WO2020006818A1 - Procédé de simulation de valeur de couplage de contrainte d'endommagement par infiltration d'injection d'eau de roche de houille basé sur la zone - Google Patents

Procédé de simulation de valeur de couplage de contrainte d'endommagement par infiltration d'injection d'eau de roche de houille basé sur la zone Download PDF

Info

Publication number
WO2020006818A1
WO2020006818A1 PCT/CN2018/100462 CN2018100462W WO2020006818A1 WO 2020006818 A1 WO2020006818 A1 WO 2020006818A1 CN 2018100462 W CN2018100462 W CN 2018100462W WO 2020006818 A1 WO2020006818 A1 WO 2020006818A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
simulation
calculation
determine whether
seepage
Prior art date
Application number
PCT/CN2018/100462
Other languages
English (en)
Chinese (zh)
Inventor
周刚
尹文婧
张文政
魏星
张国宝
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to RU2020110457A priority Critical patent/RU2743121C1/ru
Publication of WO2020006818A1 publication Critical patent/WO2020006818A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Definitions

  • the present invention relates to the field of mine rock mechanics, and in particular, to a numerical simulation method for coupling water seepage-damage-stress coupling of coal rock masses containing geological structures.
  • Coal seam water injection is the process of injecting pressurized water and aqueous solution into the coal body through drilling.
  • the wetting effect of water makes the coal body plastic and the brittleness weakens.
  • many brittle fractures become plastic deformation, which greatly reduces it.
  • the possibility that the coal body is broken into dust particles is reduced, and the amount of coal dust generated is reduced.
  • the whole process involves many disciplines such as computational fluid mechanics, fracture rock mechanics and fluid-structure coupling. The process of numerical simulation is more complicated.
  • the object of the present invention is to provide a numerical simulation method for seepage-damage-stress coupled numerical simulation of water injection in coal and rock masses containing geological structures, which can more accurately simulate coal body damage during the water injection process And water transport laws, providing data for coal seam water injection.
  • the solution of the present invention includes:
  • a coupled numerical simulation method for seepage-damage-stress coupling of water injection in coal and rock masses comprising the following steps:
  • Step 1 Establish a coal and rock mass model including faults based on geological survey results
  • Step 2 Scan the corresponding coal body in the coal rock body obtained from the geological survey, and combine the FDK 3D reconstruction algorithm to construct a 3D digital core model with real pore structure characteristics;
  • Step 3 In the boundary element environment, execute the "mining fissure" generation algorithm to determine whether it is a mining affected area, that is, determine whether the distance from the mining face is less than 80m. If it is a mining affected area, go to step 4; if it is not mining Move the affected area, go to step five;
  • Step 4 Determine whether the cross-sectional area of the watershed is greater than 30 ⁇ m 2. If the cross-sectional area of the watershed is greater than 30 ⁇ m 2 , perform NS calculation processing, store and output the result; if less than 30 ⁇ m 2 , perform Darcy calculation processing, store and output the result;
  • Step 5 Determine whether the cross-sectional area of the watershed is greater than 30 ⁇ m 2. If the cross-sectional area of the watershed is greater than 30 ⁇ m 2 , go to step 6; if less than 30 ⁇ m 2 , go to step 12;
  • Step 6 Based on the C # language, the programming generates initial stress concentration points based on burial depth, geological conditions, lithology of overlying strata, and coal seam inclination.
  • Step 7 Mesh the 3D digital core model processed in Step 6;
  • Step 8 Calculate the tensile and shearing moments of the coal body grid, compare the tensile and shearing moments of the grid with the tensile and shearing moments, and find the most vulnerable grid set; The grid of moments is marked as "Native Crack", and then step 9 is performed; if there is no grid with a tensile-shear moment greater than the tensile-shear moment, the calculation is terminated and step 11 is performed;
  • Step 9 Replace the material in the "primary fissure" grid with the gas in the coal seam;
  • Step 10 Determine whether the total area of the "primary fissures" after the processing in step 9 exceeds twice the fault area. If not, generate a new model after deleting the "primary fissure" grid, and return to repeat step 8. If it exceeds , The calculation is terminated and step 11 is executed;
  • Step 11 Construct a model of two types of coal seam fractures that ultimately include primary fractures in the geological structure and fractures generated during the calculation and re-mesh the mesh, derive the STL general geometry, perform N-S calculation processing, and store and output the results;
  • Step 12 In the boundary element environment, after coupling the custom equation to calculate the seepage field and stress parameters, go to Step 13.
  • Step 13 In the meshless simulation environment, determine whether there are points where the tensile-shear moment is greater than the relevant parameters of the coal and rock mass. If so, connect such points in turn, mark the closed area as "invalid coal and rock mass", and execute Step 14; if not, go to Step 15;
  • Step 14 Add the water inlet conditions to the marked "invalid coal and rock mass" boundary in step 13.
  • Step 15 Perform turbulence simulation separately, calculate the stress distribution, and store the simulation results of the node;
  • Step 16 Determine whether the fracture separation from the simulation result in step 15 reaches the surface of the coal body. If not, go to step 17; if it reaches the surface of the coal body, go to step 18.
  • Step 17 Check whether the accumulated storage time reaches the preset simulation time. If not, go back to Step 12. If the calculation time is reached, go to Step 18.
  • Step 18 Stop the calculation in the meshless simulation environment. After calculating turbulence and stress only in the boundary element environment, perform Darcy calculation processing, store and output the results;
  • Step 19 The output results of Step 4, Step 11 and Step 18 are integrated and output as an independent file to obtain a quantitative statistical result.
  • the numerical simulation method for the coupled seepage-damage-stress numerical simulation of coal-rock mass injection includes:
  • Step A N-S initialization
  • Step B Calculate water pressure and gas pressure
  • Step C determine whether the water pressure is greater than the gas pressure, and if it is greater, change the next grid material to water, and execute step D; if it is less, directly perform step D;
  • Step D Determine whether the calculation time setting is reached. If the calculation time is not reached, return to step A. If the calculation time is reached, directly store and output the result.
  • the coupled numerical simulation method for seepage-damage-stress coupled injection of coal and rock mass, wherein the Darcy calculation process includes:
