WO2020003845A1 - 排ガス水銀除去システム - Google Patents

排ガス水銀除去システム Download PDF

Info

Publication number
WO2020003845A1
WO2020003845A1 PCT/JP2019/020840 JP2019020840W WO2020003845A1 WO 2020003845 A1 WO2020003845 A1 WO 2020003845A1 JP 2019020840 W JP2019020840 W JP 2019020840W WO 2020003845 A1 WO2020003845 A1 WO 2020003845A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
exhaust gas
output value
mercury
supply
Prior art date
Application number
PCT/JP2019/020840
Other languages
English (en)
French (fr)
Inventor
哲哉 佐久間
誠人 尾田
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to SG11202011052PA priority Critical patent/SG11202011052PA/en
Priority to CN201980030998.0A priority patent/CN112105442B/zh
Priority to KR1020207032296A priority patent/KR102418074B1/ko
Publication of WO2020003845A1 publication Critical patent/WO2020003845A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an exhaust gas mercury removal system.
  • This application claims priority to Japanese Patent Application No. 2018-124452 for which it applied on June 29, 2018, and uses the content here.
  • Exhaust gas emitted from plants such as a waste incinerator and a coal-fired power plant equipped with a boiler can contain highly toxic mercury.
  • Various removal systems have been studied.
  • the concentration of mercury contained in exhaust gas discharged from a refuse incinerator is measured by a mercury concentration meter installed downstream of a bag filter that is a dust collecting device, and the mercury concentration is measured in a pipe upstream of the bag filter.
  • a system for adjusting the supply amount of the supplied activated carbon according to the output value of a mercury concentration meter is disclosed.
  • the mercury concentration meter measures the mercury concentration downstream of the dust collector, and when the output value of the mercury concentration meter exceeds the processing amount permitted by the activated carbon, the amount increased accordingly (the Activated carbon was supplied upstream of the dust collector in an amount sufficient to adsorb the mercury at the concentration indicated by the output value.
  • the concentration of mercury in flue gas often increases sharply in a short period of time (several tens of seconds to several minutes). Therefore, a sufficient and sufficient amount of activated carbon is needed to treat the concentration of mercury measured downstream of the dust collector. Even if the mercury is supplied upstream of the dust collector, the mercury concentration at the point of supply is sharply increasing, and thus far exceeds the amount of the activated carbon treated. There was a risk that exhaust gases containing mercury in excess of standard values would be emitted from the chimney.
  • the present invention relates to a system having the same configuration as that of the related art, that is, a method of measuring the concentration of mercury contained in exhaust gas downstream of a dust collector with a mercury concentration meter, and using activated carbon supplied to a pipe upstream of the dust collector.
  • a system that adjusts the supply amount according to the output value of the mercury concentration meter
  • an exhaust gas mercury removal system that can reduce the amount of mercury emitted to the atmosphere more economically and effectively than before is provided. The purpose is to provide.
  • the exhaust gas mercury removal system of the present invention measures the concentration of the mercury contained in the exhaust gas discharged from the dust collector that removes the mercury-containing exhaust gas, and outputs an output value corresponding to the measurement result.
  • the rising speed of the output value is 0 or more
  • the Controlling the activated carbon supply device to supply a second supply amount of the activated carbon that is greater than the supply amount the output value is equal to or greater than the first threshold, and the rate of increase of the output value is the first increase
  • control the activated carbon supply device to supply the activated carbon of the second supply amount, the activated carbon of the first supply amount or the second supply amount After the supply, if the rising speed of the output value is less than 0, the supply amount of the activated carbon at that time is maintained until the output value becomes less than a second threshold value larger than the first threshold value, and the output When the value is less than the second threshold, the supply amount of the activated carbon at that time is reduced, and when the output value is less than a third threshold smaller than the first threshold, the predetermined amount of
  • the supply amount of the activated carbon can be changed according to the speed of the change of the output value of the mercury concentration meter, and the activated carbon can be continuously supplied. That is, whether the mercury concentration in the exhaust gas flowing through the measurement location of the mercury concentration meter rapidly rises, levels off, or falls after the measurement of the mercury concentration, or changes in the output value of the mercury concentration meter. Based on the speed, the supply amount of the activated carbon supplied upstream of the dust collecting device can be significantly increased, moderately increased, maintained, or reduced, respectively, in accordance with the speed. In other words, since the appropriate amount of activated carbon is supplied in advance by predicting the change in mercury concentration at the activated carbon supply location, the amount of mercury in the exhaust gas discharged to the atmosphere can be reduced economically and effectively. be able to.
  • the supply amount of activated carbon can be greatly increased in advance when the ascending speed increases rapidly, and can be increased in advance and stepwise when increasing slowly.
  • the activated carbon is further increased and supplied. That is, since the amount of activated carbon is increased and supplied in multiple stages in accordance with the rising speed of the mercury concentration in the exhaust gas, the amount of mercury in the exhaust gas can be reduced more economically and effectively.
  • the exhaust gas mercury concentration may gradually decrease over a long period of time (from several tens of minutes to several hours) after reaching the peak. Therefore, in this configuration, regardless of the speed at which the exhaust gas mercury concentration decreases (hereinafter, referred to as “down speed”, which corresponds to a case where the exhaust gas mercury concentration increasing speed is less than 0), the exhaust gas mercury concentration is equal to the predetermined value (secondary speed). Until the value falls below a threshold value (for example, a legal reference value), the mercury concentration in the exhaust gas is rapidly reduced while maintaining the supply amount of activated carbon at that time. If it is less than the predetermined value, the amount of activated carbon is reduced and supplied according to the rate of decrease of the mercury concentration in the exhaust gas.
  • a threshold value for example, a legal reference value
  • the exhaust gas mercury concentration which gradually decreases over a long period of time (from several tens of minutes to several hours), can be rapidly reduced. Since the amount of activated carbon is reduced stepwise and finally activated carbon is intermittently supplied, the amount of mercury in the exhaust gas can be reduced more economically and effectively.
  • the measurement result may be the mercury concentration at the time of the measurement.
  • the output value corresponding to the measurement result of the mercury concentration meter is a value corresponding to the mercury concentration itself at the time of the measurement. Therefore, compared with the case of using a mercury concentration meter whose output value is the average value of mercury concentrations at a plurality of measurement points, not only the response speed when supplying activated carbon is increased, but also the output value of the mercury concentration meter Since the rate of change is not evened, the amount of mercury in the exhaust gas can be reduced more economically and effectively.
  • the activated carbon may be a halogen-impregnated activated carbon.
  • the exhaust gas mercury removal system further comprises a refuse incinerator, a cooling tower located downstream of the refuse incinerator, and upstream of the dust collector, wherein the dust collector is a bag filter,
  • the exhaust gas is discharged from the refuse incinerator, and when the output value is equal to or greater than the first threshold value, the control device may control the cooling tower to lower the temperature of the exhaust gas.
  • the amount of mercury removed can be increased by controlling the cooling tower to lower the temperature of the exhaust gas, so that mercury emission in the exhaust gas can be more economically and effectively reduced.
  • the amount can be reduced.
  • the exhaust gas mercury removal system includes a fly ash circulation device that conveys fly ash discharged from the bag filter upstream of the bag filter, and downstream of the temperature reduction tower, and supplies the exhaust gas to the exhaust gas. Good.
  • an appropriate amount of activated carbon is supplied in advance by predicting a change in mercury concentration based on the speed of change in the output value of the mercury concentration meter, so that the air emission can be reduced economically and effectively. It is possible to reduce the amount of mercury emitted in the exhaust gas.
  • the exhaust gas mercury removal system of the present invention can be applied to any plants including a cleaning plant equipped with a refuse incinerator and a coal-fired power plant equipped with a boiler, as long as the plant discharges exhaust gas containing mercury.
  • an incineration plant (refuse treatment plant) equipped with a waste incinerator will be described as an embodiment.
  • a refuse treatment plant 1 (exhaust gas mercury treatment system) includes a refuse incinerator 3 (for example, a progressive stoker furnace) for incinerating objects to be incinerated such as refuse, and a refuse incinerator 3.
  • a boiler 4 that exchanges heat with the exhaust gas E, a temperature reducing tower 6 that sprays water or the like on the exhaust gas E that has passed through the boiler 4 to reduce the temperature thereof, and a dust contained in the exhaust gas E that has passed through the temperature reducing tower 6.
