WO2020015608A1 - 一种转子铸铝的方法 - Google Patents

一种转子铸铝的方法 Download PDF

Info

Publication number
WO2020015608A1
WO2020015608A1 PCT/CN2019/095995 CN2019095995W WO2020015608A1 WO 2020015608 A1 WO2020015608 A1 WO 2020015608A1 CN 2019095995 W CN2019095995 W CN 2019095995W WO 2020015608 A1 WO2020015608 A1 WO 2020015608A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
mold
heating
rotor
aluminum
Prior art date
Application number
PCT/CN2019/095995
Other languages
English (en)
French (fr)
Inventor
侯击波
甄洪滨
施松铃
Original Assignee
福建浦汇科技发展有限公司
侯击波
甄洪滨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建浦汇科技发展有限公司, 侯击波, 甄洪滨 filed Critical 福建浦汇科技发展有限公司
Priority to JP2021503026A priority Critical patent/JP7110477B2/ja
Priority to US17/259,874 priority patent/US11198176B2/en
Priority to EP19837734.3A priority patent/EP3825035B1/en
Priority to KR1020217004913A priority patent/KR102522638B1/ko
Publication of WO2020015608A1 publication Critical patent/WO2020015608A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • B22D41/015Heating means with external heating, i.e. the heat source not being a part of the ladle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2038Heating, cooling or lubricating the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0054Casting in, on, or around objects which form part of the product rotors, stators for electrical motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0081Casting in, on, or around objects which form part of the product pretreatment of the insert, e.g. for enhancing the bonding between insert and surrounding cast metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D35/00Equipment for conveying molten metal into beds or moulds
    • B22D35/04Equipment for conveying molten metal into beds or moulds into moulds, e.g. base plates, runners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/003Equipment for supplying molten metal in rations using electromagnetic field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the invention relates to the technical field of aluminum casting of a rotor of a motor, in particular to a method of aluminum casting of a rotor.
  • the rotor is composed of an upper short circuit ring, a lower short circuit ring, a guide bar connected between the upper short circuit ring and the lower short circuit ring, and a rotor core.
  • the upper short circuit ring, the lower short circuit ring and the guide bar are collectively referred to as a squirrel cage. Rotor cast aluminum method.
  • the rotor casting aluminum method commonly used on the market is pressure casting, which is essentially a method for filling a mold cavity with a liquid or semi-liquid metal at a high speed under high pressure, and forming and solidifying under pressure to obtain a casting.
  • Pressure casting has the characteristics of fast filling and high efficiency; however, it is well known that the rotor aluminum castings produced by it have a lot of defects such as pores and shrinkage, which leads to an increase in the resistance of the squirrel cage and a decrease in the motor efficiency.
  • low pressure casting uses a lower pressure, hence its name. Compared with pressure casting, the quality of low-pressure casting has improved significantly. However, due to the use of gas pressure in the casting mold, defects such as porosity, shrinkage and cold separation will still occur during the condensation process.
  • CN1122065A discloses a low-pressure casting method of a squirrel-cage rotor. This method heats and assembles a mold in three times to achieve the directional solidification of aluminum, which is conducive to shrinkage, thereby effectively improving the quality of the cast aluminum rotor. Equipment, production efficiency is affected.
  • the purpose of the present invention is to overcome the problems in the prior art described above, and provide a method for casting aluminum in a rotor, which can improve the casting efficiency by rationally distributing heating time and multiple pouring at one time; and by using a top-down temperature gradient and Cooperate with precise pressure control to improve the ability of filling.
  • a method for casting aluminum by a rotor includes: installing a casting device on a casting table and storing sufficient molten aluminum water in the casting device, the casting device including a holding furnace and an electromagnetic pump disposed on a side of the holding furnace; Outside the workbench, each of the multiple rotor cores is assembled with multiple molds and pre-heated; the pre-heated multiple molds are installed on multiple liquid outlet gates at the top of the electromagnetic pump, and each liquid outlet gate and mold
  • the multi-stage heating method is used to heat and maintain the installed mold; when the electromagnetic pump is casting, the pressurizing pressure is controlled in time periods; after the casting is completed, multiple molds are removed from the casting work The table is cooled.
  • a liquid outlet container for storing and holding the aluminum liquid pumped therein is installed on the liquid outlet of the electromagnetic pump; wherein, the bottom end of the liquid outlet container is provided with the outlet of the electromagnetic pump.
  • the liquid inlet with matching liquid outlet is provided at the top end with the plurality of liquid outlet gates.
  • the heating and maintaining the installed mold by using a multi-stage heating method includes: covering a four-stage heating coil outside the mold, and setting a heating temperature of a four-stage heating coil arranged from top to bottom It is set to 400 ° C, 450 ° C, 500 ° C, and 550 ° C; wherein the heating coils of adjacent sections are arranged next to each other, and the height of the mold matches the height of the four-section heating coils.
