WO2018103480A1 - 投影屏幕及其制造方法 - Google Patents

投影屏幕及其制造方法 Download PDF

Info

Publication number
WO2018103480A1
WO2018103480A1 PCT/CN2017/109316 CN2017109316W WO2018103480A1 WO 2018103480 A1 WO2018103480 A1 WO 2018103480A1 CN 2017109316 W CN2017109316 W CN 2017109316W WO 2018103480 A1 WO2018103480 A1 WO 2018103480A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fresnel structure
projection screen
reflective
light
Prior art date
Application number
PCT/CN2017/109316
Other languages
English (en)
French (fr)
Inventor
胡飞
张红秀
郭祖强
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to EP17877997.1A priority Critical patent/EP3550360B1/en
Priority to US16/466,631 priority patent/US10719005B2/en
Publication of WO2018103480A1 publication Critical patent/WO2018103480A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/604Polarised screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter

Definitions

  • the present invention relates to a projection screen and a method of fabricating the same.
  • Projectors are currently widely used as image projection devices to project images onto a projection screen.
  • the projector displays a color image by concentrating the light from the light source onto a spatial light modulator such as a DMD (Digital Micromirror Device) or Lcos.
  • a spatial light modulator such as a DMD (Digital Micromirror Device) or Lcos.
  • the projection screen tends to make the projection light emitted by the projector more relative to the projection screen than the conventional projection system. Large angle of incidence. Therefore, in response to the large incident angle and the requirement for higher image quality, a reflective projection screen can be used, and how to provide a reflective projection with high light utilization efficiency, good uniformity, easy operation, and low cost can be provided.
  • the screen is a subject worth studying.
  • a projection screen for receiving projection light of a projector and providing a projection image to a viewer comprising a base layer, a cylindrical lens layer formed on a side of the base layer adjacent to a viewer, forming a Fresnel structure on a side of the base layer facing away from the viewer, a reflective layer formed on a side of the Fresnel structure away from the base layer, and a reflection layer formed away from the Fresnel structure a light absorbing layer on one side, the reflective layer comprising reflective particles and an adhesive bonded to the reflective particles, the reflective layer being used
  • the incident light incident from the Fresnel structure is scattered and reflected in a stereoscopic angle range corresponding to the particle diameter of the reflective particle to form reflected light
  • the cylindrical lens layer includes a plurality of cylindrical lenses.
  • the axis of the cylindrical lens is perpendicular to a horizontal direction, and the cylindrical lens scatters light emitted by the Fresnel structure to increase a viewing angle of the projection screen in a horizontal direction, and the light absorbing layer is configured to absorb Ambient light passing through the reflective layer.
  • the particle size of the reflective particles is in the range of 0.02 to 5 ⁇ m, and the stereoscopic angle varies correspondingly within a range of 5 to 15 degrees.
  • the reflective particles comprise one, two or more of metallic silver particles, metallic aluminum particles, metallic platinum particles, metallic palladium particles.
  • the thickness of the reflective layer is greater than or equal to 1 ⁇ m.
  • the cylindrical lens has a width in the range of 100 ⁇ m to 500 ⁇ m.
  • the Fresnel structure includes a plurality of prism structures arranged in a concentric annular shape, and the heights of the plurality of prisms gradually follow a direction pointing to a center of the concentric ring Decreasing, and the inclination angle of the plurality of prism structures gradually increases in a direction toward the center of the concentric annular ring.
  • the cylindrical lens scatters light emitted by the Fresnel structure such that the scattered light is within a preset horizontal angle range, and the preset horizontal angle is between 25 degrees and 35 degrees. In the range.
  • the material of the base layer comprises a resin and a coloring agent added to the resin, the coloring agent absorbing at least a portion of ambient light.
  • a method of manufacturing a projection screen comprising the steps of:
  • step of forming a reflective layer on a side of the Fresnel structure away from the base layer comprises:
  • the step of forming a Fresnel structure on one side of the base layer comprises:
  • the resin layer is cured to form the Fresnel structure.
  • the step of forming a cylindrical lens layer on the other side of the base layer includes: coating a cylindrical lens material layer on the other side of the base layer, which will contain a mold of the cylindrical lens layer structure is transferred on the cylindrical lens material layer in a Roll To Roll manner to form the plurality of cylindrical lenses;
  • the reflective layer can control the reflected light to be scattered within a certain preset stereoscopic angle range, and the light efficiency and uniformity of the projection screen can be improved, and the scattered light is further
  • the cylindrical lens layer of the projection screen is further scattered, so that the emitted light is more uniform, the contrast is improved, and glare is avoided.
  • the cylindrical lens layer can expand the horizontal viewing angle without expanding the vertical viewing angle, thereby optimizing the viewing angle of the screen and improving the utilization of light energy.
  • the reflective layer is further provided with a light absorbing layer for absorbing ambient light transmitted through the reflective layer, so that the contrast of the image displayed on the projection screen can be improved.
  • the reflective layer and the light absorbing layer completely cover the entire thread surface of the Fresnel structure in order, the projection screen can absorb ambient light in various directions, thereby improving the contrast of the projected image.
  • the dyed base layer can also enhance the absorption of ambient light and improve the contrast of the projected image.
  • the reflective layer may be coated on the Fresnel structure by using a mixture of reflective particles and a binder, and then cured, because the process of coating the reflective layer is simple and easy to operate, thereby making the The manufacturing process of the projection screen is simple, and the manufacturing cost can be reduced.
  • the light absorbing layer may also be coated on the reflective layer by applying a light absorbing material to be cured, which also has the advantages of simple process and low manufacturing cost.
  • the surface roughness and particle size of the reflective layer are controlled by changing the particle size of the reflective particles of the reflective layer, the mixing ratio of the reflective particles to the binder, the curing light wavelength, the heat curing temperature, and the like.
  • the scattering angle of the reflected light can be controlled to make the reflected light within the preset stereoscopic angle range to improve the light efficiency and uniformity, and the reflective layer obtained by the above process is not easy to fall off, the operation is simple, and the cost is low.
  • the projection screen can also achieve light propagation. It can be precisely controlled so that the projected image of the projection screen is better.
  • the projection screen obtained by the above manufacturing method also has the advantage of being curlable and easy to transport.
  • 1 is a schematic structural view of a projection screen.
  • FIG. 2 is a schematic structural view of a projection screen of the present invention applied to a projection system
  • FIG. 3 is a partial perspective structural view of the projection screen shown in FIG. 2.
  • FIG. 4 is a schematic diagram of parameter calculation of the Fresnel structure shown in FIG. 2.
  • FIG. 5 is a process schematic diagram of a rigid mold for processing a Fresnel structure as described in FIG. 2 by machining a cylinder with an ultra-precision diamond lathe.
  • FIG. 6 is a schematic perspective view of a stereoscopic angle range of reflected light of the reflective layer shown in FIG. 2.
  • FIG. 7 is a flow chart of a method of manufacturing the projection screen shown in FIG. 2.
  • the ambient light has a great influence on the quality of the projected image, such as reducing the image contrast, and the high-intensity projector can reduce the influence of the ambient light on the quality of the projected image, and improve the contrast, but the high light intensity
  • the projector does not save energy first, and more importantly, it is easy to cause glare due to uneven light.
  • the front projection screen there are mainly the following ways to improve the contrast of the front projection screen: 1) selectively coating the light absorption layer in a specific region of the Fresnel structure of the reflective screen; 2) causing ambient light to be fully emitted inside the screen; 3) Using the active layer to reflect or absorb light of different polarization states; and 4) providing a light absorbing structure such as a dye layer in a transparent structure of the screen such as a scattering layer.
  • the first two methods are limited to the angle of incidence of ambient light, only The ambient light incident in a directional direction can be fully absorbed; and the polarization projection in the third mode reduces the quality of the displayed image, and can only reduce the ambient light by half, which is difficult to manufacture and costly.
  • the last one is usually implemented together with the first three, and there are also technical problems such as incomplete absorption of ambient light, difficulty in production, and high cost in the above three modes.
  • the position of the viewer is often relatively fixed. It is desirable for the projection system to display reflected light from the image on the projection screen to be reflected only to the viewer area, while the reflected light from other inactive areas is reduced, thereby increasing the efficiency of the projection system and increasing the brightness of the image on the projection screen.
  • the exit angle of the reflected light actually has an exit angle in both the horizontal and vertical directions, wherein the viewing angle in the horizontal direction is larger than the vertical direction.
  • a random microstructure to the surface of the projection screen by physical (such as shot peening) or chemical (such as etching), and use a certain control method to count the gain of the microstructure to a certain exit angle, thereby achieving micro utilization.
  • the structure controls the angle of exit of the reflected light.
  • the morphology, distribution and size of the microstructure in the above method are not easily controlled, and the above microstructure also has a problem of difficulty in processing.
  • the structure formed by the spraying method is Gaussian scattering of light, and the angle of light scattering cannot be well controlled.
  • the film formed by the coating method has a problem that it is easy to fall off.
  • a side of the projection screen surface adjacent to the viewer is a light shielding layer, and the surface of the light shielding layer has parallel horizontally extending micro ribs.
  • the micro ribs have a triangular cross section, and the upper surface of the micro ribs is coated with a light shielding layer.
  • the reflective structural unit of the screen On the side of the light shielding layer facing away from the viewer is the reflective structural unit of the screen.