  • a dust collector (bag filter) 7 for removing dust
  • a pipe (duct) 9a for connecting the cooling tower 6 and the dust collector 7 to allow the exhaust gas E to pass through, and the exhaust gas E removed by the dust collector 7 to the atmosphere.
  • Mercury concentration meter 11 for measuring mercury concentration in exhaust gas
  • piping Activated carbon supply device 12 for supplying the activated carbon in the interior of a, and a controller 13 for controlling the activated carbon supply device 12 in accordance with the output value of the mercury concentration meter 11.
  • the activated carbon supply device 12 includes a hopper 14 in which activated carbon is stored, and a feeder 15 for supplying the activated carbon from the hopper 14 to the inside of the pipe 9a.
  • the feeder 15 is, for example, a rotary feeder.
  • the control device 13 can control to increase or decrease the supply amount of the activated carbon by increasing or decreasing the rotation speed of the rotary feeder.
  • the mercury concentration meter 11 is a continuous mercury concentration meter that automatically and continuously outputs an output value at a predetermined time interval (for example, every 20 seconds). Further, the mercury concentration meter 11 uses a plurality of measured values measured at predetermined time intervals as measurement results and transmits an output value corresponding to an average value of the plurality of measured values to the control device 13. Alternatively, a mercury concentration meter that does not use an average value as an output value, uses only one measured value itself at the time of measurement as a measurement result, and transmits the corresponding output value to the control device 13 may be used. Therefore, in each case, the output value of the mercury concentration meter 11 can be said to be a value "corresponding to the measurement result".
  • the output value of the mercury concentration meter 11 is generally a digital value.
  • the value of the mercury concentration in the exhaust gas itself is indicated, or (2) the value is encrypted and output by the mercury concentration meter 11 and controlled.
  • the value of the mercury concentration is obtained only after decoding by the device 13.
  • the output value is a value corresponding to or corresponding to the exhaust gas mercury concentration.
  • a mercury densitometer that uses the single measured value itself as the output value at the time of measurement can output the output value at a high speed from the beginning of startup since a plurality of measured values are not averaged. For this reason, from the viewpoint of reducing the mercury concentration of exhaust gas more quickly and effectively, in the exhaust gas mercury treatment system of the present invention, the mercury concentration is measured more than the mercury concentration meter whose output value is the average value of the mercury concentration at a plurality of measurement points. It is desirable to use a mercury concentration meter that uses the single measured value itself at the time of the output as an output value.
  • the activated carbon supply device 12 will be described as an example in which the activated carbon supply capacity is 800 mg / Nm 3 .
  • the activated carbon supply device 12 can change the supply amount of activated carbon in multiple stages. Here, an example of five stages is shown. Specifically, the activated carbon supply device 12 sets the supply amount (40 mg / Nm 3 ) of 5% of the maximum supply capacity to the predetermined amount A0, and sets the supply amount (200 mg / Nm 3 ) of 25% of the maximum supply capacity to the first amount.
  • the supply amount A1, 50% of the maximum supply capacity (400 mg / Nm 3 ) is the second supply amount A2
  • 75% of the maximum supply capacity (600 mg / Nm 3 ) is the third supply amount A3. It is possible to change the supply amount in five stages by setting the supply amount (800 mg / Nm 3 ) of 100% of the maximum supply capacity as the fourth supply amount A4.
  • the control device 13 controls the activated carbon supply device 12 to intermittently supply a predetermined amount A0 of activated carbon into the pipe 9a at predetermined time intervals (step S1). ).
  • the activated carbon is intermittently supplied at intervals of 5 minutes. In other words, the supply of the activated carbon and the stop of the supply of the activated carbon are alternately repeated every five minutes. The reason why a small amount of activated carbon is intermittently supplied is to remove dioxins and the like in addition to mercury by the dust collector 7.
  • the control device 13 continuously receives output values transmitted by the mercury concentration meter 11 at predetermined intervals (for example, at intervals of 20 seconds), and the received output value is less than the first threshold C1 or the first threshold C1. It is determined whether or not this is the case (step S2). When the received output value is less than the first threshold value C1, the control device 13 continues the execution of step S1, that is, the intermittent supply of the activated carbon. When the received output value is equal to or more than the first threshold value C1, as described later, the control device 13 increases the supply amount of the activated carbon from the predetermined amount A0 in accordance with the speed of change of the output value, and The control to supply the activated carbon continuously instead of the target is started.
  • the control device 13 calculates the speed of change of the output value each time a new output value is received.
  • the emission standard value of mercury in newly constructed waste incinerators is 30 ⁇ g / Nm 3 on average per unit time. Therefore, here, the first threshold value C1 is set to a value corresponding to, for example, 20 ⁇ g / Nm 3 in order to reduce the exhaust gas mercury concentration early from the stage of the exhaust gas mercury concentration which is slightly smaller than the legal reference value. .
  • the control device 13 calculates the speed of change of the output value (rising speed) using the received new output value, and determines whether the rising speed is less than the first rising speed V1 (step S31) or not. Whether the speed is equal to or higher than the speed V1 and lower than the second speed V2 (step S32), the speed is higher than the second speed V2 and lower than the third speed V3 (step S33), or higher than the third speed V3 (step S34). Is determined.
  • the first rising speed V1 is a value corresponding to 1 ⁇ g / Nm 3 ⁇ s
  • the second rising speed V2 is a value corresponding to 3 ⁇ g / Nm 3 ⁇ s
  • the third rising speed V3 is 5 ⁇ g. / Nm 3 ⁇ s.
  • the control device 13 controls the activated carbon supply device 12 to continuously supply the activated carbon of the first supply amount A1 (step S41).
  • the activated carbon having the second supply amount A2 is continuously supplied (Step S42).
  • the activated carbon having the third supply amount A3 is continuously supplied (Step S43).
  • the activated carbon having the fourth supply amount A4 is continuously supplied (Step S44). That is, when the output value is equal to or more than the first threshold value C1, the supply amount of the activated carbon is immediately greatly increased when the rising rate of the mercury concentration of the exhaust gas is rapidly increased, and when the rising rate is gradually increased. Can be increased slightly.
  • step S41, S42, S43, or S44 the control device 13 receives a new output value from the mercury concentration meter 11. Then, as described above, the control device 13 calculates the rising speed and determines whether the rising speed is less than 0 or more than 0.
  • the determination performed after step S41 is performed at step S51
  • the determination performed after step S42 is performed at step S52
  • the determination performed after step S43 is performed at step S53
  • the determination performed after step S44 is performed at step S53. It is set to S54.
  • step S51 If it is determined in step S51 that the rising speed is equal to or higher than 0, the mercury concentration in the exhaust gas is increasing (during the increase) or is in a state of being balanced with the activated carbon supply amount. In order to reduce the mercury concentration in the exhaust gas early, it is necessary to further increase the supply amount of the activated carbon supplied at the present time, but it is increased gradually in consideration of economic efficiency. Therefore, control device 13 executes step S42. That is, the control device 13 controls the activated carbon supply device 12 to supply the second supply amount A2, which is a supply amount one step higher than the first supply amount A1.
  • step S43 because the mercury concentration of the exhaust gas is increasing (during the increase) or in a state in which the amount of activated carbon is balanced. I do. That is, the control device 13 controls the activated carbon supply device 12 to supply the third supply amount A3 which is a supply amount one stage higher than the second supply amount A2. If it is determined in step S53 that the rising speed is equal to or higher than 0, the control device 13 executes step S44. That is, the control device 13 controls the activated carbon supply device 12 to supply the fourth supply amount A4 which is a supply amount one step higher than the third supply amount A3.
  • step S54 if it is determined in step S54 that the rising speed is equal to or higher than 0, the mercury concentration of the exhaust gas is increasing (while rising) or in a state of being balanced with the activated carbon supply amount. Since the amount is the fourth supply amount A4, which is the maximum supply amount of the activated carbon supply device 12, the control device 13 continues with step S44.
  • step S51, S52, S53, or S54 If it is determined in step S51, S52, S53, or S54 that the rising speed is less than 0, the exhaust gas mercury concentration is decreasing (decreasing). Then, the control device 13 determines whether the received output value is less than the second threshold C2 or not less than the second threshold C2.
  • the determination performed after step S51 is performed in step S61
  • the determination performed after step S52 is performed in step S62
  • step S53 is performed in step S63
  • step S54 is performed in step S61.
