WO2021169597A1 - 透明投影屏幕及其制造方法 - Google Patents

透明投影屏幕及其制造方法 Download PDF

Info

Publication number
WO2021169597A1
WO2021169597A1 PCT/CN2020/142124 CN2020142124W WO2021169597A1 WO 2021169597 A1 WO2021169597 A1 WO 2021169597A1 CN 2020142124 W CN2020142124 W CN 2020142124W WO 2021169597 A1 WO2021169597 A1 WO 2021169597A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
projection screen
transparent
prism surface
transparent projection
Prior art date
Application number
PCT/CN2020/142124
Other languages
English (en)
French (fr)
Inventor
张红秀
陆志毅
王霖
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021169597A1 publication Critical patent/WO2021169597A1/zh
Priority to US17/891,489 priority Critical patent/US20220390823A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • This application relates to the technical field of projection screens, in particular to a transparent projection screen and a manufacturing method thereof.
  • the transparent projection screen can display a clear image on the transparent screen, and at the same time, the observer can observe the background behind through the screen, so that the image information can be integrated with the background information and provide the observer with richer information interaction.
  • the picture size of the existing projection screen is determined by the distance between the projection device and the projection screen. The larger the distance, the larger the projected picture.
  • the ultra-short throw projection screen can project at close distances, which greatly saves space and increases Where projection can be used. Therefore, how to combine ultra-short throw projection and transparent display technology to produce a transparent projection screen suitable for ultra-short throw, and to combine the advantages of both to obtain a better transparent display effect has always been the unremitting pursuit of the field of projection display technology.
  • the purpose of this application is to provide a transparent projection screen and a manufacturing method thereof to solve the above-mentioned problems.
  • the present application provides a transparent projection screen for receiving projection light and transmitting ambient light.
  • the transparent projection screen includes a first base layer, a Fresnel structure layer, a surface diffusion layer, a nano metal plating layer, and an adhesive layer
  • the Fresnel structure layer is arranged on the first base layer, the Fresnel structure layer includes a prism surface; the surface diffusion layer is arranged on at least part of the prism surface; the nano metal plating layer is arranged on the surface diffusion layer; the adhesive layer is arranged on the nano metal plating layer , And fill the prism surface, the refractive index of the Fresnel structure layer is the same as that of the adhesive layer; the projected light enters the prism surface through the first base layer and is reflected by the prism surface, and the ambient light passes through the adhesive layer in turn , Nano metal plating layer, surface diffusion layer, the first base layer is emitted.
  • the nano metal plating layer is a nano aluminum plating layer.
  • the thickness of the nano-aluminized layer is 12-20 nm
  • the visible light reflectance of the nano-aluminized layer is 10%-20%
  • the visible light transmittance of the nano-aluminized layer is 60%-80%.
  • the scattering angle of the surface diffusion layer is 10°-40°.
  • the surface diffusion layer includes a resin film and transparent scattering particles distributed in the resin film.
  • the thickness of the resin film is 1 ⁇ m-10 ⁇ m
  • the refractive index of the resin film is 1.5-1.6
  • the particle size of the transparent scattering particles is 1 ⁇ m-5 ⁇ m.
  • the surface diffusion layer includes a light scattering structure with concave and convex surfaces, and the light scattering structure is provided on the prism surface and integrally formed with the Fresnel structure layer.
  • the refractive index of the Fresnel structure layer and the adhesive layer are both 1.5.
  • the visible light transmittance of the first base layer is greater than 90%.
  • the transparent projection screen further includes a first anti-reflection layer, the first anti-reflection layer is provided on the side of the first base layer away from the prism surface, and the visible light reflectivity of the first anti-reflection layer is less than 0.6%.
  • the visible light transmittance of an anti-reflection layer is greater than 98%.
  • the transparent projection screen further includes a second base layer, the second base layer is disposed on the side of the adhesive layer away from the Nefer structure layer, and the visible light transmittance of the second base layer is greater than 90%.
  • the transparent projection screen further includes a second anti-reflection layer, the second anti-reflection layer is attached to the side of the second base layer away from the adhesive layer, and the visible light reflectivity of the second anti-reflection layer is less than 0.6 %, the visible light transmittance of the second anti-reflection layer is greater than 98%.
  • the present application also provides a method for manufacturing a transparent projection screen, including: providing a first base layer; disposing a Fresnel structure layer on the first base layer, the Fresnel structure layer including a prism surface; Set the surface diffusion layer on the surface; set the nano metal coating on the surface diffusion layer; set the glue layer on the nano metal coating, the glue layer fills the prism surface, the refractive index of the Fresnel structure layer and the refractive index of the glue layer same.
  • disposing a surface diffusion layer on at least part of the prism surface includes: preparing a mixture of a resin film and transparent scattering particles; and coating the mixture on at least part of the prism surface by spraying or roller coating to form a surface diffusion layer.
  • disposing a surface diffusion layer on at least part of the prism surface includes: processing at least part of the prism surface into concavities and convexities by physical polishing or chemical etching to form the surface diffusion layer.
  • the transparent projection screen and the manufacturing method thereof provided in the present application are provided with a surface diffusion layer and a nano-metal plating layer on the prism surface of the Fresnel structure layer in sequence, so that the prism surface has a larger light scattering ability, and realizes Ultra-short throw projection can increase the viewing angle of the screen and ensure the clarity of the projected image; in addition, the prism surface can be filled with the adhesive layer with the same refractive index as the Fresnel structure layer, which can reduce the penetration of the prism.
  • the influence of the propagation direction and phase of the ambient light makes most of the ambient light reach the observer’s eyes through the screen, which improves the transparency of the transparent projection screen.
  • FIG. 1 is a schematic structural diagram of a transparent projection screen provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the microstructure of a transparent projection screen provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a structure of a Fresnel structure layer in a transparent projection screen provided by an embodiment of the present application.
  • FIG. 4 shows the thickness and visible light reflectance spectrum of a nano-aluminized layer in a transparent projection screen provided by an embodiment of the present application.
  • FIG. 5 shows the thickness and visible light transmittance spectrum of a nano-aluminized layer in a transparent projection screen provided by an embodiment of the present application.
  • FIG. 6 is a diagram of the scattered light path of a surface diffusion layer in a transparent projection screen provided by an embodiment of the present application.
  • Fig. 7 is a light path diagram of a transparent projection screen provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of a method for manufacturing a transparent projection screen provided by an embodiment of the present application.
  • the size of the screen is determined by the distance between the projection device and the projection screen, and increasing the distance can increase the projection screen, which limits the application scenarios of the transparent projection screen.
  • the ultra-short throw projection screen can project at a short distance, greatly shortening the distance between the projection device and the projection screen, and increasing the occasions where projection can be applied. Therefore, the applicant of this application creatively combined ultra-short-throw projection and transparent display technology to propose a transparent display screen suitable for ultra-short-throw. While maintaining the transparent state of the screen, the image can be clearly projected with a certain degree of Gain and viewing angle can be applied to many aspects such as home display screen, space design, exhibition display and window display.
  • An embodiment of the present application provides a transparent projection screen 100 for receiving projection light 200 and transmitting ambient light 300.
  • the transparent projection screen 100 includes a first base layer 51, Fresnel Er structure layer 10, surface diffusion layer 20, nano metal plating layer 30, and adhesive layer 40.
  • the Fresnel structure layer 10 is disposed on the first base layer 51, the Fresnel structure layer 10 includes a prism surface 11; the surface diffusion layer 20 is disposed on at least part of the prism surface 11; the nano metal plating layer 30 is disposed on the surface diffusion layer 20; The adhesive layer 40 is disposed on the nano metal plating layer 30 and fills the prism surface 11.
