WO2020014923A1 - 基于类舞台结构的整体封装式行单元 - Google Patents

基于类舞台结构的整体封装式行单元 Download PDF

Info

Publication number
WO2020014923A1
WO2020014923A1 PCT/CN2018/096311 CN2018096311W WO2020014923A1 WO 2020014923 A1 WO2020014923 A1 WO 2020014923A1 CN 2018096311 W CN2018096311 W CN 2018096311W WO 2020014923 A1 WO2020014923 A1 WO 2020014923A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
layer
light
row unit
cavity
Prior art date
Application number
PCT/CN2018/096311
Other languages
English (en)
French (fr)
Inventor
蒋伟东
Original Assignee
广州超维光电科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州超维光电科技有限责任公司 filed Critical 广州超维光电科技有限责任公司
Publication of WO2020014923A1 publication Critical patent/WO2020014923A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/0015Fastening arrangements intended to retain light sources
    • F21V19/002Fastening arrangements intended to retain light sources the fastening means engaging the encapsulation or the packaging of the semiconductor device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • F21W2131/406Lighting for industrial, commercial, recreational or military use for theatres, stages or film studios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention belongs to the application field of semiconductor light emitting technology, and particularly relates to a photoelectric transparent display technology.
  • the so-called LED transparent display screen has developed rapidly.
  • the principle is to arrange a number of driving integrated circuits and light emitting elements on a long circuit board to form a long light emitting unit.
  • the long light emitting unit is commonly known as a light bar.
  • This case is called the Strip Display Unit (Strip Display Unit), which is referred to as the Strip Unit for short.
  • Strip Display Unit Strip Display Unit
  • several rows of cells are hollowed out like blinds to form a whole module, and then a single module or several modules are used to form a display of different area sizes. Therefore, this display should be called a grid hollow Screen.
  • the principle of transparency is to achieve a long-range transparency effect by hollowing out between row units.
  • the light-emitting elements of the row unit are generally LED elements. From the perspective of the display screen, they are called light-emitting points. From the perspective of the circuit, they are called light-emitting elements. From the perspective of the image, they are called pixels. Several statements have been involved in this case to avoid confusion.
  • a top-shaped LED (Top-LED) is mounted on the front side of the long-shaped circuit board, and the early mounting on the back side of the circuit board includes a driver IC and peripheral components.
  • the driver IC and peripheral components have been brought together in recent years, and only the LEDs are mounted on the surface of the circuit board, since a large amount of wiring is required to connect each LED in the circuit board, even if the driver IC and peripheral components are not mounted on the back, the circuit board width H value It is still large, and it is difficult to be further narrowed, resulting in a small hollowed-out distance S of the transparent display with a dot pitch of P.
  • Top-LEDs are mounted on the side of the long circuit board, and drive ICs and peripheral components are mounted on the upper or lower surface.
  • This method takes advantage of the fact that the thickness H of the circuit board is narrower than the width H of the front, to a certain extent, it reduces the blocking of the line of sight of the circuit board, and increases the cut-out distance S.
  • a thicker circuit board is required to be on the side.
  • Making pads large enough to mount Top-LEDs, making pads on the side not only increases the difficulty of the circuit board itself, but also increases the difficulty of the placement process, because tin paste and paste are applied to the side circuits.
  • the rotation direction of the special jig needs to be used to carry out the LED placement process, and it cannot be placed together with other components on the upper and lower surfaces.
  • the driver ICs and peripheral components on the upper and lower surfaces will block the view and reduce the effective hollow-out distance S.
  • Method three as shown in FIG. 1 (c), the side of the strip-shaped circuit board is mounted with a side-emitting LED (Side-LED), and the driving IC and peripheral components are mounted at other positions on the upper and lower surfaces.
  • This method also takes advantage of the fact that the thickness H value of the circuit board is narrower than the front width H value, which reduces the blocking of the line of sight of the circuit board and increases the cut-out distance S. Although this way, there is no need to make pads on the side, which can reduce the thickness H of the circuit board, but all components including LEDs will block the line of sight and reduce the effective hollow-out distance S. More importantly, this way of mounting Side-LEDs on the edge of the circuit board.
  • the Side-LED is attached to the upper surface, the upper part is hollowed out without medium blocking, and the lower part is blocked by a long circuit board.
  • reducing the thickness H of the circuit board can increase the hollowed-out distance S, but too thin a circuit board has the problems of insufficient rigidity, easy deformation and bending, and difficulty in operation, especially when the long circuit board is placed horizontally.
  • the circuit board also needs a sufficient thickness H to ensure rigidity.
  • a side-emitting LED with a smaller COB (Chip On Board) package is mounted on the edge of the circuit board, as shown in FIG. 2 (a).
  • COB Chip On Board
  • this method can reduce the obstruction of the line of sight of the LED itself, because the COB packaged LED does not have dam light guide, there is a serious light leakage problem.
  • the upward light leakage will be reflected by the adjacent row units and cause light leakage from the back.
  • Adjacent luminous points affect the sharpness of the entire image. If the top-emitting LED using a COB package has the main light-emitting surface facing upward, not only the light leakage problem is more serious, but also the light-emitting efficiency is affected, see FIG. 2 (b).
  • a side light emitting element can be used.
  • the meanings of the labels in the above illustrations are: 1-long strip circuit board; 2A-top-emitting LED; 2B-side-emitting LED; 3-driving integrated circuit; 4-peripheral components.
  • the existing row units have a very narrow adaptation range for light emitting elements, and the type of light emitting element selection is single. Either the side light emitting element is mounted on the edge of the circuit board, or the top light emitting element is mounted on the circuit board. On the side, one type can only use one type of light-emitting element.
  • the purpose of the present invention is to provide an integrated packaged line unit based on a stage-like structure, to solve the existing line unit, and while maintaining the rigidity of the line unit, the problem of the line unit's blocking of the line of sight cannot be reduced, thereby maintaining the line of sight.
  • line unit stiffness reduce the line unit's blocking of the line of sight, increase the hollowing distance between the line units, and obtain higher transparency.
  • the object of the present invention is also to solve the problem of unevenness and light leakage around the light emitting point of the existing line unit through an integrated packaged line unit based on a stage-like structure, so as to obtain a line unit with a uniform and non-light leakage surrounding medium. .
  • the purpose of the invention is also to solve the problems of narrow adaptation range of light-emitting elements and single selection of light-emitting element types by using an integrated packaged line unit based on a stage-like structure, thereby obtaining a wide range of adaptable light-emitting elements. , Not only suitable for side light emitting elements, but also suitable for top light emitting elements and even light emitting chips and various solid state light emitting body row units.
  • the purpose of the present invention is also to solve the problems of uneven surface, messy colors, unable to simply unify, difficult to change colors, and unable to perform performance enhancement and function expansion based on an integrated packaged line unit based on a stage-like structure.
  • a row unit with a flat surface and a simple and uniform color, which can be changed in color after being made, can be subjected to various surface treatments, and has enhanced performance and expandable functions.
  • the overall architecture of the present invention Due to the unique and ingenious design of the overall architecture of the present invention, it has strong adaptability to light-emitting elements, whether it is a top-light-emitting element, a side-light-emitting element, or an LED light-emitting chip or other solid-state light emitters (for example, OLED, perovskite light-emitting, phosphorous, graphene Etc.) can be used to develop the row unit of the invention, so the present invention uses light-emitting devices (Luminous Elements, abbreviated as LE below) to express. Perhaps this case is still expressed in LEDs, but as far as the adaptability of the present invention to light-emitting components is concerned, it is not limited to LED elements.
  • LED light-emitting chip or other solid-state light emitters for example, OLED, perovskite light-emitting, phosphorous, graphene Etc.
  • the overall packaged line unit based on the stage-like structure includes the first functional layer, the second functional layer, and the third functional layer.
  • the first functional layer is a basic circuit layer and has an elongated shape. It is used for wiring to achieve electrical connection between components, and plays the role of carrying and mounting required components. It includes at least one bottom insulating substrate. There is at least one layer of printed circuit on the lower or upper surface of the insulating substrate, which is used for mounting the required components. These required components include: driving integrated circuits (Integrated Circuits, referred to as IC), peripheral components (Peripheral Components, referred to as PC) and light emitting devices (Luminous Elements, referred to as LE).
  • IC Integrated Circuits
  • PC peripheral components
  • LE Luminous Elements
  • the second functional layer is a supporting and reinforcing layer. Its shape is a long shape that matches the first functional layer. It is used for the supporting and reinforcing function of the row unit, and also forms the required component embedding through internal depressions or through holes. Cavity. These embedded cavities include driver IC embedded cavities (referred to as IC embedded cavities), peripheral component embedded cavities (referred to as PC embedded cavities), and light-emitting component embedded cavities (referred to as LE embedded cavities or light-emitting cavities). And LE play a role of accommodating embedding, especially for the long side of the LE in the display direction to form an up, down, side (display direction) opening structure of the embedding cavity. Among them, IC embedding cavity or PC embedding cavity, in addition to through holes, can also use blind holes according to the thickness of the embedded components.
  • the third functional layer is a stage-like eaves layer. Its shape is a long shape that matches the second functional layer. The most important role of this functional layer is to form a light-accommodating light source with the first and second functional layers. Device LE-like stage structure. At the same time, this functional layer is also a functional and performance expandable layer. In addition to having the most basic packaging top cover and cooperating with other functional layers to form a light-emitting cavity that encapsulates light-emitting devices, it can also be increased by using different materials. Different surface materials can achieve function expansion and performance enhancement through function or shape extension.
  • the three functional layers After the three functional layers are prepared separately, they need to be bonded together to become a complete row unit.
  • the components mounted on the first functional layer and the respective embedded cavities of the second functional layer correspond exactly in one to one position, and the shape fits the components mounted on the first functional layer on the surface.
  • Into each cavity of the second functional layer After bonding, it forms a row unit with a flat appearance and no components on the surface.
  • the light-emitting cavity of the second functional layer cleverly forms a side-like stage structure with the first and third functional layers together. It can contain light-emitting components and output light just like the stage can accommodate and display programs.
  • the row unit of the invention places the light emitting device in a light-emitting cavity in a stage-like structure with side openings, which not only solves a series of problems such as unevenness of the surrounding light-emitting medium when the Side-LED is mounted on the edge, but also enables the row unit to emit light.
  • the application range of the device is extended to Top-LED.
  • the light-emitting cavity also plays a role of guiding and outputting light.
  • the shape and size of the light-emitting element and the light-emitting cavity can be matched to fill the light-emitting device with only error space (if necessary to Sealed and moisture-proof, which can be filled with encapsulant.)
  • Light is guided by the encapsulant of the light-emitting device itself.
  • One side of the light-emitting device is used as the light-emitting surface. surface.
  • the light emitting surface and the front side of the three functional layers of the row unit constitute the light emitting surface of the row unit.
  • the front-back positional relationship between the light emitting surface of the light emitting device and the front side surfaces of the three functional layers of the row unit adjustment of the light emitting aspect, angle, and bias of the light emitting surface of the row unit can be achieved.
  • the light emitting direction is the side direction; when the front side of the first functional layer is contracted inward to expose the bottom emitting surface of the light emitting device, the row unit's The direction and angle of light emission extend downwards; other methods and so on.
  • the secondary encapsulation of the LE in the row unit can be used to fuse the secondary encapsulation glue with the LE's own encapsulation glue. It is integrated to play a role of guiding light to the light, so that light is output from a side light output surface (referred to as a light output surface) formed after the sealing glue is cured.