  • Step E Darcy initialization
  • Step F Calculate water pressure and gas pressure
  • Step J Determine whether the water pressure is greater than the gas pressure, and if it is greater, change the next grid material to water, and perform step H; if it is less, directly perform step H;
  • Step H Determine whether the calculation time setting is reached. If the calculation time is not reached, return to step E. If the calculation time is reached, directly store and output the result.
  • step 1 specifically further includes: reserve "fault start point” and "fault end point” in the process of establishing a coal rock mass model including fault ",” Fault turning point “,” Azimuth difference ",” Drop “and” Dip angle "are provided for user input.
  • the method for numerically coupling seepage-damage-stress coupled numerical simulation of coal rock mass injection wherein the above-mentioned step dimer further includes: using an image processing algorithm to perform a filtering operation on a three-dimensional digital core model, smoothing the model edges, and then implementing based on the threshold. Data segmentation was used to obtain the micropore structure of the coal body. The island pores with poor connectivity were eliminated, and the final numerical model of coal body pores in STL format was derived.
  • the numerical simulation method for coupled seepage-damage-stress numerical simulation of coal-rock mass injection wherein the above-mentioned quantitative statistical results include simulation results of hydraulic pressure field, simulation results of gas pressure, simulation results of coal pressure, simulation results of water flow velocity, and simulation of gas flow velocity result.
  • the present invention provides a numerical simulation method for coupling water seepage-damage-stress coupled numerical simulation of coal rock masses containing geological structures, using two mathematical models of Navier-Stokes equation and Darcy's law, respectively, based on two methods: boundary element method and meshless method.
  • the boundary element method is used to simulate the seepage process, and the meshless method is used to simulate the coal body fracture process.
  • the advantages of the simulation method can more accurately simulate the coal body damage and water movement during the regional injection of coal and rock masses, providing a solid data foundation for coal seam water injection, and greatly reducing the possibility of coal bodies being broken into dust particles. It reduces the amount of coal dust and ensures the safety of coal seam mining.
  • FIG. 1 is a schematic diagram of a numerical simulation method for seepage-damage-stress coupling of water injection in a coal rock mass according to the present invention
  • FIG. 3 is a schematic diagram of a Darcy calculation process in the present invention.
  • FIG. 5 is a schematic view of a coal body model after removing islands in the present invention.
  • FIG. 6 is a simulation diagram of water pressure results in the present invention.
  • FIG. 8 is a simulation diagram of coal pressure results of the present invention.
  • FIG. 9 is a simulation diagram of the water flow velocity result of the present invention.
  • FIG. 10 is a simulation diagram of gas flow velocity results of the present invention.
  • the present invention provides a numerical simulation method for coupling water seepage-damage-stress coupled numerical simulation of coal rock mass containing geological structures.
  • the present invention is further described in detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention.
  • the invention provides a numerical simulation method for seepage-damage-stress coupling numerical simulation of water injection in coal and rock bodies, which includes the following steps:
  • Step 1 Establish a coal and rock mass model including faults based on geological survey results
  • Step 2 Scan the corresponding coal body in the coal rock body obtained from the geological survey, and combine the FDK 3D reconstruction algorithm to construct a 3D digital core model with real pore structure characteristics;
  • Step 3 In the boundary element environment, execute the "mining fissure" generation algorithm to determine whether it is a mining affected area, that is, determine whether the distance from the mining face is less than 80m. If it is a mining affected area, go to step 4; if it is not mining Move the affected area, go to step five;
  • Step 4 Determine whether the cross-sectional area of the watershed is greater than 30 ⁇ m 2. If the cross-sectional area of the watershed is greater than 30 ⁇ m 2 , as shown in FIG. 2, perform NS calculation processing, store and output the result; if less than 30 ⁇ m 2 , as shown in FIG. 3 , Then perform Darcy calculation processing, store and output the results;
  • Step 5 Determine whether the cross-sectional area of the watershed is greater than 30 ⁇ m 2. If the cross-sectional area of the watershed is greater than 30 ⁇ m 2 , go to step 6; if less than 30 ⁇ m 2 , go to step 12;
  • Step 6 Based on the C # language, the programming generates initial stress concentration points based on burial depth, geological conditions, lithology of overlying strata, and coal seam inclination.
  • Step 7 Mesh the 3D digital core model processed in Step 6;
  • Step 8 Calculate the tensile and shearing moments of the coal body grid, compare the tensile and shearing moments of the grid with the tensile and shearing moments, and find the most vulnerable grid set; if there is a tensile and shearing moment greater than the tensile and shearing, The grid of moments is marked as "Native Crack", and then step 9 is performed; if there is no grid with a tensile-shear moment greater than the tensile-shear moment, the calculation is terminated and step 11 is performed;
  • Step 9 Replace the material in the "primary fissure" grid with the gas in the coal seam;
  • Step 10 Determine whether the total area of the "primary fissures" after the processing in step 9 exceeds twice the fault area. If not, generate a new model after deleting the "primary fissure" grid, and return to repeat step 8. If it exceeds , The calculation is terminated and step 11 is executed;
  • Step 11 Construct a model of two types of coal seam fractures that ultimately include primary fractures in the geological structure and fractures generated during calculation, and re-mesh the mesh to derive the STL general geometry for N-S calculation processing, and store and output the results;
  • Step 12 In the boundary element environment, after coupling the custom equation to calculate the seepage field and stress parameters, go to Step 13.
  • Step 13 In the meshless simulation environment, determine whether there are points where the tensile-shear moment is greater than the relevant parameters of the coal and rock mass. If so, connect such points in turn, mark the closed area as "invalid coal and rock mass", and execute Step 14; if not, go to Step 15;
  • Step 14 Add the water inlet conditions to the marked "invalid coal and rock mass" boundary in step 13.
  • Step 15 Perform turbulence simulation separately, calculate the stress distribution, and store the simulation results of the node;