  • a plurality of four-stage heating coils are installed on a supporting frame through a lifting mechanism, and the supporting frame is installed around the electromagnetic pump; wherein, before heating and maintaining the installed mold, the lifting mechanism is controlled to drive The four-stage heating coil is moved downward, so that the four-stage heating coil is sleeved outside the mold.
  • the rotor core is compressed by a pressing device.
  • the pressing device is installed on the support frame and located above the four-stage heating coil, and the pressing device has a jack for pressing a rotor core.
  • controlling the pressurizing pressure by time period includes: dividing the total casting time of the electromagnetic pump into multiple periods, and setting a pressurizing pressure and maintaining the pressure in each time period; wherein the pressurizing pressure in the initial time period is the smallest , The end of the period of maximum pressure, the pressure every two intermediate periods for a cycle.
  • the pressing pressure in the starting time period is 0.1 Pa
  • the pressing pressure in the ending time period is 0.25 Pa
  • the pressing pressure in every two intermediate time periods is 0.2 Pa and 0.15 Pa.
  • the pre-heating temperature is 300-600 ° C.
  • an electric heating device is installed in the liquid discharge container.
  • mold assembly and preheating are performed outside the casting workbench, and cooling and disassembly of the mold are performed.
  • the mold is heated and insulated on the casting workbench, which greatly reduces the time taken for assembly preheating and cooling disassembly. Improved casting production efficiency;
  • the liquid outlet of the electromagnetic pump of the present invention is provided with a liquid outlet container having multiple liquid outlet gates, which can cast multiple molds at the same time, realize multiple pouring at one time, and greatly improve production efficiency;
  • the top-to-bottom heating temperature gradient is set for the mold, and the temperature of the lower part is higher than the upper part, which is beneficial for the aluminum liquid that enters the mold cavity from the bottom to the top to fill the entire cavity, thereby realizing the top-down sequence. Solidification, conducive to sequential shrinkage, while purifying the purity of aluminum;
  • the present invention utilizes the characteristics of precise and controllable pressure of the direct current electromagnetic pump.
  • the pressure is accurately controlled by time period to achieve the purpose of shrinkage and exhaust and improve the quality of cast aluminum.
  • FIG. 1 is a schematic structural diagram of a device for implementing a method for casting aluminum of a rotor of the present invention
  • FIG. 2 is an assembly schematic diagram of a rotor core and a mold according to the present invention
  • FIG. 3 is a schematic diagram of an assembly of a liquid discharge container and a mold according to an embodiment of the present invention.
  • the invention provides a method for casting aluminum into a rotor, which is suitable for all products of a cast aluminum rotor motor, and is particularly suitable for casting a slender rotor.
  • the equipment for implementing the method includes: a casting equipment installed on a casting table, the casting equipment includes a holding furnace 1 and an electromagnetic pump 2 disposed on a side of the holding furnace 1; a support installed around the electromagnetic pump 2 Frame 3; a plurality of pressing devices 4 and a plurality of four-stage heating coils 6 installed on the support frame 3 respectively correspond to a plurality of molds 5 to be cast.
  • the four-stage heating coil 6 is installed on the support frame 3 through a lifting mechanism, and the pressing device 4 is installed above the four-stage heating coil 6.
  • the method for casting aluminum of a rotor includes the following steps: storing enough molten aluminum water in a holding furnace 1 and an electromagnetic pump 2; and after assembling a plurality of rotor cores with a plurality of molds 5 outside the casting table, and Pre-heating; install multiple pre-heated molds 5 on top of electromagnetic pump 2; use multi-stage heating to heat and maintain the installed mold 5; control electromagnetic pump casting, and continuously adjust the pressure; after the casting is completed, The plurality of molds 5 are removed from the casting table for cooling and disassembly.
  • the present invention performs assembly and preheating of the rotor core and the mold 5 as well as cooling and disassembly of the mold outside the casting table, and heats and maintains the mold 5 on the casting table, greatly reducing assembly preheating and cooling.
  • the time taken for disassembly and assembly improves the casting production efficiency.
  • the mold 5 includes: a lower mold 501 having a liquid inlet 5 a for mounting on the lower end of the rotor core 504; an upper mold 503 for mounting on the upper end of the rotor core 504; A dummy shaft 502 in the center of the rotor core 504.
  • the mold 5 is preheated.
  • the preheating temperature is 300-600 ° C, and it takes more than 20 minutes.
  • Pre-heating can be induction heating, resistance heating, direct contact DC resistance heating, and gas heating. Because the preheating time is relatively long, the present invention assembles and preheats the mold outside the casting table in advance, which greatly shortens the heating time on the casting table and improves the casting production efficiency.
  • the mold 5 When preheated to a suitable temperature, the mold 5 is mounted on the top of the electromagnetic pump 2. As shown in FIG. 3, a liquid outlet container 20 is installed on a liquid outlet (not shown) of the electromagnetic pump 2, and a liquid inlet matching the liquid outlet of the electromagnetic pump 2 is provided at the bottom end of the liquid outlet container 20.
