WO2019244307A1 - 運転時隔制御装置および運転時隔制御方法 - Google Patents

運転時隔制御装置および運転時隔制御方法 Download PDF

Info

Publication number
WO2019244307A1
WO2019244307A1 PCT/JP2018/023684 JP2018023684W WO2019244307A1 WO 2019244307 A1 WO2019244307 A1 WO 2019244307A1 JP 2018023684 W JP2018023684 W JP 2018023684W WO 2019244307 A1 WO2019244307 A1 WO 2019244307A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
target
time
delay time
travel
Prior art date
Application number
PCT/JP2018/023684
Other languages
English (en)
French (fr)
Inventor
諒 中西
孝哉 葛城
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/023684 priority Critical patent/WO2019244307A1/ja
Priority to US17/053,863 priority patent/US11572090B2/en
Priority to JP2020525171A priority patent/JP6765580B2/ja
Priority to DE112018007749.7T priority patent/DE112018007749T5/de
Publication of WO2019244307A1 publication Critical patent/WO2019244307A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/12Preparing schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/14Following schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data

Definitions

  • the present invention relates to an operation time interval control device and an operation time interval control method for controlling an operation time interval of a train.
  • an operation management device calculates delay times of a train to be controlled, a preceding train of the train to be controlled, and a subsequent train of the train to be controlled based on an operation schedule, position information of each train, and the like.
  • a technique is disclosed in which a train to be controlled such as a departure from a station and a decrease in traveling speed are suppressed for a train to be controlled. If the operation interval between specific trains increases, the transportation efficiency of passengers decreases. Therefore, the operation management device described in Patent Literature 1 suppresses the running of the train to be controlled in consideration of the delay time of the preceding train and the following train. Do.
  • Patent Literature 1 the control by the operation management device described in Patent Literature 1 can suppress a decrease in the transportation efficiency of passengers, but has a problem that the delay to the operation schedule cannot be recovered.
  • the present invention has been made in view of the above, and in the case where a train delay occurs, an operation time interval control device capable of recovering a delay to an operation schedule while suppressing a decrease in passenger transportation efficiency.
  • the purpose is to obtain.
  • the driving time interval control device of the present invention includes a delay time receiving unit that receives the identification information and the delay time of the train within the jurisdiction range.
  • the driving time interval control device identifies a target train that is a target train for traveling control based on the delay time, determines the traveling order of each train in the traveling direction using the identification information of each train, and From the order, the preceding train, which is a train running before the target train, and the succeeding train, which is a train running after the target train, are specified, and are set at the time of normal running in a running section where the target train runs next.
  • a target travel time calculation unit is provided that calculates a target travel time in a travel section of the target train using the normal travel time, the delay time of the target train, the delay time of the preceding train, and the delay time of the subsequent train.
  • the driving time interval control device includes a target traveling time transmitting unit that transmits the target traveling time to the target train.
  • the operation time interval control device has an effect that, when a train delay occurs, it is possible to recover the delay to the service schedule while suppressing a decrease in the transportation efficiency of the passenger.
  • FIG. 2 is a block diagram illustrating a configuration example of an operation time interval control device according to the first embodiment. Diagram showing changes in the number of passengers when train running control is not performed when a train delay occurs Flowchart showing an operation of performing travel control on a target train in which a delay has occurred in the driving interval control device according to the first embodiment.
  • the figure which shows the example at the time of comprising the processing circuit with which the driving time interval control apparatus concerning Embodiment 1 is provided with a processor and a memory.
  • FIG. 1 is a diagram showing a configuration example of an operation management system 100 according to Embodiment 1 of the present invention.
  • the operation management system 100 includes trains 14, 15, 16, a driving time interval control device 30, and a wireless base station 40.
  • the #trains 14 to 16 each include an on-board device (not shown) and an ATO (Automatic Train Operation).
  • the on-board device generates a run curve indicating the relationship between the position of the own train and the target speed of the own train based on the set travel time between stations.
  • the ATO controls running of the own train according to the generated run curve.
  • Each time the trains 14 to 16 depart from the station the delay time is measured at the time of departure from the station, and the identification information and the delay time are transmitted to the driving time interval control device 30.
  • the identification information is a train number set when each train operates. Even in the case of the same train set, if the trains are operated in different time zones, the train identification information, that is, the train number is different.
  • the delay time is a difference time between the departure time set on the operation schedule and the actual departure time at the station from which the train of each train number has departed.
  • the delay time may be a difference time between a passing time set at the time of normal operation when passing through a specific point, for example, a specific ground child, and an actual passing time.
  • the trains 14 to 16 transmit the identification information and the delay time with the delay time set to 0 even when no delay occurs.
  • the direction from the left side to the right side of the figure is the traveling direction of the trains 14 to 16. Although only two stations 25 and 26 are shown in FIG. 1, it is assumed that one or more stations actually exist on the left side of the station 25 and on the right side of the station 26.
  • the wireless base station 40 is installed on the ground, and relays communication between the trains 14 to 16 and the driving time interval control device 30.
  • the communication between the radio base station 40 and the driving time interval control device 30 may be wireless communication or wired communication.
  • the radio base station 40 performs communication with the trains 14 to 16 by wireless communication, and uses a vehicle child (not shown) installed on the trains 14 to 16 and a ground child installed on the ground, for example. Other existing communication schemes may be used.
  • the driving time interval control device 30 performs control for restoring an operation schedule while suppressing a decrease in the transportation efficiency of passengers when a delay occurs in the trains 14 to 16 within the jurisdiction range.
  • the operation time interval control device 30 is a facility installed on the ground.
  • the operation time interval control device 30 may be installed in, for example, a base device (not shown), or may be installed as a single facility.
  • FIG. 2 is a block diagram illustrating a configuration example of the driving time interval control device 30 according to the first embodiment.
  • the driving time interval control device 30 includes a delay time receiving unit 31, a target traveling time calculating unit 32, and a target traveling time transmitting unit 33.
  • the delay time receiving unit 31 receives, via the radio base station 40, the train identification information and the delay time of the trains within the jurisdiction range from the trains within the jurisdiction range of the driving time interval control device 30.
  • the identification information is described as a train ID (Identification).
  • the delay time receiving unit 31 outputs the received identification information and the delay time to the target traveling time calculation unit 32.
  • the delay time receiving unit 31 may hold the received identification information and the delay time. In this case, when receiving the identification information and the delay time transmitted from each train at the time of departure of the next station, the delay time receiving unit 31 updates the held delay time.
  • the delay time receiving unit 31 holds 0 indicating that no delay has occurred as an initial value.
  • the target travel time calculation unit 32 specifies a target train that is a target train for travel control based on the delay time of each train. For example, when the delay time of the train is equal to or greater than a preset threshold, the target travel time calculation unit 32 determines that a delay has occurred in the train, and sets the train as the target train. In the example of FIG. 1, the target traveling time calculation unit 32 sets the train 15 as the target train. The target traveling time calculation unit 32 determines the traveling order of each train with respect to the traveling direction of each train using the identification information of each train. Since the identification information, that is, the train number is preset in the operation schedule, the target travel time calculation unit 32 can determine the order of the train in the front-rear relationship, that is, the traveling direction, based on the train number.
  • the target travel time calculation unit 32 specifies a preceding train, which is a train running before the target train, and a subsequent train, which is a train running after the target train, from the determined running order.
  • the target traveling time calculation unit 32 sets the train 14 as a preceding train and sets the train 16 as a succeeding train.
