WO2019240547A1 - 고체 전해질막 및 이를 포함하는 전고체 전지 - Google Patents

고체 전해질막 및 이를 포함하는 전고체 전지 Download PDF

Info

Publication number
WO2019240547A1
WO2019240547A1 PCT/KR2019/007235 KR2019007235W WO2019240547A1 WO 2019240547 A1 WO2019240547 A1 WO 2019240547A1 KR 2019007235 W KR2019007235 W KR 2019007235W WO 2019240547 A1 WO2019240547 A1 WO 2019240547A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
layer
electrolyte membrane
solid
polymer
Prior art date
Application number
PCT/KR2019/007235
Other languages
English (en)
French (fr)
Inventor
이정필
강성중
김은비
류지훈
이석우
이재헌
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180069240A external-priority patent/KR102413379B1/ko
Priority claimed from KR1020180167864A external-priority patent/KR102298058B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/056,683 priority Critical patent/US11978846B2/en
Priority to EP19820620.3A priority patent/EP3809510A4/en
Priority to CN201980033683.1A priority patent/CN112166520A/zh
Priority to JP2020568403A priority patent/JP7102556B2/ja
Publication of WO2019240547A1 publication Critical patent/WO2019240547A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte membrane for an all-solid-state battery and a battery including the same.
  • the present invention also relates to an all-solid-state battery containing lithium metal as a negative electrode active material.
  • FIG. 1 illustrates an all-solid-state battery using a conventional solid electrolyte and illustrates a short circuit generation mechanism according to growth of lithium dendrites 14a.
  • the positive electrode active material layer 12 is formed on the surface of the current collector 11, and the positive electrode active material layer is stacked via the negative electrode 14 and the solid electrolyte layer 13.
  • lithium dendrite 14a may grow in the vertical direction at the negative electrode according to the use of the battery, and the solid electrolyte layer 13 may be damaged by the lithium dendrite, and eventually contact with the positive electrode may cause a short circuit. (short circuit) may occur.
  • the inorganic solid electrolyte is generally formed in a layered structure by integrating a particulate ion conductive inorganic material, and contains a large number of pores by interstitial volume between the particles. Accordingly, lithium dendrites may grow into the space provided by the pores, and when the lithium dendrites grown through the pores come into contact with the positive electrode, a short circuit may occur. Accordingly, development of an electrolyte membrane for an all-solid-state battery capable of suppressing lithium dendrite growth is required.
  • the inhibitory substance includes at least one member selected from the group consisting of Au and Pt.
  • a tenth aspect of the present invention is the at least one of the first to ninth aspects, wherein the solid electrolyte membrane comprises at least two solid electrolyte layers and at least one suppression layer, wherein the suppression layer is disposed between the solid electrolyte layers will be.
  • the solid electrolyte membrane is formed by sequentially stacking a first solid electrolyte layer, a suppression layer, and a second solid electrolyte layer.
  • a thirteenth aspect of the present invention is the at least one of the first to twelfth aspects, wherein the solid electrolyte membrane comprises an ion conductive solid electrolyte material, wherein the ion conductive solid electrolyte material is a polymer solid electrolyte, an inorganic solid electrolyte or It is to include a mixture of both.
  • the polymer solid electrolyte includes a polymer resin and a solvated lithium salt.
  • a fifteenth aspect of the present invention relates to an electrochemical device, wherein the electrochemical device is an all-solid-state battery including a negative electrode, a positive electrode, and a solid electrolyte membrane interposed between the negative electrode and the positive electrode, and the negative electrode includes lithium metal,
  • the solid electrolyte membrane is according to at least one of the first to fourteenth aspects.
  • the solid electrolyte membrane is formed by sequentially stacking a first solid electrolyte layer, a suppression layer, and a second solid electrolyte layer, and the first solid electrolyte layer is an inhibitor material (a Wherein the inhibitory material is derived from one of (a1) metal (s) having a lower ionization tendency than lithium and (a2) at least two alloy (s) of the metals.
  • FIG. 1 is a diagram illustrating a problem in which lithium dendrites grow from a negative electrode and cause a short circuit in a conventional all-solid-state battery.
  • FIG. 2 schematically illustrates a solid electrolyte membrane according to an embodiment of the present invention.
  • FIG. 4 schematically illustrates a solid electrolyte membrane including a patterned suppression layer.
  • FIG. 5 shows an AFM image of a suppression layer prepared in Example 5.
  • FIG. 6 and 7 schematically illustrate a cross section of a solid electrolyte membrane according to an embodiment of the present invention.
  • the present invention relates to a secondary battery including the electrolyte membrane for the secondary battery and the electrolyte membrane.
  • the secondary battery may be a lithium ion secondary battery.
  • the secondary battery is an all-solid-state battery using a solid electrolyte as an electrolyte, and the battery may include lithium metal as a negative electrode active material.
  • the solid electrolyte membrane according to the present invention includes a suppression layer, and the solid electrolyte membrane may be applied as an ion conductive electrolyte to an all-solid-state battery that does not use a liquid electrolyte, for example.
  • the solid electrolyte membrane may include two or more solid electrolyte layers and an inhibitory layer may be interposed between each solid electrolyte layer.
  • each of the solid electrolyte layers includes an ion conductive solid electrolyte material and the suppression layer comprises a dendrite growth inhibitory material.
  • the solid electrolyte membrane may have a thickness in the range of 5 ⁇ m to 500 ⁇ m.
  • the solid electrolyte membrane may be, for example, 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 50 ⁇ m or more, 100 ⁇ m or more, 200 ⁇ m or more, or 300 ⁇ m or more in terms of physical strength and form stability.
  • it may be 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, 70 ⁇ m or less, or 50 ⁇ m or less.
  • the thickness of the solid electrolyte membrane may be 30 ⁇ m to 100 ⁇ m or 30 ⁇ m to 50 ⁇ m.
  • the polymer solid electrolyte includes a polymer resin and a lithium salt, and is a solid polymer electrolyte having a mixture of a solvated lithium salt and a polymer resin, or an organic solvent and a lithium salt. It may be a polymer gel electrolyte in which the organic electrolyte solution is contained in the polymer resin.
  • the solid polymer electrolyte is, for example, a polymer resin, a polyether polymer, a polycarbonate polymer, an acrylate polymer, a polysiloxane polymer, a phosphazene polymer, a polyethylene derivative, alkylene
  • a polymer resin for example, a polymer resin, a polyether polymer, a polycarbonate polymer, an acrylate polymer, a polysiloxane polymer, a phosphazene polymer, a polyethylene derivative, alkylene
  • oxide derivatives phosphate ester polymers, poly agitation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride and ionic dissociation groups It may include, but is not limited thereto.
  • the solid electrolyte membrane may further include a crosslinking agent and / or an initiator when the solid electrolyte layer is prepared when a polymer material is used as the electrolyte material of the solid electrolyte layer.
  • the crosslinking agent and / or the initiator is capable of initiating a crosslinking reaction or a polymerization reaction according to heat, light and / or temperature conditions, and the crosslinking agent and / or the initiator is not limited to any particular component as long as it can induce crosslinking and / or polymerization of the polymer material.
  • an organic peroxide, an organometallic reagent such as silver alkylated, an azo compound, etc. may be used as the crosslinking agent and / or initiator, but is not limited thereto.
  • the inorganic solid electrolyte may include a sulfide-based solid electrolyte, an oxide-based solid electrolyte, or both.
  • the sulfide-based solid electrolyte includes sulfur atoms in the electrolyte component, and is not particularly limited to specific components, such as crystalline solid electrolyte, amorphous solid electrolyte (glassy solid electrolyte), glass ceramic It may comprise one or more of the solid electrolytes.
  • the oxide-based solid electrolyte is, for example, LLT-based perovskite structure, such as Li 3x La 2 / 3- x TiO 3 , such as Li 14 Zn (GeO 4 ) 4 LISICON, Li 1 . 3 Al 0 . 3 Ti 1 . 7 (PO 4) LATP based such as 3, (Li 1 + x Ge 2 - x Al x (PO 4) 3) and can be used by appropriately selecting the LAGP-based, phosphate-based, etc., such as LiPON, such as, in particular this It is not limited.
  • LLT-based perovskite structure such as Li 3x La 2 / 3- x TiO 3 , such as Li 14 Zn (GeO 4 ) 4 LISICON, Li 1 . 3 Al 0 . 3 Ti 1 . 7 (PO 4) LATP based such as 3, (Li 1 + x Ge 2 - x Al x (PO 4) 3) and can be used by appropriately selecting the LAGP
  • the solid electrolyte membrane according to the present invention includes a suppression layer, and the suppression layer includes a lithium dendrite growth inhibiting material (see FIG. 2).
  • the inhibitory layer the inhibitory substance may be dispersed in an even distribution or in a non-uniform distribution over the entire suppression layer.
  • Dendrite growth inhibitory material may be abbreviated herein to be referred to as inhibitory material.
  • the pattern units are not limited to a particular shape. Their planar shape may be linear or round or rectangular closed curves. In the case of linear patterns, they may be formed such that they are parallel or intersecting with each other. For example, the pattern unit may have a planar shape of stripes or dots.
  • FIG. 4 schematically illustrates a cross section of the solid electrolyte membrane 330 according to an embodiment of the present invention, in which a plurality of pattern elements 332a are included in the suppression layer 332.
  • the solid electrolyte layer preferably has an area of less than 80%, less than 70%, less than 60% or less than 50% of the area covered by the suppression layer relative to 100 area% of its surface.
  • the suppression layer is formed in such a manner as to excessively cover the surface of the solid electrolyte layer, the ion conduction path may be blocked by the suppression layer, and thus the ion conductivity of the solid electrolyte membrane may be degraded.
  • the coating area of the suppression layer satisfies the above range, the lithium dendrite growth inhibitory effect is high, and a decrease in lithium ion conductivity due to formation of the suppression layer can be prevented.
  • the shapes of the above-described suppression layer and the solid electrolyte membrane are exemplary and may be applied without particular limitation as long as the structural features of the present invention can be implemented.
  • the thickness of the suppression layer may vary depending on the manufacturing method, for example, may be greater than 0 and less than 100 ⁇ m.
  • the thickness of the suppression layer may vary depending on the manufacturing method, for example, may be greater than 0 and less than 100 ⁇ m.
  • it may have a range of 1 ⁇ m to 100 ⁇ m, and may be formed to 70 ⁇ m or less, or 50 ⁇ m or less or 30 ⁇ m or less within the above range. .
  • the inhibitory layer may be prepared by adding an inhibitory substance to a suitable solvent to prepare a solution of the inhibitory substance and then coating the surface of the solid electrolyte layer.
  • the suppression layer may be coated with the solution to have the shape of a stripe or a dot, in which case the solid is laminated on the upper and lower parts because the thickness of the plain portion is not formed is not formed pattern unit Since it is buried by the electrolyte layer, it is possible to minimize the occurrence of separation between the upper and lower solid electrolyte layers or increase in the interface resistance due to this.
  • FIG. 6 schematically illustrates a shape in which the non-coated portion of the suppression layer 332 is filled by the first solid electrolyte layer 332 and the second solid electrolyte layer 331.
  • the thickness of the inhibitor layer may be 700 nm or less, 500 or less, 300 nm or less, 100 nm or less, or 50 nm or less.
  • the suppression layer in addition to a method of forming a suppression layer by directly applying a suppression material solution or the like to the surface of the solid electrolyte layer, the suppression layer is patterned and formed on a separate release sheet and then patterned.
  • the method of transferring to the solid electrolyte layer, the method of patterning using lithography to the solid electrolyte layer can be applied.
  • the method of patterning using lithography to the solid electrolyte layer can be applied.
  • when applying a pattern to the suppression layer may be further exposed to the suppressor through the O 2 plasma, UV-zone, etching, etc. after the patterning process.
  • the present invention can be achieved by applying a method of self-assembly of the polymer copolymer through which a very fine pattern units (such as micelle micelle) at the nanometer level are uniform. The distribution can be aligned to the inhibitory layer.
  • the inhibitory layer formed by self-assembly of the polymer copolymer includes an inhibitor and a polymer copolymer, and the inhibitor is chemically bonded to the polymer copolymer.
  • the "chemically bonded” means that the inhibitor is bonded to the polymer copolymer in a chemical manner such as an ionic bond, a covalent bond, a coordination bond.
  • the dendrite growth inhibitory substance herein may be abbreviated as an inhibitory substance.
  • the thickness of the inhibitory layer may be 1 ⁇ m or less, 700 nm or less, 500 or less, 300 nm or less, 100 nm or less or 50 nm or less.
  • the inhibitory substance is lower in ionization tendency than lithium.
  • the inhibitory material is less reactive than lithium, ie it has a low ionization tendency. For this reason, it is possible to prevent the lithium ions from being reduced to the lithium metal by the inhibitory substance, and also to reduce the amount of dendrites by oxidizing the precipitated lithium back to lithium ions.
  • the inhibitor (a) is a1) metal (s) having a lower ionization tendency than lithium; And a2) at least two alloy (s) of the metals having a lower ionization tendency than lithium; It is derived from at least one of these, and is a mixture containing at least any one of these salts and these ions, The said mixture is distributed in the suppression layer. That is, the suppression layer includes at least one of salts of the metal, salts of the alloy, ions of the metal and ions of the alloy.
  • the a1) metal is K, Sr, Ca, Na, Mg, Be, Al, Mn, Zn, Cr (+3), Fe, Cd, Co, Ni, Sn, Pb, It may be at least one selected from the group consisting of Cu, Hg, Ag, Pd, Ir, Pt (+2), Au and Pt (+4).
  • the a2) alloy is alloyed two or more selected from the metal components.
  • HAuCl 4 ⁇ 3H 2 O which is a salt form thereof, may be added during preparation of the inhibitory layer, and when Pt is used as the inhibitor, H 2 PtCl 6 ⁇ H 2 O in the form of a salt can be added during preparation of the inhibitory layer.
  • the polymer copolymer includes a functional group (chemical group) capable of chemical bonding with the inhibitor, that is,
  • the inhibitor is combined with the polymer copolymer through the functional group.
  • the functional group includes oxygen or nitrogen, and may include, for example, a functional group capable of bonding with a metal salt such as ether and amine, and at least one selected from these. Can be.
  • the attraction force is coupled between the negative charge of oxygen or nitrogen in the functional group and the positive charge of the metal ion in the metal salt.
  • the inhibitory layer may have a shape in which micelles formed by the self-assembled block copolymer are aligned according to hexagonal dense structure.
  • micelles containing polyvinylpyridine blocks (PVP) in a matrix mainly containing polystyrene blocks (PS) by self-assembly are arranged according to a certain rule.
  • Inhibitors bound to the PVP block can ensure a high level of uniform dispersion throughout the suppression layer depending on the arrangement of these micelles.
  • the micelle may consist of a core portion and a shell portion surrounding the surface of the core, wherein the inhibitory material is associated with the core portion and / or the shell portion.
  • Figure 5 shows the AFM image of the inhibitory layer prepared in Example 5, it can be seen that the micelles arranged in a hexagonal dense structure on the surface of the solid electrolyte layer.
  • the electrolyte membrane according to the present invention includes an inhibitory material for inhibiting lithium growth, and thus, when applied to an all-solid-state battery including lithium metal as a negative electrode active material, it is possible to effectively suppress a short circuit due to lithium dendrite growth.
  • the solid electrolyte membrane includes an inhibitory layer containing an inhibitory material.
  • the solid electrolyte membrane may include at least two solid electrolyte layers and at least one suppression layer, and the suppression layer may be disposed between the solid electrolyte layers.
  • the solid electrolyte membrane may have a layered structure in which a first solid electrolyte layer, a suppression layer, and a second solid electrolyte layer are sequentially stacked (see FIG. 2).
  • the solid electrolyte membrane may include first, second, and third solid electrolyte layers, wherein a first suppression layer is formed between the first and second solid electrolyte layers, and a second electrolyte layer is formed between the second and third solid electrolyte layers. 2 suppression layers may be disposed.
  • Each of the inhibitory layers is independent of each other in terms of shape or material, and one of the inhibitory layers may be the same as or different from the other.
  • each of the solid electrolyte layers is independent of each other in terms of shape or material, and one solid electrolyte layer may be the same as or different from the other.
  • the thickness of the suppression layer, the concentration of the suppression layer increase suppression material, the area where the suppression layer covers the solid electrolyte layer, and the like can be appropriately adjusted in consideration of the ionic conductivity of the solid electrolyte membrane. That is, the suppression layer included in the solid electrolyte membrane may have a thickness of the suppression layer, a concentration of the suppression material, and a suppression layer so that the solid electrolyte membrane may exhibit ionic conductivity of 1x10 -7 S / cm or more, preferably 1x10 -5 S / cm or more.
  • the coating area of the solid electrolyte layer can be adjusted to have an appropriate range.