  • the adhesive layer 40 and the nano metal plating layer 30 have the same refractive index; the projection light 200 enters the prism surface 11 through the first base layer 51 and is The prism surface 11 reflects, and the ambient light 300 exits through the adhesive layer 40, the nano metal plating layer 30, the surface diffusion layer 40, and the first base layer 51 in sequence.
  • the projection light 200 can be generated by the projector 400, the surface diffusion layer 20 can scatter the projection light 200, and the nano metal coating 30 plays the role of reflecting the projection light 200 and transmitting the ambient light 300 at the same time, so that the prism surface 11 has With a large light scattering ability, even if the projector 400 projects the projection light 200 at a short distance, it can also produce a projection image with a certain gain and viewing angle to ensure the clarity of the projection image.
  • the adhesive layer 40 with the same refractive index as the Fresnel structure layer 10 is used to fill the prism surface 11 to form a plane on the side of the transparent projection screen 100 away from the first base layer 51, which can reduce the penetration of ambient light 300
  • the influence of the propagation direction and phase of the screen allows most of the ambient light 300 to pass through the screen to reach the eyes of the observer, resulting in a better transparent display effect.
  • the conventional thickness of the metal coating appears to be opaque, but when the thickness of the metal layer is nanometers, it can reflect part of the light, absorb part of the light, and the rest of the light can pass through The metal layer is formed to transmit light.
  • the Fresnel structure layer 10 includes a plurality of micro prism units 13, a plurality of micro prism units 13 equidistant from the center forming an arc, and a plurality of micro prism units 13 unequal distance from the center forming a multiple Concentric arcs (see Figure 6 for details).
  • Each micro prism unit 13 includes a first prism surface 111, a second prism surface 112 and a side surface 12.
  • the longitudinal section of the micro prism unit 13, that is, the section perpendicular to the wall or the installation plane direction, can be a right triangle.
  • the prism surface 111 corresponds to the hypotenuse of the right-angled triangle
  • the second prism surface 112 and the side surface 12 respectively correspond to the two right-angled sides of the right-angled triangle.
  • the side surface 12 is substantially perpendicular to the ground plane direction
  • the second prism surface 112 is located on the lower side of the side surface 12 and parallel to the ground plane direction
  • the angle between the first prism surface 111 and the side surface 12 is an acute angle.
  • the prism surface 11 includes a first prism surface 111 and a second prism surface 112, the surface diffusion layer 20 and the nano metal plating layer 30 are sequentially disposed on the first prism surface 111, and part of the projection light 100 is incident on the second prism surface through the side surface 12.
  • a prism surface 111 is reflected by the first prism surface 111, part of the projected light 100 enters the prism surface 11 through the second prism surface 112 and is reflected by the prism surface 11, and the ambient light 300 exits through the first prism surface 111 and the side surface 12 in turn.
  • the inclination angle of the first prism surface 111 can be calculated according to the azimuth relationship between the projector 400 and the transparent projection screen 100, and the area where the viewer is. , To ensure that viewers can get the best viewing experience.
  • the specific calculation process can refer to the existing projection display technology, which is not specifically limited in this embodiment.
  • the refractive index of the Fresnel structure layer 10 is the same as the refractive index of the adhesive layer 40, and the Fresnel structure layer 10 and the adhesive layer 40 can be made of transparent organic materials with the same refractive index.
  • transparent organic materials such as PET (Polyethylene terephthalate), PMMA (polymethyl methacrylate, polymethyl methacrylate or acrylic).
  • the first base layer 51 is disposed on the side surface 12, and the visible light transmittance of the first base layer 51 is greater than 90%.
  • the first base layer 51 can be made of transparent organic materials such as PET and PMMA. The above-mentioned first base layer 51 is used as a base structure, and because it has a high visible light transmittance, it can ensure the transparent display effect of the transparent projection screen 100.
  • the longitudinal section of the microprism unit 13 may be approximately a right-angled trapezoid (see Figure 3 for details), the side surface 12 corresponds to the right-angled side of the right-angled trapezoid, and the first prism surface 111 corresponds to the hypotenuse of the right-angled trapezoid.
  • the second prism surface 112 corresponds to the bottom of the right-angled trapezoid.
  • the Fresnel structure layer 10 does not need to be additionally provided with a base structure, and those skilled in the art can selectively provide the first base layer 51 on the Fresnel structure layer 10 according to requirements.
  • the transparent projection screen 100 further includes a second base layer 52.
  • the second base layer 52 is disposed on the side of the laminating adhesive layer 40 away from the Fresnel structure layer 10, and the visible light of the second base layer 52 is transmitted through The rate is greater than 90%.
  • the second base layer 52 can be made of transparent organic materials such as PET and PMMA. The above-mentioned second base layer 52 is used as a base structure, and because it has a high visible light transmittance, the transparency of the transparent projection screen 100 can be ensured.
  • the longitudinal section of the above-mentioned adhesive layer 40 corresponding to the part of each microprism unit 13 may be a right-angled triangle or a right-angled trapezoid.
  • the cross-section of the adhesive layer 40 is a right-angled trapezoid, the The adhesive layer 40 does not need to be additionally provided with a base structure, and those skilled in the art can selectively provide the second base layer 52 on the adhesive layer 40 according to requirements.
  • the transparent projection screen 100 further includes a first anti-reflection layer 61.
  • the first anti-reflection layer 61 is provided on the side of the first base layer 51 away from the prism surface 11, and the visible light reflection of the first anti-reflection layer 61 The rate is less than 0.6%, and the visible light transmittance of the first anti-reflection layer 61 is greater than 98%.
  • the above-mentioned first anti-reflection layer 61 is provided on the outer side of the first base layer 51, which can reduce reflected light, improve the transparency of the transparent projection screen 100, and at the same time improve the clarity of the projection screen.
  • the transparent projection screen 100 further includes a second anti-reflective layer 62.
  • the second anti-reflective layer 62 is attached to the side of the second base layer 52 facing away from the adhesive layer 40, and the second anti-reflective layer 62
  • the visible light reflectance of the second anti-reflection layer 62 is less than 0.6%, and the visible light transmittance of the second anti-reflection layer 62 is greater than 98%.
  • the second anti-reflection layer 62 is provided on the outer side of the second base layer 52, which can reduce reflected light, improve the transparency of the transparent projection screen 100, and at the same time improve the clarity of the projection screen.
  • the first anti-reflection layer 61 and the second anti-reflection layer 62 may be multilayer dielectric coatings, which can achieve a better anti-reflection effect in a wider spectral region.
  • the nano metal plating layer 30 is a nano aluminum plating layer. According to the figure, it can be known that within a certain range, as the thickness of the nano-aluminum plating layer increases, the reflectivity of the nano-aluminum plating layer to visible light gradually increases, and the transmittance to visible light gradually decreases. Therefore, by controlling the thickness of the nano-aluminized layer, the visible light reflectance and visible light transmittance of the nano-aluminized layer can be finally controlled to meet the parameter requirements.
  • Table 1 The relationship between the thickness of the nano-aluminized layer and the visible light reflectance and transmittance
  • the thickness of the nano metal plating layer is 12 nm-20 nm
  • the visible light reflectance of the nano aluminum plating layer is 10%-20%
  • the visible light transmittance of the nano aluminum plating layer is 60%-80%.
  • the nano metal coating 30 can be made of other metal materials such as silver metal or aluminum-silver metal composition. By controlling the thickness of the coating, the function of reflecting and transmitting light can also be achieved.
  • the surface diffusion layer 20 is used to form a light scattering structure on the prism surface 11.
  • the projection light 200 reaches the surface diffusion layer 20, it can spread in a wider direction, thus expanding The visualization range of the projected image is expanded, that is, the viewing angle of the transparent projection screen is enlarged.