  • the target travel time calculation unit 32 uses the normal travel time, the delay time of the target train, the delay time of the preceding train, and the delay time of the subsequent train that are set during normal travel in the travel section where the target train travels next. Then, the target travel time in the travel section of the target train is calculated. That is, the target travel time calculation unit 32 calculates the target travel time using the normal travel time and the delay time of the three trains.
  • the traveling section is a section between a first stop station where the target train stops and a second stop station where the target train stops next.
  • the normal traveling time is the inter-station traveling time set during normal traveling between the first stop station and the second stop station. The details of the method of calculating the target travel time in the target travel time calculation unit 32 will be described later.
  • the target travel time calculation unit 32 outputs the calculated target travel time to the target travel time transmission unit 33 together with the identification information of the target train.
  • the target travel time transmission unit 33 transmits the target travel time calculated by the target travel time calculation unit 32 to the target train via the wireless base station 40 using the identification information of the target train.
  • the target travel time transmission unit 33 may transmit the target travel time for each predetermined cycle, or may transmit the target travel time each time it is acquired from the target travel time calculation unit 32.
  • the target travel time transmission unit 33 may hold the identification information and the target travel time acquired from the target travel time calculation unit 32. In this case, when acquiring the next target travel time for the target train having the same identification information from the target travel time calculation unit 32, the target travel time transmission unit 33 updates the held target travel time.
  • FIG. 3 is a diagram illustrating a change in the number of passengers when the running control of the train is not performed when a delay occurs in the train.
  • FIG. 3 shows an example in which a delay occurs only in the delayed train and no delay occurs in the preceding train and the succeeding train.
  • the interval between trains that is, the operation interval is such that there is no large difference between the operation intervals in successive operation intervals. Is set.
  • the delay is further increased, and the timetable is increased.
  • the operation time interval between the preceding train 54 and the delayed train 55 can be narrowed, so that it is possible to suppress an increase in the schedule disorder.
  • the preceding train 54 that can be normally operated is also delayed, there is a possibility that the train disruption may affect a wide range of trains.
  • the driving time interval control device 30 controls the delay so as to recover the operation schedule while suppressing a decrease in the transportation efficiency of passengers. Control the running of the train.
  • the target travel time calculation unit 32 of the driving interval control device 30 actually sets one or more trains running in the range of the driving interval control device 30 as the target train, and Calculate the target travel time.
  • FIG. 1 shows only the trains 14 to 16, it is assumed that a train 13 (not shown) exists on the right side of the train 14 and a train 17 (not shown) exists on the left side of the train 16. In this case, when the train 14 is delayed, the target travel time calculation unit 32 determines that the train 14 is the target train, the train 13 is the preceding train, the train 15 is the subsequent train, Can be calculated.
  • the target travel time calculation unit 32 calculates the target travel time of the target train, that is, the train 16, by setting the train 16 as a target train, the train 15 as a preceding train, and the train 17 as a subsequent train. Can be calculated. Note that when there is no preceding train, the target travel time calculation unit 32 may treat the delay time of the preceding train as 0. For example, there is no preceding train in the first business start train. In addition, when there is no subsequent train, the target traveling time calculation unit 32 may treat the delay time of the subsequent train as 0. For example, there is no subsequent train in the last train closed. Thus, each train can be a target train, a preceding train, or a following train.
  • the method of calculating the target running time of the target train by the target running time calculator 32 is the same. Therefore, in the following description, as shown in FIG. 1, the case where the target train is the train 15, the preceding train is the train 14, and the succeeding train is the train 16 will be described as an example.
  • FIG. 4 is a flowchart illustrating an operation of performing driving control on the target train on which a delay has occurred in the driving time interval control device 30 according to the first embodiment.
  • the delay time receiving unit 31 receives the identification information and the delay time from the trains 14 to 16 within the jurisdiction of the driving time interval control device 30 via the radio base station 40 (Step S10). S11).
  • the delay time receiving unit 31 outputs the received identification information and the delay time to the target traveling time calculation unit 32.
  • the target travel time calculation unit 32 determines whether or not a delay has occurred in the trains 14 to 16 within the jurisdiction based on the identification information and the delay time acquired from the delay time reception unit 31 (step S12). As described above, the target traveling time calculation unit 32 determines that a delay has occurred when the delay time is equal to or greater than a preset threshold. The target travel time calculation unit 32 allows a delay time shorter than the threshold. When determining that there is no delayed train (step S12: No), the target traveling time calculation unit 32 ends the process. When it is determined that there is a delayed train (step S12: Yes), the target travel time calculation unit 32 sets the train determined to be delayed as a target train to be subjected to travel control. In the example of FIG. 1, the target travel time calculation unit 32 determines that a delay has occurred in the train 15 and sets the train 15 as the target train.
  • the target traveling time calculation unit 32 determines the traveling order of each train with respect to the traveling direction of each train using the identification information of each train (step S13).
  • the target travel time calculation unit 32 determines that the train 14, the train 15, and the train 16 are traveling in the traveling direction in the order shown in FIG. 1.
  • the target travel time calculation unit 32 specifies the target train, that is, the preceding train that runs before the train 15 and the target train, that is, the subsequent train that runs after the train 15 from the determined running order (Step S14). As shown in FIG. 1, the target travel time calculation unit 32 sets the train 14 as a preceding train and sets the train 16 as a succeeding train.
  • the target travel time calculation unit 32 calculates the target travel time in the travel section in which the target train, that is, the train 15 travels next, using Expressions (1) and (2) (Step S15).
  • t tmp tn s (j) -dt c (i), s (j) + k ⁇ max (dt c (i-1), (s + j), dt c (i + 1), s (j-1)) ... ( 2)
  • c (i) indicates a train, and i indicates the running order of the train. A smaller value of i indicates a train that is more forward with respect to the traveling direction. Assuming that c (i) is the target train (train 15), c (i-1) is the preceding train (train 14), and c (i + 1) is the succeeding train (train 16). Also, s (j) indicates a station, and j indicates a row of stations. A smaller value of j indicates a station that is more rearward with respect to the traveling direction. T tmp is a target travel time required for calculation by the target travel time calculation unit 32.
  • t c (i) and s (j) are target running times between the station s (j) and the station s (j + 1) of the train indicated by c (i), that is, the target train.
  • tns (j) is a normal traveling time between the station s (j) and the station s (j + 1) during normal operation, which is set on the operation schedule.
  • trs (j) is the fastest running time defined between the station s (j) and the station s (j + 1).
  • the target travel times tc (i) and s (j) and the normal travel time tns (j) are equal to or longer than the fastest travel time trs (j) .
  • Dt c (i) and s (j) are delay times generated when the train indicated by c (i) departs from the station indicated by s (j).
  • k is a weight coefficient used when calculating the target travel time with respect to the delay time of the adjacent train. Note that 0 ⁇ k ⁇ 1.
  • the third term of equation (2) represents a geometric progression with a common ratio of k by setting 0 ⁇ k ⁇ 1, and the target travel time is calculated by equation (2) every time the target train leaves the station. Is updated, it is assumed that the third term converges to 0.
  • k may be a fixed value, or may be calculated by the target travel time calculation unit 32 using the delay times of the target train, the preceding train, and the following train.
  • the target travel time t tmp required for calculation is longer than the fastest travel time tr s (j)
  • the target travel time t c (i) Let s (j) be the target travel time t tmp required for calculation. Further, as shown in the lower part of Expression (1), when the target traveling time t tmp required for calculation is shorter than the fastest traveling time tr s (j) , the target traveling time calculating section 32 calculates the target traveling time t c (i ), S (j) cannot be made faster than the fastest running time trs (j) , so the target running times tc (i), s (j) are set as the fastest running time trs (j) .
  • the target travel time calculation unit 32 subtracts the delay time dtc (i), s (j) of the target train from the normal travel time tns (j) during normal operation as shown in Expression (2).