  • inhibitory material and the ion conductive solid electrolyte material included in the suppression layer and the first and second solid electrolyte layers reference may be made to the above.
  • the composition of the ion conductive solid electrolyte included in the first and second solid electrolyte layers may be the same or different.
  • the first layer may comprise an oxide-based solid electrolyte material and the second layer may comprise a sulfide-based solid electrolyte material.
  • the inhibitory layer may be formed in a manner of forming an recessed pattern having a predetermined thickness from the surface of the first solid electrolyte layer and then embedding an inhibitory material in the recessed pattern (inlay method). Thereafter, the surface of the suppression layer may be coated with a second solid electrolyte layer to obtain a solid electrolyte membrane.
  • the inhibitory layer may be patterned by a method of self-assembly of the polymer copolymer.
  • the method for manufacturing a suppression layer by self-assembly may be applied as long as the micelles have a structure in which micelles are formed to be regularly or irregularly aligned in the suppression layer.
  • an appropriate polymer copolymer capable of self-assembly is prepared in a solvent to prepare a polymer solution, and an inhibitor is added to the polymer solution to prepare a mixture for forming an inhibitor.
  • the polymer solution and mixture may be subjected to a stirring process for uniform dispersion of the added ingredients in a solvent.
  • the present invention provides an all-solid-state battery comprising the solid electrolyte membrane.
  • the all-solid-state battery includes a negative electrode, a positive electrode, and a solid electrolyte membrane interposed between the negative electrode and the positive electrode, wherein the solid electrolyte membrane has the characteristics described above.
  • FIG. 3 schematically illustrates an all-solid-state battery 200 according to one embodiment of the invention.
  • the positive electrode active material layer 220 is formed on the surface of the positive electrode current collector 210, and the negative electrode 240 is stacked with the positive electrode through the solid electrolyte membrane 230.
  • the solid electrolyte membrane 230 In the solid electrolyte membrane 230, a first solid electrolyte layer 233, a suppression layer 232, and a second solid electrolyte layer 231 are sequentially stacked.
  • lithium dendrites 241 may grow in a vertical direction, but growth may be suppressed by the suppression layer 232.
  • the all-solid-state battery is disposed so that the first solid electrolyte layer of the electrolyte membrane comprises a lower concentration of the inhibitory material than the suppression layer, the first solid electrolyte layer facing the negative electrode Can be.
  • the first solid electrolyte layer has a higher concentration of inhibitory material than the second solid electrolyte layer, or a thicker thickness of the first solid electrolyte layer than the thickness of the second solid electrolyte layer. Both features can be provided.
  • an element such as a separate protective layer may be further added to the surface of the solid electrolyte membrane facing the cathode.
  • a passivation film using an inorganic solid electrolyte, an inorganic material such as LiF, Li 2 O, or an organic material such as PEO may be disposed in order to suppress a reaction by direct contact with Li metal.
  • the negative electrode may include a current collector, a negative electrode active material layer formed on the surface of the current collector, the negative electrode active material layer includes at least one element belonging to alkali metal, alkaline earth metal, group 3B and transition metal. can do.
  • the alkali metal group consisting of lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) or francium (Fr)
  • the negative electrode may be a negative electrode current collector and a lithium metal thin film having a predetermined thickness by binding and laminated.
  • the positive electrode includes a current collector and a positive electrode active material layer formed on at least one side of the current collector, and the upper electrode active material layer includes a positive electrode active material, a solid electrolyte, and a conductive material.
  • the positive electrode active material layer may further include a binder material. The binder material may increase the binding force between the positive electrode active material layer and the current collector and / or the solid electrolyte membrane, and may also help improve the binding force between components included in the positive electrode active material independently or in addition thereto.
  • the positive electrode active material can be used without limitation as long as it can be used as a positive electrode active material of a lithium ion secondary battery.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers such as VGCF (Vapor grown carbon fibers); Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; It may include one or a mixture of two or more selected from conductive materials such as polyphenylene derivatives.
  • the binder material is not particularly limited as long as it is a component that assists the bonding between the active material and the conductive material and the bonding to the current collector.
  • the binder resin may typically be included in the range of 1 to 30% by weight, or 1 to 10% by weight relative to 100% by weight of the electrode layer.
  • the negative electrode and / or the positive electrode may further include various additives for the purpose of supplementing or improving the physicochemical properties.
  • the additive is not particularly limited, but may include one or more additives such as an oxidation stabilizer, a reduction stabilizer, a flame retardant, a heat stabilizer, an antifogging agent, and the like.
  • the current collector is generally made of a thickness of 3 ⁇ m 500 ⁇ m.
  • a current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface may be used. Among them, it may be appropriately selected according to the polarity of the positive electrode or the negative electrode.
  • the present invention also provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • specific examples of the device may include a power tool moving by being driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • a first solid electrolyte layer is prepared.
  • the electrolyte layer may be in accordance with the method for producing a solid electrolyte layer according to an embodiment of the present invention, it is not limited to a specific method.
  • the solid electrolyte layer may be prepared by the following method.
  • a polymer solution is prepared by dissolving a polymer resin in an appropriate solvent such as acetonitrile, and lithium salt is added thereto to prepare a slurry for forming an electrolyte layer.
  • the slurry may be warmed to an appropriate temperature for dissolving the polymer resin and the lithium salt, and may be stirred for several to several tens of hours.
  • the polymer solution may further include an initiator and a curing agent. The initiator and the curing agent may be added together to the polymer solution or separately prepared an additive solution including the initiator and the curing agent to the slurry.
  • the initiator may be included in the range of about 10 parts by weight to 20 parts by weight based on the polymer resin used, and the curing agent may be included in the range of about 0.2 parts by weight to 3 parts by weight based on the polymer resin used.
  • the prepared slurry is then applied to a release film and dried. In this way a first solid electrolyte layer can be obtained.
  • the release film may be removed in the final step after removing the release film and using the first solid electrolyte layer or otherwise forming a solid electrolyte membrane having all the elements.
  • the inhibitory layer may be prepared in the form of a metal salt solution.
  • a metal salt solution For example, prepared by dissolving a hydrated metal salt in ethanol or the like, it is applied to the surface of the solid electrolyte layer and dried to be coated on the surface of the solid electrolyte layer to be prepared in an integrated state.
  • the coating may be in accordance with conventional coating methods such as spin coating, dip coating, and the like, but is not limited to a specific method.
  • a second solid electrolyte layer is formed on the surface of the suppression layer.
  • the second solid electrolyte layer is prepared in the form of a second solid electrolyte layer forming slurry like the first solid electrolyte layer, and then coated on the surface of the suppression layer and dried to form an integrated form with the suppression layer or the first solid electrolyte layer.
  • the release film can be removed and bonded to the surface of the suppression layer by calendering or lamination.
  • the solvent used in each step is not limited to a specific one, and may be selected and used in consideration of the materials used.
  • Organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), tetrahydrofuran, dimethoxyethane, nitromethane, acetone, pyridine, ethanol, acetonitrile, dimethyl acetamide or water These solvents can be used alone or in combination of two or more thereof.
  • the second solid electrolyte layer is further formed on the surface of the suppression layer, and the third solid electrolyte layer is disposed on the surface of the suppression layer to include two or more suppression layers. It is possible to provide a solid electrolyte membrane in the form.
  • each solid electrolyte layer includes a polymer solid electrolyte
  • the present invention is not limited thereto, and each solid electrolyte layer may include an inorganic solid electrolyte in place of or with a polymer solid electrolyte as an electrolyte material. Can be.
  • the initiator is benzoyl peroxide (BPO)
  • polyethylene glycol diacrylate (PEDADA) is 20 wt% compared to PEO
  • BPO amount of PEGDA 1% Acetonitrile was used as the solvent.
  • the additive solution was stirred for about 1 hour so that the added ingredients were mixed well.
  • the additive solution was then added to the polymer solution and the two solutions were mixed sufficiently.
  • the mixed solution was applied and coated onto a release film using a doctor blade.
  • the coating gap was 800 ⁇ m and the coating speed was 20 mm / min.
  • the solution-coated release film was moved to a glass plate to keep the horizontal well, dried overnight at room temperature, and vacuum dried at 100 ° C. for 12 hours. In this way, a first solid electrolyte layer was obtained.
  • the thickness of the obtained first solid electrolyte layer was about 50 ⁇ m.
  • a metal salt solution was prepared by dissolving HAuCl 4 3 H 2 O in ethanol at a concentration of 2 wt%. 20 ⁇ l of the metal salt solution was coated on the first solid electrolyte layer obtained in the previous step by spin coating at a speed of 2,000 rpm.
  • a second solid electrolyte layer was prepared in the same manner as the preparation of the first solid electrolyte layer.
  • the first solid electrolyte membrane and the second solid electrolyte membrane coated with the suppression layer were stacked and stacked and calendered at 60 ° C. by adjusting the gap between the rolls to 100 ⁇ m. At this time, the suppression layer was disposed between the first and second solid electrolyte membranes. In this manner, a solid electrolyte membrane obtained by sequentially stacking a first solid electrolyte membrane, a suppression layer, and a second solid electrolyte membrane was obtained. The thickness of the obtained solid electrolyte membrane was about 100 ⁇ m. It was found that the suppression layer of the solid electrolyte membrane was formed so thin that it did not affect the total solid electrolyte membrane thickness.
  • a solid electrolyte membrane was prepared in the same manner as in Example 1, except that HAuCl 4 .3H 2 O had a concentration of 5 wt% when preparing the solid electrolyte layer.
  • a solid electrolyte membrane having a structure laminated in the order of the first solid electrolyte layer, the suppression layer, the second solid electrolyte layer, the suppression layer, and the third solid electrolyte layer was prepared.
  • the solid electrolyte membrane of Example 3 has a structure in which only the suppression layer and the third solid electrolyte layer are further added in the electrolyte layer of Example 1, and only the laminated structure is different, and the manufacturing method of each layer is the same as that of Example 1.
  • a solid electrolyte membrane was prepared in the same manner as in Example 1 except that H 2 PtCl 6 .H 2 O was used as a material for the suppression layer in preparing the solid electrolyte membrane.
  • the initiator is benzoyl peroxide (BPO)
  • polyethylene glycol diacrylate (PEDADA) is 20 wt% compared to PEO
  • BPO amount of PEGDA 1% Acetonitrile was used as the solvent.
  • the additive solution was stirred for about 1 hour so that the added ingredients were mixed well.
  • the additive solution was then added to the polymer solution and the two solutions were mixed sufficiently.
  • the mixed solution was applied and coated onto a release film using a doctor blade.
  • the coating gap was 800 ⁇ m and the coating speed was 20 mm / min.
  • the solution-coated release film was moved to a glass plate to keep the horizontal well, dried overnight at room temperature, and vacuum dried at 100 ° C. for 12 hours. In this way, a first solid electrolyte layer was obtained.
  • the thickness of the obtained first solid electrolyte layer was about 50 ⁇ m.
  • Polystyrene-block-poly4vinyl pyridine (S4VP, PS Mn 41.5kg / mol, P4VP Mn 17.5kg / mol) was stirred in toluene (Tolune) at a concentration of 0.5wt% for 1 day at room temperature.
  • HAuCl 4 ⁇ 3H 2 O was added to the solution at a concentration of 2wt% relative to P4VP, followed by stirring for 6 hours to allow Au ions to bind in the S4VP micelle.
  • the solution was spin-coated on the obtained first solid electrolyte layer at a rate of 3,000 rpm to pattern a single layer of S4VP micelle through self-assembly.
  • 5 shows the AFM image of the inhibitory layer obtained.
  • the bright portion is the micelle portion and the dark portion represents the first solid electrolyte layer portion.
  • the size of the micelle was 40nm, the interval between micelles was about 70nm.
  • a second solid electrolyte layer was prepared in the same manner as the preparation of the first solid electrolyte layer.
  • the first solid electrolyte membrane and the second solid electrolyte membrane coated with the suppression layer were stacked on top of each other, and the gap between the rolls was adjusted to 100 ⁇ m and calendered at 60 ° C. At this time, the suppression layer was disposed between the first and second solid electrolyte membranes. In this manner, a solid electrolyte membrane obtained by sequentially stacking a first solid electrolyte membrane, a suppression layer, and a second solid electrolyte membrane was obtained. The thickness of the obtained solid electrolyte membrane was about 100 ⁇ m. It was found that the suppression layer of the solid electrolyte membrane was formed so thin that it did not affect the total solid electrolyte membrane thickness.
  • a solid electrolyte membrane was prepared in the same manner as in Example 5 except that the concentration of HAuCl 4 in the suppression layer was 5 wt% compared to S4VP.
  • a solid electrolyte membrane was prepared in the same manner as in Example 5, except that polystyrene-block-poly2vynil pyridine (S2VP, PS Mn 133kg / mol, P2VP Mn 132kg / mol) was used as a block copolymer of the suppression layer when preparing the solid electrolyte membrane. .
  • S2VP polystyrene-block-poly2vynil pyridine
  • a solid electrolyte membrane was prepared in the same manner as in Example 1, except that no suppression layer was inserted in the preparation of the solid electrolyte membrane.
  • electrode active material is NCM811 (... LiNi 0 8 Co 0 1 Mn 0 1 O 2), conductive material VGCF (Vapor grown carbon fiber) and the high-molecular solid solid electrolyte (PEO + LiTFSI, 18: 1 mol B) was mixed in a weight ratio of 80: 3: 17, put into acetonitrile and stirred to prepare an electrode slurry.
  • An aluminum current collector having a thickness of 20 ⁇ m was prepared. The slurry was applied to the current collector using a doctor blade and the result was vacuum dried at 120 ° C. for 4 hours.
  • the rolling process was carried out using a roll press to obtain an electrode loading of 2 mAh / cm 2, an electrode layer having a thickness of 48 ⁇ m, and a porosity of 22%.
  • the electrode prepared above was prepared by punching in a circle of 1.4875 cm 2 .
  • a lithium metal thin film cut into a round shape of 1.7671 cm 2 was prepared as a counter electrode.
  • Coin-type half-cells were prepared by placing the solid electrolyte membranes obtained in Examples 1 to 7 and Comparative Examples 1 and 2, respectively, between the two electrodes.
  • the solid electrolyte membranes produced in each of Examples 1 to 7 and Comparative Examples 1 and 2 were cut into 1.7671 cm 2 circles. Coin cells were manufactured by placing them between two sheets of stainless steel (SUS). An electrochemical impedance was measured using an analytical device (VMP3, Bio logic science instrument) at 60 ° C. under an amplitude of 10 mV and a scan range of 500 KHz to 20 MHz. Based on this, the ion conductivity was calculated.
  • the batteries prepared in Examples 1 to 7 and Comparative Examples 1 and 2 were charged and discharged at 0.05 ° C. at 60 ° C. to evaluate initial discharge capacity discharge.
  • the occurrence of the short circuit was charged and discharged at 0.1C to determine the abnormal behavior (unstable voltage change) of the voltage during charging during life evaluation.
  • Example 1 Ionic Conductivity (S / cm, 60 °C) Discharge Capacity (mAh / g, 4.15 V) Short circuit cycle
  • Example 1 1 x 10 -4 159 18
  • Example 2 9x10 -5 155 20
  • Example 3 9x10 -5 142 23
  • Example 4 1 x 10 -4 156 16
  • Example 5 8x10-5 151 17
  • Example 6 8x10-5 150
  • Example 7 8x10-5 142 14 Comparative Example 1 1 x 10 -4 156 5 Comparative Example 2 9x10 -5 145 8
  • the battery including the solid electrolyte membranes of Examples 1 to 7 of the present invention was found to have a higher ion conductivity and discharge capacity than the batteries of the comparative example, and the time of occurrence of short circuit was also delayed. That is, it was found that the lithium dendrites are converted back to lithium ions through chemical reaction with metal ions, which are inhibitors, to improve life characteristics. At this time, the amount of metal ions and the uniformity of the coating layer are important. In the case of Examples 5 to 7 of the present invention, metal ions disposed on the nanoscale through self-assembly of the block copolymers showed more effective life characteristics.
  • FIG. 5 is an AFM photograph of the surface of the suppression layer prepared in Example 5, and it can be seen that micelle including metal ions forms a predetermined pattern on the first solid electrolyte layer.