  • the projection screen can only absorb the light beam incident from above the projection screen, and when the incident light is projected from other directions to the projection screen, the horizontal micro ribs can not absorb the ambient light well, which is disadvantageous for improving Light utilization and contrast.
  • FIG. 1 is a cross-sectional view of the projection screen, and the projection screen includes light transmission.
  • a base layer 1 a Fresnel structure 2 located on the back side of the base layer 1, a reflecting surface 4 on the side of the Fresnel structure 2 away from the base layer, and a side facing the viewer of the base layer 1
  • the cylindrical lens layer 3 is diffused in the horizontal direction. Light from the projector 6 is reflected by the reflective surface 4 through the base layer 1 to the area where the viewer is located.
  • Projection Ambient light above the screen passes through the base layer 1 and is reflected by the reflective layer 4 to be totally reflected on one surface 5 of the base layer 1 and finally absorbed by the colored base layer 1.
  • the absorption of ambient light is mainly based on the occurrence of full emission on the surface 5 of the base layer 1, the incident angle of the ambient light absorbable by the base layer 1 is limited, that is, there are many environments that do not conform to the incident angle.
  • the technical solution is also disadvantageous for the improvement of light utilization efficiency and contrast.
  • the projection screen is a protective layer, a diffusion layer, a base layer, and a Fresnel from the projector side to the rear. a lens layer, a reflective layer and a protective layer coated on the inclined surface of the Fresnel lens layer.
  • the preparation process of the reflective layer is briefly described as follows: a metal film is formed on the resin by a vacuum coating method, the resin layer is removed and the metal film is pulverized, and the aspect ratio of the metal piece is adjusted by controlling the degree of pulverization, after the pulverization
  • the metal sheet is mixed with a binder to form a solution, which is then sprayed on the surface of the Fresnel lens and evaporated to form a reflective layer.
  • the manufacturing method of the above reflective layer is complicated, and in particular, the aspect ratio of the metal piece is difficult to control.
  • the diffusion layer is formed by coating a diffusion bead on the surface of the resin.
  • the disadvantage of this method is that both the diffusion layer and the base layer use an adhesive, and more bonding interfaces affect light propagation, that is, light propagation. It has an adverse effect and reduces the image quality.
  • the uniformity of the diffusion bead coating and the size of the diffusion bead are difficult to control, and the diffusion layer formed by the above method has the same effect on the light in the vertical and horizontal directions, and cannot function.
  • the effect of simply expanding the viewing angle in the horizontal direction shows that the manufacturing method of the above-mentioned reflective layer is complicated and costly, and the technical problem that the projection screen has poor imaging quality by the above manufacturing method is obtained.
  • FIG. 2 is a schematic structural view of the projection screen 10 of the present invention applied to the projection system 40
  • FIG. 3 is a partial perspective structural view of the projection screen 10 of FIG.
  • the projection screen 10 includes a base layer 101, a cylindrical lens layer 100 formed on the side of the base layer 101 adjacent to the viewer 30, and a Fresnel structure formed on the side of the base layer 101 facing away from the viewer 30. 102.
  • a reflective layer 103 formed on a side of the Fresnel structure 102 away from the base layer, and a light absorbing layer 106 formed on a side of the reflective layer 103 away from the Fresnel structure 102.
  • the base layer 101 may include a resin material such as polycarbonate (such as urethane acrylate resin), and may be directly made of a black resin material or a light transmissive resin material. Made by dyeing. Specifically, in one embodiment, a coloring agent such as carbon black may be added to the light transmissive resin material of the base layer 101 so that the base layer 101 can absorb ambient light.
  • a coloring agent such as carbon black may be added to the light transmissive resin material of the base layer 101 so that the base layer 101 can absorb ambient light.
  • the thickness of the base layer 101 can be selected according to actual needs. In the embodiment, the thickness of the base layer 101 is greater than 100 ⁇ m.
  • the base layer 101 may be prepared in the following manner: providing a Linyi base layer, wherein the Linyi base layer may be a PET film having a smooth surface; The base layer is coated with a dyed translucent resin material, wherein the dyed translucent resin material may be added with a coloring agent in the translucent resin material, such as injecting carbon black into the urethane acrylate resin, Increasing the light absorption rate to 20%, the dyed light transmissive resin material may have a coating thickness greater than ⁇ ; curing the dyed light transmissive resin material to form the base layer 101; and removing the ⁇ base layer.
  • a coloring agent in the translucent resin material such as injecting carbon black into the urethane acrylate resin, Increasing the light absorption rate to 20%, the dyed light transmissive resin material may have a coating thickness greater than ⁇ ; curing the dyed light transmissive resin material to form the base layer 101; and removing the ⁇ base layer.
  • the cylindrical lens layer 100 includes a plurality of cylindrical lenses 100a for scattering light emitted by the Fresnel structure 102 to improve visibility of the projection screen 10 in a horizontal direction. angle.
  • the axis of the cylindrical lens 100a is perpendicular to the ground.
  • the axis of the cylindrical lens 100a is perpendicular to the horizontal direction X, and the plurality of cylindrical lenses 100a are sequentially connected.
  • the cylindrical lens 100a scatters light emitted by the Fresnel structure 102 such that the scattered light is perpendicular to a direction perpendicular to the lenticular lens 100a and a predetermined horizontal angle range H
  • the preset horizontal angle is in the range of 25 to 35 degrees. It can be understood that the preset horizontal angle range H is within a horizontal angle range which is at a vertex of the incident point P1 in a horizontal plane perpendicular to the extending direction of the lenticular lens 100a.
  • the cylindrical lens 100a may have a width in the range of 100 ⁇ m to 500 ⁇ m, i.e., ⁇ or more and 500 ⁇ or less.
  • forming the cylindrical lens layer 100 on the base layer 101 may include the following steps: coating a cylindrical lens material layer on the other side of the base layer 101 And transferring a mold containing the cylindrical lens layer structure on the cylindrical lens material layer in a Roll To Roll manner to form the plurality of cylindrical lenses 100a; and curing the cylindrical lens material layer to The plurality of lenticular lenses 100a are formed.
  • the cylindrical lens material may be a photocurable material (such as UV curable adhesive).
  • the Fresnel structure 102 includes a curved surface and a thread surface opposite to the light surface.
  • the smooth surface of the Fresnel structure 102 is closely placed with the base layer 101.
  • one side of the thread surface of the Fresnel structure 102 includes a plurality of prism structures, and the plurality of prism structures are all facing away from the
  • the side of the base layer 101 is convex on one side, and has a right-angled triangle in a cross section perpendicular to the direction in which the prism extends.
  • the right triangle section includes a first right angle side adjacent to the base layer 101, a second right angle side 105 perpendicular to the first right angle side, and a connection between the first right angle side and the second right side edge 105
  • the oblique side 104, the angle between the second right angle side 105 and the oblique side 104 is set to an inclination angle oci (the Fresnel structure 102 is comprised of n prism structures, n is a natural number, i Is a natural number greater than or equal to 1 and less than or equal to n).
  • the plurality of prism structures are all circular arcs and arranged in a concentric annular shape, and the widths of the plurality of prism structures are equal (that is, the length L of the first right angle side may be greater than or equal to ⁇ ) , but the height of the plurality of prism structures (ie, the length of the second right-angled side) may be along the direction of the center of the concentric ring
  • the direction (e.g., in the direction from the top to the bottom of the projection screen 10) is gradually decreased, so that the inclination angle an of the plurality of prism structures can be gradually increased in the direction ⁇ .
  • forming the Fresnel structure 102 on the base layer 101 may include the following steps: [0085] Calculating the Fresnel structure according to the orientation relationship between the projector 20 and the projection screen 10 in the projection system 40 102 parameters;
  • a resin layer is coated on one side of the base layer 101, and a soft mold containing a Fresnel structure is pressed according to Roll To
  • the material of the resin layer may be a UV curable adhesive
  • the resin layer is cured to form the Fresnel structure 102.
  • FIG. 4 is a schematic diagram of parameter calculation of the Fresnel structure 102.
  • the widths of the plurality of prism structures are all equal (ie, the length L of the first right-angled side, as may be equal to ⁇ ), and the second right angle perpendicular to the base layer 101
  • the length of the side 105 is decremented in a direction ⁇ pointing to the center of the concentric circle (e.g., from below the projection screen 10 from the projection screen 10).
  • the rigid mold may be processed by using a super-precision diamond lathe on the bottom surface of a cylinder 50 (it is understood that the cylinder 50 material may be brass but not limited to brass). Formed by a circular Fresnel structure. The radius of the cylinder 50 can be schematically illustrated in accordance with FIG.
  • r 2+( c+e ) 2 r is the radius of the outermost prism structure
  • c is the height of the projection screen 10
  • d is one-half of the width of the projection screen 10
  • e is the bottom margin of the projection screen 10 from Fresnel The distance from the center of the ring, wherein the radius of the cylinder 50 is r + 10 cm.
  • the projection screen 10 is a widescreen screen with an aspect ratio of 16:9
  • V represents the size of the projection screen 10
  • (b+e) represents the bottom edge of the projection screen 10. The vertical distance of the projector 20.
  • a flexible mold the mold having a rigid Fresnel structure according to Figure 5 constantly pressed against the flexible mold shown in
  • the flexible mold may be rolled and wound on a rotatable shaft.
  • the flexible mold has a width of 125 cm and a long length.
  • the maximum length that can be achieved by the prior art can be obtained, and the thickness can be from 1 mm to 3 mm. Within the range, such as the range of 1.5mm to 2.5 mm. It can be understood that the material of the soft mold can be silica gel.
  • the reflective layer 103 completely covers the surface of the Fresnel structure 102 away from the side of the base layer 101, that is, the surface where the second right-angled side 105 and the oblique side 104 are covered.
  • the thickness of the reflective layer 103 is uniform, so that a Fresnel structure is also formed on a side away from the Fresnel structure 102.
  • the thickness of the reflective layer 103 may be greater than or equal to 1 ⁇ m.
