WO2019240232A1 - ガラス微粒子堆積体の製造方法 - Google Patents

ガラス微粒子堆積体の製造方法 Download PDF

Info

Publication number
WO2019240232A1
WO2019240232A1 PCT/JP2019/023554 JP2019023554W WO2019240232A1 WO 2019240232 A1 WO2019240232 A1 WO 2019240232A1 JP 2019023554 W JP2019023554 W JP 2019023554W WO 2019240232 A1 WO2019240232 A1 WO 2019240232A1
Authority
WO
WIPO (PCT)
Prior art keywords
burner
gas
siloxane
particulate deposit
glass
Prior art date
Application number
PCT/JP2019/023554
Other languages
English (en)
French (fr)
Inventor
正敏 早川
真澄 伊藤
守屋 知巳
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201980039356.7A priority Critical patent/CN112262111B/zh
Priority to JP2020525662A priority patent/JP7276335B2/ja
Priority to US16/973,146 priority patent/US20210246065A1/en
Publication of WO2019240232A1 publication Critical patent/WO2019240232A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid

Definitions

  • the present disclosure relates to a method for producing a glass particulate deposit.
  • This application claims priority based on Japanese Patent Application No. 2018-114363 filed on Jun. 15, 2018, and incorporates all the contents described in the application.
  • Patent Document 1 describes a method for producing a glass particulate deposit using siloxane as a raw material for glass synthesis. Further, in Patent Document 2, when shifting to a mode in which glass particulates are not deposited, a combustion gas is allowed to flow to the seal gas ejection nozzle instead of the seal gas, and the combustion gas at the combustion gas port is switched to a purge gas at the combustion gas port. It is described. Further, Patent Document 3 discloses that the source gas and the inert gas A are switched upstream of the MFC (Mass Flow Controller) when the supply of the glass source gas to the burner becomes zero, and the gas from the MFC is changed to the burner. It is described that the gas is switched from the exhaust side to the exhaust side, the inert gas B is supplied to the burner, and the raw material gas supply path is purged with the inert gases A and B.
  • MFC Mass Flow Controller
  • a method for producing a glass particulate deposit according to the present disclosure includes: A method for producing a glass particulate deposit, wherein siloxane is used as a glass raw material, and a siloxane gas and a combustion gas gasified by a vaporizer are discharged from a burner and burned to form a glass particulate deposit in a reaction vessel.
  • the supply of the combustion gas to the burner is continued, while the supply of the siloxane that is the glass raw material to the burner is stopped, Removing the glass particulate deposit from the reaction vessel;
  • the raw material gas port from the vaporizer to the burner is purged by flowing an inert gas, When no color derived from the combustion of siloxane gas is observed in the flame from the burner, the supply of the combustion gas is stopped.
  • the method for producing a glass fine particle deposit according to the present disclosure includes: A method for producing a glass particulate deposit, wherein siloxane is used as a glass raw material, and a siloxane gas and a combustion gas gasified by a vaporizer are discharged from a burner and burned to form a glass particulate deposit in a reaction vessel.
  • the supply of the combustion gas to the burner is continued while the supply of the siloxane as the glass raw material to the burner is stopped,
  • the raw material gas port from the vaporizer to the burner is purged by flowing an inert gas,
  • the glass particulate deposit is heated for a certain time while traversing the glass particulate deposit relative to the burner with a flame formed of the combustion gas, and then the supply of the combustion gas is stopped.
  • siloxane may remain between the vaporizer and the gas outlet of the burner after the supply of the siloxane gas to the burner is stopped until a new glass particulate deposit is produced. Residual siloxane reacts with oxygen flowing back from the gas outlet between the same positions to form underoxidized silicon oxide (SiOx (X ⁇ 2)) particles, or ring-opened siloxanes are polymerized to form a gel May form.
  • the above-mentioned silicon oxide (SiOx (X ⁇ 2)) particles and gel-like substances may block between the gas discharge ports of the burner from the vaporizer, or may be mixed into the newly produced glass particulate deposition layer. Cause the product to become defective.
  • an object of the present disclosure is to provide a method for producing a high-quality glass particulate deposit when siloxane is used as a raw material for glass synthesis.
  • a method for producing a glass particulate deposit according to an aspect of the present disclosure includes: (1) A method for producing a glass particulate deposit, wherein siloxane is used as a glass raw material, and a siloxane gas and a combustion gas gasified by a vaporizer are discharged from a burner and burned to form a glass particulate deposit in a reaction vessel.
  • the supply of the combustion gas to the burner is continued, while the supply of the siloxane that is the glass raw material to the burner is stopped, Removing the glass particulate deposit from the reaction vessel;
  • the raw material gas port from the vaporizer to the burner is purged by flowing an inert gas,
  • the supply of the combustion gas is stopped. According to this configuration, it is possible to prevent the gaseous siloxane from remaining in the raw material gas port from the vaporizer to the burner after the supply of siloxane is stopped. As a result, a high-quality glass particulate deposit can be produced.
  • a method for producing a glass particulate deposit according to an aspect of the present disclosure includes: (2) A method for producing a glass particulate deposit, wherein siloxane is used as a glass raw material, and a siloxane gas and a combustion gas gasified by a vaporizer are discharged from the burner and burned to form a glass particulate deposit in a reaction vessel.
  • the supply of the combustion gas to the burner is continued, while the supply of the siloxane that is the glass raw material to the burner is stopped,
  • the raw material gas port from the vaporizer to the burner is purged by flowing an inert gas,
  • the glass particulate deposit is heated for a certain time while traversing the glass particulate deposit relative to the burner with a flame formed of the combustion gas, and then the supply of the combustion gas is stopped.
  • this configuration from the stop of the supply of siloxane to the production of a new glass fine particle deposit, it is possible to prevent oxygen from being mixed from the gas discharge port of the burner to the raw material gas port due to the backflow, and the oxidation-deficient silicon oxide It is possible to prevent (SiOx (X ⁇ 2)) particles from being formed, or ring-opened siloxanes to be polymerized to form a gel.
  • the carrier gas which is an inert gas
  • the carrier gas is used to gasify the siloxane in the vaporizer, and the supply of the siloxane gas to the burner is stopped. After that, it is preferable to perform the purge to the source gas port by continuing to flow the carrier gas. According to this configuration, it is not necessary to further provide an inert gas supply mechanism used for the purge, and the carrier gas supply mechanism already provided can be used as it is, thereby simplifying the apparatus configuration.
  • the method for producing a glass particulate deposit according to any one of (1) to (4), (5) It is preferable to use nitrogen as the inert gas. According to this configuration, by using inexpensive nitrogen as the inert gas, a glass particulate deposit can be manufactured at low cost.
  • a pipe between the vaporizer and the burner is formed of a material containing metal. If the vaporizer and the burner are piped with a material containing a metal, the gaseous siloxane remaining in the pipe is more likely to be oxidized and gelled. In the present embodiment, however, Even in an apparatus that is piped with a material containing a metal that is likely to have a problem, the problem can be effectively prevented. In addition, if piping is formed with the material containing a metal, it can also heat at high temperature.