  • the second threshold value C2 is, for example, a value corresponding to a legal reference value, and corresponds to 30 ⁇ g / Nm 3 (unit time average value), which is a reference value of mercury in a newly installed waste incinerator. Is set to a value. If it is determined in step S61, S62, S63, or S64 that the value is equal to or greater than the second threshold value C2, the mercury concentration of the exhaust gas is falling, but if it continues for a long time, it may exceed the reference value. For this reason, if the supply amount of the activated carbon is reduced at this point, it is difficult to quickly reduce the mercury concentration in the exhaust gas even during the descent.
  • the control device 13 controls the activated carbon supply device 12 to maintain the supply amount of the activated carbon currently supplied. That is, when it is determined in step S61 that the value is equal to or larger than the second threshold value C2, the control device 13 continues step S41. Similarly, when it is determined in step S62 that the value is equal to or larger than the second threshold value C2, the control device 13 continues with step S42. If it is determined in step S63 that the value is equal to or larger than the second threshold value C2, the control device 13 continues with step S43. If it is determined in step S64 that the value is equal to or larger than the second threshold value C2, the control device 13 continues with step S44.
  • step S61, S62, S63 or S64 If it is determined in step S61, S62, S63 or S64 that it is less than the second threshold value C2, the exhaust gas mercury concentration is falling and the exhaust gas mercury concentration has already fallen below the legal reference value. Therefore, the control device 13 gradually reduces the supply amount of the activated carbon currently being supplied in consideration of economic efficiency.
  • step S74 the control device 13 controls the activated carbon supply device 12 to supply the third supply amount A3 which is a supply amount one stage lower than the fourth supply amount A4.
  • the control device 13 has received a new output value from the mercury concentration meter 11, and determines whether the rising speed is less than 0 or 0 or more.
  • the control device 13 performs step S44 in order to return to the fourth supply amount A4, which is the original supply amount of activated carbon, since the exhaust gas mercury concentration may increase again. Execute.
  • the control device 13 executes Step S63 because the mercury concentration of the exhaust gas is continuously decreasing.
  • step S73 the control device 13 controls the activated carbon supply device 12 to supply the second supply amount A2, which is a supply amount one stage lower than the third supply amount A3.
  • the control device 13 has received a new output value from the mercury concentration meter 11, and determines whether the rising speed is less than 0 or 0 or more. If it is determined that the rising speed is equal to or higher than 0, since the exhaust gas mercury concentration may increase again, the control device 13 performs step S43 to return to the third supply amount A3 which is the original supply amount of activated carbon. Execute. On the other hand, when it is determined that the rising speed is less than 0, the control device 13 executes Step S62 because the mercury concentration of the exhaust gas is continuously decreasing.
  • step S72 the control device 13 controls the activated carbon supply device 12 to supply the first supply amount A1, which is a supply amount one stage lower than the second supply amount A2.
  • the control device 13 has received a new output value from the mercury concentration meter 11, and determines whether the rising speed is less than 0 or 0 or more.
  • the control device 13 performs step S42 in order to return to the second supply amount A2 which is the original supply amount of activated carbon. Execute.
  • step S61 because the exhaust gas mercury concentration is continuously decreasing.
  • step S61 when it is determined that the latest output value is less than the second threshold value C2, the control device 13 executes step S71.
  • the minimum first supply amount A1 is supplied as the amount of continuously supplied activated carbon. Therefore, in order to further reduce the amount of activated carbon to be supplied, the control device 13 needs to determine whether or not to execute S1 for intermittent supply.
  • the control device 13 determines whether the latest output value is less than the third threshold value C3 or more than the third threshold value C3.
  • the third threshold C3 is set to a value corresponding to 10 ⁇ g / Nm 3 smaller than the first threshold C1. That is, the third threshold value C3 is a value at which the exhaust gas mercury concentration at this point is sufficiently smaller than the legal reference value and smaller than a value corresponding to the first threshold value C1 at which continuous supply of activated carbon is started. I have.
  • step S71 If it is determined in step S71 that the value is less than the third threshold value C3, the control device 13 executes step S1. In this case, the mercury concentration of the exhaust gas is significantly lower than the reference value, and in consideration of economy, the control is returned to the normal control that does not require increasing the supply amount of the activated carbon. If it is determined in step S71 that the value is equal to or larger than the third threshold value C3, the control device 13 executes step S31. Then, it is checked again whether there is any sign that the mercury concentration of the exhaust gas will increase.
  • the mercury concentration in the exhaust gas flowing through the measurement location of the mercury concentration meter 11 rapidly increases, levels off, or decreases after the measurement of the mercury concentration meter 11,
  • the supply amount of the activated carbon supplied upstream of the dust collecting device 7 is significantly increased, gently increased, maintained, or decreased in accordance with the speed, which is predicted based on the speed of change of the output value of the total 11. can do.
  • the appropriate amount of activated carbon is supplied in advance by predicting the change in mercury concentration at the activated carbon supply location, the amount of mercury in the exhaust gas discharged to the atmosphere can be reduced economically and effectively. be able to.
  • the supply amount of the activated carbon can be greatly increased in advance, and when the rising speed is gradual, it can be increased in advance and stepwise. Once the activated carbon is increased and supplied, if there is a rising speed of 0 or more, the activated carbon is further increased and supplied. That is, since the amount of activated carbon is increased and supplied in multiple stages in accordance with the rising speed of the mercury concentration in the exhaust gas, the amount of mercury in the exhaust gas can be reduced more economically and effectively.
  • the activated carbon supply amount at that time is maintained until the exhaust gas mercury concentration falls below a predetermined value (a second threshold, for example, a legal reference value) regardless of the descending speed of the exhaust gas mercury concentration. And rapidly reduce the mercury concentration in the exhaust gas. If it is less than the predetermined value, the amount of activated carbon is reduced and supplied according to the rate of decrease of the mercury concentration in the exhaust gas. For this reason, the exhaust gas mercury concentration can be rapidly reduced, and if the concentration is less than the predetermined value, the amount of activated carbon is reduced in accordance with the decreasing speed of the exhaust gas mercury concentration, and finally the activated carbon is intermittently supplied. It is possible to reduce the amount of mercury emitted from exhaust gas more economically and effectively.
  • a predetermined value a second threshold, for example, a legal reference value
  • the activated carbon may be halogen-impregnated activated carbon.
  • Halogen-impregnated activated carbon can obtain more stable and high mercury removal performance than ordinary activated carbon.
  • the exhaust gas mercury removal system 1B of the present modification is characterized in that the control device 13B controls not only the activated carbon supply device 12 but also the cooling tower 6.
  • the control device 13B of the present modification controls the cooling tower 6 to increase the amount of water to be sprayed.
  • the temperature of the exhaust gas E that enters is lower than usual. However, the temperature shall be such that low temperature corrosion does not occur. Since the amount of mercury removed increases when the temperature of the exhaust gas E is low, the first modification can reduce the amount of mercury in the exhaust gas more economically and effectively.
  • an exhaust gas mercury removal system 1 ⁇ / b> C is characterized by including a fly ash circulation device 27.
  • the fly ash circulating device 27 is configured to transport the fly ash discharged from the bottom of the dust collecting device 7 by the backwashing of the dust collecting device 7 and the transported fly ash upstream of the dust collecting device 7 and And an ejection section 29 for ejecting (injecting) into the pipe 9a downstream of the cooling tower 6 and supplying the same.
  • the unreacted activated carbon contained in the fly ash discharged from the dust collecting device 7 can be reused, so that the supply amount of new activated carbon can be reduced, and more economically.
  • the amount of mercury in exhaust gas can be reduced.
  • the embodiments of the present invention have been described in detail with reference to the drawings.
  • the specific configuration is not limited to the embodiments, and includes design changes and the like without departing from the gist of the present invention.
  • the exhaust gas mercury treatment system of the embodiment may have both the features of the first and second modifications.
  • the present invention relates to a mercury removal system for removing mercury from exhaust gas discharged from a plant such as a cleaning plant equipped with a refuse incinerator or a coal-fired power plant equipped with a boiler.
  • a mercury removal system for removing mercury from exhaust gas discharged from a plant such as a cleaning plant equipped with a refuse incinerator or a coal-fired power plant equipped with a boiler.