  • the reflective layer 103 includes reflective particles 1031 and an adhesive 1 032 bonded to the reflective particles 1031. As shown in FIG. 6, the reflective layer 103 scatters and reflects incident light incident from the Fresnel structure 102 in a three-dimensional angular range F corresponding to the particle diameter of the reflective particles 1031 to form reflected light.
  • the solid angle changes in a range of 5 to 15 degrees.
  • the solid angle range F may be a cone angle range defined by the main reflected light R of the incident light I.
  • the main reflected light R is a reflected light having a plane ⁇ where the incident point ⁇ 2 is located. It can be understood that the reflected light caused by the irregular surface of the incident point ⁇ 2 includes not only the main reflected light.
  • the direction in which R is located also includes reflected light R' in other directions of the solid angle range F.
  • the reflective particles 1031 include one, two or more of metallic silver particles, metal aluminum particles, metal platinum particles, and metal palladium particles.
  • the particle size of the reflective particles is in the range of 0.02 to 5 ⁇ m.
  • the binder material may be epoxy resin, ruthenium, silica gel or the like, and the binder material does not need to be dyed. Need It is to be noted that when the reflective particles 1031 include metallic silver particles, in order to prevent the water-blocking ability of the reflective layer 103 from being poor, the adhesive material is not recommended to use silica gel.
  • the step of forming the reflective layer 103 on the side of the Fresnel structure 102 away from the base layer 101 includes:
  • the mixture of the reflective particles 1031 and the binder 132 is cured by photocuring or heat curing to form the reflective layer 103.
  • the particle size of the reflective particles 1031 (silver powder or aluminum powder) and the reflective particles 1031 can be adjusted.
  • the bonding agent 1032 mixing ratio, coating thickness, photocuring wavelength, heat curing temperature, curing time, processing of the thread surface of the Fresnel structure 102, etc., adjusting the surface roughness of the cured reflective layer 103 The degree of particle size, thereby controlling the scattering angle of the reflected light of the reflective layer 103, such that the reflective layer 103 reflects the incident light within a stereoscopic angular range F such as (a certain controllable cone angle).
  • the light absorbing layer 106 completely covers the surface of the reflective layer 103 away from the Fresnel structure 102.
  • the material of the light absorbing layer 106 may be a carbon black material for absorbing ambient light transmitted through the reflective layer 103. , improve image contrast. It can be understood that the light absorbing layer 106 can also be coated on the side of the reflective layer 103 away from the Fresnel structure 102 by a light-absorbing material (such as a carbon black material) in a simple and easy-to-handle coating process.
  • the side of the light absorbing layer 106 away from the reflective layer 103 may be planarized to form a plane.
  • the projection system 40 is operative, the projector 20 emits projection light to the projection screen 10, and the projection light is sequentially passed through the cylindrical lens layer 100,
  • the base layer 101 and the Fresnel structure 102 reach the reflective layer 103, and the reflective particles 1031 in the reflective layer 103 dissipate and reflect the projection light to form reflected light, and control the reflected light in the Presetting a stereoscopic angular range F, the reflected light is sequentially supplied to the viewer 30 via the Fresnel structure 102, the base layer 101, and further scattered by the cylindrical lens layer 100 in a horizontal direction.
  • FIG. 7 is a flowchart of a method of manufacturing the projection screen 10 shown in FIG. 2. Manufacturing method of the projection screen 10 The following steps SI, S2, S3, S4 and S5 are included.
  • Step S1 providing a base layer.
  • the base layer 101 may be prepared by: providing a Linyi base layer, wherein the Linyi base layer may be a PET film having a smooth surface; The dyed translucent resin material is coated thereon, wherein the dyed translucent resin material may be added with a coloring agent in the translucent resin material, such as injecting carbon black into the urethane urethane resin to absorb ambient light.
  • the dyed translucent resin material may have a coating thickness greater than ⁇ ; curing the dyed translucent resin material to form the base layer 101; and removing the Linfen base layer.
  • Step S2 forming a Fresnel structure 102 on the side of the base layer 101.
  • the step of forming the Fresnel structure 102 on the side of the base layer 101 includes:
  • the parameters of the Fresnel structure 102 are calculated according to the orientation relationship of the projector 20 and the projection screen 10 in the projection system;
  • a resin layer is coated on one side of the base layer 101, and a soft mold containing a Fresnel structure is pressed according to Roll To
  • the material of the resin layer may be a UV curable adhesive
  • the resin layer is cured to form the Fresnel structure 102.
  • FIG. 4 is a schematic diagram of parameter calculation of the Fresnel structure 102.
  • the widths of the plurality of prism structures are all equal (ie, the length L of the first right-angled side, as may be equal to ⁇ ), and the second right angle perpendicular to the base layer 101
  • the length of the edge 105 is in a direction ⁇ pointing toward the center of the concentric circle (e.g., decreasing from below the projection screen 10 from the projection screen 10).
  • the inclination angles oc1 to ⁇ of the Fresnel structure 102 are calculated, and the projector 20 light is reflected by the projection screen 10 to the area where the viewer 30 is located. .
  • the rigid mold can be an ultra-precision diamond lathe in a cylinder 50 yellow.
  • the copper (which can be understood that the material of the cylinder 50 is not limited to the material brass) is formed by processing the above-mentioned annular Fresnel structure.
  • r is the radius of the outermost prism structure
  • c is the height of the projection screen 10
  • d is one-half of the width of the projection screen 10
  • e is the distance from the bottom edge of the projection screen 10 to the center of the Fresnel ring.
  • the cylinder 50 has a radius of r + 10 cm.
  • the projection screen 10 is a widescreen screen with an aspect ratio of 16:9
  • v represents the size of the projection screen 10
  • (b+e) represents the bottom edge of the projection screen 10.
  • the vertical distance of the projector 20 is the vertical distance of the projector 20.
  • the flexible mold may be rolled and wound on a rotatable shaft.
  • the flexible mold has a width of 125 cm and a long length.
  • the maximum length that can be achieved by the prior art can be from 1 mm to 3 mm. , such as 1.5mm to 2.5 mm.
  • the material of the soft mold can be silica gel.
  • Step S3 forming a cylindrical lens layer on the other side of the base layer.
  • forming the cylindrical lens layer 100 on the base layer 101 may include the following steps: coating a cylindrical lens material layer on the other side of the base layer 101, which will contain the cylinder surface a mold of a lens layer structure is transferred onto the cylindrical lens material layer in a Roll To Roll manner to form the plurality of cylindrical lenses; and the cylindrical lens material layer is cured to form the plurality of cylindrical lenses 100a .
  • the cylindrical lens material may be a photocurable material (such as a UV curable adhesive).
  • Step S4 a reflective layer 103 is formed on a side of the Fresnel structure 102 away from the base layer.
  • the step of forming the reflective layer 103 on the side of the Fresnel structure 102 away from the base layer 101 may include:
  • the mixture of the reflective particles 1031 and the binder 1032 is cured by photocuring or heat curing to form the reflective layer 103.
  • the particle size of the reflective particles 1031 (silver powder or aluminum powder) and the reflective particles 1031 can be adjusted.
  • the surface of the cured reflective layer 103 and the particle size are adjusted by the treatment of the threaded surface of the Fresnel structure 102, so as to control the scattering angle of the reflected light of the reflective layer 103, so that the reflective layer 103 will incident light. Reflected within a solid angle range F (such as a certain controllable cone angle).
  • Step S5 forming a light absorbing layer 106 on a side of the reflective layer 103 away from the Fresnel structure 102.
  • the light absorbing layer 106 can also be coated on the reflective layer 103 away from the Fresnel structure 102 by a light-absorbing material (such as a carbon black material) in a simple and easy-to-handle coating manner.
  • the side is further subjected to a curing process such that the side of the light absorbing layer 106 away from the reflective layer 103 can be planarized to form a flat surface.
  • the reflective layer 103 can control the reflected light to be scattered within a certain stereoscopic angle range, and the light efficiency and uniformity of the projection screen 10 can be improved, and the scattered light is further
  • the cylindrical lens layer 100 of the projection screen 10 is further scattered, so that the emitted light can be made more uniform, the contrast is improved, and glare is avoided.
  • the cylindrical lens layer 100 can extend only the horizontal viewing angle without extending the vertical viewing angle, thereby optimizing the viewing angle of the screen and improving the utilization of light energy.
  • the reflective layer 103 is further provided with a light absorbing layer 106 for absorbing ambient light transmitted through the reflective layer, so that the contrast of the image displayed by the projection screen 10 can be improved. Further, since the reflective layer 103 and the light absorbing layer 106 completely cover the entire thread surface of the Fresnel structure 102 in order, the projection screen 10 can absorb ambient light in various directions, thereby improving the contrast of the projected image. In addition, the dyed base layer 101 can also enhance the absorption of ambient light and improve the contrast of the projected image.
  • the reflective layer 103 may be coated on the Fresnel structure 102 by using a mixture of reflective particles and a binder, and then cured, because the process of coating the reflective layer 103 is simple and easy to operate, thereby The manufacturing process of the projection screen 10 is made simple, and the manufacturing cost can be reduced.
  • the light absorbing layer 106 can also be coated on the reflective layer 103 by applying a light absorbing material to be cured, which also makes the projection screen 10 have the advantages of simple process and low manufacturing cost.
  • the surface roughness of the reflective layer 103 is controlled by changing the particle diameter of the reflective particles 1031 of the reflective layer 103, the mixing ratio of the reflective particles 1031 to the binder 1032, the curing light wavelength, the heat curing temperature, and the like. Degree and particle size, the scattering angle of the reflected light R can be controlled to make the reflected light within the solid angle range F to improve the light efficiency and uniformity, and the reflective layer 103 obtained by the above process is not easy to fall off, the operation is simple, and the cost is low. Lower.
  • the projection screen 10 is realized Light propagation can also be precisely controlled such that the projected image of the projection screen 10 is preferred.
  • the projection screen 10 obtained by the above manufacturing method also has the advantage of being curlable and easy to transport.