  • the light emitting surface is a light emitting point.
  • the peripheral medium of the light emitting point can be uniformized in the same direction.
  • the light-emitting cavity in the stage-like structure also reflects and guides the light, preventing light from leaking in directions that do not require display, and solving the problem of light leakage.
  • the inclination angle of the light-emitting surface of the row unit can be adjusted by dicing and cutting, so that the light-emitting direction, angle, and deviation of the light-emitting surface of the row unit after fabrication can be adjusted. Adjustment.
  • the light output efficiency, light output angle, or bias can be adjusted according to the shape of the light-emitting device and coordinated with the adjustment of the shape of the space in the light-emitting cavity.
  • the top surface of the light-emitting cavity may adopt a flat-topped structure or an arched structure, and so on.
  • the surface of the row unit is flattened, it becomes possible to perform function expansion and performance enhancement of a certain layer alone.
  • the upper or lower surface of the row unit for example, surface bonding, spraying of materials with high thermal conductivity and high modulus, such as carbon fiber cloth, and even the third functional layer directly uses carbon fiber sheet or aluminum plate to increase The rigidity of the row unit improves the heat dissipation performance;
  • the front side of the second functional layer extends forward and then simultaneously upwards and downwards, so that the front side of the second functional layer becomes the front side of the entire row unit; or the front side of the third functional layer forwards and then simultaneously Extend downward to make the front side of the third functional layer the front side of the entire row unit; the number of wiring layers can also be expanded by adding printed circuits, and so on.
  • the third functional layer may be considered to be expanded into a circuit board; if the number of wiring layers is still not met, the second functional layer may also be used.
  • Add printed circuits Since each functional layer will become a sealed and waterproof structure after being bonded into a row unit, various metallization and conductive hole treatments can be performed like ordinary multilayer circuit boards.
  • the line unit of the present invention not only achieves a variety of technological advances through functional layering, but also, when needed, can assign new functions to each functional layer to achieve different design requirements. For example, when there are more printed circuits When the number of layers is required, the number of layers can be assigned to different functional layers. Through the adjustment of the thickness of each functional layer and the number of printed circuit layers, the various aspects of the row unit of the present invention can be maintained while maintaining the rigidity of the row unit. skill improved.
  • a surface element may be mounted on a lower surface thereof, and the surface element may be embedded in the second functional layer.
  • the row unit width can be reduced without increasing the row unit width.
  • a transparent display screen that displays different images on both sides is made.
  • the second functional layer and the third functional layer can also be combined into a single integrated second functional layer. After the second integrated functional layer is bonded to the first functional layer, it still has a series of advantages.
  • the integrated packaged row unit based on the stage-like structure provided by the present invention decomposes the function of mixing the existing row unit circuit board support functions and circuit functions into three different functional layers.
  • the first functional layer is used for wiring to achieve The electrical connection between the components is required, and each component is oriented to the second functional layer; the second functional layer is used to support and strengthen, and increases the embedded function of the components, especially the light-emitting device embedded cavity facing the light emitting direction. ;
  • the third functional layer in addition to the basic packaging top cover function, can also be extended functions or enhanced performance.
  • the embedded components are embedded through the embedding cavity to achieve the embedded integration of the components, which solves the problem that the surface elements block the line of sight, affects the space distance, and the color of the row unit is disordered. Problems such as surface treatment.
  • the light-emitting device and the three functional layers form a stage-like structure in the display direction, which not only solves the problem of unevenness and light leakage in the surrounding medium of the existing row unit, but also expands the selection of light-emitting devices.
  • the device is affixed to the front of the circuit, and can be made by imposition, which is easier to produce and greatly improves production efficiency.
  • FIG. 1 (a) a conventional row unit technology for mounting a top-emitting LED on the front side of a circuit board;
  • Figure 1 (b) a conventional row unit technology for mounting side-emitting LEDs on the edge of a circuit board
  • FIG. 1 (c) a conventional row unit technology for mounting a top-emitting LED on the side of a circuit board;
  • FIG. 2 (a) a conventional row unit technology for mounting a side-emitting LED of a COB package on the edge of a circuit board;
  • FIG. 2 (b) a row unit technology of mounting a top-emitting LED in a COB package on the edge of a circuit board;
  • FIG. 3 is an exploded cross-sectional view of the functional layers of the row unit according to the present invention (A-A position);
  • FIG. 4 is a cross-sectional view (position A-A) after each functional layer is bonded and packaged into a row unit;
  • FIG. 5 is a front view (A-A position) of each functional layer after being bonded and packaged into a row unit;
  • FIG. 9 a case where the light emitting device uses a side light emitting element encapsulated with a plastic dam
  • FIG. 10 shows a situation when a light emitting device uses a top light emitting element packaged with a COB package
  • FIG. 11 a situation when a light-emitting device uses a light-emitting chip
  • FIG. 12 when the light-emitting device uses a transparent plastic-encapsulated top light-emitting element of a dam;
  • FIG. 13 when the front side of the row unit and the upper and lower surfaces are inclined forward at a non-right angle
  • the side surface of the light emitting cavity adopts a trapezoidal structure
  • the bottom surface of the light-emitting cavity adopts a hyperbolic structure with a convex center
  • FIG. 14 (c) the bottom surface of the light-emitting cavity adopts a multi-folded line structure with a convex center
  • FIG. 15 when the bottom surface of the light-emitting cavity adopts an arched structure
  • FIG. 16 when the shape of the light-emitting device matches the shape of the light-emitting cavity
  • FIG. 17 when the light emitting surface of the light emitting device projects outward from the front side of the row unit
  • FIG. 18 changing the convexity of the front side and the light emitting surface of each functional layer to obtain different luminous biases
  • FIG. 19 when the shape of the top light-emitting component and the size of the light-emitting cavity match
  • a third functional layer opens a through hole corresponding to the second functional layer embedded cavity
  • the third functional layer is a double-layer circuit board and the first functional part surface component is assigned;
  • FIG. 23 the third functional layer uniformly staggers and distributes part of the surface elements of the first functional layer
  • FIG. 24 the surface elements of the first functional layer and the third functional layer are embedded into each other's circuit board
  • FIG. 25 the front side of the second functional layer extends forward and then upwards and downwards simultaneously;
  • FIG. 26 is a front view when the front side of the entire row unit is formed by the front side of the second layer;
  • FIG. 27 shows a case where a light emitting device is mounted in the middle of a first functional layer using a multilayer circuit board
  • FIG. 28 is a cross-sectional exploded view when the second and third functional layers are combined into a second functional comprehensive layer
  • FIG. 29 is a cross-sectional view of a first functional layer and a second functional integrated layer after bonding to form a row unit;
  • the overall packaged row unit based on the stage-like structure provided in this embodiment includes a first functional layer 100, a second functional layer 200, and a third functional layer 300;
  • the first functional layer 100 has a long shape
  • the first functional layer 100 is a basic circuit layer.
  • the first functional layer 100 includes at least a first insulating substrate 110, and further includes a first layer top circuit 132 and a first layer bottom circuit which are respectively attached to the upper surface 112 and the lower surface 111 of the insulating substrate.
  • 131 also referred to as the first lower surface circuit 131
  • a surface component 180 mounted on the first layer of the top circuit 132 also referred to as the first upper surface circuit 132
  • the surface component 180 includes a light emitting device LE102
  • the included components include the driving integrated circuit IC104, the peripheral components PC106, and the light emitting device LE102. Among them, whether the PC106 is required is determined by the IC104 integration level.
  • the first functional layer 100 also referred to as the bottom circuit substrate layer 100, is used for wiring to realize electrical connection between components, and plays a role of carrying and mounting these components. Since the double-layer printed circuit can fully express the technical solution of the present invention, the circuit boards with more than two layers are omitted here.
  • peripheral components are gradually integrated into the chip. Therefore, when a driving integrated circuit without peripheral components is used, the peripheral components can be omitted. As a result, the peripheral components are embedded in the cavity 206, but not Affects the substance of this patent. From the perspective of integrated circuits, light-emitting components are also peripheral components; but from the perspective of display screens, light-emitting components have become core components and are no longer peripheral components. Peripheral components mainly refer to voltage stabilization and resistance capacitance. And other components.
  • the second functional layer 200 has an elongated shape matching the first functional layer 100;
  • the second functional layer 200 in addition to supporting and strengthening the row unit, also plays a role of accommodating and embedding the IC 104 and the PC 106, and plays a role of embedded integration, packaging, and guiding output light to the LE 102.
  • the second functional layer 200 is a supporting and strengthening layer, and includes a supporting substrate 210 and a component embedding cavity 280 formed by inward depression through the second layer lower surface 211 thereof.
  • the component embedding cavity 280 includes a driving integrated circuit embedding cavity. 204 (referred to as IC embedding cavity 204 for short), peripheral component embedding cavity 206 (referred to as PC embedding cavity 206) and light emitting device embedding cavity 202 (referred to as LE embedding cavity 202 or light emitting cavity 202).
  • the PC embedded cavity 206 is determined by whether or not there is a peripheral component PC106.
  • the positions of the IC embedding cavity 204 and the PC embedding cavity 206 on the lower surface 211 of the second layer are mirror-symmetrical and corresponding to the positions of IC104 and PC106 on the upper surface 172 of the first layer, respectively.
  • the internal space can fully accommodate the IC104.
  • PC106 and leave a certain error gap.
  • the projections of the IC embedding cavity 204 and the PC embedding cavity 206 on the first functional layer 100 correspond to the corresponding IC 104 and PC 106 one by one, and their projection shapes are slightly larger than the corresponding IC 104 and PC 106.
  • the thickest component embedding cavity can use through holes; thinner component embedding cavity, generally PC embedding cavity 206, can use blind holes; or for processing convenience, Both use through holes.
  • the IC embedding cavity 204 uses a through hole, in addition to the IC104 component's embedding effect, the IC104 can also act as a packaging dam when directly using a chip.
  • the first layer upper surface 172 includes the first layer top circuit 132 and the insulating substrate upper surface 112 without printed circuit exposed portions.
  • the first layer lower surface 171 includes the exposed portion of the insulating substrate lower surface 111 and the bottom circuit 131 together.
  • the minute irregularities of the surface circuit can be regarded as a flat surface from a macro perspective.
  • the surface of each functional layer in particular, there are several cases where the surface has a printed circuit surface, a bare insulating substrate surface, and a two-part surface. In order to simplify the description, different situations are not distinguished or directly use the upper surface, the lower surface, The front side (right side) and the back side (left side) are described.
  • the light-emitting device is embedded in the cavity 202, that is, the light-emitting cavity 202. Its position on the lower surface 211 of the second layer mirrors the position of the LE102 on the top circuit 132 of the first layer in a mirror-symmetrical one-to-one correspondence.
  • the two front sides 261, that is, the long side 261 in the display direction, are recessed inward to form a notch formed by openings in three directions and three inner surfaces.
  • the openings in the three directions of the notch are respectively a lower opening 505A, an upper opening 501A, and a front opening.
  • the three inner surfaces include a bottom surface 502, a left surface 503, and a right surface 504 (when LE102 is too close together, the left surface 503 and the right surface 504 can disappear, and only the bottom surface 502).
  • the light emitting cavity 202 is located on the long side 261 of the display direction of the second functional layer 200, and the three surfaces (the upper surface 212, the lower surface 211, and the side surface 261) near the side 261 form an upward and downward direction.
