WO2019227937A1 - 菲涅尔屏幕 - Google Patents

菲涅尔屏幕 Download PDF

Info

Publication number
WO2019227937A1
WO2019227937A1 PCT/CN2019/070531 CN2019070531W WO2019227937A1 WO 2019227937 A1 WO2019227937 A1 WO 2019227937A1 CN 2019070531 W CN2019070531 W CN 2019070531W WO 2019227937 A1 WO2019227937 A1 WO 2019227937A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
substrate
fresnel screen
reflective layer
screen according
Prior art date
Application number
PCT/CN2019/070531
Other languages
English (en)
French (fr)
Inventor
王霖
胡飞
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019227937A1 publication Critical patent/WO2019227937A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens

Definitions

  • the invention relates to a Fresnel screen.
  • the traditional white screen used for ultra-short-focus projection is susceptible to interference from ambient light. For example, in a brightly lit environment in a living room, the contrast of the screen picture is low and the colors cannot be displayed well.
  • the wire grid screen in the prior art improves the contrast of the projection screen by forming a light absorbing layer on one side and a reflective layer on the other side of the wire grid microstructure on the screen surface.
  • the present invention proposes a Fresnel anti-light screen, which has a simple structure and has good light resistance to ambient light, and is particularly suitable for the production and application of Fresnel screens with large sizes. It can improve the yield and reduce the cost, and at the same time can ensure that the screen has better visual effects.
  • a Fresnel screen which includes: a substrate; a microstructure formed on a first surface of the substrate; and a reflective layer formed on the microstructure, wherein, The reflectance of the reflective layer is in a range of 10% to 35%, and preferably in a range of 20 to 25%.
  • the present invention can avoid the "ghost image" phenomenon generated in the prior art, and can have the characteristics of high gain, high contrast, and high uniformity.
  • FIG. 1 is a front view of a ring-shaped Fresnel reflection structure.
  • FIG. 2 is a schematic diagram illustrating the roughness of the surface of the reflective layer.
  • FIG. 3 is a cross-sectional view showing a structure of a Fresnel screen of Embodiment 1 in the present invention.
  • FIG. 4 illustrates the principle of the Fresnel screen having the structure shown in FIG. 3 for collimating light from a projector.
  • FIG. 5 illustrates the relationship between the radius of the microstructure in the Fresnel screen and the angle of incidence ⁇ and the angle of emitted light ⁇ .
  • FIG. 6 is a cross-sectional view showing a structure of a Fresnel screen according to Embodiment 2 of the present invention.
  • FIG. 7 illustrates the structure of a modification of the Fresnel screen shown in FIG. 8.
  • FIG. 8 illustrates the principle of a Fresnel screen having the structure shown in FIG. 6 for collimating light from a projector.
  • FIG. 9 is a cross-sectional view showing a structure of a Fresnel screen according to Embodiment 3 of the present invention.
  • Figures 11a-e show how microstructures and substrates are combined.
  • Fig. 12a shows a structure in which a black absorbing material layer is pasted on the back surface of a substrate.
  • Fig. 12b shows a structure in which a black absorbing material layer is sprayed on the back surface of the substrate.
  • Figure 1 shows a ring-shaped Fresnel reflection structure.
  • the horizontal direction is the left-right direction of the screen
  • the vertical direction is the vertical direction of the screen.
  • the microstructure is composed of multiple concentric rings.
  • a reflective film is formed on the surface of the microstructure as shown in FIG. 1, and the reflective film is formed by mixing a reflective material, a diffusing material, and an absorbing material together with auxiliary materials such as adhesive glue.
  • the reflectivity is 10% to 35%
  • the scattering angle is ⁇ 10 degrees to ⁇ 45 degrees
  • the thickness of the reflective layer is about 1/10 to 1/5 of the microstructure pitch, and it is relatively uniformly attached to the surface of the microstructure.
  • the microstructure spacing refers to the distance between adjacent geometric shapes repeatedly formed in the microstructure in a cross-sectional view. For example, taking FIG. 3 for explaining a cross-sectional view of Embodiment 1 in the present invention as an example, the distance d between repeated portions in two adjacent geometric shapes for forming a microstructure in the figure is a microstructure pitch.
  • the reflectance of the reflective film is set in a range of 10% to 35%, and preferably in a range of 20 to 25%.
  • reducing the reflectivity of the paint will reduce the reflection of projector light and ambient light at the same time, that is, reduce the gain of diffuse reflection.
  • the viewing angle of diffuse reflection is ⁇ 60 degrees
  • the reflectivity is 100%, a screen effect with a gain of 1.0 can be achieved, and when the reflectance of the screen is reduced to 25%, the gain of diffuse reflection is the highest. Is 0.25.
  • the microstructure in the present invention can still generate a gain of about 1.0, and the reflective layer of the present invention can achieve a scattering angle of ⁇ 10 to ⁇ 45 degrees, the screen gain is improved by compressing the viewing angle.
  • a scattering angle of ⁇ 20 to 30 degrees can already meet the viewing needs of ordinary families. Therefore, the microstructure in the present invention increases the gain of the reflective layer having a reflectance in the range of 10% to 35% to a level greater than 1.0 by adding a diffusing material.
  • the scattering angle of the reflective layer is relatively small.
  • the invention can improve the screen's anti-ambient light contrast, effectively reduce the Fresnel screen's reflection of ambient light while ensuring the light gain within the range of the Fresnel screen's scattering angle.
  • the reflective layer includes the following reflective materials, absorbing materials, and diffusing materials:
  • Reflective material aluminum sheet, aluminum powder, silver powder and other metal reflective materials
  • Black absorbing materials organic pigments (azo etc.) and inorganic pigments (such as carbon black, graphite, metal oxides, etc.);
  • Diffusion material epoxy, acrylic or silicone organic resin particles, or other inorganic scattering materials.
  • the reflective layer contains a certain proportion of a mixture of aluminum flakes and aluminum powder, it can form a certain diffusion effect on incident light.