Abstract

一种投影屏幕(10)及制造方法。投影屏幕(10)包括基础层(101)、形成于基础层(101)邻近观看者(30)一侧的柱面透镜层(100)、形成于基础层(101)背向观看者(30)一侧的菲涅耳结构(102)、形成于菲涅耳结构(102)远离基础层(101)一侧的反射层(103),及形成于反射层(103)远离菲涅耳结构(102)一侧的吸光层(106),反射层(103)包括反射颗粒(1031)及与反射颗粒(1031)粘结在一起的粘结剂(1032),反射层(103)用于将从菲涅耳结构(102)入射的入射光在与反射颗粒(1031)的粒径相对应的立体角度范围(F)内进行散射及反射而形成反射光,柱面透镜层(100)包括多条柱面透镜(100a),柱面透镜(100a)的轴线垂直于水平方向,柱面透镜(100a)对菲涅耳结构(102)射出的光进行散射以提高投影屏幕(10)水平方向的可视角度,吸光层(106)用于吸收透过反射层(103)的环境光。

Description

投影屏幕及其制造方法
技术领域
[0001] 本发明涉及一种投影屏幕及其制造方法。
背景技术
[0002] 投影仪目前被广泛用作图像投影装置, 以将图像投射到投影屏幕上。 通常, 投 影仪通过将光源发出的光会聚到 DMD (数字微镜器件)或 Lcos等空间光调制器上来 进行彩色图像的显示。
[0003] 近年来, 已经幵发了在投影仪和屏幕之间的距离为 50cm的投影系统, 能够实现 超过 100英寸大屏幕的图像投影显示。 所述投影系统中, 由于将固定至墙壁的投 影屏幕与包括光源装置的投影仪之间的距离布置得更近, 因此可以克服安装空 间的限制, 从而能在 50cm的短距离实现超过 100英寸大屏幕的图像投影显示。 技术问题
[0004] 然而, 上述投影系统中, 由于投影仪和投影屏幕之间具有更短的距离, 因此与 传统投影系统相比, 其投影屏幕趋向于使投影仪发出的投影光相对于投影屏幕 具有更大的入射角。 因而, 响应于大的入射角以及对更高图像质量的要求, 可 以采用反射式投影屏幕, 而如何提供与制作光利用率较高、 均匀性较好、 易操 作、 成本较低的反射式投影屏幕是值得研究的课题。
问题的解决方案
技术解决方案
[0005] 有鉴于此, 有必要提供一种光利用率较高、 均匀性较好、 易操作、 制作成本低 等优点的反射式投影屏幕及其制造方法。
[0006] 一种投影屏幕, 用于接收投影仪的投影光并向观看者提供投影图像, 所述投影 屏幕包括基础层、 形成于所述基础层邻近观看者一侧的柱面透镜层、 形成于所 述基础层背向观看者一侧的菲涅耳结构、 形成于所述菲涅耳结构远离所述基础 层一侧的反射层, 及形成于所述反射层远离所述菲涅耳结构一侧的吸光层, 所 述反射层包括反射颗粒及与所述反射颗粒粘结在一起的粘结剂, 该反射层用于 将从所述菲涅耳结构入射的入射光在与所述反射颗粒的粒径相对应的立体角度 范围内进行散射及反射而形成反射光, 所述柱面透镜层包括多条柱面透镜, 所 述柱面透镜的轴线垂直于水平方向, 所述柱面透镜对所述菲涅耳结构射出的光 进行散射以提高所述投影屏幕水平方向的可视角度, 所述吸光层用于吸收透过 所述反射层的环境光。
[0007] 在一种实施方式中, 所述反射颗粒的粒径大小位于 0.02〜5μηι范围内,所述立体 角度相应地在 5〜15度范围内变化。
[0008] 粒径在一种实施方式中, 所述反射颗粒包括金属银颗粒、 金属铝颗粒、 金属铂 颗粒、 金属钯颗粒中的一种、 两种或几种。
[0009] 在一种实施方式中, 所述反射层的厚度大于等于 1μηι。
[0010] 在一种实施方式中, 所述柱面透镜的宽度在 100μηι〜500μιη的范围内。
[0011] 在一种实施方式中, 所述菲涅耳结构包括多条呈同心圆环状排列的稜镜结构, 所述多条稜镜的高度沿指向所述同心圆环的圆心的方向逐渐减小, 且所述多条 稜镜结构的倾斜角沿所述指向所述同心圆环的圆心的方向逐渐增大。
[0012] 在一种实施方式中, 所述柱面透镜对所述菲涅耳结构射出的光进行散射使得散 射光在预设水平角度范围内, 所述预设水平角度在 25度〜 35度的范围内。
[0013] 在一种实施方式中, 所述基础层的材料包括树脂及加入所述树脂中的染色剂, 所述染色剂吸收至少部分环境光。
[0014] 一种投影屏幕的制造方法, 其包括如下步骤:
[0015] 提供基础层;
[0016] 在所述基础层一侧形成菲涅耳结构;
[0017] 在所述基础层的另一侧形成柱面透镜层;
[0018] 在所述菲涅耳结构远离所述基础层一侧形成反射层;及
[0019] 在所述反射层远离所述菲涅耳结构一侧形成吸光层, 所述吸光层采用吸光材料 涂覆于所述反射层远离所述菲涅耳结构一侧再进行固化的方式形成,
[0020] 其中在所述菲涅耳结构远离所述基础层一侧形成反射层的步骤包括:
[0021] 将反射颗粒与粘结剂的混合物涂覆于所述菲涅耳结构的远离所述基础层一侧的 螺纹面上; 及 [0022] 采用光固化或热固化的方式固化所述反射颗粒与粘结剂的混合物以形成所述反 射层。
[0023] 在一种实施方式中, 在所述基础层一侧形成菲涅耳结构的步骤包括:
[0024] 在所述基础层的一侧涂布树脂层, 将含有菲涅耳结构的模具按照 Roll To Roll的 方式在所述树脂层上进行转印以在所述树脂层上形成所述菲涅耳结构; 及
[0025] 固化所述树脂层以形成所述菲涅耳结构。
[0026] 在一种实施方式中, 在所述基础层的另一侧形成柱面透镜层的步骤包括: [0027] 在所述基础层的另一侧涂布柱面透镜材料层, 将含有所述柱面透镜层结构的模 具按照 Roll To Roll的方式在所述柱面透镜材料层上进行转印以形成所述多条柱 状透镜; 及
[0028] 固化所述柱面透镜材料层以形成所述多条柱状透镜。
[0029] 相较于现有技术, 所述反射层可以将反射光控制在一定预设立体角度范围内散 射, 可以提高所述投影屏幕的光效率和均匀性, 而被散射的光进一步再被所述 投影屏幕的柱面透镜层进一步散射, 可使使出射光更加均匀, 提高对比度及避 免产生炫光。 特别是, 柱面透镜层可以在不扩展垂直方向可视角情况下, 只扩 展水平方向的可视角, 既优化了屏幕的可视角, 又提高光能利用率。
[0030] 进一步地, 所述反射层的进一步设置吸光层, 用于吸收透过反射层的环境光, 可以提高所述投影屏幕显示图像的对比度。 更进一步地, 由于所述反射层和吸 光层依次完全覆盖整个菲涅耳结构的螺纹面上, 使得所述投影屏幕可以吸收各 个方向的环境光, 提高投影图像对比度。 此外, 所述染色的基础层也可以加强 对环境光的吸收, 提高投影图像对比度。
[0031] 更进一步地, 所述反射层可以采用反射颗粒与粘接剂的混合物涂覆在菲涅耳结 构上再进行固化, 由于涂覆所述反射层的工艺简单易操作, 从而使得所述投影 屏幕的制造工艺简单, 可降低制作成本。 此外, 所述吸光层也可以采用涂覆吸 光材料涂覆于所述反射层上再进行固化, 同样使得所述投影屏幕具有工艺简单 , 制作成本较低的优点。
[0032] 特别地, 可以理解, 通过改变所述反射层的反射颗粒的粒径、 反射颗粒与粘结 剂的混合比例、 固化光波长、 热固化温度等控制反射层表面粗糙度和颗粒大小 , 可以控制反射光的散射角度, 使反射光在所述预设立体角度范围内, 以提高 光效率和均匀性, 且采用上述工艺获得的反射层不易脱落、 操作简单、 成本较 低。
发明的有益效果
有益效果
[0033] 综合来说, 由于所述柱面透镜层、 所述菲涅耳结构的柱面透镜尺寸与菲涅耳结 构的稜镜尺寸可以被精确控制, 从而所述投影屏幕实现对光传播也可以被精确 控制, 使得所述投影屏幕的投影图像较佳。 另外, 采用上述制造方法获得投影 屏幕也具有可卷曲、 便于运输的优点。
对附图的简要说明
附图说明
[0034] 图 1是一种投影屏幕的结构示意图。
[0035] 图 2是本发明投影屏幕应用于投影系统中的结构示意图,
[0036] 图 3是图 2所示投影屏幕的部分立体结构示意图。
[0037] 图 4是图 2所示菲涅耳结构的参数计算示意图。
[0038] 图 5是采用超精密金刚石车床加工圆柱体以制备制作图 2所述的菲涅耳结构的硬 性模具的工艺示意图。
[0039] 图 6是图 2所示反射层的反射光的立体角度范围示意图。
[0040] 图 7是图 2所示投影屏幕的制造方法的流程图。
[0041]
[0042] 主要元件符号说明
[0043] 投影屏幕—— 10
[0044] 投影仪—— 20、 6
[0045] 观看者—— 30
[0046] 投影系统—— 40
[0047] 圆柱体—— 50
[0048] 柱面透镜层—— 100、 3
[0049] 柱面透镜—— 100a [0050] 基础层 101、 1
[0051] 菲涅耳结构 102、 2
[0052] 第二直角边 105
[0053] 斜边 -104
[0054] 反射层 103
[0055] 反射颗粒 1031
[0056] 粘结剂 1032
[0057] 吸光层 106
[0058] 少 - Sl、 S2、 S3、 S4、 S5
[0059] 反射面 4
[0060] 表面 -5
[0061] 方向 -X
[0062] 水平角度范围 Η
[0063] 立体角度范围 F
[0064] 入射光 I
[0065] 反射光 R、 R'
[0066] 入射点 Pl、 P2
[0067] 如下具体实施方式将结合上述附图进一步说明本发明。 本发明的实施方式
[0068] 在反射式投影屏幕中, 环境光对投影图像的质量会产生较大影响, 如降低图像 对比度, 而高光强的投影仪可以降低环境光对投影图像质量的影响, 提高对比 度, 但是高光强的投影仪首先不节能, 更重要的是容易因为光不均匀造成刺眼 等现象。
[0069] 另外, 目前主要有以下方式提高前投屏幕对比度: 1) 在反射屏幕的菲涅耳结 构的特定区域选择性涂覆吸光层; 2) 使环境光在屏幕内部发生全发射; 3) 利 用活性层对不同偏振态的光的反射或者吸收; 及 4) 在屏幕的透明结构如散射层 中设置染色层等吸光结构。 前两种方式与对环境光的入射角度有限制, 只有特 定方向入射的环境光才能被充分吸收; 而第三种方式的偏振投射会降低显示图 像的质量, 且只能减少一半的环境光, 难以制作, 成本高。 最后一种通常和前 三种一起实施, 同样也会存在上述三种方式存在的对环境光的吸收不彻底、 难 于制作以及成本高等技术问题。
[0070] 但是, 经分析可知, 在投影系统中, 观众的位置往往比较固定。 人们希望投影 系统显示在投影屏幕上图像的反射光只反射到观众区域, 而其他无效区域的反 射光减少, 由此提高投影系统的效率及提高观众看到投影屏幕上图像的亮度。 一般地, 反射光的出射角度实际上有水平和竖直两个方向的出射角度, 其中水 平方向的可视角度相对于垂直方向可视角更大。 因此, 通常可以考虑用物理 ( 如喷丸) 或化学 (如腐蚀) 的方法在投影屏幕表面增加随机的微结构, 并用一 定的控制方法统计所述微结构对一定出射角度增益, 从而达到利用微结构控制 反射光的出射角度的目的。 然而, 上述方法中微结构的形态、 分布和尺寸均不 容易控制, 并且上述微结构也存在加工难度大的问题。