Abstract

본 발명은 전고체 전지용 고체 전해질막 및 이를 포함하는 전지에 대한 것이다. 본 발명에 있어서, 상기 전지는 음극 활물질로 리튬 금속을 포함할 수 있다. 본 발명에 따른 전고체 전지용 고체 전해질막은 금속으로 석출된 리튬을 이온화하여 리튬 덴드라이트 성장을 억제하는 억제물질을 포함하는 억제층이 구비되어 있어 덴드라이트 성장 억제 효과가 있다. 따라서 상기 고체 전해질막을 포함하는 전고체 전지에 있어서 리튬 금속을 음극으로 사용하는 경우에 리튬 덴드라이트 성장이 지연 및/또는 억제되는 효과가 있어 덴드라이트 성장에 따른 전기적 단락이 효과적으로 방지된다.

Description

고체 전해질막 및 이를 포함하는 전고체 전지
본 출원은 2018년 6월 15일자로 출원된 한국 특허출원 제10-2018-0069240호 및 2018년 12월 21일자로 출원된 한국 특허출원 제10-2018-0167864호에 기초한 우선권을 주장한다. 본 발명은 전고체 전지용 고체 전해질막 및 이를 포함하는 전지에 대한 것이다. 또한, 본 발명은 음극 활물질로 리튬 금속을 포함하는 전고체 전지에 대한 것이다.
액체 전해질을 사용하는 리튬 이온 전지는 분리막에 의해 음극과 양극이 구획되는 구조여서 변형이나 외부 충격으로 분리막이 훼손되면 단락이 발생할 수 있으며 이로 인해 과열 또는 폭발 등의 위험으로 이어질 수 있다. 따라서 리튬 이온 이차 전지 분야에서 안전성을 확보할 수 있는 고체 전해질의 개발은 매우 중요한 과제라고 할 수 있다.
고체 전해질을 이용한 리튬 이차 전지는 전지의 안전성이 증대되며, 전해액의 누출을 방지할 수 있어 전지의 신뢰성이 향상되며, 박형의 전지 제작이 용이하다는 장점이 있다. 또한, 음극으로 리튬 금속을 사용할 수 있어 에너지 밀도를 향상시킬 수 있으며 이에 따라 소형 이차 전지와 더불어 전기 자동차용의 고용량 이차 전지 등에 응용이 기대되어 차세대 전지로 각광받고 있다.
고체 전해질은 이온 전도성 재질의 고분자 재료가 사용되거나 이온 전도 특성을 갖는 산화물 또는 황화물의 무기 재료가 사용될 수 있으며, 고분자 재료와 무기 재료가 혼합된 하이브리드 형태의 재료도 제안되고 있다.
한편, 음극 활물질 재료로 리튬 금속이 사용되는 경우에는 음극 표면으로부터 리튬 덴드라이트가 성장하는 문제가 있으며 성장된 리튬 덴드라이트가 양극과 접촉하는 경우에는 전지의 단락이 야기된다. 도 1은 이러한 종래 전고체 전지를 도식화하여 나타낸 것이다. 전고체 전지에서는 분리막 대신 고체 전해질막이 양/음극의 전기 절연체의 역할을 하고 있다. 그러나 고체 전해질로 고분자 재료가 사용되는 경우에는 리튬 덴드라이트의 성장에 의해 고체 전해질막이 파손되는 경우가 있다. 도 1은 종래 고체 전해질을 사용하는 전고체 전지를 나타낸 것으로서 리튬 덴드라이트(14a) 성장에 따른 단락 발생 기작을 도식화하여 나타낸 것이다. 도 1의 전고체 전지는 집전체(11)의 표면에 양극 활물질층(12)이 형성되어 있으며, 상기 양극 활물질층은 음극(14)과 고체 전해질층(13)을 매개로 하여 적층되어 있다. 이러한 전고체 전지는 전지 사용에 따라 음극에서 리튬 덴드라이트(14a)가 수직 방향으로 성장할 수 있으며, 리튬 덴드라이트에 의해 고체 전해질층(13)이 손상될 수 있으며, 종국적으로는 양극과 접촉하여 단락(short circuit)이 발생될 수 있다. 또한, 무기 고체 전해질은 통상적으로 입자상의 이온 전도성 무기 재료를 집적하여 층상구조로 형성한 것으로서 입자 사이의 인터스티셜 볼륨(interstitial volume)에 의한 기공이 다수 내포되어 있다. 이에 상기 기공에 의해 제공되는 공간으로 리튬 덴드라이트가 성장할 수 있으며 기공을 통해 성장된 리튬 덴드라이트가 양극과 접촉하게 되면 단락이 발생할 수 있다. 이에 리튬 덴드라이트 성장을 억제할 수 있는 전고체 전지용 전해질막의 개발이 요청된다.
본 발명은 전술한 문제점을 해소하기 위한 것으로서, 리튬 덴드라이트 성장이 억제되는 전고체 전지용 고체 전해질막을 제공하는 것을 목적으로 한다. 또한, 본 발명은 음극 활물질로 리튬 금속을 포함하는 전고체 전지를 제공하는 것을 또 다른 목적으로 한다. 본 발명의 다른 목적 및 장점들은 하기 설명에 의해서 이해될 수 있을 것이다. 한편, 본 발명의 목적 및 장점들은 특허청구범위에서 기재되는 수단 또는 방법, 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명은 상기 기술적 과제를 해결하기 위한 전고체 전지용 고체 전해질막에 대한 것이다. 본 발명의 제1 측면은 상기 전해질막에 대한 것으로서, 상기 전해질막은 상기 고체 전해질막은 이온 전도도가 1x10 -7 S/cm 이상이며, 상기 고체 전해질막은 덴드라이트 성장 억제 물질(a)을 포함하는 억제층을 하나 이상 포함하며, 상기 덴드라이트 성장 억제 물질(a)는 (a1) 리튬보다 이온화 경향이 낮은 금속(들) 및 (a2) 상기 금속들 중 2종 이상의 합금(들) 중 어느 하나로부터 유래된 것이며, 이들의 염 및 이들의 이온 중 적어도 어느 하나의 형태로 상기 억제층에 포함되어 있는 것이다.
본 발명의 제2 측면은, 상기 제1 측면에 있어서, 상기 억제층은 억제 물질을 포함하는 복수의 패턴 유닛들을 포함하여 패터닝되며 상기 패턴 유닛들은 상기 억제층 내에 규칙적 또는 불규칙적으로 분포되어 있는 것이다.
본 발명의 제3 측면은, 상기 제2 측면에 있어서, 상기 억제층은 덴드라이트 성장 억제 물질(a) 및 상기 억제 물질이 화학적으로 결합된 고분자 공중합체를 포함하며 상기 고분자 공중합체의 자가조립(self-assembly)에서 유래된 미세 패턴을 갖고, 상기 고분자 공중합체는 상기 억제물질과 화학적 결합이 가능한 기능기를 포함하며 억제물질이 상기 기능기를 매개로 고분자 공중합체와 결합된 것이다.
본 발명의 제4 측면은, 상기 제2 및 제3 측면 중 적어도 어느 하나에 있어서, 상기 억제층은 상기 고분자 공중합체의 자가조립에 의해 미셀들이 육방 조밀 구조에 따라 정렬된 모양을 갖는 것이다.
본 발명의 제5 측면은 상기 제2 내지 제4 측면 중 적어도 어느 하나에 있어서, 상기 기능기는 이써(ether) 및 아민(amine) 중 1종 이상을 포함하는 것이다.
본 발명의 제6 측면은 상기 제2 내지 제5 측면 중 적어도 어느 하나에 있어서 상기 고분자 공중합체는 polystyrene-block - poly(2-vinylpyridine) copolymer, polystyrene-block-poly(4-vinylpyridine) copolymer, poly(1,4-isoprene)-block-polystyrene-block-poly(2-vinylpyridine) copolymer 및 polystyrene-block-poly(ethylene oxide) copolymer 에서 선택된 1종 이상을 포함하는 것이다.
본 발명의 제7 측면은 상기 제1 내지 제6 측면 중 적어도 어느 하나에 있어서, 상기 금속은 K, Sr, Ca, Na, Mg, Be, Al, Mn, Zn, Cr(+3), Fe, Cd, Co, Ni, Sn, Pb, Cu, Hg, Ag, Pd, Ir, Pt(+2), Au 및 Pt(+4)로 구성된 군으로부터 선택된 1종 이상을 포함하는 것이다.
본 발명의 제8 측면은 상기 제1 내지 제7 측면 중 적어도 어느 하나에 있어서, 상기 억제 물질은 Au 및 Pt로 구성된 군으로부터 선택된 1종 이상을 포함하는 것이다.
본 발명의 제9 측면은 상기 제1 내지 제8 측면 중 적어도 어느 하나에 있어서, 상기 금속염은 염화물(chloride), 요오드화물(iodide), 시안화물(cyanide), 붕소화물(bromide), 황화물(sulfide), 수화물(hydroxide), 인화물(phosphite) 및 염화 수화물(chloride hydrate) 중 1종 이상을 포함하는 것이다.
본 발명의 제10 측면은 상기 제1 내지 제9 측면 중 적어도 어느 하나에 있어서, 상기 고체 전해질막은 둘 이상의 고체 전해질층 및 1 이상의 억제층을 포함하며, 상기 억제층은 고체 전해질층 사이에 배치되는 것이다.
본 발명의 제11 측면은 상기 제10 측면에 있어서, 상기 고체 전해질막은 제1 고체 전해질층, 억제층 및 제2 고체 전해질층이 순차적으로 적층된 것이다.
본 발명의 제12 측면은 상기 제10 및 제11 측면 중 적어도 어느 하나에 있어서, 상기 둘 이상의 고체 전해질층 중 하나 이상은 억제물질을 포함하며, 각 고체 전해질층 중 억제물질의 함량(중량%)은 억제층에 포함되는 억제물질의 함량(중량%) 보다 낮은 것이다.
본 발명의 제13 측면은 상기 제1 내지 제12 측면 중 적어도 어느 하나에 있어서, 상기 고체 전해질막은 이온 전도성 고체 전해질 재료를 포함하며, 상기 이온 전도성 고체 전해질 재료는 고분자 고체 전해질, 무기 고체 전해질 또는 이 둘 모두의 혼합물을 포함하는 것이다.
본 발명의 제14 측면은 상기 제13 측면에 있어서, 상기 고분자 고체 전해질은 고분자 수지 및 용매화된 리튬염을 포함하는 것이다.
본 발명의 제15 측면은 전기화학소자에 대한 것으로서 상기 전기화학소자는 음극, 양극 및 상기 음극 및 양극의 사이에 개재된 고체 전해질막을 포함하는 전고체 전지이며, 상기 음극은 리튬 금속을 포함하고, 상기 고체 전해질막은 상기 제1 내지 제14 측면 중 적어도 어느 하나에 따른 것이다.
본 발명의 제16 측면은 상기 제15 측면에 있어서, 상기 고체 전해질막은 제1 고체 전해질층, 억제층 및 제2 고체 전해질층이 순차적으로 적층된 것이며, 상기 제1 고체 전해질층은 억제 물질(a)을 포함하며, 상기 억제 물질은 (a1) 리튬보다 이온화 경향이 낮은 금속(들) 및 (a2) 상기 금속들 중 2종 이상의 합금(들) 중 어느 하나로부터 유래된 것이다.
본 발명에 따른 전고체 전지용 고체 전해질막은 리튬 덴드라이트 성장을 억제하는 억제물질을 포함하는 억제층이 구비되어 있어 금속으로 석출된 리튬을 이온화하여 리튬 덴드라이트 성장을 억제하는 효과가 있다. 따라서 상기 고체 전해질막을 포함하는 전고체 전지에 있어서 리튬 금속을 음극으로 사용하는 경우에 리튬 덴드라이트 성장이 지연 및/또는 억제되는 효과가 있어 덴드라이트 성장에 따른 전기적 단락을 효과적으로 방지할 수 있다. 또한, 상기 억제층은 고분자 재료의 자가 조립에 의해서 형성되는 등 미세 패턴을 가질 수 있어서 효과적으로 리튬 덴드라이트의 성장 억제 기능을 수행함과 동시에 이온 전도도를 저하시키지 않는다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 종래 전고체 전지에서 음극으로부터 리튬 덴드라이트가 성장하여 단락이 야기되는 문제를 도식화하여 나타낸 것이다.
도 2는 본 발명의 일 실시양태에 따른 고체 전해질막을 개략적으로 도시한 것이다.
도 3은 본 발명의 일 실시양태에 따른 전고체 전지를 개략적으로 도시한 것으로서 전고체 전해질막에 포함된 성장 억제 물질에 리튬 덴드라이트 성장이 억제되는 반응을 개략적으로 도식화하여 나타낸 것이다.
도 4는 패턴화된 억제층을 포함하는 고체 전해질막을 개략적으로 도식화하여 나타낸 것이다.
도 5는 실시예 5에서 준비된 억제층의 AFM 이미지를 나타낸 것이다.
도 6 및 도 7은 본 발명의 일 실시양태에 따른 고체 전해질막의 단면을 개략적으로 도식화하여 나타낸 것이다.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
이어지는 상세한 설명에서 사용된 특정한 용어는 편의를 위한 것이지 제한적인 것은 아니다. '우', '좌', '상' 및 '하'의 단어들은 참조가 이루어진 도면들에서의 방향을 나타낸다. '내측으로' 및 '외측으로' 의 단어들은 각각 지정된 장치, 시스템 및 그 부재들의 기하학적 중심을 향하거나 그로부터 멀어지는 방향을 나타낸다. '전방', '후방', '상방', '하방' 및 그 관련 단어들 및 어구들은 참조가 이루어진 도면에서의 위치들 및 방위들을 나타내며 제한적이어서는 안된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.
본 발명은 이차 전지용 전해질막 및 상기 전해질막을 포함하는 이차 전지에 대한 것이다. 본 발명에 있어서, 상기 이차 전지는 리튬 이온 이차 전지일 수 있다. 본 발명의 일 실시양태에 있어서, 상기 이차 전지는 전해질로 고체 전해질을 사용하는 전고체 전지인 것이며, 상기 전지는 음극 활물질로 리튬 금속을 포함할 수 있다.
도 2는 본 발명의 일 실시양태에 따른 고체 전해질막을 개략적으로 나타낸 것으로서 제2 고체전해질층(131), 억제층(132) 및 제1 고체전해질층(133)이 순차적으로 적층되어 형성된 고체 전해질막(130)을 도식화한 것이다. 상기 도 2를 참조하여 본 발명의 구성을 더욱 상세하게 설명한다.
(1) 고체 전해질막
본 발명에 따른 고체 전해질막은 억제층을 포함하는 것으로서, 상기 고체 전해질막은 예를 들어, 액체 전해질을 사용하지 않는 전고체 전지에 이온 전도성 전해질로 적용될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 고체 전해질막은 둘 이상의 고체 전해질층을 포함할 수 있으며 각 고체 전해질층 사이에 억제층이 개재될 수 있다. 본 발명에 있어서, 상기 각 고체 전해질층은 이온 전도성 고체 전해질 재료를 포함하며 상기 억제층은 덴드라이트 성장 억제 물질을 포함한다.
본 발명에 있어서, 상기 고체 전해질막은 억제층을 포함하고 양극과 음극을 전기적으로 절연하며 양극과 음극 사이에 이온 전도 경로를 제공하는 것으로서 25℃ 내지 150℃의 범위에서 이온 전도도가 1x10 -7S/cm이상, 바람직하게는 1x10 -5S/cm이상을 나타낼 수 있는 것이다.
본 발명의 일 실시양태에 있어서, 상기 고체 전해질막은 두께가 5㎛ 내지 500㎛의 범위일 수 있다. 상기 고체 전해질막은 물리적 강도 및 형태 안정성의 측면에서 예를 들어 10㎛ 이상, 20㎛ 이상, 30㎛ 이상 50㎛ 이상, 100㎛ 이상, 200㎛ 이상 또는 300㎛ 이상일 수 있다. 한편, 이온 전도도의 측면에서 400㎛ 이하, 300㎛ 이하, 200㎛ 이하, 100㎛ 이하, 70㎛ 이하 또는 50㎛ 이하일 수 있다. 구체적인 예를 들어 상기 고체 전해질막의 두께는 30㎛ 내지 100㎛ 또는 30㎛ 내지 50㎛일 수 있다.
상기 이온 전도성 고체 전해질 재료는 고분자 고체 전해질 및 무기 고체 전해질 중 하나 이상을 포함할 수 있다.
본 발명의 일 실시양태에 있어서 상기 고분자 고체 전해질은 고분자 수지와 리튬염을 포함하는 것으로서, 용매화된 리튬염과 고분자 수지의 혼합물의 형태를 갖는 고체 고분자 전해질이거나, 유기 용매와 리튬염을 함유한 유기 전해액을 고분자 수지에 함유시킨 고분자 겔 전해질일 수 있다.
본 발명의 일 실시양태에 있어서, 상기 고체 고분자 전해질은 예를 들어, 고분자 수지로 폴리에테르계 고분자, 폴리카보네이트계 고분자, 아크릴레이트계 고분자, 폴리실록산계 고분자, 포스파젠계 고분자, 폴리에틸렌 유도체, 알킬렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴 및 이온성 해리기를 포함하는 중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 고체 고분자 전해질은 고분자 수지로서 PEO(poly ethylene oxide) 주쇄에 PMMA, 폴리카보네이트, 폴리실록산(pdms) 및/또는 포스파젠과 같은 무정형 고분자를 공단량체로 공중합시킨 가지형 공중합체, 빗형 고분자 수지 (comb-like polymer) 및 가교 고분자 수지로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