  • the method for producing a glass particulate deposit according to any one of (1) to (6), (7) It is preferable to heat the piping between the vaporizer and the burner at a temperature equal to or higher than the boiling point of siloxane. According to this configuration, the remaining siloxane gas can be prevented from being cooled and liquefied.
  • FIG. 1 is a configuration diagram of an apparatus 1 (hereinafter, also referred to as “glass particulate deposit manufacturing apparatus” or “deposit fabrication apparatus”) 1 for manufacturing a glass particulate deposit according to the present embodiment.
  • the deposit manufacturing apparatus 1 includes a reaction vessel 2, an elevating and rotating device 3, a siloxane supply tank 21, a carrier gas supply device 31, a combustion gas supply device 32, a burner 22 for generating glass particles, and the operation of each part.
  • the control part 5 which controls is provided.
  • the reaction vessel 2 is a vessel in which the glass particulate deposit M is formed, and includes an exhaust pipe 12 attached to the side surface of the vessel.
  • the lifting / lowering rotating device 3 is a device for moving the glass particulate deposit M up and down and rotating through the support rod 10 and the starting rod 11.
  • the lifting / lowering rotating device 3 moves the glass fine particle deposit M up and down and rotates based on the control signal transmitted from the control unit 5.
  • the support rod 10 is disposed through a through hole formed in the upper wall of the reaction vessel 2, and a starting rod 11 is provided at one end portion (lower end portion in FIG. 1) disposed in the reaction vessel 2. Is attached. The other end of the support bar 10 (upper end in FIG. 1) is held by the elevating and rotating device 3.
  • the starting rod 11 is a rod on which the glass fine particles 30 are deposited, and is attached to the support rod 10.
  • the exhaust pipe 12 is a pipe for discharging the glass fine particles 30 that have not adhered to the starting rod 11 and the glass fine particle deposit M to the outside of the reaction vessel 2.
  • the burner 22 is supplied with siloxane gas, seal gas (not shown), and combustion gas.
  • the siloxane gas is obtained by mixing the liquid siloxane 23 fed from the siloxane supply tank 21 via the MFC 25 with the carrier gas in the vaporizer 24. Specifically, in the vaporizer 24, the siloxane gas is generated by dropping the liquid siloxane 23 onto the carrier gas injected at a high speed.
  • the carrier gas is supplied from the carrier gas supply device 31 to the vaporizer 24.
  • the combustion gas is supplied from the combustion gas supply device 32 to the burner 22.
  • the MFC 25 is a device that controls the supply amount of the liquid siloxane 23 fed from the siloxane supply tank 21 and supplies the liquid siloxane 23 to the vaporizer 24 via the supply pipe 26.
  • the MFC 25 controls the supply amount of the liquid siloxane 23 supplied to the vaporizer 24 based on the control signal transmitted from the control unit 5.
  • the supply of the liquid siloxane 23 from the siloxane supply tank 21 to the MFC 25 is performed by pumping with an inert gas or by a pump. It is preferable to use helium as the inert gas used for pumping. Since helium hardly dissolves in liquid siloxane, it is possible to prevent fluctuation errors in the supply amount due to vaporization of dissolved gas components (bubble generation).
  • the supply pipe 26 is a pipe that guides the liquid siloxane 23 whose supply amount is controlled by the MFC 25 to the vaporizer 24.
  • the supply pipe 26 preferably has a function of heating the liquid siloxane 23 so that the liquid siloxane 23 is easily vaporized in the vaporizer 24.
  • the function of heating the liquid siloxane 23 in the supply pipe 26 can be provided by, for example, winding a tape heater 28 that is a heating element around the outer periphery of the supply pipe 26. When the tape heater 28 is energized, the supply pipe 26 is heated, and the temperature of the liquid siloxane 23 supplied to the vaporizer 24 can be brought close to a temperature suitable for vaporization in advance.
  • liquid siloxane 23 is octamethylcyclotetrasiloxane (OMCTS)
  • OMCTS octamethylcyclotetrasiloxane
  • the burner 22 generates glass fine particles 30 by oxidizing the siloxane gas obtained in the vaporizer 24 in a flame, and the generated glass fine particles 30 are sprayed on the starting rod 11 to be deposited.
  • Siloxane exists in a gaseous state between the vaporizer 24 and the burner 22.
  • a function of heating the vaporizer 24 and the burner 22 is provided so that the siloxane gas is not cooled and liquefied. It is preferable to provide. That is, like the supply pipe 26, it is preferable that a tape heater 28 as a heating element is wound around the outer periphery of the pipe between the vaporizer 24 and the burner 22 and a part of the outer periphery of the burner 22.
  • the piping between the vaporizer 24 and the burner 22 and the burner 22 are heated, and liquefaction of siloxane gas can be prevented.
  • the liquid siloxane 23 is OMCTS, it may be raised to a temperature of 175 to 200 ° C., which is higher than the standard boiling point 175 ° C. of OMCTS.
  • the burner 22 for ejecting siloxane gas or combustion gas for example, a cylindrical multi-nozzle (emission port) structure or a linear multi-nozzle structure is used.
  • the control unit 5 controls each operation of the elevating and rotating device 3, the MFC 25, and the like.
  • the control unit 5 transmits a control signal for controlling the ascending / descending speed and the rotating speed of the glass particulate deposit M to the ascending / descending rotation device 3.
  • the control unit 5 transmits a control signal for controlling the supply amount of the liquid siloxane 23 supplied to the vaporizer 24 to the MFC 25.
  • the MFC 25 supplies the raw material liquid siloxane 23 to the vaporizer 24 while controlling the supply amount based on the control signal transmitted from the control unit 5.
  • Glass particulates 30 are generated by oxidizing the siloxane gas in the combustion gas flame.
  • the burner 22 continuously deposits the glass fine particles 30 generated in the flame on the starting rod 11 that rotates and moves up and down.
  • the lifting / lowering rotating device 3 moves up and down and rotates the starting rod 11 and the glass particulate deposit M deposited on the starting rod 11 based on a control signal from the control unit 5.
  • the carrier gas and the seal gas used in the present embodiment are not particularly limited as long as they are inert gas, but helium gas, argon gas, nitrogen gas and the like can be mentioned, and nitrogen gas is preferable because it is inexpensive.
  • the combustion gas used in the present embodiment is not particularly limited as long as it can form a flame and contains oxygen for oxidizing siloxane, but oxyhydrogen gas is preferable.
  • Oxyhydrogen gas is a mixture of hydrogen (flammable gas) and oxygen (flammable gas).
  • both hydrogen and oxygen shall be included in the combustion gas of this indication.
  • the present invention is not limited to the OVD method. Similar to the OVD method, the present invention can be applied to a method of depositing glass from a glass raw material using an oxidation reaction, for example, a VAD method (Vapor-phase Axial Deposition), an MMD (Multiburner Multilayer Deposition) method, or the like. is there.
  • a VAD method Vapor-phase Axial Deposition
  • MMD Multiburner Multilayer Deposition
  • the following procedure steps are performed.
  • the supply of liquid siloxane from the siloxane supply tank 21 to the MFC 25 It may be stopped. However, the supply of liquid siloxane from the siloxane supply tank 21 to the MFC 25 is preferably stopped.
  • the supply of the combustion gas to the burner 22 continues even after the good part of the glass particulate deposit M is manufactured.
  • step A2) the glass particulate deposit M is taken out from the reaction vessel 2, and the supply of the combustion gas to the burner 22 is continued at this time as well. At this time, even if the supply of the siloxane to the burner 22 is stopped in the step A1), the siloxane is released from the burner 22 because of the remaining siloxane.