[0071] 另外, 关于菲涅耳结构上的反射层, 虽然可以采用喷涂、 镀膜等方式, 但是喷 涂的方式形成的结构对光的散射为高斯散射, 不能很好的控制光散射的角度, 而镀膜方式形成的薄膜则存在容易脱落的问题。
[0072] 以下结合几种实例对上述问题进行详细说明。
[0073] 具体地, 在一种消除环境光的投影屏幕的技术方案中, 该投影屏幕面邻近观看 者的一侧为遮光层, 所述遮光层表面有平行的水平方向延伸的微凸条, 其中所 述微凸条的截面为三角形, 且所述微凸条的上表面涂有遮光层。 在遮光层的背 离观看者的一侧是屏幕的反射结构单元。 该技术方案中, 所述投影屏幕只能吸 收从投影屏幕上方入射的光束, 当入射光从其他方向投射到投影屏幕吋, 这些 水平微凸条则不能很好的吸收环境光, 从而不利于提高光利用率与对比度。
[0074] 进一步地, 在另一种反射面为圆形菲涅耳结构的投影屏幕的技术方案中, 请参 阅图 1, 图 1是所述投影屏幕的截面图, 所述投影屏幕包括透光的基础层 1、 位于 基础层 1背面的菲涅耳结构 2、 位于所述菲涅耳结构 2远离所述基础层一侧的反射 面 4、 设置于所述基础层 1的面向观众的一面用于提高水平方向扩散性的柱面透 镜层 3。 来自投影仪 6的光通过基础层 1被反射面 4反射到观看者所在区域。 投影 屏幕上方的环境光透过所述基础层 1并被所述反射层 4反射后在所述基础层 1的一 个表面 5发生全反射, 且最终被着色的基础层 1吸收。 然而, 由于环境光的吸收 主要基于在所述基础层 1表面 5上发生全发射, 这样导致所述基础层 1可吸收的环 境光的入射角度受到限制, 即存在较多不符合入射角度的环境光难于被吸收的 情形, 可见, 所述技术方案也不利于光利用率与对比度的提高。
[0075] 更进一步地, 在一种具有多层结构的反射式投影屏幕的技术方案中, 所述投影 屏幕从所述投影仪侧往后依次为保护层、 扩散层、 基础层、 菲涅耳透镜层、 涂 覆在所述菲涅耳透镜层倾斜面上的反射层和保护层。 其中所述反射层的制备流 程简述如下: 用真空涂覆法在树脂上形成金属膜, 移除树脂层并粉碎金属膜, 通过控制粉碎程度来调节金属片的纵横比, 在将粉碎后的金属片与粘合剂混合 形成溶液, 再将所述溶液喷涂在菲涅耳透镜表面, 蒸发形成反射层。 可见, 上 述反射层的制造方法复杂, 特别是金属片的纵横比不易调控。 另外, 扩散层是 通过在树脂表面涂覆扩散珠的方式形成, 该方式的缺点是扩散层与基础层均要 用到粘合剂, 较多的粘合界面会影响光传播, 即对光传播产生不利的影响, 降 低成像质量, 此外, 扩散珠涂覆的均匀性和扩散珠的尺寸均不易控制, 而且上 述方式形成的扩散层对光在垂直和水平方向所起的作用一样, 不能起到单纯扩 大水平方向可视角度的效果, 可见, 上述反射层的制造方法较为复杂, 成本较 高, 且通过上述制造方法获得投影屏幕存在成像质量不佳的技术问题。
[0076] 鉴于以上, 有必要提供一种反射光具有在一定出射角度增益、 光利用率较高、 均匀性较佳、 易操作、 制作成本低等优点的反射式投影屏幕及其制造方法。
[0077] 请参阅 2及图 3, 图 2是本发明投影屏幕 10应用于投影系统 40中的结构示意图, 图 3是图 2所示投影屏幕 10的部分立体结构示意图。 所述投影屏幕 10包括基础层 1 01、 形成于所述基础层 101邻近观看者 30—侧的柱面透镜层 100、 形成于所述基 础层 101背向观看者 30—侧的菲涅耳结构 102、 形成于所述菲涅耳结构 102远离所 述基础层一侧的反射层 103、 及形成于所述反射层 103远离所述菲涅耳结构 102— 侧的吸光层 106。
[0078] 所述基础层 101可以包括聚碳酸酯 (如丙烯酸氨基甲酸酯树脂) 等树脂材料, 可以直接采用黑色树脂材料或采用透光性树脂材料再对所述透光性树脂材料进 行染色而制成。 具体地, 在一种实施例中, 可在所述基础层 101的透光性树脂材 料中添加染色剂, 如注入炭黑, 使得所述基础层 101可以吸收环境光。 另外, 所 述基础层 101的厚度可以依据实际需要选择, 本实施方式中, 所述基础层 101的 厚度大于 100μηι。
[0079] 具体地, 在一种实施例中, 所述基础层 101可以采用如下方式制备: 提供临吋 基础层, 其中所述临吋基础层可以为具有光滑表面的 PET薄膜; 在所述临吋基础 层上涂覆染色的透光性树脂材料, 其中所述染色的透光性树脂材料可以在透光 性树脂材料中加入染色剂, 如在丙烯酸氨基甲酸酯树脂中注入炭黑, 以提高光 的吸收率至 20%, 所述染色的透光性树脂材料的涂覆厚度可以大于 ΙΟΟμηι; 固化 所述染色的透光性树脂材料以形成所述基础层 101 ; 及移除所述临吋基础层。
[0080] 所述柱面透镜层 100包括多条柱面透镜 100a, 该柱面透镜 100a用于对所述菲涅 耳结构 102射出的光进行散射以提高所述投影屏幕 10水平方向的可视角度。 本实 施方式中, 所述柱面透镜 100a的轴线与地面垂直, 换句话说看, 所述柱面透镜 10 0a的轴线与水平方向 X垂直, 且所述多条柱面透镜 100a依次相接。
[0081] 在一种实施方式中, 所述柱面透镜 100a对所述菲涅耳结构 102射出的光进行散 射使得散射光在一垂直于所述柱状透镜 100a延伸方向与预设水平角度范围 H内, 所述预设水平角度在 25〜35度的范围内。 可以理解, 所述预设水平角度范围 H为 位于垂直于所述柱状透镜 100a延伸方向的水平面内的以所述入射点 P1为顶点的 水平夹角范围内。 所述柱面透镜 100a的宽度可以在 100μηι〜500μιη的范围内, 即 大于等于 ΙΟΟμηι且小于等于 500μηι。
[0082] 具体地, 在一种实施方式中, 在所述基础层 101上形成所述柱面透镜层 100可以 包括如下步骤: 在所述基础层 101的另一侧涂布柱面透镜材料层, 将含有所述柱 面透镜层结构的模具按照 Roll To Roll的方式在所述柱面透镜材料层上进行转印 以形成所述多条柱状透镜 100a; 及固化所述柱面透镜材料层以形成所述多条柱状 透镜 100a。 其中, 所述柱面透镜材料可以为光固化材料 (如 UV固化胶) 。
[0083] 所述菲涅耳结构 102包括光面与位于所述光面相反一侧的螺纹面, 本实施方式 中, 所述菲涅耳结构 102的光面与所述基础层 101紧贴设置。 具体地, 所述菲涅 耳结构 102的螺纹面一侧包括多条稜镜结构, 所述多条稜镜结构均朝向远离所述 基础层 101侧一侧凸出, 其沿垂直于所述稜镜延伸方向的横截面呈直角三角形。 所述直角三角形截面包括邻近所述基础层 101的第一直角边、 垂直所述第一直角 边的第二直角边 105及连接于所述第一直角边与所述第二直角边 105之间的斜边 1 04, 所述第二直角边 105与所述斜边 104之间的夹角设为倾斜角 oci (设所述菲涅耳 结构 102包括 n条稜镜结构, n为自然数, i为大于等于 1且小于等于 n的自然数) 。 平面上, 所述多条稜镜结构均为圆弧形且同心圆环状排列, 且多条稜镜结构的 宽度相等 (即所述第一直角边的长度 L, 如可以均大于等于 ΙΟΟμηι) , 但多条稜 镜结构的高度 (即第二直角边的长度) 可以沿指向所述同心圆环的圆心的方向 Ζ
(如沿所述投影屏幕 10的上方至下方的方向) 逐渐减小, 从而所述多条稜镜结 构的倾斜角 an至 oil可以沿所述方向 Ζ逐渐增大。
[0084] 进一步地, 在所述基础层 101上形成所述菲涅耳结构 102可以包括如下步骤: [0085] 依据投影系统 40中投影仪 20和投影屏幕 10的方位关系, 计算菲涅耳结构 102的 参数;
[0086] 依据计算获得的参数制作含有菲涅耳结构的硬性模具;
[0087] 禾 lj用所述硬性模具制作可用于 Roll TO Roll制程的含有菲涅耳结构的卷状的软 性模具;
[0088] 在所述基础层 101的一侧涂布树脂层, 将含有菲涅耳结构的软性模具按照 Roll To
Roll的方式在所述树脂层上进行转印以在所述树脂层上形成所述菲涅耳结构 102 , 其中所述树脂层的材料可以为 UV固化胶; 及
[0089] 固化所述树脂层以形成所述菲涅耳结构 102。
[0090] 其中, 请参阅图 4, 图 4是所述菲涅耳结构 102的参数计算示意图。 所述菲涅耳 结构 102中, 所述多条稜镜结构的宽度均相等 (即所述第一直角边的长度 L, 如 可以均等于 ΙΟΟμηι) , 与所述基础层 101垂直的第二直角边 105的长度沿指向所述 同心圆圆心的方向 Ζ (如从所述投影屏幕 10上方向投影屏幕 10下方) 递减。 进一 步地, 根据投影系统 40的投影仪 20光和投影屏幕 10的方位关系, 计算出菲涅耳 结构 102的倾斜角 ocl至 αη, 确保投影仪 20光被投影屏幕 10反射到观看者 30所在区 [0091] 其中, 请参阅图 5, 所述硬性模具可以采用超精密金刚石车床在一圆柱体 50 ( 可以理解, 所述圆柱体 50材料可以为黄铜但并不限于黄铜) 的底面加工上述圆 环状菲涅耳结构而形成。 其中所述圆柱体 50的半径可以依据图 4示意按照如下方 式, r
Figure imgf000012_0001
2+(c+e) 2, r为最外侧的稜镜结构的半径、 c为投影屏幕 10高度, d为投 影屏幕 10宽度的二分之一, e为投影屏幕 10底边距菲涅耳圆环中心的距离, 其中 所述圆柱体 50半径为 r+10cm。 另外, 可以理解, 所述投影屏幕 10为长宽比为 16:9 的宽屏屏幕, V代表所述投影屏幕 10的尺寸, (b+e) 则可代表所述投影屏幕 10 底边具所述投影仪 20的垂直距离。
[0092] 进一步地, 待所述具有菲涅耳结构的硬性模具制备完成后, 提供一软性模具, 在具有菲涅耳结构的硬性模具上按图 5所示不断地按压到软性模具中, 其中软性 模具可以呈卷状且绕在可转动的轴上, 所述软性模具宽度为 125 cm, 长度可以 很长, 如达到现有工艺可以达到的最大长度, 厚度可以在 lmm〜3mm的范围内 , 如 1.5mm〜2.5 mm的范围。 可以理解, 所述软性模具的材料可以为硅胶。
[0093] 所述反射层 103完全覆盖所述菲涅耳结构 102远离所述基础层 101—侧的表面, 即完成布满所述第二直角边 105与所述斜边 104所在的表面。 所述反射层 103的厚 度均匀, 从而在远离所述菲涅耳结构 102的一侧也形成菲涅耳结构, 具体地, 所 述反射层 103的厚度可以大于等于 1μηι。
[0094] 所述反射层 103包括反射颗粒 1031及与所述反射颗粒 1031粘结在一起的粘结剂 1 032。 如图 6所示, 该反射层 103将从所述菲涅耳结构 102入射的入射光在与所述 反射颗粒 1031的粒径相对应的立体角度范围 F内进行散射及反射而形成反射光, 本实施方式中, 所述立体角度在 5〜15度的范围变化。 其中, 所述立体角度范围 F可以以所述入射光 I的主反射光 R为中心来界定的一圆锥角范围。 具体来说, 所 述主反射光 R为入射点 Ρ2所在面为平面吋的反射光, 可以理解, 正是由于入射点 Ρ2所在面为不规则面才引起的反射光不仅包括所述主反射光 R所在的方向, 还包 括在所述立体角度范围 F的其他方向的反射光 R'。
