WO2011158718A1 - 半導体基板用研磨液及び半導体ウエハの製造方法 - Google Patents

半導体基板用研磨液及び半導体ウエハの製造方法 Download PDF

Info

Publication number
WO2011158718A1
WO2011158718A1 PCT/JP2011/063171 JP2011063171W WO2011158718A1 WO 2011158718 A1 WO2011158718 A1 WO 2011158718A1 JP 2011063171 W JP2011063171 W JP 2011063171W WO 2011158718 A1 WO2011158718 A1 WO 2011158718A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
semiconductor substrate
polishing liquid
mass
wafer
Prior art date
Application number
PCT/JP2011/063171
Other languages
English (en)
French (fr)
Inventor
豊 野村
宏 中川
雅弘 坂下
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2012520390A priority Critical patent/JPWO2011158718A1/ja
Priority to KR1020137000572A priority patent/KR20130041084A/ko
Publication of WO2011158718A1 publication Critical patent/WO2011158718A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate

Definitions

  • the present invention relates to a semiconductor substrate polishing liquid and a method for manufacturing a semiconductor wafer.
  • polishing process of a semiconductor substrate typified by a silicon substrate
  • a lapping process for eliminating unevenness of the surface generated by slicing and making the thickness of the substrate uniform, and finishing the target surface accuracy are achieved.
  • polishing process polishing process
  • the polishing process is further divided into a primary polishing process called rough polishing and a final polishing process called precision polishing.
  • Rough polishing and precision polishing are further divided into a plurality of polishing processes in which the hardness and polishing load of the polishing pad (polishing cloth) are different depending on the case.
  • the processing time is shortened, the efficiency is improved, and the quality is improved.
  • the purpose of each polishing process is different.
  • the purpose is to eliminate relatively large irregularities generated in the lapping process or the like, and to remove the surface layer portion of the damaged semiconductor substrate.
  • the major objectives are to reduce defects in the semiconductor substrate and to highly smooth the surface.
  • the polishing liquid for semiconductor substrates used for precision polishing does not cause crystal defects and has a foreign matter remaining on the substrate (polishing particles, debris generated by abrasion of the polishing pad, etc.) rather than a high polishing rate for the semiconductor substrate. It is strongly required to make it difficult to remain, to eliminate unevenness existing on the substrate, and to form a smooth mirror surface (smoothness).
  • COP Crystal Originated Particle
  • COP is one of crystal defects introduced during crystal growth, and pits are formed on the surface of the substrate with COP as a nucleus during polishing or subsequent cleaning.
  • HAZE is an index of roughness, and small roughness means high smoothness.
  • HAZE is usually measured using a wafer surface defect inspection apparatus or the like.
  • Patent Document 1 describes that colloidal silica and silica gel are useful as a polishing liquid for the surface of a semiconductor crystal that is most frequently used in the manufacture of semiconductor devices.
  • Patent Document 1 below describes that the primary particles of colloidal silica and silica gel used in the sol have a particle size of 4 to 200 nm.
  • Patent Document 2 uses a combination of either silica or silica gel in a colloidal form with a primary particle size of 4 to 200 nm (preferably 4 to 100 nm) as a polishing liquid in combination with a water-soluble amine. It is disclosed that the surface of a semiconductor substrate (particularly a silicon semiconductor substrate) can be effectively polished.
  • the amount of amine with respect to silica present in the silica sol or gel is 0.5-5.0% by weight, preferably 1.0-5.0% by weight, most preferably 2.0-4.0% by weight. ing.
  • Patent Document 3 discloses an aqueous silica composition to which 0.1 to 5.0% by mass (most preferably 2.0 to 4.0% by mass) of a water-soluble quaternary ammonium salt or quaternary ammonium base is added. It is described that the polishing rate of a silicon wafer can be improved by using it.
  • Patent Document 4 discloses a method of polishing a silicon or germanium semiconductor material to a high surface finish.
  • a polishing liquid that has a modified colloidal silica gel, a silica concentration of about 2 to about 50 mass%, and a pH of 11 to 12.5 is used.
  • the modified colloidal silica gel has a specific surface area of about 25 to 600 m 2 / g, and the surface of the silica particles is made of aluminum atoms chemically bonded to aluminum atoms per 100 silicon atoms on the surface of the uncoated particles. It is coated so as to have a surface coating of about 1 to about 50 atoms.
  • Patent Document 5 listed below contains piperazine or piperazine having a lower alkyl substituent on nitrogen and an aqueous colloidal silica sol or gel, and the piperazine is 0.1 to 5 based on the SiO 2 content of the sol.
  • a polishing liquid containing mass% is disclosed.
  • Patent Document 5 below discloses a silicon wafer and a polishing method for a material similar to the silicon wafer. According to Patent Document 5 below, when piperazine is contained in the polishing liquid, it is said that the same polishing rate can be obtained with a small amount of colloidal silica as compared with the case of using aminoethylethanolamine.
  • Patent Document 5 listed below describes that a strongly basic piperazine system can reduce the amount of caustic alkali added to adjust the pH.
  • Patent Document 6 discloses a polishing composition comprising an abrasive, at least one of azoles and derivatives thereof, and water. Patent Document 6 below describes that the polishing ability of the polishing composition is improved by adding azoles and derivatives thereof to the polishing composition. For this reason, it has been pointed out that an unshared electron pair of a nitrogen atom of a hetero five-membered ring directly acts on an object to be polished, and specifically, an example in which imidazole is applied is disclosed.
  • Patent Document 7 discloses a polishing composition for a silicon semiconductor wafer that can reduce particles adhering to the wafer surface without lowering the HAZE level in mirror polishing of a silicon semiconductor wafer.
  • Polishing composition contains silicon dioxide, water, water-soluble polymer compound, basic compound, compound having 1 to 10 alcoholic hydroxyl groups, and nitrogen-containing basic compound having 1 to 10 alcoholic hydroxyl groups It is characterized by that.
  • Patent Document 8 discloses a polishing composition capable of further improving the HAZE level, a method for polishing a silicon wafer using the same, and a rinsing composition and a method for rinsing a silicon wafer using the same.
  • the polishing composition contains hydroxyethyl cellulose, greater than 0.005% by weight and less than 0.5% by weight of polyethylene oxide, an alkali compound, water, and silicon dioxide.
  • the polishing composition is configured to be used in a polishing process performed for the purpose of improving the HAZE level of the silicon wafer surface when polishing the silicon wafer surface in a plurality of stages.
  • the rinsing composition contains hydroxyethyl cellulose, greater than 0.005% by weight and less than 0.5% by weight of polyethylene oxide, an alkali compound, and water, and is rinsed on the silicon wafer surface after the polishing step. It is comprised so that it may be used for.
  • Patent Document 9 discloses a polishing composition capable of improving the polishing rate for a silicon wafer and improving the COP and HAZE levels.
  • the polishing composition is characterized by containing at least one selected from block-type polyether, silicon dioxide, basic compounds, hydroxyethyl cellulose and polyvinyl alcohol, and water components.
  • the polishing liquid used in the polishing process of the semiconductor substrate contains abrasive particles and an alkaline agent as basic components, and further increases the polishing rate, reduces the remaining abrasive particles, and causes crystal defects.
  • a salt, a water-soluble polymer, or the like is added. All of the polishing liquids are used in a strongly alkaline region (a region where the pH is strongly alkaline, particularly, a region where the pH exceeds 9.0). This is because polishing is performed by the chemical action of the alkaline agent.
  • polishing liquid as described above is a strong alkaline region, there is a problem that COP is expanded or increased by the etching action of the alkaline agent.
  • An object of the present invention is to use a semiconductor substrate polishing liquid capable of reducing defects and foreign matter on the substrate surface and improving the smoothness of the substrate surface, and the semiconductor substrate polishing liquid in polishing a semiconductor substrate.
  • a method for manufacturing a semiconductor wafer is provided.
  • the inventors of the present invention provide a polishing liquid containing modified silica particles whose surface is modified with aluminate, a predetermined amount of a water-soluble polymer, and water, in a pH range of 5.0 or more and 9.0 or less. Can be used to reduce defects on the substrate surface caused by etching of the alkaline agent in the strongly alkaline region, and it is possible to achieve a reduction in foreign matter and an improvement in smoothness on the substrate surface.
  • the present inventors have found that a polished surface can be formed and have reached the present invention.
  • the polishing liquid for a semiconductor substrate of the present invention comprises modified silica particles whose surface is modified with aluminate, a water-soluble polymer, and water, and the content of the water-soluble polymer is the semiconductor substrate. It exceeds 0 mass% and is 1.00 mass% or less on the basis of the total mass of the polishing slurry, and the pH is 5.0 or more and 9.0 or less. According to such a polishing liquid for a semiconductor substrate, in polishing a semiconductor substrate, it is possible to reduce defects and foreign matters on the substrate surface, improve the smoothness of the substrate surface, and form an excellent polished surface. The smoothness can be evaluated by HAZE.
  • the pH of the semiconductor substrate polishing liquid of the present invention is preferably 6.0 or more and 8.0 or less.
  • the content of the modified silica particles is preferably 0.01% by mass or more and 1.50% by mass or less based on the total mass of the polishing liquid for semiconductor substrate. In this case, defects and foreign matters on the substrate surface can be further reduced, and the smoothness of the substrate surface can be further improved.
  • the content of the water-soluble polymer is preferably 0.001% by mass or more and 1.00% by mass or less based on the total mass of the polishing liquid for semiconductor substrate. In this case, defects and foreign matters on the substrate surface can be further reduced, and the smoothness of the substrate surface can be further improved.
  • the water-soluble polymer is preferably a nonionic polymer. In this case, foreign substances on the substrate surface can be further reduced.
  • the water-soluble polymer is preferably a polymer obtained from a polymerizable monomer containing vinyl pyrrolidone, and more preferably polyvinyl pyrrolidone. In this case, foreign substances on the substrate surface can be further reduced.
  • the polishing liquid for a semiconductor substrate of the present invention may further contain 1,2,4-triazole. In this case, the smoothness of the substrate surface can be further improved.
  • the content of 1,2,4-triazole is preferably 0.05% by mass or more and 0.70% by mass or less based on the total mass of the polishing liquid for semiconductor substrate. In this case, defects and foreign matters on the substrate surface can be further reduced, and the smoothness of the substrate surface can be further improved.
  • the polishing liquid for a semiconductor substrate of the present invention can be suitably used when the polishing target of the polishing liquid is a surface of a semiconductor substrate and the surface contains silicon.
  • the method for producing a semiconductor wafer of the present invention includes a polishing step of polishing the surface of the semiconductor substrate using the above polishing liquid for a semiconductor substrate. According to such a manufacturing method, in polishing a semiconductor substrate, it is possible to reduce defects and foreign matter on the substrate surface, improve the smoothness of the substrate surface, and form an excellent polished surface.
  • the method for manufacturing a semiconductor wafer of the present invention includes a step of wrapping or grinding a plate member made of a semiconductor material to obtain a rough wafer before the polishing step, a step of polishing the rough wafer to obtain a semiconductor substrate, May be further provided.
  • the semiconductor wafer manufacturing method of the present invention includes a step of wet etching a plate member made of a semiconductor material to obtain a rough wafer before the polishing step, and a step of polishing the rough wafer to obtain a semiconductor substrate, May be further provided.
  • a polishing liquid for a semiconductor substrate capable of forming an excellent polished surface and A semiconductor wafer manufacturing method using the semiconductor substrate polishing liquid can be provided.
  • Such a present invention is suitable for surface processing of a semiconductor substrate.
  • final polishing it is possible to reduce defects and foreign matters on the substrate surface, improve the smoothness of the substrate surface, and form an excellent polished surface.
  • the polishing liquid for a semiconductor substrate of the present embodiment includes modified silica particles whose surfaces are modified with aluminate (polishing particles), a water-soluble polymer, and water, and the content of the water-soluble polymer is as follows: It exceeds 0 mass% and is 1.00 mass% or less based on the total mass of the polishing liquid for semiconductor substrate, and the pH of the polishing liquid is 5.0 or more and 9.0 or less.
  • the pH of the polishing liquid is 5.0 or more and 9.0 or less, it is possible to suppress the occurrence of defects due to etching with an alkaline agent in a strongly alkaline region.
  • the modified silica particles whose surface is modified with aluminate and the water-soluble polymer are used in combination, and the water-soluble polymer content is within a predetermined range, thereby improving the smoothness of the substrate surface. And an increase in foreign matter can be suppressed, and an excellent polished surface can be formed.
  • the pH of the semiconductor substrate polishing liquid is 9.0 or less in order to reduce defects caused by etching with an alkaline agent. In terms of further reducing defects, the pH of the semiconductor substrate polishing liquid is preferably 8.0 or less.