  • the scattering angle of the surface diffusion layer 20 is controlled at 10°-40°.
  • the scattering angle is too small (for example, less than 10°)
  • the viewing angle of the screen is too small.
  • the scattering angle is too large (for example, greater than 40°)
  • total reflection may occur, causing part of the projected light 200 to fail to be reflected back. Light effect.
  • the specific calculation process of the scattering angle of the surface diffusion layer 20 is as follows: assuming that the refractive index of the first base layer 51 is n 1 , the refractive index of the air layer 500 is n 2 , and the refractive index n 1 of the first base layer 51 is 1.5- 1.6, the refractive index n 2 of the air layer 500 is calculated as 1.
  • the rate n 1 is greater than the refractive index n 2 of the air layer 500.
  • the surface diffusion layer 20 includes a resin film and transparent scattering particles distributed in the resin film.
  • the transparent diffusion particles can scatter the projected light to realize the scattering function of the surface diffusion layer 20.
  • the above-mentioned surface diffusion layer 20 can be coated on the prism surface 11 with a mixture of resin film and transparent diffusion particles and then cured. Since the process of coating the surface diffusion layer 20 is simple and easy to operate, the manufacturing process of the transparent projection screen 100 is simple. Can reduce manufacturing costs.
  • the thickness of the resin film can be between 1 ⁇ m and 10 ⁇ m, and the resin film can be made of any transparent resin, such as polycarbonate, polypropylene, etc., and the refractive index of the resin film can be controlled between 1.5 and 1.6.
  • the particle size of the transparent scattering particles can be between 1 ⁇ m and 5 ⁇ m, and the transparent scattering particles can be selected from one or more of SiO 2 particles or PMMA particles to achieve better refractive index matching.
  • the scattering angle of the surface diffusion layer 20 can be conveniently controlled, so that the scattering angle of the surface diffusion layer 20 can be adjusted. Between 10°-40° to meet the functional requirements of the transparent projection screen 100.
  • the refractive index of the Fresnel structure layer 10 and the adhesive layer 40 can be selected to be 1.5, so that the refractive index of the surface diffusion layer 20 is basically the same as the refractive index of the Fresnel structure layer 10 and the adhesive layer 40. Equally, the influence on the propagation direction and phase of the ambient light 300 passing through it is reduced, and the transparency of the transparent projection screen 100 can be further improved.
  • the surface diffusion layer 20 includes a light scattering structure arranged in a concave and convex shape, and the light scattering structure is arranged on the prism surface 11 and integrally formed with the Fresnel structure layer 10.
  • the above-mentioned light scattering structure can be directly processed and formed on the prism surface 11 by processes such as physical polishing or chemical etching, so that there is no need to separately provide a scattering structure, which reduces the production cost, and the integrated structure greatly improves the Fresnel structure layer 10 and the surface.
  • the structural stability between the diffusion layers 20 is not limited to the diffusion layers 20.
  • the integrally formed light scattering structure is made of the same material as the Fresnel structure layer 10, which can ensure that the Fresnel structure layer 10, the surface diffusion layer 20 and the adhesive layer 40 have the same refractive index, and further improve the transparency.
  • the transparency of the projection screen 100 is made of the same material as the Fresnel structure layer 10, which can ensure that the Fresnel structure layer 10, the surface diffusion layer 20 and the adhesive layer 40 have the same refractive index, and further improve the transparency.
  • the transparency of the projection screen 100 is made of the same material as the Fresnel structure layer 10, which can ensure that the Fresnel structure layer 10, the surface diffusion layer 20 and the adhesive layer 40 have the same refractive index, and further improve the transparency. The transparency of the projection screen 100.
  • the scattering angle of the surface diffusion layer 20 can be controlled to be between 10°-40° to satisfy the transparent projection. Functional requirements of screen 100.
  • the projection light 200 enters the prism surface 11 through the first anti-reflection layer 61 and the first base layer 52 and is reflected by the prism surface 11 and then provided to the viewer.
  • the ambient light 300 passes through the second anti-reflection layer 62, the second base layer 52, the adhesive layer 40, the nano metal coating 30, the surface diffusion layer 20, the Fresnel structure layer 10, the first After the base layer 51 and the first anti-reflection layer 61 are emitted, according to the embodiment provided in this application, the final visible light transmittance of the transparent projection screen 100 as a whole can reach more than 50%, which ensures that the transparent projection screen 100 has good transparency .
  • An embodiment of the present application also provides a manufacturing method of a transparent transparent screen.
  • the manufacturing method may include:
  • Step S10 providing a first base layer 51
  • Step S20 disposing a Fresnel structure layer 10 on the first base layer 51, and the Fresnel structure layer 10 includes a prism surface 11;
  • the Fresnel structure layer 10 can be prepared by the following method: the Fresnel structure layer 10 is prepared on the first base layer 51 by hot pressing or UV structural glue transfer.
  • the thickness of 51 can be selected according to actual needs.
  • the thickness of the first base layer 51 can be between 50 ⁇ m and 200 ⁇ m.
  • Step S30 Disposing a surface diffusion layer 20 on at least a part of the prism surface 11;
  • the above-mentioned disposing the surface diffusion layer 20 on at least a part of the prism surface 11 includes step S311 and step S312.
  • Step S311 preparing a mixture of resin film and transparent scattering particles
  • Step S312 coating the mixture on at least part of the prism surface 11 by spraying or roller coating to form the surface diffusion layer 20.
  • disposing the surface diffusion layer 20 on at least part of the prism surface 11 described above includes step S321.
  • step S321 at least part of the prism surface 11 is processed into concavities and convexities by physical polishing or chemical etching to form the surface diffusion layer 20.
  • Step S40 providing a nano metal plating layer 30 on the surface diffusion layer 20;
  • the nano metal plating layer 30 may be a nano aluminum plating layer, and the surface diffusion layer 20 may be plated with a nano aluminum plating layer by sputtering coating.
  • the thickness of the nano aluminum plating layer may be between 12 nm and 20 nm. In between, the specific value can be selected according to the parameter requirements of the product.
  • step S50 an adhesive layer 40 is provided on the nano metal plating layer 30, and the adhesive layer 40 fills the prism surface 11.
  • the bonding glue can be directly coated on the nano metal plating layer 30 to form the bonding glue layer 40.
  • the above-mentioned manufacturing method of the transparent projection screen may further include step S60.
  • step S60 a second base layer 52 is provided on the side of the adhesive layer 40 away from the Fresnel structure layer 10. Wherein, the bonding adhesive layer 40 provides adhesive force, and the second base layer 52 can be directly bonded to the bonding adhesive layer 40.
  • the manufacturing method of the transparent projection screen described above may further include step S71 to step S72.
  • Step S71 disposing a first anti-reflection layer 61 on the side of the first base layer 51 away from the prism surface 11.
  • the first anti-reflection layer 61 can be a multi-layer dielectric coating
  • the first base layer 51 can be coated with a multi-layer dielectric coating by sputtering coating to form the first anti-reflection layer 61.
  • step S72 a second anti-reflection layer 62 is provided on the side of the second base layer 52 away from the adhesive layer 40.
  • the second anti-reflection layer 62 can be a multi-layer dielectric coating, and the second base layer 52 can be coated with a multi-layer dielectric coating by sputtering coating to form the second anti-reflection layer 62.
  • the transparent projection screen 100 obtained by the above manufacturing method has a stable structure, simple operation and low cost.
  • the surface diffusion layer 20 and the nano metal plating layer 30 are sequentially arranged on at least part of the prism surface 11, so that the prism surface 11 has a large light scattering ability and realizes ultra-short While focusing the projection, the viewing angle of the screen is improved to ensure the clarity of the projected image.
  • the prism surface 11 by filling the prism surface 11 with the adhesive layer 40 with the same refractive index as the Fresnel structure layer 10, the influence on the propagation direction and phase of the ambient light 300 passing through it can be reduced, so that most of the ambient light 300 can be By reaching the eyes of the observer through the screen, the transparency of the transparent projection screen 100 is improved.
  • the transparent projection screen 100 has a simple structure, does not need to provide a separate power source, and is convenient to use.

