WO2019239851A1 - 制御電極と、透明電極と、前記制御電極と前記透明電極の側面とを電気的に接続する接続層と、を備えるイメージセンサ - Google Patents

制御電極と、透明電極と、前記制御電極と前記透明電極の側面とを電気的に接続する接続層と、を備えるイメージセンサ Download PDF

Info

Publication number
WO2019239851A1
WO2019239851A1 PCT/JP2019/020662 JP2019020662W WO2019239851A1 WO 2019239851 A1 WO2019239851 A1 WO 2019239851A1 JP 2019020662 W JP2019020662 W JP 2019020662W WO 2019239851 A1 WO2019239851 A1 WO 2019239851A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
electrode
image sensor
photoelectric conversion
conversion film
Prior art date
Application number
PCT/JP2019/020662
Other languages
English (en)
French (fr)
Inventor
優子 留河
克弥 能澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020525394A priority Critical patent/JP7162275B2/ja
Priority to CN201980025746.9A priority patent/CN111971800A/zh
Publication of WO2019239851A1 publication Critical patent/WO2019239851A1/ja
Priority to US17/095,691 priority patent/US11955493B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors

Definitions

  • This disclosure relates to an image sensor and a manufacturing method thereof.
  • the image sensor includes a light detection element that generates an electrical signal corresponding to the amount of incident light, and includes a plurality of pixels arranged one-dimensionally or two-dimensionally.
  • the stacked image sensor refers to an image sensor having, as a pixel, a light detection element having a structure in which a pixel electrode, a photoelectric conversion film, and a transparent electrode are stacked in order from the substrate side.
  • the photodetecting element of the stacked image sensor is connected to the signal detection circuit through the pixel electrode, and is connected to the voltage control element through the transparent electrode.
  • the signal detection circuit detects an electrical signal generated when light enters the light detection element.
  • the voltage control element controls the voltage of the transparent electrode to be within a specified range so that the signal detection circuit can correctly detect the electrical signal generated in the light detection element, or current flows from the pixel electrode. In such a case, the photodetecting element is prevented from being charged by flowing an equal amount of current to the transparent electrode.
  • Patent Documents 1 and 2 include a photoelectric conversion film formed of an organic semiconductor, a transparent electrode formed on the organic photoelectric conversion film, a protective film formed on the transparent electrode, and an opening provided in the protective film.
  • An image sensor including a wiring that electrically connects an exposed transparent electrode and a voltage control element is disclosed.
  • the present disclosure provides an image sensor that can apply a voltage to a photoelectric conversion film with a low resistance via a transparent electrode with fewer manufacturing steps.
  • An exemplary image sensor of the present disclosure includes a plurality of pixel electrodes, a control electrode, a photoelectric conversion film disposed on the plurality of pixel electrodes, a transparent electrode disposed on the photoelectric conversion film, and the transparent An insulating layer disposed on at least a portion of the upper surface of the electrode; and a connection layer that electrically connects the control electrode and the transparent electrode.
  • the connection layer is in contact with at least one side surface of the transparent electrode, and in the cross section perpendicular to the top surface of the transparent electrode, the end of the insulating layer is closer to the transparent electrode than the end of the transparent electrode.
  • connection layer electrically connects the control electrode and the side surface of the transparent electrode, so that it can be manufactured with fewer manufacturing processes, and a voltage can be applied to the photoelectric conversion film with low resistance.
  • Possible image sensors can be provided.
  • FIG. 1 is a schematic diagram illustrating a circuit configuration of an imaging apparatus.
  • FIG. 2 is a schematic diagram illustrating a cross section of a device structure of a unit pixel cell in the imaging apparatus.
  • FIG. 3A is a schematic cross-sectional view of the image sensor of the present embodiment.
  • FIG. 3B is a schematic top view of the image sensor of this embodiment with the protective film removed.
  • FIG. 4A is a cross-sectional view illustrating steps in the method of manufacturing the image sensor according to the present embodiment.
  • FIG. 4B is a cross-sectional view showing the steps in the method of manufacturing the image sensor according to the present embodiment.
  • FIG. 4C is a cross-sectional view illustrating steps in the method of manufacturing the image sensor according to the present embodiment.
  • FIG. 1 is a schematic diagram illustrating a circuit configuration of an imaging apparatus.
  • FIG. 2 is a schematic diagram illustrating a cross section of a device structure of a unit pixel cell in the imaging apparatus.
  • FIG. 3A
  • FIG. 4D is a cross-sectional view illustrating a process in the method of manufacturing the image sensor according to the present embodiment.
  • FIG. 4E is a cross-sectional view showing a process in the image sensor manufacturing method of the present embodiment.
  • FIG. 4F is a cross-sectional view showing the steps in the method of manufacturing the image sensor according to the present embodiment.
  • FIG. 4G is a cross-sectional view illustrating steps in the method of manufacturing the image sensor according to the present embodiment.
  • FIG. 4H is a cross-sectional view showing a step in the method for manufacturing the image sensor of the present embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a part of another form of the image sensor.
  • FIG. 6 is a schematic top view of another form of the image sensor, with the protective film removed.
  • FIG. 5 is a schematic cross-sectional view showing a part of another form of the image sensor.
  • FIG. 6 is a schematic top view of another form of the image sensor, with the protective film removed
  • FIG. 7 is a schematic top view of another form of the image sensor, with the protective film removed.
  • FIG. 8 is a schematic top view of another form of the image sensor, with the protective film removed.
  • FIG. 9A is a schematic top view showing another form of the image sensor.
  • FIG. 9B is a schematic cross-sectional view showing a part of the image sensor of FIG. 9A.
  • FIG. 10 is a cross-sectional view showing steps in another embodiment of the method for manufacturing an image sensor.
  • the sensitivity of a photoelectric conversion film made of a certain material varies greatly depending on the voltage applied to the transparent electrode, and the sensitivity can be substantially zero.
  • a stacked image sensor capable of electronic shutter operation can be realized.
  • another photoelectric conversion film can greatly change a spectral spectrum which is a spectral sensitivity characteristic of the photoelectric conversion film by a voltage applied to the transparent electrode. Using this characteristic, in a certain type of laminated image sensor, two or more different spectral sensitivity characteristics of the photoelectric conversion film can be changed by changing the voltage of the transparent electrode.
  • the voltage control element functions to operate an electronic shutter or a function of changing spectral sensitivity characteristics by temporally changing the voltage applied to the transparent electrode.
  • the voltage control element is controlled so that the potential of the transparent electrode is within a specified range. There must be.
  • a current flows from the pixel electrode, it is necessary to pass a current between the voltage control element and the transparent electrode so that the photodetection element is not charged.
  • the photoelectric conversion film reacts with oxygen, ozone, moisture, etc., and the photoelectric conversion function deteriorates.
  • the photoelectric conversion film is formed of an organic semiconductor, some organic semiconductors easily react with oxygen, ozone, moisture, and the like.
  • the photoelectric conversion film is formed and patterned in an environment where the photoelectric conversion function is not deteriorated during the manufacturing process of the image sensor.
  • the inventors of the present application have conceived an image sensor having a novel structure in which the voltage control element and the photoelectric conversion film are connected with low resistance, and the photoelectric conversion film can be easily handled during the manufacturing process.
  • An outline of the image sensor and the manufacturing method of the image sensor of the present disclosure is as follows.
  • An image sensor is: A plurality of pixel electrodes; A control electrode; A photoelectric conversion film disposed on the plurality of pixel electrodes; A transparent electrode disposed on the photoelectric conversion film; An insulating layer disposed on at least a portion of the upper surface of the transparent electrode; A connection layer for electrically connecting the control electrode and the transparent electrode; Is provided.
  • connection layer is in contact with at least one side surface of the transparent electrode; In the cross section perpendicular to the upper surface of the transparent electrode, the end portion of the insulating layer is located inside the transparent electrode with respect to the end portion of the transparent electrode.
  • the transparent electrode may be made of a conductive semiconductor.
  • the control electrode may be made of a metal or a metal compound.
  • connection layer may be further in contact with a side surface of the photoelectric conversion film.
  • connection layer may cover a part of the insulating layer.
  • connection layer may be further in contact with a part of the upper surface of the transparent electrode.
  • Item 5 The image sensor according to any one of Items 1 to 4, wherein the connection layer may overlap a part of the plurality of pixel electrodes in plan view.
  • connection layer may have a light shielding property.
  • the image sensor according to any one of items 1 to 6 may further include a protective film that covers the connection layer and the insulating layer.
  • the transparent electrode has a polygonal shape,
  • the at least one side surface of the transparent electrode comprises a plurality of side surfaces;
  • the connection layer may be in contact with the plurality of side surfaces of the transparent electrode.
  • An image sensor is: A plurality of pixel electrodes; A control electrode; A photoelectric conversion film disposed on the plurality of pixel electrodes; A transparent electrode disposed on the photoelectric conversion film; An insulating layer disposed on at least a portion of the upper surface of the transparent electrode; A connection layer for electrically connecting the control electrode and the transparent electrode; Is provided.
  • connection layer is in contact with at least one side surface of the transparent electrode;
  • the insulating film is not provided with a hole connecting the upper surface of the transparent electrode and the connection layer.
  • An image sensor manufacturing method includes a step (A) of preparing a circuit unit having a plurality of pixel electrodes and a control electrode; Forming a photoelectric conversion film on the plurality of pixel electrodes (B); Forming a transparent electrode composed of a conductive semiconductor on the upper surface of the photoelectric conversion film (C); Forming an insulating layer on the transparent electrode (D); Step (E) of patterning by removing a part of the photoelectric conversion film, a part of the transparent electrode, and a part of the insulating layer, and Forming a connection layer for electrically connecting the side surface of the transparent electrode exposed in the step (E) and the control electrode; including.
  • connection layer may be further bonded to the photoelectric conversion film.
  • step (E) Removing a part of the transparent electrode and a part of the insulating layer by dry etching using a gas containing at least one of chlorine and fluorine; A part of the photoelectric conversion film may be removed by dry etching using a gas containing oxygen.
  • the insulating layer is patterned so that the outer peripheral portion of the upper surface of the transparent electrode is exposed,
  • the connection layer may be further joined to the outer peripheral portion of the transparent electrode.
  • connection layer may be formed on at least a part of the insulating layer.
  • FIG. 1 schematically shows a circuit configuration of the imaging apparatus 500.
  • the imaging device 500 includes an image sensor 101 including a plurality of unit pixel cells 14 and a peripheral circuit.
  • the plurality of unit pixel cells 14 are two-dimensionally arranged on the semiconductor substrate, that is, in the row direction and the column direction to form a pixel region.
  • the image sensor 101 may be a line sensor. In that case, the plurality of unit pixel cells 14 may be arranged one-dimensionally.
  • the row direction and the column direction refer to directions in which the row and the column extend, respectively. That is, the vertical direction is the column direction, and the horizontal direction is the row direction.
  • Each unit pixel cell 14 includes a light detection unit 10, an amplification transistor 11, a reset transistor 12, and an address transistor 13 which is a row selection transistor.
  • the light detection unit 10 includes a pixel electrode 50 and a transparent electrode 52.
  • the image sensor 101 includes a voltage control element for applying a predetermined voltage to the transparent electrode 52.
  • the voltage control element is, for example, a voltage control circuit, a voltage generation circuit such as a constant voltage source, a voltage reference line such as a ground line, and the like.
  • the voltage applied by the voltage control element is called a control voltage.
  • a voltage control circuit 60 is provided as a voltage control element.
  • the voltage control circuit 60 may generate a constant control voltage or may generate a plurality of control voltages having different values.
  • the voltage control circuit 60 determines a control voltage value to be generated based on a command from an operator who operates the imaging device 500 and a command from another control unit provided in the imaging device 500, and generates a control voltage having the determined value. To do.
  • the voltage control circuit 60 is provided outside the photosensitive area as a part of the peripheral circuit. That is, the voltage control circuit 60 may be provided in the image sensor 101.