  • the projection of the opening on the upper surface of the first functional layer 100 is at least slightly larger than that of the light-emitting device LE102, and can be designed according to the influence of the shape of the light-emitting cavity 202 on the output light.
  • the third functional layer 300 has an elongated shape matching the second functional layer 200.
  • the third functional layer 300 also referred to as a stage-like eaves layer, is a functional and performance expandable layer.
  • Various functions or performances such as surface enhancement, adding circuit layers, and sharing surface components can also be expanded as needed.
  • the total thickness of the row unit increases the space of the hollow space, which makes the adaptability of the row unit from single to various, including side light emitting elements, top light emitting elements, and even direct packaging using light emitting chips. It also solves the problems that the existing row unit cannot perform surface treatment and the surface color is disordered, which makes various surface treatments very easy. Whether it is traditional printing, or inkjet, spraying, coating, surface pasting, etc., it will become very convenient. easily.
  • the third functional layer 300 is composed of a third substrate 310 and includes upper and lower flat surfaces, which are an upper surface 312 and a lower surface 311 of the third layer, respectively, and cooperate with the second functional layer 200 to form an opening through hole. Or blind hole embedded cavity.
  • the second functional layer 200 is used as an intermediate layer, so that the lower surface 211 of the second layer and the upper surface 172 of the first layer, the upper surface 212 of the second layer, and the lower surface 311 of the third layer are integrated into a whole. .
  • the row unit upper surface 602 and the unit lower surface 603 are flat surfaces.
  • the upper surface 602 of the row unit is a flat surface composed of the upper surface 312 of the third layer;
  • the lower surface 603 of the row unit is a flat surface composed of the lower surface 171 of the first layer;
  • the lower surface 171 of the first layer includes the lower surface 111 of the insulating substrate Exposed part and bottom circuit 131.
  • the rear side surface 604 of the row unit is composed of a first layer rear side surface 162, a second layer rear side surface 262, and a third layer rear side surface 362.
  • the portion without the line is recessed, and the back side is processed into a non-straight shape. Of course, it can also be processed into a flat shape as required.
  • the proportions of components drawn in the figure are not true proportions.
  • the up and down, front and back are relative concepts described in the article, and the essence of the patent will not be changed after the figure is inverted or axisymmetric.
  • the electrical connection relationship between the printed circuit layer and the chip components depicted in the figure is not a true circuit connection method.
  • the conductive holes or side conductive layer connections are omitted between different layers of printed circuits.
  • the printed circuit layer is simply covered with insulation.
  • the method of the substrate is to simplify the core issues that need not be discussed in the present invention, and is also for the convenience of expression.
  • the specific wiring method can be varied and does not affect the technical advantages of the present invention.
  • PC106 and IC104 are arranged side by side, which obviously increases the width of the row unit.
  • the purpose is also to facilitate the clear expression through the illustration. In actual wiring design, this is generally not handled unless special circumstances.
  • the first functional layer 100 in the figure only depicts a two-layer circuit, which does not mean that the present invention is only applicable to a two-layer circuit, because the wiring needs to be able to adopt a three-layer circuit, a four-layer circuit, and so on.
  • the first layer of insulating substrate 110 It may be referred to as the first insulating substrate 110, the insulating substrate 110, and the substrate 110 for short, because the presence of the mark 110 does not confuse the substrate with other layers.
  • the upper surface 112 of the first functional layer 100 can be called the first upper surface 112 from the perspective of the entire functional layer. If it is from a specific location, it can be called The upper surface 112 of the insulating substrate may also be simply referred to as the first upper surface 112 and the upper surface 112. Similarly, the presence of the label 112 is not to be confused with the upper surfaces of other layers.
  • the integrated packaged row unit based on the stage-like structure provided in this embodiment, the light emitting cavity 202, in addition to fully accommodating the LE 102, also leaves a certain light emitting space for the LE 102; the light emitting space, Its shape and size are determined according to the shape and lighting direction of LE102, which is conducive to the light output efficiency and the requirements of the output angle;
  • the light emitting cavity 202 has a lower opening 505A and an upper opening 501A projected vertically downward and upward, respectively, and forms a lower projection area 505 and an upper projection area 501 on the upper surface 172 of the first layer and the lower surface 311 of the third layer, respectively.
  • a lower opening 505A and an upper opening 501A projected vertically downward and upward, respectively, and forms a lower projection area 505 and an upper projection area 501 on the upper surface 172 of the first layer and the lower surface 311 of the third layer, respectively.
  • LE102 one of the three side light emitting elements, top light emitting elements, and light emitting chips;
  • the lower projection area 505, the upper projection area 501, and the light emitting cavity 202 form a stage-like structure 500 that opens to the side, that is, opens to the display direction;
  • the light-emitting space outside the LE 102 inside the stage-like structure 500 is filled and cured by the light-transmitting encapsulant 401 to form a light-emitting surface 402 of the stage-like structure 500.
  • stage-like structure 500 not only allows the shape and size of the luminous cavity 202 to be determined according to the shape and size of the LE102 when it leaves a light emitting space for the LE102, but also according to the light output efficiency and the output.
  • the angle requirements are determined, and there is also a wide range of component adaptability.
  • the light emitting cavity 202 When LE102 has a certain light emitting space in the light emitting cavity 202, whether it is a top light emitting device, a side light emitting device, or even a light emitting chip, when the LE 102 is placed in a side-like stage structure 500, the light emitting cavity 202 is filled with After the encapsulant 401 is cured, the encapsulant 401 is integrated with the encapsulant 103 of the LE102 itself, which together plays a role of guiding the light, so that the light is output from the side-like structure 500 of the stage-like structure 500 formed after the encapsulant 401 is cured.
  • the surface 402 (referred to as the light emitting surface 402) obtains an output.
  • the internal space of the stage-like structure 500 also reflects and guides the light of the LE102, preventing light from leaking in directions that do not need to be displayed, and solving the problem of light leakage.
  • some auxiliary measures can be taken to improve the adaptability to different types of components, for example, when the transparent dam package is used, the scope of application can be extended to the top light-emitting elements with dams, and so on.
  • an integrated packaged row unit based on a stage-like structure provided in this embodiment, when the light-emitting cavity 202 leaves a light-emitting space for the LE 102, the three functional layers are bonded, filled with the sealing glue 401, and then the sealing glue 401 is used.
  • the solidified light emitting surface 402 and the three side surfaces including the first layer front side surface 161, the second layer front side surface 261, and the third layer front side surface 361 constitute the row unit light emitting surface, and the row unit emits light by making different inclination angles.
  • the surface obtains different luminous deflections.
  • the above-mentioned light emitting surface of the row unit and the upper surface 602 or the lower surface 603 of the row unit may be not only perpendicular to the horizontal plane, but also may not be perpendicular.
  • the light emitting surface 402 is used as the light emitting point of the front side surface 601 of the row unit. From the perspective of the upper and lower relationship, it is located between the front side 161 of the first layer and the front side 361 of the third layer. The thickness of the third layer front side 361 in the upper part 402 and the thickness of the first side surface 161 in the lower part make the medium around the light emitting surface 402 uniform. It is also possible to change the light emitting surface of the row unit composed of the light emitting surface 402 and the front side 601 of the row unit. Angle of inclination to obtain different luminous directions and deflections.
  • the light emitting surface formed by the light emitting surface 402 and the front side surface 601 of the row unit is perpendicular to the upper and lower surfaces of the row unit.
  • the above light emitting surface has a certain inclination angle.
  • the display screen is often installed at a high position.
  • the effective display is a downward direction, and the upward direction is an invalid display.
  • the light emitting surface of the row unit needs to be tilted downward, and the inclination angle of the front side 601 of the row unit can be resolved downward.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the light emitting cavity 202 when leaving a light emitting space for the LE 102, not only has broad adaptability to light emitting devices, but also The internal shape of the light-emitting cavity 202 can be appropriately adjusted according to the requirements on light output efficiency and output angle.
  • the light emitting cavity 202 has a surface shape composed of a bottom surface 502, a left surface 503, and a right surface 504 of the second functional layer 200 from the perspective of a top view.
  • the specific shape is that the bottom surface 502, the left surface 503, and the right surface 504 can adopt a structure with a multi-fold line protruding from the bottom surface 502, and can also adopt a hyperbolic structure with a bottom surface 502 protruding, that is, its bottom surface 502
  • the shape, from the top view is a shape from the depression to the flat bottom or even the middle protrusion; its left surface 503 and right surface 504 can adopt a structure from a right angle to a trapezoidal trumpet shape, that is, its left
  • the inner angle between the surface 503, the right surface 504, and the front side surface 261 of the second layer is an angle equal to or smaller than the right angle, and the shape of the generatric line is from flat to a polyline, or even a shape between the curves.
  • the internal space formed by the bottom surface 502 and the luminous cavity 202, the lower surface of the third functional layer 300, and the upper surface of the first functional layer 100, when leaving a luminous space for LE102, can be based on LE102.
  • the shape of the light-emitting cavity 202 or the light output efficiency and the output angle are adjusted by adjusting the shape of the bottom surface 502.
  • the specific shape is that in addition to the flat top structure in which the bottom surface 502 is vertical, the top surface inside the light emitting cavity 202 can also be adjusted into an arched structure by adjusting the shape of the bottom surface 502. That is, the shape of the bottom surface 502 is a shape from a vertical to an arch shape when viewed in cross section.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the luminous cavity 202 has an internal space that matches the LE102, and the light emitting device LE102 fills the inner space of the luminous cavity 202, leaving only a certain error.
  • the light emitting cavity 202 has a lower opening 505A and an upper opening 501A projected vertically downward and upward, respectively, and forms a lower projection area 505 and an upper projection area 501 on the upper surface 172 of the first layer and the lower surface 311 of the third layer, respectively.
  • a lower opening 505A and an upper opening 501A projected vertically downward and upward, respectively, and forms a lower projection area 505 and an upper projection area 501 on the upper surface 172 of the first layer and the lower surface 311 of the third layer, respectively.
  • LE102 one of the side light emitting element and the top light emitting element
  • the lower projection area 505, the upper projection area 501, and the light emitting cavity 202 constitute a stage-like structure 500 with side openings; the interior space of the stage-like structure 500 is filled with the LE102 element body and its own encapsulant 103 That is, it is filled by the LE102 light emitting device itself, and the light surface 402 is directly formed by the top or side of the LE102.
  • the light emitting surface 402 and the three sides constituting the front side surface 601 of the row unit can not only be on the same plane, but also can be combined by different positions protruding forward or retracting backward, so that the row unit can obtain different light emitting directions, angles or Biased.
  • the three sides constituting the front side 601 of the row unit include the front side 161 of the first layer, the front side 261 of the second layer, and the front side 361 of the third layer.
  • the three sides of the light emitting surface 402 and the front side 601 of the unit from the combination on the same plane, to the combination of different positions protruding forward and retracting backward (from being on the same plane to being staggered to each other), obtain different Light direction, angle or deflection.
  • the light emitting surface 402 is on the same plane as the front side surface 601 of the row unit, and various advantages of the row unit of the present invention can be realized; if the light emitting angle needs to be increased, the light emitting surface 402 can be made more convex; If the angle is lower, the front side 361 of the third layer and the front side 161 of the first layer may protrude forward.