  • Step 16 Determine whether the fracture separation from the simulation result in step 15 reaches the surface of the coal body. If not, go to step 17; if it reaches the surface of the coal body, go to step 18.
  • Step 17 Check whether the accumulated storage time reaches the preset simulation time. If not, go back to Step 12. If the calculation time is reached, go to Step 18.
  • Step 18 Stop the calculation in the meshless simulation environment. After calculating turbulence and stress only in the boundary element environment, perform Darcy calculation processing, store and output the results;
  • Step 19 The output results of Step 4, Step 11 and Step 18 are integrated and output as an independent file to obtain a quantitative statistical result.
  • the N-S calculation process includes:
  • Step A N-S initialization
  • Step B Calculate water pressure and gas pressure
  • Step C determine whether the water pressure is greater than the gas pressure, and if it is greater, change the next grid material to water, and execute step D; if it is less, directly perform step D;
  • Step D Determine whether the calculation time setting is reached. If the calculation time is not reached, return to step A. If the calculation time is reached, directly store and output the result.
  • Darcy calculation processing includes:
  • Step E Darcy initialization
  • Step F Calculate water pressure and gas pressure
  • Step J determine whether the water pressure is greater than the gas pressure, and if it is greater, change the next grid material to water, and execute step H; if it is less, directly execute step H;
  • Step H Determine whether the calculation time setting is reached. If the calculation time is not reached, return to step E. If the calculation time is reached, directly store and output the result.
  • step 1 specifically includes: reserve "fault start point”, “fault end point”, “fault turning point”, “azimuth difference”, “fall difference” and Six parameters of "tilt angle" are provided for user input.
  • step dimer also includes: using an image processing algorithm to perform a filtering operation on the three-dimensional digital core model, smoothing the edges of the model, and then performing data segmentation based on the threshold to obtain the microscopic pore structure of the coal body, and removing island pores with poor connectivity,
  • the final numerical model of coal pores in STL format was derived.
  • the above-mentioned quantitative statistical results include simulation results of water pressure field, simulation results of gas pressure, simulation results of coal pressure, simulation results of water flow velocity and simulation results of gas flow velocity.
  • a coupled numerical simulation method for seepage-damage-stress coupling of water injection in a coal rock mass containing a geological structure includes the following steps:
  • Step 1 Based on the geological survey results, establish a coal and rock mass model including faults;
  • coal seam model is programmed and programmed, in which six parameters of "starting point of the fault", “end point of the fault”, “turning point of the fault”, “azimuth difference”, “fall”, and “dip angle” are reserved for user input. ;
  • Step 2 CT array model
  • Step 3 In the boundary element environment, execute the "mining fissure" generation algorithm to determine whether it is a mining affected area, that is, determine whether the distance from the mining surface is less than 80m. If it is a mining-affected area, go to step 4; if it is not a mining-affected area, go to step 5.
  • Step 4 Determine whether the cross-sectional area of the watershed is greater than 30 ⁇ m 2. If the cross-sectional area of the watershed is greater than 30 ⁇ m 2 , go to step 6; if it is less than 30 ⁇ m 2 , go to step 7.
  • Step 5 Determine whether the cross-sectional area of the watershed is greater than 30 ⁇ m 2. If the cross-sectional area of the watershed is greater than 30 ⁇ m 2 , go to step 8; if it is less than 30 ⁇ m 2 , go to step 14.
  • Step 6 Perform N-S calculations, store and output the results.
  • Step 7. Perform Darcy calculation, save and output the result.
  • Step 8 Based on the C # language, program to generate initial stress concentration points based on burial depth, geological conditions, lithology of overlying strata, and inclination of coal seams.
  • Step 10 Calculate the tensile and shearing moments of the coal body grid, compare the tensile and shearing moments of the grid with the tensile and shearing moments, and find the most vulnerable grid set. If there is a mesh with a tensile-shear moment greater than the tensile-shear moment, mark it as "primary crack", and then perform step 11. If there is no mesh with a tensile-shear moment greater than the tensile-shear moment, the calculation is terminated and step 13 is performed.
  • Step 11 Replace the material in the "primary fissure" grid with the gas in the coal seam.
  • Step 12 Determine whether the total area of "primary fissures" exceeds twice the fault area. If not, generate a new model that deletes the original fissure mesh and return to repeat step 10. If it exceeds, terminate the calculation and perform step 10. three.
  • Step 13 Construct a model of the two types of coal seam fractures that ultimately include the primary fractures of the geological structure and the fractures generated during the calculation, and then re-mesh the grid to perform the sixth step after exporting the STL general geometry.
  • Step 14 In the boundary element environment, after coupling the custom equation to calculate the seepage field and stress parameters, go to step 15.
  • Step 15 In the meshless simulation environment, write the corresponding algorithm to determine whether there are points where the tensile-shear moment is greater than the relevant parameters of the coal rock mass. If so, connect such points and mark the closed area as "invalid coal rock mass.” ", Go to step sixteen; if not, go to step seventeen.
  • Step 16 Add the water inlet conditions to the marked "invalid coal rock body" boundary in step 15.
  • Step 17 Perform turbulence simulation separately, calculate the stress distribution, and store the simulation results of this node.
  • Step 18 Determine whether the fracture separation has reached the surface of the coal body. If not, go to step 19; if it has reached the surface of the coal body, go to step 20.
  • Step 19 Check whether the accumulated storage time reaches the preset simulation time. If not, go back to step 14. If the calculation time is reached, go to step 20.
  • Step 20 Stop the calculation in the meshless environment and perform step 7 only after calculating turbulence and stress in the boundary element environment.
  • Step 21 The integrated result is output and stored as an independent file, and the statistical results are quantified, such as the hydraulic pressure field simulation result diagram of FIG. 6, the gas pressure simulation result diagram of FIG. 7, and the coal body pressure simulation diagram of FIG. 8. The simulation results of the water flow velocity in FIG. 9 and the simulation results of the gas flow velocity in FIG. 10.
  • Step 61 N-S initialization.
  • Step 62 Calculate water pressure and gas pressure.