  • the mouth 20a has a plurality of liquid outlet gates 20b at the same horizontal height at the top end, and each liquid outlet gate 20b is matched with the liquid inlet gate 5a of the mold.
  • This embodiment shows two liquid outlet gates 20b, and two molds can be cast at the same time.
  • the number of liquid gates 20b can be set according to the molds that need to be cast to achieve multiple pouring at one time, which greatly improves production efficiency.
  • an electric heating device is installed in the liquid discharge container 20 for storing and maintaining the aluminum liquid pumped into the electromagnetic pump 2, and the temperature of the aluminum liquid is 700-720 ° C.
  • the electric heating device may be a resistance heating device.
  • the lifting mechanism is controlled to drive the four-stage heating coil 6 to move downward, so that the four-stage heating coil 6 is set outside the mold 5; and the pressing device 4 is controlled to press the rotor core.
  • the heating coils 6 of the adjacent heating coils 6 of the four-segment heating coils 6 are arranged next to each other and are moved down simultaneously under the driving of the lifting mechanism.
  • the pressing device 4 of this embodiment is installed on the top of the support frame 3.
  • the pressing device 4 may be an air cylinder or a hydraulic cylinder, and the laminated core of the rotor core is pressed by the ejector rod of the air cylinder or the hydraulic cylinder to ensure the rotor.
  • the tightness of the core lamination prevents looseness and aluminum leakage during the aluminum casting process.
  • the mold After compacting the laminated core of the rotor core, the mold is heated and held by the four-stage heating coil 6. Because there is a temperature loss during the process of transferring the mold from pre-heating to the casting workbench, in this embodiment, the mold is heated for 5 seconds before the casting to meet the casting temperature requirements.
  • the heating coil 6 uses an intermediate frequency induction heating coil, and the heating temperatures of the four-stage heating coils 6 arranged from top to bottom are set to 400 ° C, 450 ° C, 500 ° C, and 550 ° C, respectively.
  • the heating coil 6 is divided into several sections and can be set according to the height of the rotor.
  • the heating time on the casting table is greatly shortened, and the casting production efficiency is improved. It should be noted that the specific heating time before casting varies according to the size and shape of the rotor, and whether the heating temperature meets the requirements can be obtained by a temperature monitoring device (such as a temperature sensor).
  • the electromagnetic pump is controlled to start casting.
  • the temperature of the mold is kept constant from top to bottom through real-time temperature control, that is, 400 ° C, 450 ° C, 500 ° C, and 550 ° C.
  • the present invention sets the mold to a top-to-bottom heating temperature gradient and makes the lower temperature higher than the upper, which is beneficial to the bottom-up
  • the aluminum liquid that enters the mold cavity fills the entire cavity, achieving sequential solidification from top to bottom, which is conducive to sequential shrinking and purifying the purity of aluminum.
  • the electromagnetic pump of the present invention is preferably a direct current electromagnetic pump.
  • the DC electromagnetic pump uses electromagnetic force as the transmission pressure of the aluminum liquid.
  • the electromagnetic force has a strict linear relationship with the electrode current, so the pressure can be accurately controlled by changing the current.
  • the pressure is precisely controlled to realize the shrinkage.
  • the present invention divides the total casting time into a plurality of sections, and each time section accurately controls the pressure and holding pressure of the electromagnetic pump to achieve supplementary shrinkage.
  • the pressurizing pressure in the initial period is the smallest, and the pressurizing pressure in the end period is the largest. Pressurization is performed in one cycle every two intermediate time periods, which is beneficial to the filling of the entire cavity with aluminum liquid, and to achieve exhaust and shrinkage. the goal of.
  • the rotor height is 400
  • the total casting time is 12s, which is divided into 6 sections, and each 2s is a section.
  • the pressure and holding pressure of the electromagnetic pump in this embodiment are set as follows: 0.1Pa-2s, 0.2Pa-2s, 0.15Pa-2s, 0.2Pa-2s, 0.15Pa-2s, and 0.25Pa-2s.
  • the pressure of the electromagnetic pump is precisely controlled and the pressure is maintained, so as to enhance the replenishment ability and achieve the purpose of replenishment in sequence.
  • the pressing device 4 and the four-stage heating coil 6 are controlled to move up, and then the mold is moved out of the casting workbench to continue the next round of casting.
  • the mold removed from the casting table is cooled and then disassembled.
  • water cooling of the dummy shaft can be adopted, which is beneficial for quickly removing the dummy shaft.
  • each component adopts high temperature resistant steel and surface coating.
  • high temperature resistant steel can be metal materials such as heat resistant steel and cast iron, the coating is not wet with aluminum, corrosion resistant and high hardness materials, such as metal compounds SiC, SiN, WC, AlN, CrN and ternary or quaternary compounds ; Coating methods such as PVD, ion spraying and other technologies.
  • the device for implementing the method of the present invention further includes a control system for controlling the pressure and temperature; and the up and down movement of the pressing device 4 and the heating coil 6, the heating start and stop of the heating coil 6, and the start and stop of the electromagnetic pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Induction Machinery (AREA)