  • the row unit of the present invention only needs to adjust three The side-to-side positional relationship of the functional layer, or by cutting to form different inclination angles of the light emitting surface of the row unit as in the third embodiment, the adjustment of the light emitting bias can be adjusted.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • an integrated packaged row unit based on a stage-like structure provided in this embodiment, and the third functional layer 300 is provided with at least one of the IC embedding cavity 204 and the PC embedding cavity 206, corresponding in position and having the same size. Through hole.
  • the row unit of the present invention decomposes the circuit board into three functional layers, it also creates conditions for the thickness adjustment of the second and third functional layers 200 and 300 and the adjustment of the embedded cavity structure, so that the row unit has the advantage of flexible thickness selection.
  • the third functional layer 300 does not necessarily need to have a through hole, but in order to adjust the thickness of the row unit, or for the convenience of filling the encapsulant, or for the convenience of processing, the third functional layer 300 can be opened with an IC embedding cavity. 204 or the PC embedding cavity 206 has a through hole corresponding to the through hole of the same size to reduce the thickness of the stack of the second functional layer 200 and the third functional layer 300.
  • the row unit After the through holes are opened, even if the stacked thickness of the second functional layer 200 and the third functional layer 300 is equal to or even slightly smaller than the thickness of the thickest element, the row unit can be kept flat, and the surface treatment and various expansions will not be affected.
  • the through holes only need to be treated with encapsulation, and will not affect the sealing and waterproof performance.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • an overall packaged row unit based on a stage-like structure provided in this embodiment, the second functional layer 200 and the third functional layer 300, at least one of which is a substrate having at least one layer of printed circuits Make up.
  • the first functional layer 100 cannot meet the wiring requirements by using double or even multi-layer circuit boards, in addition to increasing the number of circuit layers through the first functional layer 100, it may also be added to the third surface of the third functional layer 300 on the upper surface 312.
  • the upper surface circuit 332 of the third layer that is, the third functional layer 300 is composed of a printed circuit board.
  • the third functional layer 300 may also be composed of a printed circuit board. If the number of circuit layers is insufficient, double layers or even more Layer circuit board.
  • the row unit of the present invention decomposes the circuit board into different functional layers, which can individually expand the function and enhance the performance of a certain layer. Moreover, each functional layer becomes a sealed waterproof structure after being bonded to the row unit, even if some The embedding cavity adopts a through hole, and it is also possible to inject sealing glue into the through hole to obtain a sealed waterproof structure. Therefore, after bonding, the side metallization or the conductive hole in the circuit board can be treated like ordinary multilayer circuit boards. The newly added printed circuit is electrically connected to the printed circuit of the first functional layer 100.
  • the row unit has a sealing waterproof property, which is also one of the technical advancements of the present invention.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the surface element 180 of the first functional layer 100 is allocated to the lower functional layer 300 when the third functional layer 300 uses a circuit board.
  • the surface is mounted on the surface of the third layer of the lower circuit 331 to become a surface element 380, and an embedded cavity 280A corresponding to the mirror symmetry of the surface element 380 and a one-to-one correspondence is opened in the second functional layer 200.
  • the third functional layer 300 uses a printed circuit board, which can not only be electrically connected with the printed circuit in the first functional layer 100 through an internal metallization hole or a side metallization phase, but also can assign the surface element 180 to a third
  • the surface of the sub-layer circuit 331 becomes a surface element 380 of the third functional layer 300. If it is desired to reduce the thickness of the row unit, the surface element 380 and the surface element 180 need to be staggered from each other to avoid overlapping in thickness. Further, the surface elements 180 may be uniformly staggered and dispersed on the surface of the third-layer lower circuit 331, so that the surface elements 180 and the surface elements 380 are the same or close in number, and are staggered with each other in position.
  • an embedding cavity 280A is provided on the upper surface of the second functional layer 200 in mirror-image symmetry with the surface element 380, so that the row unit can accommodate a higher element density without increasing the width or even reducing the thickness.
  • the side opening of the stage-like structure 500 composed of the surface element 380 and the embedding cavity 280A can also be directed to the rear side, and the transparent display screen can be made on both sides to display different images without increasing the width of the row unit. Because the schematic diagram after bonding is difficult to clearly display, it is shown in an exploded view.
  • the thickness of the second functional layer 200 can be reduced, or even the method of omitting the second functional layer 200 can be opened at the same time on the respective circuit boards of the first functional layer 100 and the third functional layer 300.
  • Through-holes or blind holes corresponding to the mirror image of the other surface components, corresponding to the surface element 180 (may include LE102 or not according to the situation) and surface element 380 (may include LE302 or not according to the situation) Including) part or all of each other are embedded in the opposite circuit board.
  • the second functional layer 200 is omitted, the rear side of the LE102 is formed with an embedded cavity 202A by the opposite circuit board groove.
  • a plastic side light-emitting element with a dam it can also solve the light leakage of the light point and the color of the row unit. A series of problems, and reduced the thickness of the row unit. If COB side light is used, as long as the shielding layer is pasted on the upper and lower surfaces of the row unit.
  • the front side 261 of the second layer extends forward, and then extends upward and downward at the same time to form a front extension lower section 251, a front The upper section 253 is extended to cover the front side surface 161 of the first layer and the front side surface 361 of the third layer. At this time, the front side surface 601 of the row unit is only composed of the front side surface 261 of the second layer.
  • the rear side 262 of the second layer can also be similarly extended. Whether to extend backward, the connection between the rear side of the row unit and other circuit connectors or board-to-board needs to be considered. The position and wiring of the surface element 280 also need to be considered. Narrow the area where there are no components. In this way, the rear side 262 of the second layer may not be flat. If you need to extend backward, even if the rear side 262 is not flat, you can use the similar method to extend the front side 261 of the second layer, so that the rear side 262 of the second layer extends backward, and then extends up and down at the same time to form the rear extension lower section 252.
  • the rear section extends the upper section 254, which just covers the rear side 162 of the first layer and the rear side 362 of the third layer.
  • the first functional layer 100 is placed between the front extended lower section 251 and the rear extended lower section 252
  • the third functional layer 300 is placed between the front extended upper section 253 and the rear extended upper section 254.
  • the front side 261 of the second layer extends forward, then upwards and downwards at the same time, so that the front side 261 of the second layer becomes the front side 601 of the row unit, thereby obtaining another form of flattened side.
  • the wiring of the circuit board to achieve electrical connection and support and strengthening functions is mixed together, and the light emitting element is mounted on the outer surface, which cannot be expanded at all.
  • the front side surface 601 and the light emitting surface 402 of the row unit are on the same plane to form a flat surface, which can completely solve the existing media such as surface elements blocking the line of sight, color disorder, light leakage, and surrounding areas of light emitting points.
  • a series of problems, such as unevenness, can be further obtained through different combinations of front and back positions or inclination angles of the second layer front side 261, the first layer front side 161, the third layer front side 361, and the light exit surface 402.
  • These side light output characteristics cannot be realized by existing row units, but as an embodiment of the extensibility of the row unit of the present invention, it is necessary to make a statement here.
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • the first functional layer 100 is composed of a multilayer circuit board, and the LE 102 is mounted on the surface of the intermediate circuit layer 135 to solve the limitation of the thickness of the row unit. At this time, the medium above and below the light emitting surface 402 is made uniform.
  • a method of adding a second-layer top circuit 232 on the upper surface of the second functional layer 200 may be adopted, or a multilayer circuit board may be used for the first functional layer 100
  • a method of adding a second-layer top circuit 232 on the upper surface of the second functional layer 200 may be adopted, or a multilayer circuit board may be used for the first functional layer 100
  • the thickness of the combined row unit is limited, and even if the circuit board is as thin as possible, and the shape of the light emitting cavity 202 cannot be adjusted to achieve uniformity of the upper and lower mediums on the light emitting surface 402
  • a gap needs to be left above the intermediate circuit layer 135 in order to mount the LE 102.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the upper surface 602 and the lower surface 603 of the row unit can be enhanced by surface treatment of high-performance materials; the second functional layer 200 and the third functional layer The 300 can be enhanced by replacing high-performance materials.
  • high-performance materials on the upper or lower surface of the row unit for example, high-thermal-conductivity (such as metal film, metal powder, etc.), high-modulus materials (such as carbon fiber cloth), surface paste, spray coating, printing, etc.
  • the unit obtains enhanced performance;
  • the second functional layer 200 and the third functional layer 300 use high-performance materials such as carbon fiber sheet or aluminum plate to increase the rigidity of the row unit and improve heat dissipation performance; use high-rigidity plastic to improve production efficiency, etc. Wait.
  • the existing row unit because the carbon fiber board and the aluminum board are conductive, and there are patch elements on the surface, it is difficult to enhance the surface properties.
  • the row unit of the present invention since the row unit of the present invention has a flat surface, it is only necessary to increase the insulation treatment on the surface of the printed circuit. In short, the reason why the first functional layer 100 and the third functional layer 300 can individually enhance performance is due to the functional decomposition of the circuit board and based on the application of the row unit architecture and principles of the present invention.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • the overall packaged row unit based on the stage-like structure provided in this embodiment the second functional layer 200 as an embedded support layer and the third functional layer 300 as a top cover packaging function are combined into one, and merged into the first
  • the two-functional integrated layer 200A which can simultaneously play the role of embedded support and top cover packaging, can also be regarded as the result of the first functional layer 200 and the third functional layer 300 being bonded together, and the combined advantages are fully retained. .
  • the embodiments of the present invention are only a part of the embodiments of the present invention, but not all the embodiments. Based on the embodiments of the present invention, for example, some components are arranged on the outer surface of the row unit; a light-emitting cavity of a different shape is made along the technical idea of the present invention; a connector connected to the row unit and other circuit boards is soldered to the surface of the row unit, etc. Etc., all other embodiments obtained by a person of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
  • the integrated packaged row unit based on the stage-like structure provided by the embodiment of the present invention decomposes the function of the existing row unit circuit board support function and circuit function together into three different functional layers, and the first functional layer is used for wiring To achieve the electrical connection between the required components, and make each component face the second functional layer; the second functional layer is used to support and strengthen, increasing the embedded function of the components, especially the light emitting device facing the light emitting direction Embedded cavity; the third functional layer, in addition to the basic package top cover function, can also be expanded or enhanced.
  • the embedded components are embedded through the embedding cavity to achieve the embedded integration of the components, which solves the problem that the surface elements block the line of sight, affects the space distance, and the color of the row unit is disordered. Problems such as surface treatment.
  • the light-emitting device and the three functional layers form a stage-like structure in the display direction, which not only solves the problem of unevenness and light leakage in the surrounding medium of the existing row unit, but also expands the selection of light-emitting devices.
  • the device is affixed to the front of the circuit, and can be made by imposition, which is easier to produce and greatly improves production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