Abstract

排ガス水銀除去システム(1)は、水銀を含む排ガスEを除塵処理する集塵装置(7)から排出される排ガスに含まれる水銀の濃度を測定し、測定の結果に対応する出力値を出力する水銀濃度計(11)と、活性炭を集塵装置(7)の上流の排ガスへ供給する活性炭供給装置(12)と、出力値に基づいて活性炭供給装置(12)を制御する制御装置(13)とを有する。制御装置(13)は、出力値が第一の閾値未満の場合、所定量の活性炭を間欠的に供給するよう活性炭供給装置(12)を制御し、出力値が第一の閾値以上の場合、出力値の変化の速度に対応した供給量の活性炭を連続的に供給するよう活性炭供給装置(12)を制御する。

Description

排ガス水銀除去システム
 本発明は、排ガス水銀除去システムに関する。本願は、2018年6月29日に出願された特願2018-124452号に対して優先権を主張し、その内容をここに援用する。
 ごみ焼却炉を備えた清掃工場やボイラを備えた石炭火力発電所などのプラントから排出される排ガスには、毒性の高い水銀が含まれうるため、従来から、排ガスに含まれる水銀を活性炭で吸着して除去するシステムが種々検討されてきた。
 特許文献1には、ごみ焼却炉から排出される排ガスに含まれる水銀の濃度を、集塵装置であるバグフィルタの下流に設置した水銀濃度計で測定し、バグフィルタの上流側の配管内に供給する活性炭の供給量を水銀濃度計の出力値に応じて調整するシステムが開示されている。
特許第6070971号公報
 上記従来のシステムでは、排ガスに含まれる水銀の濃度(以下、「排ガス水銀濃度」という)に関係なく、常時少量かつ一定量の活性炭を連続的に排ガスに供給している。このため、突発的に排ガス水銀濃度が上昇しても、当該活性炭で吸着・除去できる排ガス水銀濃度までは、特段の処理をする必要がない。
 しかしながら、排ガス水銀濃度が当該活性炭の許容する水銀の吸着量、すなわち当該活性炭の処理量を上回った場合、活性炭により処理しきれなかった水銀を含む排ガスが煙突からプラントの外へ排出されることになる。
 そこで、従来のシステムでは、水銀濃度計で集塵装置の下流の水銀濃度を計測し、水銀濃度計の出力値が当該活性炭の許容する処理量を上回った場合、それに応じて増加した量(当該出力値が示す濃度の水銀を吸着するのに必要十分な量)の活性炭を集塵装置の上流に供給していた。
 しかし、排ガス中の水銀濃度は短時間(数十秒間~数分間)で急峻に増加することが多いため、集塵装置の下流で計測した濃度の水銀を処理するのに必要十分な量の活性炭を集塵装置の上流で供給しても、その供給場所における水銀濃度は急峻に増加しているため、当該活性炭の処理量をはるかに上回り、結局、十分に水銀の処理をできずに、法的な基準値を超える量の水銀を含む排ガスを煙突から排出する危険性があった。
 上述のように常時少量ではなく、常時多量に一定量の活性炭を連続的に排ガスに供給すれば、この危険性は低減するが、不経済である。
 すなわち、従来のシステムでは、経済的かつ効果的に、排ガスに含まれる水銀の排出量(大気へ放出される水銀の排出量)を低下させることが困難であった。
 この発明は、従来と同様の構成のシステム、すなわち集塵装置の下流の排ガスに含まれる水銀の濃度を水銀濃度計で測定し、且つ、集塵装置の上流側の配管内に供給する活性炭の供給量を当該水銀濃度計の出力値に応じて調整するシステムでありながら、大気放出される水銀の排出量を、従来に比べ、経済的かつ効果的に低下させることができる排ガス水銀除去システムを提供することを目的とする。
 本発明の排ガス水銀除去システムは、水銀を含む排ガスを除塵処理する集塵装置から排出される前記排ガスに含まれる前記水銀の濃度を測定し、前記測定の結果に対応する出力値を出力する水銀濃度計と、活性炭を前記集塵装置の上流の前記排ガスへ供給する活性炭供給装置と、前記出力値に基づいて前記活性炭供給装置を制御する制御装置と、を有し、前記制御装置は、前記出力値が第一の閾値未満の場合、所定量の前記活性炭を間欠的に供給するよう前記活性炭供給装置を制御し、前記出力値が前記第一の閾値以上、且つ、前記出力値の上昇速度が第一の上昇速度未満の場合、前記所定量より多い第一の供給量の前記活性炭を供給し、前記第一の供給量の前記活性炭を供給した後に、前記出力値の上昇速度が0以上になったら、前記第一の供給量より多い第二の供給量の前記活性炭を供給するよう前記活性炭供給装置を制御し、前記出力値が前記第一の閾値以上、且つ、前記出力値の上昇速度が前記第一の上昇速度以上で第二の上昇速度未満の場合、前記第二の供給量の前記活性炭を供給するよう前記活性炭供給装置を制御し、前記第一の供給量又は前記第二の供給量の前記活性炭を供給した後に、前記出力値の上昇速度が0未満の場合、前記出力値が前記第一の閾値より大きい第二の閾値未満となるまで、その時点の前記活性炭の供給量を維持し、前記出力値が前記第二の閾値未満になったら、前記その時点の前記活性炭の供給量を低減し、前記出力値が前記第一の閾値より小さい第三の閾値未満になったら、前記所定量の前記活性炭を前記間欠的に供給するよう前記活性炭供給装置を制御する。
 このような構成によれば、水銀濃度計の出力値の変化の速度に対応して活性炭の供給量を変化させ、活性炭を連続供給することができる。すなわち、水銀濃度計の計測場所を流れる排ガス中の水銀濃度が、当該水銀濃度の計測の後、急速に上昇するのか、横這いであるのか、または下降するのか、水銀濃度計の出力値の変化の速度に基づいて予測し、集塵装置の上流側で供給する活性炭の供給量を、当該速度に対応して、それぞれ大幅に増加、緩やかに増加、維持または減少することができる。言い換えれば、活性炭の供給場所における水銀濃度の変化を予測して適切な量の活性炭が事前に供給されるので、経済的かつ効果的に、大気放出される排ガス中の水銀の排出量を低下させることができる。
 この構成では、上昇速度が急速に増加する場合には活性炭の供給量を事前に大幅に増加し、緩やかに上昇する場合には事前、且つ、段階的に増加することができる。また、一旦、活性炭を増加させて供給した後も上昇速度が0以上の場合には、さらに活性炭を増加させて供給する。すなわち、排ガス水銀濃度の上昇速度に応じて多段階的に活性炭の量を増加して供給するので、より経済的かつ効果的に、排ガス中の水銀の排出量を低下させることができる。
 排ガス水銀濃度は、特段の処理を実施しない場合、ピーク到達後、長時間(数十分間~数時間)かけて緩やかに低下することがある。よって、この構成では、排ガス水銀濃度が下降する速度(以下、「下降速度」といい、排ガス水銀濃度の上昇速度が0未満の場合に相当)によらず、排ガス水銀濃度が所定値(第二の閾値、例えば法定の基準値)未満に低下するまでは、その時点の活性炭供給量を維持して急速に排ガス水銀濃度を低下させる。そして、当該所定値未満の場合は、排ガス水銀濃度の下降速度に応じて活性炭の量を低減して供給する。このため、ピーク到達後、長時間(数十分間~数時間)かけて緩やかに低下する排ガス水銀濃度を急速に下げることができ、また、上記所定値未満では排ガス水銀濃度の下降速度に応じて段階的に活性炭の量を低減し、最終的には活性炭を間欠的に供給するので、より経済的かつ効果的に、排ガス中の水銀の排出量を低下させることができる。
 上記排ガス水銀除去システムにおいて、前記測定の結果は、前記測定をした時点の前記水銀の濃度であってよい。
 このような構成によれば、水銀濃度計の測定の結果に対応する出力値は、測定をした時点の水銀の濃度そのものに対応した値となる。従って、複数の測定時点の水銀の濃度の平均値を出力値とする水銀濃度計を使用する場合に比べ、活性炭を供給する際の応答速度を上昇させるのみならず、水銀濃度計の出力値の変化の速度も均されることがないので、より経済的かつ効果的に、排ガス中の水銀の排出量を低下させることができる。
 上記排ガス水銀除去システムにおいて、前記活性炭は、ハロゲン添着活性炭であってよい。
 このような構成によれば、通常の活性炭に比べ、水銀の存在形態や共存ガスの影響を受けにくいため、安定、且つ、高い水銀除去性能を得ることができるので、より効果的に、排ガス中の水銀の排出量を低下させることができる。
 上記排ガス水銀除去システムは、ごみ焼却炉と、前記ごみ焼却炉の下流、且つ、前記集塵装置の上流に配置された減温塔をさらに備え、前記集塵装置は、バグフィルタであり、前記排ガスは、前記ごみ焼却炉から排出され、前記制御装置は、前記出力値が前記第一の閾値以上の場合、前記減温塔を制御して前記排ガスの温度を低下させてよい。
 このような構成によれば、減温塔を制御して排ガスの温度を低下させることによって、水銀の除去量を増加させることができるので、より経済的かつ効果的に、排ガス中の水銀の排出量を低下させることができる。
 上記排ガス水銀除去システムは、前記バグフィルタから排出される飛灰を、前記バグフィルタの上流、且つ、前記減温塔の下流に搬送して前記排ガスに向けて供給する飛灰循環装置を備えてよい。
 このような構成によれば、バグフィルタから排出される飛灰に含まれる未反応の活性炭を再利用することができるため、新品の活性炭の供給量を低減することができ、より経済的に、排ガス中の水銀の排出量を低下させることができる。
 本発明によれば、水銀濃度計の出力値の変化の速度に基づいて、水銀濃度の変化を予測して事前に適切な量の活性炭が供給されるので、経済的かつ効果的に、大気放出される排ガス中の水銀の排出量を低下させることができる。
本発明の実施形態の排ガス水銀除去システムの概略構成図である。 本発明の実施形態の排ガス水銀除去システムの制御について説明するフローチャートである。 本発明の変形例の排ガス水銀除去システムの概略構成図である。 本発明の変形例の排ガス水銀除去システムの概略構成図である。
