WO2019227936A1 - 一种高对比度反射屏幕 - Google Patents

一种高对比度反射屏幕 Download PDF

Info

Publication number
WO2019227936A1
WO2019227936A1 PCT/CN2019/070530 CN2019070530W WO2019227936A1 WO 2019227936 A1 WO2019227936 A1 WO 2019227936A1 CN 2019070530 W CN2019070530 W CN 2019070530W WO 2019227936 A1 WO2019227936 A1 WO 2019227936A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
reflective
screen
reflective layer
light
Prior art date
Application number
PCT/CN2019/070530
Other languages
English (en)
French (fr)
Inventor
胡飞
张红秀
王霖
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019227936A1 publication Critical patent/WO2019227936A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the invention relates to a high-contrast reflective screen, in particular to a high-contrast reflective screen with a simple structure and low cost.
  • the projection system capable of projecting more than 100 inches of large screen with a distance between the projector and the screen of 50 cm has been developed.
  • the projection system can overcome the limitation of installation space, but when the projection system is installed in a bright In an environment with a lot of stray light such as a living room, the image display on the projection screen usually has the following problems: the screen reflects ambient light, which causes interference with signal light, so it is difficult to obtain good contrast.
  • a general method is to add a dark light absorbing layer to absorb ambient light.
  • the existing method is to provide a light absorbing layer on the surface of the prism facing the ambient light.
  • the uniformity and viewing angle of the screen's reflected light are important indicators for measuring the quality of the screen.
  • Setting the scattering structure in the screen can produce uniform light and eliminate glare. Scattering is divided into volume scattering and surface scattering. Volume scattering can be achieved by adding scattering particles to the base layer of the screen; surface scattering can be set by diffusing structures on the surface of the base layer or the surface of other structures on the screen, such as diffusion layers, matte surfaces, optical Microstructure, etc.
  • the present invention aims to provide a new type of reflective screen.
  • the new type of reflective screen can achieve a high contrast effect without adding an additional light absorbing layer, which reduces process difficulty and screen cost.
  • the present invention provides a reflective screen.
  • the screen includes a support layer and a reflective layer that are sequentially stacked, wherein the reflective layer is composed of a reflective portion and an adjustment portion, and the adjustment portion is used to adjust the reflectance of the reflective layer. So that the reflectivity of the reflective layer is 10% -50%, preferably 10% -30%.
  • the support layer includes a base layer and a Fresnel structure layer that are sequentially stacked, and the reflective layer is provided on the other side of the Fresnel structure layer that is opposite to a side that is in contact with the base layer.
  • a side of the reflective layer facing away from the Fresnel structure layer includes a light absorbing layer.
  • the screen includes a diffusion layer on a side of the base layer facing away from the Fresnel structure layer.
  • a side of the light of the base layer directed toward the base layer is a surface diffusion structure.
  • scattering particles are added to the reflection layer, and the diameter of the scattering particles is 1-100um.
  • the adjusting portion is composed of a through hole.
  • the through hole is formed by laser perforating the reflective layer.
  • the through hole is formed by screen printing the reflective layer.
  • the through hole is formed by selectively exposing and developing the reflective layer.
  • the invention provides a high-contrast projection screen, which includes a support layer and a reflective layer, wherein the effective reflectivity of the reflective layer is reduced to 10% -50%, preferably 10%-by reducing the duty cycle of the reflective layer. 30%, so no additional light absorption layer is needed to achieve a high contrast effect, reducing process difficulty and screen costs.
  • the effective utilization of the projected light is achieved, and at the same time the screen contrast and scattering uniformity are improved.
  • the present invention provides a screen with a simple structure and low cost, which can absorb ambient light in all directions and uniformly scatter the projection light. Therefore, even when the reflective screen of the present invention is used in an environment with a large amount of stray light such as a bright living room, a good contrast can be obtained.
  • FIG. 1 is a schematic sectional view showing a structure of a screen according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a specific structure of a reflective layer of a screen according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic sectional view showing a structure of a screen according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic sectional view showing a structure of a screen according to Embodiment 3 of the present invention.
  • the present invention develops a way to improve the contrast of a screen by reducing the effective reflectivity of a reflective layer. Ambient light reflection is reduced, thereby reducing the effect of ambient light on signal light to increase the contrast of the screen.
  • FIG. 1 is a schematic sectional view showing a structure of a screen according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram showing a specific structure of a reflective layer of the screen according to Embodiment 1 of the present invention.
  • the projection screen shown in FIG. 1 is a high-contrast anti-light projection screen.
  • the screen includes a diffusion layer 101, a polyethylene terephthalate (PET) base layer 102, a Fresnel structure layer 103, and a reflective layer, which are sequentially stacked.
  • PET polyethylene terephthalate
  • a Fresnel structure layer 103 Fresnel structure layer 103
  • a reflective layer which are sequentially stacked.
  • the projection light is incident from the diffusion layer 101 side, and passes through the diffusion layer 101, the PET base layer 102, the Fresnel structure layer 103, the reflection layer 104, and the light absorption layer 105 in this order.
  • the role of the diffusion layer 101 is to provide a scattering structure in the screen to generate uniform light and eliminate glare.