  • the specific method of purging by flowing the inert gas in the step A3) is not particularly limited, but the supply of the carrier gas (inert gas) from the carrier gas supply device 31 to the vaporizer 24 is continued. It is preferable. According to this aspect, it is not necessary to further provide an inert gas supply mechanism used for purging, and the already provided carrier gas supply mechanism can be used as it is, thereby simplifying the apparatus configuration.
  • step A4) the presence or absence of a color derived from the combustion of siloxane gas in the flame from the burner 22 is confirmed.
  • siloxane burns, the flame is white or orange.
  • oxyhydrogen gas is used as the combustion gas and only the oxyhydrogen gas is combusted, the flame is light blue. Therefore, if the flame from the burner 22 does not exhibit white or orange color but only light blue, it can be determined that the siloxane gas remaining in the pipe has been eliminated. Thereafter, the supply of combustion gas is stopped.
  • the purge is continued in the raw material gas port from the vaporizer 24 to the burner 22 until the production of the next glass fine particle deposit M is newly started after the production of the glass fine particle deposit M. According to this aspect, it is possible to prevent oxygen from flowing backward from the gas discharge port of the burner 22 to the source gas port from the time when the supply of siloxane is stopped until the production of a new glass fine particle deposit.
  • the pipe between the vaporizer 24 and the burner 22 may be formed of a material containing metal.
  • a material containing metal In general, when siloxane is in an environment in contact with a metal, oxidation and gelation easily occur due to the catalytic action of the metal.
  • siloxane is effectively discharged from the pipe between the vaporizer and the burner, the above-described disadvantage does not occur even if the pipe is made of a material containing metal.
  • piping is formed with the material containing a metal, it can also heat at high temperature.
  • the burner 22 may be a mechanism for retreating in the radial direction of the glass particulate deposit M in accordance with the growth of the glass particulate deposit M.
  • At least a part of the supply pipe 26 between the vaporizer 24 and the MFC 25 may be made of a flexible material such as a fluororesin.
  • the glass fine particle deposit M manufactured in the present embodiment is then dehydrated and sintered to make the glass transparent, thereby obtaining a glass base material.
  • the obtained glass base material has a high quality such as extremely few bubbles.
  • Process after the completion of the deposition process is not limited to the process including the above-described processes A1) to A4) (hereinafter also referred to as “process A”). Below, it is a modification of the process A, The process B which can be implemented instead of the process A is demonstrated.
  • Step A is a step in which the glass particulate deposit M is advanced without being taken out of the reaction vessel 2 until the supply of the combustion gas to the burner 22 is stopped.
  • the siloxane gas remains in the raw material gas port, a gel-like substance adheres to the manufactured glass fine particle deposit M and causes the product to become defective.
  • the combustion gas is allowed to flow for a certain period of time so that the surface of the deposited glass particulate deposit is covered.
  • step B specifically, the following steps are performed.
  • B1) After the good part of the glass particulate deposit M is manufactured, the supply of the siloxane as the glass raw material to the burner 22 is stopped while the supply of the combustion gas to the burner 22 is continued.
  • B2) An inert gas is flowed into the raw material gas port from the vaporizer 24 to the burner 22 for purging.
  • B3) When the supply of the combustion gas is continued for a certain time, the supply of the combustion gas is stopped.
  • the glass particulate deposit M is taken out from the reaction vessel 2.
  • the supply of liquid siloxane from the MFC 25 to the vaporizer 24 can be stopped from the siloxane supply tank 21 as in the step A1).
  • the supply of liquid siloxane to the MFC 25 may be stopped, but the supply of liquid siloxane from the siloxane supply tank 21 to the MFC is preferably stopped.
  • the step B1) as in the step A1), the supply of the combustion gas to the burner 22 is continued even after the good part of the glass particulate deposit M is manufactured.
  • the glass particulate deposit M is not taken out from the reaction vessel 2 and the supply of the combustion gas to the burner 22 is continued. At this time, even if the supply of siloxane to the burner 22 is stopped in the step B1), siloxane is released from the burner 22 because there is residual siloxane.
  • the specific method of purging by flowing an inert gas in step B2) is not particularly limited, as in step A3).
  • the carrier gas (inert) from the carrier gas supply device 31 to the vaporizer 24 is not limited. It is preferable to continue the supply of gas. According to this aspect, it is not necessary to further provide an inert gas supply mechanism used for purging, and the already provided carrier gas supply mechanism can be used as it is, thereby simplifying the apparatus configuration.
  • the supply of the combustion gas is continued for a certain period of time, and after heating for a certain period of time while traversing the glass particulate deposit relative to the burner with a flame formed of the combustion gas, the combustion gas is supplied. Stop.
  • This fixed time includes a time for exhausting the siloxane gas remaining in the raw material port and a time for swirling the surface of the deposited glass particulate deposit.
  • the time for taking out the siloxane gas may be confirmed by the presence or absence of the color derived from the combustion of the siloxane gas, or it can be understood from the trial result, etc. good.
  • the certain time is preferably 3 minutes or more and 1 hour or less. If it is less than 3 minutes, the siloxane gas may not be completely discharged, or it may not be sufficient to blow off the gel-like component attached to the surface. In addition, if it is allowed to flow for 1 hour, the siloxane gas can be sufficiently discharged, and it is sufficient to blow off the gel-like components attached to the surface. Work efficiency also deteriorates.
  • the temperature of the glass particulate deposit in step B3) is 700 ° C. or higher and 1200 ° C. or lower. If it is 700 degreeC or more, the gel-like component adhering to the surface etc. can be blown away. If the temperature is higher than 1200 ° C., the glass particulate deposit may shrink or sinter.
  • step B4) is performed. After that, it is preferable to continue purging the raw material gas port from the vaporizer 24 to the burner 22 until the next production of the next glass particulate deposit M is started, as in the above step A. According to this aspect, it is possible to prevent oxygen from flowing backward from the gas discharge port of the burner 22 to the raw material gas port after the supply of siloxane is stopped until a new glass fine particle deposit is produced.
  • the pipe between the vaporizer 24 and the burner 22 may be formed of a material containing metal.
  • the burner 22 may be a mechanism for retracting in the radial direction of the glass particulate deposit M in accordance with the growth of the glass particulate deposit M, and between the vaporizer 24 and the MFC 25.
  • At least a part of the supply pipe 26 may be made of a flexible material such as a fluororesin.
  • the glass fine particle deposit M manufactured by performing the process B instead of the process A is then dehydrated and sintered in the same manner as in the process A to make the glass transparent, thereby obtaining a glass base material.
  • the obtained glass base material has a high quality such as extremely few bubbles.
  • SYMBOLS 1 Deposit body manufacturing apparatus 2: Reaction container 3: Elevating-rotating apparatus 5: Control part 10: Supporting rod 11: Starting rod 12: Exhaust pipe 21: Siloxane supply apparatus 22: Burner 23: Liquid siloxane 24: Vaporization apparatus 25: MFC 26: Supply piping 28: Tape heater 30: Glass particulate 31: Carrier gas supply device 32: Combustion gas supply device M: Glass particulate deposit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