  • Step 63 Determine whether the water pressure is greater than the gas pressure. If it is greater, change the next grid material to water and perform step 64. If it is less, proceed directly to step 64.
  • Step 64 Determine whether the calculation time setting is reached. If the calculation time is not reached, return to step 61 again. If the calculation time is reached, directly store and output the result.
  • Step 71 Initialize Darcy.
  • Step 72 Calculate water pressure and gas pressure.
  • Step 73 Determine whether the water pressure is greater than the gas pressure. If it is greater, change the next grid material to water, and perform step 74. If it is less, directly perform step 74.
  • Step 74 Determine whether the calculation time setting is reached. If it cannot be reached, return to step 71 again. If the calculation time is reached, directly store and output the result.
  • Step 1 Based on the results of the geological survey, a coal and rock mass model containing faults is established, which specifically includes the following steps:
  • Step 2CT array model which specifically includes the following steps:
  • a nanoVoxel-2000 series-X-ray 3D microscope was used to scan the long-flame coal with an accuracy of 0.5 ⁇ m, and a 3D digital core model with real pore structure characteristics was constructed in combination with the FDK 3D reconstruction algorithm;
  • the image processing algorithm is used to filter the three-dimensional digital core model to reduce noise, smooth the model edges, and then perform volume rendering based on the gray value, and then implement data segmentation based on the threshold to obtain the micro-pore structure of the coal body;
  • Step 3 In the boundary element environment, execute the "mining fissure" generation algorithm to determine whether it is a mining affected area, that is, whether the distance from the mining face is less than 80m. If it is a mining-affected area, go to step 4; if it is not a mining-affected area, go to step 5. In order to complete the theory itself, the following assumptions are introduced:
  • Step 4 determines whether the cross-sectional area of the watershed is greater than 30 ⁇ m 2. If the cross-sectional area of the watershed is greater than 30 ⁇ m 2 , go to step 6; if it is smaller than 30 ⁇ m 2 , go to step 7.
  • Step 5 determines whether the cross-sectional area of the watershed is greater than 30 ⁇ m 2. If the cross-sectional area of the watershed is greater than 30 ⁇ m 2 , go to step 8; if it is smaller than 30 ⁇ m 2 , go to step 14.
  • Step 6 Perform N-S calculation, store and output the result.
  • N-S is used to describe the free flow of water in water injection holes and cracks. It is expressed in Cartesian coordinate system as:
  • t time
  • water pressure in coal body, MPa
  • v kinetic viscosity coefficient
  • u x , u y , u z axial unit mass forces of x, y, and z axes, respectively, mg ⁇ s -2
  • F x , F y , F z are components of external force, N
  • u, v, w are the velocity components of the fluid at point (x, y, z) at time t.
  • Step 7 performs Darcy calculation, stores and outputs the result.
  • P is the water pressure MPa in the coal body
  • V x and V y are the velocity components in the x and y axis directions
  • K is the permeability
  • is the dynamic viscosity of water Pa ⁇ s
  • g is the acceleration constant of gravity.
  • is the density of the liquid.
  • V is the velocity vector m / s of the coal bed gas movement;
  • gradp is the coal bed methane pore pressure gradient Pa / m;
  • is the coal bed methane pore pressure function;
  • k is the coal bed methane permeability coefficient is the absolute viscosity of the coal bed methane Pa ⁇ s;
  • Step 8 is based on the C # language and is programmed to generate initial stress concentration points based on burial depth, geological conditions, lithology of overlying strata and inclination of coal seams.
  • Step 9 Divides the grid, which includes the following steps:
  • Tetrahedral meshing is performed on the coal body geometric model, and the meshing accuracy is increased as much as possible within the range allowed by the computing power of the computer to ensure the accuracy and reliability of the fracture calculation results.
  • Step 10 In the boundary element environment, calculate and compare the tensile and shear moment values of each mesh, which specifically includes the following steps:
  • the Coulomb criterion states that the tensile shear failure value of the rock mass during the tensile-shear failure process in a certain plane exceeds the tensile-shear moment value, that is, the cohesion of the material and the constant plane method stress.
  • C + ⁇ tan ⁇ , where ⁇ is the tensile-shear moment value; C is the cohesive force or cohesive force, which is the tensile-shear strength without positive pressure; ⁇ is the internal friction angle; ⁇ is a fixed constant.
  • Step 11 If there is no mesh with a tensile-shear moment greater than the tensile-shear moment, the calculation is terminated and Step 13 is executed.
  • Step 11 replaces the material in the "primary fissure" grid with gas in the coal seam.
  • Step 12 Determine whether the total area of the "primary fissure" exceeds twice the fault area, which specifically includes the following steps:
  • Step 13 If not, generate a new model that deletes the original fissure mesh, and return to repeat Step 10. If it exceeds, terminate the calculation and execute Step 13.
  • Step 13 Build a model that finally includes two types of coal seam fractures, including primary fractures in the geological structure and fractures generated during the calculation.
  • the specific steps include the following steps:
  • Step 14 In the boundary element environment, coupled with custom equations to calculate the seepage field and stress parameters.
  • Step 15 In the meshless simulation environment, write an algorithm to determine whether there are points where the tensile-shear moment is greater than the relevant parameters of the coal and rock mass, which specifically include the following steps:
  • Step 17 If there is no point where the tensile-shear moment is greater than the relevant parameters of the coal rock mass, then Step 17 is continued.
  • Step 16 adds the water inlet conditions to the marked "invalid coal rock body" boundary in Step 15.
  • Step 17 Perform turbulence simulation separately, calculate the stress distribution, and store the simulation results of this node.
  • Step 18 Determine whether the fracture separation has reached the surface of the coal body, which specifically includes the following steps:
  • Step 19 is performed;
  • Step 20 If the fracture breaks off and reaches the surface of the coal body, perform Step 20.
  • Step 19 Whether the accumulated storage time reaches the preset simulation time, which specifically includes the following steps:
  • Step 20 stops the calculation in the meshless method environment, calculates turbulence and stress only in the boundary element environment, and then executes Step 7.
  • Step 21 outputs the integrated result and stores it as an independent file to quantify the statistical results, such as the hydraulic pressure field simulation result chart in Fig. 6, the gas pressure simulation result chart in Fig. 7, the coal pressure result simulation chart in Fig. 8, and Fig. 9