  • the larger of the delay time dt c (i ⁇ 1), (s + j) of the preceding train and the delay time dt c (i + 1), s (j ⁇ 1) of the succeeding train, the larger delay time max (dt c (i ⁇ 1), (s + j) , dtc (i + 1), s (j-1) ) are multiplied by a value obtained by multiplying by a weighting coefficient to calculate a target traveling time ttmp necessary for calculation.
  • the target traveling time calculation unit 32 recovers the delay of the target train and sets the delay time of the preceding train or the following train to prevent the delay from increasing. Accordingly, the target traveling times tc (i) and s (j) can be calculated.
  • the target travel time calculation unit 32 outputs the target train identification information for which the target travel time has been calculated and the calculated target travel time to the target travel time transmission unit 33.
  • the target travel time transmission unit 33 transmits the target travel time calculated by the target travel time calculation unit 32 to the target train, that is, the train 15 via the wireless base station 40 using the identification information of the target train (Step S16). ).
  • the target train that is, the train 15, which has acquired the target travel time, generates a run curve using the target travel time and travels according to the run curve.
  • the target travel time calculation unit 32 uses the weight coefficient k for the third term of the delay time of the preceding train and the following train in Expression (2), but also uses the weight coefficient k for the second term of the delay time of the target train.
  • a weight coefficient may be used.
  • Equation (3) uses the weighting coefficient for the second term.
  • ttmp tns (j) -l * dtc (i), s (j) + k * max (dtc (i-1), (s + j) , dtc (i + 1), s (j-1) ) ... (3)
  • l is a weight coefficient for the delay time of the target train.
  • the target travel time calculation unit 32 calculates 1 from the ratio of the target train delay times dt c (i) and s (j) to the travel time tns (j) .
  • l may be referred to as a first weighting coefficient
  • k may be referred to as a second weighting coefficient.
  • the target travel time calculation unit 32 calculates the delay time dtc (i), s (j) of the target train with respect to the normal travel time tns (j) during normal operation.
  • the value multiplied by the weighting factor of 1 is subtracted, and the larger of the delay time dt c (i ⁇ 1), (s + j) of the preceding train and the delay time dt c (i + 1), s (j ⁇ 1) of the following train
  • the value obtained by multiplying the delay time max (dtc (i ⁇ 1), (s + j) , dtc (i + 1), s (j ⁇ 1) ) by the second weighting factor is added to the target required for calculation.
  • the running time ttmp is calculated.
  • the delay time receiving unit 31 and the target traveling time transmitting unit 33 are communication devices.
  • the target travel time calculation unit 32 is realized by a processing circuit.
  • the processing circuit may be a processor and a memory that execute a program stored in the memory, or may be dedicated hardware.
  • FIG. 5 is a diagram illustrating an example of a case where the processing circuit included in the driving time interval control device 30 according to Embodiment 1 is configured by a processor and a memory.
  • the processing circuit includes the processor 91 and the memory 92
  • each function of the processing circuit of the driving time interval control device 30 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in the memory 92.
  • each function is realized by the processor 91 reading out and executing the program stored in the memory 92. That is, the processing circuit includes a memory 92 for storing a program that results in the processing of the driving time interval control device 30 being executed. It can also be said that these programs cause a computer to execute the procedure and method of the driving time interval control device 30.
  • the processor 91 may be a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 92 includes, for example, a non-volatile or volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM).
  • Semiconductor memory magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), and the like.
  • FIG. 6 is a diagram illustrating an example of a case where the processing circuit included in the driving time interval control device 30 according to the first embodiment is configured by dedicated hardware.
  • the processing circuit 93 illustrated in FIG. 6 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), An FPGA (Field ⁇ Programmable ⁇ Gate ⁇ Array) or a combination thereof is applicable.
  • Each function of the driving time interval control device 30 may be realized by the processing circuit 93 for each function, or each function may be realized by the processing circuit 93 collectively.
  • each function of the driving time interval control device 30 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the processing circuit can realize each of the above functions by dedicated hardware, software, firmware, or a combination thereof.
  • the target traveling time calculation unit 32 determines whether the target train to be subjected to the travel control due to the delay Using the normal travel time set during normal travel in the next travel section, the delay time of the target train, the delay time of the preceding train, and the delay time of the subsequent train, the target travel time in the travel section of the target train is calculated. calculate. Thereby, when a train delay occurs, the driving time interval control device 30 can recover the delay for the service schedule while suppressing a decrease in the transportation efficiency of the passenger. In addition, the driving time interval control device 30 can change the traveling speed of the target train in the traveling section, thereby avoiding continuous trains, and contributing to energy saving operation of the train when a delay occurs.
  • Embodiment 2 FIG.
  • the operation time interval control device 30 is installed on the ground.
  • each train is equipped with the driving time interval control device 30. The parts different from the first embodiment will be described.
  • FIG. 7 is a diagram illustrating a configuration example of the operation management system 101 according to the second embodiment.
  • the operation management system 101 includes trains 14a, 15a, 16a and a radio base station 40.
  • Each of the trains 14a to 16a further includes an operation time interval control device 30 with respect to the trains 14 to 16 of the first embodiment shown in FIG.
  • the driving time interval control device 30 is mounted on each train.
  • the delay time receiving unit 31 of the driving time interval control device 30 transmits identification information and delay information from a train other than the train in which the own device is mounted via the wireless base station 40 installed on the ground. Receive time.
  • the delay time receiving unit 31 receives the identification information and the delay time from the train in which the own device is mounted by wire communication or wireless communication. That is, similarly to the first embodiment, the delay time receiving unit 31 receives, from the trains within the jurisdiction of the driving time interval control device 30, the identification information and the delay time of the trains within the jurisdiction range.
  • the target travel time calculation unit 32 of the driving time interval control device 30 calculates the target travel time in the same manner as in the first embodiment. However, the target travel time calculation unit 32 calculates the target travel time of the target train, using the driving time interval control device 30, that is, the train on which the own device is mounted, as the target train. That is, in the second embodiment, the target travel time calculation unit 32 calculates only the target travel time of one train. For example, when the delay time of the train on which the own device is mounted is equal to or greater than a preset threshold, the target travel time calculation unit 32 determines that the delay occurs on the train on which the own device is mounted, and Is a target train that is a target train for traveling control.
  • the target traveling time calculation unit 32 determines the traveling order of each train with respect to the traveling direction of each train using the identification information of each train.
  • the target travel time calculation unit 32 specifies a preceding train, which is a train running before the target train, and a subsequent train, which is a train running after the target train, from the determined running order.
  • the target travel time calculation unit 32 sets the train 14a as the preceding train and sets the train 16a as the succeeding train.
  • the target travel time calculation unit 32 uses the normal travel time, the delay time of the target train, the delay time of the preceding train, and the delay time of the subsequent train that are set during normal travel in the travel section where the target train travels next.
  • the target travel time in the travel section of the target train is calculated. That is, the target travel time calculation unit 32 calculates the target travel time using the normal travel time and the delay time of the three trains. The method of calculating the target travel time in the target travel time calculation unit 32 is as described above. The target travel time calculation unit 32 outputs the calculated target travel time to the target travel time transmission unit 33 together with the identification information of the target train.
  • the target traveling time transmission unit 33 of the driving time interval control device 30 transmits the target traveling time to a train in which the own device is mounted by wire communication or wireless communication.
  • the target traveling time calculation unit 32 calculates only the target traveling time of one train on which the driving interval control device 30 is mounted. I do. That is, in each train, the target travel time of the own train is calculated. Thereby, driving time interval control device 30 can reduce the processing load when calculating target traveling time as compared with the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