Abstract

一种透明投影屏幕(100)及其制造方法,该透明投影屏幕(100)用于接收投影光线(200)并透射环境光线(300),其包括第一基底层(51)、菲涅尔结构层(10)、表面扩散层(20)、纳米金属镀层(30)以及贴合胶层(40);菲涅尔结构层(10)设置于第一基底层(51),菲涅尔结构层(10)包括棱镜面(11),表面扩散层(20)设置于至少部分棱镜面(11),纳米金属镀层(300)设置于表面扩散层(20),贴合胶层(40)设置于纳米金属镀层(30),并填平棱镜面(11);投影光线(200)经第一基底层(51)入射至棱镜面(11)并被棱镜面(11)反射,环境光线(300)依次经贴合胶层(40)、纳米金属镀层(30)、表面扩散层(20)、第一基底层(51)出射。该透明投影屏幕(100)可用于超短焦投影,大大节省了投影空间,在保持较好透明度的同时,能够清晰地投影图像,具有一定的增益和视角。

Description

透明投影屏幕及其制造方法 技术领域
本申请涉及投影屏幕技术领域,具体涉及一种透明投影屏幕及其制造方法。
背景技术
透明投影屏幕能够在透明的屏幕上显示出清晰的图像,同时观察者能够透过屏幕观察到后面的背景,使得图像信息可以与背景信息相互融合,为观察者提供更为丰富的信息交互。现有投影屏幕的画面大小是由投影设备与投影屏幕之间的距离决定的,距离越大投影的画面就越大,而超短焦投影屏能够在近距离投影,大大节省了空间,增加了投影可以应用的场合。因此,如何结合超短焦投影和透明显示技术,制作适用于超短焦的透明投影屏幕,结合两者优势的同时得到更好的透明显示效果,一直是投影显示技术领域不懈追求的目标。
发明内容
本申请的目的在于提供一种透明投影屏幕及其制造方法,以解决上述问题。
本申请实施例通过以下技术方案来实现上述目的。
第一方面,本申请提供一种透明投影屏幕,用于接收投影光线并透射环境光线,透明投影屏幕包括第一基底层、菲涅尔结构层、表面扩散层、纳米金属镀层以及贴合胶层;菲涅尔结构层设置于第一基底层,菲涅尔结构层包括棱镜面;表面扩散层设置于至少部分棱镜面;纳米金属镀层设置于表面扩散层;贴合胶层设置于纳米金属镀层,并填平棱镜面,菲涅尔结构层的折射率与贴合胶层的折射率 相同;投影光线经第一基底层入射至棱镜面并被棱镜面反射,环境光线依次经贴合胶层、纳米金属镀层、表面扩散层、第一基底层出射。
在一种实施方式中,纳米金属镀层为纳米镀铝层。
在一种实施方式中,纳米镀铝层的厚度为12nm-20nm,纳米镀铝层的可见光反射率为10%-20%,纳米镀铝层的可见光透过率为60%-80%。
在一种实施方式中,表面扩散层的散射角为10°-40°。
在一种实施方式中,表面扩散层包括树脂膜以及分布于树脂膜中的透明散射粒子。
在一种实施方式中,树脂膜的厚度为1μm-10μm,树脂膜的折射率为1.5-1.6,透明散射粒子的粒径为1μm-5μm。
在一种实施方式中,表面扩散层包括表面凹凸起伏设置的光散射结构,光散射结构设于棱镜面并与菲涅尔结构层一体成型。
在一种实施方式中,菲涅尔结构层和贴合胶层的折射率均为1.5。
在一种实施方式中,第一基底层的可见光透过率大于90%。
在一种实施方式中,透明投影屏幕还包括第一减反层,第一减反层设于第一基底层背离棱镜面的一侧,第一减反层的可见光反射率小于0.6%,第一减反层的可见光透过率大于98%。
在一种实施方式中,透明投影屏幕还包括第二基底层,第二基底层设于贴合胶层背离涅菲尔结构层的一侧,第二基底层的可见光透过率大于90%。
在一种实施方式中,透明投影屏幕还包括第二减反层,第二减反层贴合于第二基底层背离贴合胶层的一侧,第二减反层的可见光反射率小于0.6%,第二减反层的可见光透过率大于98%。
第二方面,本申请还提供一种透明投影屏幕的制造方法,包括:提供第一基 底层;在第一基底层设置菲涅尔结构层,菲涅尔结构层包括棱镜面;在至少部分棱镜面设置表面扩散层;在表面扩散层设置纳米金属镀层;在纳米金属镀层设置贴合胶层,贴合胶层填平棱镜面,菲涅尔结构层的折射率与贴合胶层的折射率相同。
在一种实施方式中,在至少部分棱镜面设置表面扩散层,包括:制备树脂膜与透明散射粒子的混合物;通过喷涂或辊涂将混合物涂覆于至少部分棱镜面以形成表面扩散层。
在一种实施方式中,在至少部分棱镜面设置表面扩散层,包括:通过物理打磨或化学蚀刻将至少部分棱镜面加工成凹凸起伏以形成表面扩散层。
相对于现有技术,本申请提供的透明投影屏幕及其制造方法,在菲涅尔结构层的棱镜面上依次设置表面扩散层和纳米金属镀层,使得棱镜面具有较大的光线散射能力,实现超短焦投影的同时,能够提高屏幕的可视角度,保证投影图像的清晰度;此外,通过折射率与菲涅尔结构层相同的贴合胶层填平棱镜面,能够减少对透过其中的环境光线的传播方向及相位的影响,使得大部分环境光线可以通过屏幕到达观察者的眼睛,提高透明投影屏幕的透明性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种透明投影屏幕的结构示意图。
图2是本申请实施例提供的一种透明投影屏幕的微观结构示意图。
图3是本申请实施例提供的一种透明投影屏幕中菲涅尔结构层的一种结构示意图。
图4是本申请实施例提供的一种透明投影屏幕中纳米镀铝层的厚度及其可见光反射率光谱。
图5是本申请实施例提供的一种透明投影屏幕中纳米镀铝层的厚度及其可见光透过率光谱。
图6是本申请实施例提供的一种透明投影屏幕中表面扩散层的散射光路图。
图7是本申请实施例提供的一种透明投影屏幕的光路图。
图8是本申请实施例提供的一种透明投影屏幕的制造方法的流程图。
具体实施方式
为了便于理解本申请实施例,下面将参照相关附图对本申请实施例进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请实施例中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
在现有的透明投影屏幕中,画面大小是由投影设备与投影屏幕之间的距离决定的,增大距离才能够增大投影画面,导致透明投影屏幕的应用场景受到限制。而超短焦投影屏幕能够在近距离进行投影,大大缩短了投影设备和投影屏幕之间的距离,增加了投影可以应用的场合。因此,本申请的申请人创造性的结合超短焦投影和透明显示技术,提出一种可适用于超短焦的透明显示屏幕,在保持屏 幕透明状态的同时,能够清晰的投影图像,具有一定的增益和视角,能够应用在家用显示屏、空间设计、展览展示以及橱窗展示等多个方面。