또한 본 발명의 구체적인 일 실시양태에 있어서 상기 고분자 겔 전해질은 리튬염을 포함하는 유기 전해액과 고분자 수지를 포함하는 것으로서, 상기 유기 전해액은 고분자 수지의 중량 대비 60~400 중량부를 포함할 수 있다. 겔 전해질에 적용되는 고분자 수지는 특정한 성분으로 한정되는 것은 아니나, 예를 들어, PVC(Polyvinyl chloride)계, PMMA(Poly(methyl methacrylate))계, 폴리아크릴로니트릴(Polyacrylonitrile, PAN), 폴리불화비닐리덴(PVdF) 및 폴리불화비닐리덴-육불화프로필렌(poly(vinylidene fluoride-hexafluoropropylene:PVdF-HFP)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 전해질에 있어서, 전술한 리튬염은 이온화 가능한 리튬염으로서 Li +X -로 표현할 수 있다. 이러한 리튬염의 음이온(X)으로는 특별히 제한되지 않으나, F -, Cl -, Br -, I -, NO 3 -, N(CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2PF 4 -, (CF 3) 3PF 3 -, (CF 3) 4PF 2 -, (CF 3) 5PF -, (CF 3) 6P -, CF 3SO 3 -, CF 3CF 2SO 3 -, (CF 3SO 2) 2N -, (FSO 2) 2N - , CF 3CF 2(CF 3) 2CO -, (CF 3SO 2) 2CH -, (SF 5) 3C -, (CF 3SO 2) 3C -, CF 3(CF 2) 7SO 3 -, CF 3CO 2 -, CH 3CO 2 -, SCN -, (CF 3CF 2SO 2) 2N - 등을 예시할 수 있다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 고분자 고체 전해질은 추가적인 고분자 겔 전해질을 더 포함할 수 있다. 상기 고분자 겔 전해질은 이온 전도도가 우수하며(또는 10 -4s/m이상이며), 결착특성이 있어, 전해질로서의 기능을 제공할 뿐만 아니라, 전극 활물질 사이의 결착력 및 전극층과 집전체 사이에 결착력을 제공하는 전극 바인더 수지의 기능을 제공할 수 있다.
한편, 본 발명에 있어서, 상기 고체 전해질막은 고체 전해질층의 전해질 재료로 고분자 재료가 사용되는 경우 고체 전해질층의 제조시 가교제 및/또는 개시제를 더 포함할 수 있다. 상기 가교제 및/또는 개시제는 열, 광 및/또는 온도 조건에 따라 가교 반응이나 중합 반응이 개시될 수 있는 것으로 고분자 재료의 가교 및/또는 중합을 유도할 수 있는 것이라면 특별한 성분으로 한정되는 것은 아니다. 본 발명의 일 실시양태에 있어서, 상기 가교제 및/또는 개시제로 유기 과산화물, 알킬화은과 같은 유기 금속 시약, 아조계 화합물 등이 사용될 수 있으나 여기에 한정되는 것은 아니다.
한편, 본 발명에 있어서, 상기 무기 고체 전해질은 황화물계 고체 전해질, 산화물계 고체 전해질 또는 이 둘 모두를 포함하는 것일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 황화물계 고체 전해질은 전해질 성분 중 황원자를 포함하는 것으로서 특별히 구체적인 성분으로 한정되는 것은 아니며, 결정성 고체 전해질, 비결정성 고체 전해질(유리질 고체 전해질), 유리 세라믹 고체 전해질 중 하나 이상을 포함할 수 있다. 상기 황화물계 고체 전해질의 구체적인 예로는 황과 인을 포함하는 LPS형 황화물, Li 4 - xGe 1 - xP xS 4(x 는 0.1 내지 2, 구체적으로는 x는 3/4, 2/3), Li 10 ± 1MP 2X 12(M=Ge, Si, Sn, Al, X=S, Se), Li 3.833Sn 0.833As 0.166S 4, Li 4SnS 4, Li 3 . 25Ge 0 .25P 0. 75S 4, Li 2S-P 2S 5, B 2S 3-Li 2S, xLi 2S-(100-x)P 2S 5 (x는 70 내지 80), Li 2S-SiS 2 -Li 3N, Li 2S-P 2S 5 - LiI, Li 2S-SiS 2 -LiI, Li 2S-B 2S 3-LiI 등을 들 수 있으나 여기에 한정되는 것은 아니다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 산화물계 고체 전해질은 예를 들어, Li 3xLa 2 /3- xTiO 3와 같은 페롭스카이드 구조의 LLT계, Li 14Zn(GeO 4) 4와 같은 LISICON, Li 1 . 3Al 0 . 3Ti 1 . 7(PO 4) 3와 같은 LATP계, (Li 1 + xGe 2 - xAl x(PO 4) 3)와 같은 LAGP계, LiPON과 같은 인산염계 등을 적절하게 선택하여 사용할 수 있으며, 특별히 이에 한정되는 것은 아니다.
(2) 억제층
본 발명에 따른 고체 전해질막은 억제층을 포함하며, 상기 억제층은 리튬 덴드라이트 성장 억제 물질을 포함한다(도 2 참조). 상기 억제층에는 억제 물질이 억제층 전체에 걸쳐서 고른 분포로 또는 불균일한 분포로 분산되어 있을 수 있다. 본 명세서에서 덴드라이트 성장 억제 물질은 축약하여 억제 물질이라고 지칭될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 억제층은 억제 물질이 포함된 패턴 유닛들이 억제층 내에 규칙적으로 또는 불규칙적으로 배열되는 방식으로 패턴화된 형태일 수 있다. 상기 패턴 유닛은 억제층 중 억제 물질이 고농도로 포함된 것으로서, 예를 들어 하나의 패턴 유닛 100중량% 중 억제 물질이 50중량% 이상, 60중량% 이상 또는 70중량% 이상의 농도로 함유되어 있는 부분을 의미한다. 상기 패턴 유닛은 억제 물질만을 포함하거나 필요에 따라 억제 물질과 고체 전해질 재료와의 혼합물을 포함할 수 있다. 한편, 상기 패턴 유닛들 사이에 존재할 수 있는 무지부는 억제층의 상하부에 적층되는 고체 전해질층으로 매립(도 6 참조)되거나 별도의 고체 전해질 재료로 충진(도 4 참조)될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 패턴 유닛들은 특별한 모양으로 한정되는 것은 아니다. 이들의 평면 형상은 선형이거나 원형이나 사각형의 폐곡선 형태일 수 있다. 선형 패턴의 경우에는 이들이 서로 평행하거나 교차되도록 형성될 수 있다. 예를 들어 상기 패턴 유닛은 스트라이프나 도트의 평면 형상을 가질 수 있다. 도 4는 본 발명의 일 실시양태에 따른 고체 전해질막(330)의 단면을 개략적으로 도식화하여 나타낸 것으로서 억제층(332) 내에 다수의 패턴 요소(332a)들이 포함되어 있는 양태를 나타낸 것이다. 본 발명의 일 실시양태에 있어서, 고체 전해질층은 이의 표면 100 면적% 대비 억제층으로 피복되는 면적이 80% 미만, 70% 미만, 60% 미만 또는 50% 미만인 것이 바람직하다. 억제층이 고체 전해질층 표면을 과도하게 피복하는 방식으로 형성되는 경우에는 오히려 억제층에 의해 이온 전도 경로가 차단되어 고체 전해질막의 이온 전도도 특성이 저하될 수 있다. 억제층의 피복 면적이 상기 범위를 만족하는 경우 리튬 덴드라이트 성장 억제 효과가 높으며 억제층 형성에 의한 리튬 이온 전도도 저하가 방지될 수 있다. 다만, 전술한 억제층 및 고체 전해질막의 형상은 예시적인 것으로서 본 발명의 구조적인 특징이 구현될 수 있는 형상이면 특별한 제한 없이 적용될 수 있다.
본 발명에 있어서, 상기 억제층의 두께는 제조하는 방식에 따라 달라질 수 있으며 예를 들어 0 초과 100㎛이하일 수 있다. 전술한 바와 같이 고체 전해질 재료 등과의 혼합물에 의해 패턴화되는 경우에는 1㎛ 내지 100㎛의 범위를 가질 수 있으며, 상기 범위 내에서 70㎛이하, 또는 50㎛ 이하 또는 30㎛ 이하로 형성될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 억제층은 적절한 용매에 억제 물질을 투입하여 억제 물질 용액을 제조한 후 이를 고체 전해질층의 표면에 코팅함으로써 억제층을 형성할 수 있다. 이러한 방식으로 억제층이 도입되는 경우에는 억제층의 두께를 매우 얇게, 예를 들어 나노미터 스케일 수준으로 박막화할 수 있다. 또한, 본 발명의 일 실시양태에 따르면, 상기 억제층은 스트라이프나 도트의 모양을 갖도록 상기 용액을 코팅할 수 있는데 이 경우에는 패턴 유닛이 형성되지 않은 무지부의 두께가 매우 얇기 때문에 상하부에 적층되는 고체 전해질층에 의해서 매립되므로 상하부 고체 전해질층간 이격 발생이나 이로 인한 계면 저항의 증가를 최소화할 수 있다. 도 6은 억제층(332)의 무지부가 제1 고체 전해질층(332) 및 제2 고체 전해질층(331)에 의해서 매립되어 충진된 모양을 개략적으로 도식화하여 나타낸 것이다. 이와 같이 억제 물질 용액을 도포하여 억제층을 형성하는 경우에는 상기 억제층의 두께는 700nm 이하, 500 이하, 300nm 이하, 100nm 이하 또는 50nm 이하로 형성될 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 고체 전해질층의 표면에 억제 물질 용액 등을 직접 도포하여 억제층을 형성하는 방법 이외에도, 억제층을 별도의 이형 시트에 패턴화하여 형성한 후 패터닝된 억제층을 고체 전해질층으로 전사하는 방법, 고체 전해질층에 리소그라피를 이용하여 패터닝 하는 방법을 적용할 수 있다. 한편, 억제층에 패턴을 부여하는 경우 패터닝 공정을 수행한 후 O 2 플라즈마나 UV-ozone, 에칭 등을 통해 억제물질을 더 노출시킬 수도 있다.
또한, 본 발명의 구체적인 일 실시양태에 있어서, 고분자 공중합체의 자가 조립(self-assembly)의 방법을 적용하여 달성할 수 있으며 이를 통해 나노 미터 수준의 매우 미세한 패턴 유닛(미셀 micelle 등)들을 균일한 분포로 억제층에 정렬시킬 수 있다. 고분자 공중합체의 자가 조립(self-assembly)에 의해 형성된 억제층은 억제 물질 및 고분자 공중합체를 포함하며, 상기 억제 물질이 상기 고분자 공중합체에 화학적으로 결합되어 있는 것이다. 본 명세서에 있어서 상기 '화학적으로 결합된'은 상기 억제 물질이 상기 고분자 공중합체와 이온 결합, 공유 결합, 배위 결합 등 화학적 방식으로 결합되어 있는 것을 의미한다. 한편, 본원 명세서에서 덴드라이트 성장 억제 물질은 축약하여 억제 물질이라고 지칭될 수 있다. 이와 같이 고분자 공중합체의 자가 조립에 의해 억제층을 형성하는 경우에는 상기 억제층의 두께는 1㎛이하, 700nm 이하, 500 이하, 300nm 이하, 100nm 이하 또는 50nm 이하로 형성될 수 있다.
본 발명에 있어서, 상기 억제 물질은 리튬보다 이온화 경향이 낮은 것이다. 상기 억제 물질은 리튬보다 반응성이 낮으므로, 즉, 낮은 이온화 경향을 갖는다. 이러한 이유로 상기 억제 물질에 의해 리튬 이온이 환원되어 리튬 금속으로 석출되는 것을 방지할 수 있으며, 또한, 석출된 리튬을 다시 리튬 이온으로 산화시켜 덴드라이트의 양을 저감하는 효과가 있다.
본 발명에 있어서, 상기 억제 물질(a)은 a1) 리튬보다 이온화 경향이 낮은 금속(들); 및 a2) 리튬보다 이온화 경향이 낮은 금속들 중 2종 이상의 합금(들); 중 적어도 어느 하나로부터 유래된 것으로, 이들의 염 및 이들의 이온 중 적어도 어느 하나를 포함하는 혼합물이며, 상기 혼합물은 억제층 내에 분포되어 있다. 즉, 상기 억제층은 상기 금속의 염, 상기 합금의 염, 상기 금속의 이온 및 상기 합금의 이온 중 하나 이상을 포함한다.
본 발명의 일 실시양태에 있어서, 상기 a1) 금속은 K, Sr, Ca, Na, Mg, Be, Al, Mn, Zn, Cr(+3), Fe, Cd, Co, Ni, Sn, Pb, Cu, Hg, Ag, Pd, Ir, Pt(+2), Au 및 Pt(+4) 으로 구성된 그룹에서 선택된 1종 이상일 수 있다. 또한, 상기 a2) 합금은 상기 금속 성분들 중 선택된 2종 이상이 합금화된 것이다. 본 발명의 일 실시양태에 있어서, 상기 금속염은 이의 예로 염화물(chloride), 요오드화물(iodide), 시안화물(cyanide), 붕소화물(bromide), 황화물(sulfide), 수화물(hydroxide), 인화물 (phosphite), 염화수화물(chloride hydrate) 중 1종 이상일 수 있다. 그러나, 리튬 금속과 반응하여 리튬 금속을 이온의 형태로 산화시킬 수 있는 형태라면 제한되지 않으며, 상기 형태로 한정되는 것은 아니다. 한편, 본 발명의 일 실시양태에 있어서, 상기 억제 물질은 이온화 경향이 낮은 것일수록 리튬 덴드라이트 성장 억제 효과가 높다. 이에 따라 상기 억제 물질은 Au 및 Pt 중 하나 이상을 포함할 수 있다. 본 발명의 일 실시양태에 있어서, 상기 억제 물질로 Au가 사용되는 경우에는 이의 염의 형태인 HAuCl 4·3H 2O를 억제층의 제조시 투입할 수 있으며, 억제 물질로 Pt가 사용되는 경우에는 이의 염의 형태인 H 2PtCl 6·H 2O를 억제층의 제조시 투입할 수 있다.
한편, 본 발명의 일 실시양태에 따른 고분자 공중합체의 자가 조립에 따른 억제 물질의 패터닝에 있어서, 상기 고분자 공중합체는 상기 억제물질과 화학적 결합이 가능한 기능기(functional group)를 포함하는 것으로서, 즉, 상기 억제물질이 상기 기능기를 매개로 고분자 공중합체와 결합되어 있다. 본 발명의 일 실시양태에 있어서, 상기 기능기는 산소나 질소를 포함하는 것으로서 예를 들어 이써(ether) 및 아민(amine)과 같이 금속염과 결합이 가능한 기능기 및 이 중 선택된 1종 이상을 포함할 수 있다. 이러한 기능기내 산소나 질소의 (-) 전하와 금속염 중 금속 이온의 (+) 전하 사이에 인력이 작용하여 결합되어 있는 것이다.
이러한 고분자 공중합체로는 polystyrene-block-poly (2-vinylpyridine) copolymer, polystyrene-block-poly(4-vinylpyridine) copolymer, poly(1,4-isoprene)-block-polystyrene-block-poly(2-vinylpyridine) copolymer 및 polystyrene-block-poly(ethylene oxide) copolymer 등이 있으나 전술한 기능기를 포함하는 것으로서 자가 조립에 의한 나노 스케일의 미세 패턴을 형성할 수 있는 것이면 특별한 종류로 한정되는 것은 아니다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 억제층은 자가 조립 블록 공중합체에 의해 형성된 미셀들이 육방 조밀 구조에 따라 정렬된 모양을 나타낼 수 있다. 예를 들어 블록 공중합체로 Polystyrene-block-poly4vinyl pyridine를 사용하는 경우 자가 조립에 의해 폴리스티렌 블록(PS)을 주로 포함하는 매트릭스에 폴리비닐피리딘 블록(PVP)을 주로 포함하는 미셀이 일정한 규칙에 따라 배열되며 PVP 블록에 결합된 억제 물질은 이러한 미셀의 배열에 따라 억제층 전면에 걸쳐 높은 수준의 균일한 분산 상태를 확보할 수 있다. 상기 미셀은 코어 부분과 상기 코어의 표면을 둘러싸고 있는 쉘 부분으로 이루어질 수 있으며, 억제 물질은 코어 부분 및/또는 쉘 부분과 결합되어 있는 것이다. 도 5는 실시예 5에서 준비된 억제층의 AFM 이미지를 나타낸 것으로서 고체 전해질층의 표면에 미셀들이 육방 조밀 구조로 정렬되어 배치된 것을 확인할 수 있다.