ガラス原料としてシロキサンを用い、気化装置でガス状にしたシロキサンガスと燃焼ガスをバーナから放出して燃焼させて、反応容器内でガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法であって、ガラス微粒子堆積体の良好部を製造した後に、バーナヘの燃焼ガスの供給を続けながら、ガラス原料であるシロキサンのバーナヘの供給を停止し、ガラス微粒子堆積体を反応容器から取出し、気化装置からバーナにかけての原料ガスポートには、不活性ガスを流してパージし、バーナからの火炎にシロキサンガスの燃焼に由来する色が認められなくなったら燃焼ガスの供給を停止する。

Description

ガラス微粒子堆積体の製造方法
 本開示は、ガラス微粒子堆積体の製造方法に関する。
 本出願は、2018年6月15日出願の日本国特許出願2018-114363号に基づく優先権を主張し、当該出願に記載された全ての記載内容を援用するものである。
 特許文献1には、ガラス合成用原料としてシロキサンを用いてガラス微粒子堆積体を製造する方法が記載されている。
 また、特許文献2には、ガラス微粒子を堆積させないモードに移行する場合、シールガス噴出ノズルにシールガスに替えて燃焼ガスを流し、燃焼ガスポートにおいて、前記燃焼ガスポートの燃焼ガスをパージガスに切り替えることが記載されている。
 さらに、特許文献3には、バーナへのガラス原料ガスの供給をゼロにする時点等で、前記原料ガスと不活性ガスAをMFC(Mass Flow Controller)の上流で切替え、MFCからのガスをバーナ側から排気側に切替え、バーナに不活性ガスBを供給して、前記原料ガス供給路を不活性ガスAおよびBでパージすることが記載されている。
日本国特開2015-113259号公報 日本国特開2012-232875号公報 日本国特開2003-212554号公報
 本開示のガラス微粒子堆積体の製造方法は、
 ガラス原料としてシロキサンを用い、気化装置でガス状にしたシロキサンガスと燃焼ガスをバーナから放出して燃焼させて、反応容器内でガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法であって、
 前記ガラス微粒子堆積体の良好部を製造した後に、前記バーナヘの前記燃焼ガスの供給を続けながら、前記ガラス原料である前記シロキサンの前記バーナヘの供給を停止し、
 前記ガラス微粒子堆積体を前記反応容器から取出し、
 前記気化装置から前記バーナにかけての原料ガスポートには、不活性ガスを流してパージし、
 前記バーナからの火炎にシロキサンガスの燃焼に由来する色が認められなくなったら燃焼ガスの供給を停止する。
 また、本開示のガラス微粒子堆積体の製造方法は、
 ガラス原料としてシロキサンを用い、気化装置でガス状にしたシロキサンガスと燃焼ガスをバーナから放出して燃焼させて、反応容器内でガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法であって、
 前記ガラス微粒子堆積体の良好部を製造した後に、前記バーナへの前記燃焼ガスの供給を続けながら、前記ガラス原料である前記シロキサンの前記バーナへの供給を停止し、
 前記気化装置から前記バーナにかけての原料ガスポートには、不活性ガスを流してパージし、
 前記燃焼ガスで形成される火炎で前記ガラス微粒子堆積体を前記バーナに対して相対的にトラバースさせながら一定時間加熱したのち、前記燃焼ガスの供給を停止する。
本開示の一態様に係るガラス微粒子堆積体を製造する装置の一形態を示す構成図である。
[本開示が解決しようとする課題]
 特許文献1に記載の方法によりガラス微粒子堆積体を製造する場合には、液体のシロキサンを気化装置でガス状にしてバーナから放出し、酸化反応によりガラス微粒子を形成、堆積させている。そして、ガラス微粒子堆積体の良好部を製造した後は、バーナヘのシロキサンガスの供給を停止し、製造装置の反応容器からガラス微粒子堆積体を取り出し、新たに別のターゲット部材(出発ロッド)を前記反応容器内に取付け、新たなガラス微粒子堆積体の製造を行う。
 上記の場合、バーナヘのシロキサンガスの供給を停止してから、新たなガラス微粒子堆積体の製造までに、気化装置からバーナのガス放出口の間に、シロキサンが残存することがある。残存したシロキサンは、同位置間でガス放出口から逆流した酸素と反応し、酸化不足の酸化ケイ素(SiOx(X<2))粒子を形成したり、開環したシロキサン同士が重合してゲル状物を形成することがある。上記の酸化ケイ素(SiOx(X<2))粒子や、ゲル状物は、気化装置からバーナのガス放出口の間を閉塞させたり、新たに製造するガラス微粒子堆積層内に混入したりして、製品の不良化の原因となる。
 そこで、本開示は、ガラス合成用原料としてシロキサンを用いた場合において、高品質のガラス微粒子堆積体を製造する方法を提供することを目的とする。
 [本開示の効果]
 本開示によれば、ガラス合成用原料としてシロキサンを用いた場合において、高品質のガラス微粒子堆積体を製造することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施形態の内容を列記して説明する。
 本開示の一態様に係るガラス微粒子堆積体の製造方法は、
(1)ガラス原料としてシロキサンを用い、気化装置でガス状にしたシロキサンガスと燃焼ガスをバーナから放出して燃焼させて、反応容器内でガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法であって、
 前記ガラス微粒子堆積体の良好部を製造した後に、前記バーナヘの前記燃焼ガスの供給を続けながら、前記ガラス原料である前記シロキサンの前記バーナヘの供給を停止し、
 前記ガラス微粒子堆積体を前記反応容器から取出し、
 前記気化装置から前記バーナにかけての原料ガスポートには、不活性ガスを流してパージし、
 前記バーナからの火炎にシロキサンガスの燃焼に由来する色が認められなくなったら前記燃焼ガスの供給を停止する。
 この構成によれば、シロキサンの供給を停止してから後、気化装置からバーナにかけての原料ガスポート中に、ガス状のシロキサンが残存することを防止することができる。その結果、高品質のガラス微粒子堆積体を製造することができる。
 本開示の一態様に係るガラス微粒子堆積体の製造方法は、
(2)ガラス原料としてシロキサンを用い、気化装置でガス状にしたシロキサンガスと燃焼ガスをバーナから放出して燃焼させて、反応容器内でガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法であって、
 前記ガラス微粒子堆積体の良好部を製造した後に、前記バーナへの前記燃焼ガスの供給を続けながら、前記ガラス原料である前記シロキサンの前記バーナへの供給を停止し、
 前記気化装置から前記バーナにかけての原料ガスポートには、不活性ガスを流してパージし、
 前記燃焼ガスで形成される火炎で前記ガラス微粒子堆積体を前記バーナに対して相対的にトラバースさせながら一定時間加熱したのち、前記燃焼ガスの供給を停止する。
 この構成によれば、シロキサンの供給を停止してから後、気化装置からバーナにかけての原料ガスポート中に、ガス状のシロキサンが残存することを防止することができる。その結果、高品質のガラス微粒子堆積体を製造することができる。
 前記(1)または前記(2)に記載のガラス微粒子堆積体の製造方法は、
(3)前記ガラス微粒子堆積体の製造後から新たに次のガラス微粒子堆積体の製造を開始するまでの間も、前記気化装置から前記バーナにかけての原料ガスポートには前記パージを続けることが好ましい。
 この構成によれば、シロキサンの供給を停止してから、新たなガラス微粒子堆積体の製造まで、逆流によるバーナのガス放出口から原料ガスポートへの酸素の混入を防止し、酸化不足の酸化ケイ素(SiOx(X<2))粒子を形成したり、開環したシロキサン同士が重合してゲル状物を形成したりするのを防ぐことができる。
 前記(1)または前記(2)に記載のガラス微粒子堆積体の製造方法は、
(4)前記ガラス微粒子堆積体の良好部を製造する際、前記気化装置で前記シロキサンをガス状にするために不活性ガスであるキャリアガスを用い、前記シロキサンガスの前記バーナヘの供給を停止した後も、前記キャリアガスを流し続けることにより前記原料ガスポートへの前記パージを行うことが好ましい。
 この構成によれば、前記パージに用いる不活性ガスの供給機構をさらに設ける必要がなく、既に備えているキャリアガスの供給機構をそのまま用いることができることにより、装置構成を簡易化することができる。
 前記(1)から前記(4)のいずれかに記載のガラス微粒子堆積体の製造方法は、
(5)前記不活性ガスとして窒素を用いることが好ましい。
 この構成によれば、前記不活性ガスとして安価な窒素を用いることにより、低コストでガラス微粒子堆積体を製造することができる。
 前記(1)から前記(5)のいずれかに記載のガラス微粒子堆積体の製造方法は、
(6)前記気化装置と前記バーナとの間の配管が金属を含む材料で形成されていることが好ましい。