请一并参阅图1和图2所示,本申请实施例提供的一种透明投影屏幕100,用于接收投影光线200并透射环境光线300,透明投影屏幕100包括第一基底层51、菲涅尔结构层10、表面扩散层20、纳米金属镀层30以及贴合胶层40。
其中,菲涅尔结构层10设置于第一基底层51,菲涅尔结构层10包括棱镜面11;表面扩散层20设置于至少部分棱镜面11;纳米金属镀层30设置于表面扩散层20;贴合胶层40设置于纳米金属镀层30,并填平棱镜面11,贴合胶层40与纳米金属镀层30的折射率相同;投影光线200经第一基底层51入射至棱镜面11并被棱镜面11反射,环境光线300依次经贴合胶层40、纳米金属镀层30、表面扩散层40、第一基底层51出射。
上述实施例中,投影光线200可由投影仪400产生,表面扩散层20能够对投影光线200进行散射,纳米金属镀层30同时起到反射投影光线200和透射环境光线300的作用,使得棱镜面11具有较大的光线散射能力,即使投影仪400在短距离上投射投影光线200,也能够产生具有一定增益和视角的投影图像,保证投影图像的清晰度。同时,采用折射率与菲涅尔结构层10相同的贴合胶层40填平棱镜面11,在透明投影屏幕100背离第一基底层51的一侧形成平面,可降低对环境光线300穿过屏幕时的传播方向及相位的影响,使得大部分环境光线300可以透过屏幕到达观察者的眼睛,得到更好的透明显示效果。
需要说明的是,常规厚度的金属镀层表现为不透光,但是当金属层的厚度做到纳米级时,便能对一部分光进行反射,对一部分光进行吸收,其余部分的光则可以穿过金属层形成透射光。
在本实施例中,菲涅尔结构层10包括多个微棱镜单元13,距中心等距的多 个微棱镜单元13形成一个圆弧,多个距中心不等间距的微棱镜单元13形成多个同心圆弧(详见图6)。每个微棱镜单元13均包括第一棱镜面111、第二棱镜面112和侧面12,微棱镜单元13的纵截面,即垂直于墙体或者安装平面方向的剖面,可以为直角三角形,第一棱镜面111对应于该直角三角形的斜边,第二棱镜面112和侧面12分别对应于该直角三角形的两条直角边。在使用时,侧面12大致垂直于地平面方向,第二棱镜面112位于侧面12的下方一侧并与地平面方向相互平行,第一棱镜面111与侧面12的夹角为锐角。
在一些实施方式中,棱镜面11包括第一棱镜面111和第二棱镜面112,表面扩散层20和纳米金属镀层30依次设置于第一棱镜面111,部分投影光线100经侧面12入射至第一棱镜面111并被第一棱镜面111反射,部分投影光线100经第二棱镜面112入射至棱镜面11并被棱镜面11反射,环境光线300依次经第一棱镜面111和侧面12出射。
需要说明的是,第一棱镜面111的倾斜角,即第一棱镜面111与侧面12之间的夹角可以根据投影仪400和透明投影屏幕100的方位关系,以及观看者在所在区域进行计算,确保观看者能够得到最佳的观看体验。具体计算过程可参考现有投影显示技术,本实施例不具体限定。
在本实施例中,菲涅尔结构层10的折射率与贴合胶层40的折射率相同,菲涅耳结构层10和贴合胶层40可以选用折射率相同的透明有机材料制成,例如PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)、PMMA(polymethyl methacrylate,聚甲基丙烯酸甲酯或亚克力)等透明有机材料。
在本实施例中,第一基底层51设置于侧面12,第一基底层51的可见光透过率大于90%。作为示例的,第一基底层51可以选用PET、PMMA等透明有机材料制成。上述第一基底层51用作基底结构,由于其具有较高的可见光透过率, 因此可以保证透明投影屏幕100的透明显示效果。
在一些实施方式中,上述微棱镜单元13的纵截面大致可以为直角梯形(详见图3),侧面12对应该直角梯形的直角边,第一棱镜面111对应于该直角梯形的斜边,第二棱镜面112对应于该直角梯形的下底。在该实施方式中,菲涅尔结构层10无需额外设置基底结构,本领域技术人员可以根据需求选择性地在菲涅尔结构层10上设置第一基底层51。
在本实施例中,透明投影屏幕100还包括第二基底层52,第二基底层52设于贴合胶层40背离菲涅尔结构层10的一侧,第二基底层52的可见光透过率大于90%。作为示例的,第二基底层52可以选用PET、PMMA等透明有机材料制成。上述第二基底层52用作基底结构,由于其具有较高的可见光透过率,因此可以保证透明投影屏幕100的透明性。
需要说明的是,上述贴合胶层40对应于每个微棱镜单元13部分的纵截面可以为直角三角形、直角梯形等规图形,当贴合胶层40的横截面为直角梯形时,贴合胶层40无需额外设置基底结构,本领域技术人员可以根据需求选择性的在贴合胶层40上设置第二基底层52。
在本实施例中,透明投影屏幕100还包括第一减反层61,第一减反层61设于第一基底层51背离棱镜面11的一侧,且第一减反层61的可见光反射率小于0.6%,第一减反层61的可见光透过率大于98%。上述第一减反层61设于第一基底层51的外侧,可以减少反射光,提高透明投影屏幕100的透明性,同时提高投影画面的清晰度。
在本实施例中,透明投影屏幕100还包括第二减反层62,第二减反层62贴合于第二基底层52背离贴合胶层40的一侧,且第二减反层62的可见光反射率小于0.6%,第二减反层62的可见光透过率大于98%。上述第二减反层62设于 第二基底层52的外侧,可以减少反射光,提高透明投影屏幕100的透明性,同时提高投影画面的清晰度。
作为一种示例的,第一减反层61和第二减反层62可以是多层介质镀膜,其能够在较宽的光谱区实现较好的增透效果。
请一并参阅图4、图5和表1所示,在本实施例中,纳米金属镀层30为纳米镀铝层。根据图示可以得知,在一定范围内,随着纳米镀铝层厚度的增大,纳米镀铝层对可见光的反射率逐渐提高,对可见光的透光率逐渐下降。因此,通过控制纳米镀铝层的厚度,便能最终控制纳米镀铝层的可见光反射率和可见光透射率满足参数要求。
序号 A B C D E
铝层厚度(nm) 20 18 16 14 12
可见光平均反射率(%) 20 17.5 15 13 10.5