  • the voltage control circuit 60 generates two or more different control voltages and applies the control voltage to the transparent electrode 52, whereby the spectral sensitivity characteristic of the photoelectric conversion film 51 changes.
  • the change in the spectral sensitivity characteristic includes a spectral sensitivity characteristic in which the sensitivity of the photoelectric conversion film 51 is zero with respect to the light to be detected.
  • the pixel electrode 50 and the transparent electrode are applied by applying a control voltage to the transparent electrodes 52 of the unit pixel cells 14 arranged in the row direction via the counter electrode signal line 16.
  • the spectral sensitivity characteristic in the light detection unit 10 is switched by changing the voltage between the light detection unit 52 and the light detection unit 10.
  • an electronic shutter operation is realized by applying a control voltage so that a spectral sensitivity characteristic in which sensitivity to light becomes zero at a predetermined timing during imaging.
  • a control voltage may be applied to the pixel electrode 50.
  • the pixel electrode is set to a relatively low potential with respect to the transparent electrode 52.
  • the pixel electrode 50 since the electron moving direction is opposite, a current flows from the pixel electrode 50 toward the transparent electrode 52. Further, in order to irradiate the light detection unit 10 with light and accumulate holes as signal charges in the pixel electrode 50, the pixel electrode is set to a relatively low potential with respect to the transparent electrode 52. At this time, a current flows from the transparent electrode 52 toward the pixel electrode 50.
  • the pixel electrode 50 is connected to the gate electrode of the amplification transistor 11, and the signal charges collected by the pixel electrode 50 are accumulated in the charge accumulation node 24 located between the pixel electrode 50 and the gate electrode of the amplification transistor 11. .
  • the signal charge is a hole, but the signal charge may be an electron.
  • the signal charge stored in the charge storage node 24 is applied to the gate electrode of the amplification transistor 11 as a voltage corresponding to the amount of signal charge.
  • the amplification transistor 11 constitutes a signal detection circuit, and amplifies the voltage applied to the gate electrode.
  • the address transistor 13 selectively reads the amplified voltage as the signal voltage.
  • the reset transistor 12 has a source / drain electrode connected to the pixel electrode 50 and resets the signal charge accumulated in the charge accumulation node 24. In other words, the reset transistor 12 resets the potentials of the gate electrode and the pixel electrode 50 of the amplification transistor 11.
  • the imaging apparatus 500 includes a power supply line 21, a vertical signal line 17, an address signal line 26, and a reset signal line 27. These lines are unit. Each pixel cell 14 is connected. Specifically, the power supply line 21 is connected to the source / drain electrode of the amplification transistor 11, and the vertical signal line 17 is connected to the source / drain electrode of the address transistor 13. Address signal line 26 is connected to the gate electrode of address transistor 13. The reset signal line 27 is connected to the gate electrode of the reset transistor 12.
  • the peripheral circuit includes a vertical scanning circuit 15, a horizontal signal reading circuit 20, a plurality of column signal processing circuits 19, a plurality of load circuits 18, and a plurality of differential amplifiers 22.
  • the vertical scanning circuit 15 is also referred to as a row scanning circuit.
  • the horizontal signal readout circuit 20 is also referred to as a column scanning circuit.
  • the column signal processing circuit 19 is also referred to as a row signal storage circuit.
  • the differential amplifier 22 is also referred to as a feedback amplifier.
  • the vertical scanning circuit 15 is connected to the address signal line 26 and the reset signal line 27, selects a plurality of unit pixel cells 14 arranged in each row in units of row, reads out the signal voltage, and determines the potential of the pixel electrode 50. Perform a reset.
  • a power supply wiring 21 serving as a source follower power supply supplies a predetermined power supply voltage to each unit pixel cell 14.
  • the horizontal signal readout circuit 20 is electrically connected to the plurality of column signal processing circuits 19.
  • the column signal processing circuit 19 is electrically connected to the unit pixel cells 14 arranged in each column via a vertical signal line 17 corresponding to each column.
  • the load circuit 18 is electrically connected to each vertical signal line 17.
  • the load circuit 18 and the amplification transistor 11 form a source follower circuit.
  • a plurality of differential amplifiers 22 are provided corresponding to each column.
  • the negative input terminal of the differential amplifier 22 is connected to the corresponding vertical signal line 17.
  • the output terminal of the differential amplifier 22 is connected to the unit pixel cell 14 via a feedback line 23 corresponding to each column.
  • the vertical scanning circuit 15 applies a row selection signal for controlling on / off of the address transistor 13 to the gate electrode of the address transistor 13 by the address signal line 26. As a result, the row to be read is scanned and selected. A signal voltage is read out from the unit pixel cell 14 of the selected row to the vertical signal line 17. Further, the vertical scanning circuit 15 applies a reset signal for controlling on and off of the reset transistor 12 to the gate electrode of the reset transistor 12 via the reset signal line 27. As a result, the row of the unit pixel cell 14 to be reset is selected.
  • the vertical signal line 17 transmits the signal voltage read from the unit pixel cell 14 selected by the vertical scanning circuit 15 to the column signal processing circuit 19.
  • the column signal processing circuit 19 performs noise suppression signal processing typified by correlated double sampling and analog-digital conversion (AD conversion).
  • the horizontal signal reading circuit 20 sequentially reads signals from a plurality of column signal processing circuits 19 to a horizontal common signal line (not shown).
  • the differential amplifier 22 is connected to the drain electrode of the reset transistor 12 via the feedback line 23. Therefore, the differential amplifier 22 receives the output value of the address transistor 13 at the negative terminal when the address transistor 13 and the reset transistor 12 are in a conductive state.
  • the differential amplifier 22 performs a feedback operation so that the gate potential of the amplification transistor 11 becomes a predetermined feedback voltage. At this time, the output voltage value of the differential amplifier 22 is 0V or a positive voltage near 0V.
  • the feedback voltage means the output voltage of the differential amplifier 22.
  • FIG. 2 schematically shows a cross section of the device structure of the unit pixel cell 14 in the imaging apparatus 500.
  • the unit pixel cell 14 includes a semiconductor substrate 31, a charge detection circuit 25, and the light detection unit 10.
  • the semiconductor substrate 31 is, for example, a p-type silicon substrate.
  • the charge detection circuit 25 detects the signal charge captured by the pixel electrode 50 and outputs a signal voltage.
  • the charge detection circuit 25 includes an amplification transistor 11, a reset transistor 12, and an address transistor 13, and is formed on the semiconductor substrate 31.
  • the amplifying transistor 11 is formed in the semiconductor substrate 31 and is located on the n-type impurity regions 41C and 41D functioning as a drain electrode and a source electrode, respectively, on the gate insulating layer 38B and the gate insulating layer 38B located on the semiconductor substrate 31. Gate electrode 39B.
  • the reset transistor 12 is formed in the semiconductor substrate 31 and functions as a drain electrode and a source electrode, respectively, n-type impurity regions 41B and 41A, and a gate insulating layer 38A and a gate insulating layer 38A located on the semiconductor substrate 31. Gate electrode 39A.
  • the address transistor 13 is formed in the semiconductor substrate 31 and is located on the n-type impurity regions 41D and 41E functioning as a drain electrode and a source electrode, respectively, on the gate insulating layer 38C and the gate insulating layer 38C located on the semiconductor substrate 31. Gate electrode 39C.
  • the n-type impurity region 41D is shared by the amplification transistor 11 and the address transistor 13, whereby the amplification transistor 11 and the address transistor 13 are connected in series.
  • element isolation regions 42 are provided between adjacent unit pixel cells 14 and between the amplification transistor 11 and the reset transistor 12. Electrical isolation between adjacent unit pixel cells 14 is performed by the element isolation region 42. Further, leakage of signal charges accumulated at the charge accumulation node is suppressed.
  • Interlayer insulating layers 43A, 43B and 43C are laminated on the surface of the semiconductor substrate 31.
  • a contact plug 45A and a contact plug 45B are provided in the interlayer insulating layer 43A.
  • a wiring 46A to be connected is embedded in the n-type impurity region 41B (drain electrode) of the reset transistor 12 is electrically connected to the gate electrode 39B of the amplification transistor 11.
  • the wiring 46A is electrically connected to the pixel electrode 50 through the contact plug 47A, the wiring 46B, the contact plug 47B, the wiring 46C, and the contact plug 47C.
  • the light detection unit 10 is provided on the interlayer insulating layer 43C.
  • the light detection unit 10 includes a transparent electrode 52, a photoelectric conversion film 51, and a pixel electrode 50 located closer to the semiconductor substrate 31 than the transparent electrode 52.
  • the photoelectric conversion film 51 is sandwiched between the transparent electrode 52 and the pixel electrode 50.
  • the light detection unit 10 includes an insulating layer 119 formed on at least a part of the upper surface of the transparent electrode 52.
  • the light detection unit 10 may further include a protective film 120. The structure of the photoelectric conversion film 51 will be described in detail below.
  • the pixel electrode 50 is provided on the interlayer insulating layer 43C.
  • the transparent electrode 52 is made of a conductive semiconductor that is transparent to the light to be detected.
  • the transparent electrode 52 is composed of indium tin oxide (ITO), aluminum-added zinc oxide (AZO), gallium-added zinc oxide (GZO), or the like.
  • ITO indium tin oxide
  • AZO aluminum-added zinc oxide
  • GZO gallium-added zinc oxide
  • Other transparent conductive semiconductors may be used.
  • the pixel electrode 50 is formed of a metal such as aluminum or copper, or polysilicon doped with impurities to impart conductivity.
  • the unit pixel cell 14 has a color filter 53 on the transparent electrode 52 of the light detection unit 10.
  • a micro lens 54 may be further provided on the color filter 53.
  • the photoelectric conversion film 51 and the transparent electrode 52 of each unit pixel cell 14 are connected to the photoelectric conversion film 51 and the transparent electrode 52 of the adjacent unit pixel cell 14, respectively.
  • a transparent electrode 52 is configured.
  • the photoelectric conversion film 51 may be separated for each unit pixel cell 14.
  • the transparent electrode 52 may be integrally connected for each row or column of the unit pixel cells 14 arranged two-dimensionally.
  • the pixel electrode 50 of each unit pixel cell 14 is not connected to the pixel electrode 50 of the adjacent unit pixel cell 14 and is independent.
  • the image sensor 101 may detect a change in the capacitance of the photoelectric conversion film without detecting the charge due to the photoelectric conversion.
  • Such type of image sensor and imaging device are disclosed in, for example, International Publication No. WO2017 / 081847. That is, the photoelectric conversion film 51 may generate a hole-electron pair according to the intensity of incident light, or the capacitance may change according to the intensity of incident light. It is possible to detect light incident on the photoelectric conversion film 51 by detecting a change in the generated charge or capacitance.
  • FIG. 3A is a schematic cross-sectional view of the image sensor 101
  • FIG. 3B is a schematic top view of the image sensor 101 with the protective film 120 removed.
  • the image sensor 101 includes the plurality of pixel electrodes 50, the photoelectric conversion film 51, and the transparent electrode 52 described above.
  • the image sensor 101 further includes a control electrode 112 and a connection unit 115.
  • the plurality of pixel electrodes 50 and the control electrode 112 constitute a circuit portion formed on the substrate 100. Further, the connecting portion 115 constitutes a part of the counter electrode signal line 16.
  • the plurality of pixel electrodes 50 are arranged one-dimensionally or two-dimensionally and embedded in the substrate 100 such that the upper surfaces of the plurality of pixel electrodes 50 are exposed from the upper surface 100a of the substrate 100.
  • a photoelectric conversion film 51 is disposed on the upper surface 100 a of the substrate 100 so as to cover the plurality of pixel electrodes 50, and a transparent electrode 52 is further disposed on the photoelectric conversion film 51.
  • the transparent electrode 52 covers the upper surface 51a of the photoelectric conversion film 51 so as to cover at least the region of the photoelectric conversion film 51 where the pixel electrode 50 is provided.
  • the transparent electrode 52 is formed so as to cover the entire upper surface 51 a of the photoelectric conversion film 51.
  • the insulating layer 119 is formed to cover at least part of the upper surface 52a of the transparent electrode 52.
  • the insulating layer 119 may cover the upper surface 52a so as to cover at least the region of the transparent electrode 52 where the pixel electrode 50 is provided.