 気化装置とバーナとの間が金属を含む材料で配管されている場合は、配管内に残存するガス状のシロキサンの酸化、ゲル化がより生じ易くなるが、本実施形態においては、このような不具合が生じ易い金属を含む材料で配管されている装置においても、当該不具合を効果的に防止することができる。なお、配管が金属を含む材料で形成されていれば、高温で加熱することもできる。
 前記(1)から前記(6)のいずれかに記載のガラス微粒子堆積体の製造方法は、
(7)前記気化装置と前記バーナとの間の配管をシロキサンの沸点以上の温度で加熱することが好ましい。
 この構成によれば、残存したシロキサンガスが冷えて液化することを防止することができる。
[本開示の実施形態の詳細]
〔使用装置の概要等〕
 以下、本開示の実施形態に係るガラス微粒子堆積体の製造方法の実施形態の例を添付図面に基づいて説明する。
 図1は、本実施形態のガラス微粒子堆積体を製造する装置(以下、「ガラス微粒子堆積体製造装置」または「堆積体製造装置」とも称する)1の構成図である。堆積体製造装置1は、反応容器2と、昇降回転装置3と、シロキサン供給タンク21と、キャリアガス供給装置31と、燃焼ガス供給装置32と、ガラス微粒子生成用のバーナ22と、各部の動作を制御する制御部5とを備えている。
 反応容器2は、ガラス微粒子堆積体Mが形成される容器であり、容器の側面に取り付けられた排気管12を備えている。
 昇降回転装置3は、支持棒10および出発ロッド11を介してガラス微粒子堆積体Mを昇降動作、および回転動作させる装置である。昇降回転装置3は、制御部5から送信されてくる制御信号に基づいてガラス微粒子堆積体Mを昇降及び回転させる。
 支持棒10は、反応容器2の上壁に形成された貫通穴を挿通して配置されており、反応容器2内に配置される一方の端部(図1において下端部)には出発ロッド11が取り付けられている。支持棒10は、他方の端部(図1において上端部)が昇降回転装置3により把持されている。
 出発ロッド11は、ガラス微粒子30が堆積されるロッドであり、支持棒10に取り付けられている。
 排気管12は、出発ロッド11およびガラス微粒子堆積体Mに付着しなかったガラス微粒子30を反応容器2の外部に排出する管である。
 バーナ22には、シロキサンガスと、シールガス(図示せず)と、燃焼ガスとが供給される。
 シロキサンガスは、シロキサン供給タンク21からMFC25を経て送液された液体シロキサン23を、気化装置24においてキャリアガスと混合することにより得られる。具体的には、気化装置24中で、高速で噴射されるキャリアガスに液体シロキサン23を滴下することにより、シロキサンガスが生成される。キャリアガスはキャリアガス供給装置31から気化装置24に供給される。
 燃焼ガスは燃焼ガス供給装置32からバーナ22に供給される。
 MFC25は、シロキサン供給タンク21から送液される液体のシロキサン23の供給量を制御し、供給配管26を介して気化装置24へ供給する装置である。MFC25は、制御部5から送信されてくる制御信号に基づいて気化装置24へ供給する液体シロキサン23の供給量の制御を行なっている。
 シロキサン供給タンク21からMFC25への液体シロキサン23の供給は、不活性ガスによる圧送またはポンプにより行われる。圧送に使用される不活性ガスとしてはヘリウムを用いることが好ましい。ヘリウムは液体シロキサンに溶け込みにくいので、溶け込んだ気体成分が気化すること(気泡発生)による供給量の変動誤差を防止することができる。
 供給配管26は、MFC25で供給量が制御された液体シロキサン23を気化装置24へ導く配管である。気化装置24において液体シロキサン23が気化し易くなるように、供給配管26は液体シロキサン23を加熱する機能を備えていることが好ましい。供給配管26における液体シロキサン23を加熱する機能としては、例えば、供給配管26の外周に発熱体であるテープヒータ28を巻き付けることにより付与できる。このテープヒータ28が通電されることで供給配管26が加熱され、気化装置24に供給される液体シロキサン23の温度を予め気化に適した温度に近づけることができる。例えば液体シロキサン23がオクタメチルシクロテトラシロキサン(OMCTS)であれば、OMCTSの標準沸点175℃より若干低い、150~170℃の温度に上昇させることが好ましい。
 バーナ22は、気化装置24で得られたシロキサンガスを火炎中において酸化反応させることでガラス微粒子30を生成し、生成されたガラス微粒子30を出発ロッド11に噴きつけて堆積させる。
 気化装置24とバーナ22との間にはシロキサンがガス状で存在することになるが、この際、シロキサンガスが冷えて液化しないように、気化装置24とバーナ22との間を加熱する機能を備えていることが好ましい。すなわち、供給配管26と同様に、気化装置24とバーナ22との間の配管の外周およびバーナ22の外周の一部には、発熱体であるテープヒータ28が巻き付けられることが好ましい。このテープヒータ28が通電されることで気化装置24とバーナ22との間の配管とバーナ22が加熱され、シロキサンガスの液化を防止することができる。例えば液体シロキサン23がOMCTSであれば、OMCTSの標準沸点175℃より高い、175~200℃の温度に上昇させればよい。
 シロキサンガスや燃焼ガスを噴出するためのバーナ22として、例えば、円筒形のマルチノズル(出射口)構造のものやあるいは線状のマルチノズル構造のものが用いられる。
 制御部5は、昇降回転装置3、MFC25等の各動作を制御している。制御部5は、昇降回転装置3に対して、ガラス微粒子堆積体Mの昇降速度および回転速度を制御する制御信号を送信している。また、制御部5は、MFC25に対して、気化装置24へ供給する液体シロキサン23の供給量を制御する制御信号を送信している。
[堆積工程]
 OVD法(外付け法)によってガラス微粒子の堆積を行い、ガラス微粒子堆積体Mを製造する。先ず、図1に示すように、昇降回転装置3に支持棒10を取り付け、さらに支持棒10の下端部に出発ロッド11を取り付けた状態で、出発ロッド11および支持棒10の一部を反応容器2内に納める。
 続いて、MFC25は、制御部5から送信されてくる制御信号に基づき、供給量を制御しながら原料である液体シロキサン23を気化装置24に供給する。
 シロキサンガスを燃焼ガス火炎内で酸化反応させることでガラス微粒子30を生成する。
 そして、バーナ22は、火炎内で生成したガラス微粒子30を、回転および昇降する出発ロッド11に継続的に堆積させていく。
 昇降回転装置3は、制御部5からの制御信号に基づいて、出発ロッド11および出発ロッド11に堆積されたガラス微粒子堆積体Mを昇降及び回転させる。
 本実施形態においてガラス原料として使用するシロキサンとしては、特に限定されないが、工業的に容易に入手でき、保管や取扱いも容易である点で、環状のものが好ましく、そのなかでもOMCTSがより好ましい。
 本実施形態において使用するキャリアガス及びシールガスとしては、不活性ガスであれば特に限定されないが、ヘリウムガス、アルゴンガス、窒素ガス等が挙げられ、安価であるという点等で窒素ガスが好ましい。
 本実施形態において使用する燃焼ガスとしては、火炎形成が可能で、シロキサンを酸化するための酸素を含むものであれば、特に限定されないが、酸水素ガスが好ましい。酸水素ガスとは、水素(可燃性ガス)と酸素(支燃性ガス)とを混合したものである。なお、水素と酸素を別々にバーナ22に供給する場合は、水素と酸素の両方を本開示の燃焼ガスに含めるものとする。
 なお、上記に示す堆積工程としては、OVD(Outside Vapor Deposition)法を例に説明したが、本発明はOVD法に限定されるものではない。OVD法と同様にガラス原料から酸化反応を利用してガラスを堆積させる方法、例えば、VAD法(Vapor-phase Axial Deposition)、MMD(Multiburner Multilayer Deposition)法等に本発明を適用することも可能である。
[堆積工程の終了後の工程]
 上記の堆積工程でガラス微粒子堆積体Mの良好部を製造した後は、バーナ22ヘのシロキサンガスの供給を停止し、堆積体製造装置1の反応容器2からガラス微粒子堆積体Mを取り出す。そして、新たに別のターゲット部材(出発ロッド11)を前記反応容器2内に取付け、新たなガラス微粒子堆積体Mの製造を行う。
 しかしながら、前述の通り、前記原料ガスポートにシロキサンガスが残存すると、製品の不良化の原因となる。
 そこで、本実施形態においては、気化装置24からバーナ22にかけての原料ガスポートにおいて、シロキサンガスを残存させないようにしている。
 なお、本明細書において、良好部とは、ガラス微粒子堆積体のうち、光ファイバ等の製品として使用できる部分である。
 具体的には、以下の手順の工程を行う。
A1)ガラス微粒子堆積体Mの良好部を製造した後に、バーナ22ヘの燃焼ガスの供給を続けながら、ガラス原料であるシロキサンのバーナ22ヘの供給を停止する。
A2)ガラス微粒子堆積体Mを反応容器2から取出す。
A3)気化装置24からバーナ22にかけての原料ガスポートに、不活性ガスを流してパージする。
A4)バーナ22からの火炎にシロキサンガスの燃焼に由来する色が認められなくなったら燃焼ガスの供給を停止する。