  • the diffusion layer 101 may be a bulk diffusion layer or a surface diffusion layer, and is preferably a surface diffusion layer.
  • the PET base layer 102 and the Fresnel structure layer 103 are supporting layers in the screen and constitute the basic structure of the screen.
  • the PET base layer 102 and the Fresnel structure layer 103 are two separate layers, they can also be formed as a single layer structure, in which one side is a planar structure capable of bonding the diffusion layer 101 and the other side is a Fresnel structure. .
  • the present invention is not limited thereto, as long as the invention can be realized Functional Fresnel structures with any threaded surface are possible.
  • the base layer made of PET is specifically used in the embodiment of the present invention, the present invention is not limited to this, and a base layer made of various materials commonly used in projection screens, such as a polyvinyl chloride (PVC)
  • PVC polyvinyl chloride
  • a base layer made of polycarbonate, a base layer made of polycarbonate (PC), and a base layer made of epoxy resin is used.
  • the role of the reflective layer 104 is to reflect incident light to reflect the projected light to the area of the viewer who views the projected image, so that the viewer can see the image on the projection screen.
  • the reflective layer 104 is a reflective layer prepared by spray coating or coating, such as an aluminum reflective layer, a silver reflective layer, and the like.
  • the function of the light absorbing layer 105 is to absorb light transmitted through the reflective layer 104.
  • the image display on the projection screen usually has the following problems: the screen reflects the ambient light, causing The interference of signal light makes it difficult to obtain good contrast.
  • the reflective layer 104 of the present invention is configured to have a structure as shown in FIG. 2, that is, the reflective layer 104 is composed of a reflective portion 104 b and a non-reflective portion 104 a.
  • the reflectance adjusting portion, and the non-reflective portion 104a has no reflective coating.
  • the total area of the non-reflective portion 104a is set so that the effective reflectivity of the reflective layer 104 is 10% -50%, preferably 10% -30%.
  • the black contrast is defined as the ratio of the brightness of the ambient light on the whiteboard to the brightness of the projection screen. Because the ambient light comes from all directions, the brightness reflected by the surface of the projection screen is approximately a Lambertian scattering surface. Therefore the black contrast can be expressed by:
  • black contrast
  • E environment represents the illuminance of ambient light
  • represents the reflectance of the surface of the projection screen.
  • the black contrast is inversely proportional to the reflectivity of the surface of the projection screen, and reducing the reflectance of the surface of the projection screen can increase the black contrast.
  • the black contrast ratio is 2, and when the reflectance of the projection screen surface is 25%, the black contrast ratio is 4, which is improved compared with the general anti-light curtain.
  • the present invention can achieve a high-contrast picture without adding an additional light absorbing layer for absorbing ambient light as in the prior art, thereby reducing process difficulty and screen cost. Therefore, the present invention achieves a high contrast effect of the screen by providing the reflective layer 104 with a low duty cycle.
  • the Fresnel structure used in the present invention has the effect of increasing the gain because it compensates for the defect of the decrease in brightness caused by the decrease in the reflectance.
  • the non-microstructured side of the diffusion layer 101 having a microstructure on the surface and the transparent PET base layer 102 are bonded together with a transparent adhesive, and the side of the PET base layer 102 facing away from the diffusion layer 101 is coated with UV.
  • Cured glue with a thickness of 10-100um, preferably 20-50um.
  • the Fresnel structure is transferred to the surface of the PET base layer 102 coated with the UV curing adhesive by a roll-to-roll process, and cured by the UV curing process to form the Fresnel structure layer 103, and the roll-to-roll
  • Both the transfer process and the UV curing process are mature processes, and the specific process parameters are not repeated here.
  • a reflective layer is coated on the surface of the Fresnel structure layer, and the reflective layer may be a metallic reflective layer or a diffuse reflective layer.
  • a metal reflective layer is used.
  • the preparation process of the reflective layer may be a coating preparation process such as spray coating, printing, sputtering, evaporation and the like.
  • a spraying process is used. Specifically, an aluminum silver paste containing aluminum powder is sprayed onto the surface of the Fresnel structure layer 103 to form a reflective layer 104.
  • the reflectivity of the reflective layer is about 90%.
  • the reflectivity of the reflective layer is related to the particle size and shape of the selected aluminum powder, the additives in the aluminum silver paste, and the roughness of the sprayed surface.
  • the thickness of the reflective layer is related to the preparation process.
  • the thickness is 1-30um, preferably 1-10um.
  • Spray coatings are cured at room temperature. You can also change the type of solvent in the coating to form light-curing or other curing coatings.
  • the cured reflective layer is perforated with a laser to form a non-reflective portion 104a.
  • the diameter of the hole is 0.1-2.0 mm, preferably 0.2-0.5 mm, and the depth of the hole is preferably the thickness of the reflective layer.
  • the holes can be arranged according to a certain array or randomly, but it is necessary to ensure that the holes are uniformly distributed on the whole.
  • the ratio of the total area of the perforations to the total area of the reflective layer should satisfy the condition that the effective reflectivity of the reflective layer is 10% -50%, preferably 10% -30%.
  • scattering particles can also be added to the coating of the reflective layer according to actual application requirements, and the diameter of the scattering particles is 1-100um, preferably 1-60um.
