WO2020009055A1 - 研磨用組成物 - Google Patents

研磨用組成物 Download PDF

Info

Publication number
WO2020009055A1
WO2020009055A1 PCT/JP2019/026041 JP2019026041W WO2020009055A1 WO 2020009055 A1 WO2020009055 A1 WO 2020009055A1 JP 2019026041 W JP2019026041 W JP 2019026041W WO 2020009055 A1 WO2020009055 A1 WO 2020009055A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soluble polymer
polishing
polishing composition
mass
Prior art date
Application number
PCT/JP2019/026041
Other languages
English (en)
French (fr)
Inventor
増田 剛
西口 英明
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to CN201980041964.1A priority Critical patent/CN112384590A/zh
Priority to US17/257,438 priority patent/US20210277282A1/en
Priority to KR1020217000228A priority patent/KR20210031453A/ko
Priority to JP2020528849A priority patent/JPWO2020009055A1/ja
Priority to EP19830542.7A priority patent/EP3819353A4/en
Publication of WO2020009055A1 publication Critical patent/WO2020009055A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present disclosure relates to a polishing composition and the like.
  • a polishing slurry containing an inorganic abrasive such as a silica-based or ceria-based polishing slurry is applied to a polishing cloth or a polishing pad.
  • a chemical and mechanical polishing method (chemical mechanical polishing; hereinafter, sometimes referred to as CMP) in which the material flows between the substrate and an object to be polished such as a semiconductor wafer.
  • ⁇ Polishing by CMP requires surface smoothing, a high polishing rate, and the like.
  • higher levels of surface defect reduction and flatness are required for substrates such as semiconductor wafers.
  • In order to reduce surface defects and achieve higher flatness, it has been proposed to polish a substrate surface with a polishing composition containing a water-soluble polymer.
  • a polishing composition containing a water-soluble polymer having a molecular weight of 100,000 or more Patent Document 1
  • a polishing composition containing a cellulose derivative or polyvinyl alcohol Patent Document 2
  • it is necessary to reduce the polishing rate which causes a problem that the polishing efficiency is reduced.
  • the present inventors have aimed to provide a polishing composition that can improve the flatness of a substrate without significantly lowering the polishing rate by using a specific polymer for polishing.
  • the present inventors have found that by polishing a substrate using a composition containing inorganic particles, water, and a specific water-soluble polymer, there is a possibility that the surface roughness of the substrate can be preferably reduced, and further improvements have been made. Stacked.
  • Item 1 Inorganic particles, water, and a polishing composition containing a water-soluble polymer
  • the water-soluble polymer is a water-soluble polymer having a normal stress (N) of 1 or more at a shear rate of 10,000 (1 / S) of a 1% by mass (wt / wt) aqueous solution.
  • Polishing composition (preferably, a composition for polishing a substrate for forming an integrated circuit).
  • the water-soluble polymer is a water-soluble polymer having a normal stress (N) of 1 or more at a shear rate of 10,000 (1 / S) of a 0.25 mass% (wt / wt) aqueous solution, Polishing composition (preferably, a composition for polishing a substrate for forming an integrated circuit).
  • N normal stress
  • Polishing composition preferably, a composition for polishing a substrate for forming an integrated circuit.
  • Inorganic particles, water, and a polishing composition containing a water-soluble polymer The water-soluble polymer is a 1 mass (wt / wt)% aqueous solution, having a normal stress (N) at a shear rate of 10,000 (1 / S) of 1 or more, hydroxyethyl cellulose, polyethylene oxide, or a combination thereof.
  • N normal stress
  • Item 4 The polishing composition according to Item 1. Item 4.
  • Inorganic particles, water, and a polishing composition containing a water-soluble polymer The water-soluble polymer is a 0.25 mass% (wt / wt)% aqueous solution, and has a normal stress (N) of 1 or more at a shear rate of 10000 (1 / S), hydroxyethyl cellulose, polyethylene oxide, or a mixture thereof.
  • N normal stress
  • Item 3 The polishing composition according to Item 2, which is a combination.
  • a polishing method capable of improving the flatness of a substrate without significantly lowering the polishing rate is provided.
  • the measurement points (39 points) for measuring the polishing amount, the polishing rate, and the flatness when the substrate is polished are shown.
  • the present disclosure preferably includes, but is not limited to, a polishing composition, a method for producing the polishing composition, and the like, and the present disclosure includes everything disclosed herein and recognized by those skilled in the art.
  • the polishing composition included in the present disclosure contains inorganic particles, water, and a specific water-soluble polymer.
  • the polishing composition may be referred to as “polishing composition of the present disclosure”.
  • the specific water-soluble polymer is a water-soluble polymer having a normal stress of 1 or more at a shear rate of 10,000 (1 / S) of a 1% by mass (wt / wt) aqueous solution (hereinafter referred to as the water-soluble polymer).
  • the molecule is sometimes referred to as “water-soluble polymer (i)”).
  • the water-soluble polymer may be a water-soluble polymer having a normal stress of 1 or more at a shear rate of 10,000 (1 / S) of a 0.25% by mass (wt / wt) aqueous solution (hereinafter, referred to as a water-soluble polymer).
  • the water-soluble polymer may be referred to as “water-soluble polymer (ii)”).
  • the water-soluble polymers (i) and (ii) may be collectively referred to as “water-soluble polymer of the present disclosure”.
  • the water-soluble polymer of the present disclosure is a water-soluble polymer having a normal stress of 1 or more at a shear rate of 10,000 (1 / S) when an aqueous solution having a specific concentration is used.