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

L'invention concerne un procédé de simulation de valeur de couplage de contrainte d'endommagement par infiltration d'injection d'eau de roche de houille basé sur la zone qui consiste à : établir un modèle de veine de houille selon un résultat de sondage géologique ; réaliser une division de zone et simuler respectivement l'infiltration d'injection d'eau de roche de houille d'une zone de perturbation induite sans exploitation minière et d'une zone de perturbation induite par l'exploitation minière ; dans la zone de perturbation induite sans exploitation minière, réaliser une programmation pour comparer des valeurs de couple de cisaillement-tension de mailles pour déterminer si une déformation ou même une fracture se produit à la roche de houille sous l'action d'une contrainte de pression d'eau ; simuler simultanément un processus de fracture de houille à l'aide d'un procédé sans maille et simuler un processus d'infiltration à l'aide d'un procédé d'élément de limite, les avantages des deux procédés de simulation étant combinés à une micro-échelle ; et dans la zone de perturbation induite par l'exploitation minière, réaliser respectivement une simulation à l'aide de deux modèles mathématiques, c'est-à-dire l'équation N-S et la loi de Darcy, pour simuler avec précision un endommagement de houille et une loi de transfert d'eau pendant un processus d'injection d'eau de roche de houille basé sur la zone. Le procédé fournit une base de données solide pour l'injection d'eau de veine de houille, réduit considérablement la possibilité que la houille soit broyée en particules de poussière, diminue la quantité de production de poussière de houille et assure la sécurité de l'exploitation de la veine de houille.
PCT/CN2018/100462 2018-07-02 2018-08-14 Procédé de simulation de valeur de couplage de contrainte d'endommagement par infiltration d'injection d'eau de roche de houille basé sur la zone WO2020006818A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020110457A RU2743121C1 (ru) 2018-07-02 2018-08-14 Способ численного моделирования связи фильтрации/повреждений/напряжений при впрыске воды в каменноугольный массив при районировании

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810705645.3 2018-07-02
CN201810705645.3A CN109063257B (zh) 2018-07-02 2018-07-02 一种煤岩体分区注水渗流-损伤-应力耦合数值模拟方法

Publications (1)

Publication Number Publication Date
WO2020006818A1 true WO2020006818A1 (fr) 2020-01-09

Family

ID=64818148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100462 WO2020006818A1 (fr) 2018-07-02 2018-08-14 Procédé de simulation de valeur de couplage de contrainte d'endommagement par infiltration d'injection d'eau de roche de houille basé sur la zone

Country Status (3)