  • the scattering particles are ellipsoidal or spherical, and the scattering particles may be particles such as polymethylhemiquinoxaline microbeads. Therefore, the reflective layer reflects the incident light within a certain controllable cone angle. Then, a carbon black material is coated on the outside of the reflective layer to form a light absorbing layer 105 for absorbing light transmitted through the reflective layer.
  • the light absorbing layer 105 can be sequentially applied to the threaded surface of the Fresnel structure in a simple and easy-to-operate manner, such as brushing, which has a simple process and can reduce the screen manufacturing cost.
  • the screen can absorb ambient light in all directions to reduce the interference of the reflection of ambient light on the signal light, thereby improving the contrast of the screen.
  • the method of preparing the reflective layer 104 with a low duty ratio by coating a reflective layer on the surface of the Fresnel structure layer and then removing a part of the reflective layer by laser perforation was described above, but the method of the present invention Not limited to this.
  • the preparation of the reflective layer 104 with a low duty cycle can be achieved by reducing the proportion of reflective particles in the reflective layer. Specifically, when preparing a reflective layer slurry containing aluminum powder, the reflective layer slurry can be reduced. The content of aluminum powder in the material is used to realize the process of preparing the reflective layer in this way, and the material loss is small.
  • the reflective layer 104 having a low duty cycle can be prepared by a screen printing method. Specifically, after the Fresnel structure layer 103 is formed, a screen with a hole pattern is set on the surface of the Fresnel structure layer. The design of the screen pattern allows the aluminum-containing ink or paint to be partially printed on the Fresnel structure layer.
  • the effective reflection rate obtained by multiplying the printing duty cycle by the reflection rate of the reflection layer 104 is 10% -50%, preferably 10% -30%.
  • the reflective layer 104 having a low duty cycle is prepared by a selective exposure curing method. Specifically, after the Fresnel structure layer 103 is formed, an aluminum-silver paste containing a photoinitiator is prepared and coated on the surface of the Fresnel structure layer, and a light selective transmission is provided on the surface of the Fresnel structure layer. Passing the grating, so that when the light source is irradiated to the grating, part of the light passes through the grating and irradiates the aluminum-silver paste coating containing the photoinitiator, wherein the illuminated area is cured, and the unirradiated area can be subjected to subsequent development Wash off.
  • the areas not illuminated by light can be cured, and the areas illuminated by light can be washed out by subsequent development processes.
  • the light transmittance ratio parameter of the grating and the grating the light after passing through the grating can be applied to the coating to obtain a reflective layer with an effective reflectivity of 10% -50%, preferably 10% -30%. 104.
  • FIG. 3 is a schematic sectional view showing a structure of a screen according to Embodiment 2 of the present invention.
  • the high-contrast anti-light projection screen in this embodiment includes a PET base layer 201, a Fresnel structure layer 202, a reflective layer 203, and a light absorbing layer 204, which are sequentially stacked, wherein the PET base layer in this embodiment is 201, Fresnel structure layer 202, reflection layer 203, and light absorption layer 204 are basically the same as the PET base layer 102, Fresnel structure layer 103, reflection layer 104, and light absorption layer 105 in Embodiment 1, except that the present In the embodiment, the diffusion layer 101 is not provided, but the side of the PET base layer 201 facing the audience is set as a surface diffusion structure, so as to diffuse the light.
  • the other aspects of this embodiment are the same as those of the above-mentioned Embodiment 1, and therefore will not be described repeatedly.
  • the combination of the surface diffusion structure of the PET base layer 201 and the reflection layer 203 in this embodiment can also effectively utilize the projection light, improve the screen contrast and scattering uniformity, and The setting of the diffusion layer is eliminated, so the structure is simpler.
  • the high-contrast anti-light projection screen in this embodiment includes a reflective layer 301, a Fresnel structure layer 302, and a PET base layer 303, which are stacked in this order.
  • the base layer 303 is the same as the reflective layer 104, the Fresnel structure layer 103, and the PET base layer 102 in Embodiment 1, except that the diffusion layer 101 and the light absorption layer 105 are not provided in this embodiment. Scattering particles are added, and the projection light is incident from the reflective layer 301 side.
  • the projection light incident on the reflective layer 301 is directly reflected by the reflective layer 301 without passing through the PET base layer 303, so that ghosting can be avoided.
  • the reflection layer 301 having a low duty cycle is provided so that the effective reflectivity of the reflection layer 301 is 10% -50%, preferably 10% -30%, and because Scattering particles are added to the coating of the reflective layer 301, so the uneven structure on the surface of the reflective layer 301 is realized.
  • the effect of the uneven structure is to scatter light within a 15-degree cone angle to improve scattering uniformity.
  • this embodiment is that light is directly reflected on the reflective layer without passing through the PET base layer 303, thereby avoiding ghosting.
  • this embodiment also has the advantages of Embodiments 1 and 2 of the present invention, that is, the screen contrast and scattering uniformity are improved, and the structure is simple and the cost is low.
  • the present invention provides a high-contrast reflective screen with a simple structure and low cost, which can absorb ambient light in all directions and uniformly scatter the projection light. Therefore, even when the reflective screen of the present invention is used in an environment with a large amount of stray light such as a bright living room, a good contrast can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种反射屏幕,包括依次层叠的支撑层和反射层(104,203,301)。反射层(104,203,301)由反射部分和调整部组成,调整部用于调整反射层(104,203,301)的反射率,以使得反射层(104,203,301)的反射率为10%-50%。反射屏幕通过减小反射层(104,203,301)的占空比来减小反射层的有效反射率,使得无需额外添加用于吸收环境光的吸光层,就可以达到高对比度,减少了工艺难度和屏幕成本。