管轄範囲内の列車の識別情報および遅延時間を受信する遅延時間受信部(31)と、遅延時間に基づいて走行制御の対象の列車である対象列車を特定し、各列車の識別情報を用いて、走行方向に対する各列車の走行順を判定し、走行順から、対象列車の前を走行する列車である先行列車、および対象列車の後を走行する列車である後続列車を特定し、対象列車が次に走行する走行区間において通常走行時に設定されている通常走行時間、対象列車の遅延時間、先行列車の遅延時間、および後続列車の遅延時間を用いて、対象列車の走行区間における目標走行時間を算出する目標走行時間算出部(32)と、目標走行時間を対象列車に送信する目標走行時間送信部(33)と、を備える。

Description

運転時隔制御装置および運転時隔制御方法
 本発明は、列車の運転時隔を制御する運転時隔制御装置および運転時隔制御方法に関する。
 従来、列車の運行管理として、運行ダイヤに対して列車の遅延が発生した場合、遅延が発生した列車の走行時間、駅出発時間などを制御して、乗客の輸送効率の低下を抑制することが行われている。特許文献1には、運行管理装置が、運行ダイヤ、各列車の位置情報などに基づいて、制御対象列車、制御対象列車の先行列車、および制御対象列車の後続列車の遅延時間を算出し、乗客の輸送効率の低下を防ぐため、制御対象列車に対して、駅出発抑止、走行速度低下といった走行抑止を行う技術が開示されている。特定の列車間で運転時隔が大きくなると乗客の輸送効率が低下するため、特許文献1に記載の運行管理装置は、先行列車および後続列車の遅延時間も考慮して制御対象列車の走行抑止を行う。
特開2017-43265号公報
 しかしながら、特許文献1に記載の運行管理装置による制御では、乗客の輸送効率の低下を抑制することはできるが、運行ダイヤに対する遅延を回復させることができない、という問題があった。
 本発明は、上記に鑑みてなされたものであって、列車の遅延が発生した場合において、乗客の輸送効率の低下を抑制しつつ運行ダイヤに対する遅延を回復させることが可能な運転時隔制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の運転時隔制御装置は、管轄範囲内の列車の識別情報および遅延時間を受信する遅延時間受信部を備える。また、運転時隔制御装置は、遅延時間に基づいて走行制御の対象の列車である対象列車を特定し、各列車の識別情報を用いて、走行方向に対する各列車の走行順を判定し、走行順から、対象列車の前を走行する列車である先行列車、および対象列車の後を走行する列車である後続列車を特定し、対象列車が次に走行する走行区間において通常走行時に設定されている通常走行時間、対象列車の遅延時間、先行列車の遅延時間、および後続列車の遅延時間を用いて、対象列車の走行区間における目標走行時間を算出する目標走行時間算出部を備える。また、運転時隔制御装置は、目標走行時間を対象列車に送信する目標走行時間送信部を備えることを特徴とする。
 本発明によれば、運転時隔制御装置は、列車の遅延が発生した場合において、乗客の輸送効率の低下を抑制しつつ運行ダイヤに対する遅延を回復させることができる、という効果を奏する。
実施の形態1に係る運行管理システムの構成例を示す図 実施の形態1に係る運転時隔制御装置の構成例を示すブロック図 列車に遅延が発生した場合において、列車の走行制御をしないときの乗客数の変化を示す図 実施の形態1に係る運転時隔制御装置において遅延が発生した対象列車に対して走行制御を行う動作を示すフローチャート 実施の形態1に係る運転時隔制御装置が備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図 実施の形態1に係る運転時隔制御装置が備える処理回路を専用のハードウェアで構成する場合の例を示す図 実施の形態2に係る運行管理システムの構成例を示す図
 以下に、本発明の実施の形態に係る運転時隔制御装置および運転時隔制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る運行管理システム100の構成例を示す図である。運行管理システム100は、列車14,15,16と、運転時隔制御装置30と、無線基地局40と、を備える。
 列車14~16は、各々図示しない車上装置およびATO(Automatic Train Operation)を備える。車上装置は、設定された駅間の走行時間に基づいて自列車の位置と自列車の目標速度との関係を示すランカーブを生成する。ATOは、生成されたランカーブに従って、自列車の走行を制御する。列車14~16は、駅を出発するごとに、駅出発時に遅延時間を計測し、運転時隔制御装置30に対して識別情報および遅延時間を送信する。識別情報は、各列車の運行時に設定されている列車番号である。同一の列車編成であっても、異なる時間帯に運行されている場合、列車の識別情報すなわち列車番号は異なる。遅延時間は、各列車番号の列車が出発した駅において運行ダイヤで設定されている出発時刻と実際の出発時刻との差分の時間である。遅延時間については、特定の地点、例えば特定の地上子を通過した時の通常運行時に設定されている通過時刻と実際の通過時刻との差分の時間としてもよい。列車14~16は、遅延が発生していない場合も遅延時間を0として、識別情報および遅延時間を送信する。図1において、図の左側から右側の方向を列車14~16の走行方向とする。なお、図1では、駅25,26の2つの駅のみ示しているが、実際には駅25の左側および駅26の右側にも1つ以上の駅が存在するものとする。
 無線基地局40は、地上に設置され、列車14~16と運転時隔制御装置30との間の通信を中継する。無線基地局40は、運転時隔制御装置30との間の通信については、無線通信であってもよいし、有線通信であってもよい。無線基地局40は、列車14~16との間の通信については無線通信で行うが、列車14~16に設置された図示しない車上子と地上に設置された地上子とを用いた通信など既存の他の通信方式を用いてもよい。
 運転時隔制御装置30は、管轄範囲内にある列車14~16において遅延が発生した場合に、乗客の輸送効率の低減を抑制しつつ、運行ダイヤを回復させる制御を行う。実施の形態1において、運転時隔制御装置30は、地上に設置された設備である。運転時隔制御装置30は、例えば、図示しない拠点装置などに設置されていてもよいし、単独の設備として設置されていてもよい。
 運転時隔制御装置30の構成について説明する。図2は、実施の形態1に係る運転時隔制御装置30の構成例を示すブロック図である。運転時隔制御装置30は、遅延時間受信部31と、目標走行時間算出部32と、目標走行時間送信部33と、を備える。
 遅延時間受信部31は、無線基地局40を介して、運転時隔制御装置30の管轄範囲内の列車から、管轄範囲内の列車の識別情報および遅延時間を受信する。図2では、識別情報を列車ID(Identification)と記載している。遅延時間受信部31は、受信した識別情報および遅延時間を目標走行時間算出部32に出力する。なお、遅延時間受信部31は、受信した識別情報および遅延時間を保持していてもよい。この場合、遅延時間受信部31は、各列車から次の駅の出発時に送信された識別情報および遅延時間を受信したときは、保持していた遅延時間を更新する。遅延時間受信部31は、各列車の遅延時間を保持する場合、初期値として遅延が発生していないことを示す0を保持しておく。
 目標走行時間算出部32は、各列車の遅延時間に基づいて走行制御の対象の列車である対象列車を特定する。目標走行時間算出部32は、例えば、列車の遅延時間が予め設定された閾値以上の場合、当該列車で遅延が発生していると判定し、当該列車を対象列車とする。目標走行時間算出部32は、図1の例では、列車15を対象列車とする。目標走行時間算出部32は、各列車の識別情報を用いて、各列車の走行方向に対する各列車の走行順を判定する。目標走行時間算出部32は、識別情報すなわち列車番号は運行ダイヤにおいて予め設定されていることから、列車番号によって列車の前後関係すなわち走行方向に対する走行順を判定することができる。目標走行時間算出部32は、判定した走行順から、対象列車の前を走行する列車である先行列車、および対象列車の後を走行する列車である後続列車を特定する。目標走行時間算出部32は、図1の例では、列車14を先行列車とし、列車16を後続列車とする。目標走行時間算出部32は、対象列車が次に走行する走行区間において通常走行時に設定されている通常走行時間、対象列車の遅延時間、先行列車の遅延時間、および後続列車の遅延時間を用いて、対象列車の走行区間における目標走行時間を算出する。すなわち、目標走行時間算出部32は、通常走行時間および3列車の遅延時間を用いて、目標走行時間を算出する。走行区間は、対象列車が停車している第1の停車駅と対象列車が次に停車する第2の停車駅との間の区間である。通常走行時間は、第1の停車駅と第2の停車駅との間において通常走行時に設定されている駅間走行時間である。目標走行時間算出部32における目標走行時間の算出方法の詳細については後述する。目標走行時間算出部32は、対象列車の識別情報とともに、算出した目標走行時間を目標走行時間送信部33に出力する。
