WO2021147577A1 - 屏幕及其制备方法、投影系统 - Google Patents

屏幕及其制备方法、投影系统 Download PDF

Info

Publication number
WO2021147577A1
WO2021147577A1 PCT/CN2020/137118 CN2020137118W WO2021147577A1 WO 2021147577 A1 WO2021147577 A1 WO 2021147577A1 CN 2020137118 W CN2020137118 W CN 2020137118W WO 2021147577 A1 WO2021147577 A1 WO 2021147577A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
fresnel
screen
diffusion
Prior art date
Application number
PCT/CN2020/137118
Other languages
English (en)
French (fr)
Inventor
王霖
唐晓峰
胡飞
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021147577A1 publication Critical patent/WO2021147577A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • This application relates to the field of projection technology, in particular to a screen, a preparation method thereof, and a projection system.
  • the ultra-short throw projection has a very low projection ratio, which can greatly shorten the minimum arrangement distance between the projector and the projection screen, which has attracted more and more attention.
  • the inventor of the present application found that in the use of ultra-short throw projection, the traditional white screen is easily interfered by ambient light, and the contrast of the picture is not high in the bright living room lighting environment, and the color cannot be displayed well.
  • To improve the contrast of the picture it is necessary to reduce the reflectivity of the ambient light while keeping the gain of the screen as much as possible.
  • the existing wire grid screen improves the contrast of the ambient light by absorbing light and reflecting on the other side, but the wire grid microstructure cannot collimate the light of the projector well.
  • the white Lambertian scattering coating on the surface reduces the gain of the screen. , So the improvement effect is very limited.
  • the main technical problem solved by this application is to provide a screen, a preparation method thereof, and a projection system, which can improve the gain of the screen and the anti-ambient light contrast.
  • a technical solution adopted in this application is to provide a screen, including: a substrate; a surface diffusion layer arranged on one side surface of the substrate; and a Fresnel layer arranged on the substrate away from the substrate.
  • One side surface of the surface diffusion layer a projection reflection layer disposed on the side surface of the Fresnel layer away from the substrate; wherein the material of the projection reflection layer includes a reflective material and an absorbing material, and/or,
  • the Fresnel layer includes a plurality of microstructure units, and the plurality of microstructure units are sequentially arranged outwards based on the same circle center.
  • another technical solution adopted by the present application is to provide a method for preparing a screen, the preparation method comprising: roughness processing on one side surface of the substrate to form surface diffusion on one side surface of the substrate Layer; forming a Fresnel layer on the other side surface of the substrate; forming a projection reflection layer on the side surface of the Fresnel layer away from the substrate; wherein the material of the projection reflection layer includes a reflective material and The absorbent material, and/or, the Fresnel layer includes a plurality of microstructure units, and the plurality of microstructure units are sequentially arranged outwards based on the same circle center.
  • the preparation method includes: performing roughness treatment on one side surface of the first substrate to apply roughness to the surface of the first substrate.
  • a surface diffusion layer is formed on one surface;
  • a Fresnel layer is formed on one surface of the second substrate;
  • a projection reflection layer is formed on the surface of the Fresnel layer away from the second substrate;
  • the first substrate And the second substrate are stacked, and the surface of the first substrate where the surface diffusion layer is not formed is in contact with the surface of the second substrate where the Fresnel layer is not formed, wherein the projection
  • the material of the reflective layer includes a reflective material and an absorbing material
  • the Fresnel layer includes a plurality of microstructure units, and the plurality of microstructure units are sequentially arranged outwards based on the same circle center.
  • the beneficial effect of the present application is that the screen of the present application includes the reflective material and the absorbing material at the same time as the material provided with the projection reflection layer, so that the projection reflection layer can have a narrow diffusion angle, and at the same time, combined with the Fresnel layer, it has excellent collimation characteristics. Can improve the screen gain and anti-ambient light contrast.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of an embodiment of a screen of the present application
  • FIG. 2 is a schematic diagram of the structure of the Fresnel layer in an embodiment of the screen of the present application
  • Figure 3 is a top view of a Fresnel lens
  • Fig. 4 is a light diagram corresponding to the screen of Fig. 1;
  • Figure 5 is a simplified schematic diagram of the relative position of the screen and the projector
  • Figure 6 is a light intensity distribution diagram
  • Figure 7 is a spot diagram
  • FIG. 8 is a schematic flowchart of an embodiment of a method for preparing a screen of the present application.
  • FIG. 9 is a preparation process diagram corresponding to the method in FIG. 8;
  • FIG. 10 is a schematic flowchart of another embodiment of a method for preparing a screen of the present application.
  • FIG. 11 is a preparation process diagram corresponding to the method in FIG. 10;
  • FIG. 12 is a schematic structural diagram of an embodiment of the projection system of the present application.
  • FIG. 1 is a schematic cross-sectional structure diagram of an embodiment of a screen of the present application.
  • the screen 100 includes a substrate 110, a surface diffusion layer 120, a Fresnel layer 130 and a projection reflection layer 140.
  • the surface diffusion layer 120 is provided on the side surface of the substrate 110, the Fresnel layer 130 is provided on the side surface of the substrate 110 away from the surface diffusion layer 120, and the projection reflection layer 140 is provided on the side surface of the Fresnel layer 130 away from the substrate 110. That is, the projection reflection layer 140, the Fresnel layer 130, the substrate 110, and the surface diffusion layer 120 are stacked in sequence, wherein the surface diffusion layer 120 faces the observer.
  • the substrate 110 is a transparent substrate, and its material can be organic materials such as PET (polyethylene terephthalate), PC (polycarbonate), PVC (polyvinyl chloride resin), or PMMA (polymethyl methacrylate) .
  • the substrate 110 may be a single-layer structure or a composite structure. When the substrate 110 is a composite structure, the substrate 110 is formed by stacking multiple sub-substrates.
  • the Fresnel layer 130 has good collimation characteristics, and is mainly used for Fresnel reflection of ambient light and projector light, and collimation of the projector light.
  • the Fresnel layer 130 is made of resin material, where the resin material may be epoxy resin glue, acrylic glue, polyester glue, polyurethane glue, or polyimide glue.
  • the substrate 110 and the Fresnel layer 130 may be prepared from the same substrate. Specifically, the substrate 110 and the Fresnel layer 130 are formed by processing the substrate by UV glue transfer or hot embossing during preparation.