  • connection part 115 is joined to the control electrode 112 and the transparent electrode 52 and electrically connects them. Specifically, the connecting portion 115 is joined to the control electrode 112 exposed to the substrate 100 and the side surface 52 s of the transparent electrode 52. The connection portion 115 further covers the side surface 51s of the photoelectric conversion film 51. Further, the connection portion 115 covers a part of the upper surface 119a of the insulating layer 119 other than the region above the region where the pixel electrode 50 is provided. The bonding area between the connection portion 115 and the control electrode 112 may be larger, smaller, or the same as the bonding area between the connection portion 115 and the transparent electrode 52.
  • the photoelectric conversion film 51, the insulating layer 119, and the transparent electrode 52 have a rectangular shape in plan view, and the sides 52e, 52f of the four sides 52c, 52d, 52e, 52f of the transparent electrode 52 are present.
  • a control electrode 112 is disposed adjacent to the control electrode 112.
  • the image sensor 101 includes two connection portions 115, and the two connection portions 115 are respectively connected to the control electrode 112 and the side surface 52 s of the transparent electrode 52 at positions close to the sides 52 e and 52 f of the transparent electrode 52.
  • the control electrode 112 and the transparent electrode 52 are electrically connected to each other.
  • the side surface 119s of the insulating layer 119 is located on the same plane as the side surface 52s of the transparent electrode 52 in each of the four sides 52c, 52d, 52e, and 52f of the transparent electrode 52.
  • the protective film 120 is provided on the upper surface 100 a of the substrate 100 so as to cover the connection portion 115 and the insulating layer 119.
  • the photoelectric conversion film 51 is made of, for example, an organic semiconductor.
  • the photoelectric conversion film 51 may include one or a plurality of organic semiconductor layers.
  • the photoelectric conversion film 51 may include a carrier transport layer that transports electrons or holes, a blocking layer that blocks carriers, and the like in addition to the photoelectric conversion layer that generates hole-electron pairs.
  • organic semiconductor layers organic p-type semiconductors and organic n-type semiconductors of known materials can be used.
  • the transparent electrode 52 is made of the above-described material.
  • the control electrode 112 is made of a metal or a metal compound and has a light shielding property.
  • the control electrode 112 is formed of titanium, titanium nitride, aluminum, silicon and copper-added aluminum, copper, tungsten, or an alloy thereof.
  • the control electrode 112 may be configured by a single layer of the above-described material, or may have a stacked structure including a plurality of layers.
  • the connecting part 115 is made of a metal or a metal compound.
  • the connection portion 115 is formed of titanium, titanium nitride, aluminum, silicon, copper-added aluminum (AlSiCu), copper, tungsten, gold, silver, nickel, cobalt, or an alloy thereof.
  • AlSiCu copper-added aluminum
  • tungsten gold, silver, nickel, cobalt, or an alloy thereof.
  • the control electrode 112 it may be a single layer or a laminated layer.
  • the insulating layer 119 and the protective film 120 are made of an insulating material.
  • the insulating layer 119 is formed of silicon oxide, silicon nitride, silicon oxynitride, an organic or inorganic polymer material, or the like.
  • the insulating layer 119 and the protective film 120 may be transparent to light having a wavelength to be detected by the image sensor 101.
  • the image sensor 101 can be manufactured, for example, by the following method.
  • a circuit unit is prepared. Specifically, as described above, the substrate 100 in which the plurality of pixel electrodes 50 and the control electrode 112 are exposed on the upper surface 100a is prepared. More specifically, the circuit portion includes the structure shown in FIG. 2 in each pixel electrode 50, and can be manufactured using a known method for manufacturing a semiconductor device.
  • the photoelectric conversion film 51 is formed on the upper surface 100 a of the substrate 100 so as to cover at least the pixel electrode 50.
  • the photoelectric conversion film 51 can be formed by a spin coating method, an inkjet method, a die coating method, a spray coating method, a vacuum deposition method, a screen printing method, or the like.
  • the transparent electrode 52 is formed on the photoelectric conversion film 51.
  • the transparent electrode 52 is formed on the photoelectric conversion film 51 on at least the region where the pixel electrode 50 is provided.
  • the transparent electrode 52 may be formed by sputtering.
  • the insulating layer 119 is formed on the transparent electrode 52.
  • the insulating layer 119 is formed on the transparent electrode 52 on at least the region where the pixel electrode 50 is provided.
  • the insulating layer 119 can be formed by an atomic layer deposition (ALD) method, a chemical vapor deposition (CVD) method, a sputtering method, or the like.
  • the photoelectric conversion film 51, the transparent electrode 52, and the insulating layer 119 are patterned by removing a part of the photoelectric conversion film 51, a part of the transparent electrode 52, and a part of the insulating layer 119, respectively. .
  • a photosensitive resist 400 is formed on the insulating layer 119.
  • the resist 400 is formed by spin coating.
  • the resist 400 is exposed using a photomask and developed to form a mask of the resist 400 having a predetermined pattern as shown in FIG. 4D.
  • the photoelectric conversion film 51, the transparent electrode 52, and the insulating layer 119 are etched using the mask of the resist 400.
  • the photoelectric conversion film 51, the transparent electrode 52, and the insulating layer 119 may be patterned by dry etching.
  • the insulating layer 119 and the transparent electrode 52 may use a gas containing halogen such as fluorine, chlorine, bromine and iodine, or may use a gas containing at least one element of fluorine and chlorine.
  • the dry etching may use reactive etching (RIE) in which a gas is converted into plasma by plasma discharge, and chemical species of the plasmaized gas react with the insulating layer 119 and the transparent electrode 52.
  • RIE reactive etching
  • the insulating layer 119 and the transparent electrode 52 are made of a material containing nitrogen or silicon, the insulating layer 119 and the transparent electrode 52 can be efficiently etched by using these gases and etching methods. .
  • the photoelectric conversion film 51 may be dry-etched with a gas containing oxygen. More specifically, the photoelectric conversion film 51 may be oxidized by filling the chamber with a gas containing oxygen and performing chemical etching by an oxidation reaction. Since the photoelectric conversion film 51 contains a large amount of carbon, it can be removed as carbon oxide by an oxidation reaction with oxygen gas.
  • the photoelectric conversion film 51 by etching the insulating layer 119, the transparent electrode 52, and the photoelectric conversion film 51 using different gas types, it is possible to adjust the side etching while suppressing damage due to plasma or the like during dry etching. Become. Further, since the upper surface 51a of the photoelectric conversion film 51 is covered with the insulating layer 119, only the side surface 51s is exposed to the outside during the manufacturing process of the image sensor 101. Therefore, it is possible to suppress the photoelectric conversion film 51 from coming into contact with oxygen, ozone, moisture, and the like during the etching and other manufacturing processes.
  • part of the photoelectric conversion film 51, part of the transparent electrode 52, and part of the insulating layer 119 are removed by the patterning process to have a desired pattern, and the side surface 51s and the side surface 52s.
  • the photoelectric conversion film 51, the transparent electrode 52, and the insulating layer 119 in which the side surface 119s is exposed can be formed.
  • the side surface 119 s of the insulating layer 119 is positioned substantially flush with the side surface 52 s of the transparent electrode 52.
  • connection portion 115 that electrically connects the side surface 52s of the transparent electrode 52 and the control electrode 112 is formed.
  • the entire top surface 100a of the substrate 100 is made of metal or metal covering the top surface 119a of the insulating layer 119, the side surface 119s of the insulating layer 119, the side surface 52s of the transparent electrode 52, and the side surface 51s of the photoelectric conversion film 51.
  • a compound layer 115B is formed.
  • the layer 115B can be formed by a sputtering method, a vacuum evaporation method, or the like.
  • a resist (not shown) that exposes at least the region where the pixel electrode 50 is provided is formed, and the layer 115B is etched using the resist as a mask, thereby controlling the upper surface 100a of the substrate 100 as shown in FIG. 4G.
  • a connecting portion 115 joined to the electrode 112 and joined to the side surface 52s of the transparent electrode 52 is formed.
  • the photoelectric conversion film 51 is covered with an insulating layer, and damage to the photoelectric conversion film 51 during the manufacturing process of the image sensor can be suppressed. Since the contact between the transparent electrode 52 and the connection portion 115 is made on the side surface 52s of the transparent electrode 52, the side surface 52s connected to the connection portion 115 is formed by patterning of the transparent electrode 52, which is disclosed in Patent Documents 1 and 2. Unlike an image sensor, there is no need to form an opening in the insulating layer 119 for making a separate contact. For this reason, it is possible to reduce the number of masks and the number of manufacturing processes in the manufacturing process of the image sensor 101, thereby reducing the manufacturing cost of the image sensor 101 and shortening the manufacturing time. Therefore, according to the present embodiment, the high-performance image sensor 101 can be manufactured at a low cost.
  • a portion 115 ⁇ / b> A that covers the upper surface 119 a of the insulating layer 119 in the connection portion 115 may overlap at least a part of the plurality of pixel electrodes 50 in plan view.
  • the connection portion 115 functions as a light shielding film, and light does not always enter. For this reason, the unit pixel cell 14 can be used to obtain optical black which is a reference signal in a dark state.
  • the connecting portion 115 may be disposed on three sides of the transparent electrode 52 having a rectangular shape.
  • the connection part 115 is joined to the three side surfaces 52s of the sides 52c, 52d, and 52f.
  • one control electrode 112 is disposed on the upper surface 100 a of the substrate 100.
  • the control electrode 112 is disposed only in one place, but the low resistance connection portion 115 is connected to the three sides of the transparent electrode 52, and the bonding area between the connection portion 115 and the transparent electrode 52 is increased.
  • the connection portion 115 and the transparent electrode 52 can be electrically connected with lower resistance. For this reason, the delay when a voltage is applied to the transparent electrode 52 is suppressed, and the isochronism of the voltage change is increased.
  • the connecting portion 115 may be disposed on four sides of the transparent electrode 52 having a rectangular shape. In this case, the connecting portion 115 is joined to the four side surfaces 52s of the sides 52c, 52d, 52e, and 52f.
  • the gap 300 may be provided in the connection portion 115 as shown in FIG. 7 or the gap 300 may not be provided as shown in FIG.
  • the gap 300 can be used, for example, to hold a mask of the opening in the light irradiation region when the connection portion 115 is formed using a shadow mask.
  • FIG. 7 the gap 300 can be used, for example, to hold a mask of the opening in the light irradiation region when the connection portion 115 is formed using a shadow mask.
  • the connecting portion 115 when the connecting portion 115 continuously connects the rectangular side surfaces 52 s, the delay when the voltage is applied to the transparent electrode 52 is further suppressed, The isochronism of the voltage change increases. Further, since the connecting portion 115 covers all the side surfaces of the transparent electrode 52 and the photoelectric conversion film 51, the function of preventing the peeling of the photoelectric conversion film 51 from the substrate and that the side surface of the photoelectric conversion film 51 is exposed to the atmosphere or the like. It also functions to prevent.
  • a part of the upper surface 52a of the transparent electrode 52 may not be covered with the insulating layer 119.
  • the outer peripheral portion 52 ap of the upper surface 52 a may be exposed from the insulating layer 119 without being covered with the insulating layer 119.
  • such a structure has a thickness when the insulating layer 119, the transparent electrode 52, and the photoelectric conversion film 51 are formed by etching using the resist 400 in the patterning step (E).
  • the insulating layer 119 can also be formed by etching in a direction perpendicular to the direction. During the patterning step (E), the insulating layer 119 is exposed to the environment where etching is performed for the longest time.
  • the outer peripheral part 52ap of 52 is exposed.
  • the side surface 119s of the insulating layer 119 is positioned closer to the center of the transparent electrode 52 than the side surface 52s of the transparent electrode 52.
  • the end portion of the insulating layer 119 is located inside the transparent electrode 52 rather than the end portion of the transparent electrode 52.
  • the outer peripheral portion 52ap of the upper surface 52a of the transparent electrode 52 that is not covered with the insulating layer 119 may be covered with and joined to the connecting portion 115.
  • the connection portion may further cover the protective film 120 or cover the outer peripheral portion 52ap of the transparent electrode 52, but the protective film 120 may not be covered. Since the outer peripheral portion 52ap is joined to the connection portion 115, the contact area between the transparent electrode 52 and the connection portion 115 can be increased, and the transparent electrode 52 and the connection portion 115 can be electrically connected with lower resistance. Can be connected.
  • the image sensor of the present disclosure can be used for imaging devices for various purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本開示の一態様に係るイメージセンサは、複数の画素電極と、制御電極と、前記複数の画素電極上に配置された光電変換膜と、前記光電変換膜上に配置された透明電極と、前記透明電極の上面の少なくとも一部上に配置された絶縁層と、前記制御電極と前記透明電極とを電気的に接続する接続層と、を備える。前記接続層は前記透明電極の少なくとも1つの側面と接触しており、前記透明電極の前記上面に垂直な断面において、前記絶縁層の端部は、前記透明電極の端部よりも前記透明電極の内側に位置する。