도 7은 자가조립 블록 공중합체에 의해 형성된 억제층 및 이를 포함하는 고체 전해질막의 단면을 개략적으로 도식화 하여 나타낸 것이다. 이를 참조하면 고체 전해질막(430)은 제1 고체 전해질층(433) 및 제2 고체 전해질층(431)의 사이에 억제층(432)이 개재되어 있다. 이에 따르면 미셀(432a), 특히 미셀 중 코어 부분은 상대적으로 두께가 두꺼우나 미셀과 미셀 사이는 상대적으로 두께가 얇다. 또는 미셀과 미셀 사이는 공정 조건에 따라, 예를 들어 스핀 코팅의 속도, 미셀 용액의 농도 등에 따라 매트릭스가 형성되어 있지 않을 수 있다. 따라서 억제층이 고체 전해질층 표면의 대부분에 피복되는 형태로 배치되더라도 매트릭스를 통해 리튬 이온이 투과될 수 있어 고체 전해질층의 이온 전도도가 적절하게 유지될 수 있으며 다소 감소하더라도 고체 전해질막으로 사용하는데 문제가 없다. 본 발명의 일 실시양태에 있어서, O 2 플라즈마나 UV-ozone 처리를 통해 억제층의 두께를 조절할 수 있다. 이와 같이 이온 전도가 가능하며 이와 동시에 미셀의 코어에 결합된 억제 물질에 의해 리튬 덴드라이트 성장이 억제된다.
본 발명의 구체적인 일 실시양태에 있어서 미셀의 크기는 20nm 내지 300nm 일 수 있으며, 미셀간 간격은 10nm 내지 500nm일 수 있다.
이와 같이 본 발명에 따른 전해질막은 리튬 성장을 억제하는 억제 물질을 포함하고 있어 음극 활물질로 리튬 금속을 포함하는 전고제 전지에 적용되는 경우 리튬 덴드라이트 성장에 따른 단락을 효과적으로 억제할 수 있다.
(3) 고체 전해질막의 구조
본 발명의 일 실시양태에 있어서, 상기 고체 전해질막은 억제 물질을 포함하는 억제층이 포함된 것이다. 본 발명의 일 실시양태에 있어서 상기 고체 전해질막은 둘 이상의 고체 전해질층 및 하나 이상의 억제층을 포함할 수 있으며, 상기 억제층은 상기 고체 전해질층의 사이에 배치될 수 있다. 예를 들어, 상기 고체 전해질막은 제1 고체 전해질층, 억제층 및 제2 고체 전해질층이 순차적으로 적층된 형태인 층상구조를 나타낼 수 있다(도 2 참조). 또는 상기 고체 전해질막은 제1, 제2 및 제3 고체 전해질층이 구비될 수 있으며, 상기 제1 및 제2 고체 전해질층 사이에 제1 억제층이, 제2 및 제3 고체 전해질층 사이에 제2 억제층이 배치될 수 있다. 상기 각 억제층은 형상이나 재료의 측면에서 서로 독립적인 것으로서, 어느 하나의 억제층은 다른 하나와 같거나 다를 수 있다. 또한, 상기 각 고체 전해질층은 형상이나 재료의 측면에서 서로 독립적이며, 어느 하나의 고체 전해질층은 다른 하나와 같거나 다를 수 있다.
본 발명에 있어서, 상기 고체 전해질막은 억제층이 포함된 상태에서 이온 전도도가 1x10 -7 S/cm이상 바람직하게는 1x10 -5 S/cm이상을 나타낼 수 있다.
상기 억제층은 억제 물질이 다른 층(예를 들어 고체 전해질층)에 비해 고농도로 포함된 것이다. 예를 들어 상기 억제층은 억제층 100 중량% 대비 억제 물질이 10 중량% 내지 90 중량%의 범위로 함유될 수 있다. 억제 물질의 함량은 상기 범위 내에서 30 중량% 이상, 50 중량% 이상, 70 중량% 이상, 80 중량% 이상일 수 있으며, 이와 함께 또는 독립적으로 상기 함량은 80 중량% 이하, 70 중량% 이하 또는 60 중량% 이하일 수 있다. 상기 억제층 중 억제 물질의 농도는 덴드라이트 억제 효과, 고체 전해질막의 이온 전도도 및 억제 물질인 귀금속 사용으로 인한 전지의 제조 비용을 고려하여 적절한 범위로 조절될 수 있다. 한편, 본 발명의 일 실시양태에 있어서, 고체 전해질막에 포함되는 총 억제 물질 100 중량% 중 50 중량% 이상이 상기 억제층에 포함될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 억제층은 억제 물질 이외에 바인더 수지 및 이온 전도성 고체 전해질 재료 중 1종 이상을 더 포함할 수 있다. 상기 바인더 수지는 억제 물질 상호간의 결합 및 억제층과 다른 고체 전해질층과의 결합에 조력하는 성질을 갖고 전기화학적으로 안정적인 성분이면 특별한 제한 없이 사용할 수 있다. 이러한 바인더 수지의 비제한적인 예로는 아크릴계 고분자, 폴리불화비닐리덴계 고분자, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
본 발명에 있어서, 억제층의 두께, 억제층 증 억제 물질의 농도, 억제층이 고체 전해질층을 피복하는 면적 등은 고체 전해질막의 이온 전도도를 고려하여 적절하게 조절될 수 있다. 즉, 고체 전해질막에 포함되는 억제층은 고체 전해질막이 1x10 -7S/cm이상, 바람직하게는 1x10 -5S/cm이상의 이온 전도도를 나타낼 수 있도록 억제층의 두께, 억제 물질의 농도, 억제층에 의한 고체 전해질층의 피복 면적이 적절한 범위를 갖도록 조절될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 억제층은 아래와 같은 방법으로 형성할 수 있다. 본 발명의 일 실시양태에 있어서, 상기 억제층은 제1 고체 전해질층의 표면에 억제 물질을 용매와 혼합한 억제 물질 용액을 도포하고 건조하는 방식으로 형성될 수 있다. 이러한 경우에는 억제층은 제1 고체전해질층의 일측 표면에 매우 얇은 두께로 코팅된 상태로 수득될 수 있다. 이 경우에는 코팅된 억제층에 억제 물질만이 포함되어 있어 억제층의 두께는 1㎛ 미만의 나노미터 스케일로 매우 얇게 형성될 수 있다. 다른 실시양태에 있어서, 만일 억제층이 억제 물질과 고체 전해질 재료 및/또는 바인더 수지와의 복합체의 형태로 형성되는 경우에는 억제 물질만으로 형성된 억제층에 비해 두껍게 형성될 수 있다.
또한, 상기 제1 및 제2 고체 전해질층은 이온 전도성 고체 전해질 재료를 포함하며 필요에 따라 억제 물질, 바인더 수지 또는 이 둘 모두를 더 포함할 수 있다. 상기 제1 및 제2 고체 전해질층 내에서 상기 억제 물질은 균일한 분포로 분산되어 있을 수 있다. 또한, 상기 고체 전해질층 100 중량% 중 상기 억제 물질은 0 중량% 내지 50 중량%의 비율로 포함될 수 있다. 고체 전해질층 중 억제 물질의 함량은 상기 범위 내에서 40 중량% 이하, 30 중량% 이하, 20 중량% 또는 10 중량% 이하일 수 있다.
상기 억제층 및 제1 및 제2 고체 전해질층에 포함되는 억제 물질 및 이온 전도성 고체 전해질 재료는 전술한 내용을 참조할 수 있다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 제1 및 제2 고체 전해질층에 포함되는 이온 전도성 고체 전해질의 조성은 동일하거나 서로 다를 수 있다. 예를 들어, 제1층은 산화물계 고체 전해질 재료가 포함될 수 있고, 제2층은 황화물계 고체 전해질 재료가 포함될 수 있다.
일 실시양태에 있어서, 상기 고체 전해질막은 제1 고체 전해질층 형성 후 이의 표면에 억제층을 형성하고 억제층의 표면에 제2 고체 전해질층을 형성하는 방식으로 만들어질 수 있다. 만일 억제층이 둘 이상 포함되는 경우에는 제2 고체 전해질층의 표면에 억제층을 형성한 후 그 위에 제3 고체 전해질층을 형성하는 방법을 제조될 수 있다. 본 발명의 일 실시양태에 있어서, 이 이상의 억제층이나 고체 전해질층을 포함하는 고체 전해질막을 제조하는 경우에는 억제층과 고체 전해질층 형성 방법을 반복하여 수행할 수 있다.
본 발명의 일 실시양태에 있어서, 억제층을 패턴화하는 경우에는 상기 억제층은 제1 고체 전해질층의 표면에 볼록한 패턴의 패턴층으로 형성될 수 있다. 이후 상기 억제층의 표면에 제2 고체 전해질층용 슬러리를 도포하여 패턴 사이의 무지부(억제층 미형성 부분)가 제2 고체 전해질로 매립되도록 할 수 있다. 예를 들어, 제1 고체 전해질층의 표면에 억제 물질을 포함하는 억제층 패턴 요소들이 형성된다. 이후 상기 표면이 제2 고체 전해질층으로 피복되어 고체 전해질막이 형성된다. 본 발명의 일 실시양태에 있어서 상기 제2 고체 전해질층은 유동성이 있는 슬러러로부터 형성될 수 있다. 이에 상기 슬러리를 상기 억제층 패턴 요소들이 형성된 제1 고체 전해질층의 표면에 도포하여 패턴 요소들 사이의 무지부를 매립하여 억제층/제1 고체 전해질층/제2 고체 전해질층 사이에 이격된 빈 공간이 형성되는 것을 방지할 수 있다.
또는 상기 억제층은 제1 고체 전해질층에 표면으로부터 소정 두께의 오목 패턴을 형성한 후 이 오목 패턴에 억제 물질을 매립시키는 방식(inlay 방식)으로 형성될 수 있다. 이후 상기 억제층의 표면을 제2 고체 전해질층으로 피복하여 고체 전해질막을 수득할 수 있다.
또한 본 발명의 일 실시양태에 있어서, 상기 억제층은 고분자 공중합체의 자가 조립의 방법으로 패터닝 될 수 있다. 상기 자가 조립에 의한 억제층 제조 방법은 미셀(micelle)들이 형성되어 억제층 내에 규칙적으로 또는 불규칙적으로 정렬될 수 있는 구조를 갖는 것이면 어느 것이나 적용될 수 있다. 예를 들어, 자가 조립이 가능한 적절한 고분자 공중합체를 용매에 투입하여 고분자 용액을 준비하고 상기 고분자 용액에 억제물질을 투입하여 억제물질 형성용 혼합물을 준비한다. 상기 고분자 용액 및 혼합물은 용매 중 투입된 성분들의 균일한 분산을 위해 교반 공정이 적용될 수 있다. 특히 상기 혼합물의 교반에 의해서 억제 물질과 고분자 공중합체와의 화학적 결합이 촉진될 수 있다. 다음으로 이렇게 준비된 혼합물은 준비된 고체 전해질층의 표면에 도포하고 건조를 수행하여 자가 조립을 유도한다. 상기 도포는 예를 들어 스핀 코팅 방법을 사용할 수 있다. 이때 코팅 속도는 약 1,000rpm 내지 5,000rpm의 범위로 제어될 수 있다. 한편, 본 발명에 있어서, 상기 용매는 톨루엔, 테트라하이드로퓨란, 에틸렌, 아세톤, 클로로폼, 디메틸포름아미드(DMF) 중 선택된 1종 이상을 포함할 수 있으며 예를 들어 육방 밀집 구조의 미셀의 배열 측면에서 상기 용매는 톨루엔이 포함될 수 있다.
(3) 전고체 전지
본 발명은 상기 고체 전해질막을 포함하는 전고체 전지를 제공한다. 본 발명의 일 실시양태에 있어서, 상기 전고체 전지는 음극, 양극 및 상기 음극과 양극 사이에 개재되는 고체 전해질막을 포함하며, 여기에서 상기 고체 전해질막은 전술한 특징을 갖는 것이다.
도 3은 본 발명의 일 실시양태에 따른 전고체 전지(200)을 개략적으로 도식화하여 나타낸 것이다. 상기 전고체 전지는 양극 집전체(210)의 표면에 양극 활물질층(220)이 형성되어 있으며, 음극(240)이 고체 전해질막(230)을 매개로 하여 양극과 적층되어 있다. 상기 고체 전해질막(230)은 제1 고체 전해질층(233), 억제층(232) 및 제2 고체 전해질층(231)이 순차적으로 적층되어 있다. 상기 음극에서는 리튬 덴드라이트(241)가 수직 방향으로 성장할 수 있는데 억제층(232)에 의해서 성장이 억제될 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 상기 전고체 전지는 전해질막 중 제1 고체 전해질층이 억제층에 비해 낮은 농도의 억제 물질을 포함하며, 상기 제1 고체 전해질층이 음극과 대면하도록 배치될 수 있다. 이러한 구조의 전고체 전지에 있어서 상기 제1 고체 전해질층은 제2 고체 전해질층에 비해 억제물질의 농도가 높거나 제2 고체 전해질층의 두께에 비해 제1 고체 전해질층의 두께가 더 두껍게 형성되거나 이 둘 모두의 특징을 구비할 수 있다.
또한, 본 발명의 일 실시양태에 있어서, 음극과 대면하는 고체 전해질막의 표면에 별도의 보호층과 같은 요소를 더 부가할 수 있다. 특히, Li 금속과 직접적인 접촉에 의한 반응을 억제하는 목적으로 무기 고체 전해질, LiF, Li 2O과 같은 무기물계 재료 또는 PEO계 와 같은 유기물계 재료를 이용한 부동태막이 배치될 수 있다.
본 발명에 있어서, 음극은 집전체, 상기 집전체 표면에 형성된 음극 활물질층을 포함할 수 있으며, 상기 음극 활물질층은 알칼리 금속, 알칼리 토금속, 3B족 및 전이 금속에 속 하는 원소를 1종 이상 포함할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 알칼리 금속의 비제한적인 예로 리튬(Li), 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs) 또는 프랑슘(Fr)으로이루어진 군으로부터 선택된 적어도 하나 이상의 금속을 들 수 있으며 바람직하게는 리튬을 포함한다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 음극은 음극집전체와 소정 두께를 갖는 리튬 금속 박막이 압착에 의해 결착되어 적층된 것일 수 있다.
본 발명에 있어서 양극은 집전체 및 상기 집전체의 적어도 일측면에 형성된 양극 활물질층을 포함하며, 상기 상극 활물질층은 양극 활물질, 고체 전해질 및 도전재를 포함한다. 또한, 본 발명의 구체적인 일 실시양태에 있어서, 상기 양극 활물질층은 바인더 재료를 더 포함할 수 있다. 상기 바인더 재료의 투입으로 인해 양극 활물질층과 집전체 및/또는 고체 전해질막과의 결착력을 높일 수 있으며 이와 독립적으로 또는 이와 아울러 양극 활물질에 포함된 구성 성분간의 결착력 개선에도 도움이 된다.
상기 양극 활물질은 리튬이온 이차 전지의 양극 활물질로 사용 가능한 것이면 제한없이 사용할 수 있다. 예를 들어, 상기 양극 활물질은, 리튬 코발트 산화물(LiCoO 2),리튬 니켈 산화물(LiNiO 2)등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li 1 + xMn 2 - xO 4(여기서, x 는 0 ~ 0.33 임), LiMnO 3,LiMn 2O 3,LiMnO 2등의 리튬 망간 산화물; 리튬 동 산화물(Li 2CuO 2);LiV 3O 8,LiFe 3O 4,V 2O 5,Cu 2V 2O 7등의 바나듐 산화물; 화학식 LiNi 1 - xM xO 2(여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, 상기 원소 중 하나 이상의 원소를 포함, x = 0.01 ~ 0.3 임)으로 표현되는 리튬 니켈 산화물, 예를 들어 LiN 0.8C 0.1M 0.1O 2;화학식 LiMn 2 - xM xO 2(여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li 2Mn 3MO 8(여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNi xMn 2 - xO 4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn 2O 4;디설파이드 화합물; Fe 2(MoO 4) 3등을 포함할 수 있다. 그러나, 이들만으로 한정되는 것은 아니다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; VGCF(Vapor grown carbon fiber)와 같은 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재에서 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 바인더 재료는 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분이면 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. 상기 바인더 수지는 통상적으로 전극층 100 중량% 대비 1 내지 30 중량%, 또는 1 내지 10중량%의 범위로 포함될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 음극 및/또는 양극은 물리화학적 특성의 보완이나 개선의 목적으로 다양한 첨가제를 더 포함할 수 있다. 상기 첨가제는 특별히 한정되는 것은 아니나 산화안정 첨가제, 환원 안정 첨가제, 난연제, 열안정제, 무적제(antifogging agent) 등과 같은 첨가제를 1종 이상 포함할 수 있다