 目標走行時間送信部33は、対象列車の識別情報を用いて、目標走行時間算出部32で算出された目標走行時間を、無線基地局40を介して対象列車に送信する。目標走行時間送信部33は、予め規定された周期ごとに目標走行時間を送信してもよいし、目標走行時間算出部32から取得した都度、目標走行時間を送信してもよい。なお、目標走行時間送信部33は、目標走行時間算出部32から取得した識別情報および目標走行時間を保持していてもよい。この場合、目標走行時間送信部33は、目標走行時間算出部32から同じ識別情報の対象列車について次の目標走行時間を取得したときは、保持していた目標走行時間を更新する。
 ここで、列車に遅延が発生した場合の乗客の輸送効率の推移について説明する。図3は、列車に遅延が発生した場合において、列車の走行制御をしないときの乗客数の変化を示す図である。図3では、遅延列車のみで遅延が発生し、先行列車および後続列車で遅延が発生していない例を示している。一般的に、遅延が発生していない運行ダイヤに基づく通常運転の状態では、列車間の間隔すなわち運転時隔は、連続する運転時隔において運転時隔毎に大きな差異が出ないように運行ダイヤが設定されている。これは、運転間隔に大きな差異があると、列車によって乗客の混雑の程度が大きく変わってしまい、乗客の多い列車で乗降時間が増大し、列車が遅延し易くなるためである。図3に示すように、遅延列車55のみが遅延し、先行列車54および後続列車56で遅延が発生していない場合、先行列車54と遅延列車55との間の運転時隔が開き過ぎ、駅26において待ち乗客数が列車遅延前よりも増えてしまう。一方、後続列車56と遅延列車55との間の運転時隔は狭まり過ぎ、駅25において待ち乗客数が列車遅延前よりも減ることになる。遅延列車55は、駅26に到着すると、多くの乗客を乗せる必要があるため、乗降時間が増大し、さらに遅延が大きくなり、ダイヤ乱れが増大する。このような場合、先行列車54を遅延させることで、先行列車54と遅延列車55との間の運転時隔を狭めることができるため、ダイヤ乱れの増大を抑制することが可能である。一方で、通常運行可能な先行列車54も遅延させてしまうことから、ダイヤ乱れが広範囲の列車に及ぶ可能性がある。
 そのため、実施の形態1において、運転時隔制御装置30は、管轄範囲内にある列車において遅延が発生した場合に、乗客の輸送効率の低減を抑制しつつ、運行ダイヤを回復させるように、遅延列車の走行制御を行う。
 実施の形態1において、運転時隔制御装置30の目標走行時間算出部32は、実際には、運転時隔制御装置30の管轄範囲内を走行する1以上の列車を対象列車として、対象列車の目標走行時間を算出する。図1では列車14~16のみを示しているが、列車14の右側に図示しない列車13が存在し、列車16の左側に図示しない列車17が存在することを想定する。この場合、目標走行時間算出部32は、列車14が遅延している場合、列車14を対象列車とし、列車13を先行列車とし、列車15を後続列車として、対象列車すなわち列車14の目標走行時間を算出することができる。また、目標走行時間算出部32は、列車16が遅延している場合、列車16を対象列車とし、列車15を先行列車とし、列車17を後続列車として、対象列車すなわち列車16の目標走行時間を算出することができる。なお、目標走行時間算出部32は、先行列車が存在しない場合は先行列車の遅延時間を0として扱ってもよい。例えば、始発の営業開始列車には、先行列車は存在しない。また、目標走行時間算出部32は、後続列車が存在しない場合は後続列車の遅延時間を0として扱ってもよい。例えば、終電の営業終了列車には、後続列車は存在しない。このように、各列車は、対象列車にも、先行列車にも、後続列車にもなり得る。ただし、対象列車、先行列車、および後続列車の組み合せに係わらず、目標走行時間算出部32での対象列車の目標走行時間の算出方法は同じである。そのため、以降の説明では、図1に示すように、対象列車が列車15、先行列車が列車14、後続列車が列車16の場合を例にして説明する。
 運転時隔制御装置30の具体的な動作について説明する。図4は、実施の形態1に係る運転時隔制御装置30において遅延が発生した対象列車に対して走行制御を行う動作を示すフローチャートである。運転時隔制御装置30において、遅延時間受信部31は、無線基地局40を介して、運転時隔制御装置30の管轄範囲内の列車14~16から、識別情報および遅延時間を受信する(ステップS11)。遅延時間受信部31は、受信した識別情報および遅延時間を目標走行時間算出部32に出力する。
 目標走行時間算出部32は、遅延時間受信部31から取得した識別情報および遅延時間から、管轄範囲内の列車14~16において遅延が発生しているか否かを判定する(ステップS12)。目標走行時間算出部32は、前述のように、遅延時間が予め設定された閾値以上の場合、遅延が発生していると判定する。目標走行時間算出部32は、閾値未満の遅延時間については許容する。目標走行時間算出部32は、遅延が発生している列車がないと判定した場合(ステップS12:No)、処理を終了する。目標走行時間算出部32は、遅延が発生している列車があると判定した場合(ステップS12:Yes)、遅延が発生していると判定した列車を走行制御の対象の対象列車とする。目標走行時間算出部32は、図1の例では、列車15で遅延が発生していると判定し、列車15を対象列車とする。
 目標走行時間算出部32は、各列車の識別情報を用いて、各列車の走行方向に対する各列車の走行順を判定する(ステップS13)。目標走行時間算出部32は、図1に示すように、走行方向に対して列車14、列車15、列車16の順で走行していると判定する。目標走行時間算出部32は、判定した走行順から、対象列車すなわち列車15の前を走行する先行列車、および対象列車すなわち列車15の後を走行する後続列車を特定する(ステップS14)。目標走行時間算出部32は、図1に示すように、列車14を先行列車とし、列車16を後続列車とする。
 目標走行時間算出部32は、対象列車すなわち列車15が次に走行する走行区間における目標走行時間を、式(1)および式(2)を用いて算出する(ステップS15)。
  tc(i),s(j)=ttmp   (ttmp≧trs(j)
         =trs(j) (ttmp<trs(j)) …(1)
  ttmp=tns(j)-dtc(i),s(j)+k×max(dtc(i-1),(s+j),dtc(i+1),s(j-1)) …(2)
 式(1)および式(2)において、c(i)は、列車を示し、iによって列車の走行順が示される。iの値が小さいほど走行方向に対して前方向にある列車を示す。c(i)を対象列車(列車15)とすると、c(i-1)は先行列車(列車14)となり、c(i+1)は後続列車(列車16)となる。また、s(j)は、駅を示し、jによって駅の並びが示される。jの値が小さいほど走行方向に対して後方向にある駅を示す。また、ttmpは、目標走行時間算出部32での計算上必要な目標走行時間である。また、tc(i),s(j)は、c(i)で示される列車すなわち対象列車の、駅s(j)から駅s(j+1)間の目標走行時間である。また、tns(j)は、運行ダイヤ上で設定された、通常運転時の駅s(j)から駅s(j+1)間の通常走行時間である。また、trs(j)は、駅s(j)から駅s(j+1)間で規定された最速走行時間である。目標走行時間tc(i),s(j)および通常走行時間tns(j)は、最速走行時間trs(j)以上となる。また、dtc(i),s(j)は、c(i)で示される列車がs(j)で示される駅を出発する際に発生した遅延時間である。また、kは、隣接する列車の遅延時間に対して、目標走行時間を算出する際に使用する重み係数である。なお、0<k<1とする。式(2)の第3項は、0<k<1にすることによって公比がkの等比数列をイメージしており、対象列車が駅を出発する毎に式(2)によって目標走行時間を更新することで、第3項が0に収束していくことが想定される。kについては、固定値としてもよいし、対象列車、先行列車、および後続列車の遅延時間などを用いて目標走行時間算出部32が演算により求めてもよい。
 目標走行時間算出部32は、式(1)の上段に示すように、計算上必要な目標走行時間ttmpが最速走行時間trs(j)より長い場合、目標走行時間tc(i),s(j)を計算上必要な目標走行時間ttmpとする。また、目標走行時間算出部32は、式(1)の下段に示すように、計算上必要な目標走行時間ttmpが最速走行時間trs(j)より短い場合、目標走行時間tc(i),s(j)を最速走行時間trs(j)より速くできないことから、目標走行時間tc(i),s(j)を最速走行時間trs(j)とする。