  • the adhesion of foreign matter especially abrasive particles
  • the pH of the polishing liquid for a semiconductor substrate is 5.0 or more, preferably 5.5 or more, and more preferably 6.0 or more from the viewpoint of sufficiently obtaining the effect of reducing adhesion of foreign substances.
  • the pH of the semiconductor substrate polishing liquid can be adjusted, for example, by the content of acidic compounds and / or basic compounds.
  • the pH of the semiconductor substrate polishing liquid can be measured with a pH meter (for example, Model pH81, manufactured by Yokogawa Electric Corporation).
  • the acidic compound examples include organic acids such as malic acid, amino acids such as glycine, and inorganic acids such as nitric acid and sulfuric acid.
  • the basic compound is selected from at least one nitrogen-containing basic compound selected from ammonia, ammonium hydroxide and tetramethylammonium hydroxide, or potassium hydroxide and sodium hydroxide in terms of low odor. At least one inorganic basic compound is preferred. These can be used individually by 1 type or in combination of 2 or more types.
  • the abrasive particles of the polishing liquid for a semiconductor substrate of the present embodiment are modified silica particles whose surface is modified with aluminate (hereinafter, simply referred to as “modified silica particles”), and the surface is modified with aluminate.
  • Modified colloidal silica particles are preferred.
  • the modified silica particles act as a main abrasive.
  • unmodified silica particles can be polished. However, even if these are used alone, defects cannot be sufficiently reduced and smoothness cannot be sufficiently improved.
  • the modification of the silica particle surface with aluminate can be performed using, for example, an aluminum compound such as potassium aluminate [(AlO (OH) 2 K].
  • an aluminum compound such as potassium aluminate [(AlO (OH) 2 K].
  • the modified silica particles may be used in combination with other abrasive particles as necessary.
  • abrasive particles that can be used in combination with the modified silica particles include abrasive grains containing alumina, ceria, titania, zirconia, organic polymer, or the like.
  • Modified silica particles and unmodified silica particles may be used in combination.
  • the primary particle diameter of the modified silica particles is preferably 5 nm or more, more preferably 7 nm or more, and even more preferably 9 nm or more in that a practical polishing rate can be obtained.
  • the primary particle diameter of the modified silica particles is preferably 200 nm or less, more preferably 100 nm or less, still more preferably 50 nm or less, and particularly preferably 40 nm or less, from the viewpoint of further suppressing the occurrence of polishing defects such as scratches.
  • the primary particle diameter of the modified silica particles is within the above range, the smoothness is further improved by the progress of polishing, and the increase in defects caused by the particles can be further suppressed.
  • the “primary particle diameter of the modified silica particles” means an average diameter that can be calculated from the BET specific surface area V, and is calculated from an adsorption specific surface area (hereinafter referred to as “BET specific surface area”) by a gas adsorption method. be able to.
  • the primary particle diameter D (unit: m) of the particles, the particle density ⁇ (unit: kg / m 3 ), and the BET specific surface area V (unit: m 2 / g) are represented by the following formula (1).
  • Have D 6 / ( ⁇ ⁇ V) (1)
  • the formula (1) is expressed as the following formula (2).
  • the primary particle diameter D of the particles can be obtained.
  • the BET specific surface area is measured as follows. First, the abrasive grains are dried with a vacuum freeze dryer, and the residue is finely crushed with a mortar (magnetic, 100 ml) to obtain a measurement sample. And the BET specific surface area V of the sample for a measurement is measured using the BET specific surface area measuring apparatus (product name autosorb 6) by Yuasa Ionics.
  • the content of the modified silica particles is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and still more preferably 0.10% by mass or more based on the total mass of the polishing liquid for semiconductor substrate.
  • the content of the modified silica particles is preferably 1.50% by mass or less, more preferably 1.00% by mass or less, and further preferably 0.50% by mass or less, based on the total mass of the polishing liquid for a semiconductor substrate.
  • the content of the modified silica particles is 1.50% by mass or less, defects and smoothness improvement effects commensurate with the content are easily obtained, and the occurrence of problems such as a decrease in dispersibility is suppressed. It becomes easy.
  • water-soluble polymer examples include alginic acid, pectic acid, carboxymethyl cellulose, agar, xanthan gum, chitosan, methyl glycol chitosan, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and hydroxypropyl methylcellulose.
  • Polysaccharides such as hydroxyethyl cellulose, cardran and pullulan; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid) , Polyvinyl sulfuric acid, polyacrylic acid, polyacrylic acid, polyamic acid and polyglyoxylic acid and salts thereof; polyethyleneimine and salts thereof; vinyl alcohol , Vinylpyrrolidone, polymers obtained by polymerizing a polymerizable monomer containing acrolein or acrylamide, polyethylene glycol, polypropylene glycol, polytetramethylene glycol and ethylene glycol - propylene glycol block copolymer and the like.
  • the salt of polycarboxylic acid and the salt of polyethyleneimine include ammonium salts.
  • Examples of the polymer obtained by polymerizing a polymerizable monomer containing vinyl alcohol, vinyl pyrrolidone, acrolein, acrylamide, etc. include polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, polyacrolein, polyacrylamide, etc. Polymer) and a copolymer of a polymerizable monomer such as vinyl alcohol, vinyl pyrrolidone, acrylamide, or acrolein with another polymerizable monomer.
  • vinyl acetate, methyl acrylate, acrylic acid etc. are mentioned, for example, It can use as a monomer of a copolymer.
  • nonionic polymers are preferable, and examples of the nonionic polymers include carboxymethyl cellulose, agar, xanthan gum, chitosan, methyl glycol chitosan, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and hydroxypropyl.
  • Polysaccharides such as methylcellulose, hydroxyethylcellulose, cardan and pullulan; polyethyleneimine; polymers obtained by polymerizing polymerizable monomers including vinyl alcohol, vinylpyrrolidone, acrolein or acrylamide; polyethylene glycol, polypropylene glycol And polytetramethylene glycol and ethylene glycol-propylene glycol block copolymers.
  • nonionic polymer a polymer obtained by polymerizing a polymerizable monomer containing vinylpyrrolidone is preferable, and polyvinylpyrrolidone (a homopolymer of vinylpyrrolidone) is more preferable.
  • the said water-soluble polymer can be used individually by 1 type or in combination of 2 or more types. Further, when a plurality of water-soluble polymers are mixed and used, at least one of the water-soluble polymers in the mixture is a polymer obtained by polymerizing a polymerizable monomer containing vinylpyrrolidone. There may be.
  • the water-soluble polymer works to prevent foreign particles such as abrasive particles and polishing pad debris from sticking to the substrate surface (wafer surface), and when cleaning foreign particles such as adhered abrasive particles and polishing pad debris It is thought that there is a work to make it easy to take. These functions are considered to be obtained when the water-soluble polymer adheres to the surface of the semiconductor substrate. That is, when the water-soluble polymer adheres on the substrate, the foreign matter attached on the water-soluble polymer is removed from the substrate together with the water-soluble polymer during cleaning.
  • the foreign matter that has directly adhered to the surface of the semiconductor substrate is covered with the water-soluble polymer to prevent dry fixation, and is similarly removed from the semiconductor substrate together with the water-soluble polymer by washing.
  • the polishing liquid containing modified silica particles and water but not containing a water-soluble polymer it is presumed that the above-mentioned function is not sufficient, and it is not possible to sufficiently reduce foreign substances on the substrate surface, and it is practical. Smoothness cannot be obtained.
  • the surface potential of the semiconductor substrate tends to be a negative value. Further, the surface of the semiconductor substrate on which no natural oxide film or the like is generated exhibits strong hydrophobicity.
  • the interaction between the semiconductor substrate and the water-soluble polymer it is considered that electrostatic action and hydrophobic interaction mainly work. When the interaction is too strong, the water-soluble polymer hinders polishing, and it becomes difficult to remove the water-soluble polymer by washing. On the other hand, if the interaction is too weak, the water-soluble polymer cannot sufficiently cover the surface of the semiconductor substrate, making it difficult to obtain a cleaning effect.
  • the interaction between the semiconductor substrate and the water-soluble polymer is preferably a hydrophobic interaction in order to obtain the above effect, and an ionic interaction by an anionic functional group is preferable. These interactions may be single or plural.
  • the content of the water-soluble polymer is 1.00% by mass or less, preferably 0.50% by mass or less, more preferably 0.30% by mass or less, based on the total mass of the polishing liquid for semiconductor substrates, and 0.10. It is more preferably at most mass%, particularly preferably at most 0.05 mass%.
  • the content of the water-soluble polymer is 1.00% by mass or less, it is possible to suppress the occurrence of problems such as a high viscosity and a decrease in fluidity and agglomeration of abrasive particles, and adhesion to the substrate surface. The removed foreign matter can be sufficiently removed.
  • the content of the water-soluble polymer is more than 0% by mass based on the total mass of the polishing liquid for semiconductor substrate, preferably 0.001% by mass or more, more preferably 0.005% by mass or more, and 0.01% by mass. % Or more is more preferable.
  • the content of the water-soluble polymer exceeds 0% by mass, the effect of preventing foreign matters from sticking to the substrate surface can be sufficiently obtained, and the effect of reducing the unevenness is lowered and the smoothness is improved. It can suppress becoming difficult.
  • the semiconductor substrate polishing liquid of this embodiment can contain 1,2,4-triazole.
  • 1,2,4-triazole By containing 1,2,4-triazole in the polishing liquid, the smoothness can be further improved.
  • the additive used in combination with the modified silica particles and the water-soluble polymer include 1,2,4-triazole and imidazole. By using 1,2,4-triazole, the smoothness can be remarkably improved.
  • the content of 1,2,4-triazole is preferably 0.05% by mass or more, and more preferably 0.10% by mass or more based on the total mass of the polishing liquid for semiconductor substrate. Further, the content of 1,2,4-triazole is preferably 0.70% by mass or less based on the total mass of the polishing liquid for a semiconductor substrate in that it is easy to prevent problems such as aggregation of abrasive particles. The mass% or less is more preferable.
  • the aggregation of abrasive particles cannot be generally attributed to the content of 1,2,4-triazole alone, but depends on the particle size and content of abrasive particles and the type and content of water-soluble polymers. Also caused.
  • the polishing liquid for a semiconductor substrate of this embodiment contains water. Further, in the present embodiment, in addition to the above-described components, the components generally added to the polishing liquid, such as solvents other than water, anticorrosives, and oxidizers, are within the range that does not impair the operational effects of the above-described polishing liquid. Can be added to the polishing liquid.
  • the polishing liquid for a semiconductor substrate of this embodiment can be stored in a concentrated form in which the component concentration is increased in advance.
  • the polishing liquid in a concentrated form may be diluted to the original component concentration with water or the like.
  • the components of the polishing liquid for a semiconductor substrate can be stored in a separated liquid form, and these can be mixed and used at the time of use.
  • the semiconductor wafer manufacturing method (semiconductor substrate polishing method) of this embodiment includes a polishing step of polishing the surface of the semiconductor substrate using the semiconductor substrate polishing liquid of this embodiment to obtain a semiconductor wafer.
  • the polishing liquid for a semiconductor substrate of the present embodiment exhibits particularly excellent polishing characteristics when a semiconductor substrate containing silicon in the substrate structure is a polishing target.
  • the polishing target is the surface of the semiconductor substrate, and the surface is silicon. Excellent polishing characteristics when it contains.
  • the substrate containing silicon in the substrate structure include a silicon substrate and a silicon carbide substrate.
  • a gallium arsenide substrate or a gallium nitride substrate may be used as a semiconductor substrate to be polished.
  • the polishing liquid for a semiconductor substrate of the present embodiment can be applied to finish polishing in a semiconductor wafer manufacturing method for obtaining a semiconductor wafer from a single crystal of a semiconductor material.
  • a semiconductor wafer for example, a silicon wafer
  • a semiconductor wafer is generally obtained by a rough polishing (rough cutting) step and a final polishing (final polishing) step.
  • the rough polishing process unevenness and damage on the surface of the semiconductor substrate are gradually eliminated.
  • the polishing rate for the semiconductor material for example, silicon
  • the polishing rate for the semiconductor material is not so high, and the abrasive particles adhering during the rough polishing can be removed or minute irregularities can be eliminated without causing new defects. Then, it aims at making the semiconductor substrate surface into a mirror surface.
  • the polishing liquid for a semiconductor substrate of the present embodiment makes it harder to generate defects on the surface of the semiconductor substrate than improving the polishing rate for a semiconductor material (for example, silicon), and foreign matter (abrasive particles, It is a polishing liquid with an emphasis on making it difficult to leave residue etc. caused by abrasion of the polishing pad and smoothing the surface of the semiconductor substrate, and is particularly suitable for finish polishing applications in the manufacturing process of semiconductor wafers.