  • the reflection layer makes the scattering angle of the incident light in a range of ⁇ 10 to ⁇ 45 degrees.
  • the reflective layer may further include auxiliary materials and solvents.
  • the auxiliary materials and solvents include: a mixture of a leveling agent, a wetting agent, and a defoaming agent in a certain proportion, and the mixture is used to increase the coating effect; Proportions of anhydrous acetone, anhydrous xylene, anhydrous cyclohexanone, anhydrous methyl ethyl ketone, a mixture of ethyl acetate, anhydrous ethyl acetate and the like.
  • the surface of the reflective layer has uneven topographical features, that is, the surface of the reflective layer has a certain surface roughness, and further the surface roughness may be in a range of 1 to 50 microns. This prevents the surface from being dazzled by the specular reflection caused by the Fresnel screen, thereby eliminating the phenomenon of "ghosting" of the ceiling of the Fresnel screen.
  • a rough surface can be obtained on the surface of the reflective layer by, for example, the following method:
  • the material forming the reflective layer is first spray-coated on the microstructure, and then subjected to surface roughening treatment such as chemical etching and sand blasting.
  • the reflective layer In order not to change the tilt angle of the microstructure and thus maintain the collimation characteristics of the microstructure, it is necessary to make the reflective layer be uniformly coated on the surface of the microstructure.
  • the thickness of the reflective layer ranges from 10 to 30 microns, and generally does not exceed 1/5 of the microstructure spacing.
  • the reflective layer can be coated on the surface of the microstructure by spraying, screen printing, printing, etc., and the thickness of the reflective layer can be precisely controlled.
  • the three embodiments described below can have the relevant features in the Fresnel screen described above, such as the reflectivity of the reflective film is 10% to 35%, and the scattering angle is ⁇ 10 to 45 degrees. The details of the embodiments are not described in detail below.
  • FIG. 3 shows a configuration of a Fresnel screen of Embodiment 1 in the present invention.
  • the vertical direction is the up and down direction of the screen
  • the horizontal direction is the front and back direction of the screen
  • the projector light is on the side of the screen facing the viewer.
  • a microstructure 2 is formed on the side of the substrate 1 facing the viewer, and a reflective layer 3 is formed on the surface of the microstructure.
  • the light from the projector is incident on the reflective layer 3 and reflected into the field of view of the audience.
  • the microstructure 2 can be formed on the substrate 1 by a method such as hot embossing or UV glue transfer.
  • the substrate 1 can be made of organic materials such as PET, PC, PVC, PMMA, etc., and is made by extrusion.
  • the reflective layer 3 is uniformly coated on the surface of the microstructure 2 by spraying, screen printing, printing or the like.
  • FIG. 4 The principle of the Fresnel screen having the structure shown in FIG. 3 for collimating light from a projector is illustrated in FIG. 4.
  • is the angle of incident light of the projector
  • is the angle of emitted light of the projector
  • ⁇ 1 is the inclination angle of the first incident surface in the microstructure
  • ⁇ 2 is the inclination of the second incidence surface in the microstructure angle.
  • FIG. 5 is a distribution of a projector placed
  • ⁇ 2 is a fixed angle
  • the angle range of ⁇ 1 ranges from 5 degrees to 50 degrees, and preferably, the angle of ⁇ 1 is variable in gradient.
  • the inclination angle ⁇ 2 of the second incident surface of the microstructure is generally in the range of 70 degrees to 90 degrees, so that it will not reflect the incident light of the projector, and will not reflect the ambient light into the field of view of the audience.
  • Figure 5 illustrates the relationship between the radius of the microstructure and the tilt angle of the microstructure in the Fresnel screen. According to FIG. 5, when the relative position of the projector and the screen is fixed, in order to optimize the reflection of the projection light, as the microstructure radius increases, the tilt angle ⁇ 1 also increases accordingly.
  • FIG. 6 shows a configuration of a Fresnel screen of Embodiment 2 in the present invention.
  • the difference from the structure in Example 1 shown in FIG. 3 is that a surface diffusion structure is formed on the incident surface of the projector light in the substrate of this embodiment, and the microstructure and the reflective layer formed thereon are formed in the substrate. In the surface opposite to the surface diffusion structure.
  • the Fresnel screen shown in FIG. 6 the light of the projector passes through the surface diffusion structure and the substrate, so as to be incident on the reflective film of the microstructure, and is reflected into the field of view of the audience through the reflective film.
  • a method of hot embossing or UV glue transfer can be used to form a microstructure and a surface diffusion structure on the two surfaces of the substrate, respectively.
  • the substrate can be made of organic materials such as PET, PC, PVC, PMMA.
  • the reflective layer is uniformly coated on the surface of the microstructure by spraying, screen printing, printing and the like.
  • the surface diffusion structure can be formed on the substrate by embossing, sandblasting or chemical etching.
  • the surface diffusion structure on the screen surface also has a certain roughness Ra, for example, the roughness Ra is in the range of 0.5-50 micrometers, so as to control the final field angle of the screen within the range of ⁇ 20-45 degrees.
  • the Fresnel screen in Embodiment 2 may also have a modified structure shown in FIG. 7.
  • the modified structure is formed by making the microstructure and the surface diffusion structure on separate first and second substrates respectively, and then bonding the two substrates together by UV glue or thermosetting glue.
  • FIG. 8 The principle of the Fresnel screen with the structure shown in FIG. 6 for collimating light from a projector is explained in FIG. 8.
  • is the angle of the incident light of the projector in the substrate
  • is the angle of the outgoing light of the projector in the substrate
  • ⁇ 1 is the tilt angle of the first incident surface in the microstructure
  • ⁇ 2 is the micro
