 41 detects leakage of refrigerant.
  • the refrigerant circuit from the reheat on-off valve 2 to the first expansion valve 4 may be made independent to facilitate the process of specifying the refrigerant leak location.
  • the operation control unit 51b closes the cooling on-off valve 6 when the outdoor refrigerant leakage sensor 42 detects leakage of the refrigerant, that is, when the outdoor leakage signal is output from the leakage processing unit 51d, and performs the first expansion.
  • the valve 4 is fully closed. Accordingly, the flow of the refrigerant to the outside can be blocked, and the refrigerant outside the room can be stored in the indoor heat exchanger 5, so that the leakage of the refrigerant outside the room can be suppressed.
  • the operation control unit 51b closes the cooling on-off valve 6 and completely closes the second expansion valve 9 when the outdoor refrigerant leakage sensor 42 detects the leakage of the refrigerant, so that the cooling on-off valve 6
  • the refrigerant circuit up to the second expansion valve 9 may be made independent to facilitate the process of specifying the leakage location of the refrigerant.
  • the operation program of the control device 50 is stored in the storage unit 52. Further, the storage unit 52 stores various data related to the air conditioning control. For example, the storage unit 52 stores data of setting contents such as an operation mode, a target temperature, and a target humidity. In addition, the storage unit 52 stores information on thresholds, such as a supercooling threshold, a discharge threshold, a high-pressure threshold, and a low-pressure threshold, which serve as references when detecting the generation of excess refrigerant. The supercooling threshold, the discharge threshold, the high pressure threshold, and the low pressure threshold are set in advance and can be changed as appropriate.
  • FIG. 3 is an explanatory diagram showing the state of the refrigerant circuit during the dehumidifying operation of the air-conditioning apparatus of FIG.
  • FIG. 4 is an explanatory diagram illustrating a state of the refrigerant circuit during an intermediate operation of the air-conditioning apparatus of FIG. 1.
  • FIG. 5 is an explanatory diagram illustrating a state of the refrigerant circuit during the cooling operation of the air-conditioning apparatus of FIG. 1.
  • FIG. 6 is an explanatory diagram illustrating a state of the refrigerant circuit during the defrosting operation of the air-conditioning apparatus of FIG. 1.
  • 3 to 6 the open / closed valve in the open state is shown in white and the open / closed valve in the closed state is shown in black.
  • the flow of the refrigerant is indicated by a broken line with an arrow. The valve control and the flow of the refrigerant in each operation mode will be described with reference to FIGS.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the reheater 3 via the discharge pipe.
  • the indoor air blown by the indoor blower 11 and having passed through the indoor heat exchanger 5 passes through the reheater 3. Therefore, the high-temperature and high-pressure gas refrigerant that has flowed into the reheater 3 exchanges heat with room air passing through the reheater 3 to release heat, condense and liquefy.
  • the refrigerant flowing out of the reheater 3 is decompressed by the first expansion valve 4 through the liquid pipe, and flows into the indoor heat exchanger 5 as a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 5 absorbs heat by exchanging heat with the indoor air blown by the indoor blower 11, gasifies, and returns to the compressor 1 as a low-temperature low-pressure gas refrigerant.
  • the air circulating through the indoor unit 70 by the indoor blower 11 is cooled by the low-temperature and low-pressure gas-liquid two-phase refrigerant flowing through the indoor heat exchanger 5, and its temperature drops to the dew point or lower. Thereby, moisture in the indoor air is dewed on the surface of the indoor heat exchanger 5, and the indoor air is dehumidified. After that, the air that has passed through the indoor heat exchanger 5 is heated by the high-temperature and high-pressure gas refrigerant in the reheater 3 and rises in temperature, and the relative humidity decreases.
  • the air-conditioning apparatus 100 performs all the heat radiation in the refrigeration cycle indoors by closing the cooling on-off valve 6 during the dehumidifying operation. That is, the air-conditioning apparatus 100 performs an operation of heating the indoor air by the amount of heat applied to the refrigerant by the compressor 1 and the latent heat of condensation of water vapor in the air. Therefore, the room air sucked into the air conditioner 100 during the dehumidifying operation is heated and dehumidified at the same time.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 7 and the reheater 3 via the discharge pipe.
  • the refrigerant radiated and liquefied by the outdoor heat exchanger 7 and the reheater 3 is decompressed by the first expansion valve 4 and the second expansion valve 9 installed downstream of the liquid pipe, and becomes a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 5 absorbs heat in the indoor heat exchanger 5 to be gasified, and is sucked into the compressor 1 via a suction pipe.
  • the control device 50 controls the outdoor blower 12 to perform on / off control according to the outdoor temperature and the high pressure, and controls the indoor blower 11 to be always on.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 7 via the discharge pipe, exchanges heat with the outdoor air blown by the outdoor blower 12, radiates heat, condenses and liquefies. I do.
  • the refrigerant flowing out of the outdoor heat exchanger 7 is decompressed by the first expansion valve 4 via the liquid pipe, becomes a gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 5.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 5 exchanges heat with the indoor air blown by the indoor blower 11, absorbs heat, gasifies, and returns to the compressor 1 as a low-temperature low-pressure gas refrigerant. That is, the air circulated by the indoor blower 11 is cooled by the low-temperature low-pressure gas-liquid two-phase refrigerant in the indoor heat exchanger 5.
  • the surplus refrigerant during the cooling operation is stored in the liquid reservoir 8 as appropriate.
  • the cooling operation may be performed when the absolute humidity in the room is low or when the priority of lowering the temperature in the room is high. This is because, when the temperature of the air decreases due to the cooling operation, the relative humidity increases. Then, when the relative humidity is increased, the comfort is reduced, and inconveniences such as dew condensation in the room are easily caused.
  • moisture in the indoor air condenses on the surface of the indoor heat exchanger 5 to increase the ventilation resistance and decrease the heat exchange capacity. It is.
  • the defrosting operation is a defrosting operation performed when frost is deposited on the indoor heat exchanger 5 and the performance as a heat exchanger is reduced.
  • the reheat on-off valve 2 and the cooling on-off valve 6 are in the closed state, and the defrosting on-off valve 10 is in the open state. That is, when the controller 50 is set to the defrosting operation mode, the controller 50 closes the reheat on-off valve 2 and the cooling on-off valve 6 and opens the defrosting on-off valve 10. Therefore, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the discharge pipe and the bypass circuit 33, is decompressed by the first expansion valve 4, and flows into the indoor heat exchanger 5.
  • the indoor heat exchanger 5 is heated by the refrigerant, and exchanges heat with the frost that has landed to melt the frost.
  • the refrigerant that has flowed into the indoor heat exchanger 5 has a low temperature due to heat exchange with frost and has a low temperature.
  • the refrigerant exchanges heat with the suction pipe to absorb heat and gasify, and is compressed as a low-temperature low-pressure gas refrigerant.
  • the control device 50 adjusts the amount of the refrigerant passing through the indoor heat exchanger 5 by setting the first expansion valve 4 to the minimum opening, thereby preventing the liquefied refrigerant from entering the compressor 1. Further, the control device 50 turns off the indoor blower 11. Therefore, during the defrosting operation, only the heat exchange between the refrigerant passing through the indoor heat exchanger 5 and the frost attached to the indoor heat exchanger 5 is simply performed.
  • the air-conditioning apparatus 100 performs the refrigerant amount adjustment operation when excess refrigerant is generated during the dehumidification operation.
  • the refrigerant amount adjustment control performed by the operation control unit 51b when surplus refrigerant is generated will be described.
  • the operation control unit 51b When detecting the generation of excess refrigerant during the dehumidifying operation, the operation control unit 51b opens both the reheat on-off valve 2 and the cooling on-off valve 6 and closes the defrosting on-off valve 10 as in the case of the intermediate operation. And The operation control unit 51b controls the refrigerant amount adjustment using the first expansion valve 4 provided downstream of the reheater 3 and the second expansion valve 9 provided downstream of the outdoor heat exchanger 7. Execute That is, the operation control unit 51b has passed the outdoor heat exchanger 7 by SH control (superheat control) while securing the performance of the reheater 3 by configuring the refrigeration cycle by SC control (subcool control). Excess refrigerant is stored in the liquid reservoir 8.
  • SH control superheat control
  • SC control subcool control
  • the operation control unit 51b of the first embodiment executes the SC control of the first expansion valve 4 so that the degree of supercooling (SC) by the reheater 3 is maintained at or above the reheat determination value.
  • SC degree of supercooling
  • the operation control unit 51b controls the opening degree of the first expansion valve 4 using, for example, the temperature of the refrigerant at the outlet of the reheater 3. In this case, the operation control unit 51b obtains the degree of subcooling by the reheater 3 using the reheater outlet temperature measured by the refrigerant temperature sensor 67. More specifically, when obtaining the degree of supercooling by the reheater 3, the operation control unit 51b obtains the high pressure from the pressure sensor 62 and obtains the reheater outlet temperature from the refrigerant temperature sensor 67.
  • the operation control unit 51b obtains the condensing temperature by converting the high-pressure pressure into saturation, and obtains the degree of supercooling by the reheater 3 by subtracting the reheater outlet temperature from the obtained condensing temperature. Then, the operation control unit 51b controls the first expansion valve 4 so that the obtained degree of supercooling becomes the set value. Thereby, the heat quantity of the reheating by the reheater 3 is controlled, and the set dehumidifying ability can be exhibited.
  • the operation control unit 51b may control the opening degree of the first expansion valve 4 using the temperature of the air blown out of the air conditioner 100, that is, the temperature of the air that has passed through the reheater 3.
  • an air temperature sensor is provided at the outlet of the indoor unit 70, and the operation control unit 51b opens the first expansion valve 4 so that the temperature measured by the air temperature sensor becomes the set target temperature. Control the degree.
  • the temperature of the air blown out of the air conditioner 100 is the temperature of the air blown out from the indoor unit 70 into the air-conditioned space, and is hereinafter also referred to as the blowout temperature.
  • the operation control unit 51b performs the SH control of the second expansion valve 9 so that the degree of heating (SH) by the outdoor heat exchanger 7 is maintained at or above the condensation determination value. Thereby, the surplus refrigerant is stored in the liquid reservoir 8.
  • the operation control unit 51b when obtaining the degree of superheat of the indoor heat exchanger 5, the operation control unit 51b obtains the low pressure from the pressure sensor 61 and obtains the suction temperature from the refrigerant temperature sensor 65. Then, the operation control unit 51b obtains the evaporation temperature by converting the low pressure into saturation, and obtains the degree of superheat of the indoor heat exchanger 5 by subtracting the evaporation temperature from the suction temperature.
  • a refrigerant temperature sensor may be provided in the indoor heat exchanger 5, and the temperature measured by the refrigerant sensor may be used as the evaporation temperature by the control device 50.
  • FIG. 7 is a flowchart illustrating the operation of the air conditioner of FIG. 1 during the refrigerant amount adjustment operation.
  • the refrigerant amount adjustment control by the control device 50 will be described based on FIG.
  • the control device 50 periodically and repeatedly executes a series of processes of the following steps S101 to S108.
  • control device 50 obtains the degree of supercooling by reheater 3 (step S101). Then, control device 50 determines whether or not the degree of supercooling by reheater 3 is equal to or greater than the reheat determination value (step S102).
  • Step S102 If the degree of supercooling by the reheater 3 is equal to or greater than the reheat determination value (Step S102 / Yes), the control device 50 reduces the degree of opening of the first expansion valve 4 (Step S103). On the other hand, if the degree of supercooling by the reheater 3 is less than the reheat determination value (No at Step S102), the control device 50 increases the degree of opening of the first expansion valve 4 (Step S104).
  • the control device 50 determines the degree of opening adjustment of the first expansion valve 4 according to the SC difference that is the difference between the degree of supercooling by the reheater 3 and the reheat determination value.
  • the storage unit 52 may store a first opening adjustment table that associates the SC difference with a first adjustment amount that is an adjustment amount of the opening of the first expansion valve 4.
  • the SC difference is obtained by subtracting the reheat determination value from the degree of supercooling by the reheater 3.
  • the SC difference may be in the positive range, and the larger the SC difference, the larger the first adjustment amount may be.
  • the SC difference may be in a negative range, and the smaller the SC difference is, the larger the first adjustment amount may be.
  • the controller 50 reduces the opening of the first expansion valve 4 as the SC difference increases. Will be.
  • the controller 50 increases the degree of opening of the first expansion valve 4 as the absolute value of the SC difference increases.
  • control device 50 obtains the degree of superheating by the indoor heat exchanger 5 (step S105). Then, the control device 50 determines whether or not the degree of superheat by the indoor heat exchanger 5 is equal to or greater than the evaporation determination value (Step S106).
  • Step S106 If the degree of superheating by the indoor heat exchanger 5 is equal to or greater than the evaporation determination value (Step S106 / Yes), the control device 50 increases the degree of opening of the second expansion valve 9 (Step S107). On the other hand, if the degree of superheating by the indoor heat exchanger 5 is less than the evaporation determination value (No at Step S106), the control device 50 decreases the opening of the second expansion valve 9 (Step S108).
  • the control device 50 determines the degree of opening adjustment of the second expansion valve 9 according to the SH difference that is the difference between the degree of superheating by the indoor heat exchanger 5 and the evaporation determination value.
  • the storage unit 52 may store a second opening adjustment table that associates the SH difference with a second adjustment amount that is an adjustment amount of the opening of the second expansion valve 9.
  • the SH difference is obtained by subtracting the evaporation determination value from the degree of superheating by the indoor heat exchanger 5.
  • the SH difference may be in a positive range, and the larger the SH difference is, the larger the second adjustment amount may be.
  • the SH difference may be in a negative range, and the smaller the SH difference is, the larger the second adjustment amount may be.
  • the controller 50 uses the second opening adjustment table to increase the opening of the second expansion valve 9 as the SH difference increases if the degree of superheating by the indoor heat exchanger 5 is equal to or greater than the evaporation determination value. become. Similarly, if the degree of superheat by the indoor heat exchanger 5 is less than the evaporation determination value, the control device 50 decreases the opening of the second expansion valve 9 as the absolute value of the SH difference increases.