Description

制御電極と、透明電極と、前記制御電極と前記透明電極の側面とを電気的に接続する接続層と、を備えるイメージセンサ
 本開示はイメージセンサおよびその製造方法に関する。
 イメージセンサは、入射した光量に応じた電気信号を発生させる光検出素子を含み、一次元または二次元に配置された複数の画素を備える。積層型イメージセンサは、イメージセンサのうち、基板側から順に、画素電極、光電変換膜および透明電極が積層された構造の光検出素子を画素として持つものを言う。
 積層型イメージセンサの光検出素子は、画素電極を介して信号検出回路に接続され、透明電極を介して電圧制御要素に接続される。信号検出回路は、光検出素子に光が入射することによって発生した電気的信号を検出する。
 電圧制御要素は、光検出素子に発生した電気的信号を信号検出回路が正しく検出できるように、透明電極の電圧が規定の範囲内となるように制御する、あるいは、画素電極から電流が流れた場合、それと等量の電流を透明電極に流すことで光検出素子の帯電を防ぐ。
 特許文献1、2は、有機半導体で構成された光電変換膜と、有機光電変換膜上に形成された透明電極、透明電極上に形成された保護膜と、保護膜に設けられた開口内に露出した透明電極と電圧制御要素とを電気的に接続する配線とを備えたイメージセンサを開示している。
特開2014-60315号公報 米国特許第9224789号明細書
 本開示は、より少ない製造工程で、透明電極を介して低抵抗で電圧を光電変換膜に印加することが可能なイメージセンサを提供する。
 本開示の例示的なイメージセンサは、複数の画素電極と、制御電極と、前記複数の画素電極上に配置された光電変換膜と、前記光電変換膜上に配置された透明電極と、前記透明電極の上面の少なくとも一部上に配置された絶縁層と、前記制御電極と前記透明電極とを電気的に接続する接続層と、を備える。前記接続層は前記透明電極の少なくとも1つの側面と接触しており、前記透明電極の前記上面に垂直な断面において、前記絶縁層の端部は、前記透明電極の端部よりも前記透明電極の内側に位置する。
 本開示のイメージセンサによれば、制御電極と透明電極の側面とを接続層が電気的に接続することによって、より少ない製造工程で製造でき、低抵抗で電圧を光電変換膜に印加することが可能なイメージセンサを提供し得る。
図1は、撮像装置の回路構成示す模式図である。 図2は、撮像装置中の単位画素セルのデバイス構造の断面を示す模式図である。 図3Aは、本実施形態のイメージセンサの模式的な断面図である。 図3Bは、本実施形態のイメージセンサの、保護膜を取り除いた模式的な上面図である。 図4Aは、本実施形態のイメージセンサの製造方法における工程を示す断面図である。 図4Bは、本実施形態のイメージセンサの製造方法における工程を示す断面図である。 図4Cは、本実施形態のイメージセンサの製造方法における工程を示す断面図である。 図4Dは、本実施形態のイメージセンサの製造方法における工程を示す断面図である。 図4Eは、本実施形態のイメージセンサの製造方法における工程を示す断面図である。 図4Fは、本実施形態のイメージセンサの製造方法における工程を示す断面図である。 図4Gは、本実施形態のイメージセンサの製造方法における工程を示す断面図である。 図4Hは、本実施形態のイメージセンサの製造方法における工程を示す断面図である。 図5は、イメージセンサの他の形態の一部を示す模式的な断面図である。 図6は、イメージセンサの他の形態であって、保護膜を取り除いた状態の模式的な上面図である。 図7は、イメージセンサの他の形態であって、保護膜を取り除いた状態の模式的な上面図である。 図8は、イメージセンサの他の形態であって、保護膜を取り除いた状態の模式的な上面図である。 図9Aは、イメージセンサの他の形態を示す模式的な上面図である。 図9Bは、図9Aのイメージセンサの一部を示す模式的な断面図である。 図10は、イメージセンサの製造方法の他の形態における工程を示す断面図である。
 積層型イメージセンサにおいて、ある種の材料で構成される光電変換膜は、透明電極に印加される電圧により感度が大きく変化し、その感度を実質的に0とすることができる。この特性を利用し、透明電極の電圧を変更することにより、電子的シャッター動作が可能な積層型イメージセンサを実現し得る。
 また、別のある光電変換膜は、透明電極に印加される電圧により、光電変換膜の分光感度特性である分光スペクトルを大きく変化させることができる。この特性を利用し、ある種の積層型イメージセンサにおいては、透明電極の電圧を変更することにより、光電変換膜の相異なる2つ以上の分光感度特性を変更することができる。
 これらのイメージセンサの場合、電圧制御要素は、透明電極に印加する電圧を時間的に変化させることによって、電子的シャッターあるいは分光感度特性の変更機能を動作させる機能を果たす。
 このように、積層型イメージセンサにおいて、光検出素子に発生した電気的信号を信号検出回路が正しく検出するためには、透明電極の電位が規定の範囲内となるように電圧制御要素により制御されなければならない。また、画素電極から電流が流れた場合、光検出素子に帯電が生じないように、電圧制御要素と透明電極の間に電流を流さなければならない。
 これらの制御あるいは動作のためには、電圧制御要素と光電変換膜との間の、透明電極を含む電圧印加経路の抵抗が低いほど、電圧変動がより少なくなる、電力消費がより少なくなる、より高速に時間変化させることができるなどのメリットが生じる。
 一方、光電変換膜に用いられる材料の中には、酸素、オゾン、水分などと、反応し、光電変換機能が劣化するものがある。例えば、光電変換膜を有機半導体によって構成する場合、有機半導体の中には、酸素、オゾン、水分などと反応しやすい材料がある。このため、イメージセンサの製造工程中、光電変換膜の形成およびパタニングは光電変換機能が劣化しない環境で行うことが好ましい。例えば、窒素などの不活性雰囲気、または、真空化で光電変換膜を形成したり、パタニングを行ったりすることが好ましい。
 しかし、一般的に光電変換膜の形成およびパタニングの全てを不活性雰囲気化または真空化で行うためには、非常に大掛かりな製造装置が必要となる。また、製造装置間で、光電変換膜が形成されたウェハを搬送する場合にも、不活性雰囲気化で行うためには、大掛かり搬送設備が必要となる。
 本願発明者らは、電圧制御要素と光電変換膜とを低抵抗で接続するとともに、製造工程中における光電変換膜の取り扱いが容易となり得る新規な構造を備えたイメージセンサを想到した。本開示のイメージセンサおよびイメージセンサの製造方法の概要は以下の通りである。
 [項目1]
 本開示の項目1に係るイメージセンサは、
 複数の画素電極と、
 制御電極と、
 前記複数の画素電極上に配置された光電変換膜と、
 前記光電変換膜上に配置された透明電極と、
 前記透明電極の上面の少なくとも一部上に配置された絶縁層と、
 前記制御電極と前記透明電極とを電気的に接続する接続層と、
を備える。
 前記接続層は前記透明電極の少なくとも1つの側面と接触しており、
 前記透明電極の前記上面に垂直な断面において、前記絶縁層の端部は、前記透明電極の端部よりも前記透明電極の内側に位置する。
 ここで、前記透明電極は導電性半導体で構成されていてもよい。また、前記制御電極は金属または金属の化合物で構成されていてもよい。
 [項目2]
 項目1に記載のイメージセンサにおいて、前記接続層は前記光電変換膜の側面とさらに接触していてもよい。
 [項目3]
 項目1または2に記載のイメージセンサにおいて、前記接続層は、前記絶縁層の一部を覆っていてもよい。
 [項目4]
 項目1から3のいずれかに記載のイメージセンサにおいて、前記接続層は、前記透明電極の前記上面の一部とさらに接触していてもよい。
 [項目5]
 項目1から4のいずれかに記載のイメージセンサにおいて、前記接続層は、平面視において、前記複数の画素電極の一部と重なっていてもよい。
 [項目6]
 項目5に記載のイメージセンサにおいて、前記接続層は遮光性を有していてもよい。
 [項目7]
 項目1から6のいずれかに記載のイメージセンサは、前記接続層および前記絶縁層を覆う保護膜をさらに備えていてもよい。
 [項目8]
 項目1から7のいずれかに記載のイメージセンサにおいて、
 平面視において、前記透明電極は多角形形状を有しており、
 前記透明電極の前記少なくとも1つの側面は、複数の側面を備え、
 前記接続層は、前記透明電極の前記複数の側面と接触していてもよい。
 [項目9]
 本開示の項目9に係るイメージセンサは、
 複数の画素電極と、
 制御電極と、
 前記複数の画素電極上に配置された光電変換膜と、
 前記光電変換膜上に配置された透明電極と、
 前記透明電極の上面の少なくとも一部上に配置された絶縁層と、
 前記制御電極と前記透明電極とを電気的に接続する接続層と、
を備える。
 前記接続層は前記透明電極の少なくとも1つの側面と接触しており、
 前記絶縁膜には、前記透明電極の前記上面と前記接続層とを接続する孔は配置されていない。
 [項目10]
 本開示の項目10に係るイメージセンサの製造方法は、複数の画素電極および制御電極を有する回路部を用意する工程(A)と、
 前記複数の画素電極上に光電変換膜を形成する工程(B)と、
 前記光電変換膜の上面に導電性半導体で構成される透明電極を形成する工程(C)と、
 前記透明電極上に絶縁層を形成する工程(D)と、
 前記光電変換膜の一部、前記透明電極の一部および前記絶縁層の一部をそれぞれ除去することによってパタニングする工程(E)と、
 前記工程(E)により露出した前記透明電極の側面と、前記制御電極とを電気的に接続する接続層を形成する工程(F)と、
を含む。
 [項目11]
 項目10に記載のイメージセンサの製造方法において、
 前記工程(F)において、前記接続層をさらに前記光電変換膜と接合させてもよい。
 [項目12]
 項目10に記載のイメージセンサの製造方法において、
 前記工程(E)において、
 前記透明電極の一部および前記絶縁層の一部を塩素およびフッ素の少なくとも一方を含むガスを用いてドライエッチングによって除去し、