또한, 상기 집전체는 일반적으로 3㎛ 내지 500㎛의 두께로 만든다. 이러한 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 이 중 양극 또 는 음극의 극성에 따라 적절하게 선택하여 사용될 수 있다.
또한, 본 발명은, 상기 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
(4) 고체 전해질막의 제조 방법
다음으로 전술한 특징을 갖는 고체 전해질막의 제조 방법을 설명한다. 다음에 설명되는 제조 방법은 본 발명에 따른 고체 전해질막을 제조하는데 있어서 채용될 수 있는 다양한 방법 중 하나인 것으로, 이에 한정되는 것은 아니다. 우선, 제1 고체 전해질층을 제조한다. 상기 전해질층은 본 발명의 일 실시양태에 따른 고체 전해질층을 제조하는 방법에 따를 수 있으며, 특정한 방법으로 한정되는 것은 아니다. 예를 들어 전해질층이 고분자 전해질인 경우는 아래와 같은 방법으로 고체 전해질층이 준비될 수 있다. 아세토니트릴 등 적절한 용매에 고분자 수지를 용해시켜 고분자 용액을 준비하여 여기에 리튬염을 투입하여 전해질층 형성용 슬러리를 준비한다. 상기 슬러리는 고분자 수지와 리튬염의 용해를 위해 적절한 온도로 가온할 수 있으며, 수 내지 수십 시간동안 교반시킬 수 있다. 또한, 상기 고분자 용액은 개시제 및 경화제가 더 포함될 수 있다. 상기 개시제 및 경화제는 상기 고분자 용액에 함께 투입되거나 개시제 및 경화제를 포함하는 첨가제 용액을 별도로 준비하여 상기 슬러리에 첨가할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 개시제는 사용된 고분자 수지 대비 약 10 중량부 내지 20 중량부의 범위로 포함될 수 있으며, 경화제는 사용된 고분자 수지 대비 약 0.2 중량부 내지 3 중량부의 범위로 포함될 수 있다. 이후 준비된 슬러리를 이형 필름에 도포하고 건조한다. 이러한 방식으로 제1 고체 전해질층이 수득될 수 있다. 상기 이형 필름을 제거하고 제1 고체 전해질층을 사용하거나 아니면 모든 요소들이 다 구비된 고체 전해질막을 형성한 후 최종 단계에서 상기 이형 필름이 제거될 수 있다.
다음으로 상기 제1 고체 전해질층의 표면에 억제층을 형성한다. 상기 억제층은 금속염 용액의 형태로 준비될 수 있다. 예를 들어 수화된 금속염을 에탄올 등에 녹여 준비한 후 이를 고체 전해질층의 표면에 도포하고 건조하여 고체 전해질층의 표면에 코팅되어 일체화된 상태로 준비될 수 있다. 상기 도포는 스핀 코팅, 딥 코팅 등 통상적인 도포 방식에 따를 수 있으며 특정한 방법으로 한정되는 것은 아니다.
이후 억제층의 표면에 제2 고체 전해질층을 형성한다. 상기 제2 고체 전해질층은 제1 고체 전해질층과 같이 제2 고체 전해질층 형성용 슬러리를 준비한 후 이를 억제층의 표면에 도포하고 건조하여 억제층과 일체화된 형태로 준비하거나 또는 제1 고체 전해질층 형성과 같이 별도의 이형 필름의 표면에 코팅한 후 이형 필름을 제거하고 억제층의 표면에 캘린더링이나 라미네이션의 방법으로 결합할 수 있다.
본 발명에 있어서 각 단계에서 사용되는 용매는 특정한 것으로 한정되는 것은 아니며 사용되는 재료들을 고려하여 적절한 것을 선택하여 사용할 수 있다. 예를 들어 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 테트라하이드로퓨란, 디메톡시에탄, 니트로메탄, 아세톤, 피리딘, 에탄올, 아세토니트릴, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 제2 고체 전해질층의 표면에 다시 억제층을 더 형성하고, 상기 억제층의 표면에 제3 고체 전해질층을 배치하여 억제층이 둘 이상 포함된 형태의 고체전해질막을 제공할 수 있다.
상기 제조 방법은 각 고체 전해질층이 고분자 고체 전해질을 포함하는 것으로 설명되었으나 본 발명은 여기에 한정되는 것은 아니며 각 고체 전해질층은 전해질 재료로 고분자 고체 전해질을 대체하여 또는 이와 함께 무기 고체 전해질을 포함할 수 있다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
[실시예]
1. 고체 전해질막의 제조
실시예 1
(1) 제 1 고체전해질층 제조
용매 아세토니트릴(Acetonitrile, AN)에 폴리에틸렌 옥사이드(Polyethylene oxide, PEO, Mw=4,000,000g/mol)을 녹여 4 wt%의 고분자 용액을 준비하였다. 이 때, 리튬염으로 LiTFSI를 [EO]/[Li+]=18/1 (몰비)이 되도록 함께 넣어주었다. 상기 고분자 용액에서 PEO와 리튬염이 충분히 녹을 수 있도록 70℃에서 밤샘 교반하였다. 다음으로 개시제와 경화제를 포함한 첨가제 용액을 준비하였다. 경화제는 PEGDA (Mw=575), 개시제는 과산화벤조일(Bezoyl peroxide, BPO)를 사용하며, 폴리에틸렌 글리콜 디아크릴레이트(Polyehtylene glycol diacrylate, PEGDA)는 PEO 대비 20 wt%, BPO는 PEGDA 1%의 양이 되도록 하였으며, 용매로는 아세토니트릴을 사용하였다. 상기 첨가제 용액은 투입된 성분들이 잘 혼합되도록 약 1시간 동안 교반하였다. 이후 상기 첨가제 용액을 상기 고분자 용액에 첨가하고 두 용액이 충분히 혼합되도록 하였다. 혼합된 용액을 이형 필름에 닥터 블레이드를 이용하여 도포 및 코팅하였다. 코팅 gap은 800㎛, 코팅 속도는 20mm/min으로 하였다. 상기 용액이 코팅된 이형 필름을 유리판으로 이동시켜 수평을 잘 유지하고, 상온 조건에서 밤샘 건조하고, 100℃에서 12시간 진공 건조하였다. 이러한 방식으로 제1 고체 전해질층을 수득하였다. 수득된 제1 고체 전해질층의 두께는 약 50㎛이었다.
(2) 억제층 제조
HAuCl 4·3H 2O를 2wt% 농도로 에탄올에 녹여 금속염 용액을 제조하였다. 상기 금속염 용액 20㎕를 전 단계에서 수득된 제1 고체전해질층 위에 2,000rpm의 속도로 스핀 코팅의 방식으로 코팅하였다.
(3) 제 2 고체전해질층 제조
상기 제 1 고체전해질층 제조와 동일한 방법으로 제2 고체 전해질층을 준비하였다.
(4) 다층 구조 고체전해질막의 제조
억제층이 코팅된 제 1 고체전해질막과 제 2고체전해질막을 포개어 쌓고 롤 사이의 간격을 100㎛ 로 조절하여 60℃에서 캘린더링하였다. 이때 제1 및 제2 고체전해질막 사이에 억제층이 배치되도록 하였다. 이와 같은 방식으로 제1 고체 전해질막, 억제층 및 제2 고체전해질막이 순차적으로 적층된 고체 전해질막을 수득하였다. 수득된 고체 전해질막의 두께는 약 100㎛였다. 고체 전해질막 중 억제층은 전체 고체 전해질막 두께에 영향을 미치지 않을 정도로 매우 얇게 형성된 것을 알 수 있었다.
실시예 2
고체전해질층 제조시 HAuCl 4·3H 2O의 농도를 5wt%로 한 것을 제외하고는 실시예 1과 동일한 방법으로 고체 전해질막을 준비하였다.
실시예 3
제1 고체전해질층, 억제층, 제2 고체전해질층, 억제층, 제3 고체전해질층의 순서로 적층된 구조를 갖는 고체 전해질막을 준비하였다. 실시예 3의 고체 전해질막은 실시예 1의 전해질층에서 억제층과 제3 고체 전해질층이 더 추가된 구조로 적층 구조만 차이가 있을 뿐이며 각 층의 제조 방법은 실시예 1과 동일하게 하였다.
실시예 4
고체전해질막 제조시 억제층의 재료로 H 2PtCl 6·H 2O인 것을 제외하고는 실시예 1과 동일한 방법으로 고체전해질막을 준비하였다.
실시예 5
(1) 제 1 고체전해질층 제조
용매 아세토니트릴(Acetonitrile, AN)에 폴리에틸렌옥사이드(Polyethylene oxide, PEO, Mw=4,000,000g/mol)을 녹여 4 wt%의 고분자 용액을 준비하였다. 이 때, 리튬염으로 LiTFSI를 [EO]/[Li+]=18/1 (몰비)이 되도록 함께 넣어주었다. 상기 고분자 용액에서 PEO와 리튬염이 충분히 녹을 수 있도록 70℃에서 밤샘 교반하였다. 다음으로 개시제와 경화제를 포함한 첨가제 용액을 준비하였다. 경화제는 PEGDA (Mw=575), 개시제는 과산화벤조일(Bezoyl peroxide, BPO)를 사용하며, 폴리에틸렌 글리콜 디아크릴레이트(Polyehtylene glycol diacrylate, PEGDA)는 PEO 대비 20 wt%, BPO는 PEGDA 1%의 양이 되도록 하였으며, 용매로는 아세토니트릴을 사용하였다. 상기 첨가제 용액은 투입된 성분들이 잘 혼합되도록 약 1시간 동안 교반하였다. 이후 상기 첨가제 용액을 상기 고분자 용액에 첨가하고 두 용액이 충분히 혼합되도록 하였다. 혼합된 용액을 이형 필름에 닥터 블레이드를 이용하여 도포 및 코팅하였다. 코팅 gap은 800㎛, 코팅 속도는 20mm/min으로 하였다. 상기 용액이 코팅된 이형 필름을 유리판으로 이동시켜 수평을 잘 유지하고, 상온 조건에서 밤샘 건조하고, 100℃에서 12시간 진공 건조하였다. 이러한 방식으로 제1 고체 전해질층을 수득하였다. 수득된 제1 고체 전해질층의 두께는 약 50㎛이었다.
(2) 억제층 제조
Polystyrene-block-poly4vinyl pyridine (S4VP, PS Mn 41.5kg/mol, P4VP Mn 17.5kg/mol)을 0.5wt%의 농도로 톨루엔(Tolune)에 상온에서 하루동안 교반하였다. 이 용액 내에 HAuCl 4 ·3H 2O를 P4VP 대비 2wt% 농도로 첨가한 후 6시간 동안 교반하여 S4VP 미셀 내에 Au 이온이 결합할 수 있게 하였다. 상기 용액을 수득된 제1 고체전해질층 위에 3,000rpm의 속도로 스핀-코팅(spin-coating)하여 단일층의 S4VP 미셀(micelle)을 자기조립을 통해 패턴화 하였다. 도 5는 수득된 억제층의 AFM 이미지를 나타낸 것이다. 밝은 부분은 미셀 부분이고, 어두운 부분은 제1 고체 전해질층 부분을 나타낸 것이다. 이때 미셀의 크기는 40nm 이고, 미셀 간 간격은 약 70nm 이었다.
(3) 제 2 고체전해질층 제조
상기 제 1 고체전해질층 제조와 동일한 방법으로 제2 고체 전해질층을 준비하였다.
(4) 다층 구조 고체전해질막의 제조
억제층이 코팅된 제 1 고체전해질막과 제 2고체전해질막을 포개어 쌓고 롤 사이의 간격을 100㎛로 조절하여 60℃에서 캘린더링하였다. 이때 제1 및 제2 고체전해질막 사이에 억제층이 배치되도록 하였다. 이와 같은 방식으로 제1 고체 전해질막, 억제층 및 제2 고체전해질막이 순차적으로 적층된 고체 전해질막을 수득하였다. 수득된 고체 전해질막의 두께는 약 100㎛였다. 고체 전해질막 중 억제층은 전체 고체 전해질막 두께에 영향을 미치지 않을 정도로 매우 얇게 형성된 것을 알 수 있었다.
실시예 6
고체전해질막 제조시 억제층 내 HAuCl 4의 농도가 S4VP 대비 5wt%인 것을 제외하고, 실시예 5과 동일한 방법으로 고체 전해질막을 준비하였다.
실시예 7
고체전해질막 제조시 억제층의 block copolymer를 Polystyrene-block-poly2vynil pyridine (S2VP, PS Mn 133kg/mol, P2VP Mn 132kg/mol)를 사용한 것을 제외하고, 실시예 5과 동일한 방법으로 고체 전해질막을 준비하였다.
비교예 1
고체전해질막 제조시 억제층을 삽입하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 고체 전해질막을 준비하였다.
비교예 2
고체전해질층 제조시 억제층이 없이 고체전해질층만 총 3장을 적층하는 것을 제외하고는 비교예 1과 동일하게 진행하였다.
2. 전지의 제조
양극 슬러리 제작을 위해 전극 활물질은 NCM811(LiNi 0 . 8Co 0 . 1Mn 0 . 1O 2), 도전재는 VGCF(Vapor grown carbon fiber) 및 고분자계 고체 고체전해질(PEO + LiTFSI, 18:1 mol비)을 80:3:17의 중량비로 혼합하여 아세토니트릴에 투입하고 교반하여 전극 슬러리를 제조하였다. 두께가 20㎛인 알루미늄 집전체를 준비하였다. 상기 슬러리를 닥터 블레이드를 이용하여 상기 집전체에 도포하고 그 결과물을 120℃에서 4시간 동안 진공 건조시켰다. 롤 프레스를 이용하여 압연 공정을 진행하여, 2mAh/cm 2의전극 로딩, 전극층 두께가 48㎛, 기공도를 22%인 전극이 수득되었다. 다음으로 상기에서 제조된 전극을 1.4875cm 2의 원형으로 타발하여 준비하였다. 1.7671cm 2의 원형으로 절단된 리튬 금속 박막을 상대 전극으로 준비하였다. 이 두 전극 사이에 상기 실시예 1 내지 실시예 7, 비교예 1 내지 2에서 수득된 고체 전해질막을 각각 게재시켜 코인형 하프셀(half-cell)을 제조하였다.
3. 평가 실험
(1) 고체전해질층 이온전도도 평가
각 실시예 1 내지 7 및 비교예 1 내지 2에서 제작된 고체전해질막을 1.7671cm 2의 원형으로 절단하였다. 이를 두 장의 스텐레스스틸(SUS) 사이에 배치하여 코인셀을 제작하였다. 분석장치(VMP3, Bio logic science instrument)를 사용하여 60℃에서 amplitude 10mV 및 scan range 500Khz 내지 20MHz 조건으로 전기화학적 임피던스를 측정하였으며, 이를 바탕으로 이온 전도도를 계산하였다.
(2) 초기 방전 용량 및 수명 특성 평가
실시예 1 내지 7 및 비교예 1 내지 2에서 제조된 전지에 대해 60℃에서 0.05C로 충·방전을 수행하여, 초기 방전용량방전을 평가하였다.
충전 조건: CC(정전류)/CV(정전압), (4.15V, 0.005C current cut-off)
방전 조건: CC(정전류) 조건 3V, (0.05C)
한편, 단락 발생 시점은 0.1C로 충방전을 진행하여 수명 평가시 충전중 전압의 비정상 거동 (불안정한 전압 변화) 시점으로 판단하였다.
이온 전도도(S/cm, 60℃) 방전 용량(mAh/g, 4.15V) 단락 발생 시점(cycle)
실시예 1 1x10 -4 159 18
실시예 2 9x10 -5 155 20
실시예 3 9x10 -5 142 23
실시예 4 1x10 -4 156 16
실시예 5 8x10-5 151 17
실시예 6 8x10-5 150 20
실시예 7 8x10-5 142 14
비교예 1 1x10 -4 156 5
비교예 2 9x10 -5 145 8
상기 표 1에서 확인할 수 있는 바와 같이 본 발명의 실시예 1 내지 7의 고체 전해질막을 포함하는 전지는 비교예의 전지들에 비해서 이온 전도도 및 방전용량이 높은 것으로 나타났으며, 단락 발생 시점도 지연되었다. 즉, 리튬 덴드라이트가 억제물질인 금속 이온과 화학 반응을 통해 다시 리튬 이온으로 변환하여, 수명 특성이 개선됨을 알 수 있었다. 이때 금속 이온의 양이나 코팅층의 균일성이 중요하다. 본 발명의 실시예 5 내지 7의 경우에는 블록 공중합체의 자기조립을 통해 나노 스케일로 배치된 금속 이온이 더욱 효과적으로 수명 특성 향상을 나타내었다. 도 5는 실시예 5를 통해 제작된 억제층 표면의 AFM 사진으로 금속 이온을 포함한 micelle 이 제1 고체 전해질층 위에 일정 패턴을 형성하고 있음을 확인할 수 있었다.
[부호의 설명]
10 전고체 전지, 11 집전체, 12 양극, 13 고체 전해질막, 14 음극(리튬 금속), 14a 덴드라이트
130 고체 전해질막, 131 제2 고체 전해질층, 132 억제층, 133 제1 고체 전해질층
200 전고체 전지, 210 집전체, 220 양극, 231 제2 고체 전해질층, 232 억제층, 233 제1 고체 전해질층, 240 음극(리튬 금속), 241 덴드라이트
330 고체 전해질막, 331 고체 전해질층, 332 억제층
430 고체 전해질막, 431 제2 고체 전해질층, 433 제1 고체 전해질층, 432 억제층, 432a 미셀