Description

一种高对比度反射屏幕 技术领域
本发明涉及一种高对比度反射屏幕,特别是涉及一种结构简单且成本较低的高对比度反射屏幕。
背景技术
近年来,已经开发出在投影仪和屏幕之间的距离为50cm的情况下实现超过100寸大屏幕投影的投影系统,该投影系统能够克服安装空间的限制,但是当将投影系统安装在诸如明亮的客厅等这种存在大量杂光的环境中时,投影屏上的图像显示通常会出现如下这样的问题:屏幕会反射环境光,从而造成对信号光的干扰,因此难以获得良好的对比度。针对这种问题,一般的做法是加入一层深色吸光层来吸收环境光,而对于棱镜结构的屏幕,现有做法是在棱镜的面向环境光的表面设置吸光层。
另外,屏幕反射光的均匀性和视角是衡量屏幕好坏的重要指标。在屏幕中设置散射结构可以产生匀光、消除炫光的作用。散射分为体散射和面散射,体散射可以通过在屏幕基层中加入散射粒子的方式来实现;面散射可以通过在基层表面或者屏幕其他结构的表面设置扩散结构,如扩散层、磨砂表面、光学微结构等来实现。把屏幕的吸收环境光的功能和散射光的功能很好结合起来的反射式屏幕少之又少,一般的做法是设置深色吸光层和扩散粒子层,最终形成的屏幕工艺复杂,成本高,效果差。
因此,亟待解决的一个问题是开发出一种具有高对比度,同时工艺难度和成本较低的反射屏幕。
发明内容
有鉴于此,为了解决上述问题,本发明旨在提供一种新型的反射屏幕,所述新型的反射屏幕无需额外添加吸光层,就可达到高对比度效果,减少了工艺难度和屏幕成本。
本发明提供了一种反射屏幕,所述屏幕包括依次层叠的支撑层和反射层,其中所述反射层由反射部分和调整部组成,所述调整部用于调整所述反射层的反射率,以使得所述反射层的反射率为10%-50%,优选为10%-30%。
优选地,所述支撑层包括依次层叠的基础层和菲涅耳结构层,其中在所述菲涅耳结构层的与所述基础层接触的一面相对的另一面设置有所述反射层。
优选地,所述反射层背离所述菲涅耳结构层的一侧包括吸光层。
优选地,所述屏幕包括在所述基础层的背离所述菲涅耳结构层的一侧的扩散层。
优选地,所述基础层的光朝向其入射的一面为面扩散结构。
优选地,在所述反射层中添加有散射粒子,所述散射粒子的直径为1-100um。
优选地,所述调整部由通孔组成。
优选地,所述通孔是通过对所述反射层进行激光穿孔形成的。
优选地,所述通孔是通过对所述反射层进行网版印刷形成的。
优选地,所述通孔是通过对所述反射层进行选择性曝光、显影形成的。
有益效果
本发明提供了高对比度投影屏幕,该屏幕包括支撑层和反射层,其中通过减小反射层的占空比,将反射层的有效反射率降低到10%-50%,优选降低到10%-30%,从而无需额外添加吸光层,就可达到高对比度效果,减少了工艺难度和屏幕成本。
另外,通过控制反射层的表面轮廓并结合扩散层的设置实现了对投影光线的有效利用,同时提高了屏幕对比度和散射均匀性。
换句话说,本发明提供了结构简单且成本较低的可以吸收各个方向的环境光、均匀散射投影光的屏幕。因此,即使在本发明的反射屏幕用于诸如明亮的客厅等这种存在大量杂光的环境中时,也可以获得良好的对比度。
附图说明
附图表示本文所述的非限制性示例性实施例。本领域技术人员将要理解的是,附图中的部件不一定按比例绘制,而是用于重点说明本发明的原理。在附图中:
图1是示出了根据本发明实施例1的屏幕的结构的示意性断面图。
图2是示出了根据本发明实施例1的屏幕的反射层的具体结构的示意图。
图3是示出了根据本发明实施例2的屏幕的结构的示意性断面图。
图4是示出了根据本发明实施例3的屏幕的结构的示意性断面图。
附图标记列表
101:扩散层
102:PET基础层
103:菲涅耳结构层
104:反射层
105:吸光层
104a:无反射部分
104b:反射部分
201:PET基础层
202:菲涅耳结构层
203:反射层
204:吸光层
301:反射层
302:菲涅耳结构层
303:PET基础层
具体实施方式
以下,参照附图更全面地说明本发明的一个或多个示例性实施例,在附图中,本领域技术人员能够容易地确定本发明的一个或多个示例性实施例。如本领域技术人员应认识到的,只要不脱离本发明的精神或范围,可以以各种不同的方式对所述示例性实施例进行修改,本发明的精神或范围不限于本文所述的示例性实施例。
本发明为了提供一种结构简单且成本较低的高对比度反射屏幕,开发了一种通过降低反射层的有效反射率来提高屏幕对比度的方式,该屏幕由于反射层的有效反射率的减小而减少了环境光反射,从而降低了环境光对信号光的影响以提高屏幕的对比度。
实施例1
图1是示出了根据本发明实施例1的屏幕的结构的示意性断面图;图2是示出了根据本发明实施例1的屏幕的反射层的具体结构的示意图。