 上記工程A1)における、シロキサンのバーナ22ヘの供給を停止する方法としては、MFC25から気化装置24への液体シロキサンの供給の停止であっても、シロキサン供給タンク21からMFC25への液体シロキサンの供給の停止であっても構わない。しかし、シロキサン供給タンク21からMFC25への液体シロキサンの供給の停止であることが好ましい。
 上記工程A1)においては、ガラス微粒子堆積体Mの良好部を製造した後でも、バーナ22ヘの燃焼ガスの供給は継続する。
 上記工程A2)においては、反応容器2からガラス微粒子堆積体Mを取出すが、この際もバーナ22ヘの燃焼ガスの供給は継続する。この際、上記工程A1)においてシロキサンのバーナ22ヘの供給を停止しても、残存しているシロキサンがあるため、シロキサンは、バーナ22から放出される。
 上記工程A3)における、不活性ガスを流してパージする具体的な手法としては、特に限定されないが、キャリアガス供給装置31から気化装置24への、キャリアガス(不活性ガス)の供給を継続することが好ましい。この態様によれば、パージに用いる不活性ガスの供給機構をさらに設ける必要がなく、既に備えているキャリアガスの供給機構をそのまま用いることができることにより、装置構成を簡易化することができる。
 上記工程A4)においては、バーナ22からの火炎における、シロキサンガスの燃焼に由来する色の有無を確認する。シロキサンが燃焼する際には、その火炎は白色かオレンジ色を呈する。これに対して、燃焼ガスとして酸水素ガスを用い、酸水素ガスのみが燃焼している場合は、その火炎は淡青色を呈する。したがって、バーナ22からの火炎が白色またはオレンジ色を呈さなくなり、淡青色のみを呈するようになったら、配管内に残存するシロキサンガスが無くなったものと判断できる。その後、燃焼ガスの供給を停止する。
 前記ガラス微粒子堆積体Mの製造後、新たに次のガラス微粒子堆積体Mの製造を開始するまでの間も、気化装置24からバーナ22にかけての原料ガスポートには前記パージを続けることが好ましい。この態様により、シロキサンの供給を停止してから、新たなガラス微粒子堆積体の製造まで、バーナ22のガス放出口から原料ガスポートへ、酸素が逆流してくることを防止することができる。
 また、本実施形態において使用する装置においては、気化装置24とバーナ22との間の配管が金属を含む材料で形成されていても良い。一般的に、シロキサンは、金属と接触する環境下にある場合は、金属の触媒作用により酸化、ゲル化が生じ易くなる。しかし、本実施形態においては、気化装置とバーナとの間の配管から、シロキサンが効果的に排出されるため、前記配管が金属を含む材料で形成されていても、前記の不都合は生じない。また、配管が金属を含む材料で形成されていれば、高温で加熱することもできる。
 また、本実施形態において使用する装置においては、バーナ22はガラス微粒子堆積体Mの成長に応じて、ガラス微粒子堆積体Mの径方向に後退させる機構としても良い。気化装置24とMFC25のとの間の供給配管26の少なくとも一部は、フッ素樹脂等の可撓性のある材料で構成しても良い。
 本実施形態において製造されたガラス微粒子堆積体Mは、その後、脱水、焼結されてガラスが透明化され、ガラス母材が得られる。得られたガラス母材は気泡が極めて少ない等の高品質なものとなる。
 [堆積工程の終了後の工程の変形例]
 堆積工程の終了後の工程は、上記の工程A1)から工程A4)を含む工程(以下、「工程A」とも称する)に限定されない。以下では、工程Aの変形例であって、工程Aに代わって実施できる工程Bについて説明をする。
 工程Aでは、堆積工程でガラス微粒子堆積体Mの良好部を製造した後、バーナ22へのシロキサンガスの供給を停止し、堆積体製造装置1の反応容器2からガラス微粒子堆積体Mを取り出し、原料ガスポート内に残ったシロキサンを出し切るまで燃焼ガスを流して燃焼させていたが、ガラス微粒子堆積体Mを反応容器2から取り出すタイミングは、特に限定されない。工程Bは、バーナ22への燃焼ガスの供給を停止するまで、ガラス微粒子堆積体Mを反応容器2から取り出さずに進める工程である。但し、原料ガスポートにシロキサンガスが残存していると、製造したガラス微粒子堆積体Mにゲル状物が付着し、製品の不良化の原因となるため、工程Bでは、残ったシロキサンを出し切った後も、一定時間燃焼ガスを流し、堆積したガラス微粒子堆積体の表面を炙るようにする。
 工程Bでは、具体的には、以下の手順の工程を行う。
B1)ガラス微粒子堆積体Mの良好部を製造した後に、バーナ22への燃焼ガスの供給を続けながら、ガラス原料であるシロキサンのバーナ22への供給を停止する。
B2)気化装置24からバーナ22にかけての原料ガスポートに、不活性ガスを流してパージする。
B3)燃焼ガスの供給を一定時間続けたら、燃焼ガスの供給を停止する。
B4)ガラス微粒子堆積体Mを反応容器2から取出す。
 上記工程B1)における、シロキサンのバーナ22への供給を停止する方法としては、上記工程A1)と同じく、MFC25から気化装置24への液体シロキサンの供給の停止であっても、シロキサン供給タンク21からMFC25への液体シロキサンの供給の停止であっても構わないが、シロキサン供給タンク21からMFCへの液体シロキサンの供給の停止であることが好ましい。
 上記工程B1)においては、上記工程A1)と同じく、ガラス微粒子堆積体Mの良好部を製造した後でも、バーナ22への燃焼ガスの供給は継続する。
 上記工程B1)の後も、反応容器2からガラス微粒子堆積体Mを取出さず、バーナ22への燃焼ガスの供給は継続する。この際、上記工程B1)においてシロキサンのバーナ22への供給を停止しても、残存しているシロキサンがあるため、シロキサンは、バーナ22から放出される。
 上記工程B2)における、不活性ガスを流してパージする具体的な手法としては、上記工程A3)と同じく、特に限定されないが、キャリアガス供給装置31から気化装置24への、キャリアガス(不活性ガス)の供給を継続することが好ましい。この態様によれば、パージに用いる不活性ガスの供給機構をさらに設ける必要がなく、既に備えているキャリアガスの供給機構をそのまま用いることができることにより、装置構成を簡易化することができる。
 上記工程B3)においては、燃焼ガスの供給を一定時間続け、燃焼ガスで形成される火炎でガラス微粒子堆積体をバーナに対して相対的にトラバースさせながら一定時間加熱したのち、燃焼ガスの供給を停止する。この一定時間には、原料ポート内に残ったシロキサンガスを出し切る時間と、その後、堆積したガラス微粒子堆積体の表面を炙る時間を含む。シロキサンガスを出し切る時間は、上記のように、シロキサンガスの燃焼に由来する色の有無を確認しても良いし、試行結果などから分かる、シロキサンガスを出し切るのに十分な時間を保つこととしても良い。
 また、上記の一定時間は、3分以上1時間以内であることが好ましい。3分未満であると、シロキサンガスを出し切れなかったり、表面に付着したゲル状成分などを吹き飛ばすのに十分でなかったりする場合がある。また、1時間も流せば、十分シロキサンガスを出し切ることができ、表面に付着したゲル状成分などを吹き飛ばすのにも十分なので、これより長くしても、使用する酸水素ガスが無駄であり、作業効率も悪化する。
 また、工程B3)におけるガラス微粒子堆積体の温度は、700℃以上、1200℃以下となるように、燃焼ガスの流量などを調整することが好ましい。700℃以上であれば、表面に付着したゲル状成分などを吹き飛ばすことができる。1200℃より温度を高くすると、ガラス微粒子堆積体が収縮したり、焼結したりする可能性がある。
 上記工程B3)の終了後、上記工程B4)を行う。その後は、上記工程Aと同じく、新たに次のガラス微粒子堆積体Mの製造を開始するまでの間も、気化装置24からバーナ22にかけての原料ガスポートにはパージを続けることが好ましい。この態様により、シロキサンの供給を停止してから、新たなガラス微粒子堆積体の製造まで、バーナ22のガス放出口から原料ガスポートへ、酸素が逆流してくるのを防止することができる。
 また、この場合において使用する装置においても、気化装置24とバーナ22との間の配管が金属を含む材料で形成されていても良い。
 また、この場合において使用する装置においても、バーナ22はガラス微粒子堆積体Mの成長に応じて、ガラス微粒子堆積体Mの径方向に後退させる機構としても良く、気化装置24とMFC25のとの間の供給配管26の少なくとも一部は、フッ素樹脂等の可撓性のある材料で構成しても良い。
 工程Aの代わりに工程Bを実施して製造されたガラス微粒子堆積体Mも、その後、工程Aと同じく、脱水、焼結されてガラスが透明化され、ガラス母材が得られる。得られたガラス母材は気泡が極めて少ない等の高品質なものとなる。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
  1:堆積体製造装置
  2:反応容器
  3:昇降回転装置
  5:制御部
 10:支持棒
 11:出発ロッド
 12:排気管
 21:シロキサン供給装置
 22:バーナ
 23:液体シロキサン
 24:気化装置
 25:MFC
 26:供給配管
 28:テープヒータ
 30:ガラス微粒子
 31:キャリアガス供給装置
 32:燃焼ガス供給装置
 M:ガラス微粒子堆積体