  • the specific concentration of the water-soluble polymer (i) is 1% (wt / wt)%, and the specific concentration of the water-soluble polymer (ii) is 0.25% (wt / wt)%. is there.
  • the mass% shows (wt / wt)% unless there is particular notice.
  • the normal stress at a shear rate of 10000 (1 / S) was determined by measuring a water-soluble polymer aqueous solution of the above concentration with a rheometer (40 mm ⁇ parallel plate, gap 100 ⁇ m, shear rate 0.01 at 25 ° C.). It is determined by performing a steady-state viscosity measurement in a range of up to 10,000 (1 / s).
  • the water-soluble polymer (i) has a normal stress (N) of a 1% by mass aqueous solution at a shear rate of 10,000 (1 / S), preferably about 1 to 5000, more preferably about 20 to 4000. is there.
  • the lower limit of the range is, for example, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240. Or about 250.
  • the upper limit of the range may be, for example, about 3500, 3000, 2500, 2000, 1500, or 1000.
  • the water-soluble polymer (ii) has a normal stress (N) of a 0.25 mass% aqueous solution at a shear rate of 10,000 (1 / S), preferably about 1 to 8000, and more preferably 1000 to 7000. It is about.
  • the lower limit of the range may be, for example, about 1500, 2000, 2500, 3000, 3500, or 4000.
  • the upper limit of the range may be, for example, about 6500 or 6000.
  • water-soluble polymer (i) for example, a 1 mass (wt / wt)% aqueous solution having a normal stress (N) of 1 or more at a shear rate of 10,000 (1 / S), Ethyl cellulose, polyethylene oxide, or combinations thereof are preferred.
  • the water-soluble polymer may be referred to as “water-soluble polymer (ia)”.
  • water-soluble polymer (ii) more specifically, for example, a normal stress (N) of a 0.25 mass (wt / wt)% aqueous solution at a shear rate of 10,000 (1 / S) is 1
  • N normal stress
  • the above hydroxyethyl cellulose, polyethylene oxide, or a combination thereof is preferred.
  • the water-soluble polymer may be referred to as “water-soluble polymer (iia)”.
  • hydroxyethyl cellulose corresponding to the water-soluble polymer (ia) examples include, for example, CF-V, CF-W, CF-X, and CF-Y (all manufactured by Sumitomo Seika Co., Ltd.), Natrozole series (manufactured by Ashland) ) (Example: Natrosol 250), Cellosize QP series, WP series, ER series (manufactured by DOW), Tyrose series (manufactured by Shin-Etsu Chemical) (eg: H6000YP2, H4000P2) and SE600 (manufactured by Daicel FineChem) No.
  • Examples of the polyethylene oxide corresponding to the water-soluble polymer (ia) include PEO-8 (manufactured by Sumitomo Seika Co., Ltd.).
  • PEO-8 manufactured by Sumitomo Seika Co., Ltd.
  • the combination is not particularly limited as long as the combination corresponds to the water-soluble polymer (ia).
  • a combination with polyethylene oxide corresponding to the hydrophilic polymer (ia) The ratio of the combination is preferably about 1: 9 to 9: 1 or about 2: 8 to 8: 2 in terms of mass ratio (hydroxyethyl cellulose: polyethylene oxide).
  • Examples of the polyethylene oxide corresponding to the water-soluble polymer (iia) include PEO series (manufactured by Sumitomo Seika Co., Ltd.) (eg, PEO-1, 2, 3, 4, 8, 15, 18, 27, 29), Examples include the Eukaflock series (manufactured by DOW), the Polyox series (manufactured by DOW), and the Alcox series (Meisei Chemical Industry).
  • PEO series manufactured by Sumitomo Seika Co., Ltd.
  • Examples include the Eukaflock series (manufactured by DOW), the Polyox series (manufactured by DOW), and the Alcox series (Meisei Chemical Industry).
  • the combination is not particularly limited as long as the combination corresponds to the water-soluble polymer (ia).
  • the ratio of the combination is preferably about 1: 9 to 9: 1 or about 2: 8 to 8: 2 in terms of mass ratio (hydroxyethyl cellulose: polyethylene oxide).
  • the water-soluble polymer (i) is preferably contained, for example, at about 0.001 to 1% by mass, more preferably at about 0.005 to 0.75% by mass, More preferably, the content is about 0.01 to 0.5% by mass.
  • the water-soluble polymer (ii) is preferably contained, for example, in an amount of about 0.001 to 0.5% by mass, and is preferably contained in an amount of about 0.005 to 0.3% by mass. Is more preferably contained in an amount of about 0.01 to 0.1% by mass, and still more preferably contained in an amount of 0.02 to 0.05% by mass.
  • inorganic particles those known as inorganic abrasive grains for polishing can be preferably used.
  • transition metal oxide, aluminum oxide, silica, titanium oxide, silicon carbide, diamond and the like can be exemplified.
  • silica and a transition metal oxide are preferable.
  • the silica more specifically, for example, colloidal silica, fumed silica, precipitated silica and the like are preferable.
  • the transition metal cerium oxide, zirconium oxide, iron oxide and the like are preferable, and cerium oxide is particularly preferable.
  • the inorganic particles can be used alone or in combination of two or more.
  • the average particle diameter of these inorganic particles is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, 1 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.2 ⁇ m or 0.1 ⁇ m or less.
  • the average particle size of the inorganic particles refers to a particle size at an integrated value of 50% in a particle size distribution measured by a laser diffraction scattering method using water as a solvent.
  • the polishing composition of the present disclosure is preferably in the form of a slurry (in this specification, the polishing composition in a slurry form is also referred to as a polishing slurry in particular).
  • the polishing composition (especially polishing slurry) of the present disclosure can be prepared, for example, by mixing inorganic particles, water, and a water-soluble polymer (i) or (ii).
  • the content ratio by mass of the water-soluble polymer (i) or (ii) and the inorganic particles (water-soluble polymer: inorganic particles) is particularly limited as long as the effect is exhibited.
  • the ratio is preferably about 1:50 to 5000, about 1: 100 to 4000, about 1: 150 to 3500, about 1: 200 to 3000, or about 1: 250 to 2500.