图1所示的投影屏幕为高对比度抗光投影屏幕,该屏幕包括依次层叠的扩散层101、聚对苯二甲酸乙二醇酯(PET)基础层102、菲涅耳结构层103、反射层104和吸光层105,投影光从扩散层101侧入射,依次经过扩散层101、PET基础层102、菲涅耳结构层103、反射层104和吸光层105。
扩散层101的作用是在屏幕中提供散射结构以产生匀光、消除炫光的作用。具体地,扩散层101可以为体扩散层或面扩散层,优选为面扩散层。PET基础层102和菲涅耳结构层103是屏幕中的支撑层,构成屏幕的基础结构。这里,虽然PET基础层102和菲涅耳结构层103是两个单独的层,但是它们也可以形成为单层结构,其中一面为可以粘结扩散层101平面结构,另一面为菲涅耳结构。这里,虽然图1所示的菲涅耳结构层103与PET基础层102接触的一侧为平面,另一侧为具有均匀锯 齿形状的表面,但是本发明不限于此,只要能够实现本发明的功能的任意螺纹面的菲涅尔结构都可以。另外,尽管在本发明的实施例中具体使用了PET构成的基础层,但是本发明不限于此,也可以使用投影幕布常用的各种材料制成的基础层,例如聚氯乙烯(PVC)制成的基础层、聚碳酸酯(PC)制成的基础层以及环氧树脂制成的基础层等。反射层104的作用是用于对入射光进行反射以将投影光反射到观看投影图像的观看者的区域,从而使得观看者能够看到投影屏幕上的图像。具体地,反射层104为喷涂或者涂布制备的反射层,如铝反射层、银反射层等。吸光层105的作用是为了吸收透过反射层104的光。
如上文所述,当将投影系统安装在诸如明亮的客厅等这种存在大量杂光的环境中时,投影屏幕上的图像显示通常会出现如下这样的问题:屏幕会反射环境光,从而造成对信号光的干扰,因此难以获得良好的对比度。针对这种情况,本发明的反射层104被设置成具有如图2所示的结构,即,反射层104由反射部分104b和无反射部分104a组成,无反射部分104a是用于调整反射层的反射率的调整部,并且无反射部分104a处无反射涂层。根据反射部分104b的反射率,设置无反射部分104a的总面积,使得反射层104的有效反射率为10%-50%,优选为10%-30%。通过使得反射层104的有效反射率降低,可以有效增加投影屏幕对环境光的吸收。这里,将黑色对比度定义为环境光照射在白板上的亮度与照射在投影屏幕上的亮度的比值,因为环境光来自于各个方向,所以投影屏幕表面反射的亮度近似看成一个朗伯散射表面,因此黑色对比度可以由下式表示:
Figure PCTCN2019070530-appb-000001
这里,γ表示黑色对比度;E 环境表示环境光的照度;ρ表示投影屏幕表面的反射率。
由以上计算公式可知,黑色对比度与投影屏幕表面的反射率成反比,降低投影屏幕表面的反射率可以提高黑色对比度。例如,当投影屏幕表面的反射率为50%时,黑色对比度为2,而当投影屏幕表面的反射率为25%时,黑色对比度为4,这与一般抗光幕相比,对比度得到了提高。由 此可见,本发明无需像现有技术中那样额外添加用于吸收环境光的吸光层就可以实现高对比度画面,因此减少了工艺难度和屏幕成本。因此,本发明通过提供具有低占空比的反射层104而达到了屏幕的高对比度效果。另外,虽然降低反射率的同时也会带来亮度降低的问题,但是本发明中所使用的菲涅尔结构具有提高增益的效果,因为弥补了因反射率降低导致的亮度下降缺陷。
下面说明用于制备图1所示的高对比度投影屏幕的制备方法。
如图1所示,将表面具有微结构的扩散层101的没有微结构的一面与透明PET基础层102用透明胶粘剂粘接在一起,在PET基础层102背向扩散层101的一面涂布UV固化胶,厚度为10-100um,优选20-50um。然后,用卷对卷工艺将菲涅耳结构转印到PET基础层102的涂布有UV固化胶的表面上,并通过UV固化工艺进行固化,从而形成菲涅耳结构层103,卷对卷转印工艺和UV固化工艺都是成熟的工艺,具体的工艺参数这里不再赘述。然后,在菲涅耳结构层的表面涂覆反射层,反射层可以是金属反射层或者漫反射层。在本实施例中,采用了金属反射层。反射层制备工艺可以是喷涂、印刷、溅射、蒸镀等涂层制备工艺。在本实施例中,采用了喷涂工艺。具体地,将含有铝粉的铝银浆喷涂到菲涅耳结构层103的表面,从而形成反射层104。反射层的反射率为90%左右,反射层的反射率与选取的铝粉的粒径、形状、铝银浆中的添加剂、喷涂表面的粗糙度等因素有关。反射层的厚度与制备工艺有关,对于喷涂形成的反射层,厚度为1-30um,优选1-10um。喷涂涂层采用常温固化,也可以通过改变涂料中溶剂类型,形成光固化或者其他固化方式的涂料。然后,将固化后的反射层用激光穿孔以形成无反射部分104a。孔的直径为0.1-2.0mm,优选为0.2-0.5mm,孔的深度优选为反射层的厚度。孔可以按照某一阵列排布,也可以随机排布,但需要保证整体上孔的分布均匀。