Abstract

一种转子铸铝的方法,包括在浇铸工作台安装浇铸设备并将足够的熔融铝水储存在浇铸设备内,所述浇铸设备包括保温炉(1)和安置在保温炉侧部的电磁泵(2);在浇铸工作台以外将多个转子铁芯各自与多个模具(5)装配后并预加热;将预热好的多个模具安装在位于电磁泵顶端的多个出液浇口(20 b)上,每个出液浇口与模具的进液浇口(5a)相适配;利用多段加热的方式对安装好的所述模具进行加热保温;电磁泵浇铸时,分时间段控制其加压压力;浇铸完成后,将多个模具移出浇铸工作台进行冷却。上述转子铸铝方法通过合理分配加热时间和一次多浇的方式,提高浇铸效率;并通过自上而下的温度梯度和精确压力控制相配合,提高补缩能力。

Description

一种转子铸铝的方法 技术领域
本发明涉及电机转子铸铝技术领域,尤其涉及一种转子铸铝的方法。
背景技术
转子是由上短路环、下短路环、连接在上短路环和下短路环之间的导条以及转子铁芯组成;其中,上短路环、下短路环和导条统称为鼠笼,鼠笼采用转子铸铝的方法铸出。
目前市场上普遍采用的转子铸铝方法是压力铸造,其实质是在高压作用下,使液态或半液态金属以较高的速度充填模具型腔,并在压力下成型和凝固而获得铸件的方法。压力铸造具有具有填充快速,效率高的特点;但众所周知,其生产的转子铝铸件存在大量气孔、缩孔等缺陷,导致鼠笼的电阻增大,电机效率下降。
低压铸造与压力铸造相比,其所用压力较低,因此得名。低压铸造较压力铸造的产品质量有了明显提高,但由于铸造充型采用气体压力方式,铸件还是会在冷凝过程中出现气孔、缩孔和冷隔的缺陷。
CN1122065A公开了一种鼠笼式转子的低压铸造方法,该方法分三次对模具加热、装配来实现铝的定向凝固,有利于补缩,从而有效提高铸铝转子的质量,但分三次加热和拆装,生产效率受到影响。
发明内容
本发明的目的就是为了克服上述现有技术存在的问题,提供一种转子铸铝的方法,通过合理分配加热时间和一次多浇的方式,提高浇铸效率;并通过自上而下的温度梯度和精确压力控制相配合,提高补缩能力。
为了实现本发明的上述目的,提供以下技术方案:
一种转子铸铝的方法,包括:在浇铸工作台安装浇铸设备并将足够的熔融铝水储存在浇铸设备内,所述浇铸设备包括保温炉和安置在保温炉侧部的电磁泵;在浇铸工作台以外将多个转子铁芯各自与多个模具装配后并预加热;将预热好的 多个模具安装在位于电磁泵顶端的多个出液浇口上,每个出液浇口与模具的进液浇口相适配;利用多段加热的方式对安装好的所述模具进行加热保温;电磁泵浇铸时,分时间段控制其加压压力;浇铸完成后,将多个模具移出浇铸工作台进行冷却。
优选的,所述电磁泵的出液口上安装有用于对泵入其内的铝液进行储存和保温的出液容器;其中,所述出液容器的底端设有与所述电磁泵的出液口匹配的进液口,其顶端设有所述多个出液浇口。
优选的,所述利用多段加热的方式对安装好的所述模具进行加热保温包括:将四段加热线圈套在所述模具外,并将自上而下布置的四段加热线圈的加热温度设定为400℃、450℃、500℃和550℃;其中,相邻段的加热线圈紧邻布置,且所述模具的高度与四段加热线圈的高度匹配。
优选的,多个四段加热线圈通过升降机构安装在支撑机架上,所述支撑机架安装在所述电磁泵的周围;其中,在对安装好的模具进行加热保温前,控制升降机构带动所述四段加热线圈向下移动,使四段加热线圈套在模具外。
优选的,所述对安装好的模具进行加热保温前,要先利用压紧装置压紧转子铁芯。
优选的,所述压紧装置安装在所述支撑机架上并位于所述四段加热线圈的上方,所述压紧装置具有压紧转子铁芯的顶杆。
优选的,所述分时间段控制其加压压力包括:将电磁泵浇铸总时间均分成多段,每一时间段设定一个加压压力并保压;其中,起始时间段的加压压力最小,终止时间段的加压压力最大,每两个中间时间段为一个循环周期进行加压。
优选的,所述起始时间段的加压压力为0.1Pa,终止时间段的加压压力为0.25Pa,每两个中间时间段的加压压力为0.2Pa和0.15Pa。
优选的,所述预加热温度为300-600℃。
优选的,所述出液容器内安装电加热装置。
本发明的有益效果体现在以下方面:
1)本发明本在浇铸工作台以外进行模具装配和预热、以及模具的冷却拆装,在浇铸工作台上对模具进行加热保温,大幅度减少了装配预热和冷却拆装占用的时间,提高了浇铸生产效率;
2)本发明电磁泵的出液口安装有具有多个出液浇口的出液容器,可以同时对多个模具进行浇铸,实现一次多浇,大幅度提高生产效率;
3)本发明通过对模具设置自上而下的加热温度梯度,并使下部温度高于上部,有利于自下而上进入模具型腔的铝液充满整个型腔,实现自上而下的顺序凝固,有利于顺序补缩,同时净化铝的纯度;
4)本发明利用直流电磁泵的压力精确可控的特点,在铝液顺序凝固时,通过分时间段对压力精准控制,实现补缩和排气的目的,提高铸铝质量。
附图说明
图1是实施本发明转子铸铝的方法的设备的结构示意图;
图2是本发明一个转子铁芯与一个模具的装配示意图;
图3是本发明的一个实施例中出液容器与模具装配的示意图。
附图标记说明:1-保温炉;2-电磁泵;20-出液容器;20a-进液口;20b-出液浇口;3-支撑机架;4-压紧装置;5-模具;5a-进液浇口;501-下模;502-假轴;503-上模;504-转子铁芯;6-加热线圈。
具体实施方式
本发明提供一种转子铸铝的方法,适用于铸铝转子电机的所有产品,尤其适用于细长转子的铸造。
本发明提供一种转子铸铝的方法以及实施该方法的设备。如图1所示,实施该方法的设备包括:安装在浇铸工作台上的浇铸设备,浇铸设备包括保温炉1和安置在保温炉1侧部的电磁泵2;安装在电磁泵2周围的支撑机架3;安装在支撑机架3上的多个压紧装置4和多个四段加热线圈6,分别与需要被浇铸的多个模具5对应。其中,四段加热线圈6通过升降机构安装在支撑机架3上,压紧装置4安装在四段加热线圈6的上方。