  • the control device 50 closes the reheat on-off valve 2, closes the defrost on-off valve 10, opens the cooling on-off valve 6, and performs the second expansion.
  • the valve 9 is fully closed, and the compressor 1 is operated to execute the pump-down operation.
  • the control device 50 may set the rotation speeds of the indoor blower 11 and the outdoor blower 12 to be higher than the rotation speeds in the normal operation.
  • the refrigerant When the refrigerant leaks in the room due to the valve control and the pump-down operation as described above, the refrigerant is supplied from the piping from the cooling on-off valve 6 to the outdoor heat exchanger 7, the outdoor heat exchanger 7, and the outdoor heat exchanger 7.
  • the liquid can be stored in the pipe to the liquid reservoir 8, the liquid reservoir 8, and the pipe from the liquid reservoir 8 to the second expansion valve 9.
  • the control device 50 stops the operation of the compressor 1. After stopping the operation of the compressor 1, the control device 50 closes the cooling on-off valve 6. In this way, by setting the cooling on-off valve 6 to the closed state after the compressor 1 is stopped, the backflow of the refrigerant can be suppressed. As described above, by stopping the operation of the air-conditioning apparatus 100 stepwise, safety can be improved.
  • the cooling on-off valve 6 is opened. To perform the cooling operation. Executing the cooling operation can prevent an increase in the temperature of the air-conditioned space, so that a decrease in comfort can be suppressed. It should be noted that there is no problem even if the refrigerant is circulated through the compressor 1, the outdoor heat exchanger 7, the second expansion valve 9, and the indoor heat exchanger 5 as follows. It is assumed that it is specified between the first expansion valve 4 or between the defrost opening / closing valve 10 and the first expansion valve 4.
  • the control device 50 opens the reheat on-off valve 2, closes the defrost on-off valve 10, closes the cooling on-off valve 6, and performs the first expansion.
  • the valve 4 is fully closed, the compressor 1 is operated, and the pump-down operation is executed.
  • the control device 50 may set the rotation speeds of the indoor blower 11 and the outdoor blower 12 to be higher than the rotation speeds in the normal operation.
  • the reheat on-off valve 2 is turned off. Open to perform the dehumidifying operation. By continuing the dehumidifying operation, an increase in the humidity of the air-conditioned space can be prevented, so that a decrease in comfort can be suppressed. It should be noted that there is no problem even if the refrigerant is circulated through the compressor 1, the reheater 3, the first expansion valve 4, and the indoor heat exchanger 5, as the leakage point of the refrigerant is the cooling on / off valve 6, the second It is assumed that it is specified between the expansion valve 9 and the like.
  • the control device 50 since the control device 50 closes the cooling on-off valve 6 during the dehumidifying operation, it is possible to prevent the refrigerant from stagnation in the outdoor heat exchanger 7. Therefore, it is possible to prevent a decrease in the dehumidifying ability and to efficiently perform the dehumidifying operation. Further, the control device 50 may cause the second expansion valve 9 to be in a fully closed state during the dehumidifying operation. With this configuration, it is possible to prevent the refrigerant from flowing from the cooling circuit 32 to the main circuit 31, so that the operation efficiency of the dehumidifying operation can be improved.
  • the main circuit 31 includes a reheat on-off valve 2 that performs an open / close operation between the reheater 3 and a connection between the main pipe 21 and the cooling pipe 22 between the compressor 1 and the reheater 3. have.
  • the controller 50 closes the reheat on-off valve 2 during the cooling operation. Therefore, the inflow of the refrigerant into the reheater 3 can be prevented, so that the circulation of the refrigerant during the cooling operation can be smoothed and the operation efficiency can be improved.
  • the control device 50 may bring the first expansion valve 4 into a fully closed state during the cooling operation. With this configuration, the refrigerant remaining in the flow path from the first connection portion M to the second connection portion N via the reheater 3 and the first expansion valve 4 flows into the indoor heat exchanger 5. Therefore, the operation efficiency during the cooling operation can be further increased.
  • the control device 50 closes the reheat on-off valve 2, so that it is possible to suppress the refrigerant leakage downstream of the reheat on-off valve 2. it can.
  • the control device 50 further brings the second expansion valve 9 into a fully opened state. Therefore, the refrigerant can be prevented from flowing into the main circuit 31 provided indoors, and the refrigerant can be stored in the outdoor heat exchanger 7, the liquid reservoir 8, and the like, thereby suppressing the leakage of the refrigerant indoors. be able to.
  • the controller 50 does not have to fully open the second expansion valve 9 when the indoor refrigerant leak sensor 41 detects the refrigerant leakage.
  • the control device 50 may further cause the first expansion valve 4 to be fully closed when the indoor refrigerant leakage sensor 41 detects leakage of the refrigerant. By doing so, it is possible to prevent the refrigerant remaining in the reheater 3 and the like from flowing into the indoor heat exchanger 5, so that the refrigerant leaks from the reheat on-off valve 2 to the reheater 3. When it is not on the flow path to the first expansion valve 4 via the first expansion valve 4, leakage of refrigerant into the room can be reduced.
  • the control device 50 closes the reheat on-off valve 2 and the defrosting on-off valve 10 and sets the first expansion valve 4 to a fully closed state. Is also good. By doing so, the refrigerant circuit from the reheat on-off valve 2 to the first expansion valve 4 can be made independent, so that it is possible to facilitate the process of specifying the refrigerant leak location.
  • the control device 50 closes the cooling on-off valve 6. Therefore, since the flow of the refrigerant to the outside can be blocked and the refrigerant outside the room can be stored in the indoor heat exchanger 5, the leakage of the refrigerant outside the room can be suppressed.
  • the control device 50 further closes the first expansion valve 4 when the outdoor refrigerant leak sensor 42 detects the leakage of the refrigerant.
  • the controller 50 does not have to completely close the first expansion valve 4 when the outdoor refrigerant leak sensor 42 detects the leakage of the refrigerant.
  • control device 50 may make the second expansion valve 9 fully closed when the outdoor refrigerant leakage sensor 42 detects the leakage of the refrigerant.
  • the refrigerant circuit from the cooling on-off valve 6 to the second expansion valve 9 can be made independent, so that the leakage point of the refrigerant can be quickly specified.
  • the control device 50 performs the SC control of the first expansion valve 4 as described above. Therefore, the amount of heating by the reheater 3 can be secured, and the indoor unit 70 can exhibit the dehumidifying ability.
  • Embodiment 2 FIG.
  • the air-conditioning apparatus according to Embodiment 2 is configured to reduce the variation in the outlet temperature.
  • the configuration of the air-conditioning apparatus according to Embodiment 2 is the same as the configuration illustrated in FIGS. 1 and 2. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 8 is an explanatory view illustrating a specific configuration of the indoor heat exchanger according to Embodiment 2 of the present invention.
  • the indoor heat exchanger 5 is a plate fin tube heat exchanger composed of a plurality of heat transfer tubes 13, a plurality of fins 14, a refrigerant distributor 15, and a header 16.
  • the reheater 3 according to the second embodiment is a plate-fin tube heat exchanger configured similarly to the indoor heat exchanger 5. That is, the reheater 3 includes a plurality of heat transfer tubes 13, a plurality of fins 14, a refrigerant distributor 15, and a header 16.
  • the number of heat transfer tubes 13, the number of fins 14, the number of stages, and the number of rows are examples. That is, for each of the indoor heat exchanger 5 and the reheater 3, the number of heat transfer tubes 13, the number of fins 14, the number of stages, and the number of rows can be appropriately changed.
  • a non-azeotropic mixed refrigerant in which a plurality of types of refrigerants are mixed may be used as a refrigerant for circulating a refrigerant circuit in an air conditioner.
  • the temperature of the non-azeotropic mixed refrigerant changes due to a phase change under the same pressure. Therefore, for example, when the non-azeotropic mixed refrigerant passes through the evaporator, in the evaporation process, the temperature of the upstream side becomes lower than that of the downstream side. Further, when the non-azeotropic refrigerant mixture passes through the condenser, the temperature on the upstream side is higher than that on the downstream side in the condensation process.
  • FIG. 9 is an explanatory diagram illustrating a Mollier diagram of a non-azeotropic refrigerant mixture.
  • FIG. 10 is a Mollier diagram showing a specific example of the temperature gradient of the non-azeotropic refrigerant mixture.
  • the isotherm of the azeotropic mixed refrigerant is indicated by a solid line
  • the portion of the isotherm of the non-azeotropic mixed refrigerant between the saturated liquid gland and the saturated vapor line is indicated by a broken line. That is, when a non-azeotropic refrigerant mixture is used, a temperature gradient is generated between the inlet and the outlet of the heat exchanger in the evaporating step and the condensing step that change at a constant pressure.
  • FIG. 10 illustrates a case where the temperature gradient between the inlet and the outlet of the indoor heat exchanger 5 in the low-temperature range of the non-azeotropic mixed refrigerant is about 5 ° C.
  • the refrigerant temperature on the inlet side of the indoor heat exchanger 5 is ⁇ 12 ° C.
  • the refrigerant temperature on the outlet side is ⁇ 7 ° C. That is, in the indoor heat exchanger 5, the refrigerant temperature on the inlet side is lower than the refrigerant temperature on the outlet side. Therefore, there is a difference in the outlet temperature between the inlet and the outlet of the indoor heat exchanger 5.
  • the non-azeotropic mixed refrigerant containing CO2 is, for example, a mixed refrigerant of R32, R125, R134a, r1234yf, and CO2.
  • the composition of R32 is 49 wt% to 55 wt%
  • the composition of R125 is 16 wt% to 22 wt%
  • the composition of R134a is 7 wt% to 13 wt%
  • the composition of r1234yf is 6 wt% to 12 wt%
  • the composition of CO2 is 7 wt% to 13 wt%.
  • the total composition ratio of R32, R125, R134a, r1234yf, and CO2 is 100 wt%.
  • the low-temperature low-pressure liquid state refrigerant decompressed and expanded by the first expansion valve 4 flows into the indoor heat exchanger 5 from the inlet of the refrigerant distributor 15.
  • the refrigerant flowing in from the inlet of the refrigerant distributor 15 is distributed by the refrigerant distributor 15 and flows from the respective outlets of the refrigerant distributor 15 to the plurality of heat transfer tubes 13.
  • the refrigerant flowing into the heat transfer tubes 13 flows along the axial direction of the heat transfer tubes 13.
  • the indoor air to be cooled is blown by the indoor blower 11 on the surfaces of the heat transfer tubes 13 and the fins 14.
  • the air blown to the indoor heat exchanger 5 by the indoor blower 11 flows in a direction opposite to the refrigerant flowing through the heat transfer tubes 13.
  • the air-conditioning apparatus 100 reduces the heat exchange loss and improves the performance of the indoor heat exchanger 5 by making the air blown to the indoor heat exchanger 5 and the refrigerant flowing through the heat transfer tube 13 face each other. I have.
  • the refrigerant flowing through the heat transfer tubes 13 exchanges heat with indoor air in contact with the heat transfer tubes 13 and the fins 14 to absorb heat of the indoor air.
  • the refrigerant that has exchanged heat with the indoor air in the heat transfer tube 13 flows in from the inlet of the header 16, merges in the header 16, and flows from the outlet of the header 16 to the compressor 1.
  • the refrigerant in a high-temperature and high-pressure gas state heated and compressed by the compressor 1 flows in from the inlet of the refrigerant distributor 15.
  • the refrigerant flowing in from the inlet of the refrigerant distributor 15 is distributed by the refrigerant distributor 15 and flows from the respective outlets of the refrigerant distributor 15 to the plurality of heat transfer tubes 13.
  • the refrigerant flowing into the heat transfer tubes 13 flows along the axial direction of the heat transfer tubes 13. Air cooled through the indoor heat exchanger 5 is blown to the surfaces of the heat transfer tubes 13 and the fins 14.
  • the air blown to the reheater 3 flows in the direction opposite to the refrigerant flowing through the heat transfer tube 13.
  • the air-conditioning apparatus 100 reduces the heat exchange loss and improves the performance of the reheater 3 by causing the air blown to the reheater 3 and the refrigerant flowing through the heat transfer tube 13 to face each other.
  • the refrigerant flowing through the heat transfer tubes 13 is cooled by the indoor heat exchanger 5 and exchanges heat with the air in contact with the heat transfer tubes 13 and the fins 14 to radiate heat to the air.
  • the refrigerant that has exchanged heat with air in the heat transfer tube 13 flows in from the inlet of the header 16, merges in the header 16, and flows from the outlet of the header 16 to the first expansion valve 4.
  • the reheater 3 and the indoor unit are arranged such that the inlet side of the indoor heat exchanger 5 and the outlet side of the reheater 3 face each other, and the outlet side of the evaporator faces the inlet side of the reheater 3.
  • the temperature difference generated in the indoor heat exchanger 5 is further increased in the reheater 3.
  • the air that has passed through the portion of the indoor heat exchanger 5 where the refrigerant temperature is the lowest passes through the portion of the reheater 3 where the refrigerant temperature is the highest.
  • the indoor heat exchanger 5 and the reheater 3 are arranged. That is, the indoor heat exchanger 5 and the reheater 5 are arranged such that the air having passed through the portion of the indoor heat exchanger 5 having the highest refrigerant temperature passes through the portion of the reheater 3 having the lowest refrigerant temperature. 3 are arranged. Note that, also in the air-conditioning apparatus 100 of Embodiment 2, similarly to Embodiment 1, the indoor heat exchanger 5 and the reheater 3 are provided on a common air path.
  • FIG. 11 is an explanatory diagram showing an example of the arrangement of the evaporator and the reheater in the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the intervals between the dashed lines inside the indoor heat exchanger 5 and the reheater 3 correspond to the level of the refrigerant temperature. That is, FIG. 11 illustrates wavy lines such that the coolant temperature increases as the interval between the wavy lines decreases, and the coolant temperature decreases as the interval between the wavy lines increases.
  • the temperature on the inlet side of the refrigerant is lower than the temperature on the outlet side of the refrigerant.
  • the temperature on the inlet side of the refrigerant is higher than the temperature on the outlet side of the refrigerant.
  • the indoor heat exchanger 5 and the reheater 3 are configured such that the air that has passed through the inlet side of the refrigerant in the indoor heat exchanger 5 passes through the outlet side of the refrigerant in the reheater 3, and the indoor heat exchanger 5 is arranged so that the air that has passed through the refrigerant outlet side passes through the refrigerant inlet side in the reheater 3.
  • a portion where the refrigerant temperature of the indoor heat exchanger 5 is relatively low and a portion where the refrigerant temperature of the reheater 3 is relatively high are opposed to each other.
  • An arrangement may be adopted in which a portion where the refrigerant temperature is relatively high and a portion where the refrigerant temperature of the reheater 3 is relatively low face each other.