可见光平均透过率(%) 62 66 71 76 80
表1纳米镀铝层的厚度与可见光反射率、透过率的关系
在本实施例中,纳米金属镀层的厚度为12nm-20nm,纳米镀铝层的可见光反射率为10%-20%,纳米镀铝层的可见光透过率为60%-80%。上述规格的纳米金属镀层在保证透明投影屏幕100清晰度的同时,保证了屏幕具有良好的透明性,可以满足透明投影屏幕100的参数需求。
在其他一些实施方式中,纳米金属镀层30可以为银金属或者铝银金属组合物等其他一些金属材料制成,通过控制镀层的厚度,同样可以实现反射和透射光线的作用。
请参阅图6所示,在本实施例中,表面扩散层20用于在棱镜面11上形成光散射结构,当投影光线200到达表面扩散层20后得以向更广的方向扩散,这 样便扩大了投影图像的可视化范围,即扩大了透明投影屏幕的视角。
请参阅图7所示,在本实施例中,表面扩散层20的散射角控制在10°-40°。当散射角太小(例如小于10°)时,则屏幕的视角太小,当散射角太大(例如大于40°)时,则有可能出现全反射现象,导致部分投影光线200无法反射回来影响光效。
表面扩散层20的散射角的具体计算过程为:假设第一基底层51的折射率为n 1,空气层500的折射率为n 2,按照第一基底层51的折射率n 1为1.5-1.6,空气层500的折射率n 2为1来计算,当投影光线200的反射光从第一基底层51返回空气层500时,由于两者的折射率差异,且第一基底层51的折射率n 1大于空气层500的折射率n 2,根据折射定律n 1sinθ 1=n 2sinθ 2,可以计算出发生全反射时(θ 2=90°)θ 1的角度约为40°。
在一种实施方式中,表面扩散层包括20包括树脂膜以及分布于树脂膜中的透明散射粒子,透明扩散粒子能够对投影光线进行散射,实现表面扩散层20的散射功能。上述表面扩散层20可以采用树脂膜与透明扩散粒子的混合物涂覆在棱镜面11上再进行固化,由于涂覆表面扩散层20的工艺简单易操作,从而使得透明投影屏幕100的制造工艺简单,可降低制造成本。
其中,树脂膜的厚度可以介于1μm-10μm之间,树脂膜可以选用任意的透明树脂制成,例如聚碳酸酯、聚丙烯等等,控制树脂膜的折射率介于1.5-1.6之间即可。透明散射粒子的粒径可以介于1μm-5μm之间,透明散射粒子可以选用SiO 2粒子或PMMA粒子中的一种多种,以实现更好的折射率匹配。
可以理解的是,通过改变透明散射粒子的粒径、透明散射粒子与树脂膜的混合比例、固化温度等,可以方便地控制表面扩散层20的散射角,使得表面扩散层20的散射角可以介于10°-40°之间,以满足透明投影屏幕100的功能需求。
在本实施例中,菲涅尔结构层10和贴合胶层40的折射率可以选用1.5,使得表面扩散层20的折射率与菲涅尔结构层10、贴合胶层40的折射率基本相等,减少对透过其中的环境光线300的传播方向及相位的影响,可以进一步地提高透明投影屏幕100的透明性。
在另一种实施方式中,表面扩散层20包括呈凹凸状设置的光散射结构,该光散射结构设于棱镜面11并与菲涅尔结构层10一体成型。上述的光散射结构可以通过物理打磨或化学蚀刻等工艺在棱镜面11上直接加工成型,从而无需单独设置散射结构,降低了生产成本,且一体成型结构大大提高了菲涅尔结构层10和表面扩散层20之间的结构稳定性。
另外,该一体成型的光散射结构与菲涅尔结构层10的材料相同,可保证菲涅尔结构层10、表面扩散层20和贴合胶层40三者的折射率相等,进一步地提高透明投影屏幕100的透明性。
可以理解的是,通过改变上述光散射结构的凹凸度,例如凸起结构的高度或凹陷结构的深度等,可以控制表面扩散层20的散射角处于10°-40°之间,以满足透明投影屏幕100的功能需求。
请再次参阅图1所示,上述透明投影屏幕100在工作时,投影光线200依次经第一减反层61、第一基底层52入射至棱镜面11并被棱镜面11反射后提供到观看者的视场范围内;而环境光线300依次经第二减反层62、第二基底层52、贴合胶层40、纳米金属镀膜30、表面扩散层20、菲涅尔结构层10、第一基底层51和第一减反层61后出射,按照本申请提供的实施方式,最终透明投影屏幕100整体的可见光透过率可以达到50%以上,保证了透明投影屏幕100具有较好的透明性。
请一并参阅图1和图8所示,本申请实施例还提供一种透明透明屏幕的制 造方法,该制造方法可以包括:
步骤S10、提供第一基底层51;
步骤S20、在第一基底层51设置菲涅尔结构层10,菲涅尔结构层10包括棱镜面11;
在一些实施方式中,菲涅尔结构层10可以采用如下方法制备:通过热压或UV结构胶转印的方法,在第一基底层51上制备出菲涅尔结构层10,第一基底层51的厚度可以依据实际需要选择,作为一种示例,第一基底层51的厚度可以介于50μm-200μm之间。
步骤S30、在至少部分棱镜面11设置表面扩散层20;
在一些实施方式中,上述在至少部分棱镜面11设置表面扩散层20,包括步骤S311和步骤S312。
步骤S311、制备树脂膜与透明散射粒子的混合物;
步骤S312、通过喷涂或辊涂将混合物涂覆于至少部分棱镜面11以形成表面扩散层20。
在一些实施方式中,上述在至少部分棱镜面11设置表面扩散层20,包括步骤S321。
步骤S321、通过物理打磨或化学蚀刻将至少部分棱镜面11加工成凹凸起伏以形成表面扩散层20。
步骤S40、在表面扩散层20设置纳米金属镀层30;
在一些实施方式中,纳米金属镀层30可以为纳米镀铝层,可通过溅射镀膜的方法在表面扩散层20上镀上纳米镀铝层,纳米镀铝层的厚度可以介于12nm-20nm之间,具体数值可以视产品的参数需求选择。
步骤S50、在纳米金属镀层30设置贴合胶层40,贴合胶层40填平棱镜面 11。其中,可在纳米金属镀层30上直接涂覆贴合胶制成贴合胶层40。
在一些实施方式中,上述透明投影屏幕的制造方法,还可以包括步骤S60。
步骤S60、在贴合胶层40背离菲涅尔结构层10的一侧设置第二基底层52。其中,贴合胶层40提供粘合力,可将第二基底层52直接贴合于贴合胶层40。
在一些实施方式中,上述透明投影屏幕的制造方法,还可以包括步骤S71至步骤S72。
步骤S71、在第一基底层51背离棱镜面11的一侧设置第一减反层61。