  • the lower limit of the range may be, for example, about 500, 1000, 1500, or 2000.
  • the polishing composition of the present disclosure may further contain various additives known in the art as long as the effect is not impaired.
  • additives include a surfactant, an organic polyanionic substance, a chelating agent, and a pH adjuster.
  • the surfactant include sodium alkylbenzenesulfonate and formalin condensate of naphthalenesulfonic acid.
  • the organic polyanionic substance include lignin sulfonate and polyacrylate.
  • the chelating agent include dimethylglyoxime, dithizone, oxine, acetylacetone, glycine, EDTA, and NTA.
  • pH adjuster include a base and an acid.
  • Examples of the base include sodium hydroxide, potassium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide (TMAH), ammonia, and a choline compound (for example, choline hydroxide).
  • Examples of the acid include hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid. Among them, potassium hydroxide is preferable as the base, and sulfuric acid is preferable as the acid.
  • Such known additives can be used alone or in combination of two or more.
  • the polishing composition of the present disclosure is preferably used for polishing the surface of, for example, a substrate for forming an integrated circuit (for example, a semiconductor wafer such as a silicon wafer or the like.
  • the wafer may have an oxide film).
  • the surface roughness of the substrate can be further reduced.
  • polishing property evaluation method A polishing pad (IC1400 K-XY Grv manufactured by Nitta Haas) was set in a polishing apparatus (RDP-500 manufactured by Fujikoshi Machinery Co., Ltd.), and a diamond dresser (Asahi Diamond Industry # 100) was used. The polishing pad surface was ground at 5 kgf and a dresser rotation speed of 100 rotations / minute for 10 minutes. Next, under the conditions of a platen rotation speed of 90 rpm, a head rotation speed of 90 rpm, a polishing pressure of 280 g / cm 2, and a polishing time of 60 seconds, the polishing slurry manufactured in each of the examples or comparative examples was supplied at a speed of 150 ml / min. A silicon wafer having an 8 inch oxide surface (1000 nm) was polished.
  • polishing characteristics of each polishing slurry were evaluated by evaluating the polishing rate during polishing and the surface roughness of the silicon wafer surface after polishing.
  • the polishing rate and surface roughness were evaluated by the following methods.
  • Polishing rate The thickness of the oxide film on the silicon wafer surface before and after polishing was measured by a non-contact optical film thickness meter (Nanospec 5100 manufactured by Nanometrics) to obtain the polishing amount.
  • the polishing amount was measured at 39 points (see FIG. 1) on the silicon wafer, and the average value was used as the polishing rate.
  • the standard deviation of the measurement result was defined as flatness.
  • the surface roughness of the oxide film on the silicon wafer surface 20 (the center point of the polishing amount measurement points 1 to 39) before and after the surface roughness polishing was measured by AFM (AFM5400L manufactured by Hitachi High-Tech Science Corporation).
  • a water-soluble polymer is selected from hydroxyethyl cellulose (HEC), polyethylene oxide (PEO), or a combination thereof, or carboxymethyl cellulose (CMC), and the water-soluble polymer is selected.
  • HEC hydroxyethyl cellulose
  • PEO polyethylene oxide
  • CMC carboxymethyl cellulose
  • a 1% (wt / wt)% aqueous solution or a 0.25% (wt / wt)% aqueous solution of a polymer was prepared. The preparation was performed by adding each water-soluble polymer to water and stirring for 8 hours using a jar tester.
  • CF-V, CF-W, CF-X, and CF-Y are HEC manufactured by Sumitomo Seika Co., Ltd.
  • CF-V is a 2 mass% aqueous solution of a B-type viscometer (rotor No. 3, rotating It has a viscosity of about 5000 to 10000 (mPa ⁇ s) when measured at several 12 rpm, and CF-W is 10,000 to 16000 when a 2% by mass aqueous solution is measured with a B-type viscometer (rotor No. 4, rotation speed 12 rpm). (MPa ⁇ s).
  • CF-X has a viscosity of about 1250 to 1750 (mPa ⁇ s) when a 1% by mass aqueous solution is measured with a B-type viscometer (rotor No. 3, rotation speed 30 rpm).
  • CF-Y has a viscosity of about 2000 to 3000 (mPa ⁇ s) when a 1% by mass aqueous solution is measured with a B-type viscometer (rotor No. 3, rotation speed 30 rpm).
  • Natrosol 250 is HEC from Ashland.
  • SE600 is HEC manufactured by Daicel Finechem Co., Ltd., and a 2% aqueous solution has a viscosity of about 4800 to 6000 (mPa ⁇ s).
  • PEO-8 and PEO-29 are PEO manufactured by Sumitomo Seika Co., Ltd.
  • PEO-8 is obtained by measuring a 0.5% by mass aqueous solution with a B-type viscometer (rotor No. 1, rotation speed 12 rpm).
  • PEO-29 has a viscosity of about 20 to 70 (mPa ⁇ s), and a 0.5% by mass aqueous solution of PEO-29 is 800 to 1000 (mPa ⁇ s) when measured with a B-type viscometer (rotor No. 2, rotation speed 12 rpm). ) Degree of viscosity.
  • the cellogen F-AG is CMC manufactured by Daiichi Kogyo Seiyaku Co., Ltd., and has a viscosity of about 900 to 1500 (mPa ⁇ s) in a 2% by mass aqueous solution viscosity.
  • Examples 1 to 9 and Comparative Example 1 Polymer aqueous solutions were prepared using the water-soluble polymers used in Experiments Nos. 1 to 10 in Table 1. Then, a slurry SS25 manufactured by Cabot Corporation (fumed silica (average particle size: 0.16 ⁇ m), 25% by mass (1 kg) and a prepared aqueous polymer solution (1 kg) are mixed to obtain a polishing slurry (slurries 1 to 10). Polishing characteristics were evaluated for the slurries 1 to 10. The results are shown in Table 2. The polymer concentration contained in each slurry is also shown in Table 2.
  • Comparative Example 2 A slurry SS25 (1 kg) manufactured by Cabot Corporation was diluted with distilled water to a total volume of 2 kg to obtain a polishing slurry (slurry 11). Polishing characteristics were evaluated using the slurry 11 by the method described above. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