  • Both the indoor heat exchanger 5 and the reheater 3 are provided so that the refrigerant flows from the upper part to the lower part.
  • an optimum arrangement may be appropriately selected based on the arrangement of each device and the temperature of air blown from each heat exchanger according to a path pattern.
  • FIG. 11 illustrates a case where the number of rows of each heat exchanger is one, but is not limited thereto, and the number of rows of each heat exchanger may be two or more. Even when the number of rows of at least one of the indoor heat exchanger 5 and the reheater 3 is two or more, based on the heat distribution of each heat exchanger, the indoor heat exchanger 5 and the reheater 3 Should be determined.
  • FIG. 12 is a table showing the state of each on-off valve and each expansion valve when refrigerant leaks in the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the control device 50 according to the second embodiment obtains a leak signal from each of the indoor refrigerant leak sensor 41 and the outdoor refrigerant leak sensor 42 as in the case of the first embodiment.
  • the controller 50 When the controller 50 detects a refrigerant leak on the indoor side, the controller 50 closes the reheat on-off valve 2 on the indoor side and fully opens the first expansion valve 4 on the downstream side of the reheater 3. Thereby, the refrigerant existing in the flow path from the first connection portion M to the second connection portion N via the reheater 3 and the first expansion valve 4 can be guided to the indoor heat exchanger 5 side. Further, when the controller 50 detects a refrigerant leak on the indoor side, the control unit 50 opens the outdoor cooling on-off valve 6 and fully closes the second expansion valve 9 on the downstream side of the outdoor heat exchanger 7. By these valve controls, the refrigerant can be stored outside the room. Therefore, when the refrigerant leaks in the room, the filling of the room with the inert gas can be suppressed, so that safety can be improved.
  • the controller 50 detects a refrigerant leak outside the room, it closes the cooling on-off valve 6 and fully opens the second expansion valve 9. Thereby, the refrigerant existing in the cooling circuit 32 can be guided to the indoor heat exchanger 5 side. Further, when the controller 50 detects a refrigerant leak outside the room, the controller 50 opens the reheat on-off valve 2 and fully closes the first expansion valve 4. By these valve controls, the refrigerant can be stored inside the room. Therefore, in the case where the refrigerant leaks outside the room, the filling of the outside with the inert gas can be suppressed, and the safety can be improved.
  • the control device 50 controls the refrigerant circuit 30 using the dryness by making use of the characteristics of the non-azeotropic mixed refrigerant.
  • the conventional pseudo-azeotropic refrigerant does not have a temperature gradient of the two-layer refrigerant, when the pseudo-azeotropic refrigerant is used, the dryness cannot be calculated. Therefore, it is common to control the refrigerant circuit using the degree of superheat and the degree of supercooling calculated from the high and low pressure saturation temperatures and the refrigerant temperature, and since the state of the refrigerant is unknown, the conventionally calculated degree of superheat is In addition, a technique is employed in which the degree of supercooling is controlled with a likelihood.
  • the degree of dryness can be determined from the pressure and temperature, and the state of the refrigerant can be determined from the determined degree of dryness.
  • High control can be built. That is, if the non-azeotropic refrigerant mixture is used, control along the saturation line on the Mollier diagram can be performed, so that control utilizing the capacity of the heat exchanger can be constructed. This is because the non-azeotropic refrigerant mixture has a two-phase refrigerant temperature gradient.
  • the air-conditioning apparatus 100 measures the low-pressure sensor that measures the pressure on the suction side of the compressor 1 and the dryness at the outlet of the indoor heat exchanger 5, that is, the temperature at the position where the dryness on the low-pressure side is obtained. And an evaporator temperature sensor for measurement. Then, the control device 50 can determine the dryness on the low pressure side from the pressure detected by the low pressure sensor and the temperature detected by the evaporator temperature sensor. In the non-azeotropic refrigerant, the dryness on the low pressure side is uniquely determined from the pressure and the temperature of the refrigerant.
  • the low pressure sensor corresponds to the pressure sensor 61 in FIG. 1
  • the evaporator temperature sensor corresponds to the refrigerant temperature sensor 68 in FIG.
  • a high-pressure sensor that measures the pressure on the discharge side of the compressor 1 and a condenser that measures the dryness at the outlet of the reheater 3 or the outdoor heat exchanger 7, that is, the temperature at the position where the dryness on the high-pressure side is obtained. And a temperature sensor. Then, the control device 50 can determine the high-pressure side dryness from the pressure detected by the high-pressure sensor and the temperature detected by the condenser temperature sensor. For non-azeotropic refrigerants, the dryness on the high pressure side is uniquely determined from the pressure and the temperature of the refrigerant.
  • the high pressure sensors correspond to the pressure sensors 62, 63, 64 of FIG.
  • the condenser temperature sensors correspond to the refrigerant temperature sensors 67, 69 of FIG. That is, the degree of dryness at the outlet of the reheater 3 is obtained from the measured pressure of the pressure sensor 62 or 63 and the measured temperature of the refrigerant temperature sensor 67. The dryness at the outlet of the outdoor heat exchanger 7 is obtained from the measured pressure of the pressure sensor 62 or 64 and the measured temperature of the refrigerant temperature sensor 69.
  • the indoor heat exchanger 5 and the reheater 3 include a portion where the blowout temperature of the indoor heat exchanger 5 is low and a portion where the blowout temperature of the reheater 3 is high. They are arranged to overlap in the flow of air. That is, based on the temperature distribution of each of the indoor heat exchanger 5 and the reheater 3, the air-conditioning apparatus 100 determines the lowest refrigerant temperature of the indoor heat exchanger 5 and the lowest refrigerant temperature of the reheater 3. Is configured to overlap with a common air path. Therefore, during the dehumidifying operation or the intermediate operation, air with less temperature variation can be supplied to the room.
  • a non-azeotropic mixed refrigerant is used as the refrigerant circulating inside. Therefore, in the indoor heat exchanger 5, the temperature on the inlet side of the refrigerant is lower than the temperature on the outlet side of the refrigerant. In the reheater 3, the temperature of the refrigerant on the inlet side is higher than the temperature of the refrigerant on the outlet side.
  • the indoor heat exchanger 5 and the reheater 3 are configured such that the air that has passed through the inlet side of the refrigerant in the indoor heat exchanger 5 passes through the outlet side of the refrigerant in the reheater 3, and the indoor heat exchanger 5 is arranged so that the air that has passed through the refrigerant outlet side passes through the refrigerant inlet side in the reheater 3.
  • the path of the refrigerant flowing through each of the indoor heat exchanger 5 and the reheater 3 can be defined as shown in FIG.
  • FIG. FIG. 13 is an overall configuration diagram of an air conditioner according to Embodiment 3 of the present invention.
  • the air conditioner 200 of the third embodiment differs from the air conditioners 100 of the first and second embodiments in part of the configuration of the refrigerant circuit 30.
  • the same components as those in the first and second embodiments are denoted by the same reference numerals, and the description is omitted.
  • the refrigerant circuit 30 according to the third embodiment is different from the first embodiment in that the liquid reservoir 8 is not mounted and the accumulator 18 is mounted. Is the same as in the first embodiment. That is, the air-conditioning apparatus 200 controls both the operation of the reheater 3 and the operation of the outdoor heat exchanger 7 by the SC control so that the excess refrigerant is accumulated in the accumulator 18.
  • the SC control according to each of the reheater 3 and the outdoor heat exchanger 7 enables the operation with the optimum refrigerant amount in each of the reheater 3 and the outdoor heat exchanger 7. . Therefore, the capacity of the air conditioner 200 can be appropriately maintained, and the surplus refrigerant can be stored in the inexpensive accumulator 18. That is, even if the refrigerant returns to the compressor 1 due to the liquid back, the operation of the accumulator 18 can suppress the liquid compression in the compressor 1, thereby providing a highly reliable air conditioner 200. can do.
  • control device 50 obtains the degree of subcooling by the reheater 3 using the high pressure obtained from the pressure sensor 62 and the reheater outlet temperature obtained from the refrigerant temperature sensor 67. I have. That is, the control device 50 obtains the condensing temperature by converting the high pressure to the saturation, and obtains the degree of supercooling by the reheater 3 by subtracting the reheater outlet temperature from the obtained condensing temperature. Further, control device 50 determines the degree of subcooling by outdoor heat exchanger 7 using the condenser outlet pressure obtained from pressure sensor 64 and the outdoor heat exchanger outlet temperature obtained from refrigerant temperature sensor 69. Has become.
  • control device 50 obtains the condensing temperature by converting the high-pressure pressure into saturation, and obtains the degree of supercooling by the outdoor heat exchanger 7 by subtracting the outdoor heat exchanger outlet temperature from the obtained condensing temperature.
  • controller 50 may use the high pressure obtained from the pressure sensor 62 instead of the condenser outlet pressure obtained from the pressure sensor 64 when obtaining the degree of subcooling by the outdoor heat exchanger 7.
  • air conditioner 200 may apply the arrangement of reheater 3 and indoor heat exchanger 5 in Embodiment 2 described above, and use the dryness as in Embodiment 2.
  • the refrigerant circuit 30 may be controlled.
  • FIG. 14 is a flowchart illustrating the operation of the air conditioner of FIG. 13 during the refrigerant amount adjustment operation.
  • refrigerant amount adjustment control by control device 50 of the third embodiment will be described.
  • the control device 50 periodically and repeatedly executes a series of processes in the following steps S101 to S104 and steps S301 to S304.
  • the control device 50 executes a series of processes of steps S101 to S104, as in the case of FIG. Next, the control device 50 determines the degree of supercooling by the outdoor heat exchanger 7 (step S301). Then, control device 50 determines whether or not the obtained degree of supercooling by outdoor heat exchanger 7 is equal to or greater than a condensation determination value (step S302).
  • Step S302 If the degree of supercooling by the outdoor heat exchanger 7 is equal to or greater than the condensation determination value (Step S302 / Yes), the controller 50 reduces the degree of opening of the second expansion valve 9 (Step S303). On the other hand, if the degree of subcooling by the outdoor heat exchanger 7 is less than the condensation determination value (No at Step S302), the control device 50 reduces the opening of the second expansion valve 9 (Step S304).
  • the control device 50 determines the degree of opening degree adjustment of the first expansion valve 4 according to the second SC difference that is the difference between the degree of supercooling by the outdoor heat exchanger 7 and the condensation determination value.
  • the storage unit 52 may store a valve adjustment table that associates the second SC difference with a valve adjustment amount that is an adjustment amount of the opening degree of the second expansion valve 9.
  • the second SC difference is obtained by subtracting the condensation determination value from the degree of supercooling by the outdoor heat exchanger 7.
  • the second SC difference may be in a positive range and the valve adjustment amount may be increased as the second SC difference increases.
  • the valve adjustment amount may be increased as the second SC difference becomes smaller in the negative range of the second SC difference.
  • the air conditioner 200 according to Embodiment 3 can also prevent a decrease in dehumidifying capacity and efficiently perform a dehumidifying operation.
  • the refrigerant circuit 30 including the liquid reservoir 8 as in the first embodiment it is necessary to perform an operation for securing the degree of superheat on the second expansion valve 9 for protection corresponding to the liquid back. . Therefore, in order to store the surplus refrigerant, an expensive high-pressure container such as the liquid reservoir 8 having a large capacity is required.
  • the SC control according to each of the reheater 3 and the outdoor heat exchanger 7 performs the optimal control in each of the reheater 3 and the outdoor heat exchanger 7. Operation based on the amount of refrigerant becomes possible. Therefore, the capacity of the air conditioner 200 can be appropriately maintained, and the surplus refrigerant can be stored in the inexpensive accumulator 18. That is, even if the refrigerant returns to the compressor 1 due to the liquid back, the liquid compression in the compressor 1 can be suppressed by the operation of the accumulator 18, so that the reliability as the air conditioner is improved. Can be.
  • the air conditioner 200 separates the non-azeotropic mixed refrigerant into a gas and a liquid by the accumulator 18, stores the high-boiling refrigerant in the accumulator 18, and uses the low-boiling refrigerant during the defrosting operation. Increase heat capacity. That is, during the defrosting operation, the air-conditioning apparatus 200 stores the high-boiling-point refrigerant contained in the non-azeotropic mixed refrigerant in the accumulator 18 and supplies the low-boiling-point refrigerant contained in the non-azeotropic mixed refrigerant to the refrigerant circuit 30. Circulate. Therefore, the defrosting time can be reduced. Other effects and the like are the same as in the first and second embodiments.
  • the air-conditioning apparatus 100 does not have to have the function of performing the cooling operation and the defrosting operation.
  • the reheat on-off valve 2 is not required. Therefore, the main circuit 31 is configured such that the compressor 1, the reheater 3, the first expansion valve 4, and the indoor heat exchanger 5 are sequentially connected by the main pipe 21.
  • the liquid reservoir 8 is provided in the refrigerant circuit 30 has been described.
  • the present invention is not limited to this, and the refrigerant circuits 30 of the first and second embodiments have the liquid reservoir 8. It is not necessary.
  • the present invention is not limited to this, and at least the reheater 3 and the indoor heat exchanger 5 May be arranged in the air-conditioned space.
  • the refrigerant circuits 30 of the first to third embodiments do not need to have the bypass circuit 33. However, if the bypass circuit 33 is not provided in the refrigerant circuit 30, the defrosting operation in the flow path as in the first embodiment cannot be performed.
  • the present invention is not limited to this, and at least the reheater 3 and the indoor heat exchanger 5 may be arranged in the air-conditioned space. .
  • FIGS. 1 and 13 show an example in which the indoor refrigerant leak sensor 41 is provided inside the indoor unit 70. However, the present invention is not limited to this. 70 may be provided outside.
  • FIGS. 1 and 13 show an example in which the outdoor refrigerant leak sensor 42 is provided inside the outdoor unit 80. However, the present invention is not limited to this. It may be provided outside.
  • FIGS. 1 and 13 show an example in which the control device 50 is provided inside the indoor unit 70.
  • the control device 50 may be provided inside the outdoor unit 80.
  • the outdoor unit 80 is provided with an outdoor control device for controlling the operation of each actuator of the outdoor unit 80 such as the outdoor blower 12, and the control device 50 and the outdoor control device cooperate with each other to control the air conditioning device 100 or 200. May be.
  • the processing of each on-off valve and each expansion valve at the time of refrigerant leakage illustrated in FIG. 12 can be applied to the configurations of the first and third embodiments.