一种基于类舞台结构的整体封装式行单元,包括第一功能层(100)、第二功能层(200)和第三功能层(300),第一功能层(100)至少包括一层绝缘基板(110)和顶部电路(132);所述第二功能层(200)包括支撑基板(210)以及通过其下表面向内凹陷形成的元器件嵌入腔(280);所述发光器件嵌入腔(280),位于第二功能层(200)显示方向的长侧边,并在该侧边附近形成一个向上、向下、向显示方向三面开口的形状;所述行单元使第一功能层(100)、第二功能层(200)和第三功能层(300)通过粘接成为整体。上述整体封装式行单元,实现了元器件的内嵌集成,拓宽了发光元件适用范围。

Description

基于类舞台结构的整体封装式行单元 技术领域
本发明属于半导体发光技术应用领域,具体涉及光电透明显示技术。
背景技术
近几年来,所谓的LED透明显示屏获得快速发展,其原理是把若干驱动集成电路和发光元件排列在长条形电路板上形成长条形发光单元,该长条形发光单元俗称为灯条,本案称之为行显示单元(Strip display Unit),简称为行单元(Strip Unit)。再把若干个行单元象百叶窗那样镂空间隔排列形成整块的模组,再由单个模组或若干块模组组成不同面积大小的显示屏,所以,这种显示屏应称之为栅格镂空屏。参见图1,其透明原理是通过行单元之间的镂空实现远距离的透明效果,所以,对于相同的的点间距P,如何在保证行单元刚度的情况下,增加镂空间距S才是提高透明度的关键。目前,行单元的发光元件,一般采用LED元件,从显示屏的角度来看,称为发光点;从电路的角度来看,称为发光元件;从图像的角度来看,称为像素,这几种说法本案都有涉及,以免表述混乱。
经过多年的发展,栅格镂空屏的相关技术容易想到的技术方案和工艺方法已经想到,发展到现在已经相当成熟,归纳起来有三种方式。
方式一,参见如图1(a),长条形电路板正面贴装顶部发光元件(Top-LED),早期的电路板背面贴装包括驱动IC和外围元件元件。虽然近年来把驱动IC和外围元件集中在一起,电路板表面只贴LED,但由于需要在电路板内大量布线连接每个LED,即便背面不贴装驱动IC和外围元件,电路板宽度H值依然较大,且难以进一步变窄,造成点间距为P的透明显示屏的镂空距离S较小。
方式二,参见如图1(b),长条形电路板侧面贴装Top-LED,上或下表面贴装驱动IC和外围元件。这种方式利用了电路板厚度H值比正面宽度H值窄的特点,一定程度上减小了电路板对视线的遮挡,增加了镂空距离S,但是,因需要较厚的电路板才能在侧面制作足够大的焊盘用以贴装Top-LED,侧面制成焊盘不仅增加了电路板自身工艺难度,并且,也增加了贴片工艺难度,因为,在对侧面电路进行印锡浆和贴片时,需要通过专用治具旋转方向,才能进行LED的贴片工艺,无法和上下表面的其他元件一起贴片。同时,上下表面的驱动IC和外围元件会遮挡视线,减小有效镂空距离S。
方式三,参见图1(c),长条形电路板边缘贴装侧面发光LED(Side-LED),上下表面其它位置贴装驱动IC和外围元件。这种方式也是利用了电路板厚度H值比正面宽度H值窄的特点,减小了电路板对视线的遮挡,增加了镂空距离S。虽然这种方式,不需要在侧面制作焊盘,可以减小电路板厚度H值,但包括LED在内的所有元件都会对视线造成遮挡,减小了有效镂空距离S。更重要的是,这种在电路板边缘贴装Side-LED的方式,如果Side-LED贴在上表面,上部 分镂空没有介质遮挡,下部分有长条形电路基板遮挡,发光点上下介质并不均匀,如果采用COB封装的Side-LED,因元件没有围坝,还存在向后漏光的问题;如果Side-LED贴在下表面,问题依旧,所以,这种方式会因发光点周边介质不均匀造成上下发光不均匀。另外,虽然减薄电路板厚度H可以增加镂空距离S,但是,电路板太薄存在刚性不足,易变形弯曲,不易作业等问题,特别是长条形电路板水平放置时问题更为突出,所以,电路板还需要足够的厚度H才能保证刚性。
作为方式二的另一种形式,采用更加微小的COB(Chip On Board)封装的侧面发光LED贴装在电路板边缘的方式,参见如图2(a)。虽然这种方式可以减小LED自身对视线的遮挡,但因为COB封装LED没有围坝导光,存在着严重的漏光问题,向上漏光会经相邻行单元反射引起背后漏光,左右漏光会照射到相邻的发光点,影响整个图像的清晰度。如果采用COB封装的顶部发光LED主要发光面向上,不仅漏光问题更加严重,而且影响发光效率,参见图2(b)。因此,方式二只能采用侧面发光元件。以上图示中各标注含义分别为:1-长条形电路板;2A-顶部发光LED;2B-侧面发光LED;3-驱动集成电路;4-外围元件。
上述三种方式,除了存在各自的问题外,因表面元器件,特别是发光元件贴装在外表面,都存在元器件遮挡视线,降低镂空距离S的问题,而且,电路板表面的各种元件主体和引脚、焊盘、各种元件之间的颜色都不相同,根本无法统一。无论电路板表面印刷成什么颜色, 在贴片制成行单元成品后,表面颜色都会杂乱,而且难以改变,不仅影响显示屏外观,严重时还会影响最终图像的显示效果。虽然可以通过喷涂改变颜色,但喷涂时对众多LED的遮挡将会是一件非常困难甚至不可能完成的事情,极易造成LED污染报废。而且,还可以看出,现有行单元,对发光元件适应范围非常窄,发光元件选择类型单一,要么采用侧面发光元件贴装于电路板的边缘,要么采用顶部发光元件贴装于电路板的侧面,一种方式只能采用一种类型的发光元件。
如何才能在业已成熟的光电透明显示技术领域,发明一种能充分利用现有生产制程的技术方案,通过该技术方案延伸出多个可以具体实施的实施例,不仅能在保持行单元刚性和点间距P不变的情况下,增加镂空距离S,而且,对发光元件的适应范围广,无论顶部发光、侧面发光乃至发光芯片和各种固态发光体都可以适用,同时,还能解决行单元颜色杂乱、无法单纯统一、发光点周边介质不均匀、漏光、无法性能增强和功能扩展等问题,还具有易于批量生产、密封防水等一系列技术进步。因此,必须突破现有行单元技术思路,对业已成熟的技术方案做创新思考才能有新的突破。
发明内容
本发明目的在于提供一种基于类舞台结构的整体封装式行单元,以解决现有的行单元,在保持行单元的刚度的情况下,无法减小行单元对视线的遮挡问题,从而在保持行单元刚度的情况下,减小行单元对视线的遮挡,增大行单元之间的镂空距离,获得更高的透明度。
本发明目的还在于通过基于类舞台结构的整体封装式行单元,以解决现有行单元的发光点周边介质不均匀、漏光的问题,从而获得一种发光点周边介质均匀、无漏光的行单元。
本发明目的还在于通过基于类舞台结构的整体封装式行单元,以解决现有行单元技术对发光元件适应范围窄,发光元件类型选择单一的问题,从而,获得一种能宽范围适应发光元件,不仅适用于侧边发光元件,还能适用于顶部发光元件乃至发光芯片和各种固态发光体的行单元。
本发明目的还在于通过基于类舞台结构的整体封装式行单元,以解决现有的行单元表面不平整、颜色杂乱、无法单纯统一,难以改变颜色、无法针对进行性能增强和功能扩展的问题,从而获得一种表面平整、颜色单纯统一,在制成后可以改变颜色、可以进行各种表面处理,并且具有性能可增强,功能可扩展性的行单元。
本发明的技术方案如下:
因本发明整体架构设计独特巧妙,对于发光元件适应性强,无论是顶部发光元件、侧面发光元件,还是LED发光芯片或者其它固态发光体(例如,OLED、钙钛矿发光、磷稀、石墨烯等)都可以用于发本明的行单元,所以本发明使用发光器件(Luminous Elements,以下简写LE)来表述。可能本案局部仍用LED表述,但就本发明对发光元器件的适应性来讲,并不仅限于LED元件。
基于类舞台结构的整体封装式行单元,包括第一功能层、第二功能层和第三功能层,以下所称各功能层、三个功能层均是指这三个功 能层;
第一功能层,为基本电路层,外形为长条形状,用于布线实现元器件之间的电连接,并起到承载和贴装所需元器件的作用,包括至少一层底部绝缘基板,该绝缘基板下表面或上表面至少有一层印刷电路,用于贴装所需的元器件。这些所需元器件包括,驱动集成电路(Integrated Circuit,简称IC)、外围元件(Peripheral Components,简称PC)和发光器件(Luminous Elements,简称LE)。
第二功能层,为支撑加强层,其外形为与第一功能层相匹配的长条形状,用于行单元的支撑加强功能的同时,还通过内部凹陷或通孔形成所需元器件的嵌入腔。这些嵌入腔包括驱动集成电路嵌入腔(简称为IC嵌入腔)、外围元件嵌入腔(简称为PC嵌入腔)和发光元器件嵌入腔(简称为LE嵌入腔或发光腔),分别对IC、PC和LE起到容纳嵌入作用,特别是对于LE在显示方向的长侧边形成一个向上、向下、侧面(显示方向)开口结构的嵌入腔。其中,IC嵌入腔或PC嵌入腔,除了采用通孔外,还可以根据嵌入元件厚度情况采用盲孔。
第三功能层,为类舞台顶檐层,其外形为与第二功能层相匹配的长条形状,该功能层最重要的作用是与第一功能层和第二功能层共同构成可容纳发光器件LE的类舞台结构。同时,该功能层也为功能和性能可扩展层,除了具备最基本的封装顶盖并与其它功能层配合形成对发光器件进行封装的发光腔的作用外,还可以通过采用不同的材料、增加不同的表层材料或通过功能或形状延伸实现功能扩展和性能加强。
三个功能层分别制备完成后,需要粘接成为整体才能成为完整的行单元。粘接时,第一功能层上表面贴装的元器件和第二功能层的各个嵌入腔,在位置上正好一一对应,在形状上正好使第一功能层上表面贴装的元器件嵌入到第二功能层的各个嵌入腔内。粘接后,就构成了一个外表平坦、表面没有元器件的行单元,同时,第二功能层的发光腔巧妙地与第一功能层和第三功能层共同形成了一个侧面开口的类舞台结构,可以象舞台容纳并展现节目一样容纳发光元器件并输出光线了。
本发明行单元把发光器件置于侧面开口的类舞台结构内的发光腔中,不仅解决了采用Side-LED贴装在边缘时的周围发光介质不均匀等一系列问题,还使行单元对发光器件的适用范围扩展到Top-LED,同时,发光腔除了对发光器件起到内嵌集成作用外,还对光线起到引导输出的作用。为充分利用其对光线的引导输出作用,并使行单元外观完整无缝隙,可以使发光元件与发光腔的形状和大小相匹配,使发光器件充满发光腔,仅留出误差空间(若需以密封防潮,可以通过封装胶填补),通过发光器件自身封装胶进行导光,以发光器件的某个面作为出光面,例如,以Side-LED顶端作为出光面,以Top-LED的侧面为出光面。出光面与行单元三个功能层的前侧面构成了行单元的发光面。
进一步地,可以通过调节发光器件的出光面与行单元三个功能层的前侧面之间前后位置的关系,实现行单元发光面的发光方面、角度和偏向的调整。例如,当发光器件出光面与行单元三个前侧面位于同 一平面时,发光方向为侧面方向;当第一功能层前侧面向内收缩时,露出发光器件底部发光面,就可以使行单元的发光方向和角度向下方扩展;其它方式以此类推。
为进一步扩展发光空间对不同LE的宽泛的适应性,特别对于发光芯片和其它固态发光体来讲,给LE在类舞台结构内之间留出一定的发光空间,并以封装胶灌封,即可实现发光芯片在行单元内的直接封装;对于选用Top-LED或Side-LED作为LE来讲,通过LE在行单元内的二次封装,使二次封装胶与LE本身的封装胶融为一体,共同对光线起到导光作用,使光线从封装胶固化后形成的侧向光线输出面(简称为出光面)获得输出。出光面从整个显示屏的角度来看就是发光点,只要保持出光面上下侧面厚度相同或接近,就可以实现了发光点在上下、左右同一方向上周边介质均匀化。同时,类舞台结构内的发光腔也对光线起到反射和引导作用,避免光线向不需要显示的方向泄漏,解决了漏光问题。
进一步地,发光腔留出发光空间并灌有封装胶后,还可以通过划片切割实现对行单元发光面倾角的调节,实现对制成后的行单元发光面的发光方向、角度和偏向的调整。
进一步地,发光腔留出发光空间后,还可以根据发光器件的形状,并配合发光腔内空间形状的调整,实现对光输出效率、光输出角度或偏向的调整。例如,如果发光腔高度有空间,发光腔内顶部表面除了可以采用平顶结构外,还可以采用拱形的结构,等等。
进一步地,行单元表面平坦化后,还使得单独对某个层进行功能 扩展和性能加强成为可能。例如,通过对行单元上表面或者下表面处理和性能增强,例如,表面粘贴、喷涂高导热、高模量的材料,如碳纤维布等,甚至第三功能层直接采用碳纤维板材或铝板,以增加行单元的刚度,提高散热性能;
进一步地,通过在第二功能层前侧面向前、再同时向上向下延伸,使第二功能层前侧面成为整个行单元的前侧面;或者通过第三功能层前侧面向前、再同时向下延伸,使第三功能层前侧面成为整个行单元的前侧面;还可以通过增加印刷电路实现布线层数的扩展,等等。
进一步地,当第一功能层所需电路层数超过二层时,如果有必要,可以考虑第三功能层扩展成为电路板;如果仍不能满足布线层数要求,还可以在第二功能层中增加印刷电路。由于各功能层在粘接成为行单元后会成为的密封防水结构,就可以象处理普通多层电路板那样进行各种金属化和导电孔处理。总之,本发明的行单元,不仅通过功能分层实现了多种技术进步,而且,在需要时,可以通过对各功能层分配新的功能实现不同的设计要求,例如,当有更多印刷线路层数要求时,可以把层数分配给不同的功能层,通过各功能层的厚薄和印刷电路层数的调整,仍然可以在保持行单元刚性的前提下,保持本发明的行单元的各项技术进步。
进一步地,在第三功能层扩展成为电路板后,可以在其下表面贴装表面元件,并使表面元件嵌入到第二功能层中。
进一步地,如果把由第三功能层下表面贴装的表面元件与第二功能层的嵌入腔构成的类舞台结构的侧面开口方向朝向后侧,在不加大 行单元宽度,并可以减小行单元厚度的情况下制成双面显示不同图像的透明显示屏。