 前記光電変換膜の一部を、酸素を含むガスを用いてドライエッチングによって除去してもよい。
 [項目13]
 項目10から12のいずれかに記載のイメージセンサの製造方法において、
 前記工程(E)において、前記透明電極の前記上面の外周部が露出するように、前記絶縁層をパタニングし、
 前記工程(F)において、前記接続層を前記透明電極の前記外周部とさらに接合させてもよい。
 [項目14]
 項目10から12のいずれかに記載のイメージセンサの製造方法において、
 前記工程(F)において、前記接続層は、前記絶縁層の少なくも一部上にも形成してもよい。
 以下、図面を参照しながら、本開示のイメージセンサの実施形態を説明する。
 (イメージセンサを含む撮像装置の概要)
 まず、本開示のイメージセンサが用いられる撮像装置を概括的に説明する。図1は撮像装置500の回路構成を模式的に示している。撮像装置500は、複数の単位画素セル14を含むイメージセンサ101と周辺回路とを備えている。
 複数の単位画素セル14は、半導体基板に2次元、すなわち行方向および列方向に配列されて、画素領域を形成している。イメージセンサ101はラインセンサであってもよい。その場合、複数の単位画素セル14は、1次元に配列されていてもよい。本願明細書では、行方向および列方向とは、行および列がそれぞれ伸びる方向をいう。つまり、垂直方向が列方向であり、水平方向が行方向である。
 各単位画素セル14は、光検出部10と、増幅トランジスタ11と、リセットトランジスタ12と、行選択トランジスタであるアドレストランジスタ13とを含む。光検出部10は画素電極50および透明電極52を含む。イメージセンサ101は、透明電極52に所定の電圧を印加するための電圧制御要素を備える。電圧制御要素は、例えば、電圧制御回路、定電圧源などの電圧発生回路、接地線等の電圧基準線などである。電圧制御要素が印加する電圧を制御電圧と呼ぶ。本実施形態では電圧制御要素として電圧制御回路60を備えている。電圧制御回路60は、一定の制御電圧を発生させてもよいし、値の異なる複数の制御電圧を発生させてもよい。例えば、2以上の異なる値の制御電圧を発生させてもよいし、所定の範囲で連続的に変化する制御電圧を発生させてもよい。電圧制御回路60は、撮像装置500を操作する操作者の指令、撮像装置500が備える他の制御部等の指令に基づき、発生させる制御電圧の値を決定し、決定した値の制御電圧を生成する。電圧制御回路60は、周辺回路の一部として、感光領域外に設けられる。つまり、電圧制御回路60はイメージセンサ101に備えられていてよい。
 例えば、電圧制御回路60は2以上の異なる制御電圧を発生し、透明電極52に制御電圧を印加することによって、光電変換膜51の分光感度特性が変化する。また、この分光感度特性の変化には、検出すべき光に対して光電変換膜51の感度がゼロとなる分光感度特性が含まれる。これにより、例えば、撮像装置500において、単位画素セル14が行ごとに検出信号の読み出しを行う間、透明電極52に光電変換膜51の感度がゼロとなる制御電圧を電圧制御回路60から印加することによって、検出信号の読み出し時に入射する光の影響をほぼゼロにすることができる。よって、実質的に行ごとに検出信号を読み出しても、グローバルシャッタ―動作を実現することができる。
 本実施形態では、図1に示すように、行方向に配列された単位画素セル14の透明電極52に、対向電極信号線16を介して制御電圧を印加することによって、画素電極50と透明電極52との間の電圧を変化させ、光検出部10における分光感度特性を切り替える。あるいは、撮像中に所定のタイミングで光に対する感度がゼロとなる分光感度特性が得られるように制御電圧を印加することによって電子シャッター動作を実現する。しかし、画素電極50に制御電圧を印加してもよい。光を光検出部10に照射し、画素電極50に正孔を信号電荷として蓄積するためには、透明電極52に対して画素電極は相対的に低い電位に設定される。このとき、電子移動方向は逆であるため、画素電極50から透明電極52に向かって電流が流れる。また、光を光検出部10に照射し、画素電極50に正孔を信号電荷として蓄積するためには、透明電極52に対して画素電極は相対的に低い電位に設定される。このとき、透明電極52から画素電極50に向かって電流が流れる。
 画素電極50は、増幅トランジスタ11のゲート電極に接続され、画素電極50によって集められた信号電荷は、画素電極50と増幅トランジスタ11のゲート電極との間に位置する電荷蓄積ノード24に蓄積される。本実施形態では信号電荷は、正孔であるが、信号電荷は電子であってもよい。
 電荷蓄積ノード24に蓄積された信号電荷は、信号電荷の量に応じた電圧として増幅トランジスタ11のゲート電極に印加される。増幅トランジスタ11は信号検出回路を構成しており、ゲート電極に印加された電圧を増幅する。アドレストランジスタ13は、信号電圧として、増幅された電圧を選択的に読み出す。リセットトランジスタ12は、そのソース/ドレイン電極が、画素電極50に接続されており、電荷蓄積ノード24に蓄積された信号電荷をリセットする。換言すると、リセットトランジスタ12は、増幅トランジスタ11のゲート電極および画素電極50の電位をリセットする。
 複数の単位画素セル14において上述した動作を選択的に行うため、撮像装置500は、電源配線21と、垂直信号線17と、アドレス信号線26とリセット信号線27を含み、これらの線が単位画素セル14にそれぞれ接続されている。具体的には、電源配線21は、増幅トランジスタ11のソース/ドレイン電極に接続され、垂直信号線17は、アドレストランジスタ13のソース/ドレイン電極に接続される。アドレス信号線26はアドレストランジスタ13のゲート電極に接続される。またリセット信号線27は、リセットトランジスタ12のゲート電極に接続される。
 周辺回路は、垂直走査回路15と、水平信号読出し回路20と、複数のカラム信号処理回路19と、複数の負荷回路18と、複数の差動増幅器22とを含む。垂直走査回路15は行走査回路とも称される。水平信号読出し回路20は列走査回路とも称される。カラム信号処理回路19は行信号蓄積回路とも称される。差動増幅器22はフィードバックアンプとも称される。
 垂直走査回路15は、アドレス信号線26およびリセット信号線27に接続されており、各行に配置された複数の単位画素セル14を行単位で選択し、信号電圧の読出しおよび画素電極50の電位のリセットを行う。ソースフォロア電源である電源配線21は、各単位画素セル14に所定の電源電圧を供給する。水平信号読出し回路20は、複数のカラム信号処理回路19に電気的に接続されている。カラム信号処理回路19は、各列に対応した垂直信号線17を介して、各列に配置された単位画素セル14に電気的に接続されている。負荷回路18は、各垂直信号線17に電気的に接続されている。負荷回路18と増幅トランジスタ11とは、ソースフォロア回路を形成する。
 複数の差動増幅器22は、各列に対応して設けられている。差動増幅器22の負側の入力端子は、対応した垂直信号線17に接続されている。また、差動増幅器22の出力端子は、各列に対応したフィードバック線23を介して単位画素セル14に接続されている。
 垂直走査回路15は、アドレス信号線26によって、アドレストランジスタ13のオンおよびオフを制御する行選択信号をアドレストランジスタ13のゲート電極に印加する。これにより、読出し対象の行が走査され、選択される。選択された行の単位画素セル14から垂直信号線17に信号電圧が読み出される。また、垂直走査回路15は、リセット信号線27を介して、リセットトランジスタ12のオンおよびオフを制御するリセット信号をリセットトランジスタ12のゲート電極に印加する。これにより、リセット動作の対象となる単位画素セル14の行が選択される。垂直信号線17は、垂直走査回路15によって選択された単位画素セル14から読み出された信号電圧をカラム信号処理回路19へ伝達する。
 カラム信号処理回路19は、相関二重サンプリングに代表される雑音抑圧信号処理およびアナログ-デジタル変換(AD変換)などを行う。
 水平信号読出し回路20は、複数のカラム信号処理回路19から水平共通信号線(不図示)に信号を順次読み出す。
 差動増幅器22は、フィードバック線23を介してリセットトランジスタ12のドレイン電極に接続されている。従って、差動増幅器22は、アドレストランジスタ13とリセットトランジスタ12とが導通状態にあるときに、アドレストランジスタ13の出力値を負端子に受ける。増幅トランジスタ11のゲート電位が所定のフィードバック電圧となるように、差動増幅器22はフィードバック動作を行う。このとき、差動増幅器22の出力電圧値は、0Vまたは0V近傍の正電圧である。フィードバック電圧とは、差動増幅器22の出力電圧を意味する。
 図2は、撮像装置500中の単位画素セル14のデバイス構造の断面を模式的に示している。単位画素セル14は、半導体基板31と、電荷検出回路25と、光検出部10とを含む。半導体基板31は、例えば、p型シリコン基板である。電荷検出回路25は、画素電極50によって捕捉された信号電荷を検出し、信号電圧を出力する。電荷検出回路25は、増幅トランジスタ11と、リセットトランジスタ12と、アドレストランジスタ13とを含み、半導体基板31に形成されている。
 増幅トランジスタ11は、半導体基板31内に形成され、それぞれドレイン電極およびソース電極として機能するn型不純物領域41Cおよび41Dと、半導体基板31上に位置するゲート絶縁層38Bとゲート絶縁層38B上に位置するゲート電極39Bとを含む。
 リセットトランジスタ12は、半導体基板31内に形成され、それぞれドレイン電極およびソース電極として機能するn型不純物領域41Bおよび41Aと、半導体基板31上に位置するゲート絶縁層38Aとゲート絶縁層38A上に位置するゲート電極39Aとを含む。
 アドレストランジスタ13は、半導体基板31内に形成され、それぞれドレイン電極およびソース電極として機能するn型不純物領域41Dおよび41Eと、半導体基板31上に位置するゲート絶縁層38Cとゲート絶縁層38C上に位置するゲート電極39Cとを含む。n型不純物領域41Dは、増幅トランジスタ11とアドレストランジスタ13と共用されており、これにより、増幅トランジスタ11とアドレストランジスタ13とが直列に接続される。