研磨速度を著しく低下させずとも基板の平坦性を改善可能な研磨手法が提供される。 より具体的には、無機粒子、水、及び、水溶性高分子を含有する研磨用組成物であって、 前記水溶性高分子が、(i)1質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の水溶性高分子であるか、あるいは(ii)0.25質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の水溶性高分子である、研磨用組成物が提供される。

Description

研磨用組成物
 本開示は、研磨用組成物等に関する。
 集積回路を形成するための基材として使用される半導体ウェハー等の鏡面加工においては、一般的に、シリカ系、セリア系等の無機砥粒を含有させた研磨用スラリーを、研磨布若しくは研磨パッドと半導体ウェハー等の被研磨物との間に流入させて、化学的および機械的に研磨する方法(化学機械研磨;以下、CMPという場合がある)が採用されている。
 CMPによる研磨には、表面平滑化、高い研磨速度等が求められる。特に、半導体装置の微細化あるいは集積回路の高度集積化などに伴って、半導体ウェハー等の基板に対して、より高いレベルの表面欠陥の低減及び平坦性が要求されている。
 表面欠陥の低減及びより高い平坦性の実現のため、水溶性高分子を含む研磨用組成物で基板表面を研磨することが提案されている。例えば、分子量10万以上の水溶性高分子を含有する研磨用組成物(特許文献1)や、セルロース誘導体又はポリビニルアルコールを含有する研磨用組成物(特許文献2)等が提案されている。ただ、基板の平坦性を改善するためには、研磨速度を低下させる必要があり、このために研磨効率が落ちる点が問題であった。
特開平2-158684号公報 特開平11-116942号公報
 本発明者らは、特定の高分子を研磨に用いることで、研磨速度を著しく低下させずとも、基板の平坦性を改善可能な研磨用組成物を提供することを目的とした。
 本発明者らは、無機粒子、水、及び特定の水溶性高分子を含有する組成物を用いて基板を研磨することにより、基板の表面粗さを好ましく低減できる可能性を見出し、さらに改良を重ねた。
 本開示は例えば以下の項に記載の主題を包含する。
項1.
無機粒子、水、及び、水溶性高分子を含有する研磨用組成物であって、
前記水溶性高分子が、1質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の水溶性高分子である、
研磨用組成物(好ましくは、集積回路形成用基板研磨用組成物)。
項2.
無機粒子、水、及び、水溶性高分子を含有する研磨用組成物であって、
前記水溶性高分子が、0.25質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の水溶性高分子である、
研磨用組成物(好ましくは、集積回路形成用基板研磨用組成物)。
項3.
無機粒子、水、及び、水溶性高分子を含有する研磨用組成物であって、
前記水溶性高分子が、1質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の、ヒドロキシエチルセルロース、ポリエチレンオキシド、又はこれらの組み合わせである、項1に記載の研磨用組成物。
項4.
無機粒子、水、及び、水溶性高分子を含有する研磨用組成物であって、
前記水溶性高分子が、0.25質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の、ヒドロキシエチルセルロース、ポリエチレンオキシド、又はこれらの組み合わせである、項2に記載の研磨用組成物。
 研磨速度を著しく低下させずとも基板の平坦性を改善可能な研磨手法が提供される。
基板を研磨した際に、研磨量、ひいては研磨速度及び平坦性を測定するための、測定ポイント(39点)を示す。
 以下、本開示に包含される各実施形態について、さらに詳細に説明する。本開示は、研磨用組成物、及びその製造方法等を好ましく包含するが、これらに限定されるわけではなく、本開示は本明細書に開示され当業者が認識できる全てを包含する。
 本開示に包含される研磨用組成物は、無機粒子、水、及び特定の水溶性高分子を含有する。以下、当該研磨用組成物を「本開示の研磨用組成物」と表記することがある。
 当該特定の水溶性高分子は、1質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力が1以上の水溶性高分子である(以下、当該水溶性高分子を「水溶性高分子(i)」と表記することがある)。また、当該水溶性高分子は、0.25質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力が1以上の水溶性高分子であってもよい(以下、当該水溶性高分子を「水溶性高分子(ii)」と表記することがある)。また、水溶性高分子(i)及び(ii)をまとめて「本開示の水溶性高分子」と表記することがある。