Abstract

冷媒が循環する冷媒回路と、冷媒回路を制御する制御装置と、有する空気調和装置。冷媒回路は、圧縮機、再熱器、第1膨張弁、及び蒸発器が主配管により順次連結された主回路と、圧縮機と再熱器との間から第1膨張弁と蒸発器との間までをつなぐ冷却配管によって冷却開閉弁、凝縮器、及び第2膨張弁が連結された冷却回路と、を含んでいる。再熱器及び蒸発器は、空調空間に配置され、凝縮器は、空調空間の外部に配置されている。制御装置は、空調空間の空気の除湿を行う除湿運転時に、冷却開閉弁を閉状態にするものである。

Description

空気調和装置
 本発明は、再熱除湿運転を行う機能をもつ空気調和装置に関する。
 従来から、室内に設けられた再熱器及び蒸発器と室外に設けられた凝縮器とを有する空気調和装置が知られている(例えば、特許文献1参照)。特許文献1の空気調和装置は、再熱器に流す冷媒の量と、凝縮器に流す冷媒の量とを調整することにより、蒸発器の除湿能力を制御するようになっている。
特開2011-133171号公報
 しかしながら、特許文献1の空気調和装置は、凝縮器に常に冷媒を流す構成となっているため、再熱除湿運転を行うとき、凝縮器に冷媒が寝込むことがある。凝縮器に冷媒が寝込むと、圧縮機、再熱器、膨張弁、及び蒸発器の間を循環する冷媒の量が不足するため、除湿能力が低下し、除湿運転を効率よく行うことができない、という課題がある。
 本発明は、上記のような課題を解決するためになされたものであり、除湿能力の低下を防ぎ、除湿運転を効率よく行う空気調和装置を提供することを目的とする。
 本発明に係る空気調和装置は、圧縮機、再熱器、第1膨張弁、及び蒸発器が主配管により順次連結された主回路と、圧縮機と再熱器との間から第1膨張弁と蒸発器との間までをつなぐ冷却配管によって冷却開閉弁、凝縮器、及び第2膨張弁が連結された冷却回路とを含み、冷媒が循環する冷媒回路と、冷媒回路を制御する制御装置と、有し、再熱器及び蒸発器は、空調空間に配置され、凝縮器は、空調空間の外部に配置され、制御装置は、空調空間の空気の除湿を行う除湿運転時に、冷却開閉弁を閉状態にするものである。
 本発明によれば、除湿運転時に冷却開閉弁を閉状態にすることから、室外熱交換器への冷媒の寝込みを防ぐことができるため、除湿能力の低下を防止し、除湿運転を効率よく行うことができる。
本発明の実施の形態1に係る空気調和装置の全体的な構成図である。 図1の制御装置の機能的構成を概略的に示すブロック図である。 図1の空気調和装置の除湿運転時における冷媒回路の状態を示す説明図である。 図1の空気調和装置の中間運転時における冷媒回路の状態を示す説明図である。 図1の空気調和装置の冷却運転時における冷媒回路の状態を示す説明図である。 図1の空気調和装置の除霜運転時における冷媒回路の状態を示す説明図である。 図1の空気調和装置の動作のうち、冷媒量調整運転時の動作を例示したフローチャートである。 本発明の実施の形態2に係る室内熱交換器の具体的な構成を例示した説明図である。 非共沸混合冷媒のモリエル線図を例示した説明図である。 非共沸混合冷媒の温度勾配の具体例を示すモリエル線図である。 本発明の実施の形態2の空気調和装置における蒸発器及び再熱器の配置例を示す説明図である。 本発明の実施の形態2の空気調和装置における冷媒漏洩時の各開閉弁及び各膨張弁の状態を示す表である。 本発明の実施の形態3に係る空気調和装置の全体的な構成図である。 図13の空気調和装置の動作のうち、冷媒量調整運転時の動作を例示したフローチャートである。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の全体的な構成図である。空気調和装置100は、部屋などの空調空間における空気の温度及び湿度を調整するものであり、再熱除湿運転を行う機能を有している。空気調和装置100は、図1に示すように、空調空間内に設置される室内機70と、空調空間の外部に設置される室外機80と、を有している。室内機70と室外機80とは、冷媒配管20によって接続されている。以降では、空調空間内のことを室内ともいい、空調空間の外部のことを室外ともいう。
 室内機70は、例えば、空調空間の床に置かれる床置型除湿機、又は天井に設けられた天埋型除湿機もしくは天吊型除湿機などである。室内機70には、圧縮機1、再熱開閉弁2、再熱器3、第1膨張弁4、室内熱交換器5、冷却開閉弁6、第2膨張弁9、及び除霜開閉弁10が収容されている。室外機80は、屋外又は機械室などに設置される。室外機80には、室外熱交換器7及び液溜め8が収容されている。すなわち、空気調和装置100は、圧縮機1、再熱開閉弁2、再熱器3、第1膨張弁4、室内熱交換器5、冷却開閉弁6、室外熱交換器7、液溜め8、第2膨張弁9、及び除霜開閉弁10が冷媒配管20により接続され、冷媒が循環する冷媒回路30を有している。
 冷媒回路30を循環させる冷媒としては、単一混合冷媒、擬似単一混合冷媒、又は非共沸混合冷媒などを用いることができる。非共沸混合冷媒としては、例えば、R32、R125、R134a、r1234yf、及びCO2の混合冷媒を用いることができる。この非共沸混合冷媒は、R32の組成が49wt%~55wt%であり、R125の組成が16wt%~22wt%であり、R134aの組成が7wt%~13wt%であり、r1234yfの組成が6wt%~12wt%であり、CO2の組成が7wt%~13wt%であり、合計が100wt%となる組成比をもつ。また、非共沸混合冷媒としては、上記以外の組成をもつ非共沸混合冷媒であるR448A、R449A、又はR407Fなどを採用してもよい。
 冷媒配管20は、主配管21と、冷却配管22と、バイパス配管23と、により構成されている。主配管21は、圧縮機1と再熱開閉弁2と再熱器3と第1膨張弁4と室内熱交換器5とを順次環状に連結する配管である。つまり、冷媒回路30は、圧縮機1、再熱開閉弁2、再熱器3、第1膨張弁4、及び室内熱交換器5が主配管21により接続されて形成された主回路31を含む。
 冷却配管22は、圧縮機1と再熱器3との間から第1膨張弁4と室内熱交換器5との間までをつなぐ配管である。より具体的に、冷却配管22は、圧縮機1と再熱開閉弁2との間の主配管21と、第1膨張弁4と室内熱交換器5との間の主配管21とを接続し、冷却開閉弁6と室外熱交換器7と液溜め8と第2膨張弁9とを連結する配管である。つまり、冷媒回路30は、冷却開閉弁6、室外熱交換器7、液溜め8、及び第2膨張弁9が冷却配管22により連結された開回路である冷却回路32を含む。ここで、圧縮機1と再熱開閉弁2との間の主配管21と、冷却配管22との接続部分を、第1接続部Mという。また、第1膨張弁4と室内熱交換器5との間と、冷却配管22との接続部分を、第2接続部Nという。
 バイパス配管23は、圧縮機1の吐出側から再熱器3と第1膨張弁4との間までをつなぐ配管である。本実施の形態1において、圧縮機1の吐出側とは、圧縮機1と第1接続部Mとの間のことである。より具体的に、バイパス配管23は、圧縮機1と第1接続部Mとの間の主配管21と、再熱器3と第1膨張弁4との間の主配管21とを接続する配管であり、バイパス配管23を開閉する除霜開閉弁10が設けられている。つまり、冷媒回路30は、バイパス配管23に除霜開閉弁10が設けられた開回路であるバイパス回路33を含む。ここで、図1に示すように、再熱器3及び第1膨張弁4と、室外熱交換器7及び第2膨張弁9とは、並列に接続されている。
 圧縮機1は、冷媒を吸入して圧縮し、高温高圧のガス状態にして吐出する。圧縮機1は、例えば、インバータ回路等によって回転数が制御され、冷媒の吐出量の調整が可能な圧縮機である。もっとも、圧縮機1は、一定の回転数で動作する一定速の圧縮機であってもよい。
 再熱器3、室内熱交換器5、及び室外熱交換器7は、例えば、冷媒が流れる配管と、該配管に取り付けられたフィンとにより形成されたフィンアンドチューブ型熱交換器である。再熱器3は、圧縮機1で圧縮された冷媒と空気との間で熱交換させることにより、冷媒を凝縮させる。空気調和装置100では、室内熱交換器5と再熱器3とが共通する風路上に設けられている。
 室内熱交換器5は、冷媒を蒸発させる蒸発器(冷却器)として機能する空気熱交換器である。つまり、室内熱交換器5は、第1膨張弁4及び第2膨張弁9のうちの少なくとも一方で膨張された冷媒と空気との間で熱交換させることにより、冷媒を蒸発させる。室外熱交換器7は、冷媒を凝縮させる凝縮器として機能する空気熱交換器である。つまり、室外熱交換器7は、圧縮機1で圧縮された冷媒と空気との間で熱交換させることにより、冷媒を凝縮させる。
 第1膨張弁4は、例えば電子膨張弁からなり、再熱器3の下流に配置されている。第1膨張弁4は、再熱器3で凝縮された冷媒を膨張させる。第2膨張弁9は、例えば電子膨張弁からなり、室外熱交換器7の下流に配置されている。第2膨張弁9は、室外熱交換器7で凝縮された冷媒を膨張させる。
 再熱開閉弁2、冷却開閉弁6、及び除霜開閉弁10は、例えば、開状態と閉状態とを有する電磁弁であり、開状態において冷媒を通過させる。再熱開閉弁2は、閉状態のとき、第1接続部Mを経由して再熱器3に流れようとする冷媒を遮断する。冷却開閉弁6は、閉状態のとき、第1接続部Mを経由して室外熱交換器7に流れようとする冷媒を遮断する。除霜開閉弁10は、閉状態のとき、バイパス配管23に流れようとする冷媒を遮断する。液溜め8は、余剰冷媒を貯留する部材である。
 また、室内機70には、室内熱交換器5及び再熱器3に風を送る室内送風機11が設けられている。室外機80には、室外熱交換器7に付設され、室外熱交換器7に風を送る室外送風機12が設けられている。本実施の形態1において、室内送風機11および室外送風機12は、例えばインバータ回路等によって回転数を制御され、送風量の調整が可能な送風機である。
 さらに、室内機70には、室内冷媒漏洩センサ41と、制御装置50と、圧力センサ61~63と、冷媒温度センサ65~68と、空気温度センサ91と、が設けられている。室外機80には、圧力センサ64と、冷媒温度センサ69と、空気温度センサ92と、が設けられている。
 圧力センサ61は、圧縮機1の吸入側に設けられ、圧縮機1によって吸入される冷媒の圧力である低圧圧力を計測する。圧力センサ62は、圧縮機1の吐出側に設けられ、圧縮機1から吐出される冷媒の圧力である高圧圧力を計測する。圧力センサ63は、再熱器3の出口側、すなわち再熱器3の出口又は出口近傍に設けられ、再熱器3から流出する冷媒の圧力である再熱器出口圧力を計測する。圧力センサ64は、室外熱交換器7の出口側、すなわち室外熱交換器7の出口又は出口近傍に設けられ、室外熱交換器7から流出する冷媒の圧力である凝縮器出口圧力を計測する。
 冷媒温度センサ65~69は、例えばサーミスタにより構成される。冷媒温度センサ65は、圧縮機1の吸入側に設けられ、圧縮機1に吸入される冷媒の温度である吸入温度を計測する。冷媒温度センサ66は、圧縮機1の吐出側に設けられ、圧縮機1から吐出される冷媒の温度である吐出温度を計測する。冷媒温度センサ67は、再熱器3の出口側に設けられ、再熱器3から流出する冷媒の温度である再熱器出口温度を計測する。冷媒温度センサ68は、室内熱交換器5の出口側に設けられ、室内熱交換器5から流出する冷媒の温度(蒸発器出口温度)を計測する。冷媒温度センサ69は、室外熱交換器7の出口側に設けられ、室外熱交換器7から流出する冷媒の温度である凝縮器出口温度を計測する。
 空気温度センサ91及び92は、例えばサーミスタにより構成される。空気温度センサ91は、室内機70の吸込口などに設けられ、空調空間の温度を室内温度として計測する。空気温度センサ92は、室外機80に設けられ、屋外又は機械室などの温度を外気温度として計測する。
 室内冷媒漏洩センサ41は、空調空間内に設けられ、冷媒の漏洩を検知する。室外冷媒漏洩センサ42は、空調空間の外部に設けられ、冷媒の漏洩を検知する。室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42は、冷媒の漏洩を検知したとき、冷媒漏洩の発生を示す漏洩信号を制御装置50へ出力する。各圧力センサは、それぞれ、計測した圧力のデータを制御装置50へ出力する。各温度センサは、それぞれ、計測した温度のデータを制御装置50へ出力する。すなわち、各冷媒漏洩センサ、各圧力センサ、及び各温度センサは、電気的又は光学的に制御装置50と接続されている。
 また、室内機70には、スピーカ及び発光体のうちの少なくとも1つを含んで構成された異常報知器45が設けられている。発光体としては、LED(発光ダイオード)などを用いることができる。異常報知器45は、制御装置50からの指示に応じて、音、音声、又は光などを出力することにより、異常の発生を報知する。
 制御装置50は、冷媒回路30を制御するものである。すなわち、制御装置50は、各圧力センサ及び各温度センサの出力を取得して、圧縮機1、再熱開閉弁2、第1膨張弁4、冷却開閉弁6、第2膨張弁9、及び除霜開閉弁10などの各種アクチュエータを制御する。また、制御装置50は、異常が生じたときに異常報知器45に異常発生の旨を報知させる。本実施の形態1の制御装置50は、各冷媒漏洩センサにより、冷媒漏洩の異常を検知したとき、異常報知器45に、音、音声、又は光などを出力させる。
 制御装置50は、例えば、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、を含んで構成される。RAMは、各種データを記憶する揮発性の記憶媒体である。ROMは、後述する各運転モードによる運転制御を制御装置50に実行させるための動作プログラムなどを記憶する不揮発性の記憶媒体である。制御装置50は、ROM内の動作プログラムにしたがって、圧縮機1、再熱開閉弁2、第1膨張弁4、冷却開閉弁6、第2膨張弁9、及び除霜開閉弁10などを適宜制御し、各運転モードによる空調を実施する。すなわち、制御装置50は、CPUなどの演算装置と、こうした演算装置と協働して下記の各種機能を実現させる動作プログラムとによって構成することができる。
 ここで、室内機70における空気の流れについて概略的に説明する。室内送風機11が動作すると、室内機70に空気が取り込まれる。室内機70に取り込まれた空気は、蒸発器として機能する室内熱交換器5を通過して、絶対湿度が低下する。つまり、水分を含んだ空気が室内熱交換器5を通過することで、空気中の水分が室内熱交換器5に結露するため、空気の絶対湿度が低下する。室内熱交換器5を通過することで絶対湿度が低下し、温度が低下した空気は、相対湿度が高い冷たい空気となっている。室内熱交換器5を通過した空気は、再熱器3を通過することにより再加熱され、相対湿度が低下する。そして、再熱器3を通過して相対湿度が低下した空気は、室内に吹き出される。上記の通り、室内機70に取り込まれた空気は、相対湿度が低下して状態で室内に吹き出されるため、室内の相対湿度が低下する。これは、後述する除湿運転時又は中間運転時の室内機70における空気の流れである。
 図2は、図1の制御装置の機能的構成を概略的に示すブロック図である。制御装置50は、演算処理部51と、記憶部52と、を有している。演算処理部51は、設定処理部51aと、動作制御部51bと、余剰冷媒検出部51cと、漏洩処理部51dと、を有している。設定処理部51aは、空気調和装置100の操作用のリモートコントローラ(図示せず)などから、ユーザによる操作及び設定の内容を示す操作信号を受け付ける。そして、設定処理部51aは、操作信号に応じて、運転モード、目標温度、及び目標湿度などの設定を行う。
 余剰冷媒検出部51cは、下記の何れかの方法により余剰冷媒の発生を検出するものであり、余剰冷媒の発生を検出したときに、動作制御部51bへ検出信号を出力する。例えば、余剰冷媒検出部51cは、過冷却度を求めると共に、求めた過冷却度が過冷却閾値よりも大きいか否かを判定するように構成することができる。この判定は、余剰冷媒が発生しているときに過冷却度が大きくなることを利用したものである。つまり、余剰冷媒検出部51cは、求めた過冷却度が過冷却閾値よりも大きい場合に、動作制御部51bへ検出信号を出力する。
 また、余剰冷媒の検出には、余剰冷媒が発生しているときに冷媒の吐出温度が高くなることを利用してもよい。つまり、余剰冷媒検出部51cは、冷媒温度センサ66から吐出温度を取得し、取得した吐出温度が吐出閾値よりも大きいか否かを判定してもよい。そして、余剰冷媒検出部51cは、吐出温度が吐出閾値よりも大きいときに、動作制御部51bへ検出信号を出力してもよい。
 さらに、余剰冷媒の検出には、余剰冷媒が発生しているときに高圧圧力が上昇することを利用してもよい。つまり、余剰冷媒検出部51cは、圧力センサ62から高圧圧力を取得し、取得した高圧圧力が高圧閾値よりも大きいか否かを判定してもよい。そして、余剰冷媒検出部51cは、高圧圧力が高圧閾値よりも大きいときに、動作制御部51bへ検出信号を出力してもよい。
 加えて、余剰冷媒の検出には、余剰冷媒が発生しているときに低圧圧力が上昇することを利用してもよい。つまり、余剰冷媒検出部51cは、圧力センサ61から低圧圧力を取得し、取得した低圧圧力が低圧閾値よりも大きいか否かを判定してもよい。そして、余剰冷媒検出部51cは、低圧圧力が低圧閾値よりも大きいときに、動作制御部51bへ検出信号を出力してもよい。