[0095] 所述反射颗粒 1031包括金属银颗粒、 金属铝颗粒、 金属铂颗粒、 金属钯颗粒中 的一种、 两种或几种。 所述反射颗粒的粒径大小位于 0.02〜5μηι范围内。 所述粘 结剂材料可以为环氧树脂、 ΡΜΜΑ、 硅胶等, 且所述粘结剂材料不需染色。 需 要注意的是, 当所述反射颗粒 1031包括金属银颗粒吋, 为避免所述反射层 103的 隔水隔氧能力较差, 所述粘结剂材料不建议使用硅胶。
[0096] 在一种实施方式中, 在所述菲涅耳结构 102远离所述基础层 101—侧形成反射层 103的步骤包括:
[0097] 将反射颗粒 1031与粘结剂 1032的混合物 (如银粉或铝粉与粘接剂混合物) 涂覆 于所述菲涅耳结构 102的远离所述基础层 101—侧的螺纹面上; 及
[0098] 采用光固化或热固化的方式固化所述反射颗粒 1031与粘结剂 132的混合物以形 成所述反射层 103。
[0099] 具体地, 可以通过调节反射颗粒 1031 (银粉或铝粉) 粒径大小、 反射颗粒 1031
(银粉或铝粉) 与粘接剂 1032混合比例、 涂覆厚度、 光固化波长、 热固化温度 、 固化吋间、 菲涅耳结构 102的螺纹面的处理等调节固化后的反射层 103表面粗 糙度、 颗粒大小, 从而控制反射层 103反射光的散射角度, 使得所述反射层 103 将入射光在立体角度范围 F内如 (一定的可控的圆锥角度) 内反射。
[0100] 所述吸光层 106完全覆盖所述反射层 103远离所述菲涅耳结构 102的表面, 所述 吸光层 106的材料可以为炭黑材料, 用于吸收透过反射层 103的环境光, 提高图 像对比度。 可以理解, 所述吸光层 106也可以采用简单易操作的涂覆的方式用吸 光材料 (如炭黑材料) 涂在所述反射层 103远离所述菲涅耳结构 102的一侧再进 行固化工艺, 使得所述吸光层 106远离所述反射层 103的一侧可以平坦化从而形 成平面。
[0101] 请再次参阅图 2, 所述投影系统 40工作工作吋, 所述投影机 20发出投影光至所 述投影屏幕 10, 所述投影光依序经由所述柱面透镜层 100、 所述基础层 101、 所 述菲涅尔结构 102到达所述反射层 103, 所述反射层 103中的反射颗粒 1031将所述 投影光散热与反射而形成反射光, 并控制所述反射光在所述预设立体角度范围 F , 所述反射光依序经由所述菲涅尔结构 102、 所述基础层 101、 并进一步被所述 柱面透镜层 100在水平方向上散射后被提供到观看者 30 (其中, 所述柱面透镜层 100可以将所述反射光的角度范围控制在所述预设水平角度范围) , 而未被所述 反射层 103反射的投影光透过所述反射层 103并被所述吸光层 106吸收。 请参阅图 7, 图 7是图 2所示投影屏幕 10的制造方法的流程图。 所述投影屏幕 10的制造方法 包括如下步骤 SI、 S2、 S3、 S4及 S5。
[0102] 步骤 Sl, 提供基础层。
[0103] 具体地, 步骤 SI中, 所述基础层 101可以采用如下方式制备: 提供临吋基础层 , 其中所述临吋基础层可以为具有光滑表面的 PET薄膜; 在所述临吋基础层上涂 覆染色的透光性树脂材料, 其中所述染色的透光性树脂材料可以在透光性树脂 材料中加入染色剂, 如在丙烯酸氨基甲酸酯树脂中注入炭黑, 以吸收环境光, 所述染色的透光性树脂材料的涂覆厚度可以大于 ΙΟΟμηι; 固化所述染色的透光性 树脂材料以形成所述基础层 101 ; 及移除所述临吋基础层。
[0104] 步骤 S2, 在所述基础层 101—侧形成菲涅耳结构 102。
[0105] 具体地, 在所述基础层 101—侧形成菲涅耳结构 102的步骤 包括:
[0106] 依据投影系统中投影仪 20和投影屏幕 10的方位关系, 计算菲涅耳结构 102的参 数;
[0107] 依据计算获得的参数制作含有菲涅耳结构的硬性模具;
[0108] 利用所述硬性模具制作可用于 Roll TO Roll制程的含有菲涅耳结构的卷状的软 性模具;
[0109] 在所述基础层 101的一侧涂布树脂层, 将含有菲涅耳结构的软性模具按照 Roll To
Roll的方式在所述树脂层上进行转印以在所述树脂层上形成所述菲涅耳结构 102 , 其中所述树脂层的材料可以为 UV固化胶; 及
[0110] 固化所述树脂层以形成所述菲涅耳结构 102。
[0111] 其中, 请参阅图 4, 图 4是所述菲涅耳结构 102的参数计算示意图。 所述菲涅耳 结构 102中, 所述多条稜镜结构的宽度均相等 (即所述第一直角边的长度 L, 如 可以均等于 ΙΟΟμηι) , 与所述基础层 101垂直的第二直角边 105的长度沿指向所述 同心圆圆心的方向 Ζ (如从所述投影屏幕 10上方向投影屏幕 10下方递减) 。 进一 步地, 根据投影系统 40的投影仪 20光和投影屏幕 10的方位关系, 计算出菲涅耳 结构 102的倾斜角 ocl至 αη, 确保投影仪 20光被投影屏幕 10反射到观看者 30所在区 域。
[0112] 其中, 请参阅图 5, 所述硬性模具可以采用超精密金刚石车床在一圆柱体 50黄 铜 (可以理解, 所述圆柱体 50材料并不限于材料黄铜) 的底面加工上述圆环状 菲涅耳结构而形成。 其中所述圆柱体 50的半径可以依据图 4示意按照如下方式, r 2=d 2+(c+e) 2
, r为最外侧的稜镜结构的半径、 c为投影屏幕 10高度, d为投影屏幕 10宽度的二 分之一, e为投影屏幕 10底边距菲涅耳圆环中心的距离, 其中所述圆柱体 50半径 为 r+10cm。 另外, 可以理解, 所述投影屏幕 10为长宽比为 16:9的宽屏屏幕, v代 表所述投影屏幕 10的尺寸, (b+e) 则可代表所述投影屏幕 10底边具所述投影仪 20的垂直距离。
[0113] 进一步地, 待所述具有菲涅耳结构的硬性模具制备完成后, 提供一软性模具, 在具有菲涅耳结构的硬性模具上按图 5所示不断地按压到软性模具中, 其中软性 模具可以呈卷状且绕在可转动的轴上, 所述软性模具宽度为 125 cm, 长度可以 很长, 如达到现有工艺可以达到的最大长度, 厚度可以为 lmm至 3mm, 如 1.5mm 至 2.5 mm。 可以理解, 所述软性模具的材料可以为硅胶。
[0114] 步骤 S3, 在所述基础层的另一侧形成柱面透镜层。
[0115] 具体地, 在所述基础层 101上形成所述柱面透镜层 100可以包括如下步骤: 在所 述基础层 101的另一侧涂布柱面透镜材料层, 将含有所述柱面透镜层结构的模具 按照 Roll To Roll的方式在所述柱面透镜材料层上进行转印以形成所述多条柱状 透镜; 及固化所述柱面透镜材料层以形成所述多条柱状透镜 100a。 其中, 所述柱 面透镜材料可以为光固化材料 (如 UV固化胶) 。
[0116] 步骤 S4, 在所述菲涅耳结构 102远离所述基础层一侧形成反射层 103。
[0117] 具体地, 在所述菲涅耳结构 102远离所述基础层 101—侧形成反射层 103的步骤 可以包括:
[0118] 将反射颗粒 1031与粘结剂 1032的混合物 (如银粉或铝粉与粘接剂混合物) 涂覆 于所述菲涅耳结构 102的远离所述基础层 101—侧的螺纹面上; 及
[0119] 采用光固化或热固化的方式固化所述反射颗粒 1031与粘结剂 1032的混合物以形 成所述反射层 103。
[0120] 具体地, 可以通过调节反射颗粒 1031 (银粉或铝粉) 粒径大小、 反射颗粒 1031
(银粉或铝粉) 与粘接剂 1032混合比例、 涂覆厚度、 光固化波长、 热固化温度 、 固化吋间、 菲涅耳结构 102的螺纹面的处理等调节固化后的反射层 103表面粗 糙度、 颗粒大小, 从而控制反射层 103反射光的散射角度, 使得所述反射层 103 将入射光在立体角度范围 F内 (如一定的可控的圆锥角度) 内反射。
[0121] 步骤 S5, 在所述反射层 103远离所述菲涅耳结构 102—侧形成吸光层 106。
[0122] 可以理解, 步骤 S5中, 所述吸光层 106也可以采用简单易操作的涂覆的方式用 吸光材料 (如炭黑材料) 涂在所述反射层 103远离所述菲涅耳结构 102的一侧再 进行固化工艺, 使得所述吸光层 106远离所述反射层 103的一侧可以平坦化从而 形成平面。
[0123] 相较于现有技术, 所述反射层 103可以将反射光控制在一定立体角度范围内散 射, 可以提高所述投影屏幕 10的光效率和均匀性, 而被散射的光进一步再被所 述投影屏幕 10的柱面透镜层 100进一步散射, 可使使出射光更加均匀, 提高对比 度及避免产生炫光。 特别是, 柱面透镜层 100可以在不扩展垂直方向可视角情况 下, 只扩展水平方向的可视角, 既优化了屏幕的可视角, 又提高光能利用率。
[0124] 进一步地, 所述反射层 103的进一步设置吸光层 106, 用于吸收透过反射层的环 境光, 可以提高所述投影屏幕 10显示图像的对比度。 更进一步地, 由于所述反 射层 103和吸光层 106依次完全覆盖整个菲涅耳结构 102的螺纹面上, 使得所述投 影屏幕 10可以吸收各个方向的环境光, 提高投影图像对比度。 此外, 所述染色 的基础层 101也可以加强对环境光的吸收, 提高投影图像对比度。
[0125] 更进一步地, 所述反射层 103可以采用反射颗粒与粘接剂的混合物涂覆在菲涅 耳结构 102上再进行固化, 由于涂覆所述反射层 103的工艺简单易操作, 从而使 得所述投影屏幕 10的制造工艺简单, 可降低制作成本。 此外, 所述吸光层 106也 可以采用涂覆吸光材料涂覆于所述反射层 103上再进行固化, 同样使得所述投影 屏幕 10具有工艺简单, 制作成本较低的优点。
[0126] 特别地, 可以理解, 通过改变所述反射层 103的反射颗粒 1031的粒径、 反射颗 粒 1031与粘结剂 1032的混合比例、 固化光波长、 热固化温度等控制反射层 103表 面粗糙度和颗粒大小, 可以控制反射光 R的散射角度, 使反射光在所述立体角度 范围 F内, 以提高光效率和均匀性, 且采用上述工艺获得的反射层 103不易脱落 、 操作简单、 成本较低。 [0127] 综合来说, 由于所述柱面透镜层 100、 所述菲涅耳结构 102的柱面透镜尺寸与菲 涅耳结构的稜镜尺寸可以被精确控制, 从而所述投影屏幕 10实现对光传播也可 以被精确控制, 使得所述投影屏幕 10的投影图像较佳。 另外, 采用上述制造方 法获得投影屏幕 10也具有可卷曲、 便于运输的优点。
[0128] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
[0129]