 本開示の水溶性高分子は、特定の濃度の水溶液としたとき、せん断速度10000(1/S)での法線応力が1以上となる水溶性高分子である。水溶性高分子(i)は、当該特定の濃度が1質量(wt/wt)%であり、水溶性高分子(ii)は、当該特定の濃度が0.25質量(wt/wt)%である。なお、本明細書において、質量%は、特に断らない限り(wt/wt)%を示す。また、せん断速度10000(1/S)での法線応力は、前記濃度の水溶性高分子水溶液を、レオメーターで測定(40mmφパラレルプレート、ギャップ100μm、25℃の条件で、せん断速度0.01~10000(1/s)の範囲を定常粘度測定)することで求める。
 水溶性高分子(i)は、1質量%水溶液の、せん断速度10000(1/S)での法線応力(N)が、好ましくは1~5000程度であり、より好ましくは20~4000程度である。当該範囲の下限は、例えば30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、又は250程度であってもよい。また、当該範囲の上限は例えば3500、3000、2500、2000、1500、又は1000程度であってもよい。
 水溶性高分子(ii)は、0.25質量%水溶液の、せん断速度10000(1/S)での法線応力(N)が、好ましくは1~8000程度であり、より好ましくは1000~7000程度である。当該範囲の下限は、例えば1500、2000、2500、3000、3500、又は4000程度であってもよい。また、当該範囲の上限は例えば6500、又は6000程度であってもよい。
 水溶性高分子(i)としては、より具体的には例えば、1質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の、ヒドロキシエチルセルロース、ポリエチレンオキシド、又はこれらの組み合わせが好ましい。当該水溶性高分子を「水溶性高分子(ia)」と表記することがある。
 また、水溶性高分子(ii)としては、より具体的には例えば、0.25質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の、ヒドロキシエチルセルロース、ポリエチレンオキシド、又はこれらの組み合わせが好ましい。当該水溶性高分子を「水溶性高分子(iia)」と表記することがある。
 水溶性高分子(ia)に該当するヒドロキシエチルセルロースとしては、例えばCF-V、CF-W、CF-X、及びCF-Y(以上、住友精化株式会社製)、ナトロゾールシリーズ(Ashland社製)(例:ナトロゾール250)、セロサイズQPシリーズ、WPシリーズ、ERシリーズ(DOW社製)、タイローズシリーズ(信越化学工業製)(例:H6000YP2、H4000P2)並びにSE600(ダイセルファインケム株式会社製)などが挙げられる。また、水溶性高分子(ia)に該当するポリエチレンオキシドとしては、例えばPEO-8(住友精化株式会社製)などが挙げられる。また、ヒドロキシエチルセルロース及びポリエチレンオキシドの組み合わせを用いる場合、当該組み合わせが水溶性高分子(ia)に該当する限り特に制限されないが、例えば、前述した水溶性高分子(ia)に該当するヒドロキシエチルセルロースと水溶性高分子(ia)に該当するポリエチレンオキシドとの組み合わせが挙げられる。なお、当該組み合わせの比率は、質量比(ヒドロキシエチルセルロース:ポリエチレンオキシド)で、例えば、1:9~9:1又は2:8~8:2程度が好ましい。
 水溶性高分子(iia)に該当するポリエチレンオキシドとしては、例えばPEOシリーズ(住友精化株式会社製)(例:PEO-1、2、3、4、8、15、18、27、29)、ユーカーフロックシリーズ(DOW社製)、ポリオックスシリーズ(DOW社製)、アルコックスシリーズ(明成化学工業)などが挙げられる。また、ヒドロキシエチルセルロース及びポリエチレンオキシドの組み合わせを用いる場合、当該組み合わせが水溶性高分子(iia)に該当する限り特に制限されない。なお、当該組み合わせの比率は、質量比(ヒドロキシエチルセルロース:ポリエチレンオキシド)で、例えば、1:9~9:1又は2:8~8:2程度が好ましい。
 本開示の研磨用組成物において、水溶性高分子(i)は、例えば0.001~1質量%程度含まれることが好ましく、0.005~0.75質量%程度含まれることがより好ましく、0.01~0.5質量%程度含まれることがさらに好ましい。また、本開示の研磨用組成物において、水溶性高分子(ii)は、例えば0.001~0.5質量%程度含まれることが好ましく、0.005~0.3質量%程度含まれることがより好ましく、0.01~0.1質量%程度含まれることがさらに好ましく、0.02~0.05質量%含まれることがよりさらに好ましい。
 無機粒子としては、研磨用の無機砥粒として公知のものを好ましく用いることができる。具体的には、例えば、遷移金属酸化物、酸化アルミニウム、シリカ、酸化チタン、炭化珪素、ダイヤモンド等が例示できる。特にシリカ及び遷移金属酸化物が好ましい。シリカとしては、より具体的には例えば、コロイダルシリカ、フュームドシリカ、沈澱法シリカ等が好ましい。遷移金属としては、酸化セリウム、酸化ジルコニウム、酸化鉄等が好ましく、特に酸化セリウムが好ましい。無機粒子は、1種単独で又は2種以上を組み合わせて用いることができる。
 これらの無機粒子の粒径は、平均粒径として2μm以下が好ましく、1.5μm以下、1μm以下、0.5μm以下、0.3μm以下、0.2μm、又は0.1μm以下がより好ましい。なお、無機粒子の平均粒径は、溶媒として水を用いてレーザー回折散乱法により測定した粒度分布における積算値50%での粒径をいう。