Claims (7)

  1.  ガラス原料としてシロキサンを用い、気化装置でガス状にしたシロキサンガスと燃焼ガスをバーナから放出して燃焼させて、反応容器内でガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法であって、
     前記ガラス微粒子堆積体の良好部を製造した後に、前記バーナヘの前記燃焼ガスの供給を続けながら、前記ガラス原料である前記シロキサンの前記バーナヘの供給を停止し、
     前記ガラス微粒子堆積体を前記反応容器から取出し、
     前記気化装置から前記バーナにかけての原料ガスポートには、不活性ガスを流してパージし、
     前記バーナからの火炎に前記シロキサンガスの燃焼に由来する色が認められなくなったら前記燃焼ガスの供給を停止する、ガラス微粒子堆積体の製造方法。
  2.  ガラス原料としてシロキサンを用い、気化装置でガス状にしたシロキサンガスと燃焼ガスをバーナから放出して燃焼させて、反応容器内でガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法であって、
     前記ガラス微粒子堆積体の良好部を製造した後に、前記バーナへの前記燃焼ガスの供給を続けながら、前記ガラス原料である前記シロキサンの前記バーナへの供給を停止し、
     前記気化装置から前記バーナにかけての原料ガスポートには、不活性ガスを流してパージし、
     前記燃焼ガスで形成される火炎で前記ガラス微粒子堆積体を前記バーナに対して相対的にトラバースさせながら一定時間加熱したのち、前記燃焼ガスの供給を停止する、
     ガラス微粒子堆積体の製造方法。
  3.  前記ガラス微粒子堆積体の製造後から新たに次のガラス微粒子堆積体の製造を開始するまでの間も、前記気化装置から前記バーナにかけての原料ガスポートには前記パージを続ける、請求項1または請求項2に記載のガラス微粒子堆積体の製造方法。
  4.  前記ガラス微粒子堆積体の良好部を製造する際、前記気化装置で前記シロキサンをガス状にするために不活性ガスであるキャリアガスを用い、前記シロキサンガスの前記バーナヘの供給を停止した後も、前記キャリアガスを流し続けることにより前記原料ガスポートへの前記パージを行う、請求項1または請求項2に記載のガラス微粒子堆積体の製造方法。
  5.  前記不活性ガスとして窒素を用いる、請求項1から請求項4のいずれか1項に記載のガラス微粒子堆積体の製造方法。
  6.  前記気化装置と前記バーナとの間の配管が金属を含む材料で形成されている、請求項1から請求項5のいずれか1項に記載のガラス微粒子堆積体の製造方法。
  7.  前記気化装置と前記バーナとの間の配管をシロキサンの沸点以上の温度で加熱する、請求項1から請求項6のいずれか1項に記載のガラス微粒子堆積体の製造方法。
PCT/JP2019/023554 2018-06-15 2019-06-13 ガラス微粒子堆積体の製造方法 WO2019240232A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980039356.7A CN112262111B (zh) 2018-06-15 2019-06-13 玻璃微粒沉积体的制造方法
JP2020525662A JP7276335B2 (ja) 2018-06-15 2019-06-13 ガラス微粒子堆積体の製造方法
US16/973,146 US20210246065A1 (en) 2018-06-15 2019-06-13 Method for producing glass particulate deposit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-114363 2018-06-15
JP2018114363 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019240232A1 true WO2019240232A1 (ja) 2019-12-19

Family

ID=68842275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023554 WO2019240232A1 (ja) 2018-06-15 2019-06-13 ガラス微粒子堆積体の製造方法

Country Status (4)