  • a semiconductor material for example, silicon
  • foreign matter abrasive particles
  • the method for manufacturing a semiconductor wafer according to the first aspect of the present embodiment is as follows. (1) a preparatory step for lapping or grinding (grinding) a surface (for example, main surface) of a wafer (plate-like member) made of a semiconductor material (for example, silicon) to obtain a rough wafer; (2) A rough polishing step for polishing a surface (for example, a main surface) of a rough wafer to obtain a semiconductor substrate (for example, a silicon substrate); (3) A final polishing step of obtaining a semiconductor wafer (for example, a silicon wafer) by further polishing the surface (for example, the main surface) of the semiconductor substrate after the rough polishing step by using the semiconductor substrate polishing liquid of the present embodiment. Prepare.
  • a wafer made of a semiconductor material in the preparation step can be obtained by slicing, for example, a single crystal of a semiconductor material (for example, a silicon single crystal).
  • the surface of the rough wafer may be etched.
  • the polishing liquid for a semiconductor substrate of the present embodiment can also be applied to finish polishing in a semiconductor wafer manufacturing method for obtaining a recycled wafer as a semiconductor wafer.
  • a method for manufacturing a recycled wafer will be described.
  • test wafers for process tests.
  • test wafers include those obtained by forming various films such as an insulating film and a metal film on a flat silicon substrate.
  • the purpose of manufacturing these test wafers is to examine the optimum conditions for depositing various films on a silicon substrate, to examine the optimum conditions for applying and exposing a resist film on a silicon substrate,
  • cases such as when monitoring each optimum condition, and when evaluating the polishing characteristics of the polishing liquid for various films formed on a silicon substrate.
  • test wafers are reprocessed to be used again as test wafers.
  • the regeneration treatment generally, deposits such as the various films are removed by wet etching or the like, and a flat wafer is obtained again through a rough polishing step and a final polishing step.
  • the test wafer may have a large scratch before being subjected to the regeneration process, or unevenness may be formed during the evaluation. In these cases, it is common that a flat wafer is obtained again by removing scratches and irregularities by grinding and performing rough polishing and finish polishing.
  • a method for manufacturing a semiconductor wafer according to a second aspect of the present embodiment is a method for manufacturing a semiconductor wafer for reuse, (1) a preparation step for obtaining a rough wafer by wet-etching the surface of a wafer (plate-like member) made of a semiconductor material (for example, silicon) on which a deposit (for example, various films) adheres to the surface (for example, main surface); , (2) A rough polishing step for polishing a surface (for example, a main surface) of a rough wafer to obtain a semiconductor substrate (for example, a silicon substrate); (3) A final polishing step of obtaining a semiconductor wafer (for example, a silicon wafer) by further polishing the surface (for example, the main surface) of the semiconductor substrate after the rough polishing step by using the semiconductor substrate polishing liquid of the present embodiment.
  • the semiconductor substrate polishing liquid of this embodiment can also be applied to the case where finish polishing is performed on the back surface of the semiconductor substrate in the final stage in the method of manufacturing a semiconductor wafer having a through silicon via (TSV).
  • TSV through silicon via
  • the structure called TSV is a structure in which an electrode for connecting a device formed on the surface of a semiconductor wafer and the back surface of the semiconductor wafer is formed so as to penetrate the inside of the semiconductor wafer.
  • a method for manufacturing a semiconductor wafer according to a third aspect of the present embodiment is a method for manufacturing a semiconductor wafer having a TSV, (1) Preparation for preparing a wafer having a substrate body in which a hollow portion opened only on the surface (one main surface) is formed, and a via (conductive member) to be a through electrode disposed in the hollow portion Process, (2) a back grinding process for grinding the substrate body from the back surface side (the other main surface side); (3) A polishing step (final polishing step) for polishing the substrate body from the back surface side to expose the via on the back surface to form a through electrode structure using the semiconductor substrate polishing liquid of the present embodiment.
  • a semiconductor substrate 100 having a formed insulating layer (for example, a silicon oxide film or silicon nitride film) 5 and a via 7 to be a through electrode disposed in the hollow portion 3a is prepared (FIG. 1A). reference).
  • the substrate body 1 is ground from the back surface 1b side by a grinder until the insulating layer 5 is exposed, and the substrate body 1 is thinned to obtain the semiconductor substrate 200 (see FIG. 1B).
  • the substrate body 1 is polished from the back surface 1b side using the semiconductor substrate polishing liquid of the present embodiment.
  • the surface layer portion of the substrate body 1 and the insulating layer 5 on the back surface 1b side are removed, the through holes 3b are formed in the substrate body 1, and the vias 7 are exposed to the back surface 1b to form TSVs 7a (FIG. 1 (c))).
  • the semiconductor wafer 300 having the TSV 7a penetrating the substrate body 1 in the thickness direction from the front surface 1a to the back surface 1b is obtained.
  • the use of the polishing liquid for a semiconductor substrate for the finish polishing application of the semiconductor substrate is provided.
  • coating of the final polishing of the semiconductor substrate in manufacture of a semiconductor wafer is provided.
  • use for manufacturing a semiconductor wafer from the single crystal of a semiconductor material of the polishing liquid for semiconductor substrates is provided.
  • use of the semiconductor substrate polishing liquid for manufacturing a recycled wafer is provided.
  • use for formation of TSV and manufacture for the semiconductor wafer which has TSV is provided for the polishing liquid for semiconductor substrates.
  • the polishing surface plate and the semiconductor substrate are placed in a state where the surface of the semiconductor substrate is pressed against the polishing pad while supplying the polishing liquid for the semiconductor substrate onto the polishing pad of the polishing surface plate. It is preferable to polish the surface of the semiconductor substrate by relatively moving. When such a polishing method is used, the polishing characteristics of the polishing liquid for a semiconductor substrate of this embodiment become remarkable.
  • the polishing pad is preferably soft to some extent.
  • a polishing pad having a hardness (ASKER C) value of less than 60 as measured with an Asker rubber hardness tester C type is preferable. “ASKER C” is often used when measuring the hardness of a soft material such as rubber, and is defined by the Japan Rubber Association Standard (SRIS).
  • polishing liquid for semiconductor substrate (Examples 1 to 9)
  • modified silica particles whose surface is modified with aluminate, a water-soluble polymer, and optionally 1,2,4-triazole were blended at the contents shown in Table 1, and Examples 1 to 9 polishing liquids for each semiconductor substrate were prepared.
  • polyvinylpyrrolidone (PVP_K15, PVP_K30) having different K values was used as the water-soluble polymer.
  • the K value is a viscosity characteristic value that correlates with the molecular weight, and is a relative viscosity value at 25 ° C. measured by a capillary viscometer.
  • each polishing liquid In the preparation of each polishing liquid, first, polyvinyl pyrrolidone (PVP) or polyvinyl pyrrolidone (PVP) and 1,2,4-triazole having the contents shown in Table 1 were added to pure water corresponding to 50% by mass of the entire polishing liquid. Was dissolved.
  • the pH was adjusted by adding an acidic compound or a basic compound.
  • 0.3% by mass of modified silica particles having a primary particle diameter of 17 nm and a surface modified with aluminate were dispersed, and then adjusted to 95% by mass with pure water.
  • the basic compound was added until it became desired pH, and it adjusted so that the remainder might be 100 mass% in total with a pure water.
  • aqueous ammonia was used, and when adjusting pH to an acidic side, sulfuric acid was used.
  • polishing liquid for semiconductor substrate (Comparative Examples 1 to 7)
  • modified silica particles whose surface is modified with aluminate, a water-soluble polymer, and optionally 1,2,4-triazole were blended in the contents shown in Table 2, and Comparative Examples 1 to A polishing liquid for each semiconductor substrate of No. 7 was prepared.
  • polyvinylpyrrolidone (PVP_K15) was used as a water-soluble polymer.
  • each polishing liquid In the preparation of each polishing liquid, first, polyvinyl pyrrolidone (PVP) or polyvinyl pyrrolidone (PVP) and 1,2,4-triazole having the contents shown in Table 2 were added to pure water corresponding to 50% by mass of the entire polishing liquid. Was dissolved. When the pH was not in the desired range, the pH was adjusted by adding an acidic compound or a basic compound. Next, after modifying the content of the modified silica particles whose colloidal silica particles whose primary particle diameter is 17 nm and whose surface is modified with aluminate or the colloidal silica particles shown in Table 2 to be 95% by mass with pure water. Adjusted.
  • PVP polyvinyl pyrrolidone
  • PVP polyvinyl pyrrolidone
  • PVP polyvinyl pyrrolidone
  • 1,2,4-triazole 1,2,4-triazole having the contents shown in Table 2 were added to pure water corresponding to 50% by mass of
  • Polishing wafer 300 mm silicon wafer Polishing machine: Reflexion (manufactured by Applied Materials) Polishing platen rotation speed: 123rpm Holder rotation speed: 117rpm Polishing pressure: 13.7 kPa Polishing liquid supply amount: 250 ml / min Polishing pad: SUBA600 (made by Nitta Haas) Polishing liquid: Polishing liquid containing 0.5% by mass of silica abrasive grains (primary particle diameter 17 nm) and tetramethylammonium hydroxide, pH 10.5 Polishing time: 90 seconds
  • Polishing wafer 300 mm silicon wafer after rough polishing prepared above Polishing machine: Reflexion (manufactured by Applied Materials) Polishing platen rotation speed: 123rpm Holder rotation speed: 117rpm Polishing pressure: 9.7 kPa Polishing liquid supply amount: 250 ml / min Polishing pad: Supreme RN-H Pad 30.5 "D PJ; CX01 (Nita Haas polishing time: 5 minutes
  • the “number of defects” is an index of the total number of crystal defects and adhered foreign substances on the substrate surface, and the smaller the number, the smaller the total number of defects (total number of crystal defects and attached foreign substances).
  • the “HAZE value” is an index of the smoothness of the substrate surface, and the smaller the value, the higher the smoothness.
  • Defect inspection system LS6700 (manufactured by Hitachi Electronics Engineering) Process condition file (measurement recipe): VEM10L Defect measurement range: 0.1 ⁇ m-3.0 ⁇ m Projection condition: Vertical
  • Table 1 shows the components, pH, and evaluation results of the polishing liquids of Examples 1 to 9.
  • Table 2 shows the components, pH, and evaluation results of the polishing liquids of Comparative Examples 1 to 7.
  • “ACS” indicates modified silica whose surface is modified with aluminate
  • “CS” indicates colloidal silica whose surface is not modified.
  • the measurement result of the defect distribution in the substrate surface in Example 7 is shown in FIG. 2, and the measurement result of the distribution of the HAZE value in the substrate surface is shown in FIG. Furthermore, the measurement result of the defect distribution in the substrate surface in Comparative Example 1 is shown in FIG. 4, and the measurement result of the HAZE value distribution in the substrate surface is shown in FIG.
  • Examples 1 to 9 it can be seen that the number of defects is small and HAZE is small.
  • Examples 7 and 8 it can be seen that HAZE can be further reduced by adding 1,2,4-triazole.
  • Comparative Examples 1 and 2 use colloidal silica particles whose surface is not modified. In Comparative Examples 1 and 2, it can be seen that the number of defects is large and the HAZE is also large. From Comparative Example 3 and Comparative Example 5, when the modified silica particle whose surface is modified with aluminate is used alone or when PVP is used alone, the number of defects is reduced and HAZE is reduced. It turns out that an effect is not acquired. In Comparative Example 4, 2.00% by mass of PVP is added, the number of defects and HAZE are not less than the measurement limit, and when the content of the water-soluble polymer is too large, the number of defects is reduced, and HAZE It can be seen that the effect of reducing the value cannot be obtained.
  • Comparative Example 6 contains modified silica particles whose surface is modified with aluminate and PVP, but the pH of the polishing liquid is 10.0.
  • the pH of the polishing liquid is in the alkaline region, it is expected that the electrostatic repulsion between the abrasive particles and the silicon wafer will be strong, and it is estimated that the abrasive particles and foreign substances have decreased.
  • the number of defects is 9150, which is increased compared to the example.
  • Comparative Example 6 it was considered that the number of foreign matters was reduced because the pH of the polishing liquid was in the alkaline region, but the crystal defects generated by etching with alkali increased, and the defects as a whole increased.
  • Comparative Example 7 contains modified silica particles whose surface is modified with aluminate and PVP, but the pH of the polishing liquid is 4.5. Regarding Comparative Example 7, it is considered that the crystal defects generated by etching are reduced because the pH of the polishing liquid is in the acidic region, but the abrasive particles and foreign matters are likely to adhere electrostatically, resulting in an increase in defects. Conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 本発明の半導体基板用研磨液は、表面がアルミネートにより改質されている変性シリカ粒子と、水溶性高分子と、水と、を含み、水溶性高分子の含有量が、半導体基板用研磨液の全質量基準で0質量%を超え1.00質量%以下であり、pHが5.0以上9.0以下である。本発明の半導体ウエハの製造方法は、上記半導体基板用研磨液を用いて半導体基板の表面を研磨して半導体ウエハを得る研磨工程を備える。