穿孔总面积占反射层总面积的比例应当满足使得反射层的有效反射率为10%-50%,优选为10%-30%的条件。另外,还可以根据实际应用需要,在反射层涂料中加入散射粒子,散射粒子的直径为1-100um,优选为1-60um。散射粒子为椭球形或球形,散射粒子可以是如聚甲基半喹喔啉烷微珠等粒子。因此,反射层将入射光线在一定的可控的圆锥角度 内反射。然后,在反射层的外侧涂布炭黑材料以形成吸光层105,用于吸收透过反射层的光。吸光层105可以采用简单易操作的刷涂等方式依次涂在菲涅尔结构的螺纹面上,工艺简单,可降低屏幕制作成本。另外,由于反射层和吸光层被涂在整个菲涅耳结构螺纹面上,所以屏幕可以吸收各个方向的环境光以降低环境光的反射对信号光的干扰,从而提高屏幕的对比度。
进一步,上文说明了通过在菲涅耳结构层的表面涂覆反射层,然后通过激光穿孔的方式打掉部分反射层来制备具有低占空比的反射层104的方法,但是本发明的方法不限于此。
在一实施方式中,具有低占空比反射层104的制备可以通过减少反射层中反射粒子的比例来实现,具体的,在制备含有铝粉的反射层浆料时,可以通过减少反射层浆料中铝粉的含量来实现,此种方式制备反射层的工艺简单,材料损耗少。
在另一实施方式中,具有低占空比反射层104的制备可以采用网版图案印刷方法。具体地,在形成菲涅耳结构层103之后,在菲涅耳结构层的表面设置带孔图案的网版,网版图案的设计使得含铝的油墨或者涂料被局部印刷到菲涅耳结构层的表面上以制得具有低占空比的反射层104,印刷占空比乘以反射层的反射率得到的有效反射率为10%-50%,优选为10%-30%。
在另一实施方式中,具有低占空比反射层104的制备采用选择性曝光固化的方法。具体地,在形成菲涅耳结构层103之后,制备含光引发剂的铝银浆,并将其涂到菲涅耳结构层的表面上,在菲涅尔结构层的表面设置光选择性透过光栅,使得光源在照射到光栅时,部分光透过光栅照射在含有光引发剂的铝银浆涂层上,其中被光照到的区域被固化,没有照射到的区域可以通过后续的显影工艺洗掉。当然也可以根据设置光阻材料的不同,使得没有被光照到的区域固化,被光照射到的区域可以通过后续的显影工艺洗掉。另一方面通过设计光栅的光透过率比例参数及光栅,使得通过光栅后的光照射到涂层上后能够得到有效反射率为10%-50%,优选为10%-30%的反射层104。
实施例2
图3是示出了根据本发明实施例2的屏幕的结构的示意性断面图。
如图3所示,本实施例中的高对比度抗光投影屏幕包括依次层叠的PET基础层201、菲涅耳结构层202、反射层203和吸光层204,其中本实施例中的PET基础层201、菲涅耳结构层202、反射层203和吸光层204与实施例1中的PET基础层102、菲涅耳结构层103、反射层104和吸光层105基本相同,不同之处在于,本实施例中没有设置扩散层101,而是将PET基础层201的面向观众的一面设置成面扩散结构,从而对光线起到扩散作用。对于本实施例的其他方面,与上述实施例1相同,因此不再重复说明。
另外,在本实施例中,通过本实施例的PET基础层201的表面扩散结构和反射层203的组合,也可以实现对投影光线的有效利用,提高了屏幕对比度和散射均匀性,并且由于省去了扩散层的设置,所以结构更简单。
实施例三
如图4所示,本实施例中的高对比度抗光投影屏幕包括依次层叠的反射层301、菲涅耳结构层302和PET基础层303,其中反射层301、菲涅耳结构层302和PET基础层303与实施例1中的反射层104、菲涅耳结构层103和PET基础层102相同,不同之处在于,在本实施例中没有设置扩散层101和吸光层105,在反射层301中加入了散射粒子,并且投影光从反射层301侧入射。在这种情况下,入射到反射层301上的投影光直接被反射层301反射而不会经过PET基础层303,如此可以避免产生鬼影。另外,与上述实施例1和实施例2中一样,通过设置具有低占空比的反射层301来使得反射层301有效反射率为10%-50%,优选为10%-30%,且由于向反射层301的涂料中加入了散射粒子,所以实现了反射层301表面的凹凸结构,凹凸结构的效果是使光线在15度圆锥角内散射以提高散射均匀性。
如上所述,本实施例的优点在于光线不经过PET基础层303直接在反射层反射,从而避免了产生鬼影。另外,本实施例也具备本发明实施 例1和实施例2中的优点,即提高了屏幕对比度和散射均匀性,并且结构简单以及成本低。
由此可见,本发明提供了一种结构简单且成本较低的高对比度反射屏幕,其可以吸收各个方向的环境光并且均匀散射投影光。因此,即使在本发明的反射屏幕用于诸如明亮的客厅等这种存在大量杂光的环境中时,也可以获得良好的对比度。
虽然具体示出和说明了本发明构思的示例性实施例,但是本领域普通技术人员将会理解,在不脱离所附权利要求书的精神和范围的情况下,可以在其中产生形式和细节上的改变。