Country Link
CN (1) CN109063257B (fr)
RU (1) RU2743121C1 (fr)
WO (1) WO2020006818A1 (fr)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307687A (zh) * 2020-03-05 2020-06-19 中煤科工集团重庆研究院有限公司 高分子材料与煤岩体粘结的渗透性及强度评价方法
CN111666699A (zh) * 2020-04-30 2020-09-15 山东大学 基于rev全区域覆盖的岩体工程跨尺度模拟计算方法
CN111860952A (zh) * 2020-06-16 2020-10-30 重庆大学 一种突出煤层关键开采参数快速优选方法
CN111898187A (zh) * 2020-07-23 2020-11-06 武汉大学 隧洞开挖渗流模拟分析的纵向模型范围取值的确定方法
CN112131709A (zh) * 2020-08-25 2020-12-25 山东大学 基于近场动力学本构模型的节理岩体力学仿真方法及系统
CN112507575A (zh) * 2020-11-03 2021-03-16 辽宁工程技术大学 基于flac 3d数值模拟的断层注浆加固效果评价方法
CN112560226A (zh) * 2020-11-25 2021-03-26 国家能源投资集团有限责任公司 煤矿地下水库环境风险评估方法
CN112800597A (zh) * 2021-01-13 2021-05-14 安徽马钢张庄矿业有限责任公司 一种矿山资源高中段智能精细高效生态开采分析方法
CN112924331A (zh) * 2021-01-12 2021-06-08 江苏师范大学 水溶液浸泡后煤岩抗压强度的水岩耦合模型的建立方法
CN112926270A (zh) * 2021-03-18 2021-06-08 西安科技大学 瓦斯多因素耦合关系分析及预警模型构建方法
CN113533042A (zh) * 2021-07-07 2021-10-22 北京科技大学 一种表征岩石应力与破裂的综合性指标计算方法及应用
CN113654477A (zh) * 2021-08-16 2021-11-16 中国矿业大学 一种煤体变形测试装置、测试系统及测试方法
CN113742940A (zh) * 2021-09-16 2021-12-03 重庆大学 一种采动卸压边界时空曲线簇确定方法
CN114002129A (zh) * 2021-12-02 2022-02-01 河北省交通规划设计研究院有限公司 一种高水压裂隙岩体渗流试验平台
CN114217048A (zh) * 2021-12-10 2022-03-22 国家能源投资集团有限责任公司 采矿三维模拟实验模型实验方法
CN114495679A (zh) * 2022-01-25 2022-05-13 中国矿业大学 一种真实煤二维微流体模型制作方法
CN114544437A (zh) * 2022-02-28 2022-05-27 中国矿业大学 一种煤岩流场原位荧光菌显微示踪方法
CN114638137A (zh) * 2022-03-31 2022-06-17 王永亮 一种基于热-流-固-损伤耦合的干热岩产热预测方法
CN114660268A (zh) * 2022-03-22 2022-06-24 中铁水利水电规划设计集团有限公司 水库淹没区的抬田区耕地保水层渗流监测系统
CN114809992A (zh) * 2022-04-20 2022-07-29 太原理工大学 一种低渗储层煤系气全生命周期高效抽采方法
CN115014982A (zh) * 2022-08-09 2022-09-06 中国矿业大学(北京) 一种基于气体运移压力波动特征评价煤岩损伤劣度的方法
CN115201898A (zh) * 2022-05-20 2022-10-18 中国地震局地球物理研究所 三维的注采诱发地震断层破裂滑动的数值模拟方法及系统
CN115524275A (zh) * 2022-10-18 2022-12-27 中国水利水电科学研究院 考虑岩块渗流和裂隙渗流的裂隙岩体渗透张量确定方法
CN117408191A (zh) * 2023-12-15 2024-01-16 山东大学 一种裂隙岩体渗透-流动注浆模拟方法及系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109117589B (zh) * 2018-09-11 2022-10-04 中煤科工集团重庆研究院有限公司 一种煤层顶板裂隙场的定量化描述方法
CN109883920A (zh) * 2019-03-08 2019-06-14 西南石油大学 表征岩石热损伤的方法及装置
CN110043259B (zh) * 2019-04-18 2020-05-26 中国矿业大学 一种大采深大采高复合顶工作面分区域回采工艺
CN110118991B (zh) * 2019-05-16 2020-06-23 中国矿业大学 一种基于微震损伤重构的采动应力评估方法
CN110390176B (zh) * 2019-07-31 2020-05-19 西南交通大学 一种无砟轨道冻结与损伤行为计算方法
CN110489832B (zh) * 2019-07-31 2023-05-23 中国航发沈阳发动机研究所 一种用于湍流控制屏单元体气动性能的仿真试验方法
CN110872942B (zh) * 2019-10-24 2021-09-28 中国石油化工股份有限公司 油藏注采耦合方式下不同作用力对采收率贡献的研究方法
CN110866337B (zh) * 2019-11-12 2021-06-01 中南大学 一种基于差应力的采动断层活化倾向性判别方法
CN111695285B (zh) * 2020-06-17 2023-12-22 大连海事大学 一种各向异性岩体应力-损伤-渗流耦合数值模拟方法
CN112329312B (zh) * 2020-11-10 2022-07-26 河海大学 一种三维渗流应力耦合内聚力单元的快速生成方法
CN112903966A (zh) * 2021-01-20 2021-06-04 中国矿业大学(北京) 基于能量传递守恒的煤矿开采损伤范围确定方法
CN113722960A (zh) * 2021-08-31 2021-11-30 中国地质大学(武汉) 一种湿度运移和干缩开裂的三维数值模拟方法
CN116756985B (zh) * 2022-11-29 2024-01-30 华东师范大学 基于COMSOL Multiphysics的场地多介质环境有机污染物运移模拟方法
CN117627669A (zh) * 2024-01-26 2024-03-01 中交一航局第三工程有限公司 一种基于盲区超前导洞扩挖的矩形顶管施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU796420A1 (ru) * 1977-04-04 1981-01-15 Всесоюзный Научно-Исследовательскийинститут Горной Геомеханики Имаркшейдерского Дела Способ имитации напр женного сос-ТО Ни гОРНОгО МАССиВА HA МОдЕл Х изэКВиВАлЕНТНыХ МАТЕРиАлОВ
CN102252957A (zh) * 2011-04-19 2011-11-23 河南理工大学 卸压构造煤固-流转化参数实验测定装置及方法
CN103034765A (zh) * 2012-12-14 2013-04-10 天津大学 基于数值模拟的采空区注浆动态全过程仿真方法
CN105401939A (zh) * 2015-11-30 2016-03-16 中国石油大学(北京) 一种多因素耦合作用下的煤层井壁稳定性分析方法
CN105787220A (zh) * 2016-04-22 2016-07-20 山东科技大学 一种煤层高压注水致裂-渗流数值模拟方法
CN106960070A (zh) * 2016-12-28 2017-07-18 山东科技大学 一种基于有限元‑离散元ct重构煤体的渗流模拟方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2820942C (fr) * 2010-12-10 2016-12-20 Baker Hughes Incorporated Procede d'amelioration de simulation de reservoir et d'extraction a partir de reservoirs fractures
CN104653226B (zh) * 2014-12-26 2017-07-14 中国矿业大学 一种基于应力梯度的煤矿冲击地压危险区域的划分方法
CN108038282A (zh) * 2017-11-30 2018-05-15 安徽理工大学 一种松散承压含水层下开采载荷传递数值模拟方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU796420A1 (ru) * 1977-04-04 1981-01-15 Всесоюзный Научно-Исследовательскийинститут Горной Геомеханики Имаркшейдерского Дела Способ имитации напр женного сос-ТО Ни гОРНОгО МАССиВА HA МОдЕл Х изэКВиВАлЕНТНыХ МАТЕРиАлОВ
CN102252957A (zh) * 2011-04-19 2011-11-23 河南理工大学 卸压构造煤固-流转化参数实验测定装置及方法
CN103034765A (zh) * 2012-12-14 2013-04-10 天津大学 基于数值模拟的采空区注浆动态全过程仿真方法
CN105401939A (zh) * 2015-11-30 2016-03-16 中国石油大学(北京) 一种多因素耦合作用下的煤层井壁稳定性分析方法
CN105787220A (zh) * 2016-04-22 2016-07-20 山东科技大学 一种煤层高压注水致裂-渗流数值模拟方法
CN106960070A (zh) * 2016-12-28 2017-07-18 山东科技大学 一种基于有限元‑离散元ct重构煤体的渗流模拟方法