Description

半導体基板用研磨液及び半導体ウエハの製造方法
 本発明は、半導体基板用研磨液、及び半導体ウエハの製造方法に関する。
 シリコン基板に代表される半導体基板の研磨工程には、一般的に、スライシングで発生する表面の凹凸の解消及び基板の厚みの均一化のためのラッピング工程と、目的とする表面精度に仕上げるためのポリッシング工程(研磨工程)がある。ポリッシング工程は、さらに、粗研磨と称される1次ポリッシング工程と、精密研磨と称されるファイナルポリッシング工程に区分けされる。
 粗研磨や精密研磨は、場合によって、研磨パッド(研磨布)の硬さや研磨荷重が異なる複数のポリッシング工程に更に分けられる。ポリッシング工程を複数のレベルに分けることで、加工時間の短縮化、効率化及び高品質化を達成しており、それぞれのポリッシング工程で目的が異なる。
 粗研磨の段階では、ラッピング工程等で発生した比較的大きめな凹凸の解消や、ダメージを受けた半導体基板の表層部分の除去を目的としている。一方、精密研磨の段階では、半導体基板の欠陥の低減と表面の高度な平滑化が大きな目的である。
 精密研磨に用いられる半導体基板用研磨液には、半導体基板に対する高い研磨速度よりも、結晶欠陥を発生させないこと、基板上に残存する異物(研磨粒子、研磨パッドの摩耗により発生するカス等)を残りづらくすること、基板上に存在する凹凸を解消して平滑な鏡面を形成すること(平滑度)等が強く求められる。
 前記結晶欠陥の代表例としては、COP(Crystal Originated Particle)が挙げられる。COPは結晶成長時に導入される結晶欠陥のひとつであり、研磨時やその後の洗浄時にCOPを核として基板表面にピットが形成される。
 また、半導体基板表面の平滑度は、HAZE(ヘイズ)で判断される場合が多い。HAZEとは粗さの指標であり、粗さが小さいことは平滑性が高いこととを意味する。HAZEは通常、ウエハ表面欠陥検査装置等を用いて測定される。
 ところで、従来、半導体基板を形成する代表的な物質であるシリコン(Si)を研磨するための研磨液として、種々の研磨液が提案されている。例えば、下記特許文献1には、コロイドシリカ及びシリカゲルが、半導体デバイスの製造に最も頻繁に使用される半導体結晶表面の研磨液として有用であることが記載されている。そして、下記特許文献1には、使用されたゾルのコロイドシリカ及びシリカゲルの一次粒子の粒径が4~200nmであると記載されている。
 下記特許文献2には、一次粒子の粒径が4~200nm(好ましくは4~100nm)のコロイド形態のシリカ又はシリカゲルのいずれかを水溶性アミンと組合せたものを研磨液として使用することで、半導体基板(特にシリコン半導体基板)の表面を効果的に研磨できることが開示されている。シリカゾル又はゲル中に存在するシリカに関するアミンの量は、0.5~5.0質量%、好ましくは1.0~5.0質量%、最も好ましくは2.0~4.0質量%とされている。
 下記特許文献3には、0.1~5.0質量%(最も好ましくは2.0~4.0質量%)の水溶性第四アンモニウム塩又は第四アンモニウム塩基を添加した水性シリカ組成物を使用することで、シリコンウエハの研磨速度を改良できることが記載されている。
 下記特許文献4には、シリコン又はゲルマニウム半導体材料を高度の表面仕上がり状態に研磨する方法が開示されている。下記特許文献4に記載の技術では、変性処理されたコロイド状シリカゲルを有し、シリカ濃度が約2~約50質量%であり、pHが11~12.5である研磨液を使用する。そして、変性処理されたコロイド状シリカゲルは、比表面積が約25~600m/gであるシリカ粒子の表面を、化学的に結合したアルミニウム原子で、未被覆粒子表面上の珪素原子100個当たりアルミニウム原子約1~約50個の表面被覆となるように被覆せしめたものである。一般的に、pHが11以上の領域では、研磨粒子であるシリカが解重合してアルカリ珪酸塩となりpHを低下させるのに対して、下記特許文献4には、解重合を生じることなしに、pHが11以上の領域において、迅速に研磨できることが記載されている。
 下記特許文献5には、ピペラジン、又は、窒素に低級アルキル置換基がついたピペラジンと、水性コロイドシリカゾル又はゲルとを含み、かつ、ピペラジンがゾルのSiO含有量に対して0.1~5質量%含まれる研磨液が開示されている。また、下記特許文献5には、シリコンウエハ及びこれと同様の材料の研磨方法が開示されている。下記特許文献5によれば、研磨液にピペラジンを含有させた場合、アミノエチルエタノールアミンを使用する場合と比べて、少量のコロイドシリカで同等の研磨速度が得られるとされている。また、下記特許文献5には、強塩基性のピペラジンの系統は、pHの調整に必要とされる苛性アルカリの添加量を少量にできる、と記載されている。
 下記特許文献6には、研磨材と、アゾール類及びその誘導体の少なくともいずれか一種と、水とを含有することを特徴とする研磨用組成物が開示されている。そして、下記特許文献6には、アゾール類及びその誘導体が研磨用組成物に添加されることによって研磨用組成物の研磨能力が向上する、と記載されている。この理由として、複素五員環の窒素原子の非共有電子対が研磨対象物に直接作用することが指摘されており、具体的にはイミダゾールを適用した実施例が開示されている。
 また、下記特許文献7には、シリコン半導体ウエハの鏡面研磨において、HAZEレベルを低下させることなく、ウエハ表面に付着するパーティクルを低減させることができる、シリコン半導体ウエハ用の研磨用組成物が開示されている。研磨用組成物は、二酸化ケイ素、水、水溶性高分子化合物、塩基性化合物、アルコール性水酸基を1~10個有する化合物、及び、アルコール性水酸基を1~10個有する含窒素塩基性化合物を含有していることを特徴としている。
 また、下記特許文献8には、HAZEレベルをさらに改善することができる研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法が開示されている。研磨用組成物は、ヒドロキシエチルセルロース、0.005重量%を超えるとともに0.5重量%未満のポリエチレンオキサイド、アルカリ化合物、水及び二酸化ケイ素を含有する。そして、研磨用組成物は、シリコンウエハ表面に複数段階に分けて研磨を施すときに、シリコンウエハ表面のHAZEレベルを改善する目的で行われる研磨工程に用いられるように構成されている。リンス用組成物は、ヒドロキシエチルセルロース、0.005重量%を超えるとともに0.5重量%未満のポリエチレンオキサイド、アルカリ化合物、及び、水を含有し、前記研磨工程後のシリコンウエハ表面に施されるリンスに用いられるように構成されている。
 また、下記特許文献9には、シリコンウエハに対する研磨速度を向上させるとともにCOP及びHAZEレベルを改善することができる研磨用組成物が開示されている。研磨用組成物は、ブロック型ポリエーテル、二酸化ケイ素、塩基性化合物、ヒドロキシエチルセルロース及びポリビニルアルコールから選ばれる少なくとも一種、並びに、水の各成分を含有していることを特徴としている。
米国特許第3170273号明細書 米国特許第4169337号明細書 米国特許第4462188号明細書 特公昭57-058775号公報 特開昭62-030333号公報 特開2006-080302号公報 特開平11-116942号公報 特開2004-128089号公報 特開2005-085858号公報
 上述のように、半導体基板のポリッシング工程で使用される研磨液は、研磨粒子とアルカリ剤を基本の含有成分としており、さらに、研磨速度を高めたり、研磨粒子残りを低減したり、結晶欠陥を低減したりするために、塩や水溶性高分子等が添加される。そして、いずれの研磨液も強アルカリ性領域(pHが強アルカリ性の領域、特に、pHが9.0を超える領域)にて使用される。これはアルカリ剤のケミカルな作用で研磨が行われるためである。
 一方で、上記のような研磨液は、強アルカリ性領域であることからアルカリ剤のエッチング作用によりCOPが拡大したり、増加したりする問題点がある。
 本発明の目的は、半導体基板の研磨において、基板表面の欠陥や異物を低減できるとともに基板表面の平滑性を向上させることが可能な半導体基板用研磨液、及び当該半導体基板用研磨液を用いた半導体ウエハの製造方法を提供することである。
 本発明者らは、表面がアルミネートにより改質されている変性シリカ粒子と、所定量の水溶性高分子と、水とを含む研磨液を、pHが5.0以上9.0以下の領域で使用することで、強アルカリ性領域においてアルカリ剤のエッチングに起因して発生する基板表面の欠陥を低減できるとともに、基板表面における異物の低減及び平滑性の向上を達成することが可能であり、優れた研磨表面が形成可能であることを見いだし、本発明に至った。
 すなわち、本発明の半導体基板用研磨液は、表面がアルミネートにより改質されている変性シリカ粒子と、水溶性高分子と、水と、を含み、水溶性高分子の含有量が、半導体基板用研磨液の全質量基準で0質量%を超え1.00質量%以下であり、pHが5.0以上9.0以下である。このような半導体基板用研磨液によれば、半導体基板の研磨において、基板表面の欠陥や異物を低減できるとともに基板表面の平滑性を向上させることが可能であり、優れた研磨表面を形成できる。なお、平滑性はHAZEにより評価することができる。
 本発明の半導体基板用研磨液のpHは、6.0以上8.0以下であることが好ましい。
 変性シリカ粒子の含有量は、半導体基板用研磨液の全質量基準で0.01質量%以上1.50質量%以下であることが好ましい。この場合、基板表面の欠陥や異物を更に低減できるとともに基板表面の平滑性を更に向上させることができる。
 水溶性高分子の含有量は、半導体基板用研磨液の全質量基準で0.001質量%以上1.00質量%以下であることが好ましい。この場合、基板表面の欠陥や異物を更に低減できるとともに基板表面の平滑性を更に向上させることができる。
 水溶性高分子は、ノニオン性高分子であることが好ましい。この場合、基板表面の異物を更に低減できる。また、水溶性高分子は、ビニルピロリドンを含む重合性単量体から得られる重合体であることが好ましく、ポリビニルピロリドンであることがより好ましい。この場合、基板表面の異物を更に低減できる。
 本発明の半導体基板用研磨液は、1,2,4-トリアゾールを更に含んでいてもよい。この場合、基板表面の平滑性を更に向上させることができる。
 1,2,4-トリアゾールの含有量は、半導体基板用研磨液の全質量基準で0.05質量%以上0.70質量%以下であることが好ましい。この場合、基板表面の欠陥や異物を更に低減できるとともに基板表面の平滑性を更に向上させることができる。