 特に制限はされないが、本開示の研磨用組成物は、スラリー状であることが好ましい(本明細書では、スラリー状の研磨用組成物を、特に研磨用スラリーともいう)。本開示の研磨用組成物(特に研磨用スラリー)は、例えば、無機粒子、水、及び、水溶性高分子(i)又は(ii)を混合することにより調製することができる。
 本開示の研磨用組成物において、水溶性高分子(i)又は(ii)と無機粒子との含有質量比(水溶性高分子:無機粒子)は、効果が奏される範囲であれば特に制限されないが、例えば1:50~5000程度が好ましく、1:100~4000程度、1:150~3500程度、1:200~3000程度、又は1:250~2500程度が好ましい。また、当該範囲の下限は、例えば500、1000、1500、又は2000程度であってもよい。
 効果を損なわない範囲において、本開示の研磨用組成物は、当該技術分野において公知の各種添加剤をさらに含有してもよい。このような公知の添加剤としては、例えば、界面活性剤、有機ポリアニオン系物質、キレート剤、及びpH調節剤などが挙げられる。界面活性剤としては、例えばアルキルベンゼンスルホン酸ソーダ、及びナフタレンスルホン酸のホルマリン縮合物などが挙げられる。有機ポリアニオン系物質としては、例えばリグニンスルホン酸塩、及びポリアクリル酸塩などが挙げられる。キレート剤としては、例えばジメチルグリオキシム、ジチゾン、オキシン、アセチルアセトン、グリシン、EDTA、及びNTAなどが挙げられる。pH調節剤としては、塩基及び酸が挙げられ、塩基としては例えば、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、水酸化テトラメチルアンモニウム(TMAH)、アンモニア、及びコリン化合物(例えばコリンヒドロキシド)などが挙げられ、酸としては例えば塩酸、硫酸、リン酸、及び硝酸などが挙げられる。中でも、塩基としては水酸化カリウムが好ましく、酸としては硫酸が好ましい。このような公知の添加剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 本開示の研磨用組成物は、例えば集積回路を形成するための基板(例えば、シリコンウェハー等の半導体ウェハー等。ウェハーは酸化膜を有していてもよい。)の表面を研磨するために好ましく用いることができ、当該基板の表面粗さをより低減することができる。
 なお、本明細書において「含む」とは、「本質的にからなる」と、「からなる」をも包含する(The term "comprising" includes "consisting essentially of” and "consisting of.")。また、本開示は、本明細書に説明した構成要件を任意の組み合わせを全て包含する。
 また、上述した本開示の各実施形態について説明した各種特性(性質、構造、機能等)は、本開示に包含される主題を特定するにあたり、どのように組み合わせられてもよい。すなわち、本開示には、本明細書に記載される組み合わせ可能な各特性のあらゆる組み合わせからなる主題が全て包含される。
 以下、本開示の主題をより具体的に説明するが、本開示の主題は下記の例に限定されるものではない。
研磨特性評価方法
 研磨パッド(ニッタ・ハース製IC1400 K-XY Grv)を研磨装置(不二越機械工業製RDP-500)に設置し、ダイヤモンドドレッサー(旭ダイヤモンド工業製番手:#100)を用い、8.5kgf、ドレッサー回転数100回転/分にて10分間研磨パッド表面を研削した。次に、プラテン回転数90rpm、ヘッド回転数90rpm、研磨圧力280g/cm2、研磨時間60秒の条件で、各実施例または比較例で製造した研磨用スラリーを150ml/分の速度で供給しつつ直径8インチの酸化膜表面(1000nm)を有するシリコンウェハーを研磨した。
 研磨時の研磨速度、研磨後のシリコンウェハー表面の表面粗さを評価することにより、各研磨用スラリーの研磨特性評価を行った。なお、研磨速度及び表面粗さは以下の方法によって評価した。
研磨速度
  研磨前後のシリコンウェハー表面の酸化膜の膜厚を非接触光学式膜厚計(ナノメトリックス社製Nanospec 5100)により測定して研磨量を求めた。シリコンウェハー上の39点(図1参照)において研磨量を測定し、その平均値を研磨速度とした。また当該測定結果の標準偏差を平坦性とした。
表面粗さ
 研磨前後のシリコンウェハー表面20(上記研磨量測定点1~39の中央の点)の酸化膜の表面粗さをAFM(株式会社日立ハイテクサイエンス社製AFM5400L)により測定した。
水溶性高分子の法線応力
 表1の組成に従い、ヒドロキシエチルセルロース(HEC)、ポリエチレンオキシド(PEO)、又はこれらの組み合わせ、あるいはカルボキシメチルセルロース(CMC)から水溶性高分子を選択して、当該水溶性高分子の1質量(wt/wt)%水溶液又は0.25質量(wt/wt)%水溶液を調製した。調製は、各水溶性高分子を水に加えて8時間ジャーテスタを用い撹拌することにより行った。そして、各水溶性高分子水溶液について、レオメーター(TA製AR-2000EX)を用い、40mmφパラレルプレート、ギャップ100μm、25℃の条件で、せん断速度0.01~10000(1/s)の範囲を定常粘度測定し、法線応力を測定した。せん断速度10000(1/s)における法線応力(N)を表1にあわせて示す。