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307687A (zh) * 2020-03-05 2020-06-19 中煤科工集团重庆研究院有限公司 高分子材料与煤岩体粘结的渗透性及强度评价方法
CN111307687B (zh) * 2020-03-05 2022-07-19 中煤科工集团重庆研究院有限公司 高分子材料与煤岩体粘结的渗透性及强度评价方法
CN111666699A (zh) * 2020-04-30 2020-09-15 山东大学 基于rev全区域覆盖的岩体工程跨尺度模拟计算方法
CN111666699B (zh) * 2020-04-30 2023-06-02 山东大学 基于rev全区域覆盖的岩体工程跨尺度模拟计算方法
CN111860952A (zh) * 2020-06-16 2020-10-30 重庆大学 一种突出煤层关键开采参数快速优选方法
CN111860952B (zh) * 2020-06-16 2024-02-27 重庆大学 一种突出煤层关键开采参数快速优选方法
CN111898187A (zh) * 2020-07-23 2020-11-06 武汉大学 隧洞开挖渗流模拟分析的纵向模型范围取值的确定方法
CN111898187B (zh) * 2020-07-23 2022-10-11 武汉大学 隧洞开挖渗流模拟分析的纵向模型范围取值的确定方法
CN112131709A (zh) * 2020-08-25 2020-12-25 山东大学 基于近场动力学本构模型的节理岩体力学仿真方法及系统
CN112131709B (zh) * 2020-08-25 2024-04-19 山东大学 基于近场动力学本构模型的节理岩体力学仿真方法及系统
CN112507575A (zh) * 2020-11-03 2021-03-16 辽宁工程技术大学 基于flac 3d数值模拟的断层注浆加固效果评价方法
CN112560226B (zh) * 2020-11-25 2023-12-26 国家能源投资集团有限责任公司 煤矿地下水库环境风险评估方法
CN112560226A (zh) * 2020-11-25 2021-03-26 国家能源投资集团有限责任公司 煤矿地下水库环境风险评估方法
CN112924331A (zh) * 2021-01-12 2021-06-08 江苏师范大学 水溶液浸泡后煤岩抗压强度的水岩耦合模型的建立方法
CN112800597A (zh) * 2021-01-13 2021-05-14 安徽马钢张庄矿业有限责任公司 一种矿山资源高中段智能精细高效生态开采分析方法
CN112800597B (zh) * 2021-01-13 2022-09-13 安徽马钢张庄矿业有限责任公司 一种矿山资源高中段智能精细高效生态开采分析方法
CN112926270A (zh) * 2021-03-18 2021-06-08 西安科技大学 瓦斯多因素耦合关系分析及预警模型构建方法
CN112926270B (zh) * 2021-03-18 2023-05-05 西安科技大学 瓦斯多因素耦合关系分析及预警模型构建方法
CN113533042A (zh) * 2021-07-07 2021-10-22 北京科技大学 一种表征岩石应力与破裂的综合性指标计算方法及应用
CN113654477A (zh) * 2021-08-16 2021-11-16 中国矿业大学 一种煤体变形测试装置、测试系统及测试方法
CN113742940B (zh) * 2021-09-16 2023-09-08 重庆大学 一种采动卸压边界时空曲线簇确定方法
CN113742940A (zh) * 2021-09-16 2021-12-03 重庆大学 一种采动卸压边界时空曲线簇确定方法
CN114002129B (zh) * 2021-12-02 2022-08-09 河北省交通规划设计研究院有限公司 一种高水压裂隙岩体渗流试验平台
CN114002129A (zh) * 2021-12-02 2022-02-01 河北省交通规划设计研究院有限公司 一种高水压裂隙岩体渗流试验平台
CN114217048A (zh) * 2021-12-10 2022-03-22 国家能源投资集团有限责任公司 采矿三维模拟实验模型实验方法
CN114217048B (zh) * 2021-12-10 2024-05-24 国家能源投资集团有限责任公司 采矿三维模拟实验模型实验方法
CN114495679B (zh) * 2022-01-25 2022-10-28 中国矿业大学 一种真实煤二维微流体模型制作方法
CN114495679A (zh) * 2022-01-25 2022-05-13 中国矿业大学 一种真实煤二维微流体模型制作方法
CN114544437B (zh) * 2022-02-28 2023-12-19 中国矿业大学 一种煤岩流场原位荧光菌显微示踪方法
CN114544437A (zh) * 2022-02-28 2022-05-27 中国矿业大学 一种煤岩流场原位荧光菌显微示踪方法
CN114660268A (zh) * 2022-03-22 2022-06-24 中铁水利水电规划设计集团有限公司 水库淹没区的抬田区耕地保水层渗流监测系统
CN114638137A (zh) * 2022-03-31 2022-06-17 王永亮 一种基于热-流-固-损伤耦合的干热岩产热预测方法
CN114638137B (zh) * 2022-03-31 2023-03-28 王永亮 一种基于热-流-固-损伤耦合的干热岩产热预测方法
CN114809992B (zh) * 2022-04-20 2023-08-08 太原理工大学 一种低渗储层煤系气全生命周期高效抽采方法
CN114809992A (zh) * 2022-04-20 2022-07-29 太原理工大学 一种低渗储层煤系气全生命周期高效抽采方法
CN115201898B (zh) * 2022-05-20 2023-06-20 中国地震局地球物理研究所 三维的注采诱发地震断层破裂滑动的数值模拟方法及系统
CN115201898A (zh) * 2022-05-20 2022-10-18 中国地震局地球物理研究所 三维的注采诱发地震断层破裂滑动的数值模拟方法及系统
CN115014982B (zh) * 2022-08-09 2022-10-11 中国矿业大学(北京) 一种基于气体运移压力波动特征评价煤岩损伤劣度的方法
CN115014982A (zh) * 2022-08-09 2022-09-06 中国矿业大学(北京) 一种基于气体运移压力波动特征评价煤岩损伤劣度的方法
CN115524275B (zh) * 2022-10-18 2023-08-22 中国水利水电科学研究院 考虑岩块渗流和裂隙渗流的裂隙岩体渗透张量确定方法
CN115524275A (zh) * 2022-10-18 2022-12-27 中国水利水电科学研究院 考虑岩块渗流和裂隙渗流的裂隙岩体渗透张量确定方法
CN117408191A (zh) * 2023-12-15 2024-01-16 山东大学 一种裂隙岩体渗透-流动注浆模拟方法及系统
CN117408191B (zh) * 2023-12-15 2024-04-02 山东大学 一种裂隙岩体渗透-流动注浆模拟方法及系统