Claims (11)

  1. 一种反射屏幕,所述屏幕包括依次层叠的支撑层和反射层,其特征在于,
    所述反射层由反射部分和调整部组成,所述调整部用于调整所述反射层的反射率,以使得所述反射层的反射率为10%-50%。
  2. 如权利要求1所述的反射屏幕,其特征在于,
    所述支撑层包括依次层叠的基础层和菲涅耳结构层,其中在所述菲涅耳结构层的与所述基础层接触的一面相对的另一面设置有所述反射层。
  3. 如权利要求2所述的反射屏幕,其特征在于,
    所述反射层背离所述菲涅耳结构层的一侧包括吸光层。
  4. 如权利要求3所述的反射屏幕,其特征在于,
    包括在所述基础层的背离所述菲涅耳结构层的一侧的扩散层。
  5. 如权利要求3所述的反射屏幕,其特征在于,
    所述基础层的光朝向其入射的一面为面扩散结构。
  6. 如权利要求1所述的反射屏幕,其特征在于,
    在所述反射层中添加有散射粒子,所述散射粒子的直径为1-100um。
  7. 如权利要求1所述的反射屏幕,其特征在于,所述调整部由通孔组成。
  8. 如权利要求7所述的反射屏幕,其特征在于,所述通孔是通过对所述反射层进行激光穿孔形成的。
  9. 如权利要求7所述的反射屏幕,其特征在于,所述通孔是通过对所述反射层进行网版印刷形成的。
  10. 如权利要求7所述的反射屏幕,其特征在于,所述通孔是通过对所述反射层进行选择性曝光、显影形成的。
  11. 如权利要求1所述的反射屏幕,其特征在于,所述反射层的反射率为10%-30%。
PCT/CN2019/070530 2018-05-31 2019-01-05 一种高对比度反射屏幕 WO2019227936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810547668.6 2018-05-31
CN201810547668.6A CN110554558A (zh) 2018-05-31 2018-05-31 一种高对比度反射屏幕