本发明提供的转子铸铝的方法包括以下步骤:将足够的熔融铝水储存在保温炉1和电磁泵2内;在浇铸工作台以外将多个转子铁芯各自与多个模具5装配后并预加热;将预热好的多个模具5安装在电磁泵2顶端;利用多段加热的方式对安装好的模具5进行加热保温;控制电磁泵浇铸,并不断调整加压压力;浇铸完 成后,将多个模具5移出浇铸工作台进行冷却拆装。
其中,本发明在浇铸工作台以外进行转子铁芯和模具5的装配和预热、以及模具的冷却拆装,在浇铸工作台上对模具5进行加热保温,大幅度减少了装配预热和冷却拆装占用的时间,提高了浇铸生产效率。
下面将结合附图和实施例对本发明进行详细说明。
如图2所示,模具5包括:具有进液浇口5a的下模501,用于安装在转子铁芯504的下端;用于安装在转子铁芯504上端的上模503;用于安装在转子铁芯504中心的假轴502。
当下模501、上模503和假轴502与转子铁芯504装配好后,对模具5进行预加热,预加热温度为300-600℃,需要时间20分钟以上。预加热可以采用感应加热、电阻加热、直接接触的直流电电阻加热以及燃气加热。由于预加热的时间比较长,本发明提前在浇铸工作台以外对模具进行装配和预热,大大缩短了在浇铸工作台上的加热时间,提高了浇铸生产效率。
当预加热至合适温度时,将模具5安装在电磁泵2顶端。如图3所示,电磁泵2的出液口(图中未示出)上安装有出液容器20,该出液容器20的底端设有与电磁泵2的出液口匹配的进液口20a,其顶端设有位于同一水平高度的多个出液浇口20b,每个出液浇口20b与模具的进液浇口5a相适配。本实施例示出两个出液浇口20b,可以同时对两个模具进行浇铸。可以根据需要浇铸的模具设置出液浇口20b的数量,实现一次多浇,大幅度提高生产效率。
其中,出液容器20内安装有电加热装置,用于对电磁泵2泵入其内的铝液进行储存和保温,铝液温度700-720℃。电加热装置可以是电阻加热装置。
在电磁泵2顶端安装好模具5后,控制升降机构带动四段加热线圈6向下移动,使四段加热线圈6套在模具5外侧;并控制压紧装置4压紧转子铁芯。具体的,四段加热线圈6中相邻段的加热线圈6紧邻布置,且在升降机构的驱动下同时下移;优选的,模具5的高度与套在其外侧的四段加热线圈6的高度匹配,以便于实现对模具自上而下不同区段的加热保温。
优选的,本实施例的压紧装置4安装在支撑机架3的顶部,压紧装置4可以为气缸或液压缸,利用气缸或液压缸的顶杆压紧转子铁芯的叠片,保证转子铁芯叠片的紧密性,避免铸铝过程中出现疏松和漏铝。
压紧转子铁芯的叠片后,利用四段加热线圈6对模具进行加热保温。由于模具从预加热之后到转运到浇铸工作台的过程中,会存在温度损失,因此,本实施例在浇铸以前先对模具加热5s,以达到浇铸温度要求。实施时,加热线圈6采用中频感应加热线圈,并将自上而下布置的四段加热线圈6的加热温度分别设定为400℃、450℃、500℃和550℃。其中,加热线圈6分为几段可以根据转子高度进行设置。本发明由于提前在浇铸工作台以外对模具进行预热,大大缩短了在浇铸工作台上的加热时间,提高了浇铸生产效率。需要说明的是,浇铸前的具体加热时间根据转子大小和形状而不同,加热温度是否达到要求可以通过温度监测装置(如温度传感器)得到。
当模具达到设定温度后,控制电磁泵开始浇铸。在浇铸过程中,通过对温度的实时控制,使模具自上而下的加热温度始终保持恒定,即400℃、450℃、500℃和550℃。通过对温度的恒定控制,可以避免浇铸过程中转子散热造成的冷隔;此外,本发明通过对模具设置自上而下的加热温度梯度,并使下部温度高于上部,有利于自下而上进入模具型腔的铝液充满整个型腔,实现自上而下的顺序凝固,有利于顺序补缩,同时净化铝的纯度。
本发明的电磁泵优选直流电磁泵。直流电磁泵是利用电磁力作为铝液的输送压力,而在磁感应强度确定的情况下,电磁力与电极电流呈严格线性关系,因此可以通过改变电流实现对压力的精准控制。
本实施例在铝液顺序凝固时,通过对压力精准控制,实现补缩。
具体的,在浇铸时,本发明将浇铸总时间均分成多段,每一时间段精确控制电磁泵加压和保压,实现补缩。起始时间段的加压压力最小,终止时间段的加压压力最大,每两个中间时间段为一个循环周期进行加压,从而有利于铝液充满整个型腔,并实现排气和补缩的目的。
本实施例转子高度400,浇铸总时间12s,分为6段,每2s为一段。具体的,本实施例每段时间电磁泵加压和保压设定如下:0.1Pa-2s,0.2Pa-2s,0.15Pa-2s,0.2Pa-2s,0.15Pa-2s,0.25Pa-2s。在铝液顺序凝固期间,本实施例通过精确控制电磁泵加压和保压,从而增强补缩能力,达到顺序补缩的目的。
浇铸完成后,控制压紧装置4和四段加热线圈6上移,然后将模具移出浇铸工作台,继续进行下一轮浇铸。移出浇铸工作台的模具冷却后进行拆装。为加快 冷却,可以采用给假轴水冷的方式,有利于快速取出假轴。
本实施例为了延长与铝液接触的各部件(下模501、上模503和假轴502以及出液容器20)的寿命,避免铝的腐蚀和磨损,各部件采用耐高温钢和表面涂层处理;耐高温钢可以是耐热钢和铸铁等金属材料,涂层采用和铝不湿润、抗腐蚀和高硬度材料,如金属化合物SiC、SiN、WC、AlN、CrN以及三元或四元化合物;涂层的方法如PVD、离子喷涂等技术。
实施本发明方法的设备还包括控制系统,用于实现对压力、温度的控制;以及压紧装置4和加热线圈6的上下移动动作、加热线圈6的加热启停、电磁泵的启停等。
尽管上述对本发明做了详细说明,但本发明不限于此,本技术领域的技术人员可以根据本发明的原理进行修改,因此,凡按照本发明的原理进行的各种修改都应当理解为落入本发明的保护范围。