 本発明の半導体基板用研磨液は、当該研磨液の研磨対象が半導体基板の表面であり、当該表面がシリコンを含む場合に好適に使用できる。
 本発明の半導体ウエハの製造方法は、上記半導体基板用研磨液を用いて半導体基板の表面を研磨する研磨工程を備える。このような製造方法によれば、半導体基板の研磨において、基板表面の欠陥や異物を低減できるとともに基板表面の平滑性を向上させることが可能であり、優れた研磨表面を形成できる。
 本発明の半導体ウエハの製造方法は、研磨工程の前に、半導体材料からなる板状部材をラッピング又はグラインディングして粗ウエハを得る工程と、粗ウエハを研磨して半導体基板を得る工程と、を更に備えていてもよい。あるいは、本発明の半導体ウエハの製造方法は、研磨工程の前に、半導体材料からなる板状部材をウエットエッチングして粗ウエハを得る工程と、粗ウエハを研磨して半導体基板を得る工程と、を更に備えていてもよい。
 本発明によれば、半導体基板の研磨において、基板表面の欠陥や異物を低減できるとともに基板表面の平滑性を向上させることが可能であり、優れた研磨表面を形成可能な半導体基板用研磨液及び当該半導体基板用研磨液を用いた半導体ウエハの製造方法を提供できる。このような本発明は、半導体基板の表面加工に好適である。また、本発明では、半導体基板の仕上げ研磨(ファイナルポリッシング)において、基板表面の欠陥や異物を低減できるとともに基板表面の平滑性を向上させることが可能であり、優れた研磨表面を形成できる。
本発明の一実施形態に係る半導体ウエハの製造方法を示した模式断面図である。 実施例7における基板面内での欠陥分布の測定結果を示した図である。 実施例7における基板面内でのHAZE値の分布の測定結果を示した図である。 比較例1における基板面内での欠陥分布の測定結果を示した図である。 比較例1における基板面内でのHAZE値の分布の測定結果を示した図である。
 以下、本発明の一実施形態に係る半導体基板用研磨液及び当該研磨液を用いた半導体ウエハの製造方法ついて詳細に説明する。なお、本明細書において研磨液中の各成分の量について言及する場合、各成分に該当する物質が研磨液中に複数存在する場合には、特に断らない限り、研磨液中に存在する当該複数の物質の合計量を意味する。
<半導体基板用研磨液>
 本実施形態の半導体基板用研磨液は、表面がアルミネートにより改質されている変性シリカ粒子(研磨粒子)と、水溶性高分子と、水とを含み、水溶性高分子の含有量が、半導体基板用研磨液の全質量基準で0質量%を超え1.00質量%以下であり、上記研磨液のpHが5.0以上9.0以下である。
 本実施形態では、研磨液のpHが5.0以上9.0以下であることから、強アルカリ性領域における、アルカリ剤によるエッチングを起因とした欠陥が発生するのを抑制できる。また、表面がアルミネートにより改質されている変性シリカ粒子と、水溶性高分子とを併用した上で、水溶性高分子の含有量が所定範囲であることにより、基板表面の平滑性を向上させると共に異物の増加を抑制することが可能であり、優れた研磨表面が形成できる。
(pH)
 本実施形態では、アルカリ剤によるエッチングに起因する欠陥を低減するために、半導体基板用研磨液のpHは9.0以下である。欠陥を更に低減できる点では、半導体基板用研磨液のpHは8.0以下が好ましい。一方、異物(特に研磨粒子)の付着に関しては、pHが低くなるほど半導体基板の電位が小さくなることから、静電反発による異物の付着を低減する効果を得ることが困難となる。半導体基板用研磨液のpHは、異物の付着を低減する効果を充分に得る点では、5.0以上であり、5.5以上が好ましく、6.0以上がより好ましい。
 半導体基板用研磨液のpHは、例えば、酸性化合物及び/又は塩基性化合物の含有量で調整できる。なお、半導体基板用研磨液のpHは、pHメータ(例えば、横河電機株式会社製、Model pH81)で測定することができる。
 上記酸性化合物としては、例えばりんご酸等の有機酸、グリシン等のアミノ酸、硝酸、硫酸等の無機酸などが挙げられる。上記塩基性化合物としては、低臭気である点で、アンモニア、水酸化アンモニウム及び水酸化テトラメチルアンモニウムから選ばれる少なくとも1種の含窒素塩基性化合物、又は、水酸化カリウム及び水酸化ナトリウムから選ばれる少なくとも1種の無機塩基性化合物が好ましい。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
(研磨粒子)
 本実施形態の半導体基板用研磨液の研磨粒子は、表面がアルミネートにより改質されている変性シリカ粒子(以下、場合により単に「変性シリカ粒子」という。)であり、表面がアルミネートにより改質されている変性コロイダルシリカ粒子が好ましい。本実施形態において、変性シリカ粒子は、主研磨材として作用する。一方、未改質のシリカ粒子でも研磨は可能であるが、これを単独で使用しても、欠陥を充分に低減することや平滑性を充分に向上させることはできない。
 アルミネートによるシリカ粒子表面の改質は、例えば、アルミン酸カリウム[(AlO(OH)K]等のアルミニウム化合物を用いて行うことができる。シリカ粒子表面の改質では、例えば、シリカ粒子の分散液の中にアルミン酸カリウムを添加し、60℃以上で還流することで、シリカ粒子表面のシラノール基を、よりイオン化しやすい-Si-O-Al(OH)基にする。
 変性シリカ粒子は、必要に応じて他の研磨粒子と併用してもよい。変性シリカ粒子と併用できる他の研磨粒子としては、具体的には例えば、アルミナ、セリア、チタニア、ジルコニア又は有機ポリマ等を含む研磨砥粒を挙げることができる。変性シリカ粒子と、未改質のシリカ粒子とを併用してもよい。
 変性シリカ粒子の一次粒子径は、実用的な研磨速度を得ることができる点で、5nm以上が好ましく、7nm以上がより好ましく、9nm以上が更に好ましい。また、変性シリカ粒子の一次粒子径は、傷等の研磨欠陥の発生を更に抑制しやすい点で、200nm以下が好ましく、100nm以下がより好ましく、50nm以下が更に好ましく、40nm以下が特に好ましい。変性シリカ粒子の一次粒子径を上記の範囲内とした場合、研磨の進行により平滑性が更に向上するとともに、粒子起因の欠陥の増加を更に抑制することもできる。
 本実施形態において、「変性シリカ粒子の一次粒子径」とは、BET比表面積Vから算出できる平均直径をいい、ガス吸着法による吸着比表面積(以下、「BET比表面積」という。)から算出することができる。ここで、粒子の一次粒子径D(単位:m)、粒子の密度ρ(単位:kg/m)、及び、BET比表面積V(単位:m/g)は下記式(1)の関係を有する。
 D=6/(ρ×V)         ・・・(1)
コロイダルシリカ粒子の密度ρをρ=2200(kg/m)とした場合、式(1)は下記式(2)として表される。
 D=2.727×10-6/V (m)=2727/V (nm)・・・(2)
 式(2)にBET比表面積V(m/g)を代入することにより、粒子の一次粒子径Dを求めることができる。BET比表面積は、具体的には以下のように測定される。まず砥粒を真空凍結乾燥機で乾燥し、この残分を乳鉢(磁性、100ml)で細かく砕いて測定用試料を得る。そして、ユアサアイオニクス株式会社製のBET比表面積測定装置(製品名オートソーブ6)を用いて、測定用試料のBET比表面積Vを測定する。
 変性シリカ粒子の含有量は、半導体基板用研磨液の全質量基準で0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.10質量%以上が更に好ましい。変性シリカ粒子の含有量が0.01質量%以上であると、研磨速度が低下することを抑制しやすくなる共に、平滑性を改善する効果が低下することを抑制しやすくなる。変性シリカ粒子の含有量は、半導体基板用研磨液の全質量基準で1.50質量%以下が好ましく、1.00質量%以下がより好ましく、0.50質量%以下が更に好ましい。変性シリカ粒子の含有量が1.50質量%以下であると、含有量に見合う欠陥や平滑性の改善効果が充分に得られやすくなると共に、分散性の低下といった不具合が発生することを抑制しやすくなる。
(水溶性高分子)
 本実施形態の半導体基板用研磨液における水溶性高分子は、例えば、アルギン酸、ペクチン酸、カルボキシメチルセルロ-ス、寒天、キサンタンガム、キトサン、メチルグリコールキトサン、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カ-ドラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p-スチレンカルボン酸)、ポリビニル硫酸、ポリアクリル酸、ポリアクリル酸、ポリアミド酸及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリエチレンイミン及びその塩;ビニルアルコ-ル、ビニルピロリドン、アクロレイン又はアクリルアミド等を含む重合性単量体を重合させて得られる重合体;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びエチレングリコール-プロピレングリコールブロック共重合体等が挙げられる。ポリカルボン酸の塩、及び、ポリエチレンイミンの塩としては、アンモニウム塩等が挙げられる。
 ビニルアルコ-ル、ビニルピロリドン、アクロレイン又はアクリルアミド等を含む重合性単量体を重合させて得られる重合体としては、例えば、ポリビニルアルコ-ル、ポリビニルピロリドン、ポリアクロレイン、ポリアクリルアミド等の高分子(単独重合体)、並びに、ビニルアルコ-ル、ビニルピロリドン、アクリルアミド、アクロレイン等の重合性単量体と他の重合性単量体との共重合体が好ましい。上記他の重合性単量体としては、例えば酢酸ビニル、アクリル酸メチル、アクリル酸などが挙げられ、共重合体の単量体として使用できる。
 上記水溶性高分子の中でも、ノニオン性高分子が好ましく、ノニオン性高分子としては、例えば、カルボキシメチルセルロ-ス、寒天、キサンタンガム、キトサン、メチルグリコールキトサン、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カ-ドラン及びプルラン等の多糖類;ポリエチレンイミン;ビニルアルコ-ル、ビニルピロリドン、アクロレイン又はアクリルアミド等を含む重合性単量体を重合させて得られる重合体;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びエチレングリコール-プロピレングリコールブロック共重合体等が挙げられる。ノニオン性高分子としては、ビニルピロリドンを含む重合性単量体を重合させて得られる重合体が好ましく、ポリビニルピロリドン(ビニルピロリドンのホモポリマ)がより好ましい。