  • the material of the projection reflection layer 140 includes a reflective material and an absorbing material.
  • the simultaneous arrangement of the absorbing material and the reflective material can make the projection reflection layer 140 have a narrow diffusion angle.
  • the mixing of the reflective material and the absorbing material can reduce the diffusion angle of the incident light.
  • the absorbing material absorbs the incident light at a large angle.
  • the absorbing material may be carbon black
  • the reflective material may be silver powder.
  • the narrow diffusion angle can increase the gain of the screen 100 on the one hand, and on the other hand can make the large-angle ambient incident light be reflected by the Fresnel layer 130 to the floor, not like diffuse reflection. Entering into the audience's field of view can improve the anti-ambient light contrast of the screen 100.
  • the weight ratio of the absorbing material to the reflective material in the projection reflection layer 140 is 1:1.
  • the surface diffusion layer 120 faces the user side. Specifically, the divergence angle of the emitted light after being reflected by the Fresnel layer 130 is generally very small, and the arrangement of the surface diffusion layer 120 can increase the divergence angle of the emitted light and increase the visible range of the projection screen.
  • the surface diffusion layer 120 can be a single-layer structure or a multi-layer composite structure.
  • the substrate 110 and the surface diffusion layer 120 can be made of the same substrate. In this case, sandblasting, chemical etching, etc. are used during preparation. In this way, the surface of the substrate is roughened to form the substrate 110 and the surface diffusion layer 120 on the surface of the substrate 110.
  • the Fresnel layer 130 is a part of the Fresnel lens taken from the Fresnel lens by off-axis interception on the basis of the concentric annular Fresnel lens of FIG. 3, thereby The Fresnel structure layer shown in Figure 2 is obtained.
  • the off-axis interception method does not include the center of the Fresnel lens.
  • the off-axis interception method is used to intercept the concentric annular Fresnel lens, so that the intercepted rectangular surface does not contain the center of the circle. The main reason is that there will be some non-working surfaces in the Fresnel layer near the center of the circle.
  • the Fresnel layer 130 includes a plurality of microstructure units, and the microstructure units are arc-shaped and arranged outwards in sequence based on the same center of the circle. Taking the longitudinal centerline of the screen as the axis of symmetry, the arc-shaped microstructure units on the left and right sides of the screen are symmetrical about the longitudinal centerline, and the same center of the arc-shaped microstructure units is located on the extension line of the longitudinal centerline.
  • the diffusion of the projection reflection layer 140 and the diffusion of the Fresnel layer 130 work together, so that the field of view of the screen 100 ranges from ⁇ 30° to ⁇ 60°.
  • the reflectance of the projection reflection layer 140 is 10%-50%, preferably 15%-45%.
  • the reflectance of the projection reflection layer 140 is 10%, 15%, 45%, or 50%.
  • the diffusion angle is ⁇ 5° ⁇ 35°.
  • the material of the Fresnel layer 130 further includes a diffusion material, which can increase the angle of view.
  • the reflective material includes a metal material, for example, the reflective material includes at least one of aluminum sheet, aluminum powder, and silver powder, wherein the metal material is used to scatter incident light; and/or, the absorbing material includes organic Pigments and inorganic pigments.
  • organic pigments can be organic pigments such as azo
  • inorganic pigments can be inorganic pigments such as carbon black, graphite or metal oxide
  • the diffusion material includes epoxy-based organic resin particles, acrylic At least one of organic resin particles and silicone-based organic resin particles, or the diffusion material includes other inorganic scattering materials.
  • the raw materials of the projection reflection layer 140 include not only reflective materials, diffusing materials, and absorbing materials, but also additives and solvents.
  • the additives and solvents include leveling agents, wetting agents, and defoamers.
  • a certain proportion of the mixture that increases the coating effect or a certain proportion of anhydrous acetone, anhydrous xylene, anhydrous cyclohexanone, anhydrous methyl ethyl ketone, ethyl acetate and anhydrous butyl acetate.
  • additives and solvents are used in the process of preparing the projection reflection layer 140, but after the preparation is completed, due to the volatilization effect of heating, the additives and solvents will volatilize, that is to say, after the preparation is completed
  • the projection reflection layer 140 does not include additives and solvents.
  • the particle size of the particles in the projection reflective layer 140 ranges from 0.5 to 10 microns, for example, 0.5 microns, 5 microns, or 10 microns to ensure that the projection reflective layer 140 does not scatter incident light at a large angle.
  • the Fresnel layer 130 includes a plurality of microstructure units 131, each of the microstructure units 131 is arranged in an arc shape, and each microstructure unit arranged in the arc shape has one A common center, which is located outside the screen and below the screen. Specifically, the center of the circle is located on the extension line of the longitudinal center line of the screen.
  • each microstructure unit 131 includes a first incident surface 1311 and a second incident surface 1312 that intersect, and the first incident surface 1311 is used to reflect the environment The light and the projector light, wherein the angle between the first incident surface 1311 and the substrate 110 is defined as the first angle ⁇ 1 , and the angle between the second incident surface 1312 and the substrate 110 is defined as the second angle ⁇ 2 .
  • the first included angle ⁇ 1 corresponding to the microstructure unit 131 and the radius r corresponding to the microstructure unit 131 are in a one-dimensional cubic function relationship, and the second included angle ⁇ 2 ranges from 70 degrees to 90 degrees, for example, the second included angle ⁇ 2 is 70 degrees, 80 degrees, 89 degrees or 90 degrees.
  • the angle range for setting the second included angle ⁇ 2 is 70 degrees to 90 degrees, as shown in FIG. 9, which can ensure that the light from the projector can enter the first incident surface 1311 and facilitate processing.
  • the first angle ⁇ microstructure units corresponding to 1 131 131 corresponding to the radius r satisfy the microstructure units Cubic function:
  • the radius r corresponding to the microstructure unit 131 is the radius of the boundary between the first incident surface 1311 and the second incident surface 1312 corresponding to the microstructure unit 131, specifically, the first incident surface corresponding to each microstructure unit 131
  • the boundary between 1311 and the second incident surface 1312 is in an arc shape, the arc shape is a part of a circle, and the radius of the circle corresponding to the arc shape is the radius r corresponding to the microstructure unit 131.
  • the first included angle ⁇ 1 corresponding to the microstructure unit 131 depends on the lens parameters of the projector and the designed tolerance range, and the lens parameters include the throw ratio and the installation offset of the lens relative to the screen 100, as shown in FIG. 5