Claims (10)

  1. 一种转子铸铝的方法,包括:在浇铸工作台安装浇铸设备并将足够的熔融铝水储存在浇铸设备内,所述浇铸设备包括保温炉和安置在保温炉侧部的电磁泵,其特征在于,还包括:
    在浇铸工作台以外将多个转子铁芯各自与多个模具装配后并预加热;
    将预热好的多个模具安装在位于电磁泵顶端的多个出液浇口上,每个出液浇口与模具的进液浇口相适配;
    利用多段加热的方式对安装好的所述模具进行加热保温;
    电磁泵浇铸时,分时间段控制其加压压力;
    浇铸完成后,将多个模具移出浇铸工作台进行冷却。
  2. 根据权利要求1所述的转子铸铝的方法,其特征在于,所述电磁泵的出液口上安装有用于对泵入其内的铝液进行储存和保温的出液容器;其中,
    所述出液容器的底端设有与所述电磁泵的出液口匹配的进液口,其顶端设有所述多个出液浇口。
  3. 根据权利要求2所述的转子铸铝的方法,其特征在于,所述利用多段加热的方式对安装好的所述模具进行加热保温包括:
    将四段加热线圈套在所述模具外,并将自上而下布置的四段加热线圈的加热温度设定为400℃、450℃、500℃和550℃;
    其中,相邻段的加热线圈紧邻布置,且所述模具的高度与四段加热线圈的高度匹配。
  4. 根据权利要求3所述的转子铸铝的方法,其特征在于,多个四段加热线圈通过升降机构安装在支撑机架上,所述支撑机架安装在所述电磁泵的周围;
    其中,在对安装好的模具进行加热保温前,控制升降机构带动所述四段加热线圈向下移动,使四段加热线圈套在模具外。
  5. 根据权利要求4所述的转子铸铝的方法,其特征在于,所述对安装好的模具进行加热保温前,要先利用压紧装置压紧转子铁芯。
  6. 根据权利要求5所述的转子铸铝的方法,其特征在于,所述压紧装置安装在所述支撑机架上并位于所述四段加热线圈的上方,所述压紧装置具有压紧转子铁芯的顶杆。
  7. 根据权利要求6所述的转子铸铝的方法,其特征在于,所述分时间段控制其加压压力包括:将电磁泵浇铸总时间均分成多段,每一时间段设定一个加压压力并保压;其中,
    起始时间段的加压压力最小,终止时间段的加压压力最大,每两个中间时间段为一个循环周期进行加压。
  8. 根据权利要求7所述的转子铸铝的方法,其特征在于,所述起始时间段的加压压力为0.1Pa,终止时间段的加压压力为0.25Pa,每两个中间时间段的加压压力为0.2Pa和0.15Pa。
  9. 根据权利要求3所述的转子铸铝的方法,其特征在于,所述预加热温度为300-600℃。
  10. 根据权利要求2所述的转子铸铝的方法,其特征在于,所述出液容器内安装电加热装置。
PCT/CN2019/095995 2018-07-20 2019-07-15 一种转子铸铝的方法 WO2020015608A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021503026A JP7110477B2 (ja) 2018-07-20 2019-07-15 アルミニウムを回転子上に鋳造する方法
US17/259,874 US11198176B2 (en) 2018-07-20 2019-07-15 Method for casting aluminum in rotor
EP19837734.3A EP3825035B1 (en) 2018-07-20 2019-07-15 Method for casting aluminum in rotor
KR1020217004913A KR102522638B1 (ko) 2018-07-20 2019-07-15 로터에서 알루미늄을 주조하기 위한 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810801154.9A CN109202040B (zh) 2018-07-20 2018-07-20 一种转子铸铝的方法
CN201810801154.9 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020015608A1 true WO2020015608A1 (zh) 2020-01-23