  • the refractive index of the substrate is n 2 .
  • the inclination angle ⁇ 1 of the first incident surface is as follows:
  • the inclination angle ⁇ 2 of the second incident surface of the microstructure is generally in the range of 70 degrees to 90 degrees, so that it will not reflect the incident light of the projector, and will not reflect the ambient light into the field of view of the audience.
  • the distribution of the tilt angle of the first incident surface of the microstructure with the radius can be calculated. This distribution is the same as the distribution shown in FIG. 5 in Embodiment 1, so the relevant description is omitted.
  • FIG. 9 shows a configuration of a Fresnel screen of Embodiment 3 in the present invention.
  • the difference from the structure in Embodiment 1 shown in FIG. 3 is that in the Fresnel screen shown in FIG. 9, the reflective layer is uniformly coated only on the first reflecting surface of the microstructure by using a selective exposure process. In the area illuminated by the projection light.
  • the reflective layer in Example 3 does not completely cover the first reflective surface and the second reflective surface of the microstructure, but is only coated on the top position of the first reflective surface.
  • the second reflective surface of the reflective microstructure may cause a part of the ambient light to be reflected back into the field of view of the audience. May reduce picture contrast.
  • the Fresnel screen in Embodiment 3 further reduces the reflectivity of the second reflecting surface in the microstructure.
  • FIGS. 10a-d illustrate the process of forming the Fresnel screen:
  • microstructures are formed on the surface of the black substrate by means of embossing or UV glue transfer;
  • a reflective layer is uniformly formed by coating on the surface of the microstructure.
  • the reflective layer has a reflectivity of 10 to 35% and a thickness of 1/5 to 1/10 of the microstructure pitch.
  • the reflective layer is a non-cured reflective layer;
  • ultraviolet or blue light for curing glue is projected from projectors having the same throw ratio to cure the non-cured reflective layer in FIG. 10b. Due to the mutual blocking of the first reflective surface and the second reflective surface of the microstructure, the second reflective surface is not irradiated with curing light, so only the non-cured reflective layer in the area irradiated on the first reflective surface is cured. ;
  • the glue can be cleaned by a solvent such as ethanol, ethyl ester, or methyl ethyl ketone, so as to leave the cured reflective layer on the first reflective surface.
  • a solvent such as ethanol, ethyl ester, or methyl ethyl ketone
  • Example 3 in addition to the beneficial effects such as improving the screen contrast in Examples 1 and 2 and eliminating the phenomenon of "ghosting" of the ceiling caused by the specular Fresnel reflection, it is also possible to reduce the second reflecting surface in the microstructure. The reflectivity further improves the screen contrast.
  • the incident light that enters the microstructure and the substrate of the screen can be absorbed in the following ways:
  • the microstructure is formed on a transparent, black, or gray substrate surface.
  • the black and gray substrate can further absorb the incident light entering the microstructure and the substrate of the screen, while the transparent substrate can make the incident light exit from the back of the screen opposite to the viewing side, so as not to affect the contrast of the screen.
  • the black or gray base material can be doped with black absorbing material particles, such as organic pigments (azo, etc.) and inorganic pigments (eg, carbon black, graphite, metal oxides, etc.) in a transparent base material.
  • black absorbing material particles such as organic pigments (azo, etc.) and inorganic pigments (eg, carbon black, graphite, metal oxides, etc.) in a transparent base material.
  • Figures 11a-e show various combinations of microstructures and substrates.
  • Figure 11a uses a combination of black reflective microstructures and a black substrate
  • Figure 11b uses a combination of gray reflective microstructures and a gray substrate
  • Figure 11c uses a combination of transparent reflective microstructures and a transparent substrate
  • Figure 11d uses a black reflective microstructure and a transparent substrate
  • Figure 11e uses a combination of a transparent reflective microstructure and a black substrate.
  • the combination of the reflective microstructure and the substrate in the present invention is not limited to that shown in FIGS. 11 a-e, but various combinations of black, gray, and transparent reflective microstructures and the substrate can be used.
  • the substrate may be a gray substrate or a transparent substrate
  • the microstructure may be a gray microstructure or a transparent microstructure
  • the microstructure is formed by hot embossing, the microstructure and the base material have the same color; if the microstructure is formed by UV glue transfer, a black absorbing material needs to be doped in the UV glue.
  • a black absorbing material needs to be doped in the UV glue.
  • it is an organic pigment (such as azo) or an inorganic pigment (such as carbon black, graphite, metal oxide, etc.).
  • both the microstructure and the substrate may be made of a transparent material, and then a black absorbent material layer may be pasted or sprayed on the back surface of the substrate opposite to the side where the microstructure is formed.
  • Fig. 12a shows a structure in which a black absorbing material layer is pasted on the back surface of the substrate
  • Fig. 12b shows a structure in which a black absorbing material layer is sprayed on the back surface of the substrate.
  • Embodiments 2 and 3 can adopt the technical features described in Embodiment 1.
  • Embodiment 3 a combination of a substrate and a microstructure in FIG. 11 may be adopted, and a structure in which a black absorbing material layer is pasted or sprayed in FIG. 7 may also be adopted.
  • the relationship between the radius of the microstructure and the angle of incidence ⁇ and the angle of emitted light ⁇ is the same as that shown in FIG. 5.
  • the materials and methods for forming the substrate, the reflective microstructure, and the reflective layer in Embodiments 2 and 3 can adopt the features described in Embodiment 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种菲涅尔屏幕,包括:基底(1);微结构(2),形成在基底(1)的第一表面上;和反射层(3),形成在微结构(2)上,其中,反射层(3)的反射率在10%~35%的范围内,优选为在20~25%的范围内。