在一些实施方式中,第一减反层61可以选用多层介质镀膜,可通过溅射镀膜的方法在第一基底层51镀上多层介质镀膜,以形成第一减反层61。
步骤S72、在第二基底层52背离贴合胶层40的一侧设置第二减反层62。
在一些实施方式中,第二减反层62可以选用多层介质镀膜,可通过溅射镀膜的方法在第二基底层52镀上多层介质镀膜,以形成第二减反层62。
上述制造方法获得的透明投影屏幕100结构稳定,且操作简单,成本较低。
综上所述,上述的透明投影屏幕100及其制造方法,在至少部分棱镜面11上依次设置表面扩散层20和纳米金属镀层30,使得棱镜面11具有较大的光线散射能力,实现超短焦投影的同时,提高屏幕的可视角度,保证投影图像的清晰度。同时,通过折射率与菲涅尔结构层10相同的贴合胶层40填平棱镜面11,能够减少对透过其中的环境光线300的传播方向及相位的影响,使得大部分环境光线300可以通过屏幕到达观察者的眼睛,提高透明投影屏幕100的透明性。此外,该透明投影屏幕100结构简单,无需单独提供电源,方便使用。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进, 这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种透明投影屏幕,用于接收投影光线并透射环境光线,其特征在于,所述透明投影屏幕包括:
    第一基底层和设置于所述第一基底层的菲涅尔结构层,所述菲涅尔结构层包括棱镜面;
    表面扩散层,设置于至少部分所述棱镜面;
    纳米金属镀层,设置于所述表面扩散层;以及,
    贴合胶层,所述贴合胶层设置于所述纳米金属镀层,并填平所述棱镜面,所述菲涅尔结构层的折射率与所述贴合胶层的折射率相同;所述投影光线经所述第一基底层入射至所述棱镜面并被所述棱镜面反射,所述环境光线依次经所述贴合胶层、所述纳米金属镀层、所述表面扩散层、所述第一基底层出射。
  2. 根据权利要求1所述的透明投影屏幕,其特征在于,所述纳米金属镀层为纳米镀铝层。
  3. 根据权利要求2所述的透明投影屏幕,其特征在于,所述纳米镀铝层的厚度为12nm-20nm,所述纳米镀铝层的可见光反射率为10%-20%,所述纳米镀铝层的可见光透过率为60%-80%。
  4. 根据权利要求1所述的透明投影屏幕,其特征在于,所述表面扩散层的散射角为10°-40°。
  5. 根据权利要求1所述的透明投影屏幕,其特征在于,所述表面扩散层包括树脂膜以及分布于所述树脂膜中的透明散射粒子。
  6. 根据权利要求5所述的透明投影屏幕,其特征在于,所述树脂膜的厚度为1μm-10μm,所述树脂膜的折射率为1.5-1.6,所述透明散射粒子的粒径为1μm-5μm。
  7. 根据权利要求1所述的透明投影屏幕,其特征在于,所述表面扩散层包括表面凹凸起伏设置的光散射结构,所述光散射结构设于所述棱镜面并与所述菲涅尔结构层一体成型。
  8. 根据权利要求1所述的透明投影屏幕,其特征在于,所述菲涅尔结构层和所述贴合胶层的折射率均为1.5。
  9. 根据权利要求1所述的透明投影屏幕,其特征在于,所述第一基底层的可见光透过率大于90%。
  10. 根据权利要求1所述的透明投影屏幕,其特征在于,所述透明投影屏幕还包括第一减反层,所述第一减反层设于所述第一基底层背离所述棱镜面的一侧,所述第一减反层的可见光反射率小于0.6%,所述第一减反层的可见光透过率大于98%。
  11. 根据权利要求1所述的透明投影屏幕,其特征在于,所述透明投影屏幕还包括第二基底层,所述第二基底层设于所述贴合胶层背离所述涅菲尔结构层的一侧,所述第二基底层的可见光透过率大于90%。
  12. 根据权利要求11所述的透明投影屏幕,其特征在于,所述透明投影屏幕还包括第二减反层,所述第二减反层贴合于所述第二基底层背离所述贴合胶层的一侧,所述第二减反层的可见光反射率小于0.6%,所述第二减反层的可见光透过率大于98%。
  13. 一种透明投影屏幕的制造方法,其特征在于,包括:
    提供第一基底层;
    在所述第一基底层设置菲涅尔结构层,所述菲涅尔结构层包括棱镜面;
    在至少部分所述棱镜面设置表面扩散层;
    在所述表面扩散层设置纳米金属镀层;
    在所述纳米金属镀层设置贴合胶层,所述贴合胶层填平所述棱镜面,所述菲涅尔结构层的折射率与所述贴合胶层的折射率相同。
  14. 根据权利要求13所述的制造方法,其特征在于,所述在至少部分所述棱镜面设置表面扩散层,包括:
    制备树脂膜与透明散射粒子的混合物;
    通过喷涂或辊涂将所述混合物涂覆于至少部分所述棱镜面以形成所述表面扩散层。
  15. 根据权利要求13所述的制造方法,其特征在于,所述在至少部分所述棱镜面设置表面扩散层,包括:
    通过物理打磨或化学蚀刻将至少部分所述棱镜面加工成凹凸起伏以形成所述表面扩散层。
PCT/CN2020/142124 2020-02-28 2020-12-31 透明投影屏幕及其制造方法 WO2021169597A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/891,489 US20220390823A1 (en) 2020-02-28 2022-08-19 Transparent projection screen, and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010131577.1 2020-02-28
CN202010131577.1A CN113325660A (zh) 2020-02-28 2020-02-28 透明投影屏幕及其制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/891,489 Continuation US20220390823A1 (en) 2020-02-28 2022-08-19 Transparent projection screen, and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2021169597A1 true WO2021169597A1 (zh) 2021-09-02