  • the projection ratio is the ratio of the vertical distance (A) from the light exit of the projector to the surface of the screen 100 and the width of the projected image.
  • the installation offset includes parameter A and parameter B1, where parameter A is the light exit of the projector to the screen.
  • the vertical distance from the surface of 100, and the parameter B1 is the vertical distance from the optical axis of the projector to the bottom surface of the screen 100.
  • the image reflected by the screen 100 can ensure that the user can watch within a range of 2 meters to 5 meters in front of the screen 100.
  • the first included angle ⁇ 1 varies in the range of 0-30°.
  • the projection reflection layer 140 is uniformly disposed on the surface of the Fresnel layer 130, and the thickness of the projection reflection layer 140 ranges from 1/10 to 1/5 of the distance between two adjacent microstructure units 131.
  • the thickness of the projection reflection layer 140 is set to not exceed 1/5 of the distance between two adjacent microstructure units 131, and the thickness of the projection reflection layer 140 is specifically set to be the thickness of the two adjacent microstructure units 131 1/10 to 1/5 of the pitch, for example, the thickness of the projection reflection layer 140 is 1/10, 1/8, or 1/5 of the pitch of two adjacent microstructure units 131.
  • the thickness of the projection reflection layer 140 ranges from 10 to 30 micrometers, for example, the thickness of the projection reflection layer 140 is 10 micrometers, 20 micrometers, or 30 micrometers.
  • the surface diffusion layer 120 has an anisotropic diffusion angle, that is, the diffusion angle in the horizontal direction (that is, the horizontal diffusion angle) and the diffusion angle in the vertical direction (that is, the vertical diffusion angle) are different, and the light spots are distributed in an ellipse. , As shown in Figure 6 and Figure 7.
  • the horizontal diffusion angle of the surface diffusion layer 120 is set to be greater than the vertical diffusion angle.
  • the horizontal diffusion angle of the surface diffusion layer 120 is set to 20 degrees
  • the vertical diffusion angle is set to 10 degrees.
  • the surface roughness Ra of the surface diffusion layer 120 ranges from 0.5 micrometers to 50 micrometers, for example, the surface roughness Ra is 0.5 micrometers, 5 micrometers, 20 micrometers, or 50 micrometers.
  • the surface roughness Ra of the surface diffusion layer 120 is set in the range of 0.5 micrometers to 50 micrometers, which can control the final field of view angle of the screen 100 within the range of ⁇ 20 to 50 degrees, while eliminating Fresnel reflections.
  • the ceiling ghost image is set in the range of 0.5 micrometers to 50 micrometers, which can control the final field of view angle of the screen 100 within the range of ⁇ 20 to 50 degrees, while eliminating Fresnel reflections.
  • the ceiling ghost image is set in the range of 0.5 micrometers to 50 micrometers, which can control the final field of view angle of the screen 100 within the range of ⁇ 20 to 50 degrees, while eliminating Fresnel reflections.
  • the cross-section of the microstructure unit 131 is triangular, while in other embodiments, the cross-section of the microstructure unit 131 can also be trapezoidal or other shapes. In short, viewed from the longitudinal cross-section of the screen, As long as the plurality of microstructure units 131 form a sawtooth structure, the specific shape thereof is not limited in this application.
  • the plurality of microstructure units 131 are arranged periodically, while in other embodiments, the plurality of microstructure units 131 may not be arranged periodically.
  • FIG. 8 is a schematic flowchart of an embodiment of a method for preparing a screen of the present application.
  • the preparation method includes:
  • S210 Perform roughness treatment on one side surface of the substrate 210 to form a surface diffusion layer 220 on one side surface of the substrate 210.
  • the roughness treatment can be sandblasting, chemical corrosion, etc.
  • the formation method of the Fresnel layer 230 may be UV glue transfer or hot embossing.
  • S230 forming a projection reflection layer 240 on the surface of the Fresnel layer 230 away from the substrate 210, wherein the material of the projection reflection layer 240 includes a reflective material and an absorbing material, and/or the Fresnel layer 230 includes a plurality of microstructures Unit, a plurality of said microstructure units are arranged outwards in sequence based on the same circle center.
  • the Fresnel layer is a part of the Fresnel lens intercepted by off-axis interception.
  • the method for forming the projection reflection layer 240 may be spraying, screen printing or printing.
  • the screen prepared by the preparation method of this embodiment has the same structure as the screen 100 in the foregoing embodiment, and the detailed structure of the screen can be referred to the foregoing embodiment, which will not be repeated here.
  • FIG. 10 is a schematic flowchart of another embodiment of a method for preparing a screen of the present application.
  • the preparation method includes:
  • S310 Perform roughness treatment on one surface of the first substrate 311 to form a surface diffusion layer 320 on one surface of the first substrate 311.
  • the roughness treatment can be sandblasting, chemical corrosion, etc.
  • S320 Form a Fresnel layer 330 on one surface of the second substrate 312.
  • the formation method of the Fresnel layer 330 may be UV glue transfer or hot embossing.
  • the projection reflection layer 340 may be formed by spraying, screen printing or printing.
  • the first substrate 311 and the second substrate 312 are stacked, and the surface of the first substrate 311 where the surface diffusion layer 320 is not formed is in contact with the surface of the second substrate 312 where the Fresnel layer 330 is not formed.
  • the material of the reflective layer 340 includes a reflective material and an absorptive material, and/or the Fresnel layer 330 includes a plurality of microstructure units, and the plurality of microstructure units are sequentially arranged outwards based on the same circle center.
  • the Fresnel layer is a part of the Fresnel lens intercepted by off-axis interception.
  • the first substrate 311 and the second substrate 312 may be bonded together by an adhesive such as glue.
  • the material of the first substrate 311 and the material of the second substrate 312 may be the same or different.
  • the screen prepared by the preparation method of this embodiment has the same structure as the screen 100 in the above embodiment.
  • the projection system 400 includes a projector 410 and a screen 420.
  • the projector 410 may be a short-throw projector or a long-throw projector, which is not limited here.
  • the structure of the screen 420 is the same as that of the screen 100 in any one of the foregoing embodiments. For details, please refer to the foregoing embodiment, which will not be repeated here.
  • the material for the projection reflection layer of the screen of the present application includes both the reflection material and the absorption material
  • the projection reflection layer can have a narrow diffusion angle, and combined with the Fresnel layer to have excellent collimation characteristics, it can improve the gain and gain of the screen. Anti-ambient light contrast.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种屏幕(100)及其制备方法、投影系统,该屏幕(100)包括:基板(110);表面扩散层(120),设置于基板(110)的一侧表面;菲涅尔层(130),设置于基板(110)远离表面扩散层(120)的一侧表面;投影反射层(140),设置于菲涅尔层(130)远离基板(110)的一侧表面;其中,投影反射层(140)的材料包括反射材料以及吸收材料,和/或,菲涅尔层(130)包括多个微结构单元(131),多个微结构单元(131)基于同一个圆心依次向外排列。能够提高屏幕(100)的增益和抗环境光对比度。