进一步地,如果需要,还可以使第二功能层和第三功能层合并成为一体的第二综合功能层,在第二综合功能层与第一功能层粘接后,依然具有一系列优势。
本发明提供的基于类舞台结构的整体封装式行单元,把现有行单元电路板支撑功能和电路功能混合在一起的功能分解成三个不同的功能层,第一功能层用于布线实现所需元器件之间的电连接,并使各元器件朝向第二功能层;第二功能层用于支撑加强,增加了对元器件的嵌入功能,特别是增加了朝向发光方向的发光器件嵌入腔;第三功能层,除基本的封装顶盖作用外,还可进行功能扩展或性能加强。三个功能层的粘接后,通过嵌入腔对各元器件的嵌入,实现了各元器件的内嵌集成,解决了表面元件遮挡视线,影响镂空间距、行单元颜色杂乱、无法单纯统一、无法进行表面处理等问题。特别是发光器件与三个功能层在显示方向形成了一个类舞台结构,不仅解决了现有行单元存在的周边介质不均匀和漏光的问题,还拓展了发光器件的选择范围,并且,因发光器件贴在电路正面,可通过拼版贴片,更易于生产,并大幅提高了生产效率。
附图说明
图1(a),电路板正面贴装顶部发光LED的现有行单元技术;
图1(b),电路板边缘贴装侧面发光LED的现有行单元技术;
图1(c),电路板侧面贴装顶部发光LED的现有行单元技术;
图2(a),电路板边缘贴装COB封装侧面发光LED的现有行单元技术;
图2(b),电路板边缘贴装COB封装顶部发光LED的行单元技术;
图3,本发明的行单元各功能层的构成横截面分解图(A-A位置);
图4,各功能层粘接封装成为行单元后的横截面图(A-A位置);
图5,各功能层粘接封装成为行单元后的正视图(A-A位置);
图6(a),行单元的第一功能层的顶视图;
图6(b),行单元的第二功能层的顶视图;
图6(c),行单元的第三功能层的顶视图;
图6(d),三个功能层粘接封装后的顶视图(透视图);
图7,IC嵌入腔采用通孔,PC嵌入腔采用盲孔时的情况;
图8,驱动IC集成度高度集成无外围元件时的情况;
图9,发光器件采用围坝塑封的侧面发光元件时的情况;
图10,发光器件采用COB封装的顶部发光元件时的情况;
图11,发光器件采用发光芯片时的情况;
图12,发光器件采用围坝透明塑封的顶端发光元件时的情况;
图13,行单元前侧面与上下表面成非直角向前倾斜时的情况;
图14(a),发光腔侧表面采用梯形结构;
图14(b),发光腔底表面采用中心凸起的双曲线结构;
图14(c),发光腔底表面采用中心凸起的多折线结构;
图15,发光腔底表面采用拱形结构时的情况;
图16,发光器件与发光腔形状大小匹配时的情况;
图17,发光器件出光面从行单元前侧面向外凸出时的情况;
图18,改变各功能层前侧面和出光面凸出程度获得不同发光偏向;
图19,采用顶部发光元器件与发光腔形状大小匹配时的情况;
图20,第三功能层开设与第二功能层嵌入腔相对应的通孔;
图21,第三功能层分配印刷线路时的情况;
图22,第三功能层为双层电路板并分配第一功能部分表面元件;
图23,第三功能层均匀交错分配第一功能层部分表面元件;
图24,第一功能层和第三功能层表面元件相互嵌入到对方电路板中;
图25,第二功能层前侧面向前再向上向下同时延伸;
图26,整个行单元的前侧面由第二层前侧面构成时的正视图;
图27,发光器件贴装于采用多层电路板的第一功能层中间时的情况;
图28,第二和第三功能层合并成为第二功能综合层时的横截面分解图;
图29,第一功能层与第二功能综合层粘接成为行单元后的横截面图;
具体的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、完整地描述。
实施例一:
参见图3~8,本实施例提供的基于类舞台结构的整体封装式行单元,包括第一功能层100、第二功能层200和第三功能层300;
所述第一功能层100,外形为长条形状;
所述第一功能层100,为基本电路层,至少包括第一绝缘基板110,还包括与绝缘基板上表面112、下表面111分别相互贴合的第一层顶部电路132、第一层底部电路131(也称为第一下表面电路131),以及贴装于第一层顶部电路132(也称为第一上表面电路132)的表面元器件180;该表面元器件180,包括发光器件LE102在内的元器件,该元器件包括驱动集成电路IC104、外围元件PC106和发光器件LE102,其中,是否需要PC106由IC104集成度决定取舍。
所述第一功能层100,也称为底部电路基板层100,用于布线实现元器件之间的电连接,并起到承载和贴装这些元器件的作用。因为双层印刷电路完全能够表述本发明技术方案,故两层以上电路板在此省略。
随着驱动集成电路集成度的提高,外围元件逐渐集成到芯片内部,因此,当采用无外围元件的驱动集成电路时,可以省略外围元件,其结果只是少了外围元件嵌入腔206,但并不影响本专利的实质内容。如果从以集成电路为中心的角度来看,发光元件也属于外围元件;但从显示屏角度来讲,发光元器件已经成为核心部件,不再是外围元件,外围元件主要指稳压、阻容等元件。
所述第二功能层200,其外形为与第一功能层100相匹配的长条形状;
第二功能层200,除对行单元起到支撑加强作用外,还对IC104和PC106起到容纳嵌入,对LE102起到内嵌集成、封装和引导输出光线的作用。
所述第二功能层200,为支撑加强层,包括支撑基板210以及通过其第二层下表面211向内凹陷形成的元器件嵌入腔280;该元器件嵌入腔280,包括驱动集成电路嵌入腔204(简称为IC嵌入腔204)、外围元件嵌入腔206(简称为PC嵌入腔206)和发光器件嵌入腔202(简称为LE嵌入腔202或发光腔202)。其中,PC嵌入腔206由是否有外围元件PC106决定取舍。
其中,IC嵌入腔204和PC嵌入腔206,其处于第二层下表面211的位置分别与IC104和PC106处于第一层上表面172的位置镜像对称、一一对应,其内部空间能够完全容纳IC104和PC106,并留出一定的误差空隙。换一种表述,IC嵌入腔204和PC嵌入腔206在第一功能层100上的投影与对应的IC104和PC106一一对应,其投影形状略大于相应的IC104和PC106。
可以根据行单元厚度设计要求,最厚的元件嵌入腔,一般为IC嵌入腔204,可采用通孔;较薄的元件嵌入腔,一般为PC嵌入腔206可采用盲孔;或者为加工方便,两者全部采用通孔。当IC嵌入腔204采用通孔时,除了对IC104元件起到嵌入作用外,还可以使IC104在直接采用芯片时起到封装围坝作用。
上述第一层上表面172,包括第一层顶部电路132和绝缘基板上表面112没有印刷电路裸露部分,同样,第一层下表面171包括绝缘基板下表面111裸露部分和底部电路131共同构成。表面电路的微小凹凸,从宏观角度来讲,可视为平坦表面。在表述各功能层表面时,特别是表面存在印刷线路表面、裸露的绝缘基板表面和由两部分组成的表面几种情况,为简化表述,不同情况不加区分或直接用上表面、下表面、前侧面(右侧面)、后侧面(左侧面)表述。发光器件嵌入腔202,即发光腔202,其处于第二层下表面211的位置与LE102处于第一层顶部电路132的位置镜像对称、一一对应;并在与LE102相对应的位置,由第二前侧面261,即显示方向的长侧边261,向内凹陷形成由三个方向开口、三个内表面构成的缺口,该缺口三个方向开口分别为下开口505A、上开口501A、前开口402A,三个内表面包括底表面502、左表面503、右表面504(当LE102过密紧挨着时,左表面503、右表面504可以消失,仅有底表面502)。换一种表述,发光腔202,位于第二功能层200显示方向的长侧边261,并在侧边261附近的三个面(上表面212、下表面211、侧面261)形成一个向上、向下、向显示方向三面开口的形状,该开口在第一功能层100上表面的投影,至少略大于发光器件LE102,并可根据发光腔202形状对输出光线的影响进行设计。
所述第三功能层300,其外形为与第二功能层200相匹配的长条形状。
所述第三功能层300,也称为类舞台顶檐层,为功能和性能可扩 展层。还可以根据需要进行诸如表面增强、增加电路层、分担表面元件等多种功能或性能的扩展。即便由一个上下表面平坦的绝缘基板构成时,具有最基本的封装顶盖功能时,在三个功能层粘接形成行单元后,即具有了现在行单元所不具备的各种技术优势,巧妙地解决了如技术背景中方式二需要翻转90°才能贴片,无法拼版加工等问题,解决了方式三发光元件上下介质不均匀、遮挡视线等问题,在保持行单元刚度的情况下,降低了行单元的总厚度,提高了镂空间距,使行单元对元件适应性由单一变为多样,包括侧发光元件、顶部发光元件,乃至采用发光芯片直接封装。还解决了现有行单元无法进行表面处理、表面颜色杂乱等问题,使各种表面处理变得非常容易,无论进行传统的印刷,还是喷绘、喷涂、涂布、表面粘贴等都会变得非常方便容易。
所述第三功能层300,由第三基板310构成,包括上下两个平坦表面,分别为第三层上表面312、第三层下表面311,并与第二功能层200配合形成开口通孔或盲孔的嵌入腔。
三个功能层制备后,以第二功能层200为中间层,使第二层下表面211与第一层上表面172,第二层上表面212与第三层下表面311通过粘接成为整体。
各功能层粘接成为行单元后,行单元上表面602、单元下表面603为平坦表面。行单元上表面602,是由第三层上表面312构成的平坦表面;行单元下表面603,由第一层下表面171构成的平坦表面;第一层下表面171,包括绝缘基板下表面111裸露部分和底部电路131。 行单元后侧面604,由第一层后侧面162、第二层后侧面262和第三层后侧面362构成。因需要考虑通过后侧对行单元进行固定,或者考虑通过后侧与其它电路的进行电连接,或者为了减小行单元宽度,使没有线路的部分凹陷,把后侧面处理成非平直形状,当然也可以根据需要处理成平直形状。
为了便于展示和标注,图中所绘的元件比例并非真实比例,文中所述的上下、前后都是相对的概念,并不会因为把图形进行翻转或者轴对称后就改变专利的实质。图中所绘的印刷电路层与贴片元件之间的电连接关系并非真实的电路连接方式,不同层印刷电路之间省略了导电孔或侧边导电层连接,印刷电路层简单采用铺满绝缘基板的方式,都是为了简化非本发明需要讨论的核心问题,也是为了表述的方便。具体布线方式可以千变万化,并不影响本发明所具有的技术优势。PC106和IC104采用并排设置,显然会增加行单元的宽度,其目的也是为了便于通过图示清晰表达,在实际布线设计时除非特殊情况一般不会这样处理。同样,图中第一功能层100只绘出了双层电路,并不表示本发明只适用于双层电路,因为布线需要完全可以采用三层电路,四层电路,以此类推。关于文字描述与标注问题,因为不同功能层的存在,如果全称描述会使文字描述变得非常冗余,为简便起见,会根据情况选择不同的名称或简称,例如,第一层绝缘基板110,可简称为第一绝缘基板110、绝缘基板110、基板110,因为有标注110的存在,并不会和其它层的基板相混淆。从不同角度描述也有类似的情况,例如,第一功能层100的上表面112,从整个功能层的角度来 讲,可以称为第一层上表面112,如果从具体的位置来讲,可以称为绝缘基板上表面112,也可以简称为第一上表面112、上表面112,同样因为标注112的存在,并不会与其它层的上表面相混淆。
实施例二:
参见图9~12,本实施例提供的基于类舞台结构的整体封装式行单元,发光腔202,其内部空间除能够完全容纳LE102外,还为LE102留出一定的发光空间;该发光空间,其形状和大小根据LE102形状大小和发光方向,以有利于光输出效率和对输出角度的要求确定;
发光腔202,其下开口505A、上开口501A分别垂直向下和向上投影,分别在第一层上表面172和第三层下表面311形成下投影区505和上投影区501,LE102贴装在下投影区505内;
LE102,为侧面发光元件、顶部发光元件、发光芯片三者之一;
三个功能层粘接后,由下投影区505、上投影区501和发光腔202,构成向侧面开口,即向显示方向开口的类舞台结构500;
类舞台结构500内部LE102之外的发光空间,经透光封装胶401填充固化后,形成类舞台结构500的出光面402。
上述侧面开口的类舞台结构500,简称类舞台结构500,当为LE102留出发光空间时,不仅发光腔202形状和大小还可以根据LE102形状和大小确定,以及根据有利于光输出效率和对输出角度的要求确定,而且,还有着宽泛的元件适应性。当LE102在发光腔202内有一定的发光空间时,无论是顶部发光器件,还是侧面发光器件,乃至发光芯片,在LE102置于侧面开口的类舞台结构500中时,在发 光腔202内灌入的封装胶401封装固化后,封装胶401与LE102本身的封装胶103融为一体,共同对光线起到导光作用,使光线从封装胶401固化后形成的类舞台结构500的侧向光线输出面402(简称为出光面402)获得输出。而且,类舞台结构500的内部空间,还对LE102的光线起到反射和引导作用,避免光线向不需要显示的方向泄漏,解决了漏光问题。另外,还可以采取一些辅助措施提高对不同类型元件的适应性,例如,采用透明围坝封装时,就可以使适用范围拓宽到具有围坝的顶部发光元件,等等。
实施例三:
参见图13,本实施例提供的基于类舞台结构的整体封装式行单元,当发光腔202内为LE102留出发光空间,三个功能层粘接,填充以封装胶401后,由封装胶401固化而成的出光面402与包括第一层前侧面161、第二层前侧面261和第三层前侧面361三个侧面构成了行单元发光面,通过制成不同的倾角,使行单元发光面获得不同的发光偏向。或者说,上述行单元发光面与行单元上表面602或下表面603不仅可以水平面垂直,还可以是不垂直。