Family

ID=64990568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095995 WO2020015608A1 (zh) 2018-07-20 2019-07-15 一种转子铸铝的方法

Country Status (6)

Country Link
US (1) US11198176B2 (zh)
EP (1) EP3825035B1 (zh)
JP (1) JP7110477B2 (zh)
KR (1) KR102522638B1 (zh)
CN (1) CN109202040B (zh)
WO (1) WO2020015608A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112935186A (zh) * 2021-01-26 2021-06-11 燕山大学 一种大口径厚壁管的精密铸造装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109202040B (zh) 2018-07-20 2020-06-09 福建浦汇科技发展有限公司 一种转子铸铝的方法
CN111092523B (zh) * 2019-12-19 2022-05-20 白银海佳电泵制造有限公司 一种电机铸铝转子生产工艺及热熔重铸设备
CN114599465A (zh) * 2019-12-23 2022-06-07 本田金属技术株式会社 铝铸造方法和模具
CN111558667A (zh) * 2020-05-18 2020-08-21 衢州市迈德电子有限公司 一种无人机摄像头用电机转子的生产工艺及生产设备
CN113770317A (zh) * 2021-09-06 2021-12-10 北京三未科技发展有限公司 一种高效电磁铸装置及使用方法
CN114042886B (zh) * 2021-11-24 2023-09-08 杭州富生电器有限公司 一种转子浇铸模具加热浇铸系统及其控制方法
CN114769549A (zh) * 2022-04-27 2022-07-22 台州市重点机械厂 一种电机转子慢推增压式铸压工艺
CN115459549B (zh) * 2022-05-09 2023-03-03 浙江大学 电磁泵
CN115502401A (zh) * 2022-08-29 2022-12-23 合肥工业大学 一种耦合加热的粉末冶金场辅助烧结装置
CN115870476B (zh) * 2023-02-10 2024-01-26 佛山市同能机电有限公司 一种铸铝转子压铸的方法及铸铝压铸装置
CN117259727A (zh) * 2023-11-22 2023-12-22 山西福森诺智能装备科技有限公司 一种用于鼠笼式转子的低压铸造装置及其方法
CN118034182A (zh) * 2024-04-11 2024-05-14 武汉东方骏驰精密制造有限公司 一种电机轴热套过程集中压装监控系统及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3831802C1 (en) * 1988-07-18 1990-02-01 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De Low-pressure casting system for cage rotors of electric machines
JPH07213031A (ja) * 1994-01-25 1995-08-11 Isuzu Seisakusho:Kk かご形回転子の低圧鋳造装置
CN1122065A (zh) 1994-10-26 1996-05-08 富士电机株式会社 鼠笼式转子的低压铸造方法
CN101847913A (zh) * 2009-03-24 2010-09-29 通用汽车环球科技运作公司 导电转子的压铸
CN103658599A (zh) * 2013-11-15 2014-03-26 中北大学 一种适用于电磁泵低压铸造充型工艺的设计方法
CN206597892U (zh) * 2017-03-22 2017-10-31 深圳市安耐电热科技有限公司 一种分段式高温模具加热系统
CN107511469A (zh) * 2017-10-13 2017-12-26 安阳恒安电机有限公司 一种电机转子鼠笼低压铸铜设备、铸铜及其铸铜方法
CN109202040A (zh) * 2018-07-20 2019-01-15 福建浦汇科技发展有限公司 一种转子铸铝的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924422A (en) * 1974-11-01 1975-12-09 Amsted Ind Inc Mold stopper
DE2557645A1 (de) * 1975-12-20 1977-06-30 Bbc Brown Boveri & Cie Verfahren und vorrichtung zum giessen von rotoren elektrischer maschinen
CH614645A5 (zh) * 1976-06-09 1979-12-14 Buehler Ag Geb
JPS55122660A (en) * 1979-03-14 1980-09-20 Toyota Motor Corp Low pressure casting device
US5215141A (en) * 1992-06-11 1993-06-01 Cmi International, Inc. Apparatus and method for controlling the countergravity casting of molten metal into molds
JP3079853B2 (ja) * 1993-10-01 2000-08-21 富士電機株式会社 かご形回転子の低圧鋳造方法
JP2883052B2 (ja) * 1997-01-17 1999-04-19 川崎重工業株式会社 低圧鋳造装置
CN101602102B (zh) * 2009-06-17 2011-05-04 北京航空航天大学 外加小温度梯度消除铸件缩孔缩松的凝固过程控制方法
JP2011016166A (ja) 2009-07-10 2011-01-27 Sukegawa Electric Co Ltd 鋳造装置
JP2011016163A (ja) 2009-07-10 2011-01-27 Sukegawa Electric Co Ltd 鋳造装置
CN101862822B (zh) * 2010-03-12 2012-05-02 合肥大道模具有限责任公司 铝合金花纹块低压浇注设备及低压浇注、重力补缩复合工艺
CN201791950U (zh) * 2010-09-02 2011-04-13 许小忠 镁合金轮毂电磁泵低压充型高压凝固成型系统
BR102013018521A2 (pt) * 2012-11-08 2014-12-09 Whirlpool Sa Rotor de motor elétrico, processo de confecção de rotor de motor elétrico e sistema de confecção de rotor de motor
CN104550849B (zh) * 2015-01-22 2016-10-12 山西天海泵业有限公司 潜水电机转子笼条铸造设备及工艺
CN105149541B (zh) * 2015-09-21 2016-12-14 珠海市润星泰电器有限公司 用于挤压压铸生产的工艺
CN205851821U (zh) * 2016-08-12 2017-01-04 西安泰富西玛电机有限公司 一种离心铸铝模具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3831802C1 (en) * 1988-07-18 1990-02-01 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De Low-pressure casting system for cage rotors of electric machines
JPH07213031A (ja) * 1994-01-25 1995-08-11 Isuzu Seisakusho:Kk かご形回転子の低圧鋳造装置
CN1122065A (zh) 1994-10-26 1996-05-08 富士电机株式会社 鼠笼式转子的低压铸造方法
CN101847913A (zh) * 2009-03-24 2010-09-29 通用汽车环球科技运作公司 导电转子的压铸
CN103658599A (zh) * 2013-11-15 2014-03-26 中北大学 一种适用于电磁泵低压铸造充型工艺的设计方法
CN206597892U (zh) * 2017-03-22 2017-10-31 深圳市安耐电热科技有限公司 一种分段式高温模具加热系统
CN107511469A (zh) * 2017-10-13 2017-12-26 安阳恒安电机有限公司 一种电机转子鼠笼低压铸铜设备、铸铜及其铸铜方法
CN109202040A (zh) * 2018-07-20 2019-01-15 福建浦汇科技发展有限公司 一种转子铸铝的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112935186A (zh) * 2021-01-26 2021-06-11 燕山大学 一种大口径厚壁管的精密铸造装置