 目標走行時間算出部32は、式(2)に示すように、通常運転時の通常走行時間tns(j)に対して、対象列車の遅延時間dtc(i),s(j)を減算し、先行列車の遅延時間dtc(i-1),(s+j)および後続列車の遅延時間dtc(i+1),s(j-1)のうち大きい方の遅延時間max(dtc(i-1),(s+j),dtc(i+1),s(j-1))に重み係数を乗算した値を加算して、計算上必要な目標走行時間ttmpを算出する。目標走行時間算出部32は、このように式(1)および式(2)を用いることで、遅延の増大を防ぐため、対象列車の遅延を回復しつつ、先行列車または後続列車の遅延時間に応じてゆっくりとした目標走行時間tc(i),s(j)を算出することができる。
 目標走行時間算出部32は、目標走行時間を算出した対象列車の識別情報、および算出した目標走行時間を目標走行時間送信部33に出力する。目標走行時間送信部33は、対象列車の識別情報を用いて、目標走行時間算出部32で算出された目標走行時間を、無線基地局40を介して対象列車すなわち列車15に送信する(ステップS16)。
 目標走行時間を取得した対象列車すなわち列車15は、目標走行時間を用いてランカーブを生成し、ランカーブに従って走行する。
 なお、目標走行時間算出部32は、式(2)において、先行列車および後続列車の遅延時間についての第3項に重み係数kを用いていたが、対象列車の遅延時間の第2項にも重み係数を用いてもよい。第2項に重み係数を用いた式を式(3)に示す。
  ttmp=tns(j)-l×dtc(i),s(j)+k×max(dtc(i-1),(s+j),dtc(i+1),s(j-1)) …(3)
 式(3)において、lは、対象列車の遅延時間に対する重み係数である。目標走行時間算出部32は、例えば、走行時間tns(j)に対する対象列車の遅延時間dtc(i),s(j)の比から演算によりlを求める。lを第1の重み係数と称し、kを第2の重み係数と称することがある。目標走行時間算出部32は、式(3)に示すように、通常運転時の通常走行時間tns(j)に対して、対象列車の遅延時間dtc(i),s(j)に第1の重み係数を乗算した値を減算し、先行列車の遅延時間dtc(i-1),(s+j)および後続列車の遅延時間dtc(i+1),s(j-1)のうち大きい方の遅延時間max(dtc(i-1),(s+j),dtc(i+1),s(j-1))に第2の重み係数を乗算した値を加算して、計算上必要な目標走行時間ttmpを算出する。目標走行時間算出部32は、このように式(1)および式(3)を用いることで、遅延の増大を防ぐため、対象列車の遅延を回復しつつ、先行列車または後続列車の遅延時間に応じてゆっくりとした目標走行時間tc(i),s(j)を算出することができる。
 つづいて、運転時隔制御装置30のハードウェア構成について説明する。運転時隔制御装置30において、遅延時間受信部31および目標走行時間送信部33は通信装置である。目標走行時間算出部32は、処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。
 図5は、実施の形態1に係る運転時隔制御装置30が備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図である。処理回路がプロセッサ91およびメモリ92で構成される場合、運転時隔制御装置30の処理回路の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路は、運転時隔制御装置30の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。また、これらのプログラムは、運転時隔制御装置30の手順および方法をコンピュータに実行させるものであるともいえる。
 ここで、プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などであってもよい。また、メモリ92には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。
 図6は、実施の形態1に係る運転時隔制御装置30が備える処理回路を専用のハードウェアで構成する場合の例を示す図である。処理回路が専用のハードウェアで構成される場合、図6に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。運転時隔制御装置30の各機能を機能別に処理回路93で実現してもよいし、各機能をまとめて処理回路93で実現してもよい。
 なお、運転時隔制御装置30の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
 以上説明したように、本実施の形態によれば、運転時隔制御装置30において、目標走行時間算出部32は、遅延が発生して走行制御の対象となる対象列車に対して、対象列車が次に走行する走行区間において通常走行時に設定されている通常走行時間、対象列車の遅延時間、先行列車の遅延時間、および後続列車の遅延時間を用いて、対象列車の走行区間における目標走行時間を算出する。これにより、運転時隔制御装置30は、列車の遅延が発生した場合において、乗客の輸送効率の低下を抑制しつつ運行ダイヤに対する遅延を回復させることができる。また、運転時隔制御装置30は、対象列車の走行区間での走行速度を変更させることで、列車が連続する状態を回避させ、遅延発生時の列車の省エネ運転にも寄与することできる。
実施の形態2.
 実施の形態1では、運転時隔制御装置30が地上に設置された場合について説明した。実施の形態2では、各列車が運転時隔制御装置30を搭載する。実施の形態1と異なる部分について説明する。
 図7は、実施の形態2に係る運行管理システム101の構成例を示す図である。運行管理システム101は、列車14a,15a,16aと、無線基地局40と、を備える。列車14a~16aは、各々図1に示す実施の形態1の列車14~16に対して、さらに運転時隔制御装置30を備える。運転時隔制御装置30は、各列車に搭載される。
 実施の形態2において、運転時隔制御装置30の遅延時間受信部31は、地上に設置された無線基地局40を介して、自装置が搭載されている列車以外の列車から、識別情報および遅延時間を受信する。遅延時間受信部31は、自装置が搭載されている列車から、有線通信または無線通信によって、識別情報および遅延時間を受信する。すなわち、遅延時間受信部31は、実施の形態1のときと同様、運転時隔制御装置30の管轄範囲内の列車から、管轄範囲内の列車の識別情報および遅延時間を受信する。
 実施の形態2において、運転時隔制御装置30の目標走行時間算出部32は、実施の形態1のときと同様の方法で、目標走行時間を算出する。ただし、目標走行時間算出部32は、運転時隔制御装置30すなわち自装置が搭載された列車を対象列車として、対象列車の目標走行時間を算出する。すなわち、実施の形態2において、目標走行時間算出部32は、1つの列車の目標走行時間のみを算出する。目標走行時間算出部32は、例えば、自装置が搭載された列車の遅延時間が予め設定された閾値以上の場合、自装置が搭載された列車で遅延が発生していると判定し、自装置が搭載された列車を走行制御の対象の列車である対象列車とする。目標走行時間算出部32は、各列車の識別情報を用いて、各列車の走行方向に対する各列車の走行順を判定する。目標走行時間算出部32は、判定した走行順から、対象列車の前を走行する列車である先行列車、および対象列車の後を走行する列車である後続列車を特定する。目標走行時間算出部32は、図7の例において列車15aが対象列車の場合、列車14aを先行列車とし、列車16aを後続列車とする。目標走行時間算出部32は、対象列車が次に走行する走行区間において通常走行時に設定されている通常走行時間、対象列車の遅延時間、先行列車の遅延時間、および後続列車の遅延時間を用いて、対象列車の走行区間における目標走行時間を算出する。すなわち、目標走行時間算出部32は、通常走行時間および3列車の遅延時間を用いて、目標走行時間を算出する。目標走行時間算出部32における目標走行時間の算出方法は前述の通りである。目標走行時間算出部32は、対象列車の識別情報とともに、算出した目標走行時間を目標走行時間送信部33に出力する。
 実施の形態2において、運転時隔制御装置30の目標走行時間送信部33は、自装置が搭載されている列車に、有線通信または無線通信によって目標走行時間を送信する。
 以上説明したように、本実施の形態によれば、運転時隔制御装置30において、目標走行時間算出部32は、運転時隔制御装置30が搭載された1つの列車の目標走行時間のみを算出する。すなわち、各列車において、自列車の目標走行時間を算出する。これにより、運転時隔制御装置30は、実施の形態1と比較して、目標走行時間を算出する際の処理負荷を低減することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 14~16 列車、25,26 駅、30 運転時隔制御装置、31 遅延時間受信部、32 目標走行時間算出部、33 目標走行時間送信部、40 無線基地局、100,101 運行管理システム。