Figure JPOXMLDOC01-appb-T000001
 なお、CF-V、CF-W、CF-X、及びCF-Yは住友精化株式会社製のHECであり、CF-Vは2質量%水溶液をB型粘度計(ローターNo.3、回転数12rpm)で測定すると5000~10000(mPa・s)程度の粘度を有し、CF-Wは2質量%水溶液をB型粘度計(ローターNo.4、回転数12rpm)で測定すると10000~16000(mPa・s)程度の粘度を有し、CF-Xは1質量%水溶液をB型粘度計(ローターNo.3、回転数30rpm)で測定すると1250~1750(mPa・s)程度の粘度を有し、CF-Yは1質量%水溶液をB型粘度計(ローターNo.3、回転数30rpm)で測定すると2000~3000(mPa・s)程度の粘度を有する。ナトロゾール250はAshland社製のHECである。SE600はダイセルファインケム株式会社製のHECであり、2%水溶液が4800~6000(mPa・s)程度の粘度を有する。
 また、PEO-8、及びPEO-29は住友精化株式会社製のPEOであり、PEO-8は0.5質量%水溶液をB型粘度計(ローターNo.1、回転数12rpm)で測定すると20~70(mPa・s)程度の粘度を有し、PEO-29は0.5質量%水溶液をB型粘度計(ローターNo.2、回転数12rpm)で測定すると800~1000(mPa・s)程度の粘度を有する。
 また、セロゲンF-AGは第一工業製薬社製のCMCであり、2質量%水溶液粘度が900~1500(mPa・s)程度の粘度を有する。
実施例1~9および比較例1
  表1の実験No.1~10に用いた水溶性高分子を用いて、高分子水溶液を調製した。そして、キャボット社製スラリーSS25(ヒュームドシリカ(平均粒子径:0.16μm)25質量%(1kg)および調製した高分子水溶液(1kg)を混合して研磨用スラリー(スラリー1~10)を得た。このスラリー1~10について研磨特性評価を行った。結果を表2に示した。また、各スラリーに含まれる高分子濃度も表2に示した。
比較例2
  キャボット社製スラリーSS25(1kg)を、蒸留水で全体が2kgになるように希釈して研磨用スラリー(スラリー11)を得た。このスラリー11を用いて上記した方法により研磨特性評価を行った。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1. 無機粒子、水、及び、水溶性高分子を含有する研磨用組成物であって、
    前記水溶性高分子が、1質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の水溶性高分子である、
    研磨用組成物。
  2. 無機粒子、水、及び、水溶性高分子を含有する研磨用組成物であって、
    前記水溶性高分子が、0.25質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の水溶性高分子である、
    研磨用組成物。
  3. 無機粒子、水、及び、水溶性高分子を含有する研磨用組成物であって、
    前記水溶性高分子が、1質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の、ヒドロキシエチルセルロース、ポリエチレンオキシド、又はこれらの組み合わせである、請求項1に記載の研磨用組成物。
  4. 無機粒子、水、及び、水溶性高分子を含有する研磨用組成物であって、
    前記水溶性高分子が、0.25質量(wt/wt)%水溶液の、せん断速度10000(1/S)での法線応力(N)が1以上の、ヒドロキシエチルセルロース、ポリエチレンオキシド、又はこれらの組み合わせである、請求項2に記載の研磨用組成物。
PCT/JP2019/026041 2018-07-04 2019-07-01 研磨用組成物 WO2020009055A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980041964.1A CN112384590A (zh) 2018-07-04 2019-07-01 研磨用组合物
US17/257,438 US20210277282A1 (en) 2018-07-04 2019-07-01 Polishing composition
KR1020217000228A KR20210031453A (ko) 2018-07-04 2019-07-01 연마용 조성물
JP2020528849A JPWO2020009055A1 (ja) 2018-07-04 2019-07-01 研磨用組成物
EP19830542.7A EP3819353A4 (en) 2018-07-04 2019-07-01 POLISHING COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018127240 2018-07-04
JP2018-127240 2018-07-04