Also Published As

Publication number Publication date
KR20210034048A (ko) 2021-03-29
JP7110477B2 (ja) 2022-08-01
EP3825035A4 (en) 2022-03-30
CN109202040A (zh) 2019-01-15
US20210308751A1 (en) 2021-10-07
JP2021530361A (ja) 2021-11-11
CN109202040B (zh) 2020-06-09
EP3825035A1 (en) 2021-05-26
US11198176B2 (en) 2021-12-14
EP3825035B1 (en) 2023-09-27
KR102522638B1 (ko) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2020015608A1 (zh) 一种转子铸铝的方法
CN106890985B (zh) 一种用于制造无缩孔铸件的铸造装置进行铸造的方法
US3318370A (en) Apparatus for casting thin-walled cast iron parts
CN209849853U (zh) 一种钣金件压铸成型模具
CN207386525U (zh) 一种调节高度的压铸模具
CN104028723A (zh) 一种铝制品高压铸造装置及其铸造方法
CN108838350B (zh) 一种圆钢铸造钢模支架装置及其应用
CN110899671A (zh) 铸件凝固控制方法
CN110732655A (zh) 铝合金铸件成型模具及成型工艺
CN206643335U (zh) 一种用于制造无缩孔铸件的铸造装置
CN212652540U (zh) 一次成型式浇杯内胆冲压模具组件
CN106756073B (zh) 一种应用于高熔点高活性金属材料的多功能熔铸设备
CN114769549A (zh) 一种电机转子慢推增压式铸压工艺
JP2005520691A (ja) 半溶融快速造形法を利用した金型製作装置及び方法
JPH0517815A (ja) 鋳物の熱処理方法
US3627019A (en) Method of casting a continuous series of slugs
KR19990051756A (ko) 알루미늄 휠 주조장치
CN206169274U (zh) 一种真空熔炼炉用铸模的加热保温装置
US20030217831A1 (en) Cooling unit for a selective cooling of casting piece as they are obtained in casting molds
KR102555462B1 (ko) 차량 제어기 하우징 제조를 위한 고압다이캐스팅 장치
CN111069566B (zh) 一种铝/镁合金半固态浆料原位制备与成型方法及装置
KR102195019B1 (ko) 알루미늄 합금 플랜지 제조장치 및 그 제조방법
CN213379172U (zh) 铝棒浇铸用模盘组件
CN210334341U (zh) 用于热水器镁合金防腐圆棒的生产装置
CN214212187U (zh) 一种用于泵加工的负压铸造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217004913

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019837734

Country of ref document: EP

Effective date: 20210222