 以下、本発明の実施形態の排ガス水銀除去システムについて図面を参照して詳細に説明する。本発明の排ガス水銀除去システムは、水銀を含む排ガスを排出するプラントであれば、ごみ焼却炉を備えた清掃工場やボイラを備えた石炭火力発電所を含むいかなるプラントにも適用可能である。以下、ごみ焼却炉を備えた清掃工場(ごみ処理プラント)を実施形態として説明する。
 図1に示すように、ごみ処理プラント1(排ガス水銀処理システム)は、ごみ等の被焼却物を焼却するごみ焼却炉3(例えば、順送式のストーカ炉)と、ごみ焼却炉3で発生した排ガスEと熱交換するボイラ4と、ボイラ4を通過した排ガスEに水等を噴霧してその温度を低下させる減温塔6と、減温塔6を通過した排ガスEに含まれる煤塵を除塵する集塵装置(バグフィルタ)7と、減温塔6と集塵装置7を接続して排ガスEを通過させる配管(ダクト)9aと、集塵装置7で除塵された排ガスEを大気に放出する煙突8と、集塵装置7と煙突8を接続して排ガスEを通過させる配管(ダクト)9bと、配管9bに配置されて配管9bの内部を流れる排ガスEに含まれる水銀の濃度(排ガス水銀濃度)を計測する水銀濃度計11と、配管9aの内部に活性炭を供給する活性炭供給装置12と、水銀濃度計11の出力値に応じて活性炭供給装置12を制御する制御装置13を有している。
 活性炭供給装置12は、活性炭が貯留されるホッパ14と、ホッパ14から配管9aの内部へ活性炭を定量供給するフィーダ15を有している。フィーダ15は、例えば、ロータリーフィーダである。フィーダ15がロータリーフィーダの場合、制御装置13は、ロータリーフィーダの回転速度を増減することで、活性炭の供給量を増減させるよう制御することができる。
 水銀濃度計11は、所定の時間間隔(例えば、20秒間隔)で自動的且つ連続的に出力値を出力する連続水銀濃度計である。また、水銀濃度計11は、所定の時間間隔をおいて測定された複数の測定値を測定の結果とし、これら複数の測定値の平均値に対応した出力値を制御装置13へ送信する水銀濃度計でもよいし、平均値を出力値とせず、測定した時点のただ一つの測定値そのものを測定の結果とし、これに対応した出力値を制御装置13へ送信する水銀濃度計でもよい。このため、いずれの場合も、水銀濃度計11の出力値は、「測定の結果に対応する」値といえる。また、水銀濃度計11の出力値は一般的にデジタル値であり、(1)排ガス水銀濃度の値そのものを示す場合もあれば、(2)水銀濃度計11により暗号化されて出力され、制御装置13により復号されて初めて水銀濃度の値が得られる場合もある。いずれにしても、出力値は、排ガス水銀濃度に相当または対応する値である。
 ただし、測定した時点のただ一つの測定値そのものを出力値とする水銀濃度計は、複数の測定値が均されないので、起動した当初から高速に出力値を出力することができる。このため、排ガス水銀濃度をより迅速かつ効果的に低下させる観点から、本発明の排ガス水銀処理システムにおいては、複数の測定時点の水銀の濃度の平均値を出力値とする水銀濃度計よりも測定した時点のただ一つの測定値そのものを出力値とする水銀濃度計を用いるのが望ましい。
 なお、活性炭供給装置12は、例として、活性炭の最大供給能力が800mg/Nmの装置であるとして説明する。また、活性炭供給装置12は、活性炭の供給量を多段階に変更できる。ここでは、5段階の例を示す。具体的には、活性炭供給装置12は、最大供給能力の5%の供給量(40mg/Nm)を所定量A0とし、最大供給能力の25%の供給量(200mg/Nm)を第一供給量A1とし、最大供給能力の50%の供給量(400mg/Nm)を第二供給量A2とし、最大供給能力の75%の供給量(600mg/Nm)を第三供給量A3とし、最大供給能力の100%の供給量(800mg/Nm)を第四供給量A4とする5段階の供給量の変更が可能である。
 では、図2を用いて、ごみ処理プラント1(排ガス水銀処理システム)の制御につき詳述する。
 まず、ごみ処理プラント1の運転が開始されると、制御装置13は、活性炭供給装置12を制御して、所定量A0の活性炭を配管9a内に所定時間間隔で間欠的に供給する(ステップS1)。ここでは、例として、5分間の間隔で間欠的に活性炭を供給する。言い換えれば、活性炭の供給と活性炭の供給の停止を5分間ごとに交互に繰り返す。
 間欠的に少量の活性炭を供給するのは、水銀以外にダイオキシン類などを集塵装置7で除去するためである。
 制御装置13は、水銀濃度計11が所定間隔(例えば、20秒間隔)で送信する出力値を連続して受信しており、受信した出力値が第一の閾値C1未満か第一の閾値C1以上かを判定する(ステップS2)。受信した出力値が第一の閾値C1未満の場合、制御装置13はステップS1の実行、すなわち活性炭の間欠的な供給を続行する。受信した出力値が第一の閾値C1以上の場合、後述するように、制御装置13は、出力値の変化の速度に応じて、活性炭の供給量を所定量A0よりも増加させ、且つ、間欠的ではなく連続的に活性炭を供給する制御を開始する。
 なお、制御装置13は、新たな出力値を受信するたびに出力値の変化の速度を算出する。当該速度は、新たな出力値とその1つ前に受信した出力値(すなわち、直近の出力値)の差を先述の所定間隔である20秒間で除算することで算出できる。すなわち、
 (出力値の変化の速度)=((新たな出力値)-(直近の出力値))/所定間隔
とすることができる。
 また、平成30年4月1日に施行された改正大気汚染防止法では、新設の廃棄物焼却炉における水銀の排出基準値を単位時間平均で30μg/Nmとしている。そこで、ここでは、法定の基準値よりもやや小さい排ガス水銀濃度の段階から早期に排ガス水銀濃度を低下させるべく、第一の閾値C1を一例として20μg/Nmに相当する値に設定している。
 では、次に、ステップS2で、制御装置13の受信した出力値が第一の閾値C1以上であった場合につき、説明を進める。
 まず、制御装置13は、受信した新たな出力値を用いて出力値の変化の速度(上昇速度)を算出し、上昇速度が第一の上昇速度V1未満か(ステップS31)、第一の上昇速度V1以上かつ第二の上昇速度V2未満か(ステップS32)、第二の上昇速度V2以上かつ第三の上昇速度V3未満か(ステップS33)、第三の上昇速度V3以上か(ステップS34)を判定する。ここでは、例として、第一の上昇速度V1を1μg/Nm・sに相当する値、第二の上昇速度V2を3μg/Nm・sに相当する値、第三の上昇速度V3を5μg/Nm・sに相当する値としている。
 そして、上昇速度が第一の上昇速度V1未満の場合、制御装置13は、活性炭供給装置12を制御して、第一供給量A1の活性炭を連続的に供給する(ステップS41)。上昇速度が第一の上昇速度V1以上かつ第二の上昇速度V2未満の場合、第二供給量A2の活性炭を連続的に供給する(ステップS42)。上昇速度が第二の上昇速度V2以上かつ第三の上昇速度V3未満の場合、第三供給量A3の活性炭を連続的に供給する(ステップS43)。上昇速度が第三の上昇速度V3以上の場合、第四供給量A4の活性炭を連続的に供給する(ステップS44)。
 すなわち、出力値が第一の閾値C1以上であった場合には、排ガス水銀濃度の上昇速度が急速に上昇する場合には活性炭の供給量を即時に大幅増加させ、緩やかに上昇する場合には小幅増加させることができる。
 次に、ステップS41、S42、S43、またはS44の実行の後、制御装置13は、水銀濃度計11から新たな出力値を受信する。そして、先述のように、制御装置13は上昇速度を算出し、上昇速度が0未満か0以上かを判定する。図2では、ステップS41の後に実行する当該判定をステップS51、ステップS42の後に実行する当該判定をステップS52、ステップS43の後に実行する当該判定をステップS53、ステップS44の後に実行する当該判定をステップS54としている。
 ステップS51で、上昇速度が0以上と判定した場合、排ガス水銀濃度は増加中(上昇中)もしくは活性炭供給量と均衡が取れた状態である。排ガス水銀濃度を早期に減少させるためには、現時点で供給している活性炭の供給量をさらに増加させる必要があるが、経済性を鑑みて、段階的に増加させる。そこで、制御装置13は、ステップS42を実行する。すなわち、制御装置13は活性炭供給装置12を制御して、第一供給量A1よりも一段階上の供給量である第二供給量A2を供給する。
 同様に、ステップS52で、上昇速度が0以上と判定した場合、排ガス水銀濃度は増加中(上昇中)もしくは活性炭供給量と均衡が取れた状態であるので、制御装置13は、ステップS43を実行する。すなわち、制御装置13は活性炭供給装置12を制御して、第二供給量A2よりも一段階上の供給量である第三供給量A3を供給する。ステップS53で、上昇速度が0以上と判定した場合、制御装置13は、ステップS44を実行する。すなわち、制御装置13は活性炭供給装置12を制御して、第三供給量A3よりも一段階上の供給量である第四供給量A4を供給する。
 ただし、ステップS54で、上昇速度が0以上と判定した場合、排ガス水銀濃度は増加中(上昇中)もしくは活性炭供給量と均衡が取れた状態であるが、この時点で供給している活性炭の供給量は、活性炭供給装置12の最大の供給量である第四供給量A4であるので、制御装置13は、ステップS44を続行する。
 ステップS51、S52、S53、またはS54で、上昇速度が0未満と判定した場合、排ガス水銀濃度は減少中(下降中)である。そして、制御装置13は、受信した出力値が第二の閾値C2未満か第二の閾値C2以上かを判定する。図2では、ステップS51の後に実行する当該判定をステップS61、ステップS52の後に実行する当該判定をステップS62、ステップS53の後に実行する当該判定をステップS63、ステップS54の後に実行する当該判定をステップS64としている。