 半導体基板31において、隣接する単位画素セル14との間および増幅トランジスタ11とリセットトランジスタ12との間には素子分離領域42が設けられている。素子分離領域42によって隣接する単位画素セル14間の電気的な分離が行われる。また、電荷蓄積ノードで蓄積される信号電荷のリークが抑制される。
 半導体基板31の表面には層間絶縁層43A、43Bおよび43Cが積層されている。層間絶縁層43A中には、リセットトランジスタ12のn型不純物領域41Bと接続されたコンタクトプラグ45A、増幅トランジスタ11のゲート電極39Bと接続されたコンタクトプラグ45B、およびコンタクトプラグ45Aとコンタクトプラグ45Bとを接続する配線46Aが埋設されている。これにより、リセットトランジスタ12のn型不純物領域41B(ドレイン電極)が増幅トランジスタ11のゲート電極39Bと電気的に接続されている。また、配線46Aは、コンタクトプラグ47A、配線46B、コンタクトプラグ47B、配線46C、及びコンタクトプラグ47Cを介して、画素電極50と、電気的に接続されている。
 光検出部10は、層間絶縁層43C上に設けられている。光検出部10は、透明電極52と、光電変換膜51と、透明電極52より半導体基板31側に位置する画素電極50とを含む。光電変換膜51は透明電極52と画素電極50によって挟まれている。また、光検出部10は、透明電極52の上面の少なくとも一部に形成された絶縁層119を備える。光検出部10はさらに保護膜120を備えていてもよい。光電変換膜51の構造は以下において詳細に説明する。画素電極50は、層間絶縁層43C上に設けられている。
 透明電極52は、検出すべき光に対して透明であり導電性を有する半導体から構成される。例えば、透明電極52は、酸化インジウム錫(ITO)、アルミニウム添加酸化亜鉛(AZO)、ガリウム添加酸化亜鉛(GZO)などによって構成される。他の透明導電性半導体を用いてもよい。画素電極50は、アルミニウム、銅等の金属、不純物がドープされ導電性が付与されたポリシリコン等によって形成される。
 図2に示すように、単位画素セル14は、光検出部10の透明電極52上にカラーフィルター53を有している。カラーフィルター53上にマイクロレンズ54を更に有していてもよい。
 本実施形態では、各単位画素セル14の光電変換膜51および透明電極52はそれぞれ隣接する単位画素セル14の光電変換膜51および透明電極52と接続されており、一体的な光電変換膜51および透明電極52を構成している。ただし、光電変換膜51は単位画素セル14ごとに分離していてもよい。また、透明電極52も2次元に配置された単位画素セル14の行または列ごとに一体的に接続されていてもよい。これに対し、各単位画素セル14の画素電極50は隣接する単位画素セル14の画素電極50とは接続されておらず、独立している。
 なお、イメージセンサ101は、光電変換による電荷を検出せず、光電変換膜の容量変化を検出してもよい。このようなタイプのイメージセンサおよび撮像装置は、例えば、国際公開WO2017/081847号に開示されている。つまり、光電変換膜51は、入射する光の強度に応じた正孔電子対を生成してもよいし、入射する光の強度に応じて容量が変化してもよい。生成した電荷あるいは容量の変化を検出することによって光電変換膜51に入射した光を検出することが可能である。
 (イメージセンサの構造)
 図3Aはイメージセンサ101の模式的な断面図であり、図3Bは、保護膜120を取り除いたイメージセンサ101の模式的な上面図である。これ以降の図では、図2に示した半導体基板31および層間絶縁層43A、43B、43Cをまとめて基板100として示している。
 イメージセンサ101は、上述した複数の画素電極50、光電変換膜51および透明電極52を備える。また、イメージセンサ101は、制御電極112と、接続部115とをさらに備える。複数の画素電極50および制御電極112は基板100に形成される回路部を構成している。また、接続部115は対向電極信号線16の一部を構成する。
 複数の画素電極50は、基板100の上面100aから複数の画素電極50の各々の上面が露出するように、1次元または2次元に配列されて基板100に埋設されている。複数の画素電極50を覆うように基板100の上面100aに光電変換膜51が配置され、さらに光電変換膜51の上に透明電極52が配置されている。透明電極52は、光電変換膜51の少なくとも画素電極50が設けられた領域上を覆うように、光電変換膜51の上面51aを覆っている。本実施形態では、透明電極52は、光電変換膜51の上面51a全体を覆って形成されている。
 絶縁層119は、透明電極52の上面52aの少なくとも一部上を覆って形成されている。絶縁層119は、透明電極52の少なくとも画素電極50が設けられた領域上を覆うように、上面52aを覆っていてもよい。
 接続部115は、制御電極112と透明電極52とに接合され、これらを電気的に接続する。具体的には、接続部115は、基板100に露出した制御電極112および透明電極52の側面52sと接合している。接続部115は、さらに、光電変換膜51の側面51sも覆っている。また、接続部115は、絶縁層119の上面119aの、画素電極50が設けられた領域の上方以外の一部を覆っている。接続部115と制御電極112との接合面積は、接続部115と透明電極52との接合面積よりも大きくてもよいし、小さくてもよい、また、同じであってもよい。
 本実施形態では、平面視において、光電変換膜51、絶縁層119および透明電極52は矩形形状を有しており、透明電極52の4つの辺52c、52d、52e、52fのうち辺52e、52fに近接して制御電極112が配置されている。このため、イメージセンサ101は、2つの接続部115を備え、透明電極52の辺52e、52fにそれぞれ近接した位置において、2つの接続部115のそれぞれが、制御電極112と透明電極52の側面52sとに接合し、制御電極112と透明電極52とを電気的に接続している。本実施形態では、透明電極52の4つの辺52c、52d、52e、52fのそれぞれにおいて、絶縁層119の側面119sは、透明電極52の側面52sと同一面に位置している。
 保護膜120は、接続部115および絶縁層119を覆って基板100の上面100a上に設けられている。
 光電変換膜51は、例えば、有機半導体によって構成されている。光電変換膜51は、1または複数の有機半導体層を含んでいてもよい。例えば、光電変換膜51は、正孔-電子対を生成する光電変換層に加えて、電子または正孔を輸送するキャリア輸送層、キャリアをブロックするブロッキング層などを含んでいてもよい。これらの有機半導体層には公知の材料の有機p型半導体および有機n型半導体を用いることができる。
 透明電極52は上述した材料によって形成されている。制御電極112は、金属または金属の化合物で構成され、遮光性を有する。例えば、制御電極112は、チタン、窒化チタン、アルミニウム、シリコンおよび銅添加アルミニウム、銅、タングステン等、またはこれらの合金等で形成されている。制御電極112は、上述した材料の単層によって構成されていてもよいし、複数の層を含む積層構造を備えていてもよい。
 接続部115は金属または金属の化合物で構成される。例えば、接続部115は、チタン、窒化チタン、アルミニウム、シリコン、銅添加アルミニウム(AlSiCu)、銅、タングステン、金、銀、ニッケル、コバルト等、または、これらの合金等で形成されている。また、制御電極112と同様、単層であっても積層であってもよい。
 絶縁層119および保護膜120は絶縁性を有する材料によって構成される。例えば、絶縁層119は、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、有機または無機高分子材料等によって形成される。絶縁層119および保護膜120はイメージセンサ101が検出すべき波長の光に対して透明であってもよい。
 (イメージセンサの製造方法)
 イメージセンサ101は、例えば、以下の方法によって製造することができる。
 (A)回路部を用意する工程
 まず、図4Aに示すように、回路部を用意する。具体的には、前述したように、複数の画素電極50および制御電極112が上面100aに露出した基板100を用意する。回路部は、より詳細には、各画素電極50において図2に示す構造を備えており、公知の半導体装置の製造方法を用いて作製することができる。
 (B)光電変換膜を形成する工程
 図4Bに示すように、基板100の上面100aに、少なくとも画素電極50を覆うように光電変換膜51を形成する。光電変換膜51は、スピンコート法、インクジェット法、ダイコート法、スプレーコート法、真空蒸着法、スクリーン印刷法などによって形成することができる。
 (C)透明電極を形成する工程
 図4Bに示すように、透明電極52を光電変換膜51上に形成する。透明電極52は、光電変換膜51の、少なくとも画素電極50が設けられた領域上に形成する。透明電極52は、スパッタ法によって形成してもよい。
 (D)絶縁層を形成する工程
 図4Bに示すように、絶縁層119を透明電極52上に形成する。絶縁層119は、透明電極52の、少なくとも画素電極50が設けられた領域上に形成する。絶縁層119は、原子層堆積(ALD)法、化学気相堆積(CVD)法、スパッタリング法などによって形成することができる。
 (E)パタニングする工程
 光電変換膜51の一部、透明電極52の一部および絶縁層119の一部をそれぞれ除去することによって、光電変換膜51、透明電極52および絶縁層119のパタニングを行う。図4Cに示すように、絶縁層119上に感光性であるレジスト400を形成する。例えば、スピンコート法によってレジスト400を形成する。次に、フォトマスクを用いてレジスト400を露光し、現像を行うことによって、図4Dに示すように、所定のパターンを有する、レジスト400のマスクを形成する。