Description

屏幕及其制备方法、投影系统 技术领域
本申请涉及投影技术领域,特别是涉及一种屏幕及其制备方法、投影系统。
背景技术
近年来,超短焦投影因为具有很低的投射比,能够大大缩短投影机与投影屏幕之间的最小布置间距,从而越来越受到人们的关注。
本申请的发明人发现,在超短焦投影的使用中,传统的白色屏幕容易受到环境光的干扰,在明亮的客厅灯光环境下画面的对比度不高,不能很好的展示色彩。而要提高画面的对比度就需要降低对环境光的反射率,同时尽量保持屏幕的增益。现有的线栅屏幕通过一面吸光一面反射的方式来改善环境光对比度,但是线栅微结构不能很好的准直投影机的光线,同时表面采用白色的朗伯散射涂层降低了屏幕的增益,因此改善的效果非常有限。
发明内容
本申请主要解决的技术问题是提供一种屏幕及其制备方法、投影系统,能够提高屏幕的增益和抗环境光对比度。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种屏幕,包括:基板;表面扩散层,设置于所述基板的一侧表面;菲涅尔层,设置于所述基板远离所述表面扩散层的一侧表面;投影反射层,设置于所述菲涅尔层远离所述基板的一侧表面;其中,所述投影反射层的材料包括反射材料以及吸收材料,和/或,所述菲涅尔层包括多个微结构单元,多个所述微结构单元基于同一个圆心依次向外排列。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种 屏幕的制备方法,所述制备方法包括:对基板的一侧表面进行粗糙度处理以在基板的一侧表面形成表面扩散层;在所述基板的另一侧表面形成菲涅尔层;在所述菲涅尔层远离所述基板的一侧表面形成投影反射层;其中,所述投影反射层的材料包括反射材料以及吸收材料,和/或,所述菲涅尔层包括多个微结构单元,多个所述微结构单元基于同一个圆心依次向外排列。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种屏幕的制备方法,所述制备方法包括:在第一基板的一侧表面进行粗糙度处理以在所述第一基板的一侧表面形成表面扩散层;在第二基板的一侧表面形成菲涅尔层;在所述菲涅尔层远离所述第二基板的一侧表面形成投影反射层;将所述第一基板和所述第二基板层叠设置,并使所述第一基板未形成有所述表面扩散层的表面和所述第二基板未形成有所述菲涅尔层的表面接触,其中,所述投影反射层的材料包括反射材料以及吸收材料,和/或,所述菲涅尔层包括多个微结构单元,多个所述微结构单元基于同一个圆心依次向外排列。
本申请的有益效果是:本申请的屏幕由于设置投影反射层的材料同时包括反射材料以及吸收材料,能够使投影反射层具有窄的扩散角度,同时结合菲涅尔层具有优良的准直特性,能够提高屏幕的增益和抗环境光对比度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请屏幕一实施方式的剖面结构示意图;
图2是本申请屏幕一实施方式的菲涅尔层的结构示意图;
图3是菲涅尔透镜的俯视图;
图4是对应图1屏幕的光线图;
图5是屏幕和投影机相对位置的简易示意图;
图6是光强分布图;
图7是光斑图;
图8是本申请屏幕的制备方法一实施方式的流程示意图;
图9是对应图8方法的制备过程图;
图10是本申请屏幕的制备方法另一实施方式的流程示意图;
图11是对应图10方法的制备过程图;
图12是本申请投影系统一实施方式的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参阅图1,图1是本申请屏幕一实施方式的剖面结构示意图,该屏幕100包括基板110、表面扩散层120、菲涅尔层130以及投影反射层140。
表面扩散层120设置于基板110一侧表面,菲涅尔层130设置于基板110远离表面扩散层120的一侧表面,投影反射层140设置于菲涅尔层130远离基板110的一侧表面,即,投影反射层140、菲涅尔层130、基板110以及表面扩散层120依序层叠设置,其中,表面扩散层120朝向观察者。
基板110为透明基板,其材料可以是PET(聚对苯二甲酸乙二醇酯)、PC(聚碳酸酯)、PVC(聚氯乙烯树脂)或PMMA(聚甲基丙烯酸甲酯)等有机材料。其中,基板110可以是单层结构,也可以是复合结构,当基板110是复合结构时,基板110由多个子基板堆叠而成。
菲涅尔层130具有良好的准直特性,主要用于对环境光线和投影机光线起到菲涅尔反射作用,以及对投影机光线起到准直作用。在一应用 场景中,菲涅尔层130采用树脂材料制备,其中树脂材料可以是环氧树脂胶系、丙烯酸酯胶系、聚酯胶系、聚氨酯胶或聚酰亚胺胶系等。其中,基板110和菲涅尔层130可以由同一块基材制备,具体在制备时,采用UV胶水转印或者热压印的方式加工基材,从而形成基板110和菲涅尔层130。
投影反射层140的材料包括反射材料以及吸收材料。