 ここで、第二の閾値C2は、一例として、法定の基準値に相当する値であり、新設の廃棄物焼却炉における水銀の基準値である30μg/Nm(単位時間平均値)に相当する値に設定している。
 そして、ステップS61、S62、S63、またはS64で、第二の閾値C2以上と判定した場合、排ガス水銀濃度は下降中であるものの、長時間継続した場合、基準値を超過する可能性がある。このため、下降中であっても、この時点で活性炭の供給量を減少させると、排ガス水銀濃度の早期低減が困難である。
 そこで、制御装置13は活性炭供給装置12を制御して、現時点で供給している活性炭の供給量を維持する。すなわち、ステップS61で、第二の閾値C2以上と判定した場合、制御装置13は、ステップS41を続行する。同様に、ステップS62で、第二の閾値C2以上と判定した場合、制御装置13は、ステップS42を続行する。ステップS63で、第二の閾値C2以上と判定した場合、制御装置13は、ステップS43を続行する。ステップS64で、第二の閾値C2以上と判定した場合、制御装置13は、ステップS44を続行する。
 ステップS61、S62、S63、またはS64で、第二の閾値C2未満と判定した場合、排ガス水銀濃度は下降中であり、かつ、排ガス水銀濃度は、法定の基準値をすでに下回っている。そこで、制御装置13は、経済性を鑑みて、現時点で供給している活性炭の供給量を段階的に減少させる。
 すなわち、ステップS64で、第二の閾値C2未満と判定した場合、制御装置13は、ステップS74を実行する。ステップS74では、制御装置13は活性炭供給装置12を制御して、第四供給量A4よりも一段階下の供給量である第三供給量A3を供給する。このとき、制御装置13は、水銀濃度計11から新たな出力値を受信しており、上昇速度が0未満か0以上かを判定する。そして、上昇速度が0以上と判定した場合、排ガス水銀濃度が再び増加する可能性があることから、元の活性炭の供給量である第四供給量A4に戻すべく、制御装置13はステップS44を実行する。一方、上昇速度が0未満と判定した場合、排ガス水銀濃度は継続的に減少していることから、制御装置13はステップS63を実行する。
 同様に、ステップS63で、第二の閾値C2未満と判定した場合、制御装置13は、ステップS73を実行する。ステップS73では、制御装置13は活性炭供給装置12を制御して、第三供給量A3よりも一段階下の供給量である第二供給量A2を供給する。このとき、制御装置13は、水銀濃度計11から新たな出力値を受信しており、上昇速度が0未満か0以上かを判定する。そして、上昇速度が0以上と判定した場合、排ガス水銀濃度が再び増加する可能性があることから、元の活性炭の供給量である第三供給量A3に戻すべく、制御装置13はステップS43を実行する。一方、上昇速度が0未満と判定した場合、排ガス水銀濃度は継続的に減少していることから、制御装置13はステップS62を実行する。
 また、ステップS62で、第二の閾値C2未満と判定した場合、制御装置13は、ステップS72を実行する。ステップS72では、制御装置13は活性炭供給装置12を制御して、第二供給量A2よりも一段階下の供給量である第一供給量A1を供給する。このとき、制御装置13は、水銀濃度計11から新たな出力値を受信しており、上昇速度が0未満か0以上かを判定する。そして、上昇速度が0以上と判定した場合、排ガス水銀濃度が再び増加する可能性があることから、元の活性炭の供給量である第二供給量A2に戻すべく、制御装置13はステップS42を実行する。一方、上昇速度が0未満と判定した場合、排ガス水銀濃度は継続的に減少していることから、制御装置13はステップS61を実行する。
 さらに、ステップS61で、直近の出力値が第二の閾値C2未満と判定した場合、制御装置13は、ステップS71を実行する。この時点において、連続的に供給される活性炭量としては最少の第一供給量A1が供給されている。そこで、制御装置13は、供給する活性炭量をさらに少なくするため、間欠的な供給とすべくS1を実行するか否かを判定する必要がある。
 このため、S61の実行の後、制御装置13は、当該直近の出力値が第三の閾値C3未満か第三の閾値C3以上かを判定する。ここで、第三の閾値C3は、第一の閾値C1よりも小さい10μg/Nmに相当する値に設定している。すなわち、第三の閾値C3は、この時点の排ガス水銀濃度が法定の基準値より十分に小さく、且つ、活性炭の連続的な供給を開始する第一の閾値C1に相当する値よりも小さい値としている。
 ステップS71で、第三の閾値C3未満と判定した場合、制御装置13は、ステップS1を実行する。この場合、排ガス水銀濃度は基準値を大幅に下回っており、経済性を考慮し、活性炭の供給量を増加する必要のない通常の制御に復帰する。
 ステップS71で、第三の閾値C3以上と判定した場合、制御装置13は、ステップS31を実行する。そして、再び、排ガス水銀濃度が上昇する予兆がないか確認する。
 上記実施形態によれば、水銀濃度計11の計測場所を流れる排ガス中の水銀濃度が、水銀濃度計11の計測の後、急速に上昇するのか、横這いであるのか、または下降するのか、水銀濃度計11の出力値の変化の速度に基づいて予測し、集塵装置7の上流側で供給する活性炭の供給量を、当該速度に対応して、それぞれ大幅に増加、緩やかに増加、維持または減少することができる。言い換えれば、活性炭の供給場所における水銀濃度の変化を予測して適切な量の活性炭が事前に供給されるので、経済的かつ効果的に、大気放出される排ガス中の水銀の排出量を低下させることができる。
 また、本実施形態では、上昇速度が急速に増加する場合には事前に活性炭の供給量を大幅に増加、緩やかに上昇する場合には事前、且つ、段階的に増加することができ、また、一旦、活性炭を増加させて供給した後も0以上の上昇速度がある場合には、さらに活性炭を増加させて供給する。すなわち、排ガス水銀濃度の上昇速度に応じて多段階的に活性炭の量を増加して供給するので、より経済的かつ効果的に、排ガス中の水銀の排出量を低下させることができる。
 さらに、本実施形態では、排ガス水銀濃度の下降速度によらず、排ガス水銀濃度が所定値(第二の閾値、例えば法定の基準値)未満に低下するまでは、その時点の活性炭供給量を維持して急速に排ガス水銀濃度を低下させる。そして、当該所定値未満の場合は、排ガス水銀濃度の下降速度に応じて活性炭の量を低減して供給する。このため、排ガス水銀濃度を急速に下げることができ、また、上記所定値未満では排ガス水銀濃度の下降速度に応じて活性炭の量を低減し、最終的には活性炭を間欠的に供給するので、より経済的かつ効果的に、排ガス中の水銀の排出量を低下させることができる。
 本実施形態において、活性炭をハロゲン添着活性炭としてもよい。ハロゲン添着活性炭は、通常の活性炭に比べ、より安定した高い水銀除去性能を得ることができる。
(変形例1)
 以下、本発明の実施形態の変形例について図面を参照して詳細に説明する。なお、本変形例1では、上述した実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図3に示すように、本変形例の排ガス水銀除去システム1Bは、制御装置13Bが活性炭供給装置12だけでなく、減温塔6も制御することを特徴としている。
 本変形例の制御装置13Bは、水銀濃度計11の出力値が第一の閾値C1以上になった場合に、減温塔6を制御して噴霧する水の量を増加させ、集塵装置7に入る排ガスEの温度を通常時より低下させる。ただし、低温腐食の発生しない程度の温度とする。
 水銀の除去量は、排ガスEの温度が低いと増加するので、変形例1により、より経済的かつ効果的に、排ガス中の水銀の排出量を低下させることができる。
(変形例2)
 以下、本発明の実施形態の変形例について図面を参照して詳細に説明する。なお、本変形例2では、上述した実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図4に示すように、本変形例の排ガス水銀除去システム1Cは、飛灰循環装置27を備えていることを特徴としている。
 飛灰循環装置27は、集塵装置7の逆洗によって、集塵装置7の底部から排出される飛灰を搬送する搬送部28と、搬送された飛灰を集塵装置7の上流、且つ、減温塔6の下流の配管9a内に噴出(噴射)して供給する噴出部29とを有している。
 変形例2によれば、集塵装置7から排出される飛灰に含まれる未反応の活性炭を再利用することができるため、新品の活性炭の供給量を低減することができ、より経済的に、排ガス中の水銀の排出量を低下させることができる。
 以上、本発明の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、実施形態の排ガス水銀処理システムが、変形例1と変形例2の特徴をいずれも備えてよい。
 本発明は、ごみ焼却炉を備えた清掃工場やボイラを備えた石炭火力発電所などのプラントから排出される排ガスから、水銀を除去する水銀除去システムに関する。本発明によれば、経済的かつ効果的に、大気放出される排ガス中の水銀の排出量を低下させることができる。
 1、1B、1C ごみ処理プラント(排ガス水銀除去システム)
 3 ごみ焼却炉
 4 ボイラ
 6 減温塔
 7 集塵装置
 8 煙突
 9a 配管
 9b 配管
 11 水銀濃度計
 12 活性炭供給装置
 13、13B 制御装置
 14 ホッパ
 15 フィーダ
 28 搬送部
 29 噴出部
 E 排ガス