 なお、上記水溶性高分子は、1種を単独で又は2種以上を組み合わせて使用することができる。また、上記の水溶性高分子のうち複数種を混合して使用する場合、その混合物の水溶性高分子の少なくとも一種は、ビニルピロリドンを含む重合性単量体を重合させて得られる重合体であってもよい。
 水溶性高分子には、研磨粒子や研磨パッド屑などの異物が基板表面(ウエハ表面)に固着するのを防止する働きや、付着してしまった研磨粒子や研磨パッド屑などの異物を洗浄時に取れやすくする働きがあると考えられる。これらの働きは、水溶性高分子が半導体基板の表面に付着することで得られると考えられる。すなわち、基板上に水溶性高分子が付着することで、水溶性高分子の上に付着した異物は洗浄時に水溶性高分子とともに基板から除去される。また、半導体基板表面に直接付着してしまった異物は、水溶性高分子で被覆されることで乾燥固着が防止され、同様に洗浄によって水溶性高分子とともに半導体基板から除去されると考えられる。一方、変性シリカ粒子及び水を含むものの水溶性高分子を含まない研磨液では、上記の働きが充分ではないものと推測され、基板表面の異物を充分に低減することができないと共に、実用的な平滑性を得ることはできない。
 本実施形態の半導体基板用研磨液のpHが5.0以上9.0以下の環境において、半導体基板の表面電位は負の値となる傾向がある。また、自然酸化膜等が生じていない半導体基板の表面は強い疎水性を示す。このような半導体基板と水溶性高分子の相互作用としては、主に静電作用および疎水相互作用が働くと考えられる。相互作用が強すぎる場合、水溶性高分子が研磨を阻害するとともに、洗浄による水溶性高分子の除去が困難となる。一方で、相互作用が弱すぎる場合は、水溶性高分子が半導体基板表面を充分に被覆することができず、洗浄効果を得ることが困難となる。本実施形態において、半導体基板と水溶性高分子の相互作用は、上記の効果を得るために疎水性相互作用が好ましく、アニオン性官能基によるイオン相互作用が好ましい。これらの相互作用は単独又は複数でもかまわない。
 水溶性高分子の含有量は、半導体基板用研磨液の全質量基準で1.00質量%以下であり、0.50質量%以下が好ましく、0.30質量%以下がより好ましく、0.10質量%以下が更に好ましく、0.05質量%以下が特に好ましい。水溶性高分子の含有量が1.00質量%以下であると、高粘度化して流動性が低下することや研磨粒子が凝集することといった不具合が発生することを抑制できると共に、基板表面に付着した異物を充分に除去することができる。水溶性高分子の含有量は、半導体基板用研磨液の全質量基準で0質量%を超えており、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましい。水溶性高分子の含有量が0質量%を超えると、異物が基板表面に固着するのを防止する効果を充分に得ることができると共に、凹凸を低減する効果が低下して平滑性が向上しづらくなることを抑制できる。
(1,2,4-トリアゾール)
 本実施形態の半導体基板用研磨液は、1,2,4-トリアゾールを含有することができる。1,2,4-トリアゾールを研磨液が含有することにより、平滑性を更に向上させることができる。変性シリカ粒子及び水溶性高分子と併用する添加物として1,2,4-トリアゾールやイミダゾールが挙げられるが、1,2,4-トリアゾールを用いることで顕著に平滑性を向上させることができる。
 1,2,4-トリアゾールの含有量は、半導体基板用研磨液の全質量基準で0.05質量%以上が好ましく、0.10質量%以上がより好ましい。また、1,2,4-トリアゾールの含有量は、研磨粒子の凝集等の不具合を防止しやすい点において、半導体基板用研磨液の全質量基準で0.70質量%以下が好ましく、0.50質量%以下がより好ましい。なお、研磨粒子の凝集は、1,2,4-トリアゾールの含有量だけに起因するとは一概には言えず、研磨粒子の粒子径や含有量、及び、水溶性高分子の種類や含有量にも起因する。
(その他の成分)
 本実施形態の半導体基板用研磨液は、水を含む。また、本実施形態では、上述した成分の他に、水以外の溶媒、防食剤、酸化剤などの一般に研磨液に添加される成分を、上述した研磨液の作用効果を損なわない範囲で半導体基板用研磨液に添加することができる。
(保存形態)
 本実施形態の半導体基板用研磨液は、その成分濃度を予め高くした濃縮形態として保存できる。研磨液の使用時には、濃縮形態にある研磨液を、水等で本来の成分濃度まで希釈して使用すればよい。さらに、半導体基板用研磨液の成分を幾つかに分けた分液形態として保存し、それらを使用時に混合して使用することもできる。
<半導体ウエハの製造方法>
 本実施形態の半導体ウエハの製造方法(半導体基板の研磨方法)は、本実施形態の半導体基板用研磨液を用いて半導体基板の表面を研磨して半導体ウエハを得る研磨工程を備える。本実施形態の半導体基板用研磨液は、基板構成にシリコンを含む半導体基板を研磨対象とする場合に特に優れた研磨特性を示し、例えば、研磨対象が半導体基板の表面であり、当該表面がシリコンを含む場合に優れた研磨特性を示す。基板構成にシリコンを含む基板としては、例えば、シリコン基板や炭化シリコン基板が挙げられる。研磨対象の半導体基板として、例えば、ヒ化ガリウム基板や、窒化ガリウム基板を用いてもよい。
 本実施形態の半導体基板用研磨液は、半導体材料の単結晶から半導体ウエハを得る半導体ウエハの製造方法における仕上げ研磨に適用することができる。半導体ウエハ(例えばシリコンウエハ)は、一般的に、粗研磨(荒削り)工程と、仕上げ研磨(最終研磨)工程とにより得られる。粗研磨工程では、半導体基板表面の凹凸及びダメージを徐々に解消する。仕上げ研磨工程では、半導体材料(例えばシリコン)に対する研磨速度はあまり必要とはされず、欠陥を新たに生じさせることなく、粗研磨時に付着した研磨粒子を除去したり、微小な凹凸を解消したりして、半導体基板表面を鏡面化することを目的とする。本実施形態の半導体基板用研磨液は、半導体材料(例えばシリコン)に対する研磨速度を向上させることよりも、半導体基板表面の欠陥を発生しづらくすること、半導体基板表面に残存する異物(研磨粒子、研磨パッドの摩耗による発生するカス等)を残りづらくすること、半導体基板表面を平滑にすることに重点を置いた研磨液であり、半導体ウエハの製造工程における仕上げ研磨用途に特に適している。
 すなわち、本実施形態の第1態様に係る半導体ウエハの製造方法は、
(1)半導体材料(例えばシリコン)からなるウエハ(板状部材)の表面(例えば主面)をラッピング又はグラインディング(研削)して粗ウエハを得る準備工程と、
(2)粗ウエハの表面(例えば主面)を研磨して半導体基板(例えばシリコン基板)を得る粗研磨工程と、
(3)本実施形態の半導体基板用研磨液を用いて、粗研磨工程後の半導体基板の表面(例えば主面)を更に研磨して半導体ウエハ(例えばシリコンウエハ)を得る仕上げ研磨工程と、を備える。
 準備工程における半導体材料からなるウエハは、例えば、半導体材料の単結晶(例えばシリコン単結晶)をスライスして得ることができる。準備工程では、粗ウエハの表面をエッチングしてもよい。
 また、本実施形態の半導体基板用研磨液は、再生ウエハを半導体ウエハとして得る半導体ウエハの製造方法における仕上げ研磨にも適用することができる。以下、再生ウエハの製造方法について説明する。
 一般に、シリコンウエハから半導体デバイスを製造する各要素工程において、プロセステストのため、多数のウエハがテストウエハとして使用される。このようなテストウエハとしては、平坦なシリコン基板上に絶縁膜や金属膜等の各種膜を製膜したものが挙げられる。これらのテストウエハを製造する目的は、シリコン基板上に各種の膜を製膜するための最適条件を調べる場合、シリコン基板上にレジスト膜を塗布・露光する際の最適条件を調べる場合、定期的に前記各最適条件についてモニタリングする場合、シリコン基板上に製膜された各種の膜に対する研磨液の研磨特性を評価する場合等、多岐にわたっている。
 これらのテストウエハは、再度テストウエハとして利用するために、再生処理が行われる。再生処理としては、一般的に、前記各種膜等の付着物をウエットエッチング等により除去し、粗研磨工程及び仕上げ研磨工程を経て、再度平坦なウエハを得る。また、前記テストウエハは、再生工程にまわされるまでに大きなキズがついてしまう場合や、評価の際に凹凸が形成されてしまう場合がある。これらの場合には、キズや凹凸を研削加工により除去し、これを粗研磨工程及び仕上げ研磨することによって、再度平坦なウエハが得られるのが一般的である。
 本実施形態の半導体基板用研磨液は、このような再生ウエハを仕上げ研磨するのに好適に使用できる。本実施形態の第2態様に係る半導体ウエハの製造方法は、再利用するための半導体ウエハの製造方法であって、
(1)付着物(例えば、各種膜)が表面(例えば主面)に付着した、半導体材料(例えばシリコン)からなるウエハ(板状部材)の表面をウエットエッチングして粗ウエハを得る準備工程と、
(2)粗ウエハの表面(例えば主面)を研磨して半導体基板(例えばシリコン基板)を得る粗研磨工程と、
(3)本実施形態の半導体基板用研磨液を用いて、粗研磨工程後の半導体基板の表面(例えば主面)を更に研磨して半導体ウエハ(例えばシリコンウエハ)を得る仕上げ研磨工程と、を備える。
 なお、再利用しようとするウエハの表面に凹凸やキズがある場合は、粗研磨工程の前に機械的な研削工程として、ウエハの表面をラッピング又はグラインディングする工程を更に備えていることが好ましい。
 また、本実施形態の半導体基板用研磨液は、シリコン貫通ビア(TSV)を有する半導体ウエハの製造方法において、最終段階に半導体基板の裏面に対して仕上げ研磨を施す場合にも適用することができる。TSVと呼ばれる構造は、半導体ウエハの表面に形成されたデバイスと半導体ウエハの裏面とを接続する電極が、半導体ウエハ内部を貫通するように形成されている構造である。
 本実施形態の第3態様に係る半導体ウエハの製造方法は、TSVを有する半導体ウエハの製造方法であって、
(1)表面(一方の主面)のみに開口した中空部が形成された基板本体と、中空部内に配置された、貫通電極となるべきビア(導電部材)と、を有するウエハを準備する準備工程と、
(2)裏面側(他方の主面側)から基板本体をグラインディングするバックグラインド工程と、
(3)本実施形態の半導体基板用研磨液を用いて、裏面側から基板本体を研磨してビアを裏面に露出させて貫通電極構造を形成する研磨工程(仕上げ研磨工程)と、を備える。