吸收材料以及反射材料的同时设置可以使投影反射层140具有窄的扩散角度。反射材料与吸收材料的混合能够使入射的光的扩散角度减小,一方面是由于反射材料的特性决定,另一方面在于吸收材料对大角度的入射的光进行吸收。具体地,吸收材料可以为炭黑,反射材料可以为银粉。
由于环境光线大部分来自天花板,而窄的扩散角度一方面可以提高屏幕100的增益,另一方面可以使得大角度的环境入射光线被菲涅尔层130反射到地板的方向,不会像漫反射一样进入到观众的视场,能够提高屏幕100的抗环境光对比度。在一应用场景中,投影反射层140中吸收材料与反射材料的重量配比为1:1。
在使用屏幕100时,表面扩散层120朝向用户侧。具体地,经过菲涅尔层130的反射后而出射的出射光线的发散角一般都很小,而表面扩散层120的设置能够增大出射光线的发散角,增加投影画面的可视范围。其中,表面扩散层120可以是单层结构,也可以是多层复合结构,同时,基板110和表面扩散层120可以由同一块基材制作,此时在制备时,采用喷砂、化学腐蚀等方式对基材的表面进行粗糙化处理而形成基板110和位于基板110表面的表面扩散层120。
结合图2和图3,在本实施方式中,菲涅尔层130为在图3的同心圆环状的菲涅尔透镜的基础上通过偏轴截取方式截取自菲涅尔透镜的一部分,从而得到图2所示的菲涅尔结构层。偏轴截取的方式为不包括菲涅尔透镜的中心。采用偏轴截取的方式对同心圆环状的菲涅尔透镜进行截取,使所截取的矩形面不包含圆心主要是由于圆心附近处会使菲涅尔层存在部分非工作面,投影设备入射的光线在屏幕的部分区域不能有 效地将投影光线反射到观察者的视野范围内。具体地,菲涅尔层130包括多个微结构单元,所述微结构单元呈圆弧状并基于同一个圆心依次向外排列。以屏幕的纵向中心线为对称轴,屏幕左右两边的圆弧状微结构单元关于纵向中心线对称,且所述圆弧状微结构单元的同一个圆心位于纵向中心线的延长线上。
在本实施方式中,投影反射层140的扩散和菲涅尔层130的扩散共同作用,而使得屏幕100的视场角度范围为±30°~±60°。
在本实施方式中,投影反射层140的反射率为10%~50%,优选为15%~45%,例如,投影反射层140的反射率为10%、15%、45%或者50%,扩散角度为±5°~±35°。
在本实施方式中,菲涅尔层130的材料还包括扩散材料,可以增大视场角。
在本实施方式中,反射材料包括金属材料,例如,反射材料包括铝片、铝粉、银粉中的至少一种,其中,金属材料用于对入射光线进行散射;和/或,吸收材料包括有机颜料及无机颜料,其中,有机颜料可以是偶氮等有机颜料,无机颜料可以是炭黑、石墨或者金属氧化物等无机颜料;和/或,扩散材料包括环氧系有机的树脂颗粒、丙烯酸系有机的树脂颗粒、硅酮系有机的树脂颗粒中的至少一种,或者,扩散材料包括其他无机的散射材料。在一应用场景中,投影反射层140的原材料中除了包括反射材料、扩散材料以及吸收材料外,还包括助剂和溶剂,其中,助剂和溶剂包括流平剂、润湿剂与消泡剂等增加涂布效果的一定比例的混合物,或者无水丙酮、无水二甲苯、无水环已酮、无水丁酮、乙酸乙酯和无水醋酸丁醋等一定比例的混合物。在另一应用场景中,在制备投影反射层140的过程中会使用助剂和溶剂,但是在制备完成后,由于加热挥发作用,助剂和溶剂会挥发掉,也就是说,制备完成后的投影反射层140中不会包括助剂和溶剂。
在一应用场景中,投影反射层140中颗粒的粒径范围为0.5~10微米,例如,0.5微米、5微米或者10微米,以保证投影反射层140不会对入射光线进行大角度的散射。
结合图1和图2,在本实施方式中,菲涅尔层130包括多个微结构单元131,各个微结构单元131依次排列并呈圆弧状,圆弧状排列的各个微结构单元具有一个共同的圆心,该圆心位于屏幕的外面,且位于屏幕的下方。具体地,该圆心位于屏幕的纵向中心线的延长线上。从屏幕的剖面结构来看,多个微结构单元131的剖面构成锯齿结构,每个微结构单元131包括相交的第一入射面1311和第二入射面1312,第一入射面1311用于反射环境光线和投影机光线,其中,定义第一入射面1311与基板110的夹角为第一夹角θ 1,第二入射面1312与基板110的夹角为第二夹角θ 2
微结构单元131对应的第一夹角θ 1与微结构单元131对应的半径r呈一元三次函数关系,第二夹角θ 2的角度范围为70度~90度,例如,第二夹角θ 2为70度,80度、89度或者90度。
具体地,设置第二夹角θ2的角度范围为70度~90度,如图9所示,既可以保证投影机光线能够进入第一入射面1311,也可以便于加工。
在本实施方式中,微结构单元131对应的第一夹角θ 1与微结构单元131对应的半径r满足如下的一元三次函数关系:
θ 1=4.571083383282×10 -9r 3±1.806338129502×10 -5r 2
+3.095398653774×10 -2r+3.037333879930+Δθ,其中,-3<Δθ<3。