Family

ID=77412887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142124 WO2021169597A1 (zh) 2020-02-28 2020-12-31 透明投影屏幕及其制造方法

Country Status (3)

Country Link
US (1) US20220390823A1 (zh)
CN (1) CN113325660A (zh)
WO (1) WO2021169597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220390823A1 (en) * 2020-02-28 2022-12-08 Appotronics Corporation Limited Transparent projection screen, and manufacturing method for same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859505A (zh) * 2021-03-12 2021-05-28 江苏集萃智能液晶科技有限公司 一种高清晰透明投影膜、制备方法及应用其的投影系统
CN114509910A (zh) * 2022-01-27 2022-05-17 峰米(重庆)创新科技有限公司 一种背投式触控显示屏幕和投影系统
WO2024040481A1 (zh) * 2022-08-24 2024-02-29 华为技术有限公司 光学组件、投影显示介质、光学系统及运载工具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341407A (ja) * 2003-05-19 2004-12-02 Sony Corp スクリーン及びその製造方法
CN104777708A (zh) * 2014-01-15 2015-07-15 Lg电子株式会社 反射屏幕、具有反射屏幕的显示器和制造反射屏幕的方法
US20150370156A1 (en) * 2013-04-01 2015-12-24 Lg Electronics Inc. Screen for reflective projector
CN105204283A (zh) * 2014-06-25 2015-12-30 宇葳科技股份有限公司 可穿透及反射的光学投影膜、其制造方法及投影荧幕
CN107102509A (zh) * 2016-02-19 2017-08-29 中强光电股份有限公司 投影屏幕
CN108153102A (zh) * 2016-12-05 2018-06-12 深圳市光峰光电技术有限公司 投影屏幕及其制造方法
CN110297387A (zh) * 2018-03-22 2019-10-01 深圳光峰科技股份有限公司 屏幕和投影系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208557A (ja) * 2003-12-25 2005-08-04 Arisawa Mfg Co Ltd 反射型スクリーン
JP2005208558A (ja) * 2003-12-25 2005-08-04 Arisawa Mfg Co Ltd 反射型スクリーン
US9030736B2 (en) * 2012-09-28 2015-05-12 Dai Nippon Printing Co., Ltd. Reflection screen and image display system
CN104298063B (zh) * 2014-10-24 2017-03-29 苏州大学 透明投影屏幕
CN110244508B (zh) * 2018-03-09 2021-12-10 深圳光峰科技股份有限公司 屏幕和投影系统
CN112180672A (zh) * 2019-07-05 2021-01-05 深圳光峰科技股份有限公司 一种投影屏幕
CN113325660A (zh) * 2020-02-28 2021-08-31 深圳光峰科技股份有限公司 透明投影屏幕及其制造方法
CN112859505A (zh) * 2021-03-12 2021-05-28 江苏集萃智能液晶科技有限公司 一种高清晰透明投影膜、制备方法及应用其的投影系统
CN114509910A (zh) * 2022-01-27 2022-05-17 峰米(重庆)创新科技有限公司 一种背投式触控显示屏幕和投影系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341407A (ja) * 2003-05-19 2004-12-02 Sony Corp スクリーン及びその製造方法
US20150370156A1 (en) * 2013-04-01 2015-12-24 Lg Electronics Inc. Screen for reflective projector
CN104777708A (zh) * 2014-01-15 2015-07-15 Lg电子株式会社 反射屏幕、具有反射屏幕的显示器和制造反射屏幕的方法
CN105204283A (zh) * 2014-06-25 2015-12-30 宇葳科技股份有限公司 可穿透及反射的光学投影膜、其制造方法及投影荧幕
CN107102509A (zh) * 2016-02-19 2017-08-29 中强光电股份有限公司 投影屏幕
CN108153102A (zh) * 2016-12-05 2018-06-12 深圳市光峰光电技术有限公司 投影屏幕及其制造方法
CN110297387A (zh) * 2018-03-22 2019-10-01 深圳光峰科技股份有限公司 屏幕和投影系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220390823A1 (en) * 2020-02-28 2022-12-08 Appotronics Corporation Limited Transparent projection screen, and manufacturing method for same

Also Published As

Publication number Publication date
US20220390823A1 (en) 2022-12-08
CN113325660A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2021169597A1 (zh) 透明投影屏幕及其制造方法
US6822792B2 (en) Sheet for use for projection screen, light diffusion sheet and projection screen
CN104298063B (zh) 透明投影屏幕
TWI243609B (en) Screen
CN110850674A (zh) 投影屏幕及投影系统
CN111538204A (zh) 一种反射型投影屏幕及投影系统
CN110824826A (zh) 投影屏幕及投影系统
JP2015060193A (ja) 反射型スクリーン、および、映像表示システム
JP6167315B2 (ja) スクリーン及び映像表示システム
KR101170009B1 (ko) 근거리 영상투사를 위한 칠판 겸용 무반사 유리스크린 및 그 제조방법
WO2021147577A1 (zh) 屏幕及其制备方法、投影系统
CN106405699A (zh) 定向光反射元件、锥形辊筒及投影屏幕
US11762275B2 (en) Projection screen and projection system
CN111624844A (zh) 一种光学投影屏幕及投影系统
CN105652580B (zh) 一种透明投影膜以及应用该透明投影膜的投影屏幕
WO2018166177A1 (zh) 透明显示装置
JP5849440B2 (ja) 反射型スクリーン、及び反射型投射システム
CN110928130A (zh) 投影屏幕及投影系统
JP2015200863A (ja) 反射スクリーン、映像表示システム、反射スクリーンの製造方法
US20160363744A1 (en) Optical element and display apparatus
CN111624843B (zh) 一种光学投影屏幕及投影系统
JP2021177252A (ja) スクリーン及び映像表示システム
JP6164000B2 (ja) 透過型スクリーン、および、映像表示システム
CN110928133A (zh) 投影屏幕及投影系统
JP2020187311A (ja) 反射スクリーン、映像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920929

Country of ref document: EP

Kind code of ref document: A1