Description

菲涅尔屏幕 技术领域
本发明涉及一种菲涅尔屏幕。
背景技术
在使用超短焦投影时,用于进行超短焦投影的传统白色屏幕容易受到环境光的干扰。例如,在客厅灯光明亮的环境下,使得屏幕画面的对比度较低,不能很好地展示色彩。
为了提高画面的对比度,就需要降低屏幕对环境光的反射,同时还需要使屏幕尽量保持一定的光增益。现有技术中的线栅屏幕通过在屏幕表面的线栅微结构中一面形成吸光层、另一面形成反射层的方式来改善投影屏幕对比度。
但是具有上述线栅微结构的线栅屏幕不能使投影机的光线获得很好的准直特性,同时其屏幕表面上采用的白色朗伯散射涂层降低了屏幕的增益,因此改善对比度的效果非常有限。
虽然现有技术中也存在采用菲涅尔反射结构的屏幕,但该结构很容易在天花板产生由于反射导致的“鬼影”现象,会影响用户的观看体验。
发明内容
为解决上述课题,本发明提出了一种菲涅尔抗光屏慕,其结构简单且对环境光具有很好的抗光特性,尤其适于具有大尺寸的菲涅尔屏幕的生产及应用,能够提高良品率并降低成本,同时能够保证屏幕具有较佳的视觉效果。
在本发明的第一方面提供一种菲涅尔屏幕,其包括:基底;微结构,其形成在所述基底的第一表面上;和反射层,其形成在所述微结构上,其中,所述反射层的反射率在10%~35%的范围内,优选为在20~25%的范围内。
本发明通过具有上述结构的菲涅尔屏幕,能够避免现有技术中所产生的“鬼影”现象,而且能够具有高增益、高对比度和高均匀性的特征。
附图说明
图1是环形的菲涅尔反射结构的正视图。
图2是说明反射层表面的粗糙度的示意图。
图3是本发明中实施例1的菲涅尔屏幕的构造的剖视图。
图4说明具有图3所示结构的菲涅尔屏幕用于对投影机光线进行准直的原理。
图5说明菲涅尔屏幕中微结构的半径与入射角度α和出射光线角度β之间的关系。
图6是本发明中实施例2的菲涅尔屏幕的构造的剖视图。
图7说明图8所示菲涅尔屏幕的变型例结构。
图8是说明具有图6所示结构的菲涅尔屏幕用于对投影机光线进行准直的原理。
图9是本发明中实施例3的菲涅尔屏幕的构造的剖视图。
图10a-d说明形成实施例3中菲涅尔屏幕的工艺过程。
图11a-e示出微结构与基底的组合方式。
图12a示出在基底背面粘贴黑色吸收材料层的结构。
图12b示出在基底背面喷涂黑色吸收材料层的结构。
具体实施方式
下面,将参照附图详细说明根据本发明的各具体实施例。需要强调的是,附图中的所有尺寸仅是示意性的并且不一定是按照真实比例图示的,因而不具有限定性。例如,应当理解,图示中的微结构、反射膜等组件的尺寸、比例等参数并不是按照实际的尺寸和比例示出的,仅是为了图示方便,但不是用于限定本发明的具体范围。
图1示出了环形的菲涅尔反射结构。在图1中,水平方向为屏幕的左右方向,垂直方向为屏幕的上下方向。如图1所示,该微结构由多个同心的环形构成。
在本发明的菲涅尔屏幕中,在如图1所示的微结构表面上形成有反 射膜,该反射膜由反射材料、扩散材料和吸收材料加上粘接胶水等辅助原料混合而成,其反射率为10%~35%,散射角度为±10度~±45度,该反射层的厚度约为微结构间距的1/10~1/5并且相对均匀地附着在微结构的表面上。其中,微结构间距指的是在剖视图中,微结构中重复形成的相邻几何形状之间的距离。例如,以用于说明本发明中实施例1剖视图的图3为例,在图中两个用于形成微结构的相邻几何形状中重复部分之间的距离d为微结构间距。
首先,在本发明中,为了提高环境光的对比度,将反射膜的反射率设置为在10%~35%的范围内,优选为20~25%的范围内。然而,降低涂料的反射率会同时降低对投影机光线和环境光的反射,即降低漫反射的增益。具体来说,漫反射的观看视角为±60度时,如果反射率为100%,则能够实现增益为1.0的屏幕效果,而当屏幕的反射率降为25%的时候,漫反射的增益最高为0.25。因此为了使本发明中的微结构仍然能够产生1.0左右的增益,另外本发明的反射层可实现±10~±45度的散射角度,因此通过压缩可视角的方式来提高屏幕增益。对于观看电视的观看者来说,±20~30度的散射角度已经能够满足一般家庭的观看需求。因此,本发明中的微结构通过添加扩散材料的方法,将具有10%~35%范围内反射率的反射层的增益提高到大于1.0的水平,另一方面,由于大部分环境光来自于天花板,而本发明中反射层的散射角度比较小,大角度的环境入射光线会被微结构表面的反射层反射向地板的方向,而不会通过漫反射而进入到观众的视场内,因此本发明能够提高屏幕的抗环境光对比度,在保证了菲涅尔屏幕散射角度范围内光增益的同时有效的降低菲涅尔屏幕对环境光的反射。
为了实现具有上述10%~35%反射率范围且散射角度为±10~±45度的反射层,该反射层包含了如下反射材料、吸收材料和扩散材料:
反射材料:铝片、铝粉、银粉等金属反射材料;
黑色吸收材料:有机颜料(偶氮等)及无机颜料(例如炭黑、石墨,金属氧化物等);
扩散材料:环氧系、丙烯酸系或者硅酮系的有机树脂颗粒,或者其 他无机的散射材料。
由于反射层中包含一定比例的铝片和铝粉的混合体,会对入射光线形成一定的扩散效果。反射层使入射光线的散射角度处于在±10~±45度的范围。