本实施例提供的行单元,出光面402作为行单元前侧面601的发光点,从上下关系上来看,位于第一层前侧面161和第三层前侧面361之间,不仅可以通过改变出光面402上部的第三层前侧面361厚度和下部的第一层前侧面161的厚度,使出光面402周围介质均匀,还可以通过改变由出光面402与行单元前侧面601构成的行单元发光面的 倾角,获得不同发光方向和偏向。一般情况下,出光面402与行单元前侧面601构成的发光面与行单元上下表面是垂直的关系,但有时也需要上述发光面有一定的倾角,例如,很多时候显示屏安装在高处,有效显示是向下方向,向上方向为无效显示,此时,就需要行单元的发光面向下倾斜,就可以使行单元前侧面601的倾角向下即可解决。
实施例四:
参见图14~15,本实施例提供的基于类舞台结构的整体封装式行单元,所述发光腔202,当为LE102留出发光空间时,不仅对于发光器件有着宽泛的适应性,而且,还可以根据对光输出效率和输出角度的要求对发光腔202的内部形状做适当调整。
发光腔202,从顶视图的角度来看,由第二功能层200的底表面502、左表面503、右表面504构成的表面形状。具体形状为,底表面502和左表面503、右表面504可以采用底表面502凸起的多折线的结构,还可以采用底表面502凸起的双曲线的结构,也就是说,其底表面502形状,从顶视图来看,为从凹陷到平底,乃至中间凸起之间某个形状;其左表面503、右表面504可以采用从直角到梯形喇叭口形状的结构,也就是说,其左表面503、右表面504与第二层前侧面261之间内夹角,为等于直角到小于直角之间的某个角度,其母线形状为从平直到折线,乃至曲线之间某个形状。从横截面的角度来看,其底表面502和发光腔202与第三功能层300下表面、第一功能层100的上表面形成的内部空间,为LE102留出发光空间时,都可以根据LE102的形状或对光输出效率和输出角度的要求,通过对底表面502形状的 调整实现对发光腔202形状的调整。具体形状为,发光腔202内顶部表面除了可以采用底表面502垂直的平顶结构外,还可以通过底表面502形状的调整成为拱形结构。也就是说,其底表面502形状,从横截面来看,为从垂直到拱形之间某个形状。
其实,通过把现有行单元的电路板分解成为不同的功能层,并并把元器件置入嵌入腔,以及发光器件与发光腔形成的类舞台结构,已经完全解决了现有行单元的一系列问题,关于发光腔202形状的讨论其目的在于说明本发明的行单元的反射腔202内部空间还具有可调整性的优势。
实施例五:
参见图16~19,本实施例提供的基于类舞台结构的整体封装式行单元,发光腔202,其内部空间与LE102相互匹配,发光器件LE102充满发光腔202内部空间,仅留出一定的误差空隙;
发光腔202,其下开口505A、上开口501A分别垂直向下和向上投影,分别在第一层上表面172和第三层下表面311形成下投影区505和上投影区501,LE102贴装在下投影区505内;
LE102,为侧面发光元件、顶部发光元件二者之一;
三个功能层粘接后,由下投影区505、上投影区501和发光腔202,构成侧面开口的类舞台结构500;类舞台结构500内部空间,由LE102元件主体和自身的封装胶103填充,也就是通过LE102发光器件自身填充,直接由LE102顶端或侧面构成出光面402。
出光面402与构成行单元前侧面601的三个侧面之间,不仅可以 处于同一平面,还可以通过向前凸出或向后退缩的不同位置组合,使行单元获得不同的发光方向、角度或偏向。上述构成行单元前侧面601的三个侧面,包括第一层前侧面161、第二层前侧面261和第三层前侧面361。也就是说,出光面402与单元前侧面601的三个侧面,从处于同一平面的组合,到向前凸出和向后退缩不同的位置组合(从处于同一平面到相互错落),获得不同的发光方向、角度或偏向。例如,一般情况下,出光面402与行单元前侧面601处于同一平面,就能实现本发明行单元的各种优点;如果需要增加发光角度,可以使出光面402凸出一些;如果要使发光角度偏下,可以使第三层前侧面361、第一层前侧面161向前凸出一些。目前的行单元,如果想调节发光偏向非常麻烦,有倾斜焊接、单边垫高等技术方案,都需要对每个发光元件进行加工,成本高,繁琐,而本发明的行单元只需要调整三个功能层侧面位置关系,或者如实施例三那样通过切割形成行单元发光面不同倾角,即可实现调节发光偏向的调节。
实施例六:
参见图20,本实施例提供的基于类舞台结构的整体封装式行单元,第三功能层300,至少开设有与IC嵌入腔204和PC嵌入腔206两者之一,位置相对应、大小相同的通孔。
本发明的行单元把电路板分解成三个功能层后,也为单独对第二功能层200和第三功能层300厚薄和嵌入腔结构调整创造了条件,使得行单元具有灵活选择厚度的优势。一般情况下,第三功能层300未必需要开设通孔,但为了调整行单元厚度的需要,或者为了填充封装 胶的方便,或者为了加工方便,可以在第三功能层300内开设与IC嵌入腔204或PC嵌入腔206所具有的通孔完全对应、大小相同的通孔,以降低第二功能层200和第三功能层300堆叠的厚度。开设通孔后,即便第二功能层200与第三功能层300的堆叠厚度等于甚至略小于最厚的元件的厚度也能保持行单元的平坦,也不会影响表面处理和各种扩展。开设的通孔只需经封装胶处理,并不会影响密封防水性能。
实施例七:
参见图21,本实施例提供的基于类舞台结构的整体封装式行单元,所述第二功能层200和第三功能层300,至少其中的一个功能层,由至少具有一层印刷电路的基板构成。
当第一功能层100采用双层甚至多层线路板无法满足布线要求时,除了可以通过第一功能层100增加电路层数外,还可以在第三功能层300的第三层上表面312增加第三层上表面电路332,也就是使第三功能层300由印刷电路板构成,同样,也可以使第三功能层300由印刷电路板构成,如果电路层数不够还可以采用双层乃至多层线路板。
本发明的行单元把电路板分解成为不同的功能层,就可以单独对某个层进行功能扩展和性能加强,而且,各功能层通过粘接成为行单元后会成为密封防水结构,即便某些嵌入腔采用通孔,也可以在通孔内灌入封装胶获得密封防水结构,所以,在粘接后可以象处理普通多层电路板那样进行侧边金属化或电路板内导电孔处理,使得新增加的印刷电路与第一功能层100的印刷电路电连接。行单元具有密封防水 特性,也是本发明的技术进步之一。
实施例八:
参见图22~24,本实施例提供的基于类舞台结构的整体封装式行单元,第三功能层300采用电路板时,第一功能层100的表面元件180分配到第三功能层300的下表面,贴装于第三层下电路331表面,成为表面元件380,并在第二功能层200内开设与表面元件380镜像对称、一一对应的嵌入腔280A。
第三功能层300,采用印刷电路板,不仅可以与第一功能层100中的印刷电路通过内部金属化孔或侧边金属化相实现电连接,而且,还可以把表面元件180分配到第三层下电路331表面,成为第三功能层300的表面元件380。如果希望减小行单元厚度,可以使表面元件380需要与表面元件180相互错开,避免在厚度上重叠。进一步,还可以把表面元件180均匀交错分散到第三层下电路331表面,使表面元件180与表面元件380在数量上相同或接近,在位置上相互交错。同时,在第二功能层200上表面开设与表面元件380镜像对称、一一对应的嵌入腔280A,使行单元在不增加宽度,乃至减小厚度的情况下,容纳更高的元件密度。据此原理,还可以把表面元件380与嵌入腔280A构成的类舞台结构500的侧面开口朝向后侧,在不加大行单元宽度的情况下,制成双面显示不同图像的透明显示屏。因粘接后的示意图难以清晰展示,故采用分解图表示。
如果需要进一步降低行单元的厚度,可以通过降低第二功能层200的厚度,甚至省略第二功能层200的方法,同时在第一功能层100 和第三功能层300的各自的电路板上开设与对方表面元器件镜象对称、相互对应的通孔或盲孔,使表面元件180(根据情况,可以包括LE102,也可以不包括)和表面元件380(根据情况,可以包括LE302,也可以不包括)部分或全部相互嵌入到对方电路板中。当省略第二功能层200时,LE102的后侧由对方的电路板凹槽形成了嵌入腔202A,如果采用有围坝的塑封侧面发光元件,同样可以解决发光点漏光、行单元颜色杂乱等一系列问题,并实现了行单元厚度的降低。如果采用COB侧面发光,只要在行单元上下表面粘贴遮挡层就可以了。
实施例九:
参见图25~26,本实施例提供的基于类舞台结构的整体封装式行单元,所述第二层前侧面261,向前延伸,再同时向上、向下延伸,形成前延伸下段251、前延伸上段253,正好遮挡住第一层前侧面161和第三层前侧面361,此时,行单元前侧面601仅由第二层前侧面261构成。
第二层后侧面262也可以做类似的延伸,是否向后延伸,需要考虑行单元的后侧与其它电路接插件或板对板的连接问题,还需要根据表面元件280的位置和布线情况,在没有元器件的位置收窄,这样,第二层后侧面262可能并非平坦。如果需要向后延伸,即便后侧面262不平坦,也可以象第二层前侧面261延伸方法类似,使第二层后侧面262向后延伸,再同时向上、向下延伸,形成后延伸下段252、后延伸上段254,正好遮挡住第一层后侧面162、第三层后侧面362。此时,第一功能层100置于前延伸下段251和后延伸下段252之间,第三功 能层300置于前延伸上段253和后延伸上段254之间。
第二层前侧面261向前、再同时向上、向下延伸,使第二层前侧面261成为行单元前侧面601,由此获得另一种形式的平坦化的侧面,也可以看做是针对第二功能层200表面进行的另一种功能扩展。而现有行单元技术,电路板所具有的布线实现电连接和支撑加强功能是混合在一起的,发光元件又贴装在外表面,根本无法进行扩展。从解决问题的角度来看,行单元前侧面601和出光面402处在同一平面构成平坦表面,已经完全能够解决现有行单元存在的诸如表面元件遮挡视线、颜色杂乱、漏光、发光点周边介质不均匀等一系列问题,进一步又可以通过第二层前侧面261、第一层前侧面161、第三层前侧面361和出光面402前后位置或倾角不同的组合方式,获得不同特性的行单元侧面光输出特性,这些更是现有行单元无法实现的,但作为本发明行单元可延伸扩展性优势的一个实施例,有必要在此做个表述。
实施例十:
参见图27,本实施例提供的基于类舞台结构的整体封装式行单元,第一功能层100由多层电路板构成,LE102贴装于中间电路层135表面,以解决当行单元厚度设计有限制时,使出光面402上下介质均匀。
当第一功能层100采用双层电路板无法满足布线要求时,可以采用在第二功能层200上表面增加第二层顶部电路232的方法,也可以使第一功能层100采用多层电路板,此时,如果对合并后的行单元有厚度的限制,而且即便采用尽可能薄的电路板,并通过调整发光腔 202的形状也无法实现出光面402上下介质均匀时,可以考虑把LE102贴装在第一功能层100的多层电路板某个中间电路层135表面,此时,需要在中间电路层135以上留出缺口,以便贴装LE102。
实施例十一:
本实施例提供的基于类舞台结构的整体封装式行单元,所述行单元上表面602、下表面603,可以通过高性能材料的表面处理获得性能增强;第二功能层200和第三功能层300可以通过高性能材料的替换获得性能增强。
通过对行单元上表面或者下表面高性能材料的处理,例如,高导热(如金属膜、金属粉末等)、高模量的材料(如碳纤维布)表面粘贴、喷涂、印刷等手段,使行单元获得性能增强;第二功能层200和第三功能层300,采用高性能材料,如碳纤维板材或铝板,以增加行单元的刚度,提高散热性能;采用高刚度的塑料以提高生产效率,等等。对于现有行单元来讲,因为碳纤维板和铝板导电,表面又有贴片元件,进行表面性能增强很困难。而本发明的行单元,因表面平坦化,即便印刷电路的表面,只要增加绝缘处理即可。总之,第一功能层100和第三功能层300之所以能够单独进行性能增强,还是得益于电路板的功能分解,并基于本发明的行单元架构和原理的应用。
实施例十二:
参见图28~29,本实施例提供的基于类舞台结构的整体封装式行单元,第二功能层200作为嵌入支撑层和第三功能层300作为顶盖封装功能和合二为一,合并成为第二功能综合层200A,使其同时起到 嵌入支撑和顶盖封装作用,也可以看作第二功能层200和第三功能层300先粘接的结果,合并后所具有的各种优势完全保留。
显然,本发明实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,例如,把部分元件设置于行单元外表面;沿着本发明技术思路做一个不同形状的发光腔;行单元与其它电路板连接的接插件焊接于行单元表面等等,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的基于类舞台结构的整体封装式行单元,把现有行单元电路板支撑功能和电路功能混合在一起的功能分解成三个不同的功能层,第一功能层用于布线实现所需元器件之间的电连接,并使各元器件朝向第二功能层;第二功能层用于支撑加强,增加了对元器件的嵌入功能,特别是增加了朝向发光方向的发光器件嵌入腔;第三功能层,除基本的封装顶盖作用外,还可进行功能扩展或性能加强。三个功能层的粘接后,通过嵌入腔对各元器件的嵌入,实现了各元器件的内嵌集成,解决了表面元件遮挡视线,影响镂空间距、行单元颜色杂乱、无法单纯统一、无法进行表面处理等问题。特别是发光器件与三个功能层在显示方向形成了一个类舞台结构,不仅解决了现有行单元存在的周边介质不均匀和漏光的问题,还拓展了发光器件的选择范围,并且,因发光器件贴在电路正面,可通过拼版贴片,更易于生产,并大幅提高了生产效率。