其中,微结构单元131对应的半径r为微结构单元131对应的第一入射面1311和第二入射面1312的交界边的半径,具体地,每个微结构单元131所对应的第一入射面1311和第二入射面1312的交界边均呈弧形,该弧形为圆的一部分,该弧形所对应圆的半径为微结构单元131对应的半径r。
具体地,微结构单元131对应的第一夹角θ 1取决于投影机的镜头参数和设计的公差范围,而镜头参数包括投射比和镜头相对于屏幕100的安装偏移量,如图5所示,其中,投射比为投影机出光口到屏幕100表面的垂直距离(A)和投射画面宽度的比值,安装偏移量包括参数A和参数B1,其中,参数A为投影机出光口到屏幕100表面的垂直距离, 参数B1为投影机光轴到屏幕100底面的垂直距离。
而通过设置微结构单元131对应的第一夹角θ 1与微结构单元131对应的半径r满足上述一元三次函数关系可以使屏幕100配合具有如下参数的投影机使用:投射比范围为0.22~0.24,安装偏移量:A=517mm,B1=249mm,安装偏移量A和B1具有±50mm的偏差。
上述屏幕100在配合上述投影机使用时,屏幕100反射出来的画面可以保证用户在屏幕100前2米到5米范围内进行观看。
在一具体的应用场景中,第一夹角θ 1在0~30°的范围内变化。
在本实施方式中,投影反射层140均匀地设置在菲涅尔层130的表面,且投影反射层140的厚度范围为相邻两个微结构单元131间距的1/10~1/5。
具体地,将投影反射层140均匀地设置在菲涅尔层130的表面可以保证投影反射层140的反射率均匀,同时为了保证投影反射层140的设置不改变微结构单元131的第一夹角θ 1和第二夹角θ 2,设置投影反射层140的厚度不超过相邻两个微结构单元131间距的1/5,具体设置投影反射层140的厚度为相邻两个微结构单元131间距的1/10~1/5,例如,投影反射层140的厚度为相邻两个微结构单元131间距的1/10、1/8或者1/5。
在一具体应用场景中,投影反射层140的厚度范围为10~30微米,例如,投影反射层140的厚度为10微米、20微米或者30微米。
在本实施方式中,表面扩散层120具有各项异性的扩散角度,即水平方向的扩散角度(即水平扩散角度)和垂直方向的扩散角度(即垂直扩散角度)不同,此时光斑呈椭圆分布,如图6和图7所示。
在一应用场景中,为了有效地扩大屏幕100的水平视场,同时不减少屏幕100的反射增益,设置表面扩散层120的水平扩散角度大于垂直扩散角度。例如,设置表面扩散层120的水平扩散角度为20度,垂直扩散角度为10度。
在本实施方式中,表面扩散层120的表面粗糙度Ra的范围为0.5微米~50微米,例如,表面粗糙度Ra为0.5微米、5微米、20微米或者 50微米。
具体地,设置表面扩散层120的表面粗糙度Ra的范围为0.5微米~50微米,能够将屏幕100最终的视场角度控制在±20~50度的范围内,同时消除菲涅尔反射造成的天花板鬼影画面。
其中,在本实施方式中,微结构单元131的剖面呈三角形,而在其他实施方式中,微结构单元131的剖面也可以呈梯形等其他形状,简而言之,从屏幕的纵向截面看,只要多个微结构单元131构成锯齿结构即可,关于其具体形状,本申请不做限制。
同时在本实施方式中,多个微结构单元131呈周期排列,而在其他实施方式中,多个微结构单元131也可以不呈周期排列。
参阅图8,图8是本申请屏幕的制备方法一实施方式的流程示意图。结合图9,该制备方法包括:
S210:对基板210的一侧表面进行粗糙度处理以在基板210的一侧表面形成表面扩散层220。
进行粗糙度处理的方式可以是喷砂、化学腐蚀等方式。
S220:在基板210的另一侧表面形成菲涅尔层230。
菲涅尔层230的形成方法可以是UV胶水转印或者热压印。
S230:在菲涅尔层230远离基板210的一侧表面形成投影反射层240,其中,投影反射层240的材料包括反射材料以及吸收材料,和/或,菲涅尔层230包括多个微结构单元,多个所述微结构单元基于同一个圆心依次向外排列。该菲涅尔层为通过偏轴截取方式截取自菲涅尔透镜的一部分。
投影反射层240的形成方法可以是喷涂、丝网印刷或者打印等方式。
采用本实施方式制备方法制备的屏幕与上述实施方式中的屏幕100结构相同,屏幕的详细结构可参见上述实施方式,在此不再赘述。
参阅图10,图10是本申请屏幕的制备方法另一实施方式的流程示意图。结合图11,该制备方法包括:
S310:在第一基板311的一侧表面进行粗糙度处理以在第一基板311的一侧表面形成表面扩散层320。
进行粗糙度处理的方式可以是喷砂、化学腐蚀等方式。
S320:在第二基板312的一侧表面形成菲涅尔层330。
菲涅尔层330的形成方法可以是UV胶水转印或者热压印。
S330:在菲涅尔层330远离第二基板312的一侧表面形成投影反射层340。
投影反射层340的形成方法可以是喷涂、丝网印刷或者打印等方式。