 漏洩処理部51dは、室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42のそれぞれから漏洩信号を取得する。漏洩処理部51dは、室内冷媒漏洩センサ41から漏洩信号が出力された場合、室内での冷媒漏洩の発生を示す室内漏洩信号を動作制御部51bへ出力する。漏洩処理部51dは、室外冷媒漏洩センサ42から漏洩信号が出力された場合、室外での冷媒漏洩の発生を示す室外漏洩信号を動作制御部51bへ出力する。
 また、漏洩処理部51dは、室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42の少なくとも一方から漏洩信号が出力されたとき、異常報知器45に、音、音声、又は光などを出力させる。漏洩処理部51dは、室内冷媒漏洩センサ41から漏洩信号を取得した場合と、室外冷媒漏洩センサ42から漏洩信号を取得した場合とで、異なる音、音声、又は光などを、異常報知器45に出力させてもよい。
 動作制御部51bは、各圧力センサ及び各温度センサから定期的に計測データを取得する。そして、動作制御部51bは、設定処理部51aによる設定内容に応じて、取得した計測データを用い、空気調和装置100の各アクチュエータの動作を制御する。動作制御部51bは、例えば、圧縮機1の圧縮機モータ1a、室内送風機11のファンモータ11a、及び室外送風機12のファンモータ12aの回転数を制御する。
 動作制御部51bは、ユーザの操作又はデフォルトの設定により、運転モードが除湿運転モードに設定されている場合、空気調和装置100に、空調空間の空気の除湿を行う除湿運転を実行させる。動作制御部51bは、運転モードが中間運転モードに設定されている場合、空気調和装置100に中間運転を実行させる。動作制御部51bは、運転モードが冷却運転モードに設定されている場合、空気調和装置100に、空調空間の空気の冷却を行う冷却運転を実行させる。動作制御部51bは、運転モードが除霜運転モードに設定されている場合、室内熱交換器5に付着した霜を溶かす除霜運転を空気調和装置100に実行させる。
 例えば、動作制御部51bは、除湿運転時に冷却開閉弁6を閉状態にする。動作制御部51bは、除湿運転時に、第2膨張弁9を全閉の状態にしてもよい。このようにすれば、冷却回路32から主回路31への冷媒の流入を防ぐことができる。また、動作制御部51bは、冷却運転時に再熱開閉弁2を閉状態にする。動作制御部51bは、冷却運転時に、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、再熱器3などに滞留している冷媒の室内熱交換器5への流入を防ぐことができる。
 また、動作制御部51bは、余剰冷媒が発生したとき、空気調和装置100に、後述する冷媒量調整運転を実行させる。つまり、動作制御部51bは、余剰冷媒検出部51cから検出信号が出力されたときに、再熱器3の性能を維持させつつ余剰冷媒を液溜め8に貯留させる冷媒量調整制御を実行する。
 さらに、動作制御部51bは、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、つまり漏洩処理部51dから室内漏洩信号が出力されたとき、再熱開閉弁2を閉状態にし、第2膨張弁9を全開の状態にする。これにより、第1接続部Mから再熱器3へ流れる冷媒を遮断し、室内の冷媒を室外熱交換器7及び液溜め8などに貯留することができるため、室内への冷媒の漏洩を抑制することができる。
 ここで、動作制御部51bは、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、さらに第1膨張弁4を全閉の状態にしてもよい。このようにすれば、再熱器3などに滞留している冷媒の室内熱交換器5側への流入を防ぐことができる。そのため、冷媒の漏洩箇所が、第2接続部Nから室内熱交換器5及び圧縮機1を経て第1接続部Mまでの流路に存在する場合に、室内へのさらなる冷媒漏洩を抑制することができる。動作制御部51bは、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、再熱開閉弁2及び除霜開閉弁10を閉状態とし、第1膨張弁4を全閉の状態とすることで、再熱開閉弁2から第1膨張弁4までの冷媒回路を独立させ、冷媒漏洩箇所の特定処理を促進してもよい。
 また、動作制御部51bは、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、つまり漏洩処理部51dから室外漏洩信号が出力されたとき、冷却開閉弁6を閉状態にし、第1膨張弁4を全閉の状態にする。これにより、室外への冷媒の流れを遮断し、室外の冷媒を室内熱交換器5に貯留することができるため、室外での冷媒の漏洩を抑制することができる。動作制御部51bは、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、冷却開閉弁6を閉状態とし、第2膨張弁9を全閉の状態とすることで、冷却開閉弁6から第2膨張弁9までの冷媒回路を独立させ、冷媒の漏洩箇所の特定処理を促進してもよい。
 記憶部52には、制御装置50の動作プログラムが記憶されている。また、記憶部52には、空調制御に関する種々のデータが記憶される。例えば、記憶部52には、運転モード、目標温度、及び目標湿度などの設定内容のデータが記憶される。また、記憶部52には、過冷却閾値、吐出閾値、高圧閾値、又は低圧閾値などの、余剰冷媒の発生を検出する際の基準となる閾値の情報が記憶される。なお、過冷却閾値、吐出閾値、高圧閾値、及び低圧閾値は、予め設定されており、適宜設定変更することができる。
 図3は、図1の空気調和装置の除湿運転時における冷媒回路の状態を示す説明図である。図4は、図1の空気調和装置の中間運転時における冷媒回路の状態を示す説明図である。図5は、図1の空気調和装置の冷却運転時における冷媒回路の状態を示す説明図である。図6は、図1の空気調和装置の除霜運転時における冷媒回路の状態を示す説明図である。図3~図6では、開状態の開閉弁を白抜きで示し、閉状態の開閉弁を黒塗りで示す。また、図3~図6では、冷媒の流れを矢印つきの破線で示す。図3~図6を参照して、各運転モードにおける弁制御及び冷媒の流れについて説明する。
[除湿運転]
 図3に示すように、除湿運転時は、冷却開閉弁6及び除霜開閉弁10が閉状態にあり、再熱開閉弁2が開状態にある。つまり、制御装置50は、除湿運転モードに設定されている場合、再熱開閉弁2を開状態とし、冷却開閉弁6及び除霜開閉弁10を閉状態とする。
 したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管を経て再熱器3に流入する。ここで、室内送風機11によって送風され、室内熱交換器5を通過した室内空気は、再熱器3を通過するようになっている。よって、再熱器3に流入した高温高圧のガス冷媒は、再熱器3を通過する室内空気と熱交換して放熱し、凝縮して液化する。そして、再熱器3から流出した冷媒は、液配管を経て第1膨張弁4で減圧され、気液二相冷媒となって室内熱交換器5に流入する。室内熱交換器5に流入した気液二相冷媒は、室内送風機11によって送風される室内空気との熱交換により吸熱してガス化し、低温低圧のガス冷媒となって圧縮機1に戻る。
 ここで、室内送風機11により室内機70を循環する空気は、室内熱交換器5を流れる低温低圧の気液二相冷媒によって冷却され、その温度が露点以下まで低下する。これにより、室内熱交換器5の表面で室内空気中の水分が結露し、室内空気が除湿される。その後、室内熱交換器5を通過した空気は、再熱器3で高温高圧のガス冷媒により加熱されて昇温し、相対湿度が低下する。
 このように、空気調和装置100は、除湿運転時に、冷却開閉弁6を閉状態にすることで、冷凍サイクル内の放熱をすべて室内で行う。つまり、空気調和装置100は、圧縮機1により冷媒に加わる熱量、及び空気中の水蒸気の凝縮潜熱の分だけ室内空気を加熱する運転を行う。したがって、除湿運転時の空気調和装置100に吸い込まれた室内空気は、加熱されると同時に除湿される。
[中間運転]
 図4に示すように、空調空間の空気の除湿と冷却とを同時に行う中間運転時は、再熱開閉弁2及び冷却開閉弁6が開状態にあり、除霜開閉弁10が閉状態にある。つまり、制御装置50は、中間運転モードに設定されている場合、再熱開閉弁2及び冷却開閉弁6を開状態とし、除霜開閉弁10を閉状態とする。
 したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管を経て、室外熱交換器7に流入すると共に、再熱器3に流入する。そして、室外熱交換器7および再熱器3で放熱して液化した冷媒は、液配管の下流に設置された第1膨張弁4及び第2膨張弁9で減圧されて気液二相冷媒となり、室内熱交換器5に流入する。室内熱交換器5に流入した気液二相冷媒は、室内熱交換器5で吸熱してガス化し、吸入配管を経て圧縮機1に吸入される。制御装置50は、中間運転において、室外送風機12に対し、室外温度及び高圧圧力に応じたオンオフ制御を行うと共に、室内送風機11に対し、常時オンにする制御を行う。
[冷却運転]
 図5に示すように、空調空間の空気を冷却する冷却運転時は、冷却開閉弁6が開状態にあり、再熱開閉弁2及び除霜開閉弁10が閉状態にある。つまり、制御装置50は、冷却運転モードに設定されている場合、再熱開閉弁2及び除霜開閉弁10を閉状態とし、除霜開閉弁10を閉状態とする。
 したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管を経て室外熱交換器7に流入し、室外送風機12によって送風される室外空気と熱交換して放熱し、凝縮して液化する。そして、室外熱交換器7から流出した冷媒は、液配管を経て第1膨張弁4で減圧されて気液二相冷媒となり、室内熱交換器5に流入する。室内熱交換器5に流入した気液二相冷媒は、室内送風機11により送風される室内空気と熱交換して吸熱してガス化し、低温低圧のガス冷媒となって圧縮機1に戻る。つまり、室内送風機11により循環する空気は、室内熱交換器5において低温低圧の気液二相冷媒により冷却される。なお、冷却運転時の余剰冷媒は、適宜、液溜め8に貯留される。
 ここで、冷却運転は、室内の絶対湿度が低いとき、又は室内の温度を下げる優先度が高いときに実行するとよい。なぜなら、冷却運転により空気の温度が低下すると、相対湿度が高くなる。そして、相対湿度が高くなると、快適性が低下すると共に、室内が結露しやすくなるといった不都合が生じるためである。また、例えば、冷却運転により、空気の温度が低下して露点以下になると、室内熱交換器5の表面で室内空気中の水分が結露して通風抵抗が増大し、熱交換能力が低下するためである。
[除霜運転]
 除霜運転は、室内熱交換器5に霜が着き、熱交換器としての性能が低下した際に行う霜取り運転のことである。図6に示すように、除霜運転時は、再熱開閉弁2及び冷却開閉弁6が閉状態にあり、除霜開閉弁10が開状態にある。つまり、制御装置50は、除霜運転モードに設定されている場合、再熱開閉弁2及び冷却開閉弁6を閉状態とし、除霜開閉弁10を開状態とする。したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管及びバイパス回路33を経て、第1膨張弁4で減圧され、室内熱交換器5に流入する。
 ここで、室内熱交換器5は、冷媒により加熱され、着氷した霜と熱交換して霜を溶かす。室内熱交換器5に流入した冷媒は、霜との熱交換により温度が低下して低温になった後、吸入管と熱交換して吸熱してガス化し、低温低圧のガス冷媒となって圧縮機1に戻る。このとき、制御装置50は、第1膨張弁4を最小開度にすることで、室内熱交換器5を通過する冷媒の量を調整し、液化した冷媒が圧縮機1に入ることを防ぐ。また、制御装置50は、室内送風機11をオフにする。よって、除霜運転時は、単純に、室内熱交換器5を通過する冷媒と、室内熱交換器5に付着した霜との間の熱交換のみが行われる。
[冷媒量調整運転]
 上記の各運転のうち、中間運転は、再熱器3及び室外熱交換器7に冷媒を流すため、必要とする冷媒量が相対的に多くなる。一方、除湿運転は、中間運転と比較して、必要とする冷媒の量が少ない。除湿運転では、再熱器3に冷媒が流れるが、室外熱交換器7には冷媒が流れないためである。したがって、除湿運転を行っているときは、余剰冷媒が発生することがある。そして、余剰冷媒が発生すると、高圧圧力が上昇する等の異常が発生するおそれがある。
 そこで、本実施の形態1の空気調和装置100は、除湿運転時において、余剰冷媒が発生したときに、冷媒量調整運転を実行するようになっている。以下、余剰冷媒が発生したときに動作制御部51bが行う冷媒量調整制御について説明する。
 動作制御部51bは、除湿運転中に、余剰冷媒の発生を検出すると、中間運転のときと同様、再熱開閉弁2及び冷却開閉弁6を共に開状態とし、除霜開閉弁10を閉状態とする。そして、動作制御部51bは、再熱器3の下流に設けられた第1膨張弁4と、室外熱交換器7の下流に設けられた第2膨張弁9とを用いて、冷媒量調整制御を実行する。つまり、動作制御部51bは、SC制御(サブクール制御)により冷凍サイクルを構成することで、再熱器3の性能を確保しつつ、SH制御(スーパーヒート制御)によって室外熱交換器7を通過した余剰冷媒を液溜め8に貯留させる。
 本実施の形態1の動作制御部51bは、再熱器3による過冷却度(SC)を再熱判定値以上に保つように、第1膨張弁4のSC制御を実行する。動作制御部51bによるSC制御により、除湿運転時に必要とする再熱器3の再熱量を確保して、必要十分な除湿能力を発揮することができる。
 動作制御部51bは、例えば、再熱器3の出口の冷媒の温度を利用して、第1膨張弁4の開度を制御する。この場合、動作制御部51bは、冷媒温度センサ67において計測された再熱器出口温度を用いて再熱器3による過冷却度を求める。より具体的に、動作制御部51bは、再熱器3による過冷却度を求める際、圧力センサ62から高圧圧力を取得すると共に、冷媒温度センサ67から再熱器出口温度を取得する。次いで、動作制御部51bは、高圧圧力を飽和換算して凝縮温度を求め、求めた凝縮温度から再熱器出口温度を減算することにより、再熱器3による過冷却度を求める。そして、動作制御部51bは、求めた過冷却度が設定値となるように第1膨張弁4を制御する。これにより、再熱器3による再熱の熱量を制御して、設定された除湿能力を発揮することができる。
 なお、動作制御部51bは、空気調和装置100の吹出し空気の温度、すなわち再熱器3を通過した空気の温度を利用して、第1膨張弁4の開度を制御してもよい。この場合、室内機70の吹出口に空気温度センサを設けておき、動作制御部51bは、当該空気温度センサによる計測温度が、設定された目標温度となるように、第1膨張弁4の開度を制御するとよい。ここで、空気調和装置100の吹出し空気の温度とは、室内機70から空調空間に吹き出される空気の温度のことであり、以降では、吹出し温度ともいう。
 また、動作制御部51bは、室外熱交換器7による加熱度(SH)を凝縮判定値以上に保つように、第2膨張弁9のSH制御を実行する。これにより、余剰冷媒が液溜め8に貯留される。本実施の形態1において、動作制御部51bは、室内熱交換器5の過熱度を求める際、圧力センサ61から低圧圧力を取得すると共に、冷媒温度センサ65から吸入温度を取得する。そして、動作制御部51bは、低圧圧力を飽和換算して蒸発温度を求め、吸入温度から蒸発温度を減算することにより、室内熱交換器5の過熱度を求める。もっとも、室内熱交換器5に冷媒温度センサを設け、当該冷媒センサによる計測温度を、制御装置50が蒸発温度として用いるようにしてもよい。
 図7は、図1の空気調和装置の動作のうち、冷媒量調整運転時の動作を例示したフローチャートである。図7に基づき、制御装置50による冷媒量調整制御について説明する。制御装置50は、下記のステップS101~S108の一連の処理を、定期的に繰り返し実行する。
 空気調和装置100の運転中において、制御装置50は、再熱器3による過冷却度を求める(ステップS101)。そして、制御装置50は、再熱器3による過冷却度が再熱判定値以上であるか否かを判定する(ステップS102)。
 制御装置50は、再熱器3による過冷却度が再熱判定値以上であれば(ステップS102/Yes)、第1膨張弁4の開度を小さくする(ステップS103)。一方、制御装置50は、再熱器3による過冷却度が再熱判定値未満であれば(ステップS102/No)、第1膨張弁4の開度を大きくする(ステップS104)。
 ステップS103及びS104において、制御装置50は、再熱器3による過冷却度と再熱判定値との差分であるSC差に応じて、第1膨張弁4の開度調整の程度を決定する。例えば、記憶部52に、SC差と第1膨張弁4の開度の調整量である第1調整量とを関連づけた第1開度調整テーブルを記憶させておくとよい。ここで、再熱器3による過冷却度から再熱判定値を減算してSC差を求める場合を想定する。すると、第1開度調整テーブルは、SC差が正の範囲で、SC差が大きくなれば、第1調整量が大きくなるようにするとよい。また、第1開度調整テーブルは、SC差が負の範囲で、SC差が小さくなれば、第1調整量が大きくなるようにするとよい。制御装置50は、第1開度調整テーブルを用いることにより、再熱器3による過冷却度が再熱判定値以上であれば、SC差が大きいほど第1膨張弁4の開度を小さくすることになる。同様に、制御装置50は、再熱器3による過冷却度が再熱判定値未満であれば、SC差の絶対値が大きいほど第1膨張弁4の開度を大きくすることになる。
 さらに、制御装置50は、室内熱交換器5による過熱度を求める(ステップS105)。そして、制御装置50は、室内熱交換器5による過熱度が蒸発判定値以上であるか否かを判定する(ステップS106)。