Claims (16)

  1. 전고체 전지용 고체 전해질막에 대한 것으로서,
    상기 고체 전해질막은 이온 전도도가 1x10 -7 S/cm 이상이며,
    상기 고체 전해질막은 덴드라이트 성장 억제 물질(a)을 포함하는 억제층을 하나 이상 포함하며, 상기 덴드라이트 성장 억제 물질(a)는 (a1) 리튬보다 이온화 경향이 낮은 금속(들) 및 (a2) 상기 금속들 중 2종 이상의 합금(들) 중 어느 하나로부터 유래된 것이며, 이들의 염 및 이들의 이온 중 적어도 어느 하나의 형태로 상기 억제층에 포함되어 있는 것인, 고체 전해질막.
  2. 제1항에 있어서,
    상기 억제층은 억제 물질을 포함하는 복수의 패턴 유닛들을 포함하여 패터닝되며 상기 패턴 유닛들은 상기 억제층 내에 규칙적 또는 불규칙적으로 분포되어 있는 것인 고체 전해질막.
  3. 제2항에 있어서,
    상기 억제층은 덴드라이트 성장 억제 물질(a) 및 상기 억제 물질이 화학적으로 결합된 고분자 공중합체를 포함하며 상기 고분자 공중합체의 자가조립(self-assembly)에서 유래된 미세 패턴을 갖고,
    상기 고분자 공중합체는 상기 억제물질과 화학적 결합이 가능한 기능기를 포함하며 억제물질이 상기 기능기를 매개로 고분자 공중합체와 결합된 것인 고체 전해질막.
  4. 제3항에 있어서,
    상기 억제층은 상기 고분자 공중합체의 자가조립에 의해 미셀들이 육방 조밀 구조에 따라 정렬된 모양을 갖는 것인 고체 전해질막.
  5. 제3항에 있어서,
    상기 기능기는 이써(ether) 및 아민(amine) 중 1종 이상인 것인 고체 전해질막.
  6. 제3항에 있어서,
    상기 고분자 공중합체는 polystyrene-blockpooly(2-vinylpyridine) copolymer, polystyrene-block-poly(4-vinylpyridine) copolymer, poly(1,4-isoprene)-blockpolystyrene-block-poly(2-vinylpyridine) copolymer 및 polystyrene-block-poly(ethylene oxide) copolymer 에서 선택된 1종 이상을 포함하는 것인 고체 전해질막
  7. 제1항 또는 제2항에 있어서,
    상기 금속은 K, Sr, Ca, Na, Mg, Be, Al, Mn, Zn, Cr(+3), Fe, Cd, Co, Ni, Sn, Pb, Cu, Hg, Ag, Pd, Ir, Pt(+2), Au 및 Pt(+4)로 구성된 군으로부터 선택된 1종 이상을 포함하는 것인, 고체 전해질막.
  8. 제1항 또는 제2항에 있어서,
    상기 억제 물질은 Au 및 Pt로 구성된 군으로부터 선택된 1종 이상을 포함하는 것인, 고체 전해질막.
  9. 제1항에 또는 제2항에 있어서,
    상기 금속염은 염화물(chloride), 요오드화물(iodide), 시안화물(cyanide), 붕소화물(bromide), 황화물(sulfide), 수화물(hydroxide), 인화물(phosphite) 및 염화 수화물(chloride hydrate) 중 1종 이상인 것인, 고체 전해질막.
  10. 제1항 또는 제2항에 있어서,
    상기 고체 전해질막은 둘 이상의 고체 전해질층 및 1 이상의 억제층을 포함하며, 상기 억제층은 고체 전해질층 사이에 배치되는 것인 고체 전해질막.
  11. 제10 항에 있어서,
    상기 고체 전해질막은 제1 고체 전해질층, 억제층 및 제2 고체 전해질층이 순차적으로 적층된 것인 고체 전해질막.
  12. 제10 항에 있어서,
    상기 둘 이상의 고체 전해질층 중 하나 이상은 억제물질을 포함하며, 각 고체 전해질층 중 억제물질의 함량(중량%)은 억제층에 포함되는 억제물질의 함량(중량%) 보다 낮은 것인 고체 전해질막.
  13. 제1항 또는 제2항에 있어서,
    상기 고체 전해질막은 이온 전도성 고체 전해질 재료를 포함하며, 상기 이온 전도성 고체 전해질 재료는 고분자 고체 전해질, 무기 고체 전해질 또는 이 둘 모두의 혼합물을 포함하는 것인, 고체 전해질막.
  14. 제13 항에 있어서,
    상기 고분자 고체 전해질은 고분자 수지 및 용매화된 리튬염을 포함하는 것인, 고체 전해질막.
  15. 음극, 양극 및 상기 음극 및 양극의 사이에 개재된 고체 전해질막을 포함하는 전고체 전지이며, 상기 음극은 리튬 금속을 포함하고, 상기 고체 전해질막은 제1항 또는 제2항에 따른 것인, 전기화학소자.
  16. 제15 항에 있어서,
    상기 고체 전해질막은 제1 고체 전해질층, 억제층 및 제2 고체 전해질층이 순차적으로 적층된 것이며, 상기 제1 고체 전해질층은 억제 물질(a)을 포함하며, 상기 억제 물질은 (a1) 리튬보다 이온화 경향이 낮은 금속(들) 및 (a2) 상기 금속들 중 2종 이상의 합금(들) 중 어느 하나로부터 유래된 것인 전기화학소자.
PCT/KR2019/007235 2018-06-15 2019-06-14 고체 전해질막 및 이를 포함하는 전고체 전지 WO2019240547A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/056,683 US11978846B2 (en) 2018-06-15 2019-06-14 Solid electrolyte membrane and solid-state battery comprising the same
EP19820620.3A EP3809510A4 (en) 2018-06-15 2019-06-14 SOLID ELECTROLYTIC MEMBRANE AND FULLY SOLID BATTERY INCLUDING IT
CN201980033683.1A CN112166520A (zh) 2018-06-15 2019-06-14 固体电解质膜和包含该固体电解质膜的固态电池
JP2020568403A JP7102556B2 (ja) 2018-06-15 2019-06-14 固体電解質膜及びこれを含む全固体電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180069240A KR102413379B1 (ko) 2018-06-15 2018-06-15 고체 전해질막 및 이를 포함하는 전고체 전지
KR10-2018-0069240 2018-06-15
KR1020180167864A KR102298058B1 (ko) 2018-12-21 2018-12-21 고체 전해질막 및 이를 포함하는 전고체 전지
KR10-2018-0167864 2018-12-21