S340:将第一基板311和第二基板312层叠设置,并使第一基板311未形成有表面扩散层320的表面和第二基板312未形成有菲涅尔层330的表面接触,其中,投影反射层340的材料包括反射材料以及吸收材料,和/或,菲涅尔层330包括多个微结构单元,多个所述微结构单元基于同一个圆心依次向外排列。该菲涅尔层为通过偏轴截取方式截取自菲涅尔透镜的一部分。
在将第一基板311与第二基板312层叠设置时,可以通过例如胶水等粘接剂将第一基板311和第二基板312粘接在一起。
其中,第一基板311的材料与第二基板312的材料可以相同,也可以不同,同时采用本实施方式制备方法制备的屏幕与上述实施方式中的屏幕100结构相同,屏幕的详细结构可参见上述实施方式,在此不再赘述。
参阅图12,图12是本申请投影系统一实施方式的结构示意图。该投影系统400包括投影机410以及屏幕420。
其中投影机410可以是短焦投影机,也可以是长焦投影机,在此不做限制。
屏幕420与上述任一项实施方式中的屏幕100结构相同,具体可参见上述实施方式,在此不再赘述。
总而言之,本申请的屏幕由于设置投影反射层的材料同时包括反射材料以及吸收材料,能够使投影反射层具有窄扩散角度,同时结合菲涅尔层具有优良的准直特性,能够提高屏幕的增益和抗环境光对比度。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变 换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种屏幕,其特征在于,包括:
    基板;
    表面扩散层,设置于所述基板的一侧表面;
    菲涅尔层,设置于所述基板远离所述表面扩散层的一侧表面;
    投影反射层,设置于所述菲涅尔层远离所述基板的一侧表面;
    其中,所述投影反射层的材料包括反射材料以及吸收材料,和/或,所述菲涅尔层包括多个微结构单元,多个所述微结构单元基于同一个圆心依次向外排列。
  2. 根据权利要求1所述的屏幕,其特征在于,菲涅尔层为通过偏轴截取方式截取自菲涅尔透镜的一部分而形成,所述菲涅尔透镜为同心圆环状的菲涅尔透镜。
  3. 根据权利要求2所述的屏幕,其特征在于,
    所述微结构单元包括相交的第一入射面和第二入射面,所述第一入射面用于反射环境光线和投影机光线,其中,定义所述第一入射面与所述基板的夹角为第一夹角,所述第二入射面与所述基板的夹角为第二夹角;
    所述微结构单元对应的所述第一夹角与所述微结构单元对应的半径呈一元三次函数关系,所述第二夹角的角度范围为70度~90度。
  4. 根据权利要求1所述的屏幕,其特征在于,
    所述投影反射层均匀地设置在所述菲涅尔层的表面,且所述投影反射层的厚度范围为相邻两个所述微结构单元间距的1/10~1/5。
  5. 根据权利要求1所述的屏幕,其特征在于,
    所述反射材料包括金属材料;和/或,
    所述吸收材料包括有机颜料及无机颜料。
  6. 根据权利要求1所述的屏幕,其特征在于,所述表面扩散层的水平扩散角度和垂直扩散角度不同。
  7. 根据权利要求6所述的屏幕,其特征在于,
    所述表面扩散层的水平扩散角度大于垂直扩散角度。
  8. 根据权利要求1所述的屏幕,其特征在于,
    所述表面扩散层的表面粗糙度Ra的范围为0.5微米~50微米。
  9. 根据权利要求1所述的屏幕,其特征在于,所述投影反射层的材料还包括扩散材料。
  10. 一种屏幕的制备方法,其特征在于,所述制备方法包括:
    对基板的一侧表面进行粗糙度处理以在基板的一侧表面形成表面扩散层;
    在所述基板的另一侧表面形成菲涅尔层;
    在所述菲涅尔层远离所述基板的一侧表面形成投影反射层;
    其中,所述投影反射层的材料包括反射材料以及吸收材料,和/或,所述菲涅尔层包括多个微结构单元,多个所述微结构单元基于同一个圆心依次向外排列。
  11. 一种屏幕的制备方法,其特征在于,所述制备方法包括:
    在第一基板的一侧表面进行粗糙度处理以在所述第一基板的一侧表面形成表面扩散层;
    在第二基板的一侧表面形成菲涅尔层;
    在所述菲涅尔层远离所述第二基板的一侧表面形成投影反射层;
    将所述第一基板和所述第二基板层叠设置,并使所述第一基板未形成有所述表面扩散层的表面和所述第二基板未形成有所述菲涅尔层的表面接触;
    其中,所述投影反射层的材料包括反射材料以及吸收材料,和/或,所述菲涅尔层包括多个微结构单元,多个所述微结构单元基于同一个圆心依次向外排列。
PCT/CN2020/137118 2020-01-20 2020-12-17 屏幕及其制备方法、投影系统 WO2021147577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010067441.9 2020-01-20
CN202010067441.9A CN113219779A (zh) 2020-01-20 2020-01-20 屏幕及其制备方法、投影系统