Claims (5)

  1.  水銀を含む排ガスを除塵処理する集塵装置から排出される前記排ガスに含まれる前記水銀の濃度を測定し、前記測定の結果に対応する出力値を出力する水銀濃度計と、
     活性炭を前記集塵装置の上流の前記排ガスへ供給する活性炭供給装置と、
     前記出力値に基づいて前記活性炭供給装置を制御する制御装置と、を有し、
     前記制御装置は、前記出力値が第一の閾値未満の場合、所定量の前記活性炭を間欠的に供給するよう前記活性炭供給装置を制御し、
     前記出力値が前記第一の閾値以上、且つ、前記出力値の上昇速度が第一の上昇速度未満の場合、前記所定量より多い第一の供給量の前記活性炭を供給し、前記第一の供給量の前記活性炭を供給した後に、前記出力値の上昇速度が0以上になったら、前記第一の供給量より多い第二の供給量の前記活性炭を供給するよう前記活性炭供給装置を制御し、
     前記出力値が前記第一の閾値以上、且つ、前記出力値の上昇速度が前記第一の上昇速度以上で第二の上昇速度未満の場合、前記第二の供給量の前記活性炭を供給するよう前記活性炭供給装置を制御し、
     前記第一の供給量又は前記第二の供給量の前記活性炭を供給した後に、前記出力値の上昇速度が0未満の場合、前記出力値が前記第一の閾値より大きい第二の閾値未満となるまで、その時点の前記活性炭の供給量を維持し、前記出力値が前記第二の閾値未満になったら、前記その時点の前記活性炭の供給量を低減し、前記出力値が前記第一の閾値より小さい第三の閾値未満になったら、前記所定量の前記活性炭を前記間欠的に供給するよう前記活性炭供給装置を制御することを特徴とする排ガス水銀除去システム。
  2.  前記測定の結果は、前記測定をした時点の前記水銀の濃度であることを特徴とする請求項1に記載の排ガス水銀除去システム。
  3.  前記活性炭は、ハロゲン添着活性炭であることを特徴とする請求項1又は請求項2に記載の排ガス水銀除去システム。
  4.  ごみ焼却炉と、
     前記ごみ焼却炉の下流、且つ、前記集塵装置の上流に配置された減温塔とをさらに有し、
     前記集塵装置は、バグフィルタであり、
     前記排ガスは、前記ごみ焼却炉から排出され、
     前記制御装置は、前記出力値が前記第一の閾値以上の場合、前記減温塔を制御して前記排ガスの温度を低下させることを特徴とする請求項1から請求項3のいずれか一項に記載の排ガス水銀除去システム。
  5.  前記バグフィルタから排出される飛灰を、前記バグフィルタの上流、且つ、前記減温塔の下流に搬送して前記排ガスに向けて供給する飛灰循環装置をさらに有することを特徴とする請求項4に記載の排ガス水銀除去システム。
PCT/JP2019/020840 2018-06-29 2019-05-27 排ガス水銀除去システム WO2020003845A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11202011052PA SG11202011052PA (en) 2018-06-29 2019-05-27 Exhaust gas mercury removal system
CN201980030998.0A CN112105442B (zh) 2018-06-29 2019-05-27 废气汞去除系统
KR1020207032296A KR102418074B1 (ko) 2018-06-29 2019-05-27 배기가스 수은 제거 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018124452A JP6439207B1 (ja) 2018-06-29 2018-06-29 排ガス水銀除去システム
JP2018-124452 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020003845A1 true WO2020003845A1 (ja) 2020-01-02