另外,反射层中还可包括有辅助原料和溶剂,该辅助原料和溶剂包含:具有一定比例的流平剂、润湿剂与消泡剂等混合物,该混合物用于增加涂布效果;具有一定比例的无水丙酮、无水二甲苯、无水环已酮、无水丁酮、乙酸乙酯和无水醋酸丁醋等的混合物等。
另外,如图2所示,该反射层的表面具有凹凸不平的形貌特征,即该反射层的表面具有一定的表面粗糙度,进一步表面粗糙度可以在1~50微米的范围内。使得该表面不会因菲涅尔屏幕产生镜面反射造成的炫光,从而消除由于该菲涅尔屏幕的天花板“鬼影”现象。
在本发明中,例如可通过下述方法在反射层的表面上获得粗糙表面:
在形成反射层的材料中掺杂一定比例的大尺寸散射颗粒或者吸收颗粒,然后将该材料喷涂在微结构表面上,当该材料的溶剂挥发后就能够形成粗糙的表面;或者
先将形成反射层的材料喷涂在微结构上,然后进行化学腐蚀、喷砂等表面粗糙化处理。
为了不改变微结构的倾斜角度,从而保持该微结构的准直特性,需要使反射层被厚度均匀地涂覆在该微结构的表面上。反射层的厚度范围在10~30微米范围内,一般不超过微结构间距的1/5。例如,可以通过喷涂、丝网印刷、打印等方式将反射层涂覆在微结构的表面,并精确控制该反射层的厚度。
在下文中,通过三个具体实施例来说明在菲涅尔反射结构表面上形成有反射膜的菲涅尔屏幕的具体构造。然而本领域技术人员应当明白,该具体实施例仅用于说明本发明中菲涅尔屏幕的原理,而不是用于限制本发明。
而且,下文中所述的三个实施例中都能够具有上述菲涅尔屏幕中的 相关特征,例如反射膜的反射率为10%~35%、散射角度为±10~45度等特征,因此在下文具体描述实施例时不在赘述。
实施例1
图3示出了本发明中实施例1的菲涅尔屏幕的构造。在图3中,垂直方向为屏幕的上下方向,水平方向为屏幕的前后方向,投影机光线所处的为屏幕中朝向观看者的一侧。
如图3所示,微结构2形成在基底1中朝向观看者的一侧上,且反射层3形成在微结构的表面上。投影机光线入射到反射层3上,并反射到观众的视场中。
在形成上述菲涅尔屏幕时,可采用热压印或者UV胶水转印的方法在基底1上形成微结构2。基底1可采用PET、PC、PVC、PMMA等有机材料,并通过挤出方式制成。通过喷涂、丝网印刷、打印等方式将反射层3均匀地涂覆在微结构2的表面上。
在图4中说明具有图3所示结构的菲涅尔屏幕用于对投影机光线进行准直的原理。如图4所示,α为投影机的入射光线角度,β为投影机的出射光线角度,θ 1为微结构中第一入射面的倾斜角度,θ 2为微结构中第二入射面的倾斜角度。图5为一种投影机摆放下的分布,θ 2为一个固定角度,θ 1的角度范围在5度~50度的范围内变化,其中优选θ 1的角度是梯度可变的。
投影机的入射角度α和出射光线角度β已知的情况下,根据反射定律得到第一入射面的倾斜角度θ 1如下:
θ 1=(α-β)/2   (1)
微结构第二入射面倾斜角度θ 2一般在70度~90度的范围内,由此既不会反射投影机的入射光线,同时不会将环境光线反射到观众的视场中。
当投影机和屏幕的相对位置固定的情况下,可以计算微结构第一入射面的倾斜角度随着半径的分布。图5说明了菲涅尔屏幕中微结构的半径与微结构倾斜角度的关系。根据图5可以看出,当投影机和屏幕的相 对位置固定的情况下,为了使投影光的反射最优化,随着微结构半径的增大,倾斜角度θ 1也相应地增大。
实施例2
图6示出了本发明中实施例2的菲涅尔屏幕的构造。与图3中所示的实施例1中结构不同之处在于,本实施方式基底中投影机光线的入射面上形成有表面扩散结构,且微结构及其上所形成的反射层形成在基底中与该表面扩散结构相反的表面中。在图6所示的菲涅尔屏幕中,投影机光线穿过表面扩散结构和基底,从而入射到微结构的反射膜上,通过反射膜反射到观众视场中。
在本发明中,在形成上述菲涅尔屏幕时,可采用热压印或者UV胶水转印的方法在基底的两个表面上分别形成微结构和表面扩散结构。基底可采用PET、PC、PVC、PMMA等有机材料。通过喷涂、丝网印刷、打印等方式将反射层均匀地涂覆在微结构的表面上。可通过压印复制、喷砂或者化学腐蚀等方法将表面扩散结构形成在基底上。
此外,屏幕表面上的表面扩散结构也具有一定的粗糙度Ra,例如粗糙度Ra在0.5~50微米的范围,从而将屏幕最终的视场角度控制在±20~45度的范围内。
另外,除了图6所示的结构,实施例2中的菲涅尔屏幕还可以具有图7所示的变型例结构。该变型例结构通过下述方式形成:将微结构和表面扩散结构分别制作在单独的第一基底和第二基底上,然后通过UV胶水或热固胶水将两个基底贴合在一起。
在图8中说明具有图6所示结构的菲涅尔屏幕用于对投影机光线进行准直的原理。如图8所示,α为投影机的入射光线在基底中的角度,β为投影机的出射光线在基底中的角度,θ 1为微结构中第一入射面的倾斜角度,θ 2为微结构中第二入射面的倾斜角度,其中,环境光线所处的环境的折射率为n 1,基底的折射率为n 2
投影机的入射角度α和反射到观众视场中光线的角度β已知的情况下,
根据反射定律得到第一入射面的倾斜角度θ 1如下:
θ 1=(α-β)/2   (1)
微结构第二入射面倾斜角度θ 2一般在70度~90度的范围内,由此既不会反射投影机的入射光线,同时不会将环境光线反射到观众的视场中。
当投影机和屏幕的相对位置固定的情况下,可以计算微结构第一入射面的倾斜角度随着半径的分布。该分布与实施例1中图5所示的分布情况相同,因此省略了相关描述。
实施例3
图9示出了本发明中实施例3的菲涅尔屏幕的构造。与图3中所示的实施例1中结构不同之处在于,在图9所示的菲涅尔屏幕中,利用选择性曝光工艺将反射层均匀地仅涂覆在微结构的第一反射面中被投影光照射的区域中。
例如,在实施例3中的反射层并没有全部覆盖微结构的第一反射面和第二反射面,而是只涂覆在第一反射面中的顶端位置。
由于实施例3中的菲涅尔屏幕用于对投影机光线进行准直的原理等于实施例1中相同,因此不再赘述。
在实施例1所示的结构中,当反射层被均匀地涂敷在微结构的表面时,该反射微结构的第二反射面可能会使一部分环境光线反射回到观众的视场中,因而可能降低画面的对比度。为解决该问题,实施例3中的菲涅尔屏幕进一步降低了微结构中第二反射面的反射率。
图10a-d说明了形成该菲涅尔屏幕的工艺过程:
在图10a中,通过压印或者UV胶水转印的方式,在黑色基底的表面上形成微结构;
在图10b中,通过在微结构表面上涂覆,均匀地形成反射层,该反射层的反射率为10~35%,厚度为微结构间距的1/5到1/10,此时的该反射层为非固化的反射层;
在图10c中,从具有相同投射比的投影机中投射出用于固化胶水的紫外或者蓝光,以固化图10b中非固化的反射层。由于微结构的第一反 射面和第二反射面的相互遮挡,该第二反射面上没有受到固化光线的照射,因此只有在第一反射面上受到照射的区域中的非固化反射层发生固化;
在图10d中,胶水可以通过诸如乙醇、乙酯或者丁酮等溶剂清洗没有固化的反射层,从而在第一反射面上保留经过固化的反射层。
在实施例3中除了能够获得例如实施例1和2中提高屏幕对比度、消除由于该镜面菲涅尔反射造成的天花板“鬼影”现象等有益效果,还能够通过降低微结构中第二反射面的反射率,进一步提高屏幕对比度。
另外,以上述实施例1-3为例,由于本发明中所采用的反射层的反射率较低,一部分入射光线会透过该反射层而进入微结构和屏幕的基底中。如果不把这部分光线吸收,则该光线还有可能通过其他反射光路而进入到观众视场中,从而影响画面的清晰。
为解决该问题,在本发明中可通过下述方式吸收进入微结构和屏幕的基底的入射光线:
方式1
将微结构形成在透明、黑色或者灰色的基底表面。由于黑色和灰色的基底能够进一步吸收进入微结构和屏幕的基底的入射光线,而透明的基底能够使该入射光线从屏幕中与观看侧相反的背面出射,从而不会影响屏幕的对比度。
其中,黑色或者灰色的基底材料可以通过在透明基底材料中掺杂黑色吸收材料颗粒,比如有机颜料(偶氮等)及无机颜料(例如炭黑、石墨,金属氧化物等)。
图11a-e示出了微结构与基底的各种组合方式。图11a中采用黑色反射微结构与黑色基底的组合,图11b采用灰色反射微结构与灰色基底的组合,图11c采用透明反射微结构与透明基底的组合,图11d采用黑色反射微结构与透明基底的组合,图11e采用透明反射微结构与黑色基底的组合。
但本发明中反射微结构与基底的组合方式并不限于图11a-e中所示, 而是可以采用各种黑色、灰色、透明的反射微结构与基底的组合方式。
在此需要说明的是,在实施例2中,基底可采用灰色基底或透明基底,微结构可采用灰色微结构或透明微结构。
如果采用热压印的方法形成微结构,则微结构和基底材料具有相同的颜色;如果采用UV胶水转印的方法形成微结构,需要在配置UV胶水中掺杂黑色的吸收材料,该吸收材料例如为有机颜料(偶氮等)或无机颜料(例如炭黑、石墨,金属氧化物等)。
方式2
在使用方式1时,如果通过UV胶水转印的方法形成微结构,含有染料的UV胶水或者基底材料的附着力和生产车间的清洁度不容易控制。
因此,在方式2中,可将微结构和基底都采用透明的材料制成,然后在基底中与形成有该微结构相反一侧的背面上粘贴或者喷涂黑色的吸收材料层。图12a中示出了在基底背面粘贴黑色吸收材料层的结构,在图12b中示出了在基底背面喷涂黑色吸收材料层的结构。
在此需要说明的是,为使说明书更加简洁明了,在描述实施例2和3时,仅具体描述了与实施例1中不同之处。但本领域技术人员应当明白,对于省略的部分,实施例2和3可以采用与实施例1中所描述的技术特征。
例如实施例3中可以采用图11中基底和微结构的组合方式,也可以采用图7中粘贴或喷涂黑色吸收材料层的结构。此外,其微结构的半径与入射角度α和出射光线角度β之间的关系与图5中所示相同。
例如实施例2和3中形成基底、反射微结构、反射层等的材料和方式,都可以采用实施例1中所述的特征。
上述示例仅用于说明而不是限制,本领域技术人员能够简单地明白如何结合实施例1-3中的相关特征。
本领域技术人员应当理解,依据设计要求和其他因素,可以在本发明随附的权利要求或其等同物的范围内进行各种修改、组合、次组合以及改变。