 制御装置50は、室内熱交換器5による過熱度が蒸発判定値以上であれば(ステップS106/Yes)、第2膨張弁9の開度を大きくする(ステップS107)。一方、制御装置50は、室内熱交換器5による過熱度が蒸発判定値未満であれば(ステップS106/No)、第2膨張弁9の開度を小さくする(ステップS108)。
 ステップS107及びS108において、制御装置50は、室内熱交換器5による過熱度と蒸発判定値との差分であるSH差に応じて、第2膨張弁9の開度調整の程度を決定する。例えば、記憶部52に、SH差と第2膨張弁9の開度の調整量である第2調整量とを関連づけた第2開度調整テーブルを記憶させておくとよい。ここで、室内熱交換器5による過熱度から蒸発判定値を減算してSH差を求める場合を想定する。すると、第2開度調整テーブルは、SH差が正の範囲で、SH差が大きくなれば第2調整量が大きくなるようにするとよい。また、第2開度調整テーブルは、SH差が負の範囲で、SH差が小さくなれば第2調整量が大きくなるようにするとよい。制御装置50は、第2開度調整テーブルを用いることにより、室内熱交換器5による過熱度が蒸発判定値以上であれば、SH差が大きいほど第2膨張弁9の開度を大きくすることになる。同様に、制御装置50は、室内熱交換器5による過熱度が蒸発判定値未満であれば、SH差の絶対値が大きいほど第2膨張弁9の開度を小さくすることになる。
[冷媒漏洩時の処理及び動作]
 次に、冷媒漏洩が発生した場合の制御装置50による処理内容、及び各開閉弁及び各膨張弁の動作内容の一例について説明する。
(室内冷媒漏洩センサ41が冷媒漏洩を検知した場合)
 室内冷媒漏洩センサ41が冷媒漏洩を検知した際、制御装置50は、再熱開閉弁2を閉状態にし、除霜開閉弁10を閉状態にし、冷却開閉弁6を開状態にし、第2膨張弁9を全閉とし、圧縮機1を運転させてポンプダウン運転を実行する。ポンプダウン運転を実行する際、制御装置50は、室内送風機11及び室外送風機12の回転数を、通常運転時の回転数よりも大きくするとよい。上記のような弁制御とポンプダウン運転により、室内で冷媒漏れが発生したとき、冷媒を、冷却開閉弁6から室外熱交換器7までの配管、室外熱交換器7、室外熱交換器7から液溜め8までの配管、液溜め8、及び液溜め8から第2膨張弁9までの配管に溜めることができる。
 また、制御装置50は、吸入側の圧力が設定値よりも低くなったとき、又は吐出側の圧力が設定値よりも高くなったときに、圧縮機1の運転を停止させる。そして、制御装置50は、圧縮機1の運転を停止させた後に、冷却開閉弁6を閉状態にする。このように、圧縮機1の停止後に冷却開閉弁6を閉状態にすることで、冷媒の逆流を抑制することができる。そして、上記のように、空気調和装置100の運転を段階的に停止することで、安全性の向上を図ることができる。
 なお、ポンプダウン運転を実行した後に、圧縮機1と室外熱交換器7と第2膨張弁9と室内熱交換器5とに冷媒を循環させでも支障がないときは、冷却開閉弁6を開にして冷却運転を実行することができる。冷却運転を実行することで、空調空間の温度上昇を防ぐことができるため、快適性の低下を抑制することができる。なお、圧縮機1と室外熱交換器7と第2膨張弁9と室内熱交換器5とに冷媒を循環させでも支障がない状況としては、冷媒の漏洩箇所が、再熱開閉弁2と第1膨張弁4との間、又は除霜開閉弁10と第1膨張弁4との間などで特定されている場合が想定される。
 (室外冷媒漏洩センサ42が冷媒漏洩を検知した場合)
 室外冷媒漏洩センサ42が冷媒漏洩を検知した際、制御装置50は、再熱開閉弁2を開状態にし、除霜開閉弁10を閉状態にし、冷却開閉弁6を閉状態にし、第1膨張弁4を全閉とし、圧縮機1を運転させてポンプダウン運転を実行する。ポンプダウン運転を実行する際、制御装置50は、室内送風機11及び室外送風機12の回転数を、通常運転時の回転数よりも大きくするとよい。上記のような弁制御とポンプダウン運転により、室外で冷媒漏れが発生したとき、冷媒を、再熱器3及び再熱器3から第1膨張弁4までの配管などに溜めることができる。
 また、制御装置50は、吸入側の圧力が設定値よりも低くなったとき、又は吐出側の圧力が設定値よりも高くなったときに、圧縮機1の運転を停止させる。そして、制御装置50は、圧縮機1の運転を停止させた後に、再熱開閉弁2を閉状態にする。このように、圧縮機1の停止後に再熱開閉弁2を閉状態にすることで、冷媒の逆流を抑制することができる。そして、上記のように、空気調和装置100の運転を段階的に停止することで、安全性を高めることができる。
 なお、ポンプダウン運転を実行した後に、圧縮機1と再熱器3と第1膨張弁4と室内熱交換器5とに冷媒を循環させても支障がないときは、再熱開閉弁2を開にして、除湿運転を実行することができる。除湿運転を継続することで、空調空間の湿度上昇を防ぐことができるため、快適性の低下を抑制することができる。なお、圧縮機1と再熱器3と第1膨張弁4と室内熱交換器5とに冷媒を循環させても支障がない状況としては、冷媒の漏洩箇所が、冷却開閉弁6と第2膨張弁9との間などで特定されている場合が想定される。
 以上のように、本実施の形態1の空気調和装置100では、除湿運転時に、制御装置50が冷却開閉弁6を閉状態にすることから、室外熱交換器7への冷媒の寝込みを防ぐことができるため、除湿能力の低下を防止し、除湿運転を効率よく行うことができる。また、制御装置50は、除湿運転時に、第2膨張弁9を全閉の状態にしてもよい。このようにすれば、冷却回路32から主回路31への冷媒の流入を防ぐことができるため、除湿運転の運転効率を高めることができる。
 また、主回路31は、圧縮機1と再熱器3との間の主配管21と冷却配管22との接続部分と、再熱器3との間に、開閉動作を行う再熱開閉弁2を有している。そして、制御装置50は、冷却運転時に、再熱開閉弁2を閉状態にするようになっている。よって、再熱器3への冷媒の流入を防ぐことができるため、冷却運転時の冷媒循環の円滑化と共に、運転効率の向上を図ることができる。加えて、制御装置50は、冷却運転時に、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、第1接続部Mから再熱器3及び第1膨張弁4を経て第2接続部Nまでの流路に滞留している冷媒の、室内熱交換器5への流入を防ぐことができるため、冷却運転時の運転効率をさらに高めることができる。
 さらに、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、再熱開閉弁2を閉状態にするため、再熱開閉弁2の下流での冷媒漏洩を抑制することができる。加えて、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、さらに第2膨張弁9を全開の状態にする。よって、室内に設けられた主回路31への冷媒の流入を防ぐことができ、室外熱交換器7及び液溜め8などに冷媒を貯留することができるため、室内への冷媒の漏洩を抑制することができる。もっとも、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、第2膨張弁9を全開の状態にしなくてもよい。
 また、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、さらに第1膨張弁4を全閉の状態にしてもよい。このようにすれば、再熱器3などに滞留している冷媒の室内熱交換器5への流入を防ぐことができるため、冷媒の漏洩箇所が、再熱開閉弁2から再熱器3を経て第1膨張弁4までの流路上にない場合、室内への冷媒漏洩を低減することができる。
 ここで、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、再熱開閉弁2及び除霜開閉弁10を閉状態とし、第1膨張弁4を全閉の状態としてもよい。このようにすれば、再熱開閉弁2から第1膨張弁4までの冷媒回路を独立させることができるため、冷媒漏洩箇所の特定処理を促進することができる。
 また、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、冷却開閉弁6を閉状態にする。よって、室外への冷媒の流れを遮断すると共に、室外の冷媒を室内熱交換器5に貯留することができるため、室外での冷媒の漏洩を抑制することができる。加えて、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、さらに第1膨張弁4を全閉の状態にする。よって、主回路31における冷媒の流れを遮断し、第1膨張弁4の上流、すなわち再熱器3などに冷媒を貯留することができるため、室外での冷媒の漏洩をさらに精度よく抑制することができる。もっとも、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、第1膨張弁4を全閉の状態にしなくてもよい。
 ここで、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、第2膨張弁9を全閉の状態にしてもよい。このようにすれば、冷却開閉弁6から第2膨張弁9までの冷媒回路を独立させることができるため、冷媒の漏洩箇所を迅速に特定させることができる。
 ところで、第1膨張弁4のSC制御を行わない場合は、室内又は室外の温度が低い方に冷媒が流れやすくなる。つまり、第1膨張弁4のSC制御を行わなければ、室内の温度が室外の温度よりも低いときは、再熱器3に冷媒が流れやすくなるため、室内の温度が所望の温度よりも上昇し、相対湿度が所望の湿度よりも低下する。一方、室外の温度が室内の温度よりも低いときは、再熱器3に冷媒が流れにくくなるため、室内の温度が所望の目温度よりも低下し、相対湿度が所望の湿度よりも上昇する。この点、制御装置50は、上記の通り、第1膨張弁4のSC制御を行うようになっている。そのため、再熱器3による加熱量を確保して、室内機70に除湿能力を発揮させることができる。
 また、再熱器3による過冷却度を再熱判定値以上に保つように、第1膨張弁4だけを制御すると、液バックが発生するおそれがある。第1膨張弁4のみの制御では、余剰冷媒を低減することができないためである。この点、制御装置50は、上記の通り、室外熱交換器7による加熱度を凝縮判定値以上に保つように、第2膨張弁9のSH制御を実行する。これにより、余剰冷媒が液溜め8に貯留されるため、液バックの発生を抑制することができる。すなわち、本実施の形態1の空気調和装置100によれば、第1膨張弁4でのSC制御と第2膨張弁9でのSH制御とを組み合わせることで、再熱能力の低下を抑止すると共に、液バックに起因した圧縮機1の損傷発生を回避することができる。
実施の形態2.
 本実施の形態2の空気調和装置は、吹出し温度のばらつきを低減するように構成されている。本実施の形態2の空気調和装置の構成は、図1及び図2に例示した構成と同様である。よって、実施の形態1と同等の構成部材については同一の符号を用いて説明は省略する。
 図8は、本発明の実施の形態2に係る室内熱交換器の具体的な構成を例示した説明図である。図8に示すように、室内熱交換器5は、複数本の伝熱管13と、複数枚のフィン14と、冷媒分配器15と、ヘッダ16と、により構成されたプレートフィンチューブ熱交換器である。また、本実施の形態2の再熱器3は、室内熱交換器5と同様に構成されたプレートフィンチューブ熱交換器である。すなわち、再熱器3は、複数本の伝熱管13と、複数枚のフィン14と、冷媒分配器15と、ヘッダ16と、により構成されている。なお、図8において、伝熱管13の本数、フィン14の枚数、段数、及び列数は一例である。すなわち、室内熱交換器5及び再熱器3のそれぞれについて、伝熱管13の本数、フィン14の枚数、段数、及び列数は、適宜変更することができる。
[非共沸混合冷媒の特徴]
 空気調和装置には、冷媒回路を循環させる冷媒として、複数種類の冷媒を混合した非共沸混合冷媒が用いられることがある。非共沸混合冷媒は、同圧力下において相変化で温度が変化する。そのため、例えば、蒸発器を非共沸混合冷媒が通過する場合、蒸発過程において、上流側の方が下流側よりも温度が低くなる。また、凝縮器を非共沸混合冷媒が通過する場合、凝縮過程において、上流側の方が下流側よりも温度が高くなる。
 図9は、非共沸混合冷媒のモリエル線図を例示した説明図である。図10は、非共沸混合冷媒の温度勾配の具体例を示すモリエル線図である。図9では、共沸混合冷媒の等温線を実線で示し、非共沸混合冷媒の等温線のうち、飽和液腺と飽和蒸気線との間の部分を破線で示す。つまり、非共沸混合冷媒を用いた場合、一定圧力で変化する蒸発工程及び凝縮工程において、熱交換器の入口-出口間に温度勾配が発生する。
 図10では、非共沸混合冷媒の低温域での室内熱交換器5の入口-出口間の温度勾配が約5℃の場合を例示している。この例では、室内熱交換器5の入口側の冷媒温度が-12℃となり、出口側の冷媒温度が-7℃となっている。すなわち、室内熱交換器5では、入口側の冷媒温度が、出口側の冷媒温度よりも低くなっている。そのため、室内熱交換器5の入口と出口とでは、吹出し温度に差異が生じる。
 非共沸混合冷媒のような温度勾配を有する冷媒を用いると、冷媒の温度が低い蒸発器の入口側では、空気の冷却が促進されて吹出し温度が低くなり、冷媒の温度が高い蒸発器の出口側では、吹出し温度が高くなる。つまり、熱交換器からの吹出し温度にばらつきが生じる。そして、ヒートポンプ式の再熱除湿が可能な空気調和装置では、吹出し温度のばらつきに起因して、空調空間の温湿度の安定性にむらが生じる。
 特に、CO2を含む冷媒では、温度勾配が大きくなるため、吹出し温度のばらつきが顕著となる。CO2を含む非共沸混合冷媒は、例えばR32、R125、R134a、r1234yf、及びCO2の混合冷媒である。この例の非共沸混合冷媒は、R32の組成が49wt%~55wt%であり、R125の組成が16wt%~22wt%であり、R134aの組成が7wt%~13wt%であり、r1234yfの組成が6wt%~12wt%であり、CO2の組成が7wt%~13wt%である。そして、R32、R125、R134a、r1234yf、及びCO2の組成比は、合計が100wt%となる。
 ここで、室内熱交換器5内の冷媒の流れについて説明する。まず、第1膨張弁4で減圧膨張された低温低圧の液状態の冷媒は、冷媒分配器15の流入口より室内熱交換器5に流入する。冷媒分配器15の流入口より流入した冷媒は、冷媒分配器15で分配され、冷媒分配器15のそれぞれの流出口より複数の伝熱管13へと流れる。伝熱管13に流入した冷媒は、伝熱管13の軸方向に沿って流れる。伝熱管13及びフィン14の表面には、冷却対象である室内の空気が、室内送風機11によって送風されている。本実施の形態2の空気調和装置100は、室内送風機11により室内熱交換器5に送風される空気が、伝熱管13を流れる冷媒と対向方向に流れるようになっている。空気調和装置100は、室内熱交換器5に送風される空気と伝熱管13を流れる冷媒とを対向させる対向流化により、熱交換損失を低減し、室内熱交換器5の性能向上を図っている。伝熱管13を流れる冷媒は、伝熱管13及びフィン14に接する屋内の空気との間で熱交換を行い、室内の空気の熱を吸熱する。伝熱管13にて室内の空気と熱交換を行った冷媒は、ヘッダ16の流入口より流入し、ヘッダ16で合流して、ヘッダ16の流出口より圧縮機1へと流れる。
 次に、再熱器3内の冷媒の流れについて説明する。まず、圧縮機1で加熱圧縮された高温高圧のガス状態の冷媒は、冷媒分配器15の流入口より流入する。冷媒分配器15の流入口より流入した冷媒は、冷媒分配器15で分配され、冷媒分配器15のそれぞれの流出口より複数の伝熱管13へと流れる。伝熱管13に流入した冷媒は、伝熱管13の軸方向に沿って流れる。伝熱管13及びフィン14の表面には、室内熱交換器5を通過して冷却された空気が送風されている。本実施の形態2の空気調和装置100は、再熱器3に送風される空気が、伝熱管13を流れる冷媒と対向方向に流れるようになっている。空気調和装置100は、再熱器3に送風される空気と伝熱管13を流れる冷媒とを対向させる対向流化により、熱交換損失を低減し、再熱器3の性能向上を図っている。伝熱管13を流れる冷媒は、室内熱交換器5で冷却され、伝熱管13及びフィン14に接する空気との間で熱交換を行い、空気へ熱を放熱する。伝熱管13にて空気と熱交換を行った冷媒は、ヘッダ16の流入口より流入し、ヘッダ16で合流して、ヘッダ16の流出口より第1膨張弁4へと流れる。
 非共沸混合冷媒を用いる場合、室内熱交換器5において、冷媒分配器15の流入口側と、ヘッダ16の流出口側との間には、熱交換能力に差異が生じる。したがって、冷媒分配器15の流入口側を通過した空気と、ヘッダ16の流出口側を通過した空気との間には、温度差が生じる。再熱器3においても同様に、冷媒分配器15の流入口側と、ヘッダ16の流出口側との間には、熱交換能力に差異が生じる。ただし、再熱器3では、室内熱交換器5とは逆に、入口側の冷媒温度が、出口側の冷媒温度よりも高くなっている。
 したがって、室内熱交換器5の入口側と再熱器3の出口側とが対向し、かつ蒸発器の出口側と再熱器3の入口側とが対向するように、再熱器3と室内熱交換器5とを配置すると、室内熱交換器5で生じた温度差が、再熱器3でさらに大きくなってしまう。つまり、上記のような配置を採ると、非共沸混合冷媒を用いた際に生じる、熱交換器の入口-出口間の温度差により、再熱除湿時の吹出し温度には、部位によって差異が発生することとなる。