Country Link
US (1) US20210246065A1 (ja)
JP (1) JP7276335B2 (ja)
CN (1) CN112262111B (ja)
WO (1) WO2019240232A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3878823A1 (en) * 2020-03-13 2021-09-15 Shin-Etsu Chemical Co., Ltd. Manufacturing method of porous glass base material for optical fiber
JP2021172531A (ja) * 2020-04-20 2021-11-01 株式会社フジクラ 多孔質ガラス微粒子体の製造方法および光ファイバ母材の製造方法
WO2022224804A1 (ja) * 2021-04-21 2022-10-27 住友電気工業株式会社 光ファイバ用ガラス母材の製造装置および光ファイバ用ガラス母材の製造方法
WO2023038124A1 (ja) * 2021-09-10 2023-03-16 住友電気工業株式会社 光ファイバ用ガラス母材の製造装置および光ファイバ用ガラス母材の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7058627B2 (ja) 2019-06-11 2022-04-22 信越化学工業株式会社 光ファイバ用多孔質ガラス母材の製造装置および製造方法
US11507142B1 (en) 2022-03-11 2022-11-22 Kelsey Jane Davis Portable computer monitor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264648A (ja) * 1999-03-12 2000-09-26 Shin Etsu Chem Co Ltd 合成石英の製造方法
JP2003212554A (ja) * 2002-01-24 2003-07-30 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法及び製造装置
JP2009102207A (ja) * 2007-10-25 2009-05-14 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法及び製造装置
JP2012232875A (ja) * 2011-05-02 2012-11-29 Fujikura Ltd 光ファイバ用ガラス母材の製造方法及び製造装置
JP2014043360A (ja) * 2012-08-24 2014-03-13 Sumitomo Electric Ind Ltd 多孔質ガラス体の製造方法および多孔質ガラス体
JP2014125359A (ja) * 2012-12-25 2014-07-07 Fujikura Ltd ガラス多孔質体の製造装置及び製造方法、並びに光ファイバ母材の製造方法
JP2014517801A (ja) * 2011-04-28 2014-07-24 コーニング インコーポレイテッド 気化中のガラス前駆体材料のゲル化を低減させるための方法および装置
JP2014520747A (ja) * 2011-07-06 2014-08-25 コーニング インコーポレイテッド シリカガラスを製造するために気化した前駆体および気体を混合するための方法および装置
JP2019137602A (ja) * 2018-02-05 2019-08-22 株式会社フジクラ 多孔質ガラス微粒子体の製造方法、多孔質ガラス微粒子体の製造装置、およびガラス母材の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141549A (en) * 1991-05-17 1992-08-25 The Charles Stark Draper Laboratories Method of fabricating rare earth doped planar optical waveguide for integrated optical circuit
JP4081565B2 (ja) * 1999-08-25 2008-04-30 信越化学工業株式会社 合成石英ガラス部材の製造方法
WO2002102724A1 (fr) * 2001-06-15 2002-12-27 Sumitomo Electric Industries, Ltd. Procede de production d'un corps de particules de verre deposees
US7415844B2 (en) * 2001-06-25 2008-08-26 Prysmian Cavi E Sistemi Energia S.R.L. Device for manufacturing a preform for optical fibres through chemical deposition
JP4154563B2 (ja) * 2001-07-23 2008-09-24 信越化学工業株式会社 シリカ含有複合酸化物球状微粒子及びその製造方法
JP2003277097A (ja) * 2002-01-16 2003-10-02 Sumitomo Electric Ind Ltd 多孔質ガラス母材の製造方法
EP1394124A4 (en) * 2002-01-17 2007-03-07 Sumitomo Electric Industries METHOD AND DEVICE FOR MANUFACTURING A GLASS TUBE
JP2003267744A (ja) 2002-03-12 2003-09-25 Sumitomo Electric Ind Ltd 光ファイバ用ガラス母材の製造方法
JP6236866B2 (ja) * 2013-05-15 2017-11-29 住友電気工業株式会社 ガラス微粒子堆積体の製造方法およびガラス微粒子堆積体製造用バーナー
JP6086168B2 (ja) * 2016-04-01 2017-03-01 住友電気工業株式会社 ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
JP6793676B2 (ja) * 2018-04-02 2020-12-02 信越化学工業株式会社 光ファイバ用多孔質ガラス母材の製造装置および製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264648A (ja) * 1999-03-12 2000-09-26 Shin Etsu Chem Co Ltd 合成石英の製造方法
JP2003212554A (ja) * 2002-01-24 2003-07-30 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法及び製造装置
JP2009102207A (ja) * 2007-10-25 2009-05-14 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法及び製造装置
JP2014517801A (ja) * 2011-04-28 2014-07-24 コーニング インコーポレイテッド 気化中のガラス前駆体材料のゲル化を低減させるための方法および装置
JP2012232875A (ja) * 2011-05-02 2012-11-29 Fujikura Ltd 光ファイバ用ガラス母材の製造方法及び製造装置
JP2014520747A (ja) * 2011-07-06 2014-08-25 コーニング インコーポレイテッド シリカガラスを製造するために気化した前駆体および気体を混合するための方法および装置
JP2014043360A (ja) * 2012-08-24 2014-03-13 Sumitomo Electric Ind Ltd 多孔質ガラス体の製造方法および多孔質ガラス体
JP2014125359A (ja) * 2012-12-25 2014-07-07 Fujikura Ltd ガラス多孔質体の製造装置及び製造方法、並びに光ファイバ母材の製造方法
JP2019137602A (ja) * 2018-02-05 2019-08-22 株式会社フジクラ 多孔質ガラス微粒子体の製造方法、多孔質ガラス微粒子体の製造装置、およびガラス母材の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3878823A1 (en) * 2020-03-13 2021-09-15 Shin-Etsu Chemical Co., Ltd. Manufacturing method of porous glass base material for optical fiber
JP2021143107A (ja) * 2020-03-13 2021-09-24 信越化学工業株式会社 光ファイバ用多孔質ガラス母材の製造方法
JP7171639B2 (ja) 2020-03-13 2022-11-15 信越化学工業株式会社 光ファイバ用多孔質ガラス母材の製造方法
JP2021172531A (ja) * 2020-04-20 2021-11-01 株式会社フジクラ 多孔質ガラス微粒子体の製造方法および光ファイバ母材の製造方法
JP7404144B2 (ja) 2020-04-20 2023-12-25 株式会社フジクラ 多孔質ガラス微粒子体の製造方法および光ファイバ母材の製造方法
WO2022224804A1 (ja) * 2021-04-21 2022-10-27 住友電気工業株式会社 光ファイバ用ガラス母材の製造装置および光ファイバ用ガラス母材の製造方法
WO2023038124A1 (ja) * 2021-09-10 2023-03-16 住友電気工業株式会社 光ファイバ用ガラス母材の製造装置および光ファイバ用ガラス母材の製造方法

Also Published As

Publication number Publication date
JPWO2019240232A1 (ja) 2021-06-24
CN112262111A (zh) 2021-01-22
CN112262111B (zh) 2022-12-16
US20210246065A1 (en) 2021-08-12
JP7276335B2 (ja) 2023-05-18

Similar Documents

Publication Publication Date Title
WO2019240232A1 (ja) ガラス微粒子堆積体の製造方法
JP6236866B2 (ja) ガラス微粒子堆積体の製造方法およびガラス微粒子堆積体製造用バーナー
JP5935882B2 (ja) ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
US10167543B2 (en) Method for manufacturing optical fiber preform
US10399888B2 (en) Method for producing glass particulate deposit and method for producing glass preform
US20240270624A1 (en) Enhanced particle deposition system and method
JP2019182668A (ja) 光ファイバ用多孔質ガラス母材の製造装置および製造方法
US8997527B2 (en) Apparatus and method for manufacturing optical fiber preform
JP2004277257A (ja) 多孔質ガラス微粒子堆積体の製造法及びガラス微粒子合成用バーナ
WO2020054861A1 (ja) ガラス微粒子堆積体の製造方法及びガラス母材の製造方法
JP7058627B2 (ja) 光ファイバ用多孔質ガラス母材の製造装置および製造方法
CN108947212B (zh) 玻璃微粒沉积体制造方法、玻璃母材制造方法以及玻璃微粒沉积体
JP2015093816A (ja) ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
JP4460062B2 (ja) 光ファイバ母材の製造方法
JP6086168B2 (ja) ガラス微粒子堆積体の製造方法およびガラス母材の製造方法
WO2019225637A1 (ja) ガラス母材の製造方法
JP6643395B2 (ja) 多孔質ガラス微粒子体の製造方法および製造装置
JP2018203576A (ja) ガラス微粒子堆積体の製造方法及びガラス母材の製造方法
JP7194301B2 (ja) 光ファイバ用多孔質ガラス母材の製造方法
JP7404144B2 (ja) 多孔質ガラス微粒子体の製造方法および光ファイバ母材の製造方法
JP2012197208A (ja) 光ファイバ用ガラス微粒子堆積体の製造方法
JPWO2019044807A1 (ja) ガラス微粒子堆積体の製造方法、ガラス母材の製造方法及びガラス微粒子堆積体
US20210284567A1 (en) Manufacturing method of porous glass base material for optical fiber
JP3818567B2 (ja) 合成石英ガラスインゴットの製造方法
JP2015030642A (ja) ガラス微粒子堆積体製造用の多重管バーナおよびガラス微粒子堆積体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525662

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819512

Country of ref document: EP

Kind code of ref document: A1