Claims (13)

  1. 一种菲涅尔屏幕,其包括:
    基底;
    微结构,其形成在所述基底的第一表面上;和
    反射层,其形成在所述微结构上,
    其中,所述反射层的反射率在10%~35%的范围内,优选为在20~25%的范围内。
  2. 如权利要求1所述的菲涅尔屏幕,其中,所述第一表面为所述基底的朝向观看者的表面。
  3. 如权利要求1所述的菲涅尔屏幕,其中,所述第一表面为所述基底的背向观看者的表面,且所述菲涅尔屏幕还包括表面扩散结构,所述表面扩散结构形成在所述基底的朝向观看者的表面上。
  4. 如权利要求1所述的菲涅尔屏幕,其中,仅在所述微结构中被投影光照射的区域中形成所述反射层。
  5. 如权利要求1-4中任一权利要求所述的菲涅尔屏幕,其中,所述反射层的表面的粗糙度在1~50微米的范围内。
  6. 如权利要求1-4中任一权利要求所述的菲涅尔屏幕,其中,所述反射层的厚度在10~30微米范围内。
  7. 如权利要求1-4中任一权利要求所述的菲涅尔屏幕,其中,所述反射层包括反射材料、扩散材料和吸收材料,所述反射材料为铝片、铝粉、银粉等金属反射材料,所述吸收材料为有机颜料或无机颜料,且所述扩散材料为环氧系、丙烯酸系或者硅酮系的有机树脂颗粒,或者为无机散射材料。
  8. 如权利要求1-4中任一权利要求所述的菲涅尔屏幕,其中,所述反射层的散射角度为±10度~±45度。
  9. 如权利要求2或4所述的菲涅尔屏幕,其中,所述基底为黑色基底、灰色基底或透明基底,且所述微结构为黑色微结构、灰色微结构或透明微结构,其中通过在形成所述基底的材料中掺杂黑色吸收材料而形成黑色基底或灰色基底,通过在形成所述微结构的材料中掺杂黑色吸收材料而形成黑色微结构或灰色微结构。
  10. 如权利要求3所述的菲涅尔屏幕,其中,所述基底为灰色基底或透明基底,且所述微结构为灰色微结构或透明微结构,其中通过在形成所述基底的材料中掺杂黑色吸收材料而形成灰色基底,通过在形成所述微结构的材料中掺杂黑色吸收材料而形成灰色微结构。
  11. 如权利要求2或4所述的菲涅尔屏幕,其中,在所述基底中与形成有所述微结构的表面相反的表面上粘贴或喷涂有黑色吸收材料层。
  12. 如权利要求3所述的菲涅尔屏幕,其中,所述表面扩散结构的粗糙度在0.5-50微米的范围内。
  13. 如权利要求1-4中任一权利要求所述的菲涅尔屏幕,其中,所述反射层的厚度均匀且为所述微结构的间距的1/10~1/5。
PCT/CN2019/070531 2018-05-31 2019-01-05 菲涅尔屏幕 WO2019227937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810547479.9A CN110554559B (zh) 2018-05-31 2018-05-31 菲涅尔屏幕
CN201810547479.9 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019227937A1 true WO2019227937A1 (zh) 2019-12-05