 そこで、本実施の形態2の空気調和装置100は、室内熱交換器5のうちで冷媒温度が最も低い部分を通過した空気が、再熱器3のうちで冷媒温度が最も高い部分を通過するように、室内熱交換器5と再熱器3とが配置されている。つまり、室内熱交換器5のうちで冷媒温度が最も高い部分を通過した空気が、再熱器3のうちで冷媒温度が最も低い部分を通過するように、室内熱交換器5と再熱器3とが配置されている。なお、本実施の形態2の空気調和装置100においても、実施の形態1と同様、室内熱交換器5と再熱器3とは、共通する風路上に設けられている。
 図11は、本発明の実施の形態2の空気調和装置における蒸発器及び再熱器の配置例を示す説明図である。図11において、室内熱交換器5及び再熱器3の内部に示す波線同士の間隔は、冷媒温度の高低に対応している。すなわち、図11では、波線同士の間隔が狭くなれば冷媒温度が高くなり、波線同士の間隔が広くなれば冷媒温度が低くなるように、波線を例示している。
 つまり、室内熱交換器5は、冷媒の入口側の温度が、冷媒の出口側の温度よりも低くなっている。再熱器3は、冷媒の入口側の温度が、冷媒の出口側の温度よりも高くなっている。そして、室内熱交換器5と再熱器3とは、室内熱交換器5における冷媒の入口側を通過した空気が、再熱器3における冷媒の出口側を通過し、かつ、室内熱交換器5における冷媒の出口側を通過した空気が、再熱器3における冷媒の入口側を通過するように配置されている。
 例えば、図11に示すように、室内熱交換器5の冷媒温度が相対的に低い部分と、再熱器3の冷媒温度が相対的に高い部分とが対向し、かつ室内熱交換器5の冷媒温度が相対的に高い部分と、再熱器3の冷媒温度が相対的に低い部分とが対向するような配置を採ってもよい。室内熱交換器5及び再熱器3は、何れも、冷媒が上部から下部へ流れるように設けられている。室内熱交換器5と再熱器3との具体的な配置については、各機器の配置及びパスパターンによる各熱交換器からの吹出し温度をもとに、最適な配置を適宜選択すればよい。
 ところで、図11では、各熱交換器の列数が1列の場合を例示しているが、これに限らず、各熱交換器の列数は、2列以上であってもよい。室内熱交換器5及び再熱器3のうちの少なくとも1つの列数を2列以上とした場合においても、各熱交換器の熱分布をもとに、室内熱交換器5及び再熱器3の配置を決定するとよい。
 図12は、本発明の実施の形態2の空気調和装置における冷媒漏洩時の各開閉弁及び各膨張弁の状態を示す表である。本実施の形態2の制御装置50は、実施の形態1の場合と同様、室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42のそれぞれから漏洩信号を取得するようになっている。
 制御装置50は、室内側で冷媒漏洩を検知した際、室内側の再熱開閉弁2を閉状態にすると共に、再熱器3の下流側の第1膨張弁4を全開にする。これにより、第1接続部Mから再熱器3及び第1膨張弁4を経て第2接続部Nまでの流路に存在する冷媒を、室内熱交換器5側へ導くことができる。さらに、制御装置50は、室内側で冷媒漏洩を検知した際、室外側の冷却開閉弁6を開状態にし、室外熱交換器7の下流側の第2膨張弁9を全閉にする。これらの弁制御により、冷媒を室外側に溜めることができる。よって、室内で冷媒が漏れた場合に、室内での不活性ガスの充満を抑止することができるため、安全性を高めることができる。
 制御装置50は、室外側で冷媒漏洩を検知した際、冷却開閉弁6を閉状態にし、第2膨張弁9を全開にする。これにより、冷却回路32に存在する冷媒を、室内熱交換器5側へ導くことができる。さらに、制御装置50は、室外側で冷媒漏洩を検知した際、再熱開閉弁2を開状態にすると共に、第1膨張弁4を全閉にする。これらの弁制御により、冷媒を室内側に溜めることができる。よって、室外で冷媒が漏れた場合に、室外での不活性ガスの充満を抑止することができるため、安全性を高めることができる。
 また、本実施の形態2では、非共沸混合冷媒の特性を生かし、制御装置50が、乾き度を用いて冷媒回路30を制御するようになっている。ところで、従来の擬似共沸冷媒は、二層冷媒の温度勾配がないため、擬似共沸冷媒を用いた場合は、乾き度を算出することができない。よって、高圧と低圧の飽和温度と冷媒温度から算出した過熱度及び過冷却度を用いて冷媒回路を制御するのが一般的であり、冷媒の状態がわからないことから、従来は、算出した過熱度及び過冷却度に尤度を持たせて制御するという手法が採られている。
 この点、非共沸混合冷媒では、圧力と温度とから乾き度を求めることができ、求めた乾き度から冷媒の状態がわかるため、尤度を持たせる設計をしなくても、信頼性の高い制御を構築することができる。すなわち、非共沸混合冷媒を用いれば、モリエル線図上の飽和線に沿った制御が可能となるため、熱交換器の容量を有用に活用した制御を構築することができる。非共沸混合冷媒は、二相冷媒の温度勾配があるためである。
 本実施の形態2の空気調和装置100は、圧縮機1の吸入側の圧力を計測する低圧センサと、室内熱交換器5出口の乾き度、つまり低圧側の乾き度を取得する位置の温度を計測する蒸発器温度センサと、を設けて構成するとよい。すると、制御装置50は、低圧センサが検出した圧力と、蒸発器温度センサが検出した温度とから、低圧側の乾き度を求めることができる。非共沸冷媒では、圧力と冷媒の温度から低圧側の乾き度が一意に求まる。ここで、低圧センサは、図1の圧力センサ61に相当し、蒸発器温度センサは、図1の冷媒温度センサ68に相当する。
 また、圧縮機1の吐出側の圧力を計測する高圧センサと、再熱器3出口又は室外熱交換器7出口の乾き度、つまり高圧側の乾き度を取得する位置の温度を計測する凝縮器温度センサと、を設けて構成するとよい。すると、制御装置50は、高圧センサが検出した圧力と、凝縮器温度センサが検出した温度とから、高圧側の乾き度を求めることができる。非共沸冷媒では、圧力と冷媒の温度から高圧側の乾き度が一意に求まる。ここで、高圧センサは、図1の圧力センサ62、63、64に相当し、凝縮器温度センサは、図1の冷媒温度センサ67、69に相当する。すなわち、再熱器3出口の乾き度は、圧力センサ62又は圧力センサ63の計測圧力と、冷媒温度センサ67の計測温度とから求まる。室外熱交換器7出口の乾き度は、圧力センサ62又は圧力センサ64の計測圧力と、冷媒温度センサ69の計測温度とから求まる。
 以上のように、本実施の形態2の空気調和装置100によっても、除湿能力の低下を防止し、除湿運転を効率よく行うことができる。また、本実施の形態2において、室内熱交換器5と再熱器3とは、室内熱交換器5の吹出し温度が低くなる箇所と、再熱器3の吹出し温度が高くなる箇所とが、空気の流れにおいて重なるように配置されている。つまり、空気調和装置100は、室内熱交換器5及び再熱器3の各々の温度分布をもとに、室内熱交換器5の最も冷媒温度が低い部分と、再熱器3の最も冷媒温度が高い部分とが、共通する風路に対し重なるように構成されている。そのため、除湿運転時又は中間運転時において、温度のばらつきの少ない空気を室内に供給することができる。
 より具体的に、本実施の形態2の冷媒回路30は、内部を循環する冷媒として、非共沸混合冷媒が用いられている。そのため、室内熱交換器5は、冷媒の入口側の温度が、冷媒の出口側の温度よりも低くなる。また、再熱器3は、冷媒の入口側の温度が、冷媒の出口側の温度よりも高くなる。そして、室内熱交換器5と再熱器3とは、室内熱交換器5における冷媒の入口側を通過した空気が、再熱器3における冷媒の出口側を通過し、かつ、室内熱交換器5における冷媒の出口側を通過した空気が、再熱器3における冷媒の入口側を通過するように配置されている。例えば、室内熱交換器5及び再熱器3のそれぞれに流れる冷媒の経路は、図11のように規定することができる。よって、吹出し温度のばらつきと、吹出し温度のばらつきに起因した湿度のむらとを低減することができるため、室内機70から空調空間に吹き出される空気の温度のばらつきを抑制すると共に、室内の空気の状態の安定化を図ることができる。他の効果等については、実施の形態1と同様である。
実施の形態3.
 図13は、本発明の実施の形態3に係る空気調和装置の全体的な構成図である。本実施の形態3の空気調和装置200は、冷媒回路30の構成の一部が、実施の形態1及び2の空気調和装置100とは異なっている。実施の形態1及び2と同様の構成部材については同一の符号を用いて説明は省略する。
 図13に示すように、本実施の形態3の冷媒回路30は、液溜め8を搭載しておらず、アキュムレータ18を搭載している点で実施の形態1とは異なっており、他の構成については実施の形態1と同様である。すなわち、空気調和装置200は、アキュムレータ18に余剰冷媒を溜めるように、再熱器3及び室外熱交換器7の双方の運転をSC制御によってコントロールする。
 本実施の形態3では、再熱器3及び室外熱交換器7のそれぞれに応じたSC制御により、再熱器3及び室外熱交換器7のそれぞれでの最適な冷媒量による運転が可能となる。そのため、空気調和装置200の能力を適正に維持することができると共に、余剰した冷媒は、安価なアキュムレータ18に溜めておくことができる。つまり、液バックにより圧縮機1に向けて冷媒が戻ってきたとしても、アキュムレータ18の作用により、圧縮機1での液圧縮を抑制することができるため、信頼性の高い空気調和装置200を提供することができる。
 ここで、制御装置50は、再熱器3による過冷却度を、圧力センサ62から取得する高圧圧力と、冷媒温度センサ67から取得する再熱器出口温度と、を用いて求めるようになっている。すなわち、制御装置50は、高圧圧力を飽和換算して凝縮温度を求め、求めた凝縮温度から再熱器出口温度を減算することにより、再熱器3による過冷却度を求める。また、制御装置50は、室外熱交換器7による過冷却度を、圧力センサ64から取得する凝縮器出口圧力と、冷媒温度センサ69から取得する室外熱交換器出口温度とを用いて求めるようになっている。すなわち、制御装置50は、高圧圧力を飽和換算して凝縮温度を求め、求めた凝縮温度から室外熱交換器出口温度を減算することにより、室外熱交換器7による過冷却度を求める。もっとも、制御装置50は、室外熱交換器7による過冷却度を求める際、圧力センサ64から取得する凝縮器出口圧力の代わりに、圧力センサ62から取得する高圧圧力を用いてもよい。
 室内外での冷媒漏洩時の各開閉弁及び各膨張弁の制御は、上述した実施の形態1及び2と同様である。また、空気調和装置200は、前述した実施の形態2における再熱器3と室内熱交換器5との配置構成を適用してもよく、実施の形態2の場合と同様、乾き度を用いて冷媒回路30を制御してもよい。
 図14は、図13の空気調和装置の動作のうち、冷媒量調整運転時の動作を例示したフローチャートである。図14を参照して、本実施の形態3の制御装置50による冷媒量調整制御について説明する。制御装置50は、下記のステップS101~S104、及びステップS301~S304の一連の処理を、定期的に繰り返し実行する。
 制御装置50は、図7の場合と同様に、ステップS101~S104の一連の処理を実行する。次いで、制御装置50は、室外熱交換器7による過冷却度を求める(ステップS301)。そして、制御装置50は、求めた室外熱交換器7による過冷却度が凝縮判定値以上であるか否かを判定する(ステップS302)。
 制御装置50は、室外熱交換器7による過冷却度が凝縮判定値以上であれば(ステップS302/Yes)、第2膨張弁9の開度を小さくする(ステップS303)。一方、制御装置50は、室外熱交換器7による過冷却度が凝縮判定値未満であれば(ステップS302/No)、第2膨張弁9の開度を小さくする(ステップS304)。
 ステップS303及びS304において、制御装置50は、室外熱交換器7による過冷却度と凝縮判定値との差分である第2SC差に応じて、第1膨張弁4の開度調整の程度を決定する。例えば、記憶部52に、第2SC差と第2膨張弁9の開度の調整量である弁調整量とを関連づけた弁調整テーブルを記憶させておくとよい。ここで、室外熱交換器7による過冷却度から凝縮判定値を減算して第2SC差を求める場合を想定する。すると、弁調整テーブルは、第2SC差が正の範囲で、第2SC差が大きくなれば、弁調整量が大きくなるようにするとよい。また、弁調整テーブルは、第2SC差が負の範囲で、第2SC差が小さくなれば、弁調整量が大きくなるようにするとよい。制御装置50は、弁調整テーブルを用いることにより、室外熱交換器7による過冷却度が凝縮判定値以上であれば、第2SC差が大きいほど第2膨張弁9の開度を小さくすることになる。同様に、制御装置50は、室外熱交換器7による過冷却度が再熱判定値未満であれば、第2SC差の絶対値が大きいほど第2膨張弁9の開度を大きくすることになる。
 以上のように、本実施の形態3の空気調和装置200によっても、除湿能力の低下を防止し、除湿運転を効率よく行うことができる。ところで、実施の形態1のように、液溜め8を備える冷媒回路30では、液バックに応じた保護のために、第2膨張弁9に対し、過熱度を確保する運転を実施する必要がある。したがって、余剰冷媒を貯留させるためには、容量の大きな液溜め8のような高価な高圧容器が必要となる。
 この点、本実施の形態3の空気調和装置200では、再熱器3及び室外熱交換器7のそれぞれに応じたSC制御により、再熱器3及び室外熱交換器7のそれぞれでの最適な冷媒量による運転が可能となる。そのため、空気調和装置200の能力を適正に維持することができ、余剰冷媒は、安価なアキュムレータ18に溜めておくことができる。つまり、液バックにより圧縮機1に向けて冷媒が戻ってきたとしても、アキュムレータ18の作用により、圧縮機1での液圧縮を抑制することができるため、空気調和装置としての信頼性を高めることができる。
 そして、空気調和装置200は、非共沸混合冷媒を、アキュムレータ18により、気体と液体とに分離させ、高沸点の冷媒をアキュムレータ18に貯留させ、低沸点の冷媒を用いて除霜運転時の熱容量を増加させる。つまり、空気調和装置200は、除霜運転中において、非共沸混合冷媒に含まれる高沸点の冷媒をアキュムレータ18に貯留させ、非共沸混合冷媒に含まれる低沸点の冷媒を冷媒回路30に循環させる。そのため、霜取り時間の短縮を図ることができる。他の効果等については、実施の形態1及び2と同様である。
 上述した各実施の形態は、空気調和装置における好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、空気調和装置100は、冷却運転及び除霜運転を行う機能を有さなくてもよく、この場合は、再熱開閉弁2が不要となる。よって、主回路31は、圧縮機1、再熱器3、第1膨張弁4、及び室内熱交換器5が主配管21により順次連結されたものとなる。また、実施の形態1及び2では、冷媒回路30に液溜め8が設けられた例を示したが、これに限らず、実施の形態1及び2の冷媒回路30は、液溜め8を有しなくてもよい。さらに、上記各実施の形態では、主回路31が空調空間に配置されている場合を例示したが、これに限らず、主回路31の構成のうち、少なくとも再熱器3及び室内熱交換器5が空調空間に配置されていればよい。加えて、実施の形態1~3の冷媒回路30は、バイパス回路33を有しなくてもよい。ただし、冷媒回路30にバイパス回路33を設けなければ、本実施の形態1のような流路での除霜運転は不可となる。
 上記各実施の形態では、主回路31が空調空間に配置されている場合を例示したが、これに限らず、少なくとも再熱器3及び室内熱交換器5が空調空間に配置されていればよい。
 図1及び図13では、室内冷媒漏洩センサ41が室内機70の内部に設けられた例を示したが、これに限らず、室内冷媒漏洩センサ41は、空調空間の内部であって、室内機70の外部に設けられてもよい。同様に、図1及び図13では、室外冷媒漏洩センサ42が室外機80の内部に設けられた例を示したが、これに限らず、室外冷媒漏洩センサ42は、空調空間及び室外機80の外部に設けられてもよい。
 図1及び図13では、制御装置50が室内機70の内部に設けられた例を示したが、これに限らず、制御装置50は、室外機80の内部に設けられてもよい。また、室外機80に、室外送風機12などの室外機80の各アクチュエータの動作を制御する室外制御装置を設け、制御装置50と室外制御装置とが連携して、空気調和装置100又は200を制御してもよい。加えて、図12に例示した冷媒漏洩時の各開閉弁及び各膨張弁の処理は、実施の形態1及び3の構成に適用することもできる。
 1 圧縮機、1a 圧縮機モータ、2 再熱開閉弁、3 再熱器、4 第1膨張弁、5 室内熱交換器、6 冷却開閉弁、7 室外熱交換器、8 液溜め、9 第2膨張弁、10 除霜開閉弁、11 室内送風機、11a、12a ファンモータ、12 室外送風機、13 伝熱管、14 フィン、15 冷媒分配器、16 ヘッダ、18 アキュムレータ、20 冷媒配管、21 主配管、22 冷却配管、23 バイパス配管、30 冷媒回路、31 主回路、32 冷却回路、33 バイパス回路、41 室内冷媒漏洩センサ、42 室外冷媒漏洩センサ、45 異常報知器、50 制御装置、51 演算処理部、51a 設定処理部、51b 動作制御部、51c 余剰冷媒検出部、51d 漏洩処理部、52 記憶部、53 動作制御部、61~64 圧力センサ、65~69 冷媒温度センサ、70 室内機、80 室外機、91、92 空気温度センサ、100、200 空気調和装置、M 第1接続部、N 第2接続部。