 準備工程では、例えば、表面1aのみに開口した中空部3aが形成された基板本体1と、表面1a上に配置された素子2と、中空部3aの形状に追従するように中空部3a内に形成された絶縁層(例えばシリコン酸化膜やシリコン窒化膜)5と、中空部3a内に配置された、貫通電極となるべきビア7と、を有する半導体基板100を準備する(図1(a)参照)。
 バックグラインド工程では、絶縁層5が露出する寸前までグラインダーによって基板本体1を裏面1b側から研削して基板本体1を薄層化し、半導体基板200を得る(図1(b)参照)。
 研磨工程では、本実施形態の半導体基板用研磨液を用いて基板本体1を裏面1b側から研磨する。これにより、裏面1b側の基板本体1の表層部及び絶縁層5が除去されて、基板本体1に貫通孔3bが形成されると共にビア7が裏面1bに露出してTSV7aが形成される(図1(c))参照)。これにより、表面1aから裏面1bにかけて基板本体1を厚さ方向に貫通するTSV7aを有する半導体ウエハ300が得られる。
 以上の本実施形態によれば、半導体基板用研磨液の、半導体基板の仕上げ研磨用途のための使用が提供される。また、本実施形態によれば、半導体基板用研磨液の、半導体ウエハの製造における半導体基板の仕上げ研磨用途のための使用が提供される。本実施形態に係る上記第1態様によれば、半導体基板用研磨液の、半導体材料の単結晶から半導体ウエハを製造するための使用が提供される。本実施形態に係る上記第2態様によれば、半導体基板用研磨液の、再生ウエハの製造のための使用が提供される。本実施形態に係る上記第3態様によれば、半導体基板用研磨液の、TSVの形成のための使用、及び、TSVを有する半導体ウエハの製造のための使用が提供される。
 本実施形態の製造方法における仕上げ研磨工程では、研磨定盤の研磨パッド上に半導体基板用研磨液を供給しながら、半導体基板の表面を研磨パッドに押圧した状態で、研磨定盤と半導体基板を相対的に動かして半導体基板の表面を研磨することが好ましい。このような研磨方法を用いた場合に、本実施形態の半導体基板用研磨液の研磨特性が顕著となる。
 また、本実施形態の製造方法における仕上げ研磨工程では、半導体材料(例えばシリコン)に対する研磨速度よりも、半導体基板(例えばシリコン基板)上の欠陥を低減すると共に表面の微小な凹凸を解消して高度な鏡面を得るために、研磨パッドは、ある程度やわらかいものが好ましい。例えば、アスカーゴム硬度計C型で測定した硬度(ASKER C)の値が60より小さい研磨パッドが好ましい。なお、「ASKER C」は、ゴムのような軟質なものの硬度を測定する時によく使用されるものであり、日本ゴム協会標準規格(SRIS)によって規定されている。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[半導体基板用研磨液の調製(実施例1~9)]
 表面がアルミネートにより改質されている変性シリカ粒子、水溶性高分子、場合により1,2,4-トリアゾールを、以下の手順に従って、表1に示す含有量で配合して、実施例1~9の各半導体基板用研磨液を調製した。各研磨液の調製には、水溶性高分子として、K値が異なるポリビニルピロリドン(PVP_K15、PVP_K30)を用いた。K値とは、分子量と相関する粘性特性値であり、毛細管粘度計により測定される25℃での相対粘度値である。
 各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に、表1に示す含有量のポリビニルピロリドン(PVP)、又は、ポリビニルピロリドン(PVP)及び1,2,4-トリアゾールを溶解させた。pHが所望の範囲ではない場合には、酸性化合物又は塩基性化合物の添加によりpHを調整した。次いで、一次粒子径が17nmであり、表面がアルミネートにより改質されている変性シリカ粒子を0.3質量%分散させた後、純水で計95質量%になるように調整した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように調整した。なお、アルカリ側へpHを調整する場合にはアンモニア水を用い、酸性側へpHを調整する場合には硫酸を用いた。
[半導体基板用研磨液の調製(比較例1~7)]
 表面がアルミネートにより改質されている変性シリカ粒子、水溶性高分子、場合により1,2,4-トリアゾールを、以下の手順に従って、表2に示す含有量で配合して、比較例1~7の各半導体基板用研磨液を調製した。各研磨液の調製には、水溶性高分子として、ポリビニルピロリドン(PVP_K15)を用いた。
 各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に、表2に示す含有量のポリビニルピロリドン(PVP)、又は、ポリビニルピロリドン(PVP)及び1,2,4-トリアゾールを溶解させた。pHが所望の範囲ではない場合には、酸性化合物又は塩基性化合物の添加によりpHを調整した。次いで、一次粒子径が17nmであり、表面がアルミネートにより改質されている変性シリカ粒子、又はコロイダルシリカ粒子を表2に示す含有量分散させた後、純水で計95質量%になるように調整した。そして、所望のpHとなるまで酸性化合物又は塩基性化合物を添加し、残部を純水で計100質量%になるように調整した。なお、アルカリ側へpHを調整する場合にはアンモニア水を用い、酸性側へpHを調整する場合には硫酸を用いた。
[半導体基板用研磨液のpH測定]
 実施例1~9及び比較例1~7の半導体基板用研磨液のpHをpHメータ(横河電機株式会社製、Model pH81)を用いて測定した。
[粗研磨半導体基板の調整]
 直径300mmのシリコンウエハを下記条件で研磨し、表面を荒らした(粗研磨状態の)シリコンウエハを調整した。
(粗研磨条件)
 研磨ウエハ:300mmシリコンウエハ
 研磨機:Reflexion(アプライドマテリアルズ社製)
 研磨定盤回転数:123rpm
 ホルダー回転数:117rpm
 研磨圧力:13.7kPa
 研磨液供給量:250ml/分
 研磨パッド:SUBA600(ニッタ・ハース製)
 研磨液:シリカ砥粒(一次粒子径17nm)0.5質量%及び水酸化テトラメチルアンモニウムを含有する研磨液、pH10.5
 研磨時間:90秒
[半導体基板の研磨]
 研磨定盤の研磨パッド上に、配合直後の実施例1の半導体基板用研磨液を供給しながら、半導体基板(シリコンウエハ)の表面を研磨パッドに押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例1と同様の方法で、配合直後の実施例2~9及び比較例1~7の各研磨液を用いて半導体基板の表面を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件)
 研磨ウエハ:前記で作製した粗研磨後の300mmシリコンウエハ
 研磨機:Reflexion(アプライドマテリアルズ社製)
 研磨定盤回転数:123rpm
 ホルダー回転数:117rpm
 研磨圧力:9.7kPa
 研磨液供給量:250ml/分
 研磨パッド:Supreme RN-H Pad 30.5”D PJ;CX01 (ニッタ・ハース製
 研磨時間:5分
[洗浄]
 前記研磨後のウエハを、下記条件で洗浄した。
 洗浄機:MESA(アプライドマテリアルズ社製)
 洗浄液:水酸化アンモニウム0.06体積%+過酸化水素0.12体積%
 ブラシ洗浄時間:60秒
 前記洗浄後のウエハについて、下記の装置を用いて、欠陥数と、HAZE値として表示される値とを測定した。なお、「欠陥数」は、基板表面の結晶欠陥、及び、付着した異物の総数の指標であり、数が少ないほど欠陥の総数(結晶欠陥及び付着した異物の総数)が少ないことを意味する。また、「HAZE値」は、基板表面の平滑性の指標であり、値が小さいほど平滑性が高いことを意味する。
 欠陥検査装置:LS6700(日立電子エンジニアリング製)
 工程条件ファイル(測定レシピ):VEM10L
 欠陥測定範囲:0.1μm-3.0μm
 投光条件:垂直
 実施例1~9の研磨液の含有成分、pH及び評価結果を表1に示す。比較例1~7の研磨液の含有成分、pH及び評価結果を表2に示す。なお、表1,2中、「ACS」は、表面がアルミネートにより改質されている変性シリカを示し、「CS」は、表面が改質されていないコロイダルシリカを示す。
 また、実施例7における基板面内での欠陥分布の測定結果を図2に示し、基板面内でのHAZE値の分布の測定結果を図3に示す。さらに、比較例1における基板面内での欠陥分布の測定結果を図4に示し、基板面内でのHAZE値の分布の測定結果を図5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~9では、欠陥数が少なく、HAZEが小さくなることが分かる。また、実施例7、8では、1,2,4-トリアゾールの添加により、HAZEを更に小さくできることが分かる。
 一方、比較例1、2は、表面が改質されていないコロイダルシリカ粒子を使用したものである。比較例1、2では、欠陥数が多く、またHAZEも大きいことが分かる。比較例3及び比較例5から、表面がアルミネートにより改質されている変性シリカ粒子を単独で使用した場合、又は、PVPを単独で使用した場合では、欠陥数を低減し、HAZEを小さくする効果が得られないことが分かる。比較例4では、PVPを2.00質量%添加しており、欠陥数及びHAZEが測定限界以上となっており、水溶性高分子の含有量が多すぎる場合は、欠陥数を低減し、HAZEを小さくする効果が得られないことが分かる。
 比較例6は、表面がアルミネートにより改質されている変性シリカ粒子と、PVPとを含有しているが、研磨液のpHが10.0である。比較例6では、研磨液のpHがアルカリ領域であることから研磨粒子とシリコンウエハとの静電的な反発が強くなることが予想され、研磨粒子や異物が減少したものと推定されるのに対して、欠陥数は9150個であり実施例と比較して増加している。比較例6について、研磨液のpHがアルカリ領域となったことで異物数は減少したが、アルカリによるエッチングで発生した結晶欠陥が増加し、欠陥全体としては増加したものと考えられる。
 比較例7は、表面がアルミネートにより改質されている変性シリカ粒子と、PVPとを含有しているが、研磨液のpHが4.5である。比較例7について、研磨液のpHが酸性領域であることからエッチングで発生する結晶欠陥が減少すると考えられるが、研磨粒子や異物が静電的に付着しやすくなり、結果として欠陥が増加したと考えられる。
 1…基板本体、1a…表面、1b…裏面、2…素子、3a…中空部、3b…貫通孔、5…絶縁層、7…ビア、7a…TSV、100,200…半導体基板、300…半導体ウエハ。