Claims (12)

  1.  管轄範囲内の列車の識別情報および遅延時間を受信する遅延時間受信部と、
     前記遅延時間に基づいて走行制御の対象の列車である対象列車を特定し、各列車の識別情報を用いて、走行方向に対する各列車の走行順を判定し、前記走行順から、前記対象列車の前を走行する列車である先行列車、および前記対象列車の後を走行する列車である後続列車を特定し、前記対象列車が次に走行する走行区間において通常走行時に設定されている通常走行時間、前記対象列車の遅延時間、前記先行列車の遅延時間、および前記後続列車の遅延時間を用いて、前記対象列車の前記走行区間における目標走行時間を算出する目標走行時間算出部と、
     前記目標走行時間を前記対象列車に送信する目標走行時間送信部と、
     を備えることを特徴とする運転時隔制御装置。
  2.  列車に搭載される運転時隔制御装置であって、
     管轄範囲内の列車の識別情報および遅延時間を受信する遅延時間受信部と、
     前記運転時隔制御装置が搭載される列車を走行制御の対象の列車である対象列車とし、各列車の識別情報を用いて、走行方向に対する各列車の走行順を判定し、前記走行順から、前記対象列車の前を走行する列車である先行列車、および前記対象列車の後を走行する列車である後続列車を特定し、前記対象列車が次に走行する走行区間において通常走行時に設定されている通常走行時間、前記対象列車の遅延時間、前記先行列車の遅延時間、および前記後続列車の遅延時間を用いて、前記対象列車の前記走行区間における目標走行時間を算出する目標走行時間算出部と、
     前記目標走行時間を前記対象列車に送信する目標走行時間送信部と、
     を備えることを特徴とする運転時隔制御装置。
  3.  前記目標走行時間算出部は、前記通常走行時間に対して、前記対象列車の遅延時間を減算し、前記先行列車の遅延時間および前記後続列車の遅延時間のうち大きい方の遅延時間に重み係数を乗算した値を加算して、前記目標走行時間を算出する、
     ことを特徴とする請求項1または2に記載の運転時隔制御装置。
  4.  前記目標走行時間算出部は、前記通常走行時間に対して、前記対象列車の遅延時間に第1の重み係数を乗算した値を減算し、前記先行列車の遅延時間および前記後続列車の遅延時間のうち大きい方の遅延時間に第2の重み係数を乗算した値を加算して、前記目標走行時間を算出する、
     ことを特徴とする請求項1または2に記載の運転時隔制御装置。
  5.  前記走行区間は、前記対象列車が停車している第1の停車駅と前記対象列車が次に停車する第2の停車駅との間の区間であり、
     前記通常走行時間は、前記第1の停車駅と前記第2の停車駅との間において通常走行時に設定されている駅間走行時間である、
     ことを特徴とする請求項1から4のいずれか1つに記載の運転時隔制御装置。
  6.  前記遅延時間は、各列車が最後に出発した駅において運行ダイヤで設定されている出発時刻と実際の出発時刻との差分の時間である、
     ことを特徴とする請求項1から5のいずれか1つに記載の運転時隔制御装置。
  7.  遅延時間受信部が、管轄範囲内の列車の識別情報および遅延時間を受信する第1のステップと、
     目標走行時間算出部が、前記遅延時間に基づいて走行制御の対象の列車である対象列車を特定し、各列車の識別情報を用いて、走行方向に対する各列車の走行順を判定し、前記走行順から、前記対象列車の前を走行する列車である先行列車、および前記対象列車の後を走行する列車である後続列車を特定し、前記対象列車が次に走行する走行区間において通常走行時に設定されている通常走行時間、前記対象列車の遅延時間、前記先行列車の遅延時間、および前記後続列車の遅延時間を用いて、前記対象列車の前記走行区間における目標走行時間を算出する第2のステップと、
     目標走行時間送信部が、前記目標走行時間を前記対象列車に送信する第3のステップと、
     を含むことを特徴とする運転時隔制御方法。
  8.  列車に搭載される運転時隔制御装置における運転時隔制御方法であって、
     遅延時間受信部が、管轄範囲内の列車の識別情報および遅延時間を受信する第1のステップと、
     目標走行時間算出部が、前記運転時隔制御装置が搭載される列車を走行制御の対象の列車である対象列車とし、各列車の識別情報を用いて、走行方向に対する各列車の走行順を判定し、前記走行順から、前記対象列車の前を走行する列車である先行列車、および前記対象列車の後を走行する列車である後続列車を特定し、前記対象列車が次に走行する走行区間において通常走行時に設定されている通常走行時間、前記対象列車の遅延時間、前記先行列車の遅延時間、および前記後続列車の遅延時間を用いて、前記対象列車の前記走行区間における目標走行時間を算出する第2のステップと、
     目標走行時間送信部が、前記目標走行時間を前記対象列車に送信する第3のステップと、
     を含むことを特徴とする運転時隔制御方法。
  9.  前記第2のステップにおいて、前記目標走行時間算出部は、前記通常走行時間に対して、前記対象列車の遅延時間を減算し、前記先行列車の遅延時間および前記後続列車の遅延時間のうち大きい方の遅延時間に重み係数を乗算した値を加算して、前記目標走行時間を算出する、
     ことを特徴とする請求項7または8に記載の運転時隔制御方法。
  10.  前記第2のステップにおいて、前記目標走行時間算出部は、前記通常走行時間に対して、前記対象列車の遅延時間に第1の重み係数を乗算した値を減算し、前記先行列車の遅延時間および前記後続列車の遅延時間のうち大きい方の遅延時間に第2の重み係数を乗算した値を加算して、前記目標走行時間を算出する、
     ことを特徴とする請求項7または8に記載の運転時隔制御方法。
  11.  前記走行区間は、前記対象列車が停車している第1の停車駅と前記対象列車が次に停車する第2の停車駅との間の区間であり、
     前記通常走行時間は、前記第1の停車駅と前記第2の停車駅との間において通常走行時に設定されている駅間走行時間である、
     ことを特徴とする請求項7から10のいずれか1つに記載の運転時隔制御方法。
  12.  前記遅延時間は、各列車が最後に出発した駅において運行ダイヤで設定されている出発時刻と実際の出発時刻との差分の時間である、
     ことを特徴とする請求項7から11のいずれか1つに記載の運転時隔制御方法。
PCT/JP2018/023684 2018-06-21 2018-06-21 運転時隔制御装置および運転時隔制御方法 WO2019244307A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/023684 WO2019244307A1 (ja) 2018-06-21 2018-06-21 運転時隔制御装置および運転時隔制御方法
US17/053,863 US11572090B2 (en) 2018-06-21 2018-06-21 Headway control device
JP2020525171A JP6765580B2 (ja) 2018-06-21 2018-06-21 運転時隔制御装置および運転時隔制御方法
DE112018007749.7T DE112018007749T5 (de) 2018-06-21 2018-06-21 Abstandssteuervorrichtung und abstandssteuerverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023684 WO2019244307A1 (ja) 2018-06-21 2018-06-21 運転時隔制御装置および運転時隔制御方法