Claims (13)

  1.  圧縮機、再熱器、第1膨張弁、及び蒸発器が主配管により順次連結された主回路と、前記圧縮機と前記再熱器との間から前記第1膨張弁と前記蒸発器との間までをつなぐ冷却配管によって冷却開閉弁、凝縮器、及び第2膨張弁が連結された冷却回路とを含み、冷媒が循環する冷媒回路と、
     前記冷媒回路を制御する制御装置と、有し、
     前記再熱器及び前記蒸発器は、空調空間に配置され、
     前記凝縮器は、前記空調空間の外部に配置され、
     前記制御装置は、
     前記空調空間の空気の除湿を行う除湿運転時に、前記冷却開閉弁を閉状態にするものである、空気調和装置。
  2.  前記制御装置は、
     前記除湿運転時に、前記第2膨張弁を全閉の状態にするものである、請求項1に記載の空気調和装置。
  3.  前記主回路は、
     前記圧縮機と前記再熱器との間の前記主配管と前記冷却配管との接続部分と、前記再熱器との間に、開閉動作を行う再熱開閉弁を有し、
     前記制御装置は、
     前記空調空間の空気の冷却を行う冷却運転時に、前記再熱開閉弁を閉状態にするものである、請求項1又は2に記載の空気調和装置。
  4.  前記制御装置は、
     前記冷却運転時に、前記第1膨張弁を全閉の状態にするものである、請求項3に記載の空気調和装置。
  5.  前記空調空間に設けられ、冷媒の漏洩を検知する室内冷媒漏洩センサを有し、
     前記制御装置は、
     前記室内冷媒漏洩センサにおいて冷媒の漏洩が検知されたとき、前記再熱開閉弁を閉状態にするものである、請求項3又は4に記載の空気調和装置。
  6.  前記制御装置は、
     前記室内冷媒漏洩センサにおいて冷媒の漏洩が検知されたとき、前記第2膨張弁を全閉の状態にするものである、請求項5に記載の空気調和装置。
  7.  前記空調空間の外部に設けられ、冷媒の漏洩を検知する室外冷媒漏洩センサを有し、
     前記制御装置は、
     前記室外冷媒漏洩センサにおいて冷媒の漏洩が検知されたとき、前記冷却開閉弁を閉状態にするものである、請求項1~6の何れか一項に記載の空気調和装置。
  8.  前記制御装置は、
     前記室外冷媒漏洩センサにおいて冷媒の漏洩が検知されたとき、前記第1膨張弁を全閉の状態にするものである、請求項7に記載の空気調和装置。
  9.  前記冷媒回路は、
     内部を循環する冷媒として、非共沸混合冷媒が用いられている、請求項1~8の何れか一項に記載の空気調和装置。
  10.  前記蒸発器と前記再熱器とは、
     前記蒸発器における冷媒の入口側を通過した空気が、前記再熱器における冷媒の出口側を通過し、かつ、前記蒸発器における冷媒の出口側を通過した空気が、前記再熱器における冷媒の入口側を通過するように配置されている、請求項9に記載の空気調和装置。
  11.  圧縮機、再熱器、第1膨張弁、及び蒸発器が冷媒配管により順次連結され、非共沸混合冷媒が循環する冷媒回路を有し、
     前記蒸発器と前記再熱器とは、
     前記蒸発器における冷媒の入口側を通過した空気が、前記再熱器における冷媒の出口側を通過し、かつ、前記蒸発器における冷媒の出口側を通過した空気が、前記再熱器における冷媒の入口側を通過するように配置されている、空気調和装置。
  12.  前記蒸発器及び前記再熱器は、何れも、冷媒が上部から下部へ流れるように設けられている、請求項10又は11に記載の空気調和装置。
  13.  前記冷媒回路は、
     前記圧縮機と前記蒸発器との間に設けられたアキュムレータと、
     前記圧縮機の吐出側から前記再熱器と前記第1膨張弁との間までをつなぐバイパス配管、及び前記バイパス配管を開閉する除霜開閉弁を備えたバイパス回路と、を有する、請求項9~12の何れか一項に記載の空気調和装置。
PCT/JP2018/027484 2018-07-23 2018-07-23 空気調和装置 WO2020021593A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880095733.4A CN112437856B (zh) 2018-07-23 2018-07-23 空调装置
JP2020531839A JP7003266B2 (ja) 2018-07-23 2018-07-23 空気調和装置
PCT/JP2018/027484 WO2020021593A1 (ja) 2018-07-23 2018-07-23 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027484 WO2020021593A1 (ja) 2018-07-23 2018-07-23 空気調和装置

Publications (1)

Publication Number Publication Date
WO2020021593A1 true WO2020021593A1 (ja) 2020-01-30

Family

ID=69181423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027484 WO2020021593A1 (ja) 2018-07-23 2018-07-23 空気調和装置

Country Status (3)

Country Link
JP (1) JP7003266B2 (ja)
CN (1) CN112437856B (ja)
WO (1) WO2020021593A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210302073A1 (en) * 2020-03-31 2021-09-30 Goodman Global Group, Inc. Heating, Ventilation, and Air-Conditioning System with Reheat
WO2021241290A1 (ja) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 空気調和装置
WO2023281656A1 (ja) * 2021-07-07 2023-01-12 三菱電機株式会社 熱交換器および冷凍サイクル装置
EP4119942A1 (en) * 2021-07-14 2023-01-18 Carrier Corporation Methods of reducing the occurence of false positives in gas detectors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115406015A (zh) * 2022-08-25 2022-11-29 博易智汇科技(北京)有限公司 一种三管式热气旁通低温工况的可变冷凝冷冻除湿精密设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196466A (ja) * 1988-02-01 1989-08-08 Hitachi Ltd 空気調和機
JPH04369370A (ja) * 1991-06-14 1992-12-22 Hitachi Ltd 冷凍装置
JPH09257333A (ja) * 1996-03-19 1997-10-03 Daikin Ind Ltd 空気調和機
JPH09318205A (ja) * 1996-05-27 1997-12-12 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2001082761A (ja) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp 空気調和機
JP2012127519A (ja) * 2010-12-13 2012-07-05 Panasonic Corp 空気調和機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5531246B2 (ja) * 2011-05-31 2014-06-25 オリオン機械株式会社 圧縮空気除湿装置
JP6584358B2 (ja) * 2016-03-31 2019-10-02 日立ジョンソンコントロールズ空調株式会社 除湿乾燥装置
JP6771302B2 (ja) * 2016-04-19 2020-10-21 日立ジョンソンコントロールズ空調株式会社 空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196466A (ja) * 1988-02-01 1989-08-08 Hitachi Ltd 空気調和機
JPH04369370A (ja) * 1991-06-14 1992-12-22 Hitachi Ltd 冷凍装置
JPH09257333A (ja) * 1996-03-19 1997-10-03 Daikin Ind Ltd 空気調和機
JPH09318205A (ja) * 1996-05-27 1997-12-12 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2001082761A (ja) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp 空気調和機
JP2012127519A (ja) * 2010-12-13 2012-07-05 Panasonic Corp 空気調和機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210302073A1 (en) * 2020-03-31 2021-09-30 Goodman Global Group, Inc. Heating, Ventilation, and Air-Conditioning System with Reheat
WO2021241290A1 (ja) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 空気調和装置
EP4160120A4 (en) * 2020-05-27 2023-11-08 Panasonic Intellectual Property Management Co., Ltd. AIR CONDITIONING DEVICE
WO2023281656A1 (ja) * 2021-07-07 2023-01-12 三菱電機株式会社 熱交換器および冷凍サイクル装置
EP4119942A1 (en) * 2021-07-14 2023-01-18 Carrier Corporation Methods of reducing the occurence of false positives in gas detectors

Also Published As

Publication number Publication date
JP7003266B2 (ja) 2022-01-20
CN112437856A (zh) 2021-03-02
JPWO2020021593A1 (ja) 2021-04-30
CN112437856B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2020021593A1 (ja) 空気調和装置
JP5774225B2 (ja) 空気調和装置
JP6937947B2 (ja) 空気調和装置
JP6895901B2 (ja) 空気調和装置
WO2012077275A1 (ja) 空気調和装置
US10907866B2 (en) Refrigerant cycle apparatus and air conditioning apparatus including the same
JP2009162388A (ja) 冷凍空調装置、冷凍空調装置の室外機および冷凍空調装置の制御装置
JP5908183B1 (ja) 空気調和装置
JP2017142038A (ja) 冷凍サイクル装置
JP3835453B2 (ja) 空気調和装置
US11448408B2 (en) Multi-type air conditioner
JPWO2018189942A1 (ja) 空気調和機
WO2016208042A1 (ja) 空気調和装置
JP6120943B2 (ja) 空気調和装置
WO2018221052A1 (ja) 制御装置、それを備えたマルチ型空気調和システム、及び制御方法並びに制御プログラム
WO2019017350A1 (ja) 冷凍装置
JP5213372B2 (ja) 空気調和機
JP6932210B2 (ja) 空調システム
JP7258129B2 (ja) 空気調和装置
KR20190088693A (ko) 멀티형 공기조화기
CN107356009B (zh) 多联机系统及其低温控制方法
KR102250983B1 (ko) 멀티형 공기조화기
WO2023228353A1 (ja) 空気調和装置
JP7258212B2 (ja) 空気調和装置
KR20180138487A (ko) 이산화탄소 공기조화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928099

Country of ref document: EP

Kind code of ref document: A1