Claims (13)

  1.  表面がアルミネートにより改質されている変性シリカ粒子と、水溶性高分子と、水と、を含み、
     前記水溶性高分子の含有量が、半導体基板用研磨液の全質量基準で0質量%を超え1.00質量%以下であり、
     pHが5.0以上9.0以下である、半導体基板用研磨液。
  2.  pHが6.0以上8.0以下である、請求項1に記載の半導体基板用研磨液。
  3.  前記変性シリカ粒子の含有量が、半導体基板用研磨液の全質量基準で0.01質量%以上1.50質量%以下である、請求項1又は2に記載の半導体基板用研磨液。
  4.  前記水溶性高分子の含有量が、半導体基板用研磨液の全質量基準で0.001質量%以上1.00質量%以下である、請求項1~3のいずれか一項に記載の半導体基板用研磨液。
  5.  前記水溶性高分子がノニオン性高分子である、請求項1~4のいずれか一項に記載の半導体基板用研磨液。
  6.  前記水溶性高分子が、ビニルピロリドンを含む重合性単量体から得られる重合体である、請求項1~5のいずれか一項に記載の半導体基板用研磨液。
  7.  前記水溶性高分子がポリビニルピロリドンである、請求項1~6のいずれか一項に記載の半導体基板用研磨液。
  8.  1,2,4-トリアゾールを更に含む、請求項1~7のいずれか一項に記載の半導体基板用研磨液。
  9.  前記1,2,4-トリアゾールの含有量が、半導体基板用研磨液の全質量基準で0.05質量%以上0.70質量%以下である、請求項8に記載の半導体基板用研磨液。
  10.  研磨対象が半導体基板の表面であり、当該表面がシリコンを含む、請求項1~9のいずれか一項に記載の半導体基板用研磨液。
  11.  請求項1~10のいずれか一項に記載の半導体基板用研磨液を用いて半導体基板の表面を研磨して半導体ウエハを得る研磨工程を備える、半導体ウエハの製造方法。
  12.  前記研磨工程の前に、半導体材料からなる板状部材をラッピング又はグラインディングして粗ウエハを得る工程と、前記粗ウエハを研磨して前記半導体基板を得る工程と、を更に備える、請求項11に記載の半導体ウエハの製造方法。
  13.  前記研磨工程の前に、半導体材料からなる板状部材をウエットエッチングして粗ウエハを得る工程と、前記粗ウエハを研磨して前記半導体基板を得る工程と、を更に備える、請求項11に記載の半導体ウエハの製造方法。
PCT/JP2011/063171 2010-06-18 2011-06-08 半導体基板用研磨液及び半導体ウエハの製造方法 WO2011158718A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012520390A JPWO2011158718A1 (ja) 2010-06-18 2011-06-08 半導体基板用研磨液及び半導体ウエハの製造方法
KR1020137000572A KR20130041084A (ko) 2010-06-18 2011-06-08 반도체 기판용 연마액 및 반도체 웨이퍼의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-139460 2010-06-18
JP2010139460 2010-06-18

Publications (1)

Publication Number Publication Date
WO2011158718A1 true WO2011158718A1 (ja) 2011-12-22

Family

ID=45348120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063171 WO2011158718A1 (ja) 2010-06-18 2011-06-08 半導体基板用研磨液及び半導体ウエハの製造方法

Country Status (4)

Country Link
JP (1) JPWO2011158718A1 (ja)
KR (1) KR20130041084A (ja)
TW (1) TW201204818A (ja)
WO (1) WO2011158718A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662885A1 (en) * 2012-05-07 2013-11-13 Basf Se A process for the manufacture of semiconductor devices comprising the chemical mechanical polishing (cmp) of iii-v material in the presence of a cmp composition comprising a compound containing an n-heterocycle
KR20140139541A (ko) * 2012-03-14 2014-12-05 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 반도체 기판의 제조 방법
EP2847785A4 (en) * 2012-05-07 2016-03-16 Basf Se METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS
JP2016522855A (ja) * 2013-05-15 2016-08-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se N−ビニル−ホモポリマーおよびn−ビニルコポリマーからなる群から選択される1種または複数のポリマーを含む化学機械研磨組成物
JP2016524324A (ja) * 2013-05-15 2016-08-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリエチレンイミンを含む化学機械研磨組成物
JP7458732B2 (ja) 2019-09-30 2024-04-01 株式会社フジミインコーポレーテッド 研磨用組成物および磁気ディスク基板製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029916B2 (ja) * 2012-09-28 2016-11-24 株式会社フジミインコーポレーテッド 研磨用組成物
JP6559936B2 (ja) * 2014-09-05 2019-08-14 日本キャボット・マイクロエレクトロニクス株式会社 スラリー組成物、リンス組成物、基板研磨方法およびリンス方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232141A (ja) * 1992-12-07 1994-08-19 Sony Corp 半導体基板の作成方法及び固体撮像装置の製造方法
JP2007131536A (ja) * 2004-07-27 2007-05-31 Vitamin C60 Bioresearch Kk 皮膚メラニン抑制剤
JP2010067914A (ja) * 2008-09-12 2010-03-25 Fujifilm Corp 化学的機械的研磨液、及び化学的機械的研磨方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232141A (ja) * 1992-12-07 1994-08-19 Sony Corp 半導体基板の作成方法及び固体撮像装置の製造方法
JP2007131536A (ja) * 2004-07-27 2007-05-31 Vitamin C60 Bioresearch Kk 皮膚メラニン抑制剤
JP2010067914A (ja) * 2008-09-12 2010-03-25 Fujifilm Corp 化学的機械的研磨液、及び化学的機械的研磨方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140139541A (ko) * 2012-03-14 2014-12-05 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 반도체 기판의 제조 방법
KR101970858B1 (ko) * 2012-03-14 2019-04-19 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 반도체 기판의 제조 방법
EP2662885A1 (en) * 2012-05-07 2013-11-13 Basf Se A process for the manufacture of semiconductor devices comprising the chemical mechanical polishing (cmp) of iii-v material in the presence of a cmp composition comprising a compound containing an n-heterocycle
EP2847785A4 (en) * 2012-05-07 2016-03-16 Basf Se METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS
JP2016522855A (ja) * 2013-05-15 2016-08-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se N−ビニル−ホモポリマーおよびn−ビニルコポリマーからなる群から選択される1種または複数のポリマーを含む化学機械研磨組成物
JP2016524324A (ja) * 2013-05-15 2016-08-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリエチレンイミンを含む化学機械研磨組成物
JP2019135297A (ja) * 2013-05-15 2019-08-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se N−ビニル−ホモポリマーおよびn−ビニルコポリマーからなる群から選択される1種または複数のポリマーを含む化学機械研磨組成物
JP7458732B2 (ja) 2019-09-30 2024-04-01 株式会社フジミインコーポレーテッド 研磨用組成物および磁気ディスク基板製造方法

Also Published As

Publication number Publication date
JPWO2011158718A1 (ja) 2013-08-19
TW201204818A (en) 2012-02-01
KR20130041084A (ko) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5413456B2 (ja) 半導体基板用研磨液及び半導体基板の研磨方法
WO2011158718A1 (ja) 半導体基板用研磨液及び半導体ウエハの製造方法
JP6581198B2 (ja) 化学機械平坦化組成物用の複合研磨粒子及びその使用方法
TWI650410B (zh) 矽晶圓硏磨用組成物
KR101728646B1 (ko) 실리콘 웨이퍼용 연마액 조성물
US9640407B2 (en) Polishing composition
EP2289667B1 (en) Polishing agent for synthetic quartz glass substrate
JP4115562B2 (ja) 研磨用組成物
WO2011093153A1 (ja) 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
JP7148506B2 (ja) 研磨用組成物およびこれを用いた研磨方法
TW201443212A (zh) 研磨用組成物、研磨用組成物製造方法及研磨物製造方法
TWI660037B (zh) 矽晶圓研磨用組成物
KR102617007B1 (ko) 기판의 연마 방법 및 연마용 조성물 세트
JP2014154707A (ja) 研磨液、研磨方法及びシリコンウエハの製造方法
TWI832999B (zh) 研磨用組成物
JP6678076B2 (ja) シリコンウェーハ用研磨液組成物
JP4346712B2 (ja) ウェーハエッジ研磨方法
JP5464834B2 (ja) 研磨用シリカゾル、研磨用組成物および研磨用シリカゾルの製造方法
TWI588249B (zh) Silicon wafer polishing composition
JP2013110253A (ja) 半導体基板用研磨液及び半導体基板の研磨方法
JPWO2018096991A1 (ja) 研磨用組成物
TW201815906A (zh) 矽晶圓粗研磨用組成物之製造方法、矽晶圓粗研磨用組成物套組及矽晶圓之研磨方法
JP7120846B2 (ja) 研磨用組成物及びその製造方法並びに研磨方法並びに基板の製造方法
JP2013177617A (ja) 研磨用シリカゾルおよび研磨用組成物
JP7450532B2 (ja) 研磨用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520390

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137000572

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11795625

Country of ref document: EP

Kind code of ref document: A1