Family

ID=68698638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070531 WO2019227937A1 (zh) 2018-05-31 2019-01-05 菲涅尔屏幕

Country Status (2)

Country Link
CN (1) CN110554559B (zh)
WO (1) WO2019227937A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946987B (zh) * 2019-12-11 2022-05-31 四川尚视科技有限公司 一种基于菲涅尔透镜的高增益激光抗光屏幕的制备方法
CN113219776A (zh) * 2020-01-17 2021-08-06 深圳光峰科技股份有限公司 一种投影屏幕以及投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1680870A (zh) * 2004-04-09 2005-10-12 精工电子有限公司 屏幕以及使用其的图像投影系统
CN1693989A (zh) * 2004-05-07 2005-11-09 株式会社有泽制作所 反射式屏幕
CN101512433A (zh) * 2005-11-23 2009-08-19 石井房雄 高对比度投影屏
US20140092471A1 (en) * 2012-09-28 2014-04-03 Dai Nippon Printing Co., Ltd. Reflection screen and image display system
CN107102509A (zh) * 2016-02-19 2017-08-29 中强光电股份有限公司 投影屏幕
CN107102508A (zh) * 2017-07-10 2017-08-29 成都恒坤光显材料科技有限公司 一种超广角短焦距正投影屏幕

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1680870A (zh) * 2004-04-09 2005-10-12 精工电子有限公司 屏幕以及使用其的图像投影系统
CN1693989A (zh) * 2004-05-07 2005-11-09 株式会社有泽制作所 反射式屏幕
CN101512433A (zh) * 2005-11-23 2009-08-19 石井房雄 高对比度投影屏
US20140092471A1 (en) * 2012-09-28 2014-04-03 Dai Nippon Printing Co., Ltd. Reflection screen and image display system
CN107102509A (zh) * 2016-02-19 2017-08-29 中强光电股份有限公司 投影屏幕
CN107102508A (zh) * 2017-07-10 2017-08-29 成都恒坤光显材料科技有限公司 一种超广角短焦距正投影屏幕

Also Published As

Publication number Publication date
CN110554559A (zh) 2019-12-10
CN110554559B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
TWI385467B (zh) Optical projection screen
WO2018103480A1 (zh) 投影屏幕及其制造方法
US8218236B2 (en) Projection screen and manufacturing method thereof
US9720312B2 (en) Projection screen and manufacturing method of projection screen
US8649090B2 (en) Rear-projection screen for ultra short throw projector
CN104777708A (zh) 反射屏幕、具有反射屏幕的显示器和制造反射屏幕的方法
WO2020114224A1 (zh) 投影屏幕和投影系统
WO2021147577A1 (zh) 屏幕及其制备方法、投影系统
WO2019227937A1 (zh) 菲涅尔屏幕
JP2006023693A (ja) 反射型スクリーン
WO2019227936A1 (zh) 一种高对比度反射屏幕
JP6398450B2 (ja) 反射スクリーン、映像表示システム
CN209765259U (zh) 投影屏幕
CN110908234B (zh) 固化胶及其投影屏幕
JP2010139804A (ja) スクリーン
JP2006119318A (ja) 光拡散層、透過型スクリーン、光拡散層形成用塗布液、および透過型スクリーンの製造方法
JP2006023342A (ja) 投影用スクリーン及びこれを用いた画像投影システム
JP2016151649A (ja) 反射スクリーン、映像表示システム
JP6510798B2 (ja) 反射スクリーン、映像表示システム
WO2020007056A1 (zh) 投影屏幕
JP6638503B2 (ja) 反射スクリーン、映像表示システム
JP2007133209A (ja) 表面保護シートおよび透過型スクリーン
JP2020187311A (ja) 反射スクリーン、映像表示システム
JP2004302005A (ja) 透過型スクリーン
JP2004077781A (ja) 拡散フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811728

Country of ref document: EP

Kind code of ref document: A1