Publications (1)

Publication Number Publication Date
WO2019244307A1 true WO2019244307A1 (ja) 2019-12-26

Family

ID=68983636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023684 WO2019244307A1 (ja) 2018-06-21 2018-06-21 運転時隔制御装置および運転時隔制御方法

Country Status (4)

Country Link
US (1) US11572090B2 (ja)
JP (1) JP6765580B2 (ja)
DE (1) DE112018007749T5 (ja)
WO (1) WO2019244307A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113895487A (zh) * 2021-10-12 2022-01-07 湖南中车时代通信信号有限公司 一种等间隔行车调整方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233988A (ja) * 2013-05-30 2014-12-15 三菱重工業株式会社 運行管理装置、運行管理方法、車両、車両交通システム及びプログラム
JP2015107687A (ja) * 2013-12-03 2015-06-11 株式会社東芝 列車運行制御装置、制御方法及び制御プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPS241002A0 (en) * 2002-05-20 2002-06-13 Tmg International Holdings Pty Limited Scheduling method and system for rail networks
DE102011081993A1 (de) * 2011-09-01 2013-03-07 Siemens Aktiengesellschaft Haltezeitberechnungsmodul
US11074513B2 (en) * 2015-03-13 2021-07-27 International Business Machines Corporation Disruption forecasting in complex schedules
JP6446342B2 (ja) 2015-08-28 2018-12-26 株式会社日立製作所 運行管理装置
JP7057199B2 (ja) * 2018-04-16 2022-04-19 株式会社日立製作所 ダイヤ分析支援装置及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233988A (ja) * 2013-05-30 2014-12-15 三菱重工業株式会社 運行管理装置、運行管理方法、車両、車両交通システム及びプログラム
JP2015107687A (ja) * 2013-12-03 2015-06-11 株式会社東芝 列車運行制御装置、制御方法及び制御プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113895487A (zh) * 2021-10-12 2022-01-07 湖南中车时代通信信号有限公司 一种等间隔行车调整方法
CN113895487B (zh) * 2021-10-12 2024-03-05 湖南中车时代通信信号有限公司 一种等间隔行车调整方法

Also Published As

Publication number Publication date
US20210129883A1 (en) 2021-05-06
JP6765580B2 (ja) 2020-10-07
DE112018007749T5 (de) 2021-03-04
US11572090B2 (en) 2023-02-07
JPWO2019244307A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6323614B2 (ja) プローブデータ収集方法及びプローブデータ収集装置
JP5656443B2 (ja) 無人搬送車走行方法及び無人搬送車走行システム
CN107206913B (zh) 列车控制装置、列车控制方法及程序
JP7273531B2 (ja) 列車制御システム及び方法
CA2973667C (en) Automatic train driving apparatus, automatic train control method, and program
JP2014233988A5 (ja)
JPWO2013179802A1 (ja) 走行車システムとカーブ区間での走行車の走行制御方法
CN113496346B (zh) 运行管理装置、运行管理方法以及交通系统
KR20200051448A (ko) 급행열차의 스케줄링 시스템 및 그 방법
WO2019244307A1 (ja) 運転時隔制御装置および運転時隔制御方法
JP2006195859A (ja) 搬送車システム
CN113496604B (zh) 运行管理装置、运行管理方法、以及交通系统
CN113496609B (zh) 交通系统、运行管理装置、以及运行管理方法
WO2016038957A1 (ja) 運行制御システム
CN113496590B (zh) 交通系统、运行管理装置以及运行管理方法
US20170210405A1 (en) Train control device
CN113496608B (zh) 车辆的运行管理装置、运行管理方法以及交通系统
CN116547188B (zh) 铁路系统、运行管理装置、运行管理方法
JP7078756B2 (ja) 列車制御システムおよび列車制御方法
JP6113380B1 (ja) 運行管理システムおよび消費電力量調整方法
JP2017093014A (ja) 自動列車運転装置
JP6685205B2 (ja) 列車着発時刻推定装置
JP6613073B2 (ja) 列車制御システム
KR20100127518A (ko) 자동운행 차량 시스템에서의 차량의 분산 동적 경로제어
JP2019097354A (ja) 列車制御装置及び列車制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525171

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18923070

Country of ref document: EP

Kind code of ref document: A1