 次に、レジスト400のマスクを用いて、光電変換膜51、透明電極52および絶縁層119のエッチングを行う。ドライエッチングにより、光電変換膜51、透明電極52および絶縁層119のパタニングを行ってもよい。
 絶縁層119および透明電極52は、フッ素、塩素、臭素およびヨウ素などのハロゲンを含むガスを用いてもよく、フッ素および塩素の少なくとも一方の元素を含むガスを用いてもよい。また、ドライエッチングは、プラズマ放電によって、ガスをプラズマ化し、プラズマ化したガスの化学種が絶縁層119および透明電極52と反応する反応性エッチング(RIE)を用いてもよい。一般に、絶縁層119および透明電極52は、窒素またはケイ素を含む材料によって構成されるため、これらのガスおよびエッチング方法を用いることによって効率的に、絶縁層119および透明電極52をエッチングすることができる。
 一方、光電変換膜51は、酸素を含むガスによってドライエッチングを行ってもよい。より具体的には、酸素を含むガスをチャンバーに充填し、酸化反応による化学エッチングによって、光電変換膜51を酸化させてもよい。光電変換膜51は、炭素を多く含むため、酸素ガスとの酸化反応によって、酸化炭素として除去可能である。
 このように、絶縁層119および透明電極52と光電変換膜51を異なるガス種を用いてエッチングすることによって、ドライエッチング時のプラズマ等によるダメージを抑制しつつ、サイドエッチングを調整することが可能となる。また、光電変換膜51の上面51aは絶縁層119で覆われているため、イメージセンサ101の製造工程中、外部に露出するのは、側面51sのみである。よって、エッチング中および他の製造工程中において、光電変換膜51が酸素、オゾン、水分などと接触し、劣化するのを抑制することができる。
 パタニングする工程によって、図4Eに示すように、光電変換膜51の一部、透明電極52の一部および絶縁層119の一部がそれぞれ除去され、所望のパターンを有し、側面51s、側面52sおよび側面119sが露出した光電変換膜51、透明電極52および絶縁層119を形成することができる。サイドエッチングの量が小さい場合、絶縁層119の側面119sは、透明電極52の側面52sとほぼ同一面に位置している。
 (F)接続層を形成する工程
 透明電極52の側面52sと、制御電極112とを電気的に接続する接続部115を形成する。図4Fに示すように、絶縁層119の上面119a、絶縁層119の側面119s、透明電極52の側面52s、光電変換膜51の側面51sを覆って基板100の上面100aの全体に金属または金属の化合物の層115Bを形成する。層115Bは、スパッタ法、真空蒸着法などを用いて形成することができる。その後、少なくとも画素電極50が設けられた領域を露出するレジスト(不図示)を形成し、レジストをマスクとして、層115Bをエッチングすることによって、図4Gに示すように、基板100の上面100aにおいて制御電極112と接合され、透明電極52の側面52sと接合された接続部115が形成される。
 (G)保護膜を形成する工程
 イメージセンサ101が保護膜120を備えている場合には、図4Hに示すように、接続部115および絶縁層119を覆って、基板100の上面100a上に保護膜を形成する。これによりイメージセンサ101が作製される。
 (イメージセンサの特徴)
 イメージセンサ101によれば、制御電極112から光電変換膜51までの電圧印加経路のうち、透光性を必要としない部分を透明電極52に代えて、透明電極52よりも導電性の高い接続部115で配線している。このため、制御電極112の電圧を、透明電極52を介して低抵抗で、光電変換膜51に印加することが可能であり、光電変換膜51における電圧変動が抑制される。よって、より安定した撮像が可能なイメージセンサが実現する。また、より少ない電力消費が求められるモバイル機器の撮像装置に用いられ、高速の電子シャッター、あるいはより高速に分光感度特性の切り替えが可能な撮像装置が実現し得る。
 また、上記製造工程を用いることによって、光電変換膜51が絶縁層に覆われ、イメージセンサの製造工程中における光電変換膜51へのダメージを抑制することができる。透明電極52と接続部115とのコンタクトは、透明電極52の側面52sで行うため、透明電極52のパタニングによって、接続部115と接続する側面52sが形成され、特許文献1、2に開示されたイメージセンサのように、別途コンタクトをとるための開口を絶縁層119に形成する必要がない。このため、イメージセンサ101の製造工程における、マスク数の削減および製造工程数を削減することが可能となり、イメージセンサ101の製造コストを低減し、製造時間を短縮することが可能となる。よって、本実施形態によれば、高性能のイメージセンサ101を低コストで製造することが可能となる。
 (他の形態)
 本実施形態のイメージセンサ101には種々の改変が可能である。
 接続部115の配置および形状には種々の改変が可能である。図5に示すように、接続部115のうち、絶縁層119の上面119aを覆う部分115Aは、平面視において、複数の画素電極50のうち、少なくとも一部と重なっていてもよい。接続部115の部分115Aと重なる画素電極50の単位画素セル14には、接続部115が遮光膜として機能し、常時光が入射しない。このため、この単位画素セル14は、暗時状態での参照信号であるオプティカルブラックを得るために使用できる。
 図6に示すように、接続部115は、透明電極52の矩形形状の3辺に配置されていてもよい。この場合、接続部115は、辺52c、52d、52fの3つの側面52sと接合される。この形態では、制御電極112は基板100の上面100aに、1つ配置されている。この形態によれば、制御電極112は一か所にしか配置されないが、低抵抗の接続部115が透明電極52の3辺に接続され、接続部115と透明電極52との接合面積が大きくなり、より低抵抗で接続部115と透明電極52とを電気的に接続することができる。このため、透明電極52に電圧が印加される際の遅延が抑制され、電圧変化の等時性が高まる。
 図7、図8に示すように、接続部115は、透明電極52の矩形形状の4辺に配置されていてもよい。この場合、接続部115は、辺52c、52d、52e、52fの4つの側面52sと接合される。この場合、図7に示すように、接続部115に間隙300を設けてもよいし、図8に示すように、間隙300を設けなくてもよい。図7に示すように間隙300を設ける場合、間隙300は、例えば、接続部115を、シャドーマスクを用いて形成する際の、光照射領域の開口部のマスクを保持するために利用できる。また、図8に示すように、接続部115が矩形形状の4辺の側面52sを連続して接続している場合には、透明電極52に電圧が印加される際の遅延がより抑制され、電圧変化の等時性が高まる。また、接続部115が透明電極52および光電変換膜51の側面すべてを被覆するため、光電変換膜51の基板からの剥れ防止機能、及び光電変換膜51の側面が大気等にさらされることを防止する機能を兼ねる。
 図9Aおよび図9Bに示すように、透明電極52の上面52aの一部は、絶縁層119に覆われていなくてもよい。具体的には、上面52aのうち、外周部52apは、絶縁層119に覆われておらず絶縁層119から露出していてもよい。このような構造は、例えば、図10に示すように、パタニングする工程(E)において、レジスト400を用いて、絶縁層119、透明電極52および光電変換膜51をエッチングによって形成する際、厚さ方向と垂直な方向にも絶縁層119をエッチングすることによって形成することができる。パタニングする工程(E)中、絶縁層119が最も長くエッチングされる環境に曝されるため、絶縁層119が厚さ方向と垂直な方向に最もエッチングされ、側面119sが後退することによって、透明電極52の外周部52apが露出する。この場合、透明電極52の4つの辺52c、52d、52e、52fのそれぞれにおいて、絶縁層119の側面119sは、透明電極52の側面52sよりも透明電極52の中心に近い側に位置している。図9Bに示す断面図において、絶縁層119の端部は、透明電極52の端部よりも透明電極52の内側に位置している。
 透明電極52の上面52aのうち絶縁層119に覆われていない外周部52apは、接続部115に覆われ、接合されていてもよい。この場合、接続部は、保護膜120をさらに覆っていてもよいし、透明電極52の外周部52apを覆っているが、保護膜120は覆っていなくてもよい。外周部52apが接続部115と接合されていることによって、透明電極52と接続部115との接触面積をより大きくすることができ、透明電極52と接続部115とをより低抵抗で電気的に接続することができる。
 本開示のイメージセンサは、種々の用途の撮像装置に使用され得る。
10   光検出部
11   増幅トランジスタ
12   リセットトランジスタ
13   アドレストランジスタ
14   単位画素セル
15   垂直走査回路
16   対向電極信号線
17   垂直信号線
18   負荷回路
19   カラム信号処理回路
20   水平信号読出し回路
21   電源配線
22   差動増幅器
23   フィードバック線
24   電荷蓄積ノード
25   電荷検出回路
26   アドレス信号線
27   リセット信号線
30   電圧制御回路
31   半導体基板
38A、38B、38C  ゲート絶縁層
39A、39B、39C  ゲート電極
41B、41C、41D  n型不純物領域
42   素子分離領域
43A、43B、43C  層間絶縁層
45A、45B、47A、47B、47C  コンタクトプラグ
46A、46B、46C  配線
50   画素電極
51   光電変換膜
51a  上面
51s  側面
52   透明電極
52a  上面
52ap 外周部
52c、52d、52e、52f  辺
52s  側面
53   カラーフィルター
60   電圧制御回路
100  基板
100a 上面
101  イメージセンサ
112  制御電極
115  接続部
115A 部分
115B 層
119  絶縁層
119a 上面
119s 側面
120  保護膜
300  間隙
400  レジスト
500  撮像装置