Family

ID=64668554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020840 WO2020003845A1 (ja) 2018-06-29 2019-05-27 排ガス水銀除去システム

Country Status (5)

Country Link
JP (1) JP6439207B1 (ja)
KR (1) KR102418074B1 (ja)
CN (1) CN112105442B (ja)
SG (1) SG11202011052PA (ja)
WO (1) WO2020003845A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3135906A1 (fr) * 2022-05-30 2023-12-01 Lab Procédé de démercurisation de fumées

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112870589B (zh) * 2021-01-13 2022-08-16 中冶长天国际工程有限责任公司 一种振动筛上活性炭灭火降温的方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308817A (ja) * 1996-05-22 1997-12-02 Babcock Hitachi Kk 排ガス処理方法および装置
JP2007237019A (ja) * 2006-03-06 2007-09-20 Mitsui Eng & Shipbuild Co Ltd 排ガス処理薬剤の供給量制御方法及び排ガス処理装置
JP2012228680A (ja) * 2011-04-27 2012-11-22 Kurita Water Ind Ltd 酸性ガスの処理方法
JP2013226505A (ja) * 2012-04-25 2013-11-07 Takuma Co Ltd 排ガス処理装置およびこれを用いた排ガス処理方法
JP2015196127A (ja) * 2014-03-31 2015-11-09 Jfeエンジニアリング株式会社 排ガス処理装置及び方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953494B2 (en) * 2002-05-06 2005-10-11 Nelson Jr Sidney G Sorbents and methods for the removal of mercury from combustion gases
JP2009291734A (ja) * 2008-06-06 2009-12-17 Hitachi Plant Technologies Ltd 排ガス処理装置およびその方法
EP2628527B1 (en) * 2010-10-15 2019-05-22 Mitsubishi Hitachi Power Systems, Ltd. System for processing mercury in exhaust gas
JP5769614B2 (ja) * 2011-12-26 2015-08-26 日立造船株式会社 焼却設備における還元剤供給方法および還元剤供給装置
JP6134587B2 (ja) * 2013-06-11 2017-05-24 ヤンマー株式会社 ガスエンジン
SG10201709324XA (en) 2015-02-18 2018-01-30 Jfe Eng Corp Apparatus for treatment of waste gas and method for treating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308817A (ja) * 1996-05-22 1997-12-02 Babcock Hitachi Kk 排ガス処理方法および装置
JP2007237019A (ja) * 2006-03-06 2007-09-20 Mitsui Eng & Shipbuild Co Ltd 排ガス処理薬剤の供給量制御方法及び排ガス処理装置
JP2012228680A (ja) * 2011-04-27 2012-11-22 Kurita Water Ind Ltd 酸性ガスの処理方法
JP2013226505A (ja) * 2012-04-25 2013-11-07 Takuma Co Ltd 排ガス処理装置およびこれを用いた排ガス処理方法
JP2015196127A (ja) * 2014-03-31 2015-11-09 Jfeエンジニアリング株式会社 排ガス処理装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Technologies for Prevention of Atmospheric Mercury Emission in General Waste Disposal Facilities", JAPAN ENVIRONMENTAL FACILITIES MANUFACTURERS ASSOCIATION, CENTRAL ENVIRONMENT COUNCIL, AIR/NOISE VIBRATION SECTION, MERCURY AIR EMISSIONS SUBCOMMITTEE MEETING NO. 3, 9 July 2014 (2014-07-09), pages 1 - 12, XP055670540, Retrieved from the Internet <URL:https://www.env.go.jp/council/07air-noise/y079-03/mat02_7.pdf> [retrieved on 20180720] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3135906A1 (fr) * 2022-05-30 2023-12-01 Lab Procédé de démercurisation de fumées
EP4286033A1 (fr) * 2022-05-30 2023-12-06 Lab Procédé de démercurisation de fumées
WO2023232698A1 (fr) * 2022-05-30 2023-12-07 Lab Procédé de démercurisation de fumées

Also Published As

Publication number Publication date
JP6439207B1 (ja) 2018-12-19
KR20200139810A (ko) 2020-12-14
CN112105442A (zh) 2020-12-18
KR102418074B1 (ko) 2022-07-06
JP2020001015A (ja) 2020-01-09
CN112105442B (zh) 2022-10-21
SG11202011052PA (en) 2020-12-30

Similar Documents

Publication Publication Date Title
JP6124097B1 (ja) 排ガス処理装置及び排ガス処理方法
JP5953342B2 (ja) 水銀の再排出を低下させるための亜硫酸塩制御
WO2020003845A1 (ja) 排ガス水銀除去システム
JP2017200668A (ja) 排ガス脱塩装置
CN203744265U (zh) 焚烧炉的脱硝系统
JP6539885B1 (ja) 排ガス水銀除去システム
CN109647158B (zh) 一种循环流化床锅炉烟气脱硫脱硝系统及其处理方法
JP5955622B2 (ja) 排ガス処理装置およびこれを用いた排ガス処理方法
JP2810024B2 (ja) プロセスガスの浄化方法
JP6413038B1 (ja) 排ガス処理システムおよび排ガス処理方法
JP7047487B2 (ja) 排ガス処理装置及び排ガス処理方法
JP2004060992A (ja) 焼却炉用廃熱回収ボイラ
JPH11270829A (ja) ごみ焼却炉におけるごみの燃焼制御方法
JP2019027671A (ja) 燃焼排ガスの処理装置
JP3850228B2 (ja) 焼却炉における給塵量制御方法
CN108800158A (zh) 一种生活垃圾焚烧的烟气耦合系统及工艺
JP2003106509A (ja) 燃焼制御装置
JP6916854B2 (ja) 廃棄物焼却設備の脱硝及び腐食低減方法
JP2012130854A (ja) 排ガス処理装置
JP2018171585A (ja) 排ガス処理装置及び排ガス処理方法
JP4295773B2 (ja) 廃棄物焼却炉の廃棄物貯留部内圧力保持システムおよび脱臭システム
JP2000130719A (ja) 焼却炉の燃焼制御装置
WO2017094150A1 (ja) ボイラの蒸気流量制御方法及び焼却炉システム
JP6482937B2 (ja) ボイラシステム及びその運転方法
JP2000346328A (ja) ごみ焼却装置における排ガス中のダイオキシン類の抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207032296

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825762

Country of ref document: EP

Kind code of ref document: A1