Claims

权利要求书
1.一种投影屏幕, 用于接收投影仪的投影光并向观看者提供投影图像
, 其特征在于, 所述投影屏幕包括基础层、 形成于所述基础层邻近观 看者一侧的柱面透镜层、 形成于所述基础层背向观看者一侧的菲涅耳 结构、 形成于所述菲涅耳结构远离所述基础层一侧的反射层, 及形成 于所述反射层远离所述菲涅耳结构一侧的吸光层, 所述反射层包括反 射颗粒及与所述反射颗粒粘结在一起的粘结剂, 该反射层用于将从所 述菲涅耳结构入射的入射光在与所述反射颗粒的粒径相对应的立体角 度范围内进行散射及反射而形成反射光, 所述柱面透镜层包括多条柱 面透镜, 所述柱面透镜的轴线垂直于水平方向, 所述柱面透镜对所述 菲涅耳结构射出的光进行散射以提高所述投影屏幕水平方向的可视角 度, 所述吸光层用于吸收透过所述反射层的环境光。
2.如权利要求 1所述的投影屏幕, 其特征在于, 所述反射颗粒的粒径 粒径大小位于 0.02〜5μηι范围内,所述立体角度相应地在 5〜15度范围 内变化。
3.如权利要求 1所述的投影屏幕, 其特征在于, 所述反射颗粒包括金 属银颗粒、 金属铝颗粒、 金属铂颗粒、 金属钯颗粒中的一种、 两种或 几种。
4.如权利要求 1所述的投影屏幕, 其特征在于, 所述反射层的厚度大 于等于 1μηι°
5.如权利要求 1所述的投影屏幕, 其特征在于, 所述柱面透镜的宽度 范围在 100μηι〜500μιη的范围内。
6.如权利要求 1所述的投影屏幕, 其特征在于, 所述菲涅耳结构包括 多条呈同心圆环状排列的稜镜结构, 所述多条稜镜的高度沿指向所述 同心圆环的圆心的方向逐渐减小, 且所述多条稜镜结构的倾斜角沿所 述指向所述同心圆环的圆心的方向逐渐增大。
7.如权利要求 1所述的投影屏幕, 其特征在于, 所述柱面透镜对所述 菲涅耳结构射出的光进行散射使得散射光在预设水平角度范围内, 所 述预设水平角度在 25度〜 35度的范围内。
[权利要求 8] 8.如权利要求 1所述的投影屏幕, 其特征在于, 所述基础层的材料包 括树脂及加入所述树脂中的染色剂, 所述染色剂吸收至少部分环境光
[权利要求 9] 9.一种投影屏幕的制造方法, 其包括如下步骤:
提供基础层;
在所述基础层一侧形成菲涅耳结构;
在所述基础层的另一侧形成柱面透镜层;
在所述菲涅耳结构远离所述基础层一侧形成反射层;及
在所述反射层远离所述菲涅耳结构一侧形成吸光层, 所述吸光层采用 吸光材料涂覆于所述反射层远离所述菲涅耳结构一侧再进行固化的方 式形成,
其中在所述菲涅耳结构远离所述基础层一侧形成反射层的步骤包括: 将反射颗粒与粘结剂的混合物涂覆于所述菲涅耳结构的远离所述基础 层一侧的螺纹面上; 及
采用光固化或热固化的方式固化所述反射颗粒与粘结剂的混合物以形 成所述反射层。
[权利要求 10] 10.如权利要求 9所述的投影屏幕的制造方法, 其特征在于, 在所述基 础层一侧形成菲涅耳结构的步骤包括:
在所述基础层的一侧涂布树脂层, 将含有菲涅耳结构的模具按照 Roll To Roll的方式在所述树脂层上进行转印以在所述树脂层上形成所述菲 涅耳结构; 及
固化所述树脂层以形成所述菲涅耳结构。
[权利要求 11] 11.如权利要求 10所述的投影屏幕的制造方法, 其特征在于, 在所述 基础层的另一侧形成柱面透镜层的步骤包括:
在所述基础层的另一侧涂布柱面透镜材料层, 将含有所述柱面透镜层 结构的模具按照 Roll To Roll的方式在所述柱面透镜材料层上进行转印 以形成所述多条柱状透镜; 及 固化所述柱面透镜材料层以形成所述多条柱状透镜。
PCT/CN2017/109316 2016-12-05 2017-11-03 投影屏幕及其制造方法 WO2018103480A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17877997.1A EP3550360B1 (en) 2016-12-05 2017-11-03 Projection screen and manufacturing method therefor
US16/466,631 US10719005B2 (en) 2016-12-05 2017-11-03 Projection screen and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611104414.4 2016-12-05
CN201611104414.4A CN108153102A (zh) 2016-12-05 2016-12-05 投影屏幕及其制造方法

Publications (1)

Publication Number Publication Date
WO2018103480A1 true WO2018103480A1 (zh) 2018-06-14

Family

ID=62469925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109316 WO2018103480A1 (zh) 2016-12-05 2017-11-03 投影屏幕及其制造方法

Country Status (4)

Country Link
US (1) US10719005B2 (zh)
EP (1) EP3550360B1 (zh)
CN (1) CN108153102A (zh)
WO (1) WO2018103480A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262178A (zh) * 2019-07-22 2019-09-20 顾亮 一种用于超短焦正投影的弧形反射幕布
TWI710448B (zh) * 2019-08-28 2020-11-21 弘勝光電股份有限公司 短焦前投影抗光幕之製作方式及其系統
CN112835259A (zh) * 2019-11-25 2021-05-25 苏州苏大维格科技集团股份有限公司 投影式裸眼三维显示装置
CN114660882A (zh) * 2020-12-22 2022-06-24 宁波激智科技股份有限公司 一种解散斑激光电视屏幕及其制备方法
EP3985435A4 (en) * 2019-07-04 2022-08-17 Appotronics Corporation Limited PROJECTION SCREEN