Claims (9)

  1.  複数の画素電極と、
     制御電極と、
     前記複数の画素電極上に配置された光電変換膜と、
     前記光電変換膜上に配置された透明電極と、
     前記透明電極の上面の少なくとも一部上に配置された絶縁層と、
     前記制御電極と前記透明電極とを電気的に接続する接続層と、
    を備え、
     前記接続層は前記透明電極の少なくとも1つの側面と接触しており、
     前記透明電極の前記上面に垂直な断面において、前記絶縁層の端部は、前記透明電極の端部よりも前記透明電極の内側に位置する、
     イメージセンサ。
  2.  前記接続層は前記光電変換膜の側面とさらに接触している、
     請求項1に記載のイメージセンサ。
  3.  前記接続層は、前記絶縁層の一部を覆っている、
     請求項1または2に記載のイメージセンサ。
  4.  前記接続層は、前記透明電極の前記上面の一部とさらに接触している、
     請求項1から3のいずれかに記載のイメージセンサ。
  5.  前記接続層は、平面視において、前記複数の画素電極の一部と重なっている、
     請求項1から4のいずれかに記載のイメージセンサ。
  6.  前記接続層は遮光性を有する、
     請求項5に記載のイメージセンサ。
  7.  前記接続層および前記絶縁層を覆う保護膜をさらに備える、
     請求項1から6のいずれかに記載のイメージセンサ。
  8.  平面視において、前記透明電極は多角形形状を有しており、
     前記透明電極の前記少なくとも1つの側面は、複数の側面を備え、
     前記接続層は、前記透明電極の前記複数の側面と接触している、
     請求項1から7のいずれかに記載のイメージセンサ。
  9.  複数の画素電極と、
     制御電極と、
     前記複数の画素電極上に配置された光電変換膜と、
     前記光電変換膜上に配置された透明電極と、
     前記透明電極の上面の少なくとも一部上に配置された絶縁層と、
     前記制御電極と前記透明電極とを電気的に接続する接続層と、
    を備え、
     前記接続層は前記透明電極の少なくとも1つの側面と接触しており、
     前記絶縁膜には、前記透明電極の前記上面と前記接続層とを接続する孔は配置されていない、
     イメージセンサ。
PCT/JP2019/020662 2018-06-14 2019-05-24 制御電極と、透明電極と、前記制御電極と前記透明電極の側面とを電気的に接続する接続層と、を備えるイメージセンサ WO2019239851A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020525394A JP7162275B2 (ja) 2018-06-14 2019-05-24 制御電極と、透明電極と、前記制御電極と前記透明電極の側面とを電気的に接続する接続層と、を備えるイメージセンサ
CN201980025746.9A CN111971800A (zh) 2018-06-14 2019-05-24 具备控制电极、透明电极和将上述控制电极与上述透明电极的侧面电连接的连接层的图像传感器
US17/095,691 US11955493B2 (en) 2018-06-14 2020-11-11 Image sensor including control electrode, transparent electrode, and connection layer electrically connecting control electrode to side surface of transparent electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018113447 2018-06-14
JP2018-113447 2018-06-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/095,691 Continuation US11955493B2 (en) 2018-06-14 2020-11-11 Image sensor including control electrode, transparent electrode, and connection layer electrically connecting control electrode to side surface of transparent electrode

Publications (1)

Publication Number Publication Date
WO2019239851A1 true WO2019239851A1 (ja) 2019-12-19

Family

ID=68842869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020662 WO2019239851A1 (ja) 2018-06-14 2019-05-24 制御電極と、透明電極と、前記制御電極と前記透明電極の側面とを電気的に接続する接続層と、を備えるイメージセンサ

Country Status (4)

Country Link
US (1) US11955493B2 (ja)
JP (1) JP7162275B2 (ja)
CN (1) CN111971800A (ja)
WO (1) WO2019239851A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220691A1 (ja) * 2020-04-27 2021-11-04 パナソニックIpマネジメント株式会社 光電変換素子および撮像装置
WO2023157571A1 (ja) * 2022-02-18 2023-08-24 パナソニックIpマネジメント株式会社 機能素子およびその製造方法
WO2023176245A1 (ja) * 2022-03-17 2023-09-21 パナソニックIpマネジメント株式会社 撮像素子、撮像装置及び撮像素子の製造方法
WO2023228624A1 (ja) * 2022-05-23 2023-11-30 パナソニックIpマネジメント株式会社 撮像装置及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257876A (ja) * 1990-03-07 1991-11-18 Sanyo Electric Co Ltd 光電変換素子の製造方法
JP2013135123A (ja) * 2011-12-27 2013-07-08 Sony Corp 半導体装置、半導体装置の製造方法、固体撮像装置および電子機器
JP2014011392A (ja) * 2012-07-02 2014-01-20 Sony Corp 固体撮像装置及びその製造方法、電子機器
JP2015012239A (ja) * 2013-07-01 2015-01-19 ソニー株式会社 撮像素子および電子機器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196064A (ja) * 1998-12-28 2000-07-14 Sony Corp 固体撮像素子の製造方法
US6455836B1 (en) 2000-04-25 2002-09-24 Agilent Technologies, Inc. Metallic optical barrier for photo-detector array is also interconnecting electrode
JP4269859B2 (ja) * 2003-09-10 2009-05-27 株式会社島津製作所 放射線検出器
JP2006049874A (ja) 2004-07-06 2006-02-16 Fuji Photo Film Co Ltd 機能素子及びその製造方法
US7268369B2 (en) 2004-07-06 2007-09-11 Fujifilm Corporation Functional device and method for producing the same
CN101097901A (zh) * 2006-06-29 2008-01-02 三洋电机株式会社 半导体装置及半导体装置的制造方法
JP4743269B2 (ja) * 2008-04-23 2011-08-10 エプソンイメージングデバイス株式会社 固体撮像装置
JP5564847B2 (ja) * 2009-07-23 2014-08-06 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
JP2014060380A (ja) * 2012-06-14 2014-04-03 Rohm Co Ltd 光電変換装置
JPWO2014021177A1 (ja) * 2012-08-02 2016-07-21 ソニー株式会社 半導体素子、半導体素子の製造方法、固体撮像装置、および電子機器
JP5728451B2 (ja) * 2012-09-19 2015-06-03 富士フイルム株式会社 有機固体撮像素子およびその製造方法
WO2014103150A1 (ja) * 2012-12-28 2014-07-03 パナソニック株式会社 固体撮像装置およびその製造方法
JP6138639B2 (ja) * 2013-09-12 2017-05-31 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および製造方法、並びに電子機器
JP2015103735A (ja) * 2013-11-27 2015-06-04 ソニー株式会社 固体撮像素子および電子機器
JP2015135926A (ja) * 2014-01-20 2015-07-27 パナソニックIpマネジメント株式会社 電子部品
JP6465597B2 (ja) * 2014-09-09 2019-02-06 キヤノン株式会社 光電変換装置、光電変換システム
CN107004691B (zh) * 2015-11-12 2022-02-11 松下知识产权经营株式会社 光检测装置
JP6849900B2 (ja) * 2016-06-08 2021-03-31 富士通株式会社 検出素子及び検出器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257876A (ja) * 1990-03-07 1991-11-18 Sanyo Electric Co Ltd 光電変換素子の製造方法
JP2013135123A (ja) * 2011-12-27 2013-07-08 Sony Corp 半導体装置、半導体装置の製造方法、固体撮像装置および電子機器
JP2014011392A (ja) * 2012-07-02 2014-01-20 Sony Corp 固体撮像装置及びその製造方法、電子機器
JP2015012239A (ja) * 2013-07-01 2015-01-19 ソニー株式会社 撮像素子および電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220691A1 (ja) * 2020-04-27 2021-11-04 パナソニックIpマネジメント株式会社 光電変換素子および撮像装置
EP4145549A4 (en) * 2020-04-27 2023-10-18 Panasonic Intellectual Property Management Co., Ltd. PHOTOELECTRIC CONVERSION ELEMENT AND IMAGING DEVICE
WO2023157571A1 (ja) * 2022-02-18 2023-08-24 パナソニックIpマネジメント株式会社 機能素子およびその製造方法
WO2023176245A1 (ja) * 2022-03-17 2023-09-21 パナソニックIpマネジメント株式会社 撮像素子、撮像装置及び撮像素子の製造方法
WO2023228624A1 (ja) * 2022-05-23 2023-11-30 パナソニックIpマネジメント株式会社 撮像装置及びその製造方法

Also Published As

Publication number Publication date
US20210066360A1 (en) 2021-03-04
CN111971800A (zh) 2020-11-20
US11955493B2 (en) 2024-04-09
JPWO2019239851A1 (ja) 2020-12-17
JP7162275B2 (ja) 2022-10-28

Similar Documents

Publication Publication Date Title
JP7162275B2 (ja) 制御電極と、透明電極と、前記制御電極と前記透明電極の側面とを電気的に接続する接続層と、を備えるイメージセンサ
US11670652B2 (en) Imaging device including a photoelectric converter and a capacitive element having a dielectric film sandwiched between electrodes and a mode switching transistor
JP6509782B2 (ja) 画像センサ、前記画像センサを備える光電子システム、および前記画像センサを製造するための方法
US8791419B2 (en) High charge capacity pixel architecture, photoelectric conversion apparatus, radiation image pickup system and methods for same
US10277838B2 (en) Monolithic visible/IR fused low light level imaging sensor
US10741602B2 (en) Back side illuminated CMOS image sensor arrays
JP2019121804A (ja) イメージセンサ
JP2012234949A (ja) 固体撮像装置及びその製造方法
US20210313378A1 (en) Photoelectric conversion device
US20220336534A1 (en) Imaging device
US20220216259A1 (en) Imaging device
JP2008166539A (ja) 光電変換素子の製造方法、光電変換素子、固体撮像素子
JP2021118254A (ja) 撮像装置
US20240213279A1 (en) Image sensor including control electrode, transparent electrode, and connection layer electrically connecting control electrode to side surface of transparent electrode
WO2021235167A1 (ja) 撮像装置
JP4365247B2 (ja) 光電変換膜積層型固体撮像素子
WO2023199707A1 (ja) 撮像装置
WO2023106026A1 (ja) 撮像装置
WO2022149401A1 (ja) 撮像装置
WO2023032670A1 (ja) 撮像装置
CN117321781A (zh) 光电转换元件和摄像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020525394

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819177

Country of ref document: EP

Kind code of ref document: A1