Claims (12)

  1. 基于类舞台结构的整体封装式行单元,简称行单元,包括第一功能层、第二功能层和第三功能层,其特征在于,
    所述第一功能层,外形为长条形状;
    所述第一功能层,至少包括一层绝缘基板和顶部电路,该顶部电路的表面贴装至少驱动集成电路、发光器件以及由集成度决定取舍的外围元件三者之一;
    所述第二功能层,其外形为与第一功能层相匹配的长条形状;
    所述第二功能层,包括支撑基板,以及通过其下表面向内凹陷形成的元器件嵌入腔;该元器件嵌入腔包括驱动集成电路嵌入腔、发光器件嵌入腔,以及由是否需要外围元件决定取舍的外围元件嵌入腔;
    其中,集成电路嵌入腔和外围元件嵌入腔,为通孔、盲孔两者之一;
    集成电路嵌入腔和外围元件嵌入腔在第一功能层上的投影与对应的集成电路和外围元件一一对应,形状略大于相应的集成电路和外围元件;
    所述发光器件嵌入腔,位于第二功能层显示方向的长侧边,并在该侧边附近形成一个向上、向下、向显示方向三面开口的形状,该开口形状在第一功能层上表面的投影,至少略大于发光器件;
    所述第三功能层,由表面平坦的板材构成的功能和性能可扩展层;
    所述第三功能层,其外形为与第一功能层和第二功能层相匹配的长条形状;
    所述行单元,以第二功能层为中间层,使第二层下表面与第一层上表面,第二层上表面与第三层下表面通过粘接成为整体。
  2. 如权利要求1所述的基于类舞台结构的整体封装式行单元,其特征在于,
    所述发光器件嵌入腔,其内部空间除能够完全容纳发光器件外,还为发光器件留出一定的发光空间;该发光空间,其形状和大小根据发光器件形状大小和发光方向,以及有利于光输出效率和对输出角度的要求确定;
    所述发光器件嵌入腔,其下开口、上开口分别垂直向下和向上投影,分别在第一层上表面和第三层下表面形成下投影区和上投影区,发光器件贴装在下投影区内;
    所述发光器件,为侧面发光元件、顶部发光元件、发光芯片三者之一;
    第一功能层、第二功能层和第三功能层三者粘接后,由下投影区、上投影 区和发光腔,构成侧面开口,即向显示方向开口的类舞台结构;
    所述类舞台结构内发光器件之外的发光空间,经透光封装胶填充固化后,形成类舞台结构的出光面;该出光面与包括第一层前侧面、第二层前侧面和第三层前侧面在内的三个侧面构成了行单元发光面;
    所述行单元发光面,通过制成不同的倾角,使行单元发光面获得不同的发光偏向。
  3. 如权利要求1~2任一 所述的基于类舞台结构的整体封装式行单元,其特征在于,所述行单元,由第一功能层、第二功能层和第三功能层粘接后,至少行单元上表面、行单元下表面为平坦表面。
  4. 如权利要求2所述的基于类舞台结构的整体封装式行单元,其特征在于,所述发光器件嵌入腔,
    从顶视图来看,其底表面的形状,为从凹陷到平底,乃至中间凸起之间某个形状;
    从横截面来看,其底表面,为从垂直到拱形之间某个形状;
    从顶视图来看,其左表面和右表面,与第二层前侧面之间内夹角,为等于直角到小于直角之间的某个角度,其母线形状为从平直到折线,乃至曲线之间的某个形状。
  5. 如权利要求3所述的基于类舞台结构的整体封装式行单元,其特征在于,第三功能层,开设有至少与集成电路嵌入腔和外围元件嵌入腔两者之一,位置相对应,大小相同的通孔。
  6. 如权利要求3所述的基于类舞台结构的整体封装式行单元,其特征在于,所述第二功能层和第三功能层,至少其中的一个功能层,由至少具有一层印刷电路的基板构成。
  7. 如权利要求6所述的基于类舞台结构的整体封装式行单元,其特征在于,所述第三功能层,采用印刷电路板时,第一功能层的表面元件,分配到第三功能层,贴装于第三功能层下表面,并与第二功能层上开设的嵌入腔相对应。
  8. 如权利要求7所述的基于类舞台结构的整体封装式行单元,其特征在于,减薄或省略第二功能层,在第一功能层和第三功能层的各自的电路板上开设与对方表面元器件镜象对称、相互对应的通孔或盲孔,使贴装在第一功能层的表面元件和贴装在第三功能层的表面元件部分或全部相互嵌入到对方电路板中。
  9. 如权利要求3所述的基于类舞台结构的整体封装式行单元,其特征在于,所述第二层前侧面,向前延伸,再同时向上、向下延伸,形成前延伸下段、前延伸上段,正好遮挡住第一层前侧面和第三层前侧面,使行单元前侧面仅由第二层前侧面构成。
  10. 如权利要求3所述的基于类舞台结构的整体封装式行单元,其特征在于,行单元上表面、下表面、第二功能层、第三功能层,通过高性能材料的表面处理或替换获得性能增强。
  11. 如权利要求3所述的基于类舞台结构的整体封装式行单元,其特征在于,所述第一功能层,由多层电路板构成,发光器件贴装于中间电路层的表面。
  12. 如权利要求3所述的基于类舞台结构的整体封装式行单元,其特征在于,所述第二功能层和第三功能层合二为一,合并成为第二功能综合层。
PCT/CN2018/096311 2017-07-19 2018-07-19 基于类舞台结构的整体封装式行单元 WO2020014923A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710583776 2017-07-19
CN201810792706.4A CN109084216B (zh) 2017-07-19 2018-07-18 基于类舞台结构的整体封装式行单元
CN201810792706.4 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020014923A1 true WO2020014923A1 (zh) 2020-01-23

Family

ID=64817245

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/096341 WO2020014932A1 (zh) 2017-07-19 2018-07-19 基于类舞台结构的内嵌集成式行单元
PCT/CN2018/096311 WO2020014923A1 (zh) 2017-07-19 2018-07-19 基于类舞台结构的整体封装式行单元

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096341 WO2020014932A1 (zh) 2017-07-19 2018-07-19 基于类舞台结构的内嵌集成式行单元

Country Status (2)

Country Link
CN (2) CN109084216B (zh)
WO (2) WO2020014932A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109084216B (zh) * 2017-07-19 2021-12-21 广州超维光电科技有限责任公司 基于类舞台结构的整体封装式行单元
CN110798975B (zh) * 2019-10-22 2024-05-07 江门市华浦照明有限公司 一种表贴器件
CN115331587B (zh) * 2022-10-14 2022-12-20 南京达斯琪数字科技有限公司 一种减少重叠阴影的旋转显示方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090019042A (ko) * 2007-08-20 2009-02-25 엘지이노텍 주식회사 발광 소자
CN102569626A (zh) * 2012-01-11 2012-07-11 苏州玄照光电有限公司 多芯片集成封装led
CN102938442A (zh) * 2012-11-27 2013-02-20 北京半导体照明科技促进中心 Led封装单元及包括其的led封装系统
KR20130061454A (ko) * 2011-12-01 2013-06-11 엘지이노텍 주식회사 광원 모듈 및 이를 포함하는 헤드 램프
CN103367351A (zh) * 2013-07-15 2013-10-23 广东洲明节能科技有限公司 基于硅基的led模组多层叠加结构及制作方法
US20140113393A1 (en) * 2009-10-26 2014-04-24 Samsung Electro-Mechanics Co., Ltd. Package substrate for optical element and method of manufacturing the same
CN205334899U (zh) * 2016-01-22 2016-06-22 蓝国际 数码显示板
CN109064913A (zh) * 2017-07-19 2018-12-21 广州超维光电科技有限责任公司 基于类舞台结构的内嵌集成式行单元

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648890Y2 (ja) * 1984-04-20 1994-12-12 三洋電機株式会社 発光ダイオ−ド表示装置
JPH05291629A (ja) * 1992-02-10 1993-11-05 Toshiba Corp 発光表示装置及びその製造方法
US5739800A (en) * 1996-03-04 1998-04-14 Motorola Integrated electro-optical package with LED display chip and substrate with drivers and central opening
JPH11195493A (ja) * 1998-01-06 1999-07-21 Hokuriku Electric Ind Co Ltd 有機el素子とその駆動方法
US20050017268A1 (en) * 2001-09-07 2005-01-27 Masahide Tsukamoto Display apparatus and its manufacturing method
CN101477954B (zh) * 2008-01-03 2012-01-04 宏齐科技股份有限公司 具高效率侧向发光效果的发光二极管芯片封装方法及结构
US20100188321A1 (en) * 2009-01-26 2010-07-29 George Yen Led display device with high transmittance
CN201681556U (zh) * 2009-12-31 2010-12-22 林谊 一种高透明led显示模块
CN101877350A (zh) * 2010-04-20 2010-11-03 蒋伟东 一种一体化贴片单元
CN102467853B (zh) * 2010-11-08 2013-11-20 蒋伟东 一种透明玻璃幕墙屏
CN202024182U (zh) * 2010-12-02 2011-11-02 旭丽电子(广州)有限公司 背光模块的光源装置及其led封装结构
CN202307077U (zh) * 2011-08-23 2012-07-04 蓝星光电科技股份有限公司 高透光发光二极管显示屏结构
US8933433B2 (en) * 2012-07-30 2015-01-13 LuxVue Technology Corporation Method and structure for receiving a micro device
CN103779377A (zh) * 2012-10-25 2014-05-07 友达光电股份有限公司 有机发光显示器及其制作方法
CN103165038B (zh) * 2012-11-16 2016-03-23 映瑞光电科技(上海)有限公司 一种led显示屏及其制作方法
DE102012223162B4 (de) * 2012-12-14 2022-08-25 Pictiva Displays International Limited Flächenlichtsystem
CN107768362B (zh) * 2013-03-28 2020-09-08 东芝北斗电子株式会社 发光装置及其制造方法
CN103208241B (zh) * 2013-04-02 2015-04-15 长春希达电子技术有限公司 双面复合式led显示单元板及其封装方法
CN104167412A (zh) * 2014-08-25 2014-11-26 广东威创视讯科技股份有限公司 一种led封装结构及其制作方法
JP2016090810A (ja) * 2014-11-05 2016-05-23 明立技研株式会社 表示装置
CN204573736U (zh) * 2015-01-21 2015-08-19 新科实业有限公司 Led背光模组的发光元件、背光模组及显示装置
CN204573715U (zh) * 2015-04-21 2015-08-19 北京京东方茶谷电子有限公司 一种led灯条、背光源及显示装置
CN104978907B (zh) * 2015-07-28 2018-06-12 深圳市熠鸿光电科技有限公司 Led显示模组及所用的基架盘和光控电路板
CN205038923U (zh) * 2015-09-02 2016-02-17 佛山市国星光电股份有限公司 一种cob显示模块
CN205541706U (zh) * 2016-02-01 2016-08-31 深圳市异步科技有限责任公司 一种高透明度表贴侧发光led透明显示屏
CN206179445U (zh) * 2016-11-23 2017-05-17 东莞市源保光电有限公司 一种具有防水面罩的led显示模组
CN107978237A (zh) * 2018-01-09 2018-05-01 上海得倍电子技术有限公司 一种led透明显示屏结构及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090019042A (ko) * 2007-08-20 2009-02-25 엘지이노텍 주식회사 발광 소자
US20140113393A1 (en) * 2009-10-26 2014-04-24 Samsung Electro-Mechanics Co., Ltd. Package substrate for optical element and method of manufacturing the same
KR20130061454A (ko) * 2011-12-01 2013-06-11 엘지이노텍 주식회사 광원 모듈 및 이를 포함하는 헤드 램프
CN102569626A (zh) * 2012-01-11 2012-07-11 苏州玄照光电有限公司 多芯片集成封装led
CN102938442A (zh) * 2012-11-27 2013-02-20 北京半导体照明科技促进中心 Led封装单元及包括其的led封装系统
CN103367351A (zh) * 2013-07-15 2013-10-23 广东洲明节能科技有限公司 基于硅基的led模组多层叠加结构及制作方法
CN205334899U (zh) * 2016-01-22 2016-06-22 蓝国际 数码显示板
CN109064913A (zh) * 2017-07-19 2018-12-21 广州超维光电科技有限责任公司 基于类舞台结构的内嵌集成式行单元

Also Published As

Publication number Publication date
WO2020014932A1 (zh) 2020-01-23
CN109064913B (zh) 2022-05-20
CN109084216A (zh) 2018-12-25
CN109064913A (zh) 2018-12-21
CN109084216B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
US11269215B2 (en) Method of manufacturing light emitting module and light emitting module
JP7125636B2 (ja) 発光装置
US10923024B2 (en) LED display module and method of making thereof
JP5372009B2 (ja) オプトエレクトロニクス部品およびその製造方法
JP5554680B2 (ja) 発光素子搭載用基板、発光装置およびこれらの製造方法
JP3668438B2 (ja) チップ発光ダイオード
WO2020014923A1 (zh) 基于类舞台结构的整体封装式行单元
JP2010003994A (ja) 照明装置、バックライト装置および照明装置の製造方法
KR101518457B1 (ko) 발광 다이오드 실장용 연성인쇄회로기판
JP7315852B2 (ja) 発光装置および面発光光源
KR101858182B1 (ko) 유기 발광 표시 장치
JP7108217B2 (ja) 発光装置
CN210403725U (zh) 发光二极管封装组件
JP4263905B2 (ja) Led光源、led照明装置、およびled表示装置
US20210167046A1 (en) Surface-emitting light source and method of manufacturing the same
CN113451487B (zh) 显示面板及具有其的显示装置
JP7307798B2 (ja) 発光パッケージアセンブリ、発光モジュール及びディスプレイパネル
CN213635308U (zh) 一种显示面板及像素封装结构
CN114242706A (zh) 一种封装器件及制作方法
CN114063350A (zh) 光源模块、显示模块及光源模块制备方法
CN114447192B (zh) 显示模块制造方法、显示模块及显示屏
CN115000270B (zh) 光源模组及显示装置
CN214541402U (zh) 一种高密度像素显示模块
CN114628566B (zh) 光色转换结构、发光单元及发光单元制作方法
TWI780503B (zh) 發光封裝體及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18927027

Country of ref document: EP

Kind code of ref document: A1