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297386B (zh) * 2018-03-22 2022-03-25 深圳光峰科技股份有限公司 曲面屏幕及其微结构设置方法和投影系统
WO2019201012A1 (zh) 2018-04-16 2019-10-24 青岛海信激光显示股份有限公司 菲涅尔投影屏幕以及投影系统
CN110750029B (zh) * 2018-07-06 2022-01-04 深圳光峰科技股份有限公司 投影屏幕
CN110908234B (zh) * 2018-08-28 2022-08-02 深圳光峰科技股份有限公司 固化胶及其投影屏幕
CN110955106B (zh) * 2018-09-27 2021-11-12 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN111077722B (zh) * 2018-10-18 2022-03-25 深圳光峰科技股份有限公司 投影屏幕及其加工方法
CN111427229A (zh) * 2018-12-20 2020-07-17 青岛海信激光显示股份有限公司 一种投影屏幕和投影系统
CN111650809A (zh) * 2019-03-04 2020-09-11 深圳光峰科技股份有限公司 线栅结构及其制作方法、投影屏幕
CN112363365A (zh) * 2019-07-24 2021-02-12 深圳光峰科技股份有限公司 投影屏幕及其制备方法
CN218272766U (zh) * 2019-11-08 2023-01-10 3M创新有限公司 光学膜
CN113009768B (zh) * 2019-12-20 2023-03-21 青岛海信激光显示股份有限公司 一种投影屏幕及投影设备
CN113009769B (zh) * 2019-12-20 2023-04-25 青岛海信激光显示股份有限公司 一种投影屏幕及投影设备
CN113325660A (zh) * 2020-02-28 2021-08-31 深圳光峰科技股份有限公司 透明投影屏幕及其制造方法
US11722648B2 (en) * 2020-07-07 2023-08-08 Mirraviz, Inc. Reflective display
US11079668B1 (en) * 2020-07-07 2021-08-03 Mirraviz, Inc. Reflective display
CN114002907A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 抗光幕布及投影系统
CN112099302B (zh) * 2020-09-23 2022-05-17 中国乐凯集团有限公司 超短焦抗光投影幕布及其制备方法
CN111929976B (zh) * 2020-10-15 2021-01-05 成都菲斯特科技有限公司 一种投影屏幕及投影系统
CN112198750A (zh) * 2020-10-15 2021-01-08 成都菲斯特科技有限公司 一种投影屏幕及投影系统
CN112433440A (zh) * 2020-11-11 2021-03-02 成都菲斯特科技有限公司 一种光学投影屏幕的制作方法
CN114660885B (zh) * 2020-12-22 2023-05-23 宁波激智科技股份有限公司 一种解散斑激光电视屏幕及其制备方法
CN113156756B (zh) * 2021-03-18 2022-03-11 苏州莱科光学科技有限公司 一种超短焦抗光幕制备方法
CN113942156B (zh) * 2021-08-26 2023-08-22 成都菲斯特科技有限公司 一种多层复合材料及其制作方法
CN113741135A (zh) * 2021-09-27 2021-12-03 青岛海信激光显示股份有限公司 一种投影屏幕及投影装置
CN115343908B (zh) * 2022-08-25 2023-08-22 青岛海信激光显示股份有限公司 一种菲涅尔投影屏幕及投影设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285528A (zh) * 1999-08-20 2001-02-28 Tcl王牌电子(深圳)有限公司 衬有吸光黑条及采取表面发散方式的正面投影反射屏幕及其加工工艺
CN101510045A (zh) * 2008-02-15 2009-08-19 精工爱普生株式会社 屏幕以及投影系统
CN102243430A (zh) * 2010-05-15 2011-11-16 陈波 正向投影屏
JP2014052556A (ja) * 2012-09-07 2014-03-20 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
US20140092471A1 (en) * 2012-09-28 2014-04-03 Dai Nippon Printing Co., Ltd. Reflection screen and image display system
CN104777708A (zh) * 2014-01-15 2015-07-15 Lg电子株式会社 反射屏幕、具有反射屏幕的显示器和制造反射屏幕的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893748A (en) * 1973-11-30 1975-07-08 Eastman Kodak Co Low scintillation, multi-component projection screen
JP3655972B2 (ja) * 1996-08-16 2005-06-02 大日本印刷株式会社 反射型スクリーン及び前方投影システム
JP2999764B1 (ja) * 1998-12-15 2000-01-17 達郎 西谷 映写スクリーン
US20030039030A1 (en) * 2001-08-23 2003-02-27 Myers Kenneth J. Reflective sheets and applications therefor
WO2004104694A1 (ja) * 2003-05-26 2004-12-02 Sharp Kabushiki Kaisha 反射型スクリーン
JP2005031502A (ja) * 2003-07-09 2005-02-03 Sony Corp スクリーン
JP5332138B2 (ja) * 2007-06-01 2013-11-06 株式会社リコー 表示システム
JP4539738B2 (ja) 2008-03-05 2010-09-08 セイコーエプソン株式会社 スクリーン及び投射システム並びにスクリーンの製造方法
US7826135B2 (en) * 2008-10-20 2010-11-02 Texas Instruments Incorporated Screen film for light projection brightness enhancement
TWI368816B (en) * 2008-10-24 2012-07-21 Coretronic Corp Reflective front projection screen
US8115997B1 (en) * 2011-03-30 2012-02-14 Martin Chien Projection screen
KR20140019608A (ko) * 2012-08-06 2014-02-17 삼성전자주식회사 프론트 프로젝션 장치용 스크린 및 그 제조 방법
KR20140064446A (ko) * 2012-11-20 2014-05-28 삼성전자주식회사 프론트 프로젝션 디스플레이 장치용 반사형 스크린
WO2015122055A1 (ja) 2014-02-14 2015-08-20 大日本印刷株式会社 反射スクリーン、反射スクリーンの製造方法、スクリーン筐体および映像表示システム
US20150286125A1 (en) * 2014-04-02 2015-10-08 Microsoft Corporation High-efficiency projection screen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285528A (zh) * 1999-08-20 2001-02-28 Tcl王牌电子(深圳)有限公司 衬有吸光黑条及采取表面发散方式的正面投影反射屏幕及其加工工艺
CN101510045A (zh) * 2008-02-15 2009-08-19 精工爱普生株式会社 屏幕以及投影系统
CN102243430A (zh) * 2010-05-15 2011-11-16 陈波 正向投影屏
JP2014052556A (ja) * 2012-09-07 2014-03-20 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
US20140092471A1 (en) * 2012-09-28 2014-04-03 Dai Nippon Printing Co., Ltd. Reflection screen and image display system
CN104777708A (zh) * 2014-01-15 2015-07-15 Lg电子株式会社 反射屏幕、具有反射屏幕的显示器和制造反射屏幕的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550360A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3985435A4 (en) * 2019-07-04 2022-08-17 Appotronics Corporation Limited PROJECTION SCREEN
CN110262178A (zh) * 2019-07-22 2019-09-20 顾亮 一种用于超短焦正投影的弧形反射幕布
TWI710448B (zh) * 2019-08-28 2020-11-21 弘勝光電股份有限公司 短焦前投影抗光幕之製作方式及其系統
CN112835259A (zh) * 2019-11-25 2021-05-25 苏州苏大维格科技集团股份有限公司 投影式裸眼三维显示装置
CN114660882A (zh) * 2020-12-22 2022-06-24 宁波激智科技股份有限公司 一种解散斑激光电视屏幕及其制备方法
CN114660882B (zh) * 2020-12-22 2024-03-19 宁波激智科技股份有限公司 一种解散斑激光电视屏幕及其制备方法

Also Published As

Publication number Publication date
EP3550360A1 (en) 2019-10-09
EP3550360A4 (en) 2019-11-20
US10719005B2 (en) 2020-07-21
CN108153102A (zh) 2018-06-12
US20190354002A1 (en) 2019-11-21
EP3550360B1 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2018103480A1 (zh) 投影屏幕及其制造方法
US7450814B2 (en) Optical device for a display having tapered waveguide and process for making the same
TWI274227B (en) Method for producing mold for use in duplicating light diffusion sheet, light diffusion sheet and method for producing the same, and screen
CN107209449B (zh) 透射型屏幕和使用该透射型屏幕的平视显示器装置
CN110383833B (zh) 图像显示装置
JP2002535699A (ja) 投影スクリーン用フレネルレンズ
KR101503094B1 (ko) 프론트 프로젝션 스크린 및 이를 포함하는 프로젝션 시스템
JP2004004148A (ja) プロジェクションスクリーン用シート、光拡散シート、及びプロジェクションスクリーン
US8395841B2 (en) Reflective projection screen having multi-incedent angle
JP2005241920A (ja) 光拡散性スクリーン
WO2019179167A1 (zh) 曲面屏幕及其微结构设置方法和投影系统
JP2749156B2 (ja) 反射形スクリーン及びこれを用いた表示装置
WO2020093805A1 (zh) 投影屏幕和投影系统
WO2021078289A1 (zh) 一种投影屏幕
WO2021143439A1 (zh) 一种投影屏幕以及投影系统
JP2013050646A (ja) 反射型スクリーン、及び反射型投射システム
KR101496505B1 (ko) 프론트 프로젝션 스크린 및 이를 포함하는 프로젝션 시스템
WO2019227937A1 (zh) 菲涅尔屏幕
JP2008262209A (ja) 光拡散シート、及びプロジェクションスクリーン
KR20050000595A (ko) 수직 및 수평으로 광시야각을 갖는 영상표시용 스크린 및이를 구비하는 프로젝션 텔레비전
CN112255877A (zh) 一种反射式侧向投影屏幕及投影系统
TW200532359A (en) Fresnel lens sheet and rear projection screen using it applicant
TW200304579A (en) Micro-lens sheet and projection screen
JPH02304542A (ja) 透過形スクリーン
JP2013061375A (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017877997

Country of ref document: EP