Publications (1)

Publication Number Publication Date
WO2019240547A1 true WO2019240547A1 (ko) 2019-12-19

Family

ID=68842641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007235 WO2019240547A1 (ko) 2018-06-15 2019-06-14 고체 전해질막 및 이를 포함하는 전고체 전지

Country Status (5)

Country Link
US (1) US11978846B2 (ko)
EP (1) EP3809510A4 (ko)
JP (1) JP7102556B2 (ko)
CN (1) CN112166520A (ko)
WO (1) WO2019240547A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477950A (zh) * 2020-05-14 2020-07-31 华鼎国联四川动力电池有限公司 一种改善循环和倍率的固态电解质
WO2021217075A1 (en) * 2020-04-23 2021-10-28 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
CN114122506A (zh) * 2020-08-28 2022-03-01 三星Sdi株式会社 全固态二次电池
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11984598B2 (en) 2023-06-21 2024-05-14 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102446619B1 (ko) * 2019-03-19 2022-09-22 주식회사 엘지에너지솔루션 전고체 전지용 전해질막 및 이를 제조하는 방법
US11929460B2 (en) * 2019-11-27 2024-03-12 Cyntec Co., Ltd. Solid-state battery
CN113745650B (zh) * 2021-08-20 2022-07-15 高能时代(珠海)新能源科技有限公司 一种对锂负极稳定的硫化物固态电解质及其制备方法与锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232284A (ja) * 2012-04-27 2013-11-14 Toyota Industries Corp 固体電解質及び二次電池
KR20170105283A (ko) * 2016-03-09 2017-09-19 삼성에스디아이 주식회사 이차전지
KR20180032168A (ko) * 2016-09-21 2018-03-29 주식회사 엘지화학 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬이차전지
KR20180046693A (ko) * 2016-10-28 2018-05-09 현대자동차주식회사 음극 계면이 안정화된 전고체 전지
KR20180069240A (ko) 2016-12-15 2018-06-25 에스엘 주식회사 차량용 램프 및 차량용 램프의 쉴드 유닛 제조 방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3421409B2 (ja) 1993-12-14 2003-06-30 新神戸電機株式会社 高分子固体電解質電池
EP0988657A1 (en) 1998-03-23 2000-03-29 Koninklijke Philips Electronics N.V. Polymeric gel electrolyte
JP5211526B2 (ja) 2007-03-29 2013-06-12 Tdk株式会社 全固体リチウムイオン二次電池及びその製造方法
CN103098288A (zh) 2010-08-26 2013-05-08 住友电气工业株式会社 非水电解质电池及其制造方法
US10128534B2 (en) * 2011-09-02 2018-11-13 Seeo, Inc. Microsphere composite electrolyte
US20130202920A1 (en) * 2012-02-07 2013-08-08 Battelle Memorial Institute Dendrite-Inhibiting Salts in Electrolytes of Energy Storage Devices
WO2015013207A1 (en) 2013-07-22 2015-01-29 Battell Memorial Institute Polymer electrolytes for dendrite-free energy storage devices having high coulombic efficiency
JP6096163B2 (ja) 2014-11-06 2017-03-15 株式会社イムラ材料開発研究所 水系リチウム―空気二次電池の負極構造
US10593998B2 (en) 2014-11-26 2020-03-17 Corning Incorporated Phosphate-garnet solid electrolyte structure
US9780379B2 (en) * 2015-05-21 2017-10-03 Nanotek Instruments, Inc. Alkali metal secondary battery containing a carbon matrix- or carbon matrix composite-based dendrite intercepting layer
CN108140440B (zh) 2015-09-30 2019-11-08 西奥公司 包含聚合物添加剂的嵌段共聚物电解质
KR20180099905A (ko) 2016-01-26 2018-09-05 인트라-셀룰라 써래피스, 인코퍼레이티드. 유기 화합물
KR20170111439A (ko) 2016-03-28 2017-10-12 주식회사 세븐킹에너지 다층 구조를 가지는 이차전지용 복합 전해질
KR102464364B1 (ko) 2016-05-09 2022-11-08 삼성전자주식회사 리튬금속전지용 음극 및 이를 포함하는 리튬금속전지
US10741846B2 (en) 2016-05-09 2020-08-11 Samsung Electronics Co., Ltd. Negative electrode for lithium metal battery and lithium metal battery comprising the same
WO2018056615A1 (ko) 2016-09-21 2018-03-29 주식회사 엘지화학 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬이차전지
US10084220B2 (en) * 2016-12-12 2018-09-25 Nanotek Instruments, Inc. Hybrid solid state electrolyte for lithium secondary battery
KR102134458B1 (ko) 2016-12-28 2020-07-15 주식회사 엘지화학 전고체 전지 및 이를 위한 고분자 전해질
JP2020517049A (ja) * 2017-03-29 2020-06-11 ユニバシティ オブ メリーランド カレッジ パーク 固体ハイブリッド電解質、その作製方法、およびその使用
US10566652B2 (en) * 2017-08-15 2020-02-18 GM Global Technology Operations LLC Lithium metal battery with hybrid electrolyte system
KR20190129768A (ko) 2018-05-10 2019-11-20 주식회사 엘지화학 고체 전해질층 및 이를 포함하는 전고체 전지
CN112544007B (zh) 2019-01-10 2024-01-09 株式会社Lg新能源 固体电解质膜以及包含其的全固态电池
KR102446619B1 (ko) * 2019-03-19 2022-09-22 주식회사 엘지에너지솔루션 전고체 전지용 전해질막 및 이를 제조하는 방법
KR20200122660A (ko) * 2019-04-18 2020-10-28 주식회사 엘지화학 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
KR20200122904A (ko) 2019-04-19 2020-10-28 주식회사 엘지화학 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
EP3958367A4 (en) * 2019-05-03 2022-06-29 LG Energy Solution, Ltd. Solid electrolyte membrane and solid-state battery comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232284A (ja) * 2012-04-27 2013-11-14 Toyota Industries Corp 固体電解質及び二次電池
KR20170105283A (ko) * 2016-03-09 2017-09-19 삼성에스디아이 주식회사 이차전지
KR20180032168A (ko) * 2016-09-21 2018-03-29 주식회사 엘지화학 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬이차전지
KR20180046693A (ko) * 2016-10-28 2018-05-09 현대자동차주식회사 음극 계면이 안정화된 전고체 전지
KR20180069240A (ko) 2016-12-15 2018-06-25 에스엘 주식회사 차량용 램프 및 차량용 램프의 쉴드 유닛 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809510A4
SHIMIZU, MASAHITO ET AL.: "Suppressing the effect of lithium dendritic growth by the addition of magnesium bis(trifluoromethanesulfonyl)amide", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 20, 5 December 2017 (2017-12-05), pages 1127 - 1133, XP055667922 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021217075A1 (en) * 2020-04-23 2021-10-28 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US20210336265A1 (en) * 2020-04-23 2021-10-28 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11735732B2 (en) 2020-04-23 2023-08-22 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
CN111477950A (zh) * 2020-05-14 2020-07-31 华鼎国联四川动力电池有限公司 一种改善循环和倍率的固态电解质
CN114122506A (zh) * 2020-08-28 2022-03-01 三星Sdi株式会社 全固态二次电池
EP3961782A1 (en) * 2020-08-28 2022-03-02 Samsung SDI Co., Ltd. All-solid secondary battery
JP2022040100A (ja) * 2020-08-28 2022-03-10 三星エスディアイ株式会社 全固体二次電池
JP7271621B2 (ja) 2020-08-28 2023-05-11 三星エスディアイ株式会社 全固体二次電池
US11984598B2 (en) 2023-06-21 2024-05-14 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming

Also Published As

Publication number Publication date
US20210367263A1 (en) 2021-11-25
EP3809510A1 (en) 2021-04-21
JP7102556B2 (ja) 2022-07-19
CN112166520A (zh) 2021-01-01
JP2021526721A (ja) 2021-10-07
US11978846B2 (en) 2024-05-07
EP3809510A4 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2019240547A1 (ko) 고체 전해질막 및 이를 포함하는 전고체 전지
WO2020130695A1 (ko) 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지
WO2018164455A1 (ko) 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2020190029A1 (ko) 전고체 전지용 전해질막 및 이를 제조하는 방법
WO2018169247A2 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020226472A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2020214010A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2020080887A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 그의 제조방법
WO2018169361A1 (ko) 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2020080805A1 (ko) 전고체 전지 제조 방법
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2020091453A1 (ko) 리튬 이차전지
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2020067792A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2020145749A1 (ko) 고체 전해질막 및 이를 포함하는 전고체 전지
WO2020091428A1 (ko) 리튬 이차전지
WO2021071125A1 (ko) 리튬 이차 전지 및 리튬 이차 전지의 제조방법
WO2021096313A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2020214016A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2019203455A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020226334A1 (ko) 고체 전해질막 및 이를 포함하는 전고체 전지
WO2021118094A1 (ko) 고상-액상 하이브리드 전해질 막, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021150097A1 (ko) 고상-액상 하이브리드 전해질 막 및 이의 제조방법
WO2017074116A1 (ko) 다층 구조의 고분자 전해질 및 이를 포함하는 전고체 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019820620

Country of ref document: EP

Effective date: 20210113