Publications (1)

Publication Number Publication Date
WO2020009055A1 true WO2020009055A1 (ja) 2020-01-09

Family

ID=69060335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026041 WO2020009055A1 (ja) 2018-07-04 2019-07-01 研磨用組成物

Country Status (6)

Country Link
US (1) US20210277282A1 (ja)
EP (1) EP3819353A4 (ja)
JP (1) JPWO2020009055A1 (ja)
KR (1) KR20210031453A (ja)
CN (1) CN112384590A (ja)
WO (1) WO2020009055A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168431A (ja) * 1996-12-09 1998-06-23 Internatl Business Mach Corp <Ibm> 平坦化のための研磨工程およびスラリ
JP2004128070A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP2004128089A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
JP2008186898A (ja) * 2007-01-29 2008-08-14 Nissan Chem Ind Ltd 研磨用組成物
JP2012079964A (ja) * 2010-10-04 2012-04-19 Nissan Chem Ind Ltd 半導体ウェーハ用研磨液組成物
JP2014139258A (ja) * 2012-12-17 2014-07-31 Fujimi Inc 基板濡れ性促進組成物、並びにこれを含む研磨用組成物およびこれを用いた基板の製造方法
JP2015174938A (ja) * 2014-03-17 2015-10-05 日本キャボット・マイクロエレクトロニクス株式会社 スラリー組成物および基板研磨方法
JP2016213216A (ja) * 2015-04-28 2016-12-15 花王株式会社 シリコンウェーハ用研磨液組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714411B2 (ja) 1988-12-12 1998-02-16 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ウェハーのファイン研摩用組成物
JP4115562B2 (ja) 1997-10-14 2008-07-09 株式会社フジミインコーポレーテッド 研磨用組成物
JP2004128069A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
EP2957613B1 (en) * 2013-02-13 2020-11-18 Fujimi Incorporated Polishing composition, method for producing polishing composition and method for producing polished article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168431A (ja) * 1996-12-09 1998-06-23 Internatl Business Mach Corp <Ibm> 平坦化のための研磨工程およびスラリ
JP2004128070A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP2004128089A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
JP2008186898A (ja) * 2007-01-29 2008-08-14 Nissan Chem Ind Ltd 研磨用組成物
JP2012079964A (ja) * 2010-10-04 2012-04-19 Nissan Chem Ind Ltd 半導体ウェーハ用研磨液組成物
JP2014139258A (ja) * 2012-12-17 2014-07-31 Fujimi Inc 基板濡れ性促進組成物、並びにこれを含む研磨用組成物およびこれを用いた基板の製造方法
JP2015174938A (ja) * 2014-03-17 2015-10-05 日本キャボット・マイクロエレクトロニクス株式会社 スラリー組成物および基板研磨方法
JP2016213216A (ja) * 2015-04-28 2016-12-15 花王株式会社 シリコンウェーハ用研磨液組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3819353A4 *

Also Published As

Publication number Publication date
KR20210031453A (ko) 2021-03-19
EP3819353A4 (en) 2022-03-30
US20210277282A1 (en) 2021-09-09
EP3819353A1 (en) 2021-05-12
CN112384590A (zh) 2021-02-19
JPWO2020009055A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
JP3457144B2 (ja) 研磨用組成物
US10297461B2 (en) CMP polishing agent, manufacturing method thereof, and method for polishing substrate
KR101277342B1 (ko) 반도체 기판용 연마액 및 반도체 기판의 연마 방법
JP5198738B2 (ja) 分散安定性に優れている研磨スラリーの製造方法
JP5518869B2 (ja) 化学的機械研磨用組成物、その製造方法、及びその使用方法
TWI679272B (zh) 研磨用組成物及使用其之研磨方法
JP6223786B2 (ja) 硬脆材料用研磨液組成物
WO2011158718A1 (ja) 半導体基板用研磨液及び半導体ウエハの製造方法
JP5196819B2 (ja) 研磨用組成物
WO2015096629A1 (zh) 一种应用于sti领域的化学机械抛光液及其使用方法
KR20070089610A (ko) 연마용 조성물
JP5516594B2 (ja) Cmp研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法
CN101558126A (zh) 非离子型聚合物在自停止多晶硅抛光液制备及使用中的应用
WO2010034181A1 (zh) 胺类化合物的应用以及一种化学机械抛光液
JPWO2019065994A1 (ja) 研磨用組成物
WO2020009055A1 (ja) 研磨用組成物
JP4346712B2 (ja) ウェーハエッジ研磨方法
JP2020002358A (ja) 低酸化物トレンチディッシング化学機械研磨
WO2019129107A1 (zh) 一种化学机械抛光液
JP2005177970A (ja) カラーフォトレジスト平坦化のためのスラリー
JP4291665B2 (ja) 珪酸質材料用研磨剤組成物およびそれを用いた研磨方法
JP3810172B2 (ja) シリコンウエーハ用研磨助剤
JP2009266882A (ja) 研磨剤、これを用いた基体の研磨方法及び電子部品の製造方法
JP2014116557A (ja) 研磨用組成物およびその利用
JP2013110253A (ja) 半導体基板用研磨液及び半導体基板の研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019830542

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019830542

Country of ref document: EP

Effective date: 20210204