Publications (1)

Publication Number Publication Date
WO2021147577A1 true WO2021147577A1 (zh) 2021-07-29

Family

ID=76992828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137118 WO2021147577A1 (zh) 2020-01-20 2020-12-17 屏幕及其制备方法、投影系统

Country Status (2)

Country Link
CN (1) CN113219779A (zh)
WO (1) WO2021147577A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112015040B (zh) * 2019-05-30 2023-02-03 深圳光峰科技股份有限公司 投影屏幕
WO2024022515A1 (zh) * 2022-07-28 2024-02-01 青岛海信激光显示股份有限公司 投影屏幕、投影系统、模具及模具母版
CN116047854A (zh) * 2023-04-03 2023-05-02 深圳市真屏科技发展有限公司 光学结构投影膜及其一次加工成型方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108990A1 (en) * 2012-01-18 2013-07-25 Lg Electronics Inc. Display screen of image display system and method for manufacturing the same
JP2015069150A (ja) * 2013-09-30 2015-04-13 大日本印刷株式会社 反射スクリーンおよび反射スクリーンを備えた映像表示システム
CN104777708A (zh) * 2014-01-15 2015-07-15 Lg电子株式会社 反射屏幕、具有反射屏幕的显示器和制造反射屏幕的方法
JP2016109803A (ja) * 2014-12-04 2016-06-20 大日本印刷株式会社 反射スクリーン、映像表示システム
JP2019020609A (ja) * 2017-07-19 2019-02-07 国立大学法人東北大学 反射型スクリーン
CN208999755U (zh) * 2018-11-16 2019-06-18 烟台市谛源光科有限公司 一种短焦投影正投幕
CN110262178A (zh) * 2019-07-22 2019-09-20 顾亮 一种用于超短焦正投影的弧形反射幕布
CN110554558A (zh) * 2018-05-31 2019-12-10 深圳光峰科技股份有限公司 一种高对比度反射屏幕

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108990A1 (en) * 2012-01-18 2013-07-25 Lg Electronics Inc. Display screen of image display system and method for manufacturing the same
JP2015069150A (ja) * 2013-09-30 2015-04-13 大日本印刷株式会社 反射スクリーンおよび反射スクリーンを備えた映像表示システム
CN104777708A (zh) * 2014-01-15 2015-07-15 Lg电子株式会社 反射屏幕、具有反射屏幕的显示器和制造反射屏幕的方法
JP2016109803A (ja) * 2014-12-04 2016-06-20 大日本印刷株式会社 反射スクリーン、映像表示システム
JP2019020609A (ja) * 2017-07-19 2019-02-07 国立大学法人東北大学 反射型スクリーン
CN110554558A (zh) * 2018-05-31 2019-12-10 深圳光峰科技股份有限公司 一种高对比度反射屏幕
CN208999755U (zh) * 2018-11-16 2019-06-18 烟台市谛源光科有限公司 一种短焦投影正投幕
CN110262178A (zh) * 2019-07-22 2019-09-20 顾亮 一种用于超短焦正投影的弧形反射幕布

Also Published As

Publication number Publication date
CN113219779A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2021147577A1 (zh) 屏幕及其制备方法、投影系统
CN207216263U (zh) 全反射屏幕和投影系统
TWI385467B (zh) Optical projection screen
CN109388013A (zh) 投影屏幕和投影系统
WO2020114224A1 (zh) 投影屏幕和投影系统
CN109765725B (zh) 一种准直膜、准直背光模组、显示模组及显示装置
WO2019024368A1 (zh) 全反射屏幕和投影系统
WO2019114121A1 (zh) 屏幕和吸光膜的制备方法
US11740545B2 (en) Curved screen and method of arranging microstructure therein, and projection system
WO2021004301A1 (zh) 一种投影屏幕
CN110850674A (zh) 投影屏幕及投影系统
CN110824826A (zh) 投影屏幕及投影系统
WO2021169597A1 (zh) 透明投影屏幕及其制造方法
CN110824825A (zh) 投影屏幕及投影系统
WO2019024369A1 (zh) 投影屏幕和投影系统
WO2021143439A1 (zh) 一种投影屏幕以及投影系统
WO2019179124A1 (zh) 屏幕和投影系统
JP4039465B1 (ja) 光学シートとそれを用いたバックライトユニット及びディスプレイ
CN110297385A (zh) 屏幕和投影系统
US11762275B2 (en) Projection screen and projection system
CN111624844B (zh) 一种光学投影屏幕及投影系统
WO2020238663A1 (zh) 投影屏幕
WO2019227936A1 (zh) 一种高对比度反射屏幕
WO2021078289A1 (zh) 一种投影屏幕
WO2018166177A1 (zh) 透明显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914943

Country of ref document: EP

Kind code of ref document: A1