Publications (1)

Publication Number Publication Date
WO2019227936A1 true WO2019227936A1 (zh) 2019-12-05

Family

ID=68697798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070530 WO2019227936A1 (zh) 2018-05-31 2019-01-05 一种高对比度反射屏幕

Country Status (2)

Country Link
CN (1) CN110554558A (zh)
WO (1) WO2019227936A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219779A (zh) * 2020-01-20 2021-08-06 深圳光峰科技股份有限公司 屏幕及其制备方法、投影系统
CN113493636B (zh) * 2020-04-07 2023-12-01 深圳光峰科技股份有限公司 一种投影反射屏幕涂料及其制备方法
CN112578625A (zh) * 2020-12-22 2021-03-30 江苏集萃智能液晶科技有限公司 一种金属银幕及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1680870A (zh) * 2004-04-09 2005-10-12 精工电子有限公司 屏幕以及使用其的图像投影系统
CN1954260A (zh) * 2005-02-02 2007-04-25 大日本印刷株式会社 反射屏、反射屏的制造方法和反射型投影系统
CN101405652A (zh) * 2006-03-20 2009-04-08 惠普开发有限公司 环境光吸收屏幕
CN101943850A (zh) * 2009-07-03 2011-01-12 鸿富锦精密工业(深圳)有限公司 发声银幕及使用该发声银幕的放映系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2214638A1 (de) * 1971-03-29 1972-10-12 Hubbard N Projektionsschirm
JP2006330145A (ja) * 2005-05-24 2006-12-07 Dainippon Printing Co Ltd 反射スクリーン、反射投影システム、及び、反射スクリーンの製造方法
CN102012617A (zh) * 2009-09-04 2011-04-13 陈波 一种可屏蔽环境光的正向投影屏及其制造方法
TWI435145B (zh) * 2010-12-15 2014-04-21 Au Optronics Corp 具有光反射結構之光源電路模組、背光模組及顯示器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1680870A (zh) * 2004-04-09 2005-10-12 精工电子有限公司 屏幕以及使用其的图像投影系统
CN1954260A (zh) * 2005-02-02 2007-04-25 大日本印刷株式会社 反射屏、反射屏的制造方法和反射型投影系统
CN101405652A (zh) * 2006-03-20 2009-04-08 惠普开发有限公司 环境光吸收屏幕
CN101943850A (zh) * 2009-07-03 2011-01-12 鸿富锦精密工业(深圳)有限公司 发声银幕及使用该发声银幕的放映系统

Also Published As

Publication number Publication date
CN110554558A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
EP3550360B1 (en) Projection screen and manufacturing method therefor
CN100440034C (zh) 投影屏用薄板、光扩散薄板以及投影屏
US8659828B2 (en) Polarization preserving projection screen with engineered particle and method for making same
WO2019227936A1 (zh) 一种高对比度反射屏幕
US9720312B2 (en) Projection screen and manufacturing method of projection screen
US20080043327A1 (en) Screen
KR20060129051A (ko) 광확산성 스크린
WO2020042563A1 (zh) 投影屏幕及其制造方法
CN101995595A (zh) 控制光线方向的光学片、背光组件和液晶显示器
WO2021147577A1 (zh) 屏幕及其制备方法、投影系统
JP4083191B2 (ja) 反射型スクリーン
WO2020238663A1 (zh) 投影屏幕
TW586322B (en) Rear projection screen, optical component of a rear projection screen and method for manufacturing thereof
JP2008032824A (ja) 光拡散シート
JP2010139804A (ja) スクリーン
JP2012163785A (ja) 光学シート、光源ユニット、および液晶表示装置
WO2019227937A1 (zh) 菲涅尔屏幕
JPH10260638A (ja) レンチキュラースクリーン及びその製造方法
JP2006023342A (ja) 投影用スクリーン及びこれを用いた画像投影システム
JP2010020110A (ja) ディスプレイ装置
WO2020007056A1 (zh) 投影屏幕
JP2008033217A (ja) 反射型スクリーン及び前面投射型表示システム
JP5380761B2 (ja) レンチキュラーレンズアレイシートの製造方法
JP2004302005A (ja) 透過型スクリーン
JP2010139805A (ja) スクリーンとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812094

Country of ref document: EP

Kind code of ref document: A1