Also Published As

Publication number Publication date
CN109063257B (zh) 2019-04-26
RU2743121C1 (ru) 2021-02-15
CN109063257A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020006818A1 (fr) Procédé de simulation de valeur de couplage de contrainte d'endommagement par infiltration d'injection d'eau de roche de houille basé sur la zone
CN106960070B (zh) 一种基于有限元-离散元ct重构煤体的渗流模拟方法
CN107060746A (zh) 一种复杂裂缝性油藏流动模拟的方法
WO2016192077A1 (fr) Procédé pour établir et résoudre un modèle numérique d'essais de puits horizontal pour fracturation hydraulique de réservoir gazier compact
EP2359305A1 (fr) Procédés de modélisation de production et d'injection de sable et de fluide
CN105019877A (zh) 一种页岩水平井压裂破碎区体积的计算方法
Segura et al. Coupled HM analysis using zero‐thickness interface elements with double nodes—Part II: Verification and application
Jin et al. Two-phase PFEM with stable nodal integration for large deformation hydromechanical coupled geotechnical problems
CN101446196A (zh) 三重介质油藏分支水平井的试井分析方法及装置
CN110579400B (zh) 一种脆性岩石微尺度强度及残余强度的测量计算方法
CN110984973A (zh) 缝洞型碳酸盐岩气藏单井控制储量的确定方法
CN109162701B (zh) 一种煤层裸眼井破裂压力预测方法
CN112012712A (zh) 一种嵌入式离散裂缝的注水生长缝数值模拟方法和装置
Xiong et al. Influence of natural fractures on hydraulic fracture propagation behaviour
CN105114065A (zh) 水力压裂裂缝延伸过程的模拟方法
Cheng et al. 3-D dynamic evolution analysis of coal-rock damaged field and gas seepage field during the gas extraction process
CN115510778A (zh) 一种陆相页岩储层无限级压裂工艺优化方法及系统
CN113591420B (zh) 真三轴水力压裂实验的仿真方法及处理器
Damirchi et al. Coupled hydro-mechanical modelling of saturated fractured porous media with unified embedded finite element discretisations
CN109558614B (zh) 页岩气藏多尺度裂缝内气体流动的模拟方法及系统
CN107066744B (zh) 富水地层中地铁车站的抗震分析方法
Yang et al. Coupled hydro-mechanical analysis of gas production in fractured shale reservoir by random fracture network modeling
CN113268874B (zh) 一种基于lbm-dda耦合的堆积体渗流侵蚀破坏模拟计算方法
Prassetyo Hydro-mechanical analysis of tunneling in saturated ground using a novel and efficient sequential coupling technique
CN104392131A (zh) 一种水驱沙过程中破碎岩石渗流场计算方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925208

Country of ref